

199 Henlow Bay Winnipeg, MB R3Y 1G4 Phone (204) 488-6999 Fax (204) 488-6947 Email <u>info@nationaltestlabs.com</u> www.nationaltestlabs.com

February 12, 2013

Stantec 100-1355 Taylor Avenue Winnipeg, Manitoba R3M 3Y9

Attention: Kevin Amy

Kevin,

Re: Sturgeon Road Bridge Replacement, Winnipeg, Manitoba

The National Testing Laboratories Limited was retained to undertake a geotechnical investigation to verify the bedrock conditions for the proposed bridge structure for the southbound lanes on Sturgeon Road. The initial site investigation conducted in July 2010 revealed sound carbonate bedrock at the testhole locations. Based upon the quality of bedrock encountered in the testholes, shaft resistance values of 150 kPa (0 to 2.5 m below bedrock surface) and 1000 kPa (below 2.5 m) were provided for design of the rock-socketed caissons. During construction of the bridge structure for the northbound lanes, it was evident that the quality of bedrock encountered at the caisson locations was significantly lower than the quality of bedrock observed at the testhole locations. Based upon an evaluation of samples recovered from the caissons, an allowable shaft resistance of 300 kPa was provided for design of the caissons.

Field Drilling Program

On January 17, 2013, a testhole, identified as Testhole TH10, was drilled at the location of the south pier for the bridge structure for the southbound lanes. The testhole location is shown on the drawing provided in Appendix A. The testhole was drilled to auger refusal using a 125 mm diameter solid stem auger and then advanced 12 m into the underlying bedrock with a HQ coring bit. The core sample was returned to our laboratory for examination and testing.

Laboratory Testing

Samples of the bedrock core were selected and tested for uniaxial compressive strength (ASTM D7012) and point load strength index (ASTM D5731). The laboratory test reports are provided in Appendix B and the test data are summarized in the following tables.

Table I - Offiaxial Comp	lessive Strength of	ROCK COTES (ASTIVI DTOTZ)
Sample Depth Below Existing Grade (m)	Elevation (m)	Uniaxial Compressive Strength (MPa)
11.1	223.12	19
12.3	221.95	7
13.3	220.92	38
14.7	219.52	46
15.8	218.42	26
16.9	217.32	11
17.9	216.32	20
20.1	214.12	17

Table 1 - Uniaxial Comp	pressive Strength of	f Rock Cores (ASTM D	7012)

GEOTECHNICAL ENGINEERING • CONSTRUCTION MATERIALS TESTING

Sample Depth Below Existing Grade (m)	Elevation (m)	Point Load Strength Index (MPa)	Estimated Uniaxial Compressive Strength (MPa)		
18.6	215.62	1.67	38		
18.7	215.52	1.53	38		
21.4	212.82	0.91	21		
21.5	212.72	0.60	15		
21.6	212.62	0.69	17		

Table 2 – Point Load Strength Index	of Rock Cores (ASTM D5731)
Table Z – Follit Load Strength Index	OINOCK COIES (ASINI DJIJI)

The rock quality designation (RQD) of the bedrock core was determined in accordance with ASTM D6032. The RQD is defined as the total length of recovered core pieces greater than 100 mm in length expressed as a percentage of the core drilled. The RQD for the bedrock core is summarized in the following table.

Top Elevation of Core Run (m)	Length of Core Run (m)	RQD (%)		
223.52	1.52	81		
222.00	1.53	90		
220.47	1.50	89		
218.97	1.55	77		
217.42	1.50	87		
215.92	1.55	73		
214.37	1.50	62		
212.87	1.55	93		

Table 3 – RQD Test Data for Rock Cores (ASTM D6032)

The RQD may be used as a general measure of rock quality. Based on the RQD values for the core samples, the bedrock quality is considered to be fair to excellent.

SUBSURFACE CONDITIONS

<u>Soil Profile</u>

The typical stratigraphy at the site, as interpreted from the testhole log, consists of clay fill, clay and silt till underlain by calcareous mudstone. The testhole log is provided in Appendix C.

Clay Fill

Clay fill was encountered at the ground surface in the testhole. The clay fill extended to a depth approximately 2.8 m below the existing bridge deck. The clay fill contained gravel, sand and organic material. The clay fill was black, soft, moist, and of high plasticity.

<u>Clay</u>

Clay was encountered beneath the clay fill in the testhole. The clay was brown to grey, firm, moist, and of high plasticity.

<u>Silt Till</u>

Silt till was encountered beneath the clay at a depth of approximately 6 m below the existing bridge deck. The silt till was tan to red, loose to dense, moist, of low plasticity, and contained some sand and fine to coarse gravel. Although not encountered at the testhole location, it has been reported that boulders are present within the silt till in this area of Winnipeg.

Bedrock

Testhole TH10 intercepts rocks of the Stony Mountain Formation. The top 1.2 m of the rock core recovered from the testhole is composed of calcareous bioturbated mudstones typical of the Penitentiary Member. The remaining 11 m of the rock core is composed of reddish-purple, burrow-mottled, calcareous mudstones of the Gunn Member. The Gunn Member is interbedded with lenses of packstone and mudstone, and contains a considerable amount of clay. This clay content increases with increasing depth and is concentrated in lenses producing a fissile and friable texture. Photographs of the core samples are provided in Appendix D.

Rock-Socketed Caissons

Based upon a review of the test data and rock cores, the allowable shaft resistance value for rocksocketed caissons is 500 kPa. The quality of the bedrock was poor near the bedrock surface and therefore we recommend that the top 0.3 m be neglected in the design of the rock socket. The rock quality at the surface of the bedrock must be verified in the field to determine the actual length to be neglected below the top of the bedrock. The quality of the rock decreases with depth and the shaft resistance value is based upon socket lengths that do not exceed 6 m. The shaft resistance value is also based upon roughened sockets and a minimum concrete compressive strength of 40 MPa for the rock-socketed caissons. Drilling/coring of the bedrock should provide a rough surface texture to improve bond between the bedrock and concrete. It should be noted that the quality of bedrock can change significantly over short distances and actual bedrock quality at the caisson locations may differ from the bedrock quality observed in the core samples. If the actual bedrock quality is less than the quality assumed in the design of the caisson, the rock socket length must be increased to ensure the design capacity is achieved.

Full time inspection by qualified geotechnical personnel is required to evaluate the bedrock quality and to make recommendations regarding any requirement for socket deepening. A camera should be used to confirm the quality of the rock surface for each caisson prior to concrete placement.

Please contact the undersigned if you have any questions regarding the information provided in this letter.

Don Flatt, M. Eng., P.Eng. Senior Geotechnical Engineer



APPENDIX A

TESTHOLE LOCATION PLAN

APPENDIX B

LABORATORY TEST REPORTS

T A				Sta	antec	Ltd.			
Stantec		ROCK CO	RE DIMEN	SIONAL a	nd SHAP	E TOLER	ANCES A	STM D 45	543
Project Name	Sturę	geon Creek	Bridge	Project Location		Winnipeg		Project Number	121615644
Testhole	1	Depth	36.5' - 37.7'	Area (mm²)	3142	L (mm)	133.25	D (mm)	63.25
Axial	A	cial		End Surfac	e Flatness		Perpend	dicularity	
Tolerance	Min	Max	D ₁	D ₂	D_3	D ₄	Toler	ance	
L ₁	0.000	0.006	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.001	
L ₂	0.000	0.008	0.001	0.004	0.002	0.005	$D_2 \Delta$	0.004	
L ₃	0.000	0.009					$D_3 \Delta$	0.002	
							$D_4 \Delta$	0.005	
$L_1 \Delta$	0.0)06							
$L_2 \Delta$	0.0	008					L/D Ratio	2.1	
$L_3 \Delta$	0.0	009					L/D Mee	ets Spec	
Maximum	n Axial Devia	ition (in)					∆ Max	0.005	
	0.009						Δ Max / D	0.002	
							Perpendicu	larity Meets	
Axial De	viation Meet	s Spec					Sp		
							1		
		COMPRE	SSIVE STRE	NGTH of IN		CORE A	STM D 7012		
Load, kN	59.9	Compressiv	ve Strength, N	/IPa	19	Unit Wei	ght, g/cm³	2	.310
Tested By	MVG	Date	Jan.25	5.2013	Rem	harks			

TA				Sta	antec	Ltd.			
Stantec	1	ROCK CO	RE DIMEN	SIONAL a	nd SHAP	E TOLER	ANCES A	ASTM D 45	543
Project Name	Sturgeon Creek Bridge			Project Location		Winnipeg		Project Number	121615644
Testhole	1	Depth	43.6' - 44.3'	Area (mm²)	3142 L (mm) 151.75			D (mm)	63.25
Axial	Ах	cial		End Surfac	e Flatness		Perpend	dicularity	
Tolerance	Min	Max	D ₁	D ₂	D_3	D ₄	Tolei	rance	
L ₁	0.000	0.011	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.005	
L ₂	0.000	0.009	0.005	0.007	0.006	0.006	$D_2 \Delta$	0.007	
L ₃	0.000	0.010					$D_3 \Delta$	0.006	
							$D_4 \Delta$	0.006	
$L_1 \Delta$	0.0)11							
$L_2 \Delta$	0.0	009					L/D Ratio	2.4	
$L_3 \Delta$	0.0)10					L/D Mee	ets Spec	
Maximum	n Axial Devia	tion (in)					Δ Max	0.007	
	0.011						Δ Max / D	0.003	
							Perpendicu	larity Meets	
Axial De	Axial Deviation Meets Spec							ec	
		COMPRE	SSIVE STRE	NGTH of IN		CORE A	STM D 7012		
Load, kN	120.9	Compressiv	ve Strength, N	/IPa	38	Unit Wei	ght, g/cm³	2	.411
Tested By	MVG	Date	Jan.25	.2013	Rem	harks		L	

S				S	tantec	Ltd.			
Stantec		ROCK	CORE DIME	NSIONAL	and SHA		RANCES	ASTM D 4	4543
Project Name	Stu	Irgeon Creek	Bridge	Project Location		Winnipeg		Project Number	121615644
Testhole	1	Depth	40.3' - 40.9'	Area (mm²)	3142	L (mm)	94.00	D (mm)	63.25
Axial	A	xial		End Surface	Flatness	-	Perpend	dicularity	
Tolerance	Min	Max	D ₁	D ₂	D ₃	D ₄	Tolei	rance	
L ₁	0.000	0.009	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.005	
L ₂	0.000	0.007	0.005	0.007	0.004	0.005	$D_2 \Delta$	0.007	
L ₃	0.000	0.009					$D_3 \Delta$	0.004	
	•						$D_4 \Delta$	0.005	
L ₁ Δ	0.	009							
$L_2 \Delta$	0.	007					L/D Ratio	1.5	
$L_3 \Delta$	0.	009					L/D Out	of Spec	
	Maximum Axial Deviation (in) 0.009 Axial Deviation Meets Spec							0.007 0.003 larity Meets bec	
		COMP	RESSIVE STR	ENGTH of II	NTACT ROO	CK CORE	ASTM D 701	2	
Load, kN	22.4	Compressiv	ve Strength, MF	Pa	7	Unit Weight, g/cm³			2.371
Tested By	MVG	Date	Jan.25	2013	Ren	narks	L/D Ratio	does not m	eet specifications

The				S	tantec	Ltd.				
Stantec		ROCK	CORE DIME	NSIONAL	and SHA		RANCES	ASTM D 4	4543	
Project Name	Stu	rgeon Creek	Bridge	Project Location		Winnipeg		Project Number	121615644	
Testhole	1	Depth	55.4' - 56.2'	Area (mm²)	3167	L (mm)	101.00	D (mm)	63.50	
Axial	A	kial		End Surface	Flatness		Perpend	dicularity		
Tolerance	Min	Max	D ₁	D ₂	D_3	D ₄	Toler	ance		
L ₁	0.000	0.007	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.004		
L ₂	0.000	0.007	0.004	0.007	0.006	0.007	$D_2 \Delta$	0.007		
L ₃	0.000	0.008					$D_3 \Delta$	0.006		
							$D_4 \Delta$	0.007		
L ₁ Δ	0.0	007						·		
$L_2 \Delta$	0.0	007					L/D Ratio	1.6		
$L_3 \Delta$	0.0	800					L/D Out	of Spec		
Maximum	Maximum Axial Deviation (in)						Δ Max Δ Max / D	0.007 0.003		
							Perpendicu	larity Meets		
Axial De	viation Meet	s Spec					Sp	ec		
		COMP	RESSIVE STR	ENGTH of I	NTACT ROO		ASTM D 701	2		
Load, kN	36.3	Compressiv	ve Strength, MF	Pa	11	Unit Wei	ght, g/cm³		2.398	
Tested By	MVG	Date	Jan.25.	2013	Rem	narks	L/D Ratio de	pes not meet	specifications	

				Sta	antec l	_td.			
Stantec		ROCK CO	RE DIMENS	SIONAL a	nd SHAPE	E TOLERA	NCES A	STM D 45	43
Project Name	Stur	geon Creek	Bridge	dge Project Winnipeg				Project Number	121615644
Testhole	1	Depth	48.3' - 49.1'	Area (mm²)	3142	L (mm)	147.25	D (mm)	63.25
Axial	Ax	kial		End Surface	e Flatness		Perpend	dicularity	
Tolerance	Min	Max	D ₁	D ₂	D ₃	D ₄	Toler	rance	
L ₁	0.000	0.006	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.009	
L ₂	0.000	0.004	0.009	0.007	0.007	0.006	$D_2 \Delta$	0.007	
L ₃	0.000	0.008					$D_3 \Delta$	0.007	
		-					D ₄ Δ 0.006		
$L_1 \Delta$	0.0	006							
$L_2 \Delta$	0.0	004					L/D Ratio 2.3		
$L_3 \Delta$	0.0	008					L/D Mee	ets Spec	
	•								
Maximum	n Axial Devia	ation (in)					Δ Max	0.009	
	0.008						Δ Max / D	0.004	
							Perpendicu	larity Meets	
Axial De	viation Meet	s Spec						bec	
		COMPRES	SSIVE STREN	GTH of INT	ACT ROCK	CORE AS	TM D 7012		
Load, kN	144.4	Compressiv	ve Strength, M	IPa	46	Unit Weig	ght, g/cm³	2.	544
Tested By	MVG	Date	Jan.25	.2013	Rem	harks			

		Stantec Ltd.										
Stantec		ROCK CO	RE DIMENS	SIONAL ai	nd SHAPE		NCES A	STM D 454	43			
Project Name	Sturgeon Creek Bridge			Project Location		Winnipeg		Project Number	121615644			
Testhole	1	Depth	51.8' - 52.9'	Area (mm²)	3142	L (mm)	138.25 D (mm)		63.25			
Axial	A	xial		End Surface	e Flatness		Perpend	dicularity				
Tolerance	Min	Max	D ₁	D ₂	D ₃	D ₄	Toler	ance				
L ₁	0.000	0.009	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.006				
L ₂	0.000	0.008	0.006	0.007	0.006	0.008	$D_2 \Delta$	0.007				
L ₃	0.000	0.009					$D_3 \Delta$	0.006				
							$D_4 \Delta$	0.008				
$L_1 \Delta$	0.009											
$L_2 \Delta$	0.0	800					L/D Ratio	2.2				
$L_3 \Delta$	0.0	009					L/D Mee	ets Spec				
Maximum	n Axial Devia	ation (in)					Δ Max	0.008				
	0.009						Δ Max / D	0.003				
							Perpendicu	larity Meets				
Axial De	viation Mee	ts Spec					Sp	ec				
		COMPRE	SSIVE STREN	GTH of INT	ACT ROCK	CORE AS	TM D 7012					
Load, kN	82.7	Compressi	ve Strength, M	Pa	26	Unit Wei	ght, g/cm³	2.	490			
Tested By	MVG	Date	Jan.25	.2013	Rem	harks						

					antec l				
Stantec		ROCK CO	RE DIMENS	SIONAL a	nd SHAPE	E TOLERA	NCES A	STM D 45	43
Project Name	Stur	geon Creek	eek Bridge Project Winnipeg				Project Number	121615644	
Testhole	1	Depth	58.6' - 59.6'	Area (mm²)	3142	L (mm)	132.50	D (mm)	63.25
Axial	Ax	kial		End Surface	e Flatness		Perpend	dicularity	
Tolerance	Min	Max	D ₁	D ₂	D_3	D ₄	Tolei	rance	
L ₁	0.000	0.008	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.005	
L ₂	0.000	0.009	0.005	0.007	0.006	0.008	$D_2 \Delta$	0.007	
L ₃	0.000	0.007					$D_3 \Delta$	0.006	
	•						D ₄ Δ 0.008		
$L_1 \Delta$	0.0	800							
$L_2 \Delta$	0.0	009					L/D Ratio 2.1		
$L_3 \Delta$	0.0	07					L/D Mee	ets Spec	
	•								
Maximum	n Axial Devia	ation (in)					∆ Max	0.008	
	0.009						Δ Max / D	0.003	
							Perpendicu	larity Meets	
Axial De	viation Meet	s Spec						ec	
		COMPRES	SSIVE STREN	GTH of INT	ACT ROCK	CORE AS	TM D 7012		
Load, kN	63.7	Compressiv	ve Strength, M	Pa	20	Unit Weig	ght, g/cm³	2.	397
Tested By	MVG	Date	Jan.25	.2013	Rem	harks			

	Stantec Ltd.										
Stantec		ROCK CO	RE DIMENS	SIONAL a	nd SHAPE	E TOLERA	NCES A	STM D 45	43		
Project Name	Stur	Sturgeon Creek		Project Location	² vvinnibed			Project Number	121615644		
Testhole	1	Depth	65.8' - 66.5'	Area (mm²)	3142	L (mm)	133.00	D (mm)	63.25		
Axial	A۷	cial		End Surface	e Flatness		Perpend	dicularity			
Tolerance	Min	Max	D ₁	D ₂	D ₃	D ₄	Toler	rance			
L ₁	0.000	0.006	0.000	0.000	0.000	0.000	$D_1 \Delta$	0.007			
L ₂	0.000	0.007	0.007	0.008	0.006	0.006	$D_2 \Delta$	0.008			
L ₃	0.000	0.007					$D_3 \Delta$	0.006			
		-					$D_4 \Delta$	0.006			
$L_1 \Delta$	0.0	006									
$L_2 \Delta$	0.0	07					L/D Ratio	2.1			
$L_3 \Delta$	0.0	07					L/D Mee	ets Spec			
Maximum	n Axial Devia	ation (in)					Δ Max	0.008			
	0.007						Δ Max / D	0.003			
							Perpendicu	larity Meets			
Axial De	viation Meet	s Spec					Sp	bec			
		COMPRES	SSIVE STREN	GTH of INT	ACT ROCK	CORE AS	TM D 7012				
Load, kN	53.2	Compressiv	ve Strength, M	Pa	17	Unit Wei	eight, g/cm ³ 2.374				
Tested By	MVG	Date	Jan.25	.2013	Rem	narks	I				

STANTEC CONSULTING LTD.

DOINT I OAD STDENATU INDEV

Stan	tec	POINT LOAD STRENGTH INDEX										
Project Name		-	Creek Bri	•	Project Location		Winnipeg		Project No.	121615644		
* Indicate Ty Entry of Le						I and B fo	r Block Sar	nple				
Testhole			Type of		Length	Load	Pt. Load	IS(50)	Inferred	Remarks		
restrible	From	То	Test	D (mm)	L (mm)	P (kN)	ls (MPa)	(MPa)	QU (MPa)	Remarks		
1	61.0'	61.1'	Α	63.4	32.1	4.3	1.66	1.67	38	Tested perp. To bedding		
1	61.1'	61.2'	A	63.3	44.9	5.1	1.41	1.53	38	Tested perp. To bedding		
1	70.4'	70.5'	A	63.3	31.6	2.3	0.90	0.91	21	Tested perp. To bedding		
1	70.5'	70.6'	A	63.3	44.6	2.0	0.56	0.60	15	Tested perp. To bedding		
1	70.6'	70.7'	A	63.3	39.7	2.1	0.66	0.69	17	Tested perp. To bedding		
Tootod Du	M Class	(202	Dete	lon 25 (2012	Chaster	Dy		Dete			
Tested By	M. Glaw	15011	Date	Jan. 25, 2	2013	Checked	БУ		Date			

APPENDIX C

TESTHOLE LOG

Project Name: Sturgeon Creek Bridge Replacement Project Location: Sturgeon Creek Bridge Client: Stantec Drilling Contractor: Paddock Drilling Ltd.

Drilling Method: 125 mm Solid Stem Auger / 65 mm HQ Coring Bit

Depth (m)	Elevation (m)	Symbol	Description	Sample Length (mm)	Recovery Length (mm)	RQD (%)	◆ Uniaxial Compressive Strength (MPa) 20 40 60 80
	234 02		Concrete Bridge Deck				·····
	201.02	P., H. N., P.					·····
							·····
							·····i····i····i
- 1.0 -							
							·····
 	232.42	~~~~~					·····
- 2.0 -			Clay Fill - black, soft, moist, high plasticity				······ ······ ······ ······
							·····
							·····
	231.47						
			Clay - brown, moist, high plasticity				·····
- 3.0 -							+
							· · · · · · · · · · · · · · · · · · ·
							·····i····i····i
							·····
- 4.0 -							+++
							·····
							· · · · · · · · · · · · · · · · · · ·
							······
							II
5.0 Page	1 of 5						

Project Name: Sturgeon Creek Bridge Replacement Project Location: Sturgeon Creek Bridge Client: Stantec Drilling Contractor: Paddock Drilling Ltd.

Drilling Method: 125 mm Solid Stem Auger / 65 mm HQ Coring Bit

Depth (m)	Elevation (m)	Symbol	Description	Sample Length (mm)	Recovery Length (mm)	RQD (%)	◆ Uniaxial Compressive Strength (MPa) 20 40 60 80
			Clay - brown, moist, high plasticity <i>(continued)</i>				
 - 6.0 - 	228.22		Silt Till - red, soft, moist, saturated, low plasticity				
- 8.0		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $					
- 9.0 - - 9.0 - 		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $					

Project Name: Sturgeon Creek Bridge Replacement Project Location: Sturgeon Creek Bridge Client: Stantec Drilling Contractor: Paddock Drilling Ltd.

Drilling Method: 125 mm Solid Stem Auger / 65 mm HQ Coring Bit

Depth (m)	Elevation (m)	Symbol	Description	Sample Length (mm)	Recovery Length (mm)	RQD (%)	 ◆ Uniaxial Compressive Strength (MPa) 20 40 60 80
	223.52	$\begin{array}{c} \circ \circ$	Silt Till - red, soft, moist, saturated, low plasticity <i>(continued)</i>				
- 11.0	222.34		Penitentiary Member -Calcareous bioturbated mudstone; buff with reddish purple mottling; lenses of reddish purple bioturbated mudstone; bioturbation mottling 30-60%, diameter 3-5mm; low porosity, mostly interparticle with some vuggy (up to 5mm) infilled with free growth calcite; trace bioclastic material.	1524	1524	80.0	
- 12.0		Gunn Member -Calcareous bi greyish-buff ini 60-100%, dian to 5mm) infiller	Gunn Member -Calcareous bioturbated mudstone with argillaceous partings; reddish purple with greyish-buff intervals (2-3cm thick) and reddish partings; bioturbation mottling 60-100%, diameter 1-2mm; low porosity, mostly interparticle with some vuggy (up to 5mm) infilled with free growth calcite (esp. 42.5-44'); trace bioclastic material. Gradational contact with overlying Penitentiary Member over 1m.				I I I I I I 7 I I I I I I I I I I I I I I I I <t< td=""></t<>
- 13.0	220.81		Gunn Member -Calcareous bioturbated mudstone with argillaceous partings; reddish purple with greyish-buff partings; bioturbation mottling 60-100%, diameter 1-2mm; low porosity, mostly interparticle; trace bioclastic material.	1524	1524	90.0	
 - 14.0 	219.98						
		Gunn Member -Calcareous bioturbated mudstone with argillaceous partings with lenses of packstone; reddish purple with greyish-buff partings; bioturbation mottling 30-50%, diameter 1-2mm; low porosity, mostly interparticle; abundant lenses of packstone 1-10cm thick, comprised of abraded brachiopods, solitary rugose corals, echinoderm fragments.	1524	1524	89.0	46	

Project Name: Sturgeon Creek Bridge Replacement Project Location: Sturgeon Creek Bridge Client: Stantec Drilling Contractor: Paddock Drilling Ltd.

Drilling Method: 125 mm Solid Stem Auger / 65 mm HQ Coring Bit

Depth (m)	Elevation (m)	Symbol	Description	Sample Length (mm)	Recovery Length (mm)	RQD (%)		rength)
			Gunn Member -Calcareous bioturbated mudstone with argillaceous partings with lenses of packstone; reddish purple with greyish-buff partings; bioturbation mottling	1524	1524	89.0		 	 	 - -
	218.07		30-50%, diameter 1-2mm; low porosity, mostly interparticle; abundant lenses of packstone 1-10cm thick, comprised of abraded brachiopods, solitary rugose corals, echinoderm fragments. <i>(continued)</i>	1524	1524	77.0	 			
			Gunn Member -Calcareous argillaceous mudstone with shaley partings and lenses of packstone; reddish purple with greyish-green partings; remnant bioturbation mottling; increasing shale content; low porosity, mostly interparticle; lenses of packstone 1-5cm thick, comprised of abraded brachiopods, solitary rugose corals, echinoderm fragments.							
- 17.0 - 	216.85		Gunn Member -Calcareous laminated mudstone with lenses of packstone; greyish-green with reddish purple partings; thinly laminated with argillaceous material; dense with very low porosity, mostly interparticle; lenses of packstone at top and bottom 10cm thick, comprised of slightly abraded brachiopods, solitary rugose corals, echinoderm fragments. Gunn Member -Calcareous argillaceous mudstone with shaley partings and lenses of packstone; reddish purple with greyish-green partings; increasing shale content; moderate porosity, mostly interparticle and interstitial; several lenses of	1524			-11 ⊥ 			
 - 18.0 - 	<u>216.50</u>				1524	86.0	20 			
	215.17		packstone 1-10cm thick, comprised of brachiopods, solitary rugose corals, echinoderm fragments.	1524		70.0		38 		
	214.79 214.53 214.41		Gunn Member -Calcareous mudstone with lenses of packstone; greyish-green with reddish purple partings; remnant bioturbation, diameter 1-2mm; low porosity, mostly interparticle; lenses of packstone 2-4cm thick, comprised of brachiopods, solitary rugose corals, echinoderm fragments. Gunn Member -Calcareous laminated mudstone; greyish-green with reddish purple partings; thinly laminated with argillaceous material; dense but moderate porosity, mostly		1524	73.0				
	<u>- 17.41</u>		\ interparticle and interstitial; trace bioclastic material.	1524	1524	62.0		 		
20.0 Page 4	of 5						17	1	1	1

Project Name: Sturgeon Creek Bridge Replacement Project Location: Sturgeon Creek Bridge Client: Stantec Drilling Contractor: Paddock Drilling Ltd.

Drilling Method: 125 mm Solid Stem Auger / 65 mm HQ Coring Bit

Depth (m)	Elevation (m)	Symbol	Description	Samula Lenuth (mm)		Kecovery Length (mm)	RQD (%)	◆ Uniaxial Compressive Strength (MPa) 20 40 60 80
	<u>213.96</u> 212.84		-Calcareous packstone with argillaceous partings; greyish-green to reddish purple; thinly laminated argillaceous material interspersed with the fossil lense material; increased porosity, mostly interparticle and interstitial; fossil content comprised of complete brachiopods, solitary rugose corals, echinoderm fragments. Gunn Member -Calcareous argillaceous mudstone; greyish-purple with reddish and greenish partings; fissile texture; thinly laminated with argillaceous material; moderate porosity, mostly interparticle; high clay content, decreased carbonate content; trace bioclastic material. <i>(continued)</i> Gunn Member -Calcareous mudstone with argillaceous partings and lenses of packstone; greyish purple; fissile texture; moderate porosity, mostly interparticle; decreased carbonate content and increased clay content; thinner lenses of packstone 8-10 cm thick, comprised of brachiopods, solitary rugose corals, echinoderm fragments.	15	24 15	524	62.0	
	211.35		Gunn Member -Calcareous argillaceous mudstone; greyish-purple with reddish and greenish partings; fissile texture; thinly laminated with argillaceous material; moderate porosity, mostly interparticle; high clay content, decreased carbonate content; trace bioclastic material	15	24 15	524	92.0	
- 23.0			 No groundwater seepage observed due to added water for corir Soil sloughing observed in the silt till at a depth of 9.1 m. Auger refusal at a depth of 10.4 m in dense till. HQ coring conducted below a depth of 10.7 m. Testhole backfilled with 226 kg of bentonite chips. 	ng pr	, and the second	SS.		

APPENDIX D

BEDROCK CORE PHOTOGRAPHS

Photo 1 – TH1 from 10.67 m to 13.72 m (Elev. 223.52 to 220.47 m)

Photo 2 – TH1 from 13.72 m to 16.77 m (Elev. 220.47 to 217.42 m)

Photo 3 – TH1 from 16.77 m to 19.82 m (Elev. 217.42 to 214.37 m)

Photo 4 – TH1 from 19.82 m to 22.87 m (Elev. 214.37 to 211.32 m)