APPENDIX 'G' REVISED RECOMMENDATIONS FOR DRIVEN STEEL H-PILES

CHNICAL Quality Engineering | Valued Relationships

September 27, 2018

File No. 0035-037-00

Beth Phillips, P. Eng., C.I.M. Morrison Hershfield 59 Scurfield Blvd Winnipeg, Manitoba R3Y 1G4

RE Empress Pedestrian Ramp and St. Matthews Retaining Wall Revised Recommendations for Driven Steel H-Piles

Further to TREK's geotechnical report for structural pedestrian ramps issued on March 13, 2018 to Morrison Hershfield (MH), this letter provides revised recommendations for driven steel H-piles.

As summarized in our previous report for the pedestrian ramps, subsurface conditions encountered in our February 2018 investigation consisted of compact till containing boulders and sand layers overlying bedrock at a depth of approximately 15.0 m. Recommendations were provided for driven steel piles, end-bearing and rock-socketed caissons. Poor till conditions and conflicts between required pile caps and adjacent utilities precluded the use of precast prestressed concrete hexagonal (PPCH) piles or belled piles. The detailed design proceeded with rock-socketed caissons to provide adequate axial and lateral capacity, while avoiding conflicts to nearby utilities and limiting installation vibrations (as shown on the attached preliminary structural drawings).

Proof-coring of the bedrock to confirm adequate rock quality at the proposed socket depth was conducted in September 2018 at three accessible pier locations (SU-1, SU-3 and SU-4) as summarized on the attached proof-core logs; our previous test hole (TH18-01) was located within 2 m of SU-2. The bedrock conditions encountered in the proof-coring holes was significantly different from that observed in TH18-01, consisting of lower strength and poorer quality rock, as well as the presence of what is suspected to be an infilled solution cavity within the bedrock. Core photos for all proof-core holes as well as TH18-01 are attached. The conditions encountered in the proof-core holes consisted of a layer of limestone bedrock 9.3 m, 0.3 m and 1.6 m thick at SU-1, SU-3 and SU-4, respectively, below which suspected sand and clay extended to the depth of exploration in all holes (23.9 m in PC18-01, 20.7 m in PC18-03, 35.7 m in PC18-04). Due to the drilling method used for proof-coring, very little information could be gained on the strength and consistency of suspected sand and clay layers below the upper layers of bedrock. Based on these conditions, TREK does not consider that rock-socketed caissons are feasible at SU-1, SU-3 and SU-4 and driven steel H-Piles are recommended for all piers.

In addition, steel H-piles are now required to support a retaining wall extending south along the cycle track and sidewalk from St. Matthews Avenue. Test holes at this location from our previous investigations did not extend down to bedrock.

Driven Steel H-Piles

Steel H-piles driven to refusal on bedrock are considered suitable to support the proposed ramp structures. However, observed variability of bedrock conditions at this site and the presence of a possible infilled solution cavity within the bedrock may require piles be driven to greater depths prior to reaching adequate capacity or refusal. If refusal is reached on bedrock, H-Piles will derive a majority of their resistance in end bearing with a relatively small contribution from shaft friction. If refusal is not reached, piles driven deeper are expected to derive most of their resistance in shaft friction.

It is our understanding that the desired factored Ultimate Limit State (ULS) capacity for driven steel Hpiles (HP310x110 sections) at the pedestrian ramp structure is on the order of 500 kN. We anticipate that piles driven at SU-1 and SU-2 will reach refusal on bedrock at depths of approximately 13 to 15 m below existing ground to achieve a factored ULS capacity of 1,000 kN based on a resistance factor of ϕ =0.4 (Nominal capacity of 2,500 kN). At SU-3 and SU-4, practical refusal may be observed at depths ranging from 17 to 22 m, however the strength and quality of rock at these locations is relatively poor and piles may penetrate through to greater depths. For this reason, we recommend that all steel piles at SU3 to SU-6 be driven with dynamic monitoring using the Pile Driving Analyser (PDA) throughout initial drive and on restrike such that driving can be terminated once a nominal capacity of 1,000 kN is achieved (based on a resistance factor of ϕ =0.5), thus reducing the pile length required.

Piles for the St. Matthews retaining wall can be expected to reach refusal on bedrock, however the depth and quality of bedrock is not known at this location. Geological maps of the area indicate bedrock is likely present at 15 to 20 m below ground surface, however the depth of refusal may vary significantly without site specific information. Steel H-piles (HP310x110 sections) at this location can be designed for a factored ULS Capacity of 1,000 kN, provided they are driven to refusal on bedrock.

The pile head settlement under unfactored service loads can be calculated based on 10 mm or less of pile tip displacement plus elastic shortening of the pile.

Steel H-piles will derive their uplift resistance in skin friction within overburden deposits. An average ULS skin friction of 10 kPa should be used for soils above bedrock for the purposes of uplift resistance calculations.

Design Recommendations

- 1. The weight of the embedded portion of the pile should be neglected in design.
- 2. Pile spacing should not be less than 2.5 pile diameters, measured centre to centre. If a closer spacing is required, TREK should be contacted to review the pile layout.
- 3. The piles must be structurally designed to withstand the design loads, handling stresses, and driving stresses.
- 4. All piles should be fitted with driving tips to help protect the pile tip during installation. The driving tip must be designed to withstand driving stresses and long-term design load cases.

Installation Recommendations

- 1. A pile driving system (*i.e.* pile-driving hammer) capable of developing at least 350 J/cm² (open-ended diesel hammers) or 250 J/cm² (hydraulic hammers) should be specified for driving steel piles. The minimum developed energy for the hammer can be calculated by multiplying this value by the cross-sectional area of the pile in cross-section. For example, an HP310x110 steel H-pile has a cross-sectional area of 141 cm² and therefore should be driven with at least 49 kJ of developed energy for a diesel hammer. Developed energy is the potential energy of the ram and can be estimated by measuring the blow rate of the hammer (single-acting diesel hammers), ram velocity or ram drop height. The pile-driving hammer should have the capability of adjusting the fuel setting or stroke to deliver higher energy to the pile during driving if the energy is not sufficient to drive the pile to the required tip elevation. The driving system should also have the capability of adjusting the fuel setting or stroke to deliver lower energy to prevent pile damage upon sudden pile refusal.
- 2. Piles at the St. Matthews retaining wall and at piers SU-1 and SU-2 of the pedestrian ramps should be driven to refusal on bedrock. Pile installation should be completed carefully near refusal to avoid overdriving of the piles, which could lead to pile damage or misalignment. Refusal is generally considered to be reached when three consecutive sets of 12 blows of the hammer produce 25 mm (1") or less of pile penetration (per set), provided that a driving system capable of producing the required delivered energy to the pile per blow is used.
- 3. Piles at SU-3 to SU-6 of the pedestrian ramps should be driven to a nominal capacity of 1,000 kN (or greater) based on dynamic measurements using the PDA and CAPWAP signal-matching analysis at the beginning of restrike (BOR). Restrike testing should be conducted a minimum of 12 hours after the end of initial drive. PDA testing should also be conducted throughout initial drive to monitor driving stresses and field capacities, such that driving can be terminated as soon as the required nominal capacity is anticipated to be reached. If piles are allowed to penetrate through shallower dense materials, they may penetrate to depths of 30 m or greater prior to reaching capacity.
- 4. Driving stresses in the pile should not exceed 90% of the yield stress of the pile material.
- 5. The Contractor should be required to submit a proposed driving system for approval a minimum of 7 days prior to the start of pile driving. The pile driving system should be capable of installing the piles to the required tip elevation within specified allowable driving stresses.
- 6. All piles driven within 5 pile diameters of one another should be monitored for pile heave and where heave is observed, all piles should be checked and piles exhibiting heave should be re-driven to one set of the specified refusal criteria.
- 7. Pile verticality (plumbness) should be measured on all piles after practical refusal has been achieved to check if verticality is within the limits of the structural design. It is common local practice to specify a maximum acceptable percentage that the pile can be out of vertical plumbness (e.g. 2% out of plumb) or out of the specified batter.
- 8. Inspection of all driven H-piles should be performed by TREK personnel to confirm that the refusal criteria have been met and to record that pile installation has been completed according to the design.
- 9. Any piles damaged, out of plumb an excessive amount or reaching premature refusal may need to be replaced. The structural designer will have to assess non-conforming piles to determine if they are acceptable. PDA testing with CAPWAP analysis is recommended for any piles that are suspected to not meet the design capacity or to be damaged if a structural solution is not possible.

Attention: Beth Phillips, Morrison HershfieldPage 4 of 4Empress Pedestrian Ramps and St. Matthews Retaining Walls, Winnipeg, MBSeptember 27, 2018Revised Recommendations for Driven Steel H-PilesSeptember 27, 2018

10. PDA testing of driven steel piles is considered good practice to verify end-bearing capacity, that piles have been installed without exceeding the permissible driving stresses such that no pile damage occurs and to verify the relationship between driving resistance and capacity. PDA testing is therefore recommended for all piles.

Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practice (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

If you have any questions, please contact the undersigned.

Kind Regards,

TREK Geotechnical Per:

Michael Van Helden, Ph.D, P.Eng. Senior Geotechnical Engineer **Reviewed By:**

FBelle

FUL :

Ken Skaftfeld, M.Sc., P.Eng. Senior Geotechnical Engineer

ENGINEER\$	
GEOSCIENTISTS	.1
MANITOBA	14.
Certificate of Authorization	· ·
TREK GEOTECHNICAL INC.	
No. 4877 Date: Jept. 2-7/2	018
Certificate of Authorization TREK GEOTECHNICAL INC. No. 4877 Date: Sept. 2-7/2	018

Z:\Projects\0035 Morrison Hershfield\0035 037 00 Empress Overpass\4 Docs\4.4 Deliverables\Pedstrian Ramp - Revised Steel Piles\LTR 2018-09-27 Empress - Revised Steel H-Piles 0_FINAL_MVH 0035-037-00.docx

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criteria		riteria		ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve size	5 #4	o #10	to #40	200
sieve size	vels of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve nbols*	Not meeting all gradatio	on requiren	nents for GW	ە	STM S	#10	#401	#500	¥
s No. 200	Gra than half o	vith fines sciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	ticle Siz	٩			+	
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle ilows: W, SP SM, SC ts requirin	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Par		Ľ	, 8	25	
Coarse-Gr naterial is	action	sands no fines)	SW	***** ****	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fo sw, GP, S GM, GC, thine case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 UU tO 4 7		.075 to 0.4	c/U.U >
n half the r	nds of coarse fr an 4 75 mi	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Salier th	with fines reciable it of fines)	SM		Silty sands, sand-silt mixtures	le percent of on perc rained soil than 5 per than 12 per than 12 per than 2 percent.	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5				Clay
	(More	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Mate	ואומר	Sand	Mediu	Fine Citt or	oll oi
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity	/ Chart			e Sizes		-	i i i	
. 200 sieve	ts and Cla	Liquid limit sss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	TM Sieve	> 12 in 2 in to 12	2	3/4 in. to 3 #4 to 3/4	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%) 00 (%)		CH CH		rticle Siz	ASI	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Pa	m	300 200	222	to 75	P 10
Fine the materi	the materia Its and Clay (Liquid limit sater than 50	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F	
than half	N	gre	OH		Organic clays of medium to high plasticity, organic silts		ML OR OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class	sification Limit a	Strong co and often	lour or odour, fibrous texture	Mate	ואומוכ	Bould	Grave	Coarse		

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE				
and	and CLAY	35 to 50 percent				
"y" or "ey"	clayey, silty	20 to 35 percent				
some	some silt	10 to 20 percent				
trace	trace gravel	1 to 10 percent				

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Test	blow count (N) of a cor	nesive soil can be related to its c	consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

EXPLANATION OF ROCK CLASSIFICATION

(Canadian Foundation Engineering Manual, 4th Edition, 2006)

Grade*	Term	Uniaxial Comp. Strength (MPa)	Point Load Index (MPa)	Field Estimate of Strength	Examples
R6	Extremely strong	>250	>10	Specimen can only be chipped with a geological hammer	Fresh basalt, chert, diabase, gneiss, granite, quartzite
R5	Very strong	100-250	4-10	Specimen requires many blows of a geological hammer to fracture it	Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, peridotite, rhyolite, tuff
R4	Strong	50-100	2-4	Specimen requires more than one blow of a geological hammer to fracture it	Limestone, marble, sandstone, schist
R3	Medium Strong	25-50	1-2	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single blow from a geological hammer	Concrete, phyllite, schist, siltstone
R2	Weak	5-25	***	Can be peeled with a pocket knife with difficulty, shallow indentation made by a firm blow with the point of a geological hammer	Chalk, claystone, potash, marl, siltstone, shale, rocksalt
R1	Very weak	1-5	***	Crumbles under firm blows with point of a geological hammer, can be peeled with a pocket knife	Highly weathered or altered rock, shale
R0	Extremely weak	0.25-1	***	Indented by thumbnail	Stiff fault gouge

* Grade according to ISRM (1981).

** All rock types exhibit a broad range of uniaxial comprehensive strengths reflecting heterogeneity in composition and anisotropy in structure. Strong rocks are characterized by well-interlocked crystal fabric and few voids.

*** Rocks with a uniaxial compressive strength below 25 MPa are likely to yield highly ambiguous results under point load testing.

	EREK Sub-Surface Log		٦	ſest	Hol	e P	C18	-01 1 of 1
GEOT	ECHNICAL							
Client:	Morrison Hershfield Project Number: 0035 037 00							
Project Nam	e: Empress Pedestrian Ramp Proof Coring Location: 1.6 m north of t	he centr	e of SL	J1				
Contractor:	Rodren Drilling Ltd. Ground Elevation: 100.00 m Not N	leasure	<u>d</u>					
Method:	Mobile EF-75 HQ Coring Date Drilled: 12 September 2	2018 - 13	3 Septe	mber	2018			
Sample	Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split E	arrel (SI	3) [] T		ore (C)		
Particle	Size Legend: Fines Clay IIII Silt Silt Gravel	<u>b°</u>	Cobl	oles		Bou Bul	Iders	\//t
Elevation (m) Depth (m)	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	16 17 0 20 0 20	C Builder (k 7 18 Particle 0 40 PL 1 40 0 40	N/m ³) 19 e Size 60 MC 60	20 21 (%) 80 100 LL 80 100
- 5	OVERBURDEN - soils not logged due to drilling methods used							
88.4	COBBLES AND BOULDERS (suspected granitic and limestone)	+	C07					
	DOLOMITIC LIMESTONE - cherty, Red River Formation, Upper Fort Garry Member		C08	38				
- 15-	- ruggy throughout		C09	10				
		-	C10	47				
	- 100% core recovery from 13.1 m to 14.6 m - clay seams at 15.4 m, 16.8 m and 19.8 m	-		41	-			
	- brecciated from 13.7 to 16.8 m, 18.8 to 19.8 m and 20.9 to 22.3 m - 97% core recovery from 14.6 m to 16.2 m		C11	67				
-20-	- 100% core recovery from 16.2 m to 17.7 m		C12	22				
77.0	- 100% core recovery from 19.2 m to 20.7 m		C13	32				
//.0	- poor recovery and suspected clay seams within bedrock below 20.9 m		C14					
/0.1	 ARGILLITE- with cherty dolomitic layers, Red River Formation, Upper Fort Garry Member red, soft, calcareous, R2 6% core recovery from 22.3 to 23.8 m suspected clay below 22.6 m END OF CORING AT 23.9 m IN SUSPECTED CLAY Notes: Backfilled with cement/bentonite grout mix to surface. 		1					
Logged By:	Jenna Roadley Reviewed By: Ken Skaftfeld Project E	ngineer	: Mict	nael V	an He	den		

		_												
			2		_		- ·			7	Гest	Hole	€ PC18	3-03
			H		S	ub-Su	rface Log	g						TOTI
GE	OT	EC	HNI	CAL										
Clien	nt:	Mo	orrison He	rshfield			Project Number:	0035 037 00						
Proje	ct Nam	ne: <u>En</u>	npress Pe	destrian Ramp Pro	of Coring		Location:	1.5 m north of the	<u>e centre</u>	of SL	J3			
Contr	ractor:	Ro	odren Drilli	ng Ltd.			Ground Elevation:	: <u>100.00 m Not Me</u>	asured					
Meth	od:	Mo	bile EF-75 H	-IQ Coring		<u> </u>	Date Drilled:	13 September 20	18					
	Sample	e Type:	:	Grab (G)		Shelby Tube (T)	Split Spoon (S	S) 🔀 Split Ba	rrel (SB)	Co	ore (C)		
	Particle	e Size	Legend:	Fines	Clay	Silt	Sand	Gravel	62	Cobl	bles		Boulders	5
		0							be	lber		L 16 17	Bulk Unit (kN/m ³) 18 19	Wt 20 21
ation n)) pth	ymb			МАТ	רסואו הבפרסונ			e Ty	Nun	(%)	P	article Size	(%)
n n	De	oil S				ERIAL DEGUNIF	HUN		Impl	Jple	RQL	0 20	40 60	80 100
_		Ň							လိ	San	-	0 20	40 60	
			OVERBU	JRDEN t loaged due to dril	ling method user	d								
	ĘJ													
	†													
	<u> </u>													
	F 1													
	Ę]													
	-10-													
	[]													
<u>81.8</u>	4 4		BOULDE	RS AND COBBLE	<u></u>					C16	-			
86.0	<u>i</u>]		- 100% c	ore recovery from 1	12.2 m to 13.1 m 3 1 m to 14.6 m	1				C17				
	-15-		CLAY		4.0 m to 47.7 m				/=					
	[]		- 17% coi	re recovery from 1	4.6 m to 17.7 m									
82.3	<u> </u>										<u> </u>			
بىدغى ب	1			ITC LIMESTONE -	vuggy throughou	ut, hard, R4		/ 		C18	20			
79.3	-20-	1	SUSPEC	TED SAND - poor	recovery, trace c	cobbles		· 		C19				
10.0	<u> </u>	L	END OF	CORING AT 20.7	m IN SAND						<u> </u>	<u> </u>		
			1) Backfil	lled with cement/be	entonite grout mi	x to surface.								

		EC	RE				S	ub-Su	rface	e Log	9			-	Fest	Hol	e PC	18-04 1 of 1
Clier	nt:	M	orrison Her	shfield					Project I	Number:	0035 0	37 00						
Proje	ect Nan	ne: En	npress Ped	estrian R	Ramp Proc	of Coring	g		Location	n:	1.2 m i	north of th	ie centi	re of SL	J4			
Cont	ractor:	Ro	dren Drillin	ig Ltd.	-				Ground	Elevation:	100.00	m Not M	easure	d				
Meth	nod:	Мо	bile EF-75 H	Q Coring					Date Dri	lled:	7 Sept	ember 20	18 - 12	Septer	nber 2	018		
	Sampl	e Type:			Grab (G)		S	helby Tube (T)	Spli	t Spoon (S	S)	Split Ba	arrel (S	в) 🗌	С	ore (C)		
	Particl	e Size	Leaend:		Fines		Clav	Silt		Sand		Gravel	5-2		bles		Bould	ers
Elevation (m)	Depth (m)	Soil Symbol					MATE	RIAL DESCRI	PTION				Samula Tvna	Sample Number	RQD (%)	16 17 F 0 20 F 0 20	Bulk ((kN/ 18 Particle \$ 40 PL M0 40	Jnit Wt n ³) 19 20 21 Size (%) 60 80 100 C LL 60 80 100
027 00.GPJ TREK GEOTECHNICAL.GDT 26/9/18	- 5 -		- soils not - 0.5 m of - concrete	CDEN logged di core recc encount	ue to drillin overed fro ered at 1.	ng meth m surfa 5 m (<0	iod used ce to 17.4 .15 m thic	4 m ck)						C01				
<u>_JSR 0115</u>			COBBLES - 50% core - 90% core	S AND BO e recover e recover	OULDERS ry from 17 ry from 18	6 (Grani .4 m to .9 m to	tic and Lii 18.9 m 20.4 m	mestone)					_	C02 C03				
× 20 70	1		- 26% core	e recover	ry from 20	.4 m to	22.0 m						H	C04	1			
NNORIN NNORIN			DOLOMIT	IC LIME	STONE -	Red Riv	er Forma	tion, Upper Fo	rt Garry Mem	ıber				007				
О́ 76.8 Ц	3L . - ·		- light - vuq	t brown to gy to ope	o cream en cavities								r-	C05	/0			
PRO	- 25		- hard	d, calcare	eous, R4		4000- I-	Idana					[C06				
BEMPRESS PED RAMP	- 30		SUSPECI	ED CLA		ecovery,	, trace do	uiders										
35 2018-09-1			SUSPECT	ED SAN	ID - poor r	ecovery	, trace bo	ulders										
ТО																		
	aed Bv:	Jenr	END OF C Notes: 1) Casing 2) Core ba 3) Backfille	CORING advanced arrel and ed with b	AT 35.7 n d to 42.7 r two rods a penotonite	n IN SU m on su abandon to grour R	SPECTEI spected b ned in hole nd surface	D SAND Dedrock. e. e. By: Ken Ska	ftfeld		P	roject En	qineer	: Micl	hael V	an Hel	den	

Socket: 762 mm diam. X 2.44 m length socket

Note: Top and bottom of rock socket *estimated* based on bedrock core recovery.

Project Number:	Date:	Location: Structure: SU1	Created By:	Reviewed By:
0035-037-00-104	September 18, 2018	Elevation Relative to existing grade.	JR	

Project Number: 0035-037-00-104	Date: September 18, 2018	Location: Structure: SU2 Elevation Relative to existing grade.	Created By: JR	Reviewed By:

Note: Proof core photos for reference only; suitable bedrock for rock sockets was not identified within depth of proofcore (20.7 m).

Project Number: 0035-037-00-104	Date: September 18, 2018	Location: Structure: SU3 Elevation Relative to existing grade.	Created By: JR	Reviewed By:

Note: Proof core photos for reference only; suitable bedrock for rock sockets was not identified within depth of proofcore (24.4 m).

dProject Number:	Date:	Location: Structure: SU4	Created By:	Reviewed By:
0035-037-00-104	September 18, 2018	Elevation Relative to existing grade.	JR	