

Winnipeg Transit EBDD RFP Technical Appendix
Controller and Communication

2008-09-16

1 Controller Logic
Winnipeg Transit will build a back-end application to service information requests from the display
controllers. This section outlines a potential controller/application server communications protocol. The
exact format of the messages (e.g. encoding, compression, etc) can be discussed at a later time. Indeed,
modern application design dictates that the underlying message protocol is to be abstracted out of the
application’s core logic, which isolates behaviour logic from data access logic.

This proposal describes a pull model for a display controller consisting of two subsystems. These
subsystems would ideally be implemented as independent processes spawned from a main
boot/monitoring process.

1.1 Subsystems
The first subsystem is the system clock, which is responsible for keeping time internally and feeding
time to the display. This subsystem periodically queries the application server to ask for the current
time. The response to this request includes the current local time and the number of seconds before the
time should be queried again; this allows the application server to dynamically throttle time updates as
opposed to having some preset value hardwired into the signs. It is important to note that we would
prefer a time service of our own creation (as opposed to a NTP server) so we can ensure that the
displays are perfectly synchronized with our schedule data.

The other subsystem is the schedule controller, which is responsible for requesting schedule data and
updating the display. This subsystem periodically queries the application server to request schedule
data for the stop. The stop number is passed1 to the server so it returns only relevant data. The response
includes all the information on the next passing times, including the route numbers and names,
via/destination info, and the passing times. The application server can determine how much
information should be returned for a stop (i.e. how far into the future to look, the number of passing
times for a route, etc). Like the system clock query response, the schedule query response also includes
the number of seconds before the schedule data should be queried again, which provides a great deal of
flexibility, including the ability to dynamically throttle updates depending on such variables as the time
of day, whether there are any schedule exceptions in effect, and even the stop number.

The schedule controller could be broken down into two subsystems, one which deals entirely with
retrieving schedule data, and another which deals entirely with updating the display. Under this
architecture, the schedule controller would signal the display controller to refresh the display whenever
new data were retrieved, as would the system clock when the minute should be incremented.

Other subsystems can be considered to handle things like abstracting the communication process,
monitoring and reporting status/error conditions, etc.

1 This requires the stop number to be hardcoded in each controller, which increases its complexity. If however the stops
were assigned static IP addresses then we could resolve the stop number by its IP address, completely decoupling the
controller from its stop. This would only work if the IP address were truly static and could be determined when a stop was
installed. The modem’s MAC address could also be used if it could be accessed by the controller and sent to the application
server with each query.

1.2 Initialization
When a sign is initialized or is recovering from a malfunction, the main process should immediately
initialize the system clock process. Once it has signalled that it started successfully, the schedule
subsystem process should then be activated.

1.3 Logging and Analysis
The application server can record every request received from the signs, which allows for detailed
analysis and diagnostics. For example, the system could alert maintenance staff if a stop were to miss
sending queries as scheduled.

1.4 Message Structure
Simple REST-style XML web services are an excellent candidate for the underlying encoding for a
variety of reasons:

• They are ubiquitous and hence available to a large number of application environments

• They rely on simple, proven technology e.g. the HTTP protocol and web servers

• They are human-readable, making it easy to diagnose problems

• They offer a low-overhead web services solution when compared to SOAP web services

1.4.1 Time Request
The time request would look something like this, using stop 10064 as an example:
GET http://ebdd.winnipegtransit.org/time/10064

The response would be well-formed XML like the following:
<time local-time="2008-08-12T12:34:56" next-query="900" />

The controller would parse the date and time info in the local-time attribute and use that to reset the
current time. The value in next-query would be used to determine the number of seconds from now
when the time should next be queried.

1.4.2 Schedule Data Request
The schedule data request for stop 10064 would look something like this:
GET http://ebdd.winnipegtransit.org/schedule/10064

The response might be:
<schedule next-query="60">

 <route name="16 Selkirk ">

 <time departure="2008-09-12T12:47:00" destination="Burrows" via="">

 <time departure="2008-09-12T13:05:00" destination="McPhillips" via="">

 <time departure="2008-09-12T14:05:00" destination="Burrows" via="">

 </route>

</schedule>

The meaning of this response should be readily understandable. Depending on the stop and time of day,
there could be multiple <route> elements returned. The application server would determine how many

<time> elements should be returned. As with the time request, the next-query value would be used to
determine when the schedule data should next be polled.

The controller should not make any assumptions as to the ordering/sorting of the elements and
attributes nor to the presence of elements and attributes. For examples, times within a route may not be
in chronological order, routes may not be sorted by route name, and the via attribute may be omitted
entirely if it is blank to minimize the amount of data transmitted.

Additional scheduled information could be returned as required.

1.4.3 Other Messages
Other messages type may be required. Examples could include “heartbeat” messages, error reporting
messages, etc.

