Template Version: C420100203 - RW

APPENDIX 'A' GEOTECHNICAL REPORT

City of Winnipeg

2010 Residential Street Renewals, Package #2: Ridley Place, Country Club Blvd., Assiniboine Avenue and Donnington Road

Prepared by:

AECOM

99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com 204 477 5381 tel 204 284 2040 fax

Project Number:

60144310 (4.2.1.1)

Date:

February 2010

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report:

- are subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations")
- represent Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports
- may be based on information provided to Consultant which has not been independently verified
- have not been updated since the date of issuance of the Report and their accuracy is limited to the time period and circumstances in which they were collected, processed, made or issued
- must be read as a whole and sections thereof should not be read out of such context
- were prepared for the specific purposes described in the Report and the Agreement
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time

Unless expressly stated to the contrary in the Report or the Agreement, Consultant:

- shall not be responsible for any events or circumstances that may have occurred since the date on
 which the Report was prepared or for any inaccuracies contained in information that was provided to
 Consultant
- agrees that the Report represents its professional judgement as described above for the specific purpose described in the Report and the Agreement, but Consultant makes no other representations with respect to the Report or any part thereof
- in the case of subsurface, environmental or geotechnical conditions, is not responsible for variability in such conditions geographically or over time

The Report is to be treated as confidential and may not be used or relied upon by third parties, except:

- as agreed by Consultant and Client
- as required by law
- for use by governmental reviewing agencies

Any use of this Report is subject to this Statement of Qualifications and Limitations. Any damages arising from improper use of the Report or parts thereof shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report.

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

February 8, 2010

Mr. Ron Bruce, P.Eng. AECOM Canada Ltd. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7

Dear Sir:

Project No:

60144310 (4.2.1.1)

Regarding:

2010 Residential Street Renewals, Package #2

Ridley Place, Country Club Blvd., Assiniboine Avenue and Donnington Road

AECOM Canada Ltd. (AECOM) is pleased to present our report on the above referenced project. If you have any questions, please do not hesitate to contact Stephen Petsche directly.

Sincerely,

AECOM Canada Ltd.

Ron Typliski, P.Eng.

Vice-President, Manitoba District

R. V. Typhith.

Canada West Region

SP:dh

Distribution List

# of Hard Copies	PDF Required	Association / Company Name	
4	0	Ron Bruce, AECOM	

Revision Log

Revision #	Revised By	Date	Issue / Revision Description
1	S. Petsche	February 8/2010	Final
			4

AECOM Signatures

Report Prepared By:

Stephen Petsche, C.E.T.

Coordinator, Lab & Technical Services

Report Reviewed By:

Gil Robinson, P.Eng., M.Sc.

Manager, Geotechnical Engineering

Certificate of Authorization

AECOM Canada Ltd. (MB)

No. 4671

Date: 9010/02/08

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List

	Ţ	oage	-
1.	Summary	1	l
2.	Field Investigation and Laboratory Program	1	ĺ

Appendices

Appendix A Ridley Place, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary Appendix B Country Club Blvd., Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary Appendix C Assiniboine Avenue, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

Appendix D Donnington Road, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

1. Summary

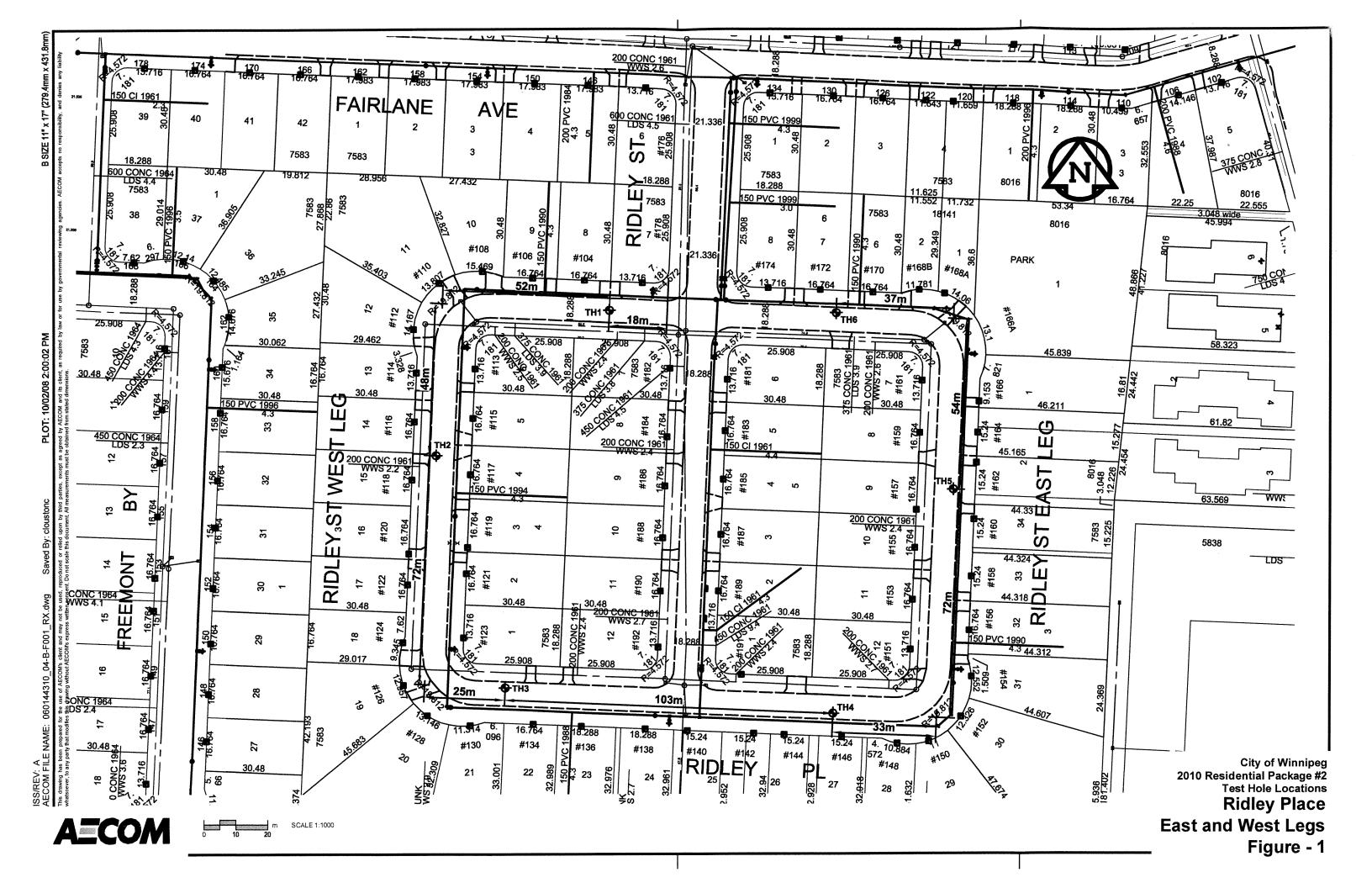
This report summarizes the results of the geotechnical investigation completed for the proposed 2010 Residential Street Renewals on Ridley Place, Country Club Boulevard between Portage Avenue and McBey Avenue, Assiniboine Avenue from Glendale Boulevard to Ashcroft Point and Donnington Road south of Eldridge Avenue. At each test hole location a core of the surface pavement was obtained and a test hole was drilled to determine the pavement base and subgrade materials. The scope of work was provided in the Quotation Outline for the 2010 Street Renewals Package.

2. Field Investigation and Laboratory Program

The field and laboratory programs were conducted in accordance with the Public Works Department guidelines for Geotechnical Investigations for Street Reconstruction dated October 28, 2008. The general location and number of test holes drilled on each street were provided in the Quotation Outline. The final test hole locations were established based on the location of underground utilities.

A total of sixteen (16) test holes were drilled of which six (6) test hole were located on Ridley Place, three (3) test holes on Country Club Boulevard, four (4) test holes on Assiniboine Avenue and three (3) on Donnington Road. Appendices A, B, C and D contain test hole location plans, test hole logs, pavement core photographs and a tabular summary of the laboratory testing results for Ridley Place, Country Club Boulevard, Assiniboine Avenue and Donnington Road, respectively. Test hole locations noted on the test hole location plans and logs are based on measured distances from the nearest curb and associated house number.

The field investigation was conducted between January 12 and 18, 2010 and consisted of two stages. Stage one involved coring of the existing concrete and/or asphalt pavement surface which was followed by test hole drilling. The pavement surface materials were cored by AECOM on Ridley Place, Country Club Boulevard and Donnington Road on January 12, 2010 and Assiniboine Avenue and Parkside Drive on January 13, 2010 using a portable coring drill equipped with a hollow 150 mm diameter core barrel. The pavement cores were returned to AECOM's Materials Testing Laboratory to classify the material type, measure the thickness of the pavement and photograph each core.


All test holes were drilled on January 18, 2010 by Paddock Drilling Ltd. using a truck mounted Brat 22 drill rig equipped with 125 mm diameter solid stem augers. The test holes were drilled to a depth of 2.5 m below road surface, with the exception of the test holes on Assiniboine Avenue which was drilled to a depth of 3.2 m. General site supervision and visual test hole logging was performed by Stephen Petsche, C.E.T. of AECOM. Other pertinent information such as groundwater seepage and drilling conditions observed during drilling are included on the test hole logs. Representative soil samples (auger cuttings) were collected in accordance with the City's Guidelines for Street Reconstruction Geotechnical Investigations and were transported to AECOM's Materials Laboratory for further testing. The test holes were backfilled with auger cuttings and silica sand and the pavement surface was patched with cold mix asphalt.

The pavement structure materials and subgrade soils were classified in accordance with the City's Guidelines for Street Reconstruction Geotechnical Investigations. A copy of the Guideline is included with the test hole logs. The laboratory testing program consisted of moisture content determination, Atterberg Limits and Hydrometer tests. The test results can be found on the test hole logs and summary tables.

Appendix A

Ridley Place, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

PUBLIC WORKS DEPARTMENT • SERVICE DES TRAVAUX PUBLICS

Engineering Division . Division de l'ingénierie

GEOTECHNICAL INVESTIGATION

STREET RECONSTRUCTION

Revised October 28th, 2008

Fieldwork

- 1. Clear all underground services at each testhole location.
- 2. Test holes required every 50 m with a minimum of 3 test holes per street.
- 3. Record location of testhole (offset from curb, distance from cross street and house number).
- 4. Drill 150 mm-diameter core in pavement.
- 5. Drill 125 mm-diameter testhole into fill materials and subgrade
- 6. If a service trench backfilled with granular materials is encountered, another hole shall be drilled to define the existing sub-surface conditions.
- 7. Testhole to be drilled to depth of 2 m \pm 150 mm below surface of the pavement.
- 8. Recover pavement core sample and representative samples of soil (fill materials, pavement structure materials and subgrade).
- 9. Measure and record pavement section exposed in the testhole (thickness of concrete or asphalt and different types of pavement structure materials).
- 10. Pavement structure materials to be identified as crushed limestone or granular fill and the maximum aggregate size of the material (20 mm, 50 mm or 150 mm).
- 11. Log soil profile for the subgrade.
- 12. Representative samples of soil must be obtained at the following depths below the bottom of the pavement structure materials 0.1 m, 0.4 m, 0.7 m, 1.0 m, 1.3 m, 1.6 m, etc. Ensure a sample is obtained from each soil type encountered in the testhole.
- 13. Make note of any water seepage into the testhole.
- 14. Backfill testhole with native materials and additional granular fill, if required. Patch pavement surface with hot mix asphalt or high strength durable concrete mix.
- 15. Return core sample from the pavement and soil samples to the laboratory.

Lab Work

- 1. Test all soil samples for moisture content.
- 2. Photograph core samples recovered from the pavement surface.
- 3. Conduct tests for plasticity index and hydrometer analysis on selected soil samples which are between 0.5 m and 1 m below top of pavement (this is the sub-grade on which the pavement and sub-base will be built). The selection will be based upon visual classification and moisture content test results, with a minimum of one sample of each soil type per street to be tested.
- 4. Prepare testhole logs and classify subgrade (based on hydrometer) as follows;

< 30% silt - classify as clay

30% - 50% silt - classify as silty clay

50% - 70% silt - classify as clayey silt

> 70% silt - classify as silt

Prepared by: The National Testing Laboratories Limited and Eng-Tech Consulting

Embrace the Spirit · Vivez l'esprit

AECOM Canada Ltd.

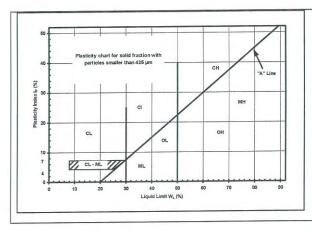
GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.


In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

			C		UMA	USCS		Laborato	ry Classification Crit	eria
		Descrip	tion		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	sandy grav	led gravels, els, with little o fines	2001	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	sandy grav	ded gravels, els, with little ofines	M	GP	0-5	Not satisfying GW requirements		Dual symbols if
STIC	fraction of gravelo size)	DIRTY GRAVELS		s, silty sandy vels	ENEV	GM	> 12	,	Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols i above "A" line a
AINED SC		(With some fines)		vels, clayey gravels		GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
COARSE GRAINED SOILS		CLEAN SANDS	gravelly san	led sands, ads, with little fines	0.0	SW	0-5	C _U > 6 1 < C _C < 3		$C_U = \frac{D_{60}}{D_{10}}$
00	SANDS (More than 50% of	(Little or no fines)	gravelly san	ded sands, ids, with little fines	000	SP	0-5	Not satisfying SW requirements		$C_U = \frac{D_{60}}{D_{10}}$ $C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$
	coarse fraction of sand size)	DIRTY SANDS		sands, mixtures		SM	> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)		sands, mixtures		sc	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50		silts, silty or sands, with lasticity		ML				
	negligible organic content)	W _L >50	Inorganic s plast			МН				
SOILS	CLAYS	W _L <30	Inorganic of clays, sand low plasticity	dy clays of		CL				
LINE GRAINED	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic cla clays of plast	medium		CI			Classification is Based upon Plasticity Chart	
LINE	content)	W _L >50	Inorganic cl plasticity,			СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty plast	clays of low		OL				
	(Below 'A' line)	W _L >50	Organic cla plasti			ОН				
HI	GHLY ORGAIN	NIC SOILS	Peat and ot organic			Pt		on Post cation Limit		odour, and often texture
		Asphalt			Till				*	
.4.		Concrete			edrock erentiated)				AE	COM
X	8	Fill			drock estone)					

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

Not used. Refer to City of Winnipeg; Specs For Geotechnical Investigation Street Reconstruction oct 28,08

FRAC	стіон	SEIVE S	SIZE (mm)	PERCENTAG	RANGES OF E BY WEIGHT OMPONENTS
		Passing	Retained	Percent	Identifier
Gravel	Coarse	76	19	35-50	and
Graver	Fine	19	4.75	33-30	dild
	Coarse	4.75	2.00	20-35	"y" or "ey" *
Sand	Medium	2.00	0.425	20-33	y or cy
	Fine	0.425	0.075	10-20	some
	n-plastic) (plastic)	< 0.0	75 mm	1-10	trace

* for example: gravelly, sandy clayey, silty

Definition of Oversize Material

COBBLES: 76mm to 300mm diameter BOULDERS: >300mm diameter

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

qu - undrained shear strength (kPa) derived from unconfined compression testing.

T_v - undrained shear strength (kPa) measured using a torvane

pp - undrained shear strength (kPa) measured using a pocket penetrometer.

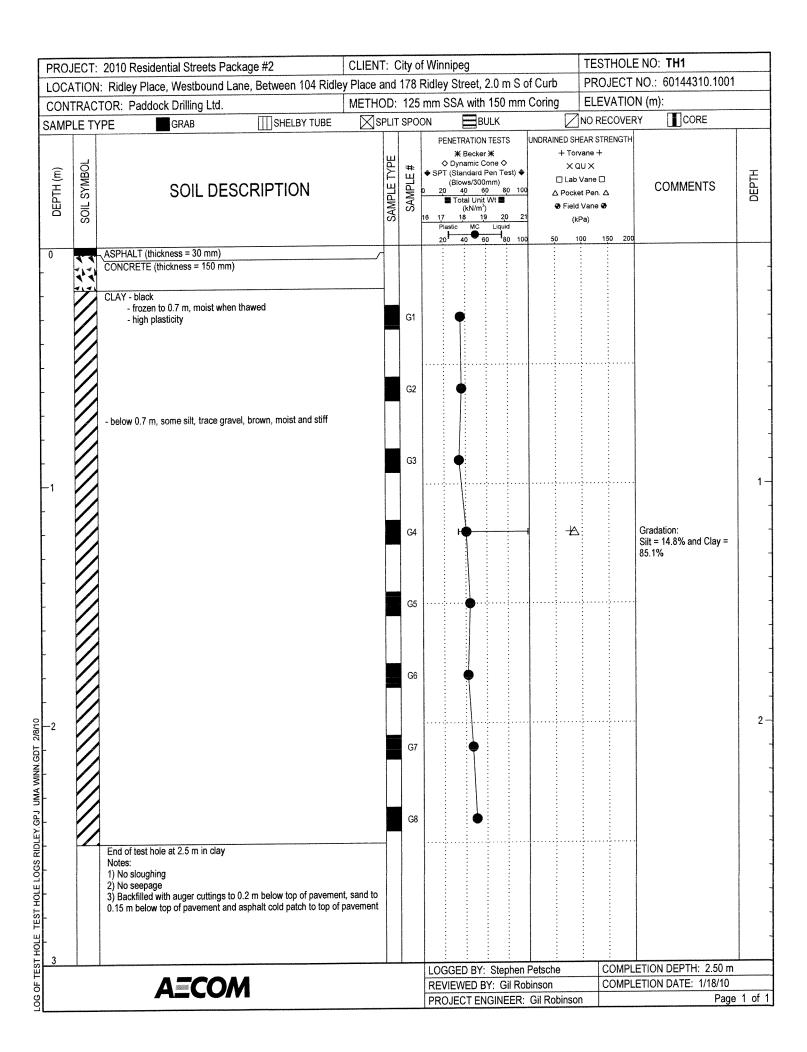
L_v - undrained shear strength (kPa) measured using a lab vane.

Fv - undrained shear strength (kPa) measured using a field vane.

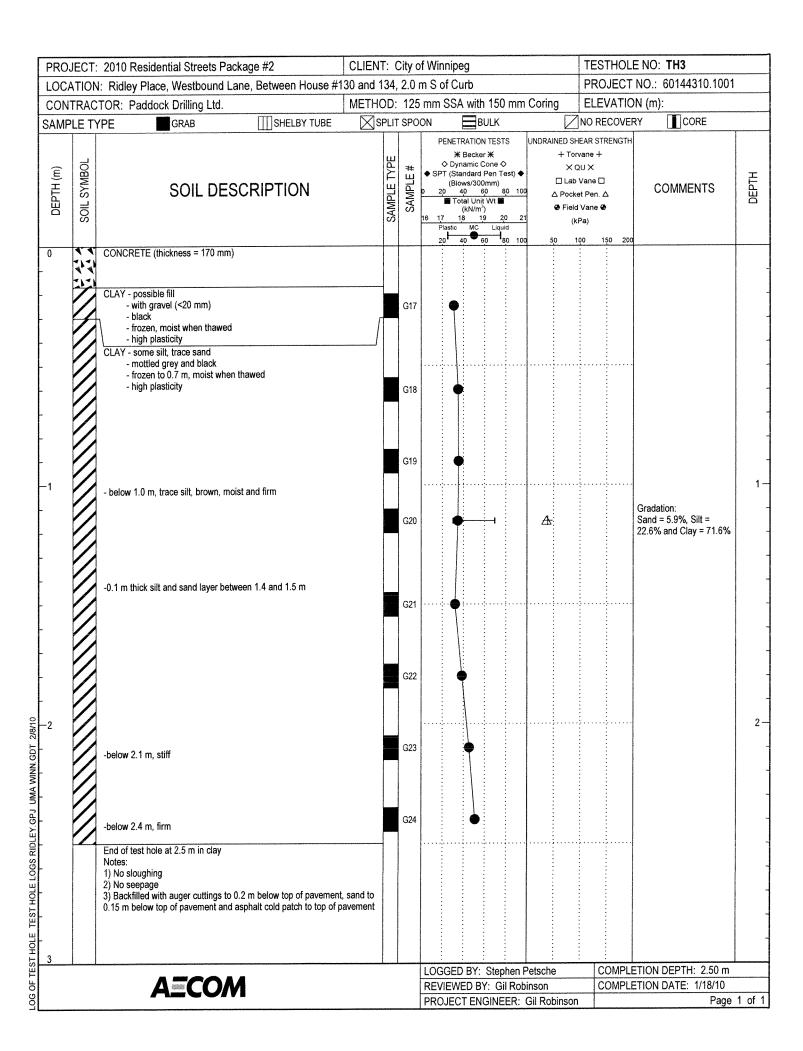
γ - bulk unit weight (kN/m³).

SPT - Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.

DPPT - Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.


w - moisture content (WL, WP)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:


Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N - BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

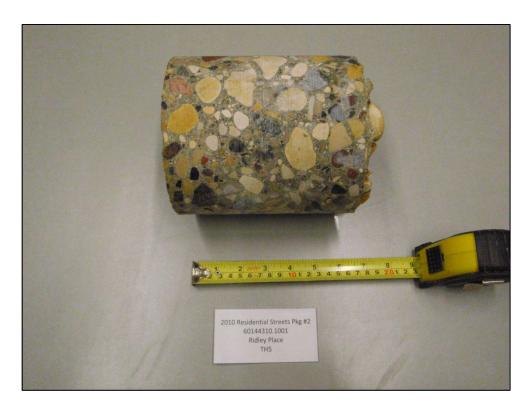
	<u> </u>			f Winnipeg	TESTHOLE NO: TH2 PROJECT NO.: 60144310.1001
	ON: Ridley Place, Southbound Lane, In front of House #116, 2.			mm SSA with 150 mm Coring	PROJECT NO.: 60144310.1001
SAMPLE		SPLIT			NO RECOVERY CORE
DEPTH (m)	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	PENETRATION TESTS	HEAR STRENGTH ryane + QU × 0 Vane □ ket Pen. △ d Vane � kPa) 100 150 200
0	CONCRETE (thickness = 145 mm)	$\dagger \dagger$,		
	GRANULAR FILL - brown, frozen, wet when thawed, well graded sand and gravel (< 20 mm) CLAY - possible fill - trace sand - black - frozen, moist when thawed - high plasticity CLAY - mottled black and brown - frozen to 0.7 m, moist when thawed - high plasticity		G9 G10		
-1 -1	- below 0.7 m, trace silt, brown, moist and stiff		G11		1-
			G13	A	L
3 UMA WINN GDT 2/8/10			G15		2
LOG OF TEST HOLE TEST HOLE LOGS RIDLEY GPJ UMA WINN GDT 2/8/10	End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand to 0.15 m below top of pavement and asphalt cold patch to top of pavement		G16		
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	AECOM			LOGGED BY: Stephen Petsche REVIEWED BY: Gil Robinson PROJECT ENGINEER: Gil Robinso	COMPLETION DEPTH: 2.50 m COMPLETION DATE: 1/18/10 pn Page 1 of 1

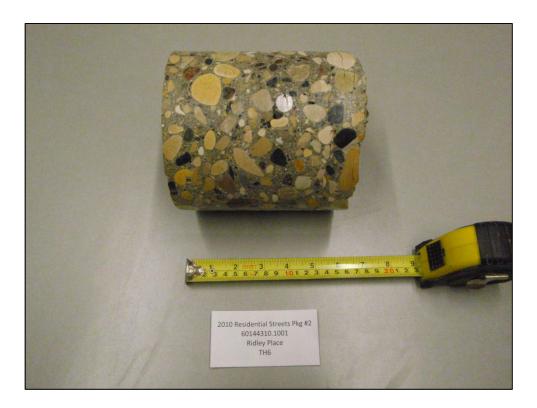
- below 1.4 m, trace silt, moist and stiff G29 G30 G30 G30 Gadation: Silt = 8.6% and Clay = 91.4%			2010 Residential Streets Package #2 CLIEN											E NO: TH4	
SAMPLE TYPE								ith 15	0 mm	Corin					
CONCRETE (thickness = 165 mm) CONCRETE (thickness = 165 mm										OUITI		L			
CONCRETE (thickness = 155 mm) GRANULAR FILL - brown, frozen, wet when thawed, well graded sand and gravel (< 20 mm) CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity - below 0.5 m, trace slit, brown G26 G27 - 1 - 2 - 3 - 4 - 5 - 630 - 5 - 630 - 630 - 630 - 630				ΓΥΡΕ	SAMPLE #	P SP 0 2	X Bed Dynam (Standa (Blows/) 40 ■ Total ((kN 18 astic N	cker Ж ic Cone ard Pen 300mm) 60 Unit Wt I /m³)	♦ Test) ♦ 80 100	2	+ Ton X Q ☐ Lab ¹ ∆ Pocke ♣ Field (kF	vane + tU X Vane □ et Pen. ∠ Vane ⊕ Pa)	7	COMMENTS	DEPTH
And gravel (< 20 mm) CLAY - dark gray - frozen to 0.7 m, moist when thawed - nigh plasticity - below 0.5 m, trace silt, brown G26 G27 - 1 - below 1.4 m, trace silt, moist and stiff G29 - below 1.4 m, trace silt, moist and stiff G30 G30 G30	0	3/3/	CONCRETE (thickness = 165 mm)				:		:			:			
G28 - below 1.4 m, trace silt, moist and stiff G30 G30 G30 G30 G30	-		\and gravel (< 20 mm) CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity												
- below 1.4 m, trace silt, moist and stiff G29 G30 Gradation: Silt = 8.6% and Clay = 91.4%	- - - -1						•								1 -
			- below 1.4 m, trace silt, moist and stiff								+∆.			Silt = 8.6% and Clay =	
End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand to 0.15 m below top of pavement and asphalt cold patch to top of pavement LOGGED BY: Stephen Petsche REVIEWED BY: Gil Robinson COMPLETION DEPTH: 2.50 m REVIEWED BY: Gil Robinson COMPLETION DATE: 1/18/10	201007 1001 1001 1001 1001 1001 1001 100		- silt inclusions (6 mm diameter) below 2.1 m					•							2-
LOGGED BY: Stephen Petsche COMPLETION DEPTH: 2.50 m REVIEWED BY: Gil Robinson COMPLETION DATE: 1/18/10			Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand to		G32										
REVIEWED BY: Gil Robinson COMPLETION DATE: 1/18/10	3)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
IDDA MOTERIAN METER AND ALLES AND AL	5		AECOM								-1m		OMPL		1 05 /

PRO.	JECT:	2010 Residential Streets Pac	kage #2	CLIENT	Γ: Cit	ty o	f Win	nipeg						E NO: TH5	
		: Ridley Place, Northbound La		162, 2.0	m W	of (Curb							NO.: 60144310.1001	
		TOR: Paddock Drilling Ltd.		METHO) mm	Coring		EVATIO		
SAME	PLE TY	PE GRAB	SHELBY TUBE	⊠sı	PLIT S	SPO			BULK		C LA LETA PARA TATA	_ K	RECOVER STRENGTH		
DEPTH (m)	SOIL SYMBOL	SOIL DES	CRIPTION		SAMPLE TYPE	SAMPLE #	◆ SP1 0 20 16 17 PI	Total U (kN/	ker X c Cone < rd Pen T c 00mm) 60 Init Wt m³) 19 2 C Liqu	> est) ◆ 80 100	C	+ Torvane X QU X Lab Vane Pocket Per Field Vane (kPa)	+ □ n. Δ	COMMENTS	DEPTH
0	77	CONCRETE (thickness = 165 mm)							:	:					
-		GRANULAR FILL - brown, frozen, v and gravel (< 20 mm) CLAY - possible fill - trace sand - frozen, moist when thawed - black - high plasticity CLAY - some silt	vet when thawed, well grade	d sand		G33		•							
-		 brown moist and firm to stiff high plasticity 				G34									
- 1 -						G35									1 -
-						G36					A	-		Gradation: Silt = 26.7% and Clay = 73.3%	
		- below 1.5 m, stiff				G37									
						G38		•							2
<u>-2</u>						G39)						
-		- below 2.3 m, firm, trace gypsum				G40									
2		End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.15 m below top of pavement and	0.2 m below top of pavemen asphalt cold patch to top of ք	it, sand to pavement											
3										:		:	- E	ETION DEDTU- 0.50	
		A TOO	A					GED B			Petsche			ETION DEPTH: 2.50 m ETION DATE: 1/18/10	
		AECO/	71								Gil Rob	inson	JOIN L		1 of

		2010 Residential Streets Package #2 CLIEN		<u>_</u>		nipeg						E NO: TH6	
		Ridley Place, Westbound Lane, In front of House #172, 2.0				20.4	4		•			NO.: 60144310.1001	
						SSA with		nm Co			VATIO ECOVER		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	PI	Total Unit (kN/m ³	N TESTS	t) ◆ 100 21	RAINED S + To X □ Lal △ Poc Ø Fiel	HEAR ST ervane + QU X o Vane E ket Pen. d Vane 6 kPa)	RENGTH	COMMENTS	DEPTH
0	• •	CONCRETE (thickness = 160 mm)			20	. 40 - 6	30 -80	100	50	100	150 200 :		
		GRANULAR FILL - brown, frozen, wet when thawed, well graded sand and gravel (< 20 mm) CLAY - possible fill - with gravel, with sand - black - frozen, moist when thawed - high plasticity CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity		G41									
- - -		- below 0.7 m, trace silt, brown, moist and firm		G43		•							1 -
- - -		- below 1.4 m, stiff		G44 G45									
- - -		- below 1.7 m, trace gypsum		G46		•			+ 2	7			And the second s
-2 - -		- below 2.0 m, silt inclusions (5 mm in diameter)		G47									2 -
		End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand to 0.15 m below top of pavement and asphalt cold patch to top of pavement		G48		•							
3									:	:	<u>:</u>		
 		4 = 4 4 4				GED BY:						ETION DEPTH: 2.50 m	
1		A=COM				JECT EN			***************************************		COMPL	ETION DATE: 1/18/10	1 of

Photograph 1. Ridley Place - TH1


Photograph 2. Ridley Place – TH2


Photograph 3. Ridley Place - TH3

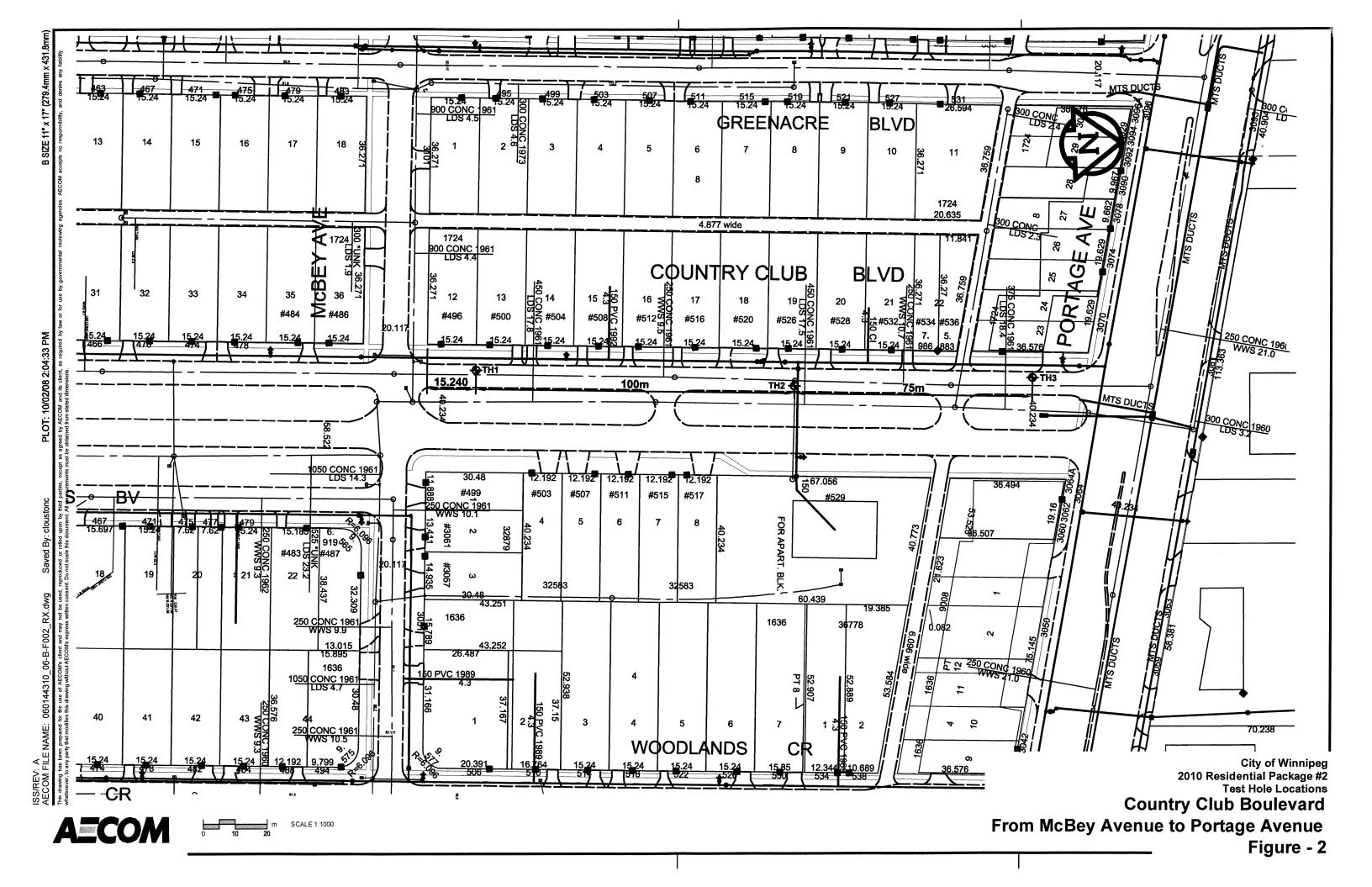
Photograph 4. Ridley Place - TH4

Photograph 5. Ridley Place - TH5

Photograph 6. Ridley Place – TH6

City of Winnipeg 2010 Residential Streets Package #2 Geotechnical Investigation

Test		House	Pavement S	urface	Pavement Structu	re Material	Subgrade	Sample	Moisture		Hydromete	er Analysis		At	terberg Lir	nits
Hole No.	Testhole Location	No.	Туре	Thickness (mm)	Type	Thickness (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Plastic Limit	Liquid Limit	Plasticity Index
							Clay	0.3	35.3							
			Annhalt	30			Clay	0.6	36.3							
		Between	Asphalt	30			Clay	0.9	33.8							
T114	Ridley Place, Westbound	104			None	n/a	Clay	1.2	40.5	0.0	0.0	14.8	85.1	33.1	98.8	65.7
TH1	Lane, 2.0 m S of Curb	Ridley Pl and 178			None	11/4	Clay	1.5	43.9							
		Ridley St	Concrete	150			Clay	1.8	42.0							
		Maley 3t	Concrete	130			Clay	2.1	46.6							
							Clay	2.4	50.1							
							Clay	0.2	22.5							
							Clay	0.6	33.9							
				Clay	0.9	35.4										
TH2	Ridley Place, Southbound	116	Comenata	145	Granular Fill (< 20 mm)	Clay	1.2	36.4								
IHZ	Lane, 2.0 m E of Curb	110	Concrete	145] 50 [Clay	1.5	40.3							
							Clay	1.8	45.5							
							Clay	2.1	47.9							
							Clay	2.4	45.3							
							Clay	0.2	30.8						<u></u>	
							Clay	0.6	34.9							
		D - 1					Clay	0.9	35.4							
TH3	Ridley Place, Westbound	Between	Concrete	170	None n/a C	Clay	1.1	34.7	0.0	5.9	22.6	71.6	30.0	69.5	39.5	
1113	Lane, 2.0 m S of Curb	130 and 134	Concrete	170		Clay	1.5	32.0								
		154				Clay	1.8	38.5								
						Clay	2.1	45.4			,					
							Clay	2.4	50.9							


City of Winnipeg 2010 Residential Streets Package #2 Geotechnical Investigation

Test		House	Pavement S	Surface	Pavement Structu	ıre Material	Subgrade	Sample	Moisture		Hydromete	er Analysis		At	terberg Lin	nits
Hole No.	Testhole Location	No.	Туре	Thickness (mm)	Type	Thickness (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Plastic Limit	Liquid Limit	Plasticity Index
							Clay	0.3	37.1							
							Clay	0.6	40.4							
							Clay	0.9	38.4							
T114	Ridley Place, Eastbound Lane,	116	Canarata	165	Granular Fill	50	Clay	1.1	37.4							
TH4	2.0 m N of Curb	146	Concrete	165	(< 20 mm)	50	Clay	1.5	40.6	0.0	0.0	8.6	91.4	31.6	92.5	60.9
							Clay	1.8	43.2							
							Clay	2.1	46.2							
							Clay	2.4	48.6							
							Clay	0.3	34.6							
					Granular Fill (< 20 mm)	50 -	Clay	0.6	36.9							
			52 Concrete	165			Clay	0.9	39.4							
TH5	Ridley Place, Northbound	162					Clay	1.2	38.5	0.0	0.0	26.7	73.3	34.1	87.1	53.0
I I I I I	Lane, 2.0 m W of Curb	102					Clay	1.5	40.4							
							Clay	1.8	44.4							
							Clay	2.1	45.7							
							Clay	2.4	49.4							
							Clay	0.3	31.5							
							Clay	0.6	37.3							
							Clay	0.9	38.5							
TH6	Ridley Place, Westbound	172	Concrete	160	Granular Fill	50	Clay	1.2	38.2							
Inb	Lane, 2.0 m S of Curb	172	Concrete	160	(< 20 mm)	J 30 [Clay	1.5	44.3							
							Clay	1.8	45.3							
							Clay	2.1	43.2							
							Clay	2.4	48.5							

Appendix B

Country Club Blvd., Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

PUBLIC WORKS DEPARTMENT • SERVICE DES TRAVAUX PUBLICS

Engineering Division . Division de l'ingénierie

GEOTECHNICAL INVESTIGATION

STREET RECONSTRUCTION

Revised October 28th, 2008

Fieldwork

- 1. Clear all underground services at each testhole location.
- 2. Test holes required every 50 m with a minimum of 3 test holes per street.
- 3. Record location of testhole (offset from curb, distance from cross street and house number).
- 4. Drill 150 mm-diameter core in pavement.
- 5. Drill 125 mm-diameter testhole into fill materials and subgrade
- 6. If a service trench backfilled with granular materials is encountered, another hole shall be drilled to define the existing sub-surface conditions.
- 7. Testhole to be drilled to depth of 2 m \pm 150 mm below surface of the pavement.
- 8. Recover pavement core sample and representative samples of soil (fill materials, pavement structure materials and subgrade).
- 9. Measure and record pavement section exposed in the testhole (thickness of concrete or asphalt and different types of pavement structure materials).
- 10. Pavement structure materials to be identified as crushed limestone or granular fill and the maximum aggregate size of the material (20 mm, 50 mm or 150 mm).
- 11. Log soil profile for the subgrade.
- 12. Representative samples of soil must be obtained at the following depths below the bottom of the pavement structure materials 0.1 m, 0.4 m, 0.7 m, 1.0 m, 1.3 m, 1.6 m, etc. Ensure a sample is obtained from each soil type encountered in the testhole.
- 13. Make note of any water seepage into the testhole.
- 14. Backfill testhole with native materials and additional granular fill, if required. Patch pavement surface with hot mix asphalt or high strength durable concrete mix.
- 15. Return core sample from the pavement and soil samples to the laboratory.

Lab Work

- 1. Test all soil samples for moisture content.
- 2. Photograph core samples recovered from the pavement surface.
- 3. Conduct tests for plasticity index and hydrometer analysis on selected soil samples which are between 0.5 m and 1 m below top of pavement (this is the sub-grade on which the pavement and sub-base will be built). The selection will be based upon visual classification and moisture content test results, with a minimum of one sample of each soil type per street to be tested.
- 4. Prepare testhole logs and classify subgrade (based on hydrometer) as follows;

< 30% silt - classify as clay

30% - 50% silt - classify as silty clay

50% - 70% silt - classify as clayey silt

> 70% silt - classify as silt

Prepared by: The National Testing Laboratories Limited and Eng-Tech Consulting

Embrace the Spirit · Vivez l'esprit

AECOM Canada Ltd.

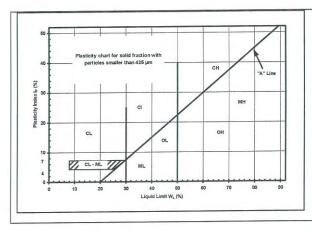
GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.


In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

			C		UMA	USCS	Laboratory Classification Criteria							
		Descrip	tion		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes				
		CLEAN GRAVELS	sandy grav	ed gravels, els, with little o fines	200	GW	0-5	C _U > 4 1 < C _C < 3						
COARSE GRAINED SOILS	GRAVELS (More than 50% of coarse fraction of gravelosize)	(Little or no fines)	sandy grav	ded gravels, els, with little fines	M	GP	0-5	Not satisfying GW requirements		Dual symbols if				
		DIRTY GRAVELS	Silty gravels, silty sandy gravels Clayey gravels, clayey sandy gravels		NE.	GM	> 12	,	Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols above "A" line a				
		(With some fines)				GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>				
ARSE GR		CLEAN SANDS	gravelly san	ed sands, ds, with little fines	0.0	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$				
COA	SANDS (More than 50% of coarse fraction of sand size)	(Little or no fines)	gravelly san	ded sands, ds, with little fines	000	SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})}{D_{10}xD}$				
		DIRTY SANDS		ands, mixtures		SM	> 12		Atterberg limits below "A" line or W _P <4					
		(With some fines)	Clayey sand-clay	sands, mixtures		sc	> 12		Atterberg limits above "A" line or W _P <7					
	SILTS (Below 'A' line	W _L <50	Inorganic s clayey fine slight p	sands, with		ML								
	negligible organic content)	W _L >50	Inorganic silts of high plasticity			МН								
SOILS	CLAYS	W _L <30	Inorganic of clays, sand low plasticity	dy clays of		CL								
INE GRAINED	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clays and silty clays of medium plasticity Inorganic clays of high plasticity, fat clays			CI			Classification is Based upon Plasticity Chart					
- INE	content)	W _L >50				СН								
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty plast	clays of low		OL								
	(Below 'A'	W _L >50	Organic clays of high plasticity			ОН								
HIGHLY ORGAINIC SOILS Peat and other highly organic soils			Pt		on Post cation Limit	Strong colour or odour, and often fibrous texture								
		Asphalt							*					
₫.		Concrete			edrock erentiated)				AE	СОМ				
8	8	Fill			drock estone)									

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

Not used. Refer to City of Winnipeg; Specs For Geotechnical Investigation Street Reconstruction oct 28,08

FRAC	стіон	SEIVE S	SIZE (mm)	DEFINING RANGES OF PERCENTAGE BY WEIGH OF MINOR COMPONENTS				
		Passing	Retained	Percent	Identifier			
0	Coarse	76	19	35-50	and			
Gravel	Fine	19	4.75	33-30	und			
	Coarse	4.75	2.00	20-35	"y" or "ey" *			
Sand	Medium	2.00	0.425	20-33	y or cy			
	Fine	0.425	0.075	10-20	some			
	n-plastic) (plastic)	< 0.0	75 mm	1-10	trace			

* for example: gravelly, sandy clayey, silty

Definition of Oversize Material

COBBLES: 76mm to 300mm diameter BOULDERS: >300mm diameter

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

qu - undrained shear strength (kPa) derived from unconfined compression testing.

T_v - undrained shear strength (kPa) measured using a torvane

pp - undrained shear strength (kPa) measured using a pocket penetrometer.

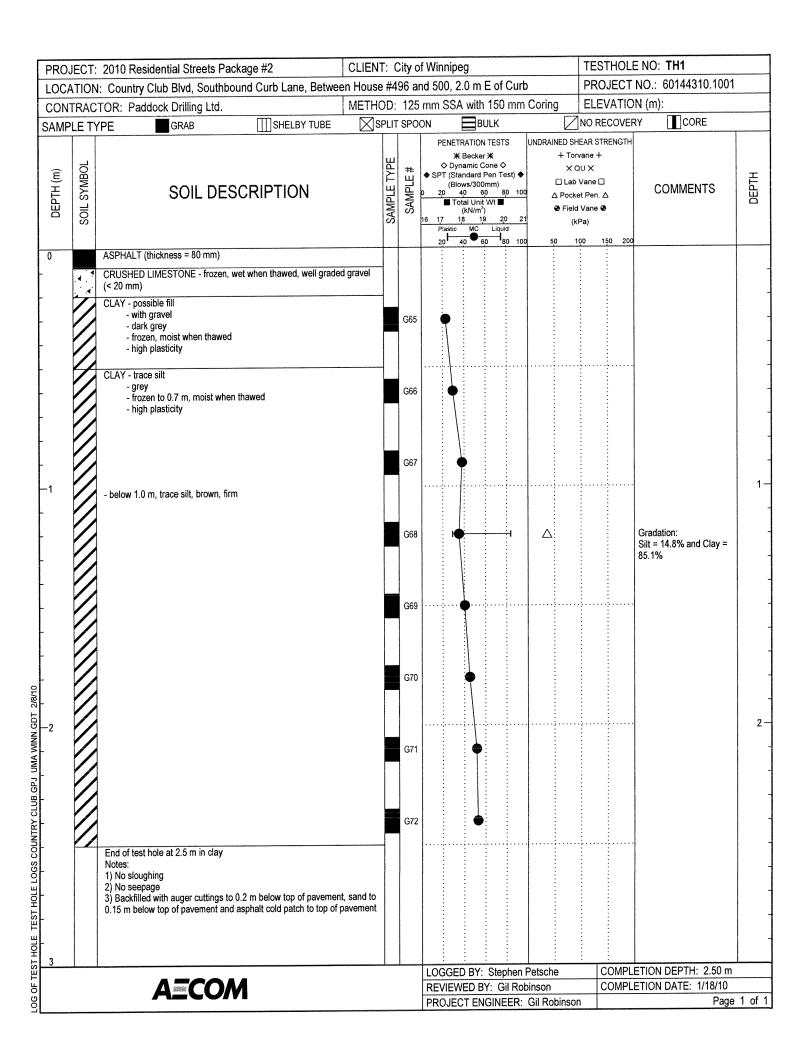
L_v - undrained shear strength (kPa) measured using a lab vane.

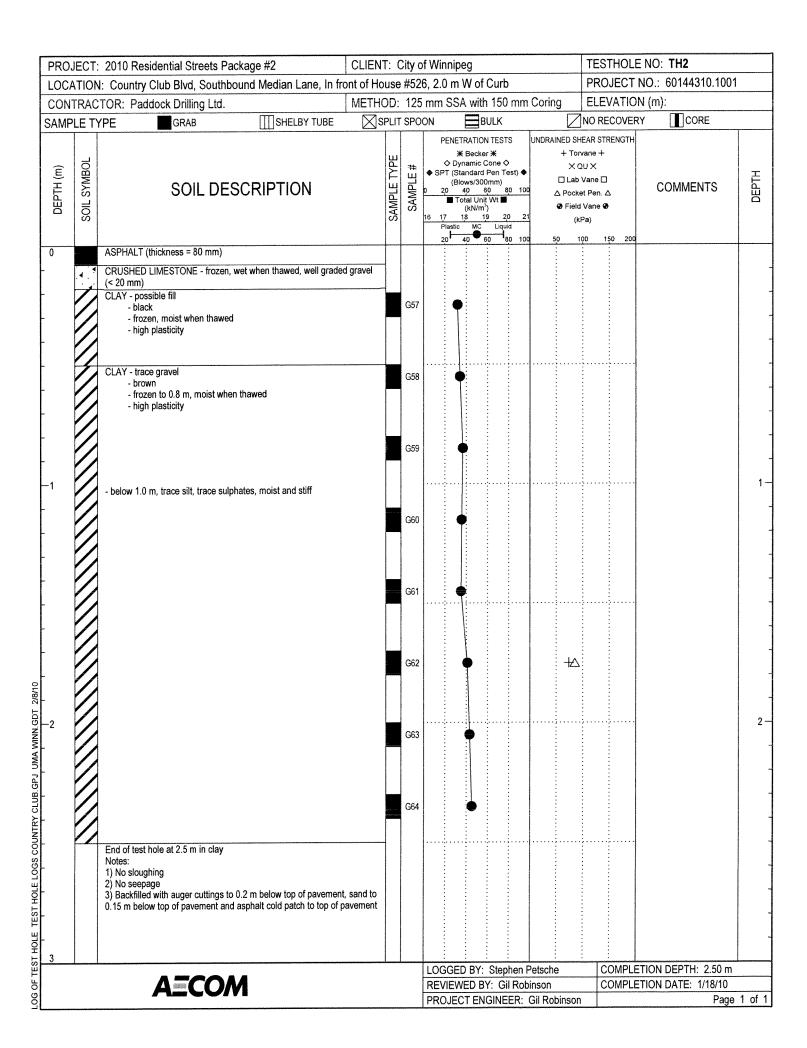
Fv - undrained shear strength (kPa) measured using a field vane.

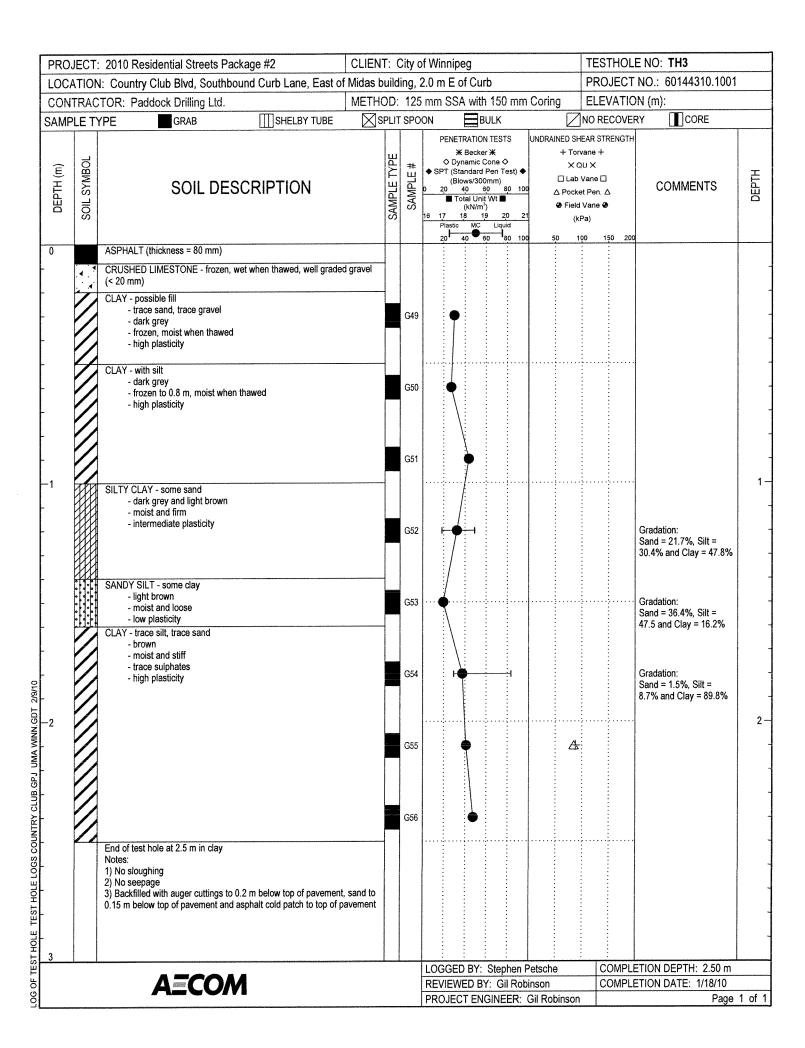
γ - bulk unit weight (kN/m³).

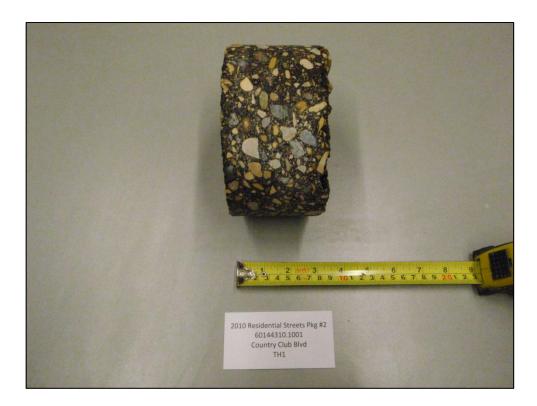
SPT - Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.

DPPT - Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.


w - moisture content (WL, WP)


The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:


Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

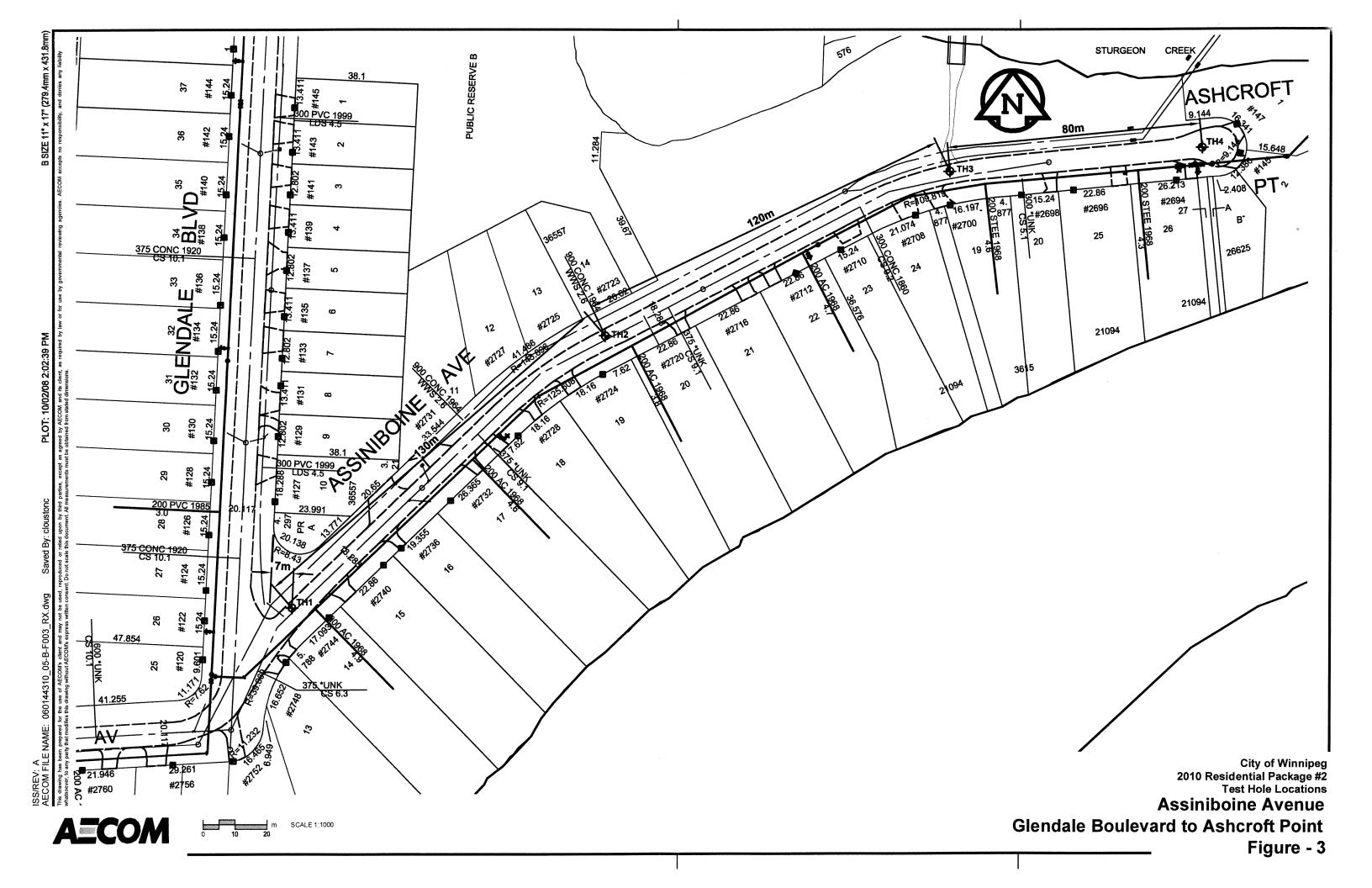

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N - BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

Photograph 1. Country Club Blvd - TH1

Photograph 2. Country Club Blvd – TH2

Photograph 3. Country Club Blvd - TH3


City of Winnipeg 2010 Residential Streets Package #2 Geotechnical Investigation

Test		House	Pavement S	Surface	Pavement Structu	re Material	Subgrade	Sample	Moisture		Hydromete	er Analysis		At	terberg Lin	nits
Hole No.	Testhole Location	No.	Туре	Thickness (mm)	Type	Thickness (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Plastic Limit	Liquid Limit	Plasticity Index
							Clay	0.3	22.7							
	,						Clay	0.6	29.4							
	Country Club Blod	Datusas			Couchad		Clay	0.9	38.0							
TH1	Country Club Blvd, Southbound Curb Lane, 2.0 m	Between	A ambalt	90	Crushed	80	Clay	1.2	35.1	0.0	0.0	25.3	74.7	29.0	83.7	54.7
ILIT	E of Curb	496 and 500	Asphalt	80	Limestone (< 20 mm)	80	Clay	1.5	40.4							
	E of Curb	300					Clay	1.8	45.1							
							Clay	2.1	51.6							
							Clay	2.4	52.8							
				80	Crushed Limestone (< 20 mm)	75	Clay	0.2	31.7							
							Clay	0.5	34.0							
		526	Asphalt				Clay	0.8	36.7							
TH2	Country Club Blvd,						Clay	1.1	35.6							
1П2	Southbound Median Lane, 2.0 m W of Curb						Clay	1.4	35.0							
							Clay	1.7	41.0							
							Clay	2.0	43.1							
							Clay	2.3	45.1							
				80		75 -	Clay	0.3	29.9							
							Clay	0.6	26.9							
	Country Club Blod	F4-6					Clay	0.9	43.6							
TUO	Country Club Blvd,	East of	A ambalt		Crushed Limestone (< 20 mm)		Silty Clay	1.2	32.3	0.0	21.7	30.4	47.8	18.2	49.0	30.8
TH3	Southbound Curb Lane, 2.0 m E of Curb	Midas	Asphalt				Sandy Silt	1.5	19.5	0.0	36.4	47.5	16.2	16.2	22.4	6.2
	E of Curb	building					Clay	1.8	37.5	0.0	1.5	8.7	89.8	29.3	83.2	54.0
							Clay	2.1	41.0							
							Clay	2.4	47.6							

Appendix C

Assiniboine Avenue, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

PUBLIC WORKS DEPARTMENT • SERVICE DES TRAVAUX PUBLICS

Engineering Division . Division de l'ingénierie

GEOTECHNICAL INVESTIGATION

STREET RECONSTRUCTION

Revised October 28th, 2008

Fieldwork

- 1. Clear all underground services at each testhole location.
- 2. Test holes required every 50 m with a minimum of 3 test holes per street.
- 3. Record location of testhole (offset from curb, distance from cross street and house number).
- 4. Drill 150 mm-diameter core in pavement.
- 5. Drill 125 mm-diameter testhole into fill materials and subgrade
- 6. If a service trench backfilled with granular materials is encountered, another hole shall be drilled to define the existing sub-surface conditions.
- 7. Testhole to be drilled to depth of 2 m \pm 150 mm below surface of the pavement.
- 8. Recover pavement core sample and representative samples of soil (fill materials, pavement structure materials and subgrade).
- 9. Measure and record pavement section exposed in the testhole (thickness of concrete or asphalt and different types of pavement structure materials).
- 10. Pavement structure materials to be identified as crushed limestone or granular fill and the maximum aggregate size of the material (20 mm, 50 mm or 150 mm).
- 11. Log soil profile for the subgrade.
- 12. Representative samples of soil must be obtained at the following depths below the bottom of the pavement structure materials 0.1 m, 0.4 m, 0.7 m, 1.0 m, 1.3 m, 1.6 m, etc. Ensure a sample is obtained from each soil type encountered in the testhole.
- 13. Make note of any water seepage into the testhole.
- 14. Backfill testhole with native materials and additional granular fill, if required. Patch pavement surface with hot mix asphalt or high strength durable concrete mix.
- 15. Return core sample from the pavement and soil samples to the laboratory.

Lab Work

- 1. Test all soil samples for moisture content.
- 2. Photograph core samples recovered from the pavement surface.
- 3. Conduct tests for plasticity index and hydrometer analysis on selected soil samples which are between 0.5 m and 1 m below top of pavement (this is the sub-grade on which the pavement and sub-base will be built). The selection will be based upon visual classification and moisture content test results, with a minimum of one sample of each soil type per street to be tested.
- 4. Prepare testhole logs and classify subgrade (based on hydrometer) as follows;

< 30% silt - classify as clay

30% - 50% silt - classify as silty clay

50% - 70% silt - classify as clayey silt

> 70% silt - classify as silt

Prepared by: The National Testing Laboratories Limited and Eng-Tech Consulting

Embrace the Spirit · Vivez l'esprit

AECOM Canada Ltd.

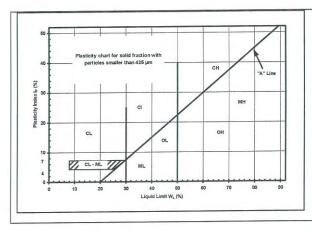
GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.


In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

			C		UMA	USCS		Laborato	ry Classification Crit	eria	
		Descrip	tion		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes	
		CLEAN GRAVELS	sandy grav	led gravels, els, with little o fines	2001	GW	0-5	C _U > 4 1 < C _C < 3			
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly graded gravels, sandy gravels, with little or no fines		M	GP	0-5	Not satisfying GW requirements		Dual symbols if	
STIC	fraction of gravelo size)	DIRTY GRAVELS		s, silty sandy vels	ENEN	GM	> 12	,	Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols i above "A" line a	
AINED SC		(With some fines)		vels, clayey gravels		GC	,> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>	
COARSE GRAINED SOILS		CLEAN SANDS	gravelly san	led sands, ads, with little fines	0.0	SW	0-5	C _U > 6 1 < C _C < 3		$C_U = \frac{D_{60}}{D_{10}}$	
00	SANDS (More than 50% of	(Little or no fines)	gravelly san	ded sands, ids, with little fines	000	SP	0-5	Not satisfying SW requirements		$C_U = \frac{D_{60}}{D_{10}}$ $C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$	
	coarse fraction of sand size)	DIRTY SANDS		sands, mixtures		SM	> 12		Atterberg limits below "A" line or W _P <4		
		(With some fines)		sands, mixtures		sc	> 12		Atterberg limits above "A" line or W _P <7		
	SILTS (Below 'A' line	W _L <50		silts, silty or sands, with lasticity		ML					
	negligible organic content)	W _L >50	Inorganic s plast			МН					
SOILS	CLAYS	W _L <30	Inorganic of clays, sand low plasticity	dy clays of		CL					
LINE GRAINED	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clays and silty clays of medium plasticity			CI			Classification is Based upon Plasticity Chart		
LINE	content)	W _L >50	Inorganic cl plasticity,			СН					
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty plast	clays of low		OL					
	(Below 'A' line)	W _L >50	Organic cla plasti			ОН					
HI	GHLY ORGAIN	NIC SOILS	Peat and ot organic			Pt		on Post cation Limit		odour, and often texture	
		Asphalt			Till				*		
.4.		Concrete			edrock erentiated)				AE	COM	
X	8	Fill			drock estone)						

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

Not used. Refer to City of Winnipeg; Specs For Geotechnical Investigation Street Reconstruction oct 28,08

FRACTION		SEIVE S	SIZE (mm)	PERCENTAG	RANGES OF E BY WEIGHT OMPONENTS	
		Passing	Retained	Percent	Identifier	
Crovel	Coarse	76	19	35-50	and	
Graver	Fine	19	4.75	33-30	-	
Co Fi Co Sand Med	Coarse	4.75	2.00	20-35	"y" or "ey" *	
	Medium	2.00 0.425		20-33	y or cy	
	Fine	0.425	0.075	10-20	some	
		< 0.0	75 mm	1-10		

* for example: gravelly, sandy clayey, silty

Definition of Oversize Material

COBBLES: 76mm to 300mm diameter BOULDERS: >300mm diameter

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

qu - undrained shear strength (kPa) derived from unconfined compression testing.

T_v - undrained shear strength (kPa) measured using a torvane

pp - undrained shear strength (kPa) measured using a pocket penetrometer.

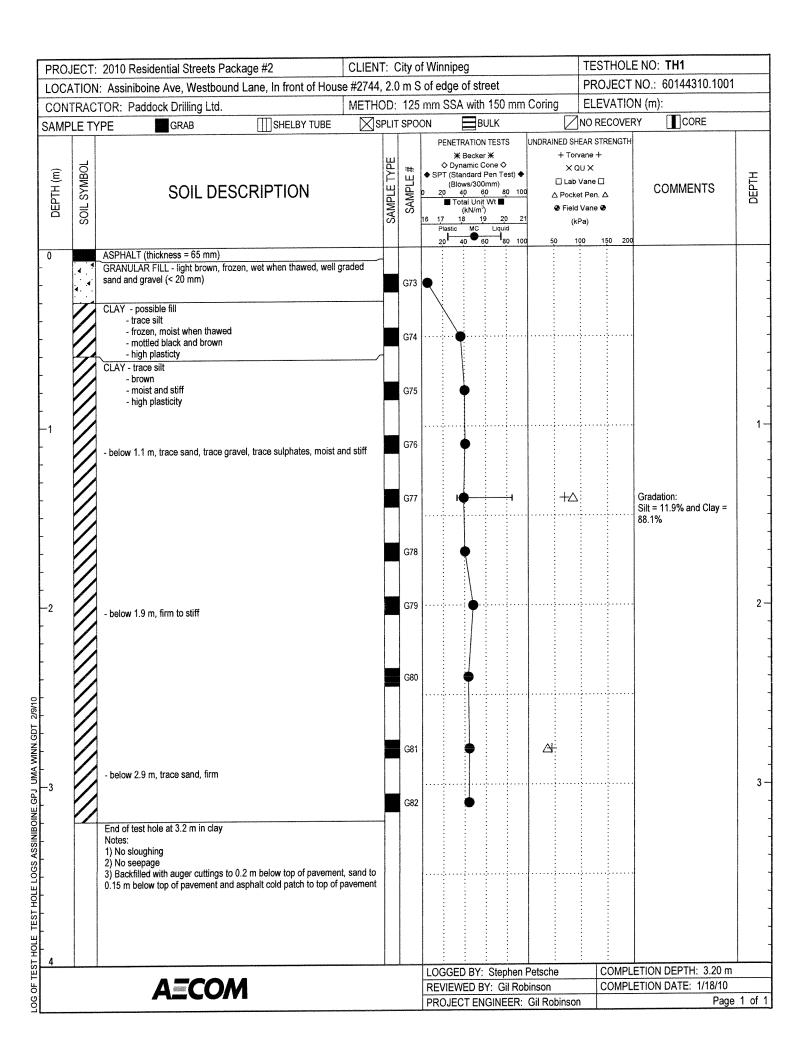
L_v - undrained shear strength (kPa) measured using a lab vane.

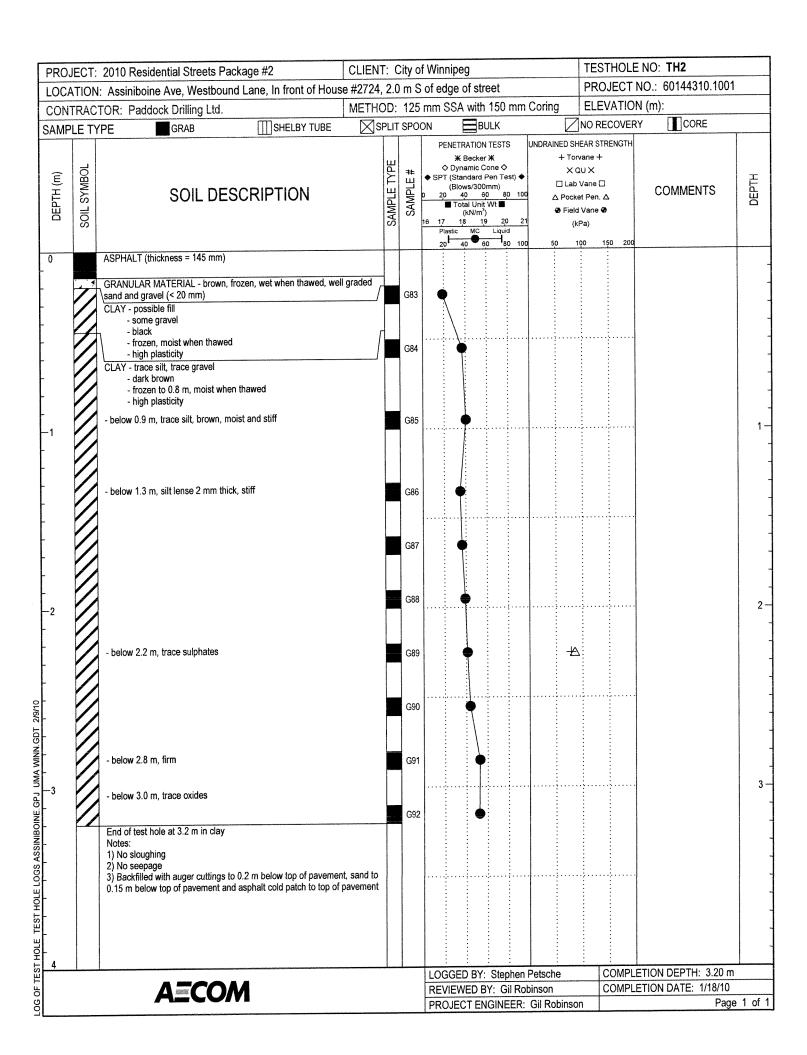
Fv - undrained shear strength (kPa) measured using a field vane.

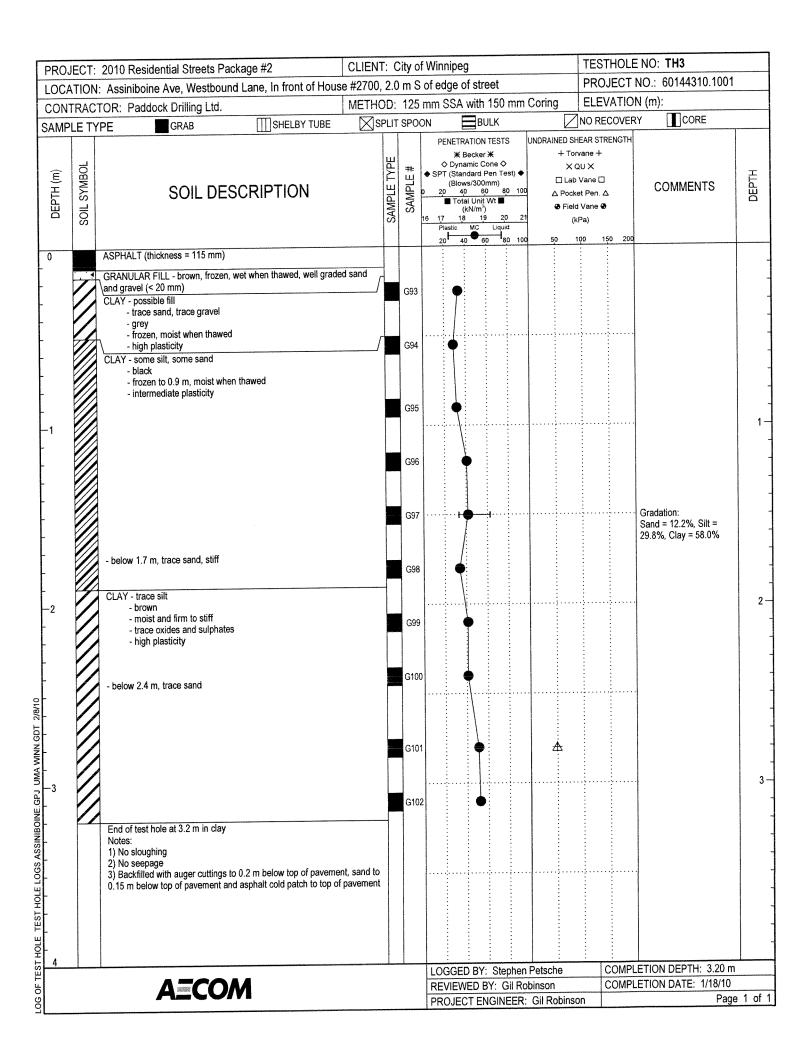
γ - bulk unit weight (kN/m³).

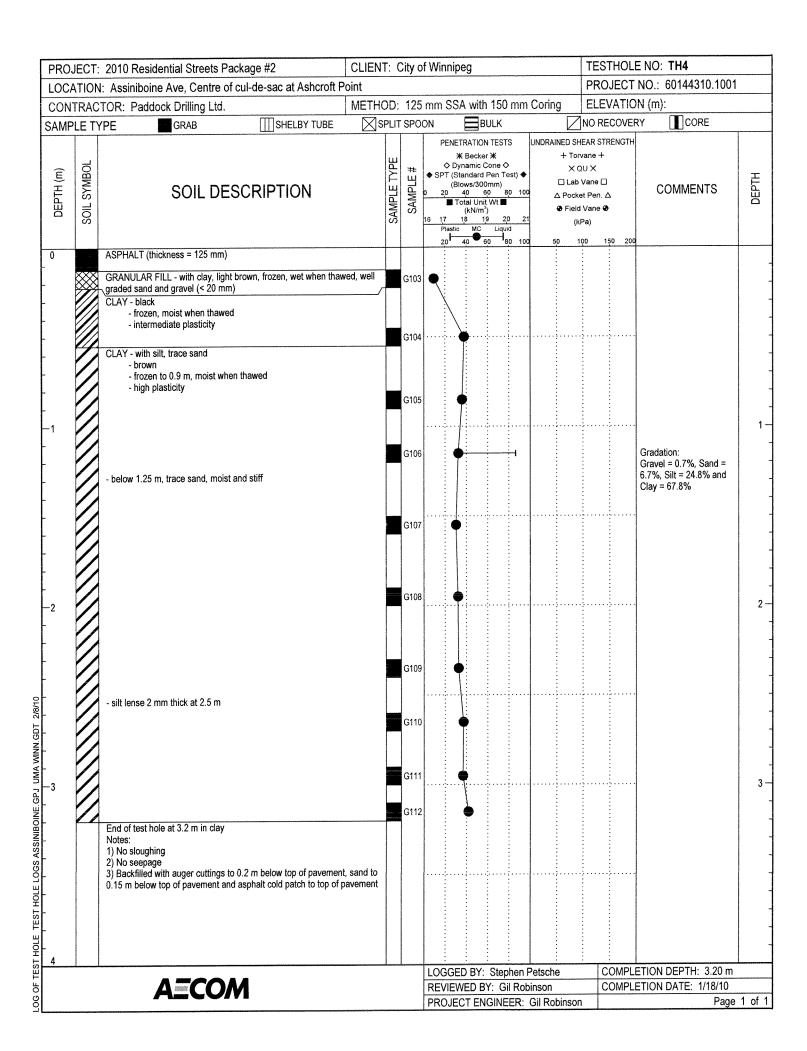
SPT - Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.

DPPT - Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.

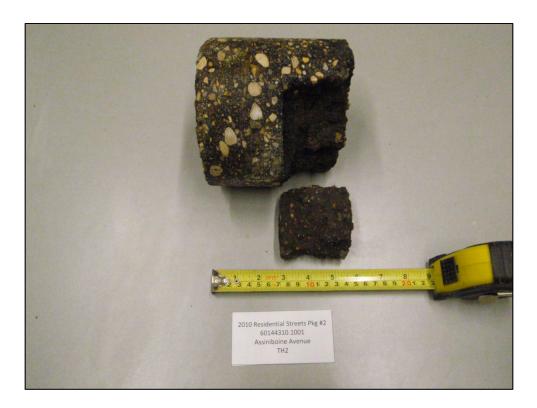

w - moisture content (WL, WP)


The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:


Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard


The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N - BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

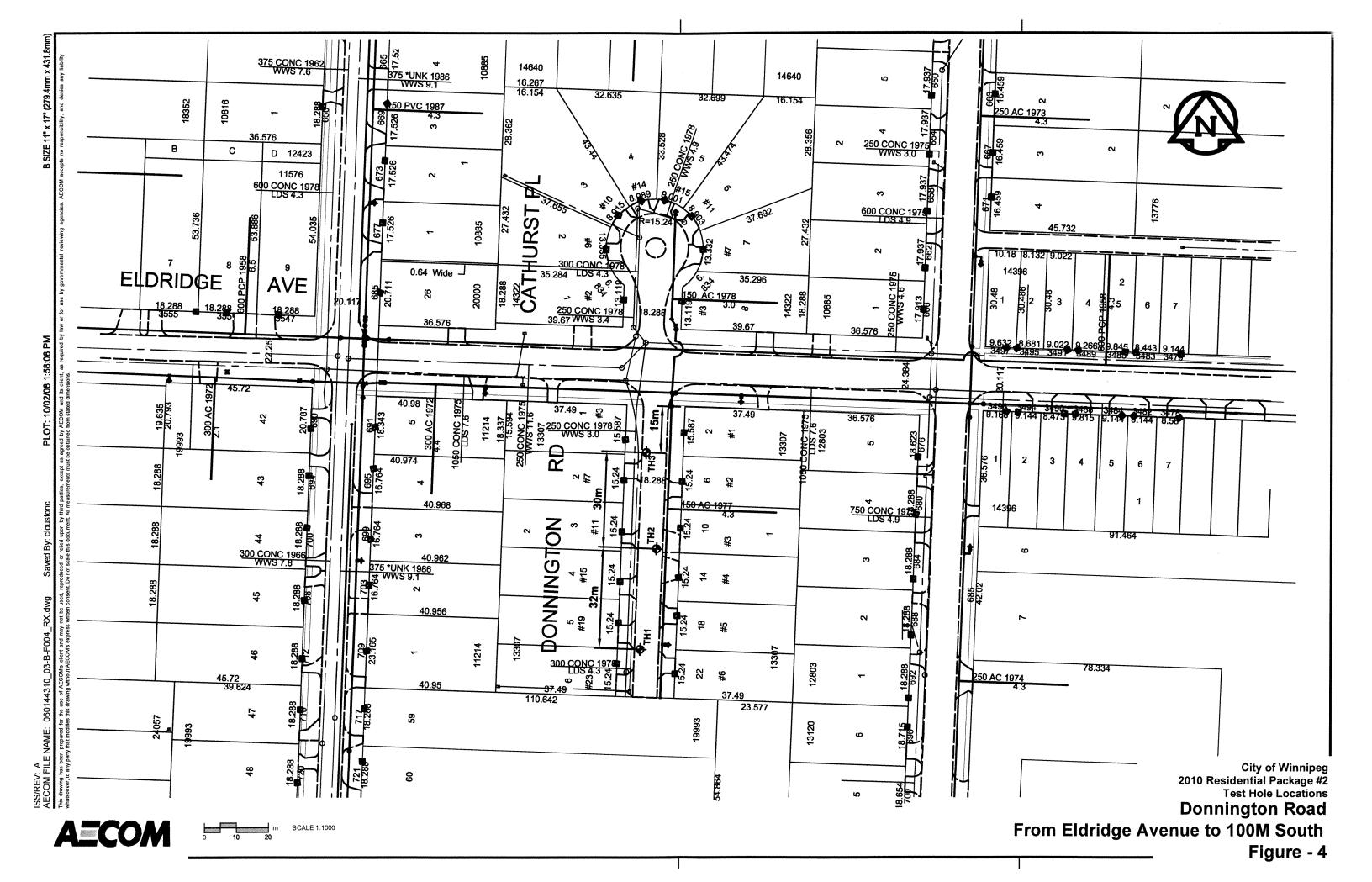


Photograph 1. Assiniboine Avenue - TH1

Photograph 2. Assiniboine Avenue – TH2

Photograph 3. Assiniboine Avenue – TH3

Photograph 4. Assiniboine Avenue – TH4


City of Winnipeg 2010 Residential Streets Package #2 Geotechnical Investigation

Test		House	Pavement S	Surface	Pavement Structu	ure Material	Subgrade	Sample	Moisture		Hydromet	er Analysis		At	terberg Lin	nits
Hole No.	Testhole Location	No.	Туре	Thickness (mm)	Type	Thickness (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Plastic Limit	Liquid Limit	Plasticity Index
							Granular Fill	0.2	5.6							
							Clay	0.5	36.6							
							Clay	0.8	40.3							
	A sainih sin s Avenus						Clay	1.1	40.7							
TH1	Assiniboine Avenue, Westbound Lane, 2.0 m S of	2744	Asphalt	65	Granular Fill	0.2 m	Clay	1.4	39.3	0.0	0.0	11.9	88.1	32.9	84.8	52.0
IUT	edge of street	2/44	Aspilait	65	(< 20 mm)	0.2 111	Clay	1.7	40.4							
	euge of street						Clay	2.0	48.0							
							Clay	2.4	43.4							
							Clay	2.8	44.3							
							Clay	3.1	44.0							
							Clay	0.2	18.7							
							Clay	0.5	36.7							
							Clay	0.9	40.2							
	A saimile sing Assessed						Clay	1.3	34.8							
TH2	Assiniboine Avenue, Westbound Lane, 2.0 m S of	2724	Asphalt	145	Granular Fill (< 20 mm)	50	Clay	1.6	36.3							
ITZ	edge of street	2/24	Aspilait				Clay	1.9	39.1							
	euge of street						Clay	2.2	41.1							
							Clay	2.5	43.6							
							Clay	2.8	52.6							
							Clay	3.1	52.2							
				115	Granular Fill (< 20 mm)	50	Clay	0.2	33.1							
							Clay	0.5	28.5							
							Clay	0.9	31.5							
	A controlled to a A control						Clay	1.2	40.7							
TUO	Assiniboine Avenue,	3700	A l l+				Clay	1.5	41.7	0.0	12.2	29.8	58.0	33.1	62.4	29.3
TH3	Westbound Lane, 2.0 m S of	2700	Asphalt				Clay	1.8	33.7							
	edge of street						Clay	2.1	41.1							
							Clay	2.4	40.9							
							Clay	2.8	50.7							
							Clay	3.1	52.0							
							Granular Fill	0.2	9.3							
							Clay	0.5	37.8							
							Clay	0.8	35.9							
							Clay	1.1	32.4	0.7	6.7	24.8	67.8	29.1	86.3	57.3
T1 1 4	Assiniboine Avenue at		A 1 11	405	••	,	Clay	1.5	30.2							
TH4	Ashcroft Point, Centre of Cul-	n/a	Asphalt	125	None	n/a	Clay	1.9	32.1							
	de-sac						Clay	2.3	32.6							
							Clay	2.6	37.2							
							Clay	2.9	36.7							
							Clay	3.1	41.8							

Appendix D

Donnington Road, Test Hole Location Plan, Test Hole Logs, Core Photographs, Lab Testing Summary

PUBLIC WORKS DEPARTMENT • SERVICE DES TRAVAUX PUBLICS

Engineering Division . Division de l'ingénierie

GEOTECHNICAL INVESTIGATION

STREET RECONSTRUCTION

Revised October 28th, 2008

Fieldwork

- 1. Clear all underground services at each testhole location.
- 2. Test holes required every 50 m with a minimum of 3 test holes per street.
- 3. Record location of testhole (offset from curb, distance from cross street and house number).
- 4. Drill 150 mm-diameter core in pavement.
- 5. Drill 125 mm-diameter testhole into fill materials and subgrade
- 6. If a service trench backfilled with granular materials is encountered, another hole shall be drilled to define the existing sub-surface conditions.
- 7. Testhole to be drilled to depth of 2 m \pm 150 mm below surface of the pavement.
- 8. Recover pavement core sample and representative samples of soil (fill materials, pavement structure materials and subgrade).
- 9. Measure and record pavement section exposed in the testhole (thickness of concrete or asphalt and different types of pavement structure materials).
- 10. Pavement structure materials to be identified as crushed limestone or granular fill and the maximum aggregate size of the material (20 mm, 50 mm or 150 mm).
- 11. Log soil profile for the subgrade.
- 12. Representative samples of soil must be obtained at the following depths below the bottom of the pavement structure materials 0.1 m, 0.4 m, 0.7 m, 1.0 m, 1.3 m, 1.6 m, etc. Ensure a sample is obtained from each soil type encountered in the testhole.
- 13. Make note of any water seepage into the testhole.
- 14. Backfill testhole with native materials and additional granular fill, if required. Patch pavement surface with hot mix asphalt or high strength durable concrete mix.
- 15. Return core sample from the pavement and soil samples to the laboratory.

Lab Work

- 1. Test all soil samples for moisture content.
- 2. Photograph core samples recovered from the pavement surface.
- 3. Conduct tests for plasticity index and hydrometer analysis on selected soil samples which are between 0.5 m and 1 m below top of pavement (this is the sub-grade on which the pavement and sub-base will be built). The selection will be based upon visual classification and moisture content test results, with a minimum of one sample of each soil type per street to be tested.
- 4. Prepare testhole logs and classify subgrade (based on hydrometer) as follows;

< 30% silt - classify as clay

30% - 50% silt - classify as silty clay

50% - 70% silt - classify as clayey silt

> 70% silt - classify as silt

Prepared by: The National Testing Laboratories Limited and Eng-Tech Consulting

Embrace the Spirit · Vivez l'esprit

AECOM Canada Ltd.

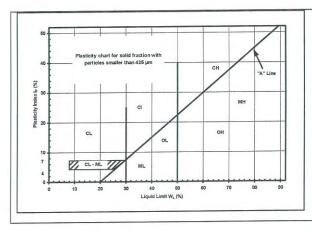
GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.


In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

			C		UMA	USCS		Laborato	ratory Classification Criteria			
		Descrip	tion		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes		
		CLEAN GRAVELS	sandy grav	ed gravels, els, with little o fines	201	GW	0-5	C _U > 4 1 < C _C < 3				
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly graded gravels, sandy gravels, with little or no fines Silty gravels, silty sandy gravels		M	GP	0-5	Not satisfying GW requirements		Dual symbols if		
STIC	fraction of gravelo size)	DIRTY GRAVELS			NE.	GM	> 12	,	Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols above "A" line a		
AINED SC		(With some fines)		vels, clayey gravels		GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>		
COARSE GRAINED SOILS		CLEAN SANDS	gravelly san	ed sands, ds, with little fines	0.0	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$		
CO	SANDS (More than 50% of	(Little or no fines)	gravelly san	ded sands, ds, with little fines	000	SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})}{D_{10}xD}$		
	fraction of sand size)	DIRTY SANDS	Silty sands, sand-silt mixtures			SM	> 12		Atterberg limits below "A" line or W _P <4			
		(With some fines)		Clayey sands, sand-clay mixtures		sc	> 12		Atterberg limits above "A" line or W _P <7			
	SILTS (Below 'A' line	W _L <50	Inorganic s clayey fine slight p	sands, with		ML						
	negligible organic content)	W _L >50	Inorganic s plast			МН						
SOILS	CLAYS	W _L <30	Inorganic of clays, sand low plasticity	dy clays of		CL						
INE GRAINED	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	N _L <50 Inorganic clays and silty clays of medium plasticity			CI			Classification is Based upon Plasticity Chart			
- INE	content)	W _L >50	Inorganic cl plasticity,			СН						
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty plast	clays of low		OL						
	(Below 'A'	W _L >50	Organic cla plasti			ОН						
HI	GHLY ORGAIN	NIC SOILS	Peat and ot organic			Pt		on Post cation Limit		odour, and often texture		
		Asphalt		-	Till				*			
₫,		Concrete			edrock erentiated)				AE	СОМ		
8	8	Fill			drock estone)							

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

Not used. Refer to City of Winnipeg; Specs For Geotechnical Investigation Street Reconstruction oct 28,08

FRACTION		SEIVE S	SIZE (mm)	PERCENTAG	RANGES OF E BY WEIGHT OMPONENTS	
		Passing	Retained	Percent	Identifier	
Crovel	Coarse	76	19	35-50	and	
Graver	Fine	19	4.75	33-30	-	
Co Fi Co Sand Med	Coarse	4.75	2.00	20-35	"y" or "ey" *	
	Medium	2.00 0.425		20-33	y or cy	
	Fine	0.425	0.075	10-20	some	
		< 0.0	75 mm	1-10		

* for example: gravelly, sandy clayey, silty

Definition of Oversize Material

COBBLES: 76mm to 300mm diameter BOULDERS: >300mm diameter

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

qu - undrained shear strength (kPa) derived from unconfined compression testing.

T_v - undrained shear strength (kPa) measured using a torvane

pp - undrained shear strength (kPa) measured using a pocket penetrometer.

L_v - undrained shear strength (kPa) measured using a lab vane.

Fv - undrained shear strength (kPa) measured using a field vane.

γ - bulk unit weight (kN/m³).

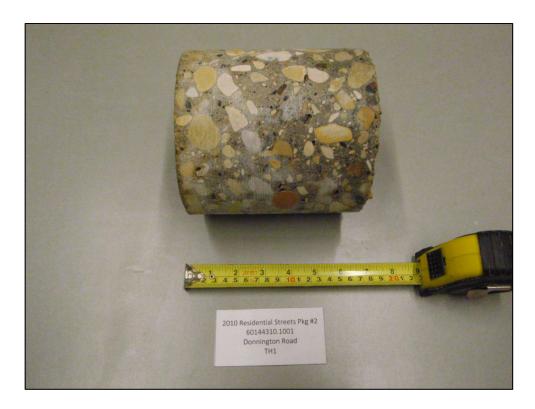
SPT - Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.

DPPT - Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.

w - moisture content (WL, WP)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

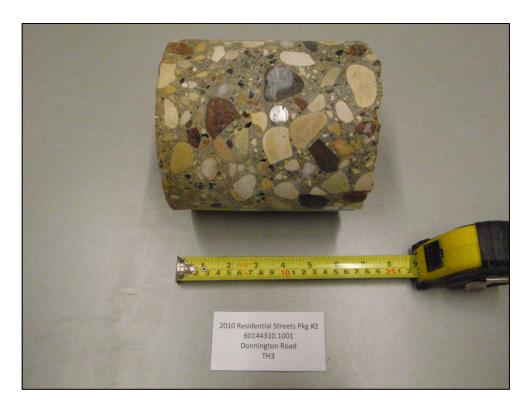
Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard


The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N - BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

PROJECT: 2010 Residential Streets Package #2 CLIENT: City of Winnipeg	TESTHOLE NO: TH1
LOCATION: Donnington Road, Southbound Lane, Between House #19 and 23, 2.0 m E of Curb	PROJECT NO.: 60144310.1001
CONTRACTOR: Paddock Drilling Ltd. SAMPLE TYPE GRAB SHELBY TUBE SPLIT SPOON BULK	mm Coring ELEVATION (m): NO RECOVERY CORE
(E) HLD SOIL DESCRIPTION SOIL DESCRIPTION H	UNDRAINED SHEAR STRENGTH + Torvane + X QU X St) ♦ □ Lab Vane □ D 100 △ Pocket Pen. △ Field Vane � UKPa)
0 CONCRETE (thickness = 155 mm)	50 100 50 100 150 200
GRANULAR FILL - brown, frozen, wet when thawed, well graded sand and gravel (< 20 mm) CLAY - possible fill - trace gravel - brown - frozen, moist when thawed - high plasticity CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity	
- below 1.0 m, trace sand, trace silt, brown, moist and firm, trace sulphates G131 G131 G132	Gradation: Sand = 2.5%, Silt = 9.8% and Clay = 87.7%
- below 1.4 m, trace silt, trace gravel, stiff	
G135 G135	2
G136	
End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand to 0.15 m below top of pavement and asphalt cold patch to top of pavement LOGGED BY: Step REVIEWED BY: G PROJECT ENGINE	
LOGGED BY: Step	
REVIEWED BY: G	

						/innipeg		TESTHOLE		
-		: Donnington Road, Northbound Lane, Between House #1							NO.: 60144310.1001	
						n SSA with 150 mm		ELEVATION NO RECOVER		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		◆ S 0	BULK PENETRATION TESTS	UNDRAINED SHE + Torv. X QI Lab V A Pocket Field V (kP	vane + U X Vane □ et Pen. Δ Vane Φ	COMMENTS	DEPTH
0		CONCRETE (thickness = 150 mm)			<u> </u>	20 40 50 60 10	, Ju 11,			
		GRANULAR FILL - brown, frozen, wet when thawed, well graded sand and gravel (< 20 mm) CLAY - trace gravel - brown - frozen, moist when thawed - intermediate plasticity		G121		•				
-		CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity		G122		•				
- - - -		- below 1.0 m, trace silt, trace sand, dark brown, moist and firm		G123						1 -
		- from 1.4 to 1.9 m, trace silt, trace sulphates		G125						***************************************
1 1 1 0 1 0 1				G126						2 -
—2 —				G127	demokratika demokratika demokratika demokratika demokratika demokratika demokratika demokratika demokratika de	•				
2		End of test hole at 2.5 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, sand 0.15 m below top of pavement and asphalt cold patch to top of pavement	to nt	G128		•				
3	<u>. </u>	AECOM			RE	DGGED BY: Stephen EVIEWED BY: Gil Ro ROJECT ENGINEER:	binson	COMPLE	ETION DEPTH: 2.50 m ETION DATE: 1/18/10 Page	1 of 1


	2010 Residential Streets Package #2	y of Winnipeg						TESTHOLE NO: TH3					
	l: Donnington Road, Southbound Lane, Between Hou								<u> </u>	PROJECT NO.: 60144310.1001			
	TOR: Paddock Drilling Ltd.				mm SS/			mm	~~~~	LELEVATION TO THE PERSON THE PERSON TO THE P			
SAMPLE T	YPE GRAB ∭SHELBY TUBE	⊠s	PLIT S	SPO(В		_		NO RECOVE	7	Γ	
DEPTH (m) SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	Dy ◆ SPT (Str (Blo 0 20 ■ To 16 17 Plastic	ows/300 40 6 otal Unit (kN/m ³ 18 1	Cone OPen Te Dmm) 0 80 Wt 10 1 Uniquid	st)	+ Tor	HEAR STRENGTH rvane + QU X I Vane ⊡ tet Pen. △ di Vane � (Pa)	COMMENTS	DEPTH	
0	CONCRETE (thickness = 165 mm)				:	:			:				
- 4.	GRANULAR FILL - some clay, brown, frozen, wet when thawed, graded sand and gravel (< 20 mm)	well	G	3113	•								
	CLAY - dark grey - frozen to 0.7 m, moist when thawed - high plasticity		G	6114								-	
							· · · · · · · · · · · · · · · · · · ·						
			G	S115						.,		1-	
	- below 1.1 m, trace sand, trace gravel		G	G116									
	- below 1.3 m, trace sand, trace silt, brown, moist and stiff, becor firm at 2.5 m depth	ming	G	3117	⊢ •			- 1			Gradation: Silt = 11.9 % and Clay =		
	- sand lense 4 mm thick at 1.7 m depth		G	G118						Δ	88.1%		
-2			G	3119		•						2 -	
NN GDT 2/9/10			G	G120		•						-	
ON.GPJ UMA WI			G	G121					<u> </u>				
LOG OF TEST HOLE TEST HOLE LOGS DONNINGTON, GPJ, UMA WINN, GDT, 2/9/10	End of test hole at 2.8 m in clay Notes: 1) No sloughing 2) No seepage 3) Backfilled with auger cuttings to 0.2 m below top of pavement, 0.15 m below top of pavement and asphalt cold patch to top of pa	sand to										3-	
3.5 3.5					LOGGE	n pv.	Ctor	hon !	Potecho	COMP	LETION DEPTH: 2.80 m	-	
9F TE	AECOM				REVIEV						LETION DATE: 1/18/10		
90	7-CV//I								Gil Robinso		Page 1 of 1		

Photograph 1. Donnington Road - TH1

Photograph 2. Donnington Road – TH2

Photograph 3. Donnington Road – TH3

City of Winnipeg 2010 Residential Streets Package #2 Geotechnical Investigation

Test Hole No.	Testhole Location	House No.	Pavement Surface		Pavement Structure Material		Subgrade	Sample	Moisture	Hydrometer Analysis				Atterberg Limits		
			Туре	Thickness (mm)	Type	Thickness (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Plastic Limit	Liquid Limit	Plasticity Limit
TH1	Donnington Road, Southbound Lane	Between 19 and 23	Concrete	155	Granular Fill (< 20 mm)	50	Clay	0.2	38.5							
							Clay	0.5	35.9							
							Clay	0.8	37.2							
							Clay	1.1	38.8	0.0	2.5	9.8	87.7	25.6	92.5	66.9
							Clay	1.4	41.3							
							Clay	1.7	44.7							
							Clay	2.0	53.0							
							Clay	2.3	54.0							
	Donnington Road, Northbound Lane	Between 10 and 14	Concrete	150	Granular Fill (< 20 mm)	75	Clay	0.3	34.0							
TH2							Clay	0.6	33.3							
							Clay	0.8	36.0							
							Clay	1.1	35.9							
							Clay	1.4	41.7							
							Clay	1.7	45.2							
							Clay	2.0	50.7							
							Clay	2.3	54.3							
тнз	Donnington Road, Southbound Lane	Between 3 and 7	Concrete	165	Granular Fill (< 20 mm)	150	Granular Fill	0.2	12.8							
							Clay	0.5	37.1							
							Clay	0.8	36.2							
							Clay	1.1	37.8							
							Clay	1.4	36.4	0.0	0.0	11.9	88.1	25.3	86.3	61.1
							Clay	1.7	37.8							
							Clay	2.0	41.3							
							Clay	2.3	42.2							
							Clay	2.6	50.0							