1. GENERAL

- .1 The control sequences contain a general description of the intent of the operation of the systems to be controlled. The Contractor shall review individual systems to ensure equipment and life safety interlocks are not overridden.
- .2 The relationships between the points, systems and building are described in the control sequences.
- .3 Review with the Contract Administrator during the Shop Drawing stage to finalise the control sequences for each system.
- .4 All temperature setpoints mentioned below are initial setup values and shall be adjustable for future requirements.

2. PRODUCTS

.1 Not Applicable

3. EXECUTION

.1 Provide data base for all hardware points listed for system operation to meet specification operating sequences.

4. CONTROL SEQUENCES

4.1 Indirect Water Heating System (IWH-1 & IWH-2)

- .1 The major components of this system are:
 - .1 Indirect water heaters, IWH-1 & IWH-2
 - .2 Motorized open/close 2-way control valve (MCV-IWH)
- .2 IWH-1 & IWH-2 each have an onboard aquastat that will close a circuit at 5°C (9°F) below the set point and opens when the setpoint is reached. When either of the aquastat circuits are closed (call for heat), the BMS will signal boiler B-1 to go into DHW priority to start heating the loop to 160°F. When the boiler loop has reached 130°F, the BMS will open the 2-way valve to the indirect water heaters to start making DHW. When the aquastat circuit is open (heating is satisfied), the 2-way valve will close and boiler B-1 to resume the normal reset temperature.
- .3 The aquastat set point shall be initially set at 54°C (130°F).

4.2 Existing Heat Exchanger (HX-1) System

.1 The intent of this control sequence is to inject the higher temperature water of the new boiler B-1 high temperature heating loop (runs from 100°F to 160°F) into the existing high temperature heating loop (runs from 100°F to 140°F). This will allow the existing HX-1 to provide more heat to the MUA pre-heat coil.

- .2 The major components of this system are:
 - .1 Existing high temperature heating loop consisting of pump P-8, heat exchanger HX-1 and a temperature transmitter.
 - .2 Motorized open/close 2-way control valve (MCV-HX-1)
- .3 The 2-way motorized control valve shall open when:
 - .1 the outside air temperature is less than -5°C (23°F) and,
 - .2 the new boiler B-1 high temperature heating loop is hotter than the existing high temperature heating loop.
- .4 Readjust existing glycol loop outdoor reset schedule to:

O/A Temperature	GLS
-30°C (-22°F) or less	48.9°C (120°F)
10°C (50°F) or higher	26.7°C (80°F)

4.3 High Temperature Heating Loop (B-1)

- .1 The major components of this system are:
 - .1 Condensing boiler B-1
 - .2 Circulator pump P-5 VFD
 - .3 Motorized modulating 3-way control valve (MCV-B-1)
- .2 Boiler controls are provided by the boiler Manufacturer. Provide tie-in points to BAS, as indicated on the Points Schedule.
- .3 Provide all safety or operational interlocks to boiler control panels as required.
- 4 The water supply temperature of the High Temperature Heating Loop will be based on a normal outdoor reset schedule as follows:

O/A Temperature	HWS
-30°C (-22°F) or less	71.1°C (160°F)
10°C (50°F) or higher	37.8°C (100°F)

.5 The water supply temperature of the boiler shall be temporarily reset to a DHW priority temperature of 71.1°C (160°F) when IWH-1/IWH-2 2-way valve is fully open. The water

supply temperature shall return to the normal outdoor reset schedule when IWH-1/IWH-2 2-way valve is fully closed.

- .6 Boiler shall be locked out by safety features such as Low water cut-out, low flow condition at flow switch, fire alarm activation or opening of the Emergency Boiler disconnect switch at the entry to the mechanical room.
- .7 Circulator pump P-5 shall be controlled by B-1 via P-5 VFD.
- The motorized 3-way valve shall normally divert 100% flow away from IWH-1/IWH-2 and HX-1. When either one of the two motorized 2-way valves for IWH-1 and HX-1 are open (I.e. calling for flow), the 3-way valve shall divert the flow as follows:
 - .1 When the motorized 2-way valve for IWH-1/IWH-2 is open, the 3-way valve shall divert 20% of the flow to IWH-1/IWH-2.
 - .2 When the motorized 2-way valve for HX-1 is open, the 3-way valve shall divert 30% of the flow to HX-1.
 - .3 When both of the two motorized 2-way valves for IWH-1/IWH-2 and HX-1 are open, the 3-way valve shall divert 50% of the flow to IWH-1/IWH-2 and HX-1.

4.4 Low Temperature Heating Loop (B-2)

- .1 The major components of this system are:
 - .1 Condensing boiler B-2
 - .2 Circulator pump P-6 VFD
 - .3 Motorized modulating 3-way control valve (MCV-B-2)
- .2 Boiler controls are provided by the boiler Manufacturer. Provide tie-in points to BAS, as indicated on the Points Schedule.
- .3 Provide all safety or operational interlocks to boiler control panels as required.
- .4 The water supply temperature of the Low Temperature Heating Loop will be based on a normal outdoor reset schedule as follows:

O/A Temperature	HWS
-30°C (-22°F) or less	48.9°C (130°F)
10°C (50°F) or higher	37.8°C (100°F)

.5 Boiler shall be turned off when the outdoor air temperature is 18°C or higher or from May 1st to August 31st.

- 6 Boiler shall be locked out by safety features such as Low water cut-out, low flow condition at flow switch, fire alarm activation or opening of the Emergency Boiler disconnect switch at the entry to the mechanical room.
- .7 Circulator pump P-6 shall be controlled by B-2 via P-6 VFD.
- .8 The motorized 3-way valve shall normally divert 100% flow away from the existing building loop. The existing building loop temperature, reading taken from a new temperature transmitter in main-floor men's washroom shall be maintained at 90°F set-point during the heating season. When the temperature reading is more than 1°C (1.8°F) off the setpoint the 3-way valve will be modulated up or down in 10% increments with 1 minute (field adjustable) delays between each increment to maintain set-point.

4.5 Building Loop Booster Pump (P-14)

- .1 The major components of this system are:
 - .1 Booster pump P-14
 - .2 Motorized open/close 3-way control valve (MCV-P-14)
- .2 Booster pump P-14 normally runs continuously with ability to be shut down remotely via BMS.
- .3 The motorized 3-way valve will automatically divert flow 100% through the fluid cooler in summer mode (OAT \geq 10°C) or 100% past the fluid cooler in winter mode (OAT < 10°C).

4.6 Existing Pumps P-1 & P-2

- .1 Pumps P-1 & P-2 is an existing standalone system that currently injects HWS from the old B-1 and B-2 boilers into the building loop. An adjustable thermostat located on the main floor mechanical room and a temperature transmitter controls the two pumps and a 2-way valve.
- .2 Revise system to be controlled via BMS.
 - .1 Remove existing thermostat, temperature transmitter and control wiring.
 - .2 Change the operation of P-1 and P-2 so that they are normally off and the 2-way valve is closed.
 - .3 When the B-2 3-way valve has reached 100% and the building loop temperature is <90°F, the BMS will open the 2-way valve and turn on both P-1 and P-2. When the B-2 3-way valve has dropped to 80% or less, P-1 and P-2 will turn off and the 2-way valve will close.

4.7 Basement Electrical Room Temperature Transmitter

- .1 The major components of this system are:
 - .1 Temperature Transmitter

Section 23 09 93 Page 5 of 5 July 2010

SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

.2 The new temperature transmitter will monitor the room temperature through the BMS. An alarm will be generated if the room exceeds 40°C (104°F).

END OF SECTION