APPENDIX E – SOILS INVESTIGATION REPORT AND TEST HOLE LOGS



AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

### Memorandum

| То      | Marvin McDonald                     |                        | Page 1        |
|---------|-------------------------------------|------------------------|---------------|
| сс      | Barry Biswanger                     |                        |               |
| Subject | Midtown Feedermain Bridge - Geotech | nical Investigation    |               |
|         |                                     |                        |               |
| From    | Omer Eissa, Faris Khalil            |                        |               |
| Date    | November 6, 2012                    | Project Number 6025612 | 29 (403.19.2) |

#### 1. Introduction

This memorandum summarizes the results of the geotechnical field program and provides geotechnical assessment for the observed instability at the south bank of the Midtown Feedermain Bridge crossing the Assiniboine River. The Midtown Feedermain is a 900 mm diameter pipe extending over a single span steel truss bridge supported by two piers located on the North and South banks of the Assiniboine River. It is understood the bridge has reached its service life and the City of Winnipeg is considering rehabilitation of the existing bridge and treatment options to control the impact of the observed slope instabilities at the south bank of the subject structure.

In support of the geotechnical considerations provided in the AECOM report "Midtown Feedermain and Bridge Report", dated July 2010, AECOM completed a field program to investigate the subsurface conditions within the river channel. The objectives of the investigation are primarily to assess the feasibility of off bridge installation of the Feedermain pipe and to supplement available subsurface information in support of stability assessment of the south pier of the bridge. A total of four (4) test holes were drilled slightly upstream of the existing bridge to investigate the subsurface conditions in the river channel. The locations of the test holes in relation to the bridge and the encountered soil profile at each test hole are presented on Drawing 01, Appendix A. Individual test hole details are outlined in Table 01 below.

#### 2. Site Condition

The Feedermain Bridge is located in the City of Winnipeg, Manitoba. It crosses the Assiniboine River in a north to south direction, south of the junction of Aubrey Road and Palmerston Avenue. The river is approximately 80 meters wide at the bridge crossing. A detailed visual inspection of the site was carried out on January 2012. The findings of the visual inspection are documented in the AECOM "Midtown Feedermain Bridge Riverbank Re-Assessment Report" dated February 6<sup>th</sup>, 2012. The inspection revealed visible signs of slope instabilities along the south bank of the river in the vicinity of and immediately downstream the south pier of the bridge. Multiple soil mass slumps and an array of tension cracks and head scarps were observed manifesting typical retrogressive slope failure along the south bank. A head scarp in the order of 700 mm high and tension cracks approximately 300 mm wide were also visually identified extending along the crest of the bank. The slope movements have



been monitored periodically since July 2010 using slope indicator (SI) readings. The results of the monitoring are presented in the attached Appendix C. With the exception of the tension crack in the vicinity of the south pier on the east side, Photo 01, no major movements have been detected in the SI readings since the aforementioned reassessment report dated February 6<sup>th</sup>, 2012.



#### Photo 01: Tension Crack in the Vicinity of the South Pier (looking west).

#### 3. 2012 Field Investigation

The test hole drilling program was completed between May 22<sup>nd</sup> to May 25<sup>th</sup>, 2012 using a barge mounted ACKER SS drill rig capable of soil sampling and rock coring. The drill rig and barge were supplied and operated by Paddock Drilling Limited. Four (4) test holes were advanced in the vicinity of the existing bridge. Test hole details including location and depth are provided in Table 01.

Standard penetration tests (SPTs) were performed at regular intervals within the overburden soils, from which disturbed samples were obtained. Rock cores were retrieved from three of the test holes. All soils observed during drilling were logged and visually classified on site by AECOM personnel. Soil and rock samples recovered were transported to AECOM's Materials Testing Laboratory in Winnipeg for further visual examination and testing.

#### Table-01: Test Hole Details

| Test hole ID | Coordinates<br>(UTM, Zone 14) | Approximate<br>Location                                                            | Depth<br>(m) | Termination<br>Condition |
|--------------|-------------------------------|------------------------------------------------------------------------------------|--------------|--------------------------|
| TH12-01      | 631084 E, 5526520 N           | <ul><li>7 m upstream of existing bridge,</li><li>2 m South of North bank</li></ul> | 10.7         | 0.6 m into bedrock       |
| TH12-02      | 631060 E, 5526466 N           | 1 m upstream of existing bridge<br>5 m North of South bank                         | 9.6          | Terminated in dense till |
| TH12-03      | 631070 E, 5526485 N           | 1 m upstream of existing bridge<br>25 m North of South bank                        | 8.8          | 0.9 m into bedrock       |
| TH12-04      | 631080 E, 5526508 N           | 1 m upstream of existing bridge<br>15 m south of North Bank                        | 8.9          | 1.2 m into bedrock       |

Laboratory testing included the determination of moisture contents on all soil samples. A detailed test hole log has been prepared for each test hole to record the description and the relative position of the various soil and bedrock strata, location of samples obtained, field and laboratory test results and other pertinent information. The test hole logs are provided in Appendix B.

#### 4. Soil Profile

The general subsurface profile in descending order is:

- Water column (River)
- Alluvial clay (only in TH12-011, TH12-02)
- Alluvial sand
- Clay till
- Silt/Sand Till
- Bedrock

These units are described separately as follows:

#### Water

Drilling from a barge, water was encountered in all test holes to depths ranging from 1.2 m to 3.6 m.

#### **Alluvial Clay**

Alluvial clay was encountered at the river bed in TH12-01 and TH12-02 located in close proximity to the river north and south banks, respectively. Alluvial clay was not encountered towards the centre of the river channel in TH12-03 and TH12-04. The clay layer contains organics at the surface, some silt, and trace to some gravel. The clay is wet to moist, grey, of soft consistency and exhibits high plasticity. Moisture contents in the clay layer range from 6 to 13 percent.



#### Alluvial Sand

Alluvial sand was encountered at the river bed in TH12-03 and TH12-04 located close to the centre of the channel. The sand contains some organics, some roots, trace amounts of silt and trace amounts of fine gravel. The sand layer is dark grey, wet, poorly graded and is loose to compact. Cobbles were encountered within the sand layer in TH12-03. Moisture contents in the sand layer range from 8 to 11 percent.

#### <u>Clay Till</u>

Clay till was encountered in TH12-01 and TH12-02 below the alluvial clay. The layer extends from depths 3.9 to 4.9 m and 4.9 to 6.1 m in TH12-01 and TH12-02, respectively. The clay till is silty contains some sand and trace gravel. The layer is wet, brown, of firm consistency and exhibits low plasticity. Moisture contents in the till range from 13 to 15 percent.

#### Silt and Sand Till

Silt and Sand till was encountered below the clay till in TH12-01 and TH12-02 and below the alluvial sand in TH12-03 and TH12-04. It generally consists of sand, silt, some angular to sub-angular gravel and contains occasional limestone and granite boulders below 6 meters from the water surface. The layer is grey, moist, and compact to dense. Moisture content in the till range from 7 to 14 percent.

#### **Bedrock**

Where the drilling advanced below the till, Limestone/Dolomite bedrock was encountered beneath the till. The bedrock is fine grained and slightly foliated with occasional clay filled seams. Core recovery within the bedrock was in the range of 90%. Rock Quality Designation (RQD) ranges from 57 to 79 percent. No core samples were tested for uniaxial compressive strength.

#### 5. Subsurface Pipe Installation

The in-water investigation indicated relatively shallow bedrock overlaid by dense till containing large diameter boulders which is expected to present construction challenges and costly trench/trenchless pipe installation conditions. Consultation within the project team concluded that an underground pipe crossing is no longer a feasible alternative. The remainder of this memorandum discusses the stability of the riverbank at the existing south pier.

#### 6. Stability Assessment

#### 6.1 Design Objectives and Site Limitations

The primary objective of the stability assessment is to provide more protection to the south pier of the existing Feedermain Bridge by developing measures to improve the stability at the south riverbank. Consistent with acceptable engineering practice, a design objective factor of safety (FS) of 1.5 was adopted for this project. Both global and local slip surfaces were investigated. For this report, global slip surface is defined as a slip surface engaging the bridge pier footing. Local slip surface is defined as a slip surface at least 1 m deep impacting the river bank without directly impacting the bridge pier. It is important to note that although a local slip surface doesn't directly engage the bridge pier, it may lead to retrogressive slope instabilities that may ultimately affect the bridge structure.



The stability assessment takes into account the main site restrictions which are:

- Limited space due to right of way restrictions.
- Limited headroom under the existing Bridge.
- Avoid hydraulic impact to the river channel.

#### 6.2 Stability Analysis

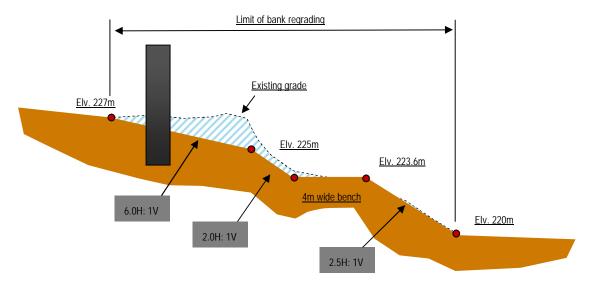
The geometry used in the stability analysis is based on recent channel soundings and riverbank survey. Current and previous geotechnical investigation and local knowledge of alluvial deposit boundaries were used to develop a model for soil profile. Review of available monitoring results for the Assiniboine River water level in the vicinity of the site was used to establish a range of river water level considered in the analysis. The depth of the observed subsurface displacement from SI monitoring and the approximate location of the tension crack observed at ground surface in the vicinity of south pier (discussed in section 2) were used in conjunction with back analysis to confirm the operating strength parameters within the zone where the slip failure and subsurface movements are interpreted. Results from previous back analysis completed by AECOM (July 2010) were also reviewed. A set of soil strength parameters of (c = 0 and  $\varphi$ =18) for alluvial clay deposit is determined to be corresponding to a calculated factor of safety range from 0.95 to 1.08. A FS near 1.0 is indicative of a condition of imminent instability which is considered, based on the available information and observations, representative for the condition at site. The selected soil strength parameters are provided in Table 02.

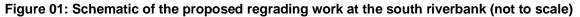
| Material        | Unit Weight (kN/m <sup>3</sup> ) | Cohesion (kPa) | Angle of Internal Friction (°) |
|-----------------|----------------------------------|----------------|--------------------------------|
| Alluvial Clay   | 17                               | 0              | 18                             |
| Lacustrine Clay | 17                               | 5              | 14                             |
| Till            | 21                               | 0              | 35                             |
| Riprap          | 21                               | 0              | 35                             |
| Rock fill       | 21                               | 0              | 45                             |

#### Table 02 - Soil Strength Parameters Used in the Stability Analysis

The analysis was completed to determine the stability improvement using the following stabilization measures:

- 1. Crest unloading and bank regrading.
- 2. Installation of shear key (rock columns)
- 3. Installation of riprap blanket (Slope stability and erosion protection)





Summary of the analysis results is provided in Table 03 and presented graphically in Appendix C.

| ope Regrade                        | Cal                 | culated FS         |
|------------------------------------|---------------------|--------------------|
| Case                               | Global Slip Surface | Local Slip Surface |
| Existing Condition                 | 1.08                | 0.95               |
| Slope Regrade                      | 1.21                | 1.08               |
| Slope Regrade + Shear Key          | 1.67                | 1.41               |
| Slope Regrade + Shear Key + Riprap | 1.68                | 1.53               |

Table 03 – Summary of the Results of Stability Analysis

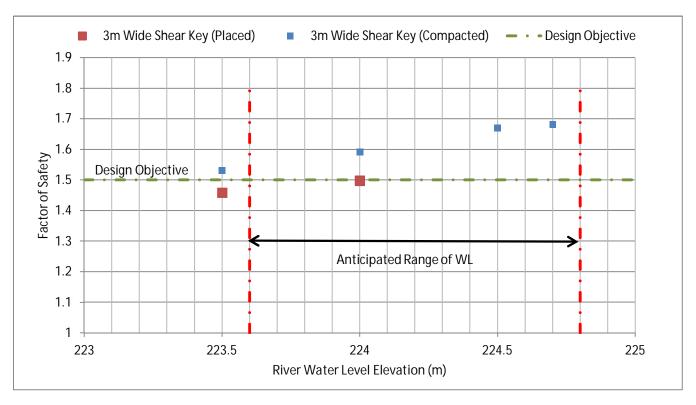
As a first step, the analysis models geometric modifications by regrading the south riverbank to unload some of the crest load and introduce flatter slope without adverse hydraulic impact on the river channel. The regrading concept took into account the necessity to maintain adequate soil cover over the existing buried pipe located south of the pier. The regrading resulted in improvements of approximately 12 percent to the calculated FS of the critical global slip surface but less than the design objective of 1.5. The configuration of the regrading work is schematically illustrated on Figure 01.





To improve the stability for the global slip surface, shear key in addition to bank regrading were incorporated into the model. The analysis optimized the depth, width and location of the shear key to attain the design objective. The analysis indicates that a three meter wide shear key or an equivalent configuration of rock columns will be required to satisfy FS of 1.5 for the global slip surface. Instabilities of the local slip surfaces down slope of the shear key due to the increased soil weight at the location of the shear key required an additional measure to address this concern. A 0.6 m layer of riprap was incorporated into the model to address the local instabilities and provide an erosion protection layer. The analysis results indicate that a combination of riverbank regrading, installation




of rock columns and riprap layer will be required to achieve the design objective FS of 1.5 for both global and local slip surfaces.

The shear key was modelled to extend from just below the ground surface and into the silt/sand till. An optimization process was used to convert the required width of the shear key to an equivalent configuration of rock columns on the basis of the required area per metre run of the model. The process took into account the diameter of rock columns and the center to center spacing. Based on discussion with local contractors, the most economical configuration was determined to be two staggered rows of 2.1 m diameter of rock columns spaced at 2.7 m center to center. Rock columns are large diameter holes filled with150 mm crushed limestone fill and have been used successfully in riverbank stabilization works in the Winnipeg area. The densification of the rock fill is achieved using vibrofloat techniques. The rock fill was modelled using strength parameters of (c=0 and  $\phi$ = 45). The selected friction angle is considered conservative based on the results of measured values for rock fill.

The limited headroom under the bridge presents construction challenges and imposes restrictions on the type and size of the construction equipment that can be used in this area. Therefore modifications to the rock columns configuration and construction method will be required for this short length (approximately 6 m along the river bank). The rock columns configuration will consists of 4 rows of 1.2 m diameter at 1.8 m c/c spacing. Vibrofloat densification will not be possible and the only feasible densification is from self weight, dumping effect and possibly by auger tamping. To investigation this change in rock fill placement method, stability analysis was completed using a lower friction angle ( $\varphi$ = 40) for the rock fill. The calculated FS corresponding to this condition was determined to be practically satisfying the design objective as presented on Figure 02. It is our assessment that this FS represent a conservative estimate at this location considering the three dimensional effect from the stabilized areas to the east and west and the positive contribution from the south pier pile foundation which has not been incorporated in the model.

A sensitivity analysis of calculated FS with respect to the river water level was conducted to verify acceptable FS over the range of anticipated river water level. Based on available historical monitoring data, the water level in the Assiniboine River at the bridge location generally ranges from an ice level of approximately 223.6 m to a normal summer level of 224.7. The results of the sensitivity analysis are presented on Figure 02 indicating acceptable FS over the anticipated range of river water level.





#### Figure 02:Factor of Safety vs. River Water Elevation

#### 7. Recommendations

Based on the results of the stability assessment the following measures are recommended to protect the south pier of the Feedermain Bridge:

- Grade the riverbank to a configuration as illustrated on Figure 01 and shown on Drawing D-12241 in Appendix A.
- Install 16 number of 2.1 m diameter and 22 number of 1.2 m diameter rock columns at the location and configuration shown on Drawing D-12241 in Appendix A. The rock columns should extend at least 1m into the till layer. The smaller diameter rock columns will be limited to the area under the bridge structure.
- Place 0.6m thick rip rap layer class 350 on the slope face as shown on Drawing D-12241 in Appendix A.
- The area subjected to the proposed improvement is defined by two 45 degrees lines starting from a line 3m south of the existing south pier. Therefore part of the proposed work will be in private properties. The stability of the riverbank for the private properties is beyond the scope of this work.
- Special considerations should be given to the sequencing of augured holes to minimize the influence of the recently placed material on adjacent open holes.
- Access to the site and construction activities will likely utilize the land easement along the vacated north extension of Waverly Street north of Wellington Crescent.



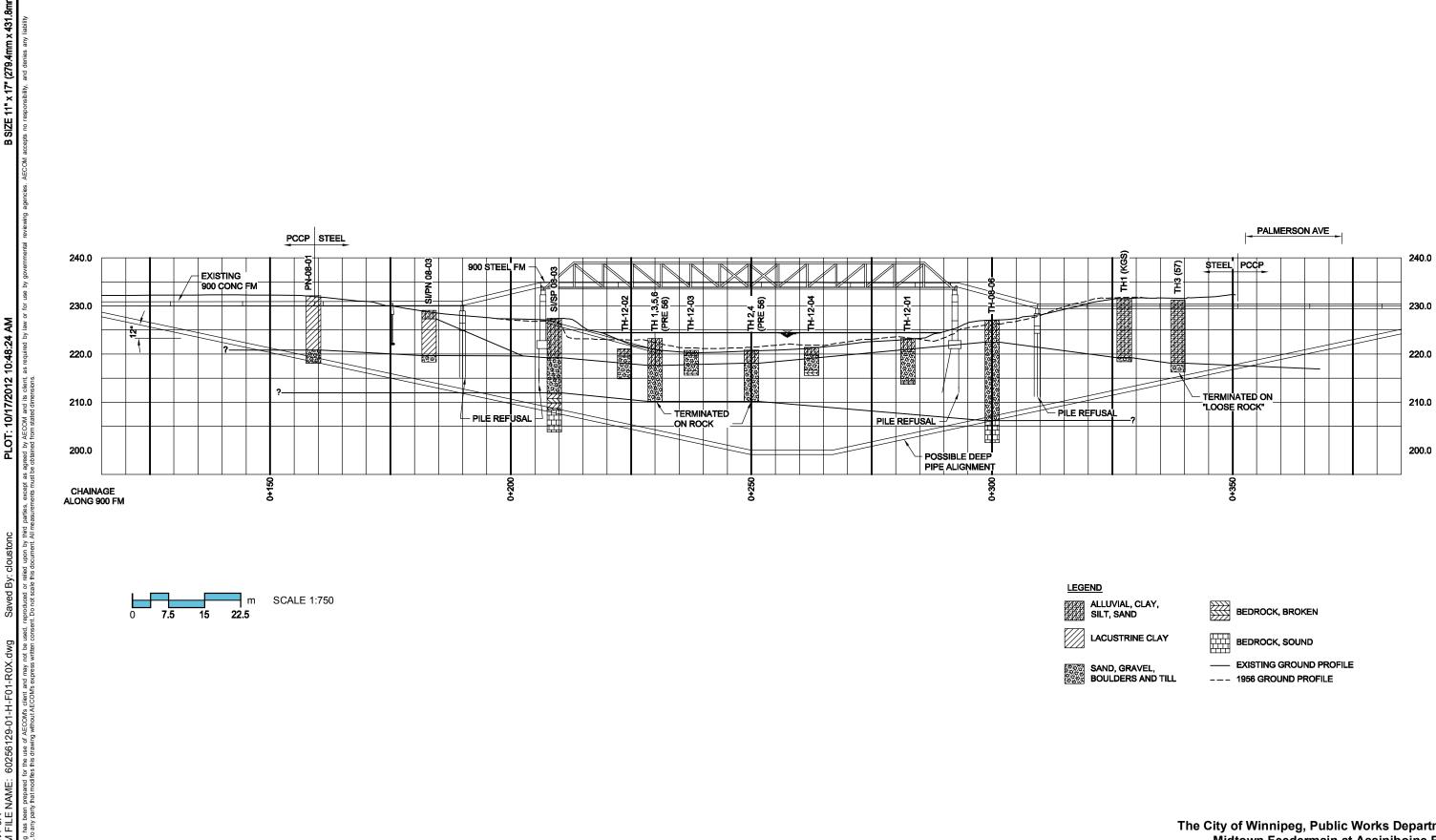
• The installation of rock columns is expected to be more efficient during winter months, although slope regarding is less efficient in that time period due to frozen ground. Therefore, provision of follow up maintenance and reshape works should be allowed in project schedule and budget.

#### 8. Closure

The findings and recommendations of this memorandum were based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test holes drilled at this site and described in this report, or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and adjusted, if necessary.

Soil conditions, by their nature, can be highly variable across a site. The placement of fill and prior construction activities on a site can contribute to the variability especially near surface soil conditions. A contingency should be included in the construction budget to allow for the possibility of variation in soil conditions, which may result in modification of the design and construction procedures.

Submitted by:

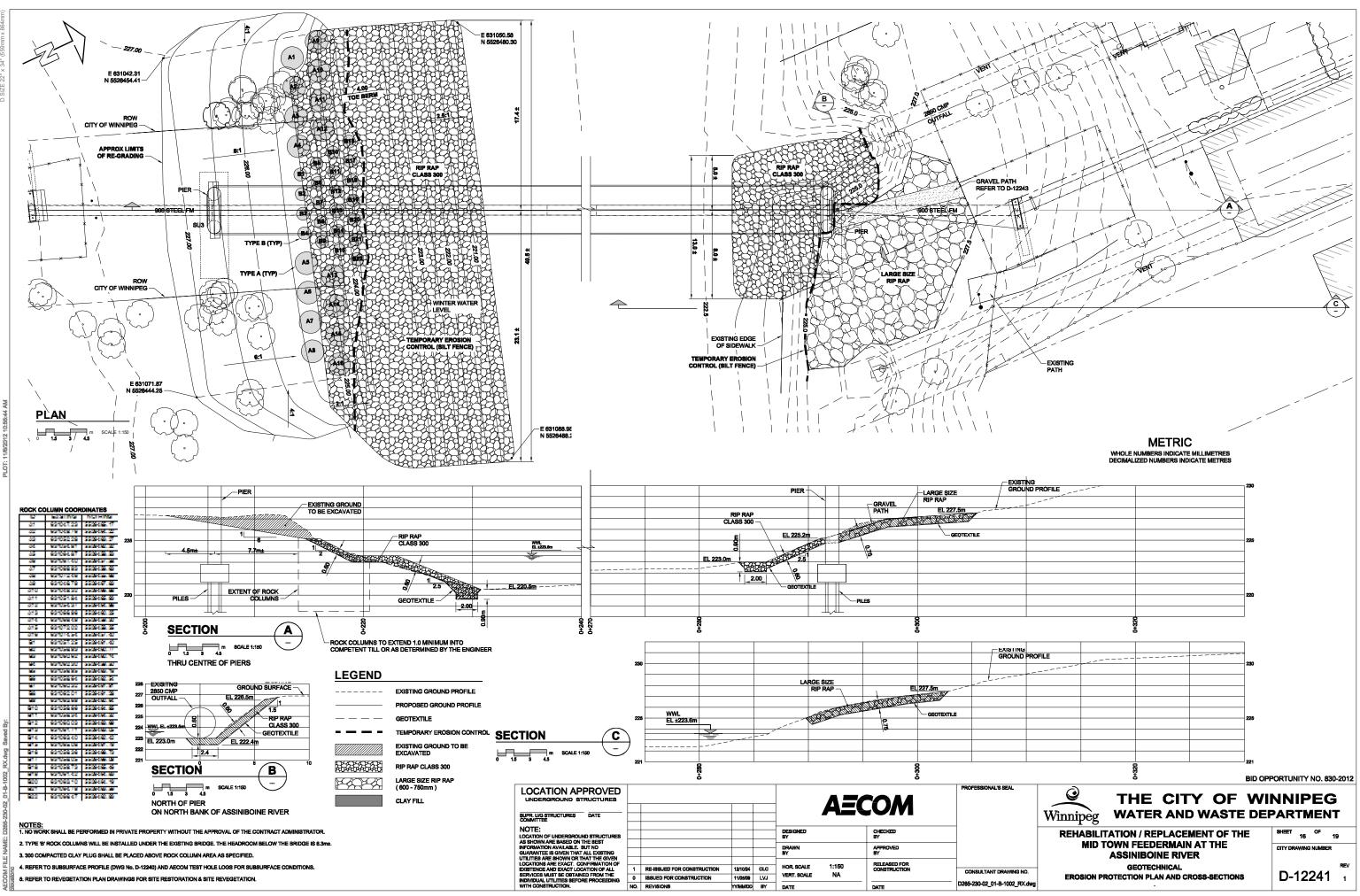

Omer Eissa, B.Eng., E.I.T Geotechnical Engineer-in-Training OE:dh

Reviewed by:

Faris Khalil, M.Sc., P.Eng. Manager, Geotechnical Engineering

## AECOM

# Appendix A Drawings




ISS/REV: 0A AECOM FILE NAME: 60256129-01-H-F01-R0X This drawing has been prepared for the use of AECOMs client and may whatsoever.to any party thatmodifies this drawing without AECOMs express AECOM

The City of Winnipeg, Public Works Department Midtown Feedermain at Assiniboine River

## **Geotechnical Investigation**

Drawing - 01



## AECOM

# Appendix B Test Hole Logs

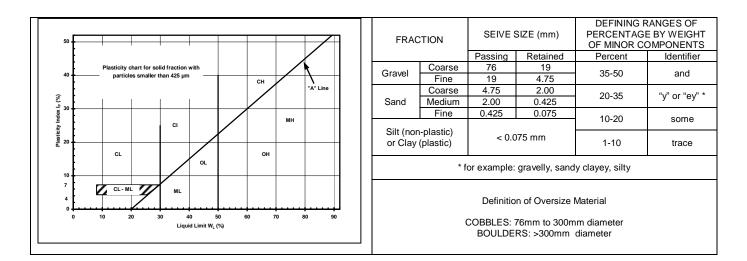
#### AECOM Canada Ltd.

#### GENERAL STATEMENT

#### NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.


Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

#### **EXPLANATION OF FIELD & LABORATORY TEST DATA**

|                      |                                             |                           |                                                  |                | AECOM                    | USCS           |              | Laborator                                    | y Classification Crite                                     | eria                                                                           |
|----------------------|---------------------------------------------|---------------------------|--------------------------------------------------|----------------|--------------------------|----------------|--------------|----------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|
|                      |                                             | Descripti                 | on                                               |                | Log<br>Symbols           | Classification | Fines<br>(%) | Grading                                      | Plasticity                                                 | Notes                                                                          |
|                      |                                             | CLEAN<br>GRAVELS          | Well graded<br>sandy gravels<br>or no fi         | , with little  | 220                      | GW             | 0-5          | C <sub>U</sub> > 4<br>1 < C <sub>C</sub> < 3 |                                                            |                                                                                |
|                      | GRAVELS<br>(More than<br>50% of<br>coarse   | (Little or no<br>fines)   | Poorly graded<br>sandy gravels<br>or no fi       | , with little  |                          | GP             | 0-5          | Not satisfying<br>GW<br>requirements         |                                                            | Dual symbols if 5-                                                             |
| OILS                 | fraction of<br>gravel<br>size)              | DIRTY<br>GRAVELS          | Silty gravels, s<br>grave                        |                |                          | GM             | > 12         |                                              | Atterberg limits<br>below "A" line<br>or W <sub>P</sub> <4 | 12% fines.<br>Dual symbols if<br>above "A" line and                            |
| AINED SC             |                                             | (With some<br>fines)      | Clayey grave<br>sandy gr                         |                |                          | GC             | > 12         |                                              | Atterberg limits<br>above "A" line<br>or W <sub>P</sub> <7 | 4 <w<sub>P&lt;7</w<sub>                                                        |
| COARSE GRAINED SOILS |                                             | CLEAN<br>SANDS            | Well graded<br>gravelly sands<br>or no fi        | s, with little |                          | SW             | 0-5          | C <sub>U</sub> > 6<br>1 < C <sub>C</sub> < 3 |                                                            | $C_{U} = \frac{D_{60}}{D_{10}}$                                                |
| CO/                  | SANDS<br>(More than<br>50% of               | (Little or no<br>fines)   | Poorly grade<br>gravelly sands<br>or no fi       | s, with little | 000                      | SP             | 0-5          | Not satisfying<br>SW<br>requirements         |                                                            | $C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})^{2}}{D_{10} x D_{60}}$ |
|                      | coarse<br>fraction of<br>sand size)         | DIRTY<br>SANDS            | Silty sand-silt m                                |                |                          | SM             | > 12         |                                              | Atterberg limits<br>below "A" line<br>or W <sub>P</sub> <4 |                                                                                |
|                      |                                             | (With some<br>fines)      | Clayey s<br>sand-clay n                          |                |                          | SC             | > 12         |                                              | Atterberg limits<br>above "A" line<br>or W <sub>P</sub> <7 |                                                                                |
|                      | SILTS<br>(Below 'A'<br>line                 | W <sub>L</sub> <50        | Inorganic silf<br>clayey fine sa<br>slight pla   | ands, with     |                          | ML             |              |                                              |                                                            |                                                                                |
|                      | negligible<br>organic<br>content)           | W <sub>L</sub> >50        | Inorganic sil<br>plastic                         |                |                          | МН             |              |                                              |                                                            |                                                                                |
| SOILS                | CLAYS                                       | W <sub>L</sub> <30        | Inorganic cla<br>clays, sandy<br>low plasticity, | clays of       |                          | CL             |              |                                              |                                                            |                                                                                |
| FINE GRAINED SOILS   | (Above 'A'<br>line<br>negligible<br>organic | 30 <w<sub>L&lt;50</w<sub> | Inorganic clay<br>clays of m<br>plastic          | iedium         |                          | CI             |              |                                              | Classification is<br>Based upon<br>Plasticity Chart        |                                                                                |
| FINE (               | content)                                    | W <sub>L</sub> >50        | Inorganic cla<br>plasticity, fa                  | , ,            |                          | СН             |              |                                              |                                                            |                                                                                |
|                      | ORGANIC<br>SILTS &<br>CLAYS                 | W <sub>L</sub> <50        | Organic si<br>organic silty cl<br>plastic        | lays of low    |                          | OL             |              |                                              |                                                            |                                                                                |
|                      | (Below 'A'<br>line)                         | W <sub>L</sub> >50        | Organic clay<br>plastic                          |                |                          | ОН             |              |                                              |                                                            |                                                                                |
| н                    |                                             | INIC SOILS                | Peat and oth<br>organic                          |                |                          | Pt             |              | on Post<br>fication Limit                    |                                                            | r odour, and often<br>s texture                                                |
|                      |                                             | Asphalt                   |                                                  |                | Till                     |                |              |                                              |                                                            |                                                                                |
|                      |                                             | Concrete                  |                                                  |                | Bedrock<br>fferentiated) |                |              |                                              | AE                                                         | MOC                                                                            |
| X                    | $\bigotimes$                                | Fill                      |                                                  |                | Bedrock<br>mestone)      |                |              |                                              |                                                            |                                                                                |

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.



#### LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T<sub>v</sub> undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- $L_v$  undrained shear strength (kPa) measured using a lab vane.
- F<sub>v</sub> undrained shear strength (kPa) measured using a field vane.
- $\gamma$  bulk unit weight (kN/m<sup>3</sup>).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W<sub>L</sub>, W<sub>P</sub>)

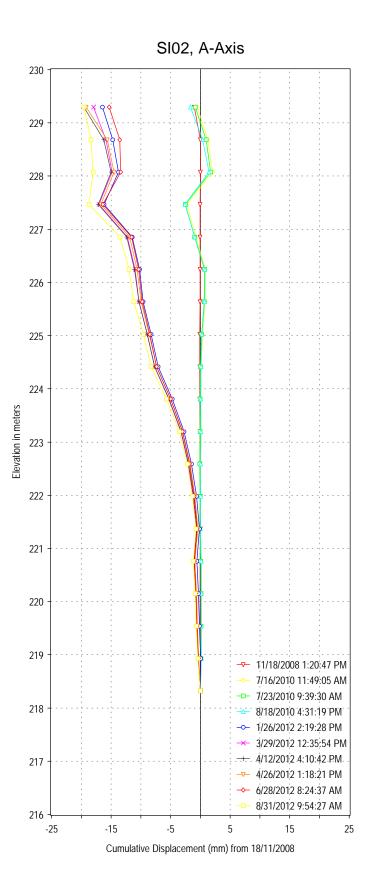
The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

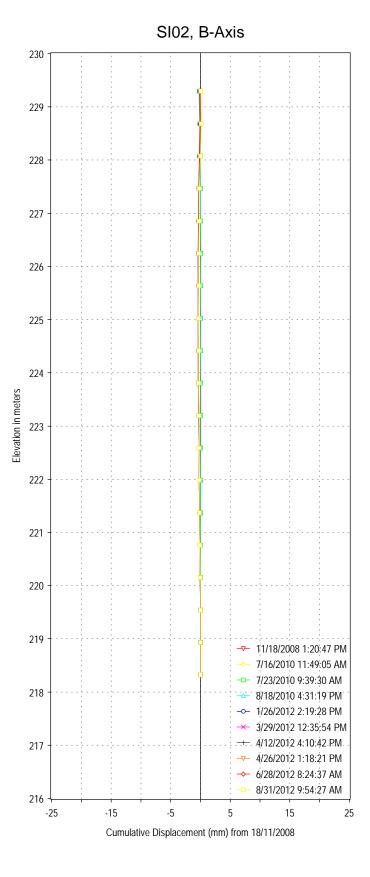
| Su (kPa)  | CONSISTENCY    |
|-----------|----------------|
| <12       | very soft      |
| 12 – 25   | soft           |
| 25 - 50   | medium or firm |
| 50 - 100  | stiff          |
| 100 – 200 | very stiff     |
| 200       | hard           |

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

| N – BLOWS/0.30 m | COMPACTNESS |
|------------------|-------------|
| 0 - 4            | very loose  |
| 4 - 10           | loose       |
| 10 - 30          | compact     |
| 30 - 50          | dense       |
| 50               | very dense  |

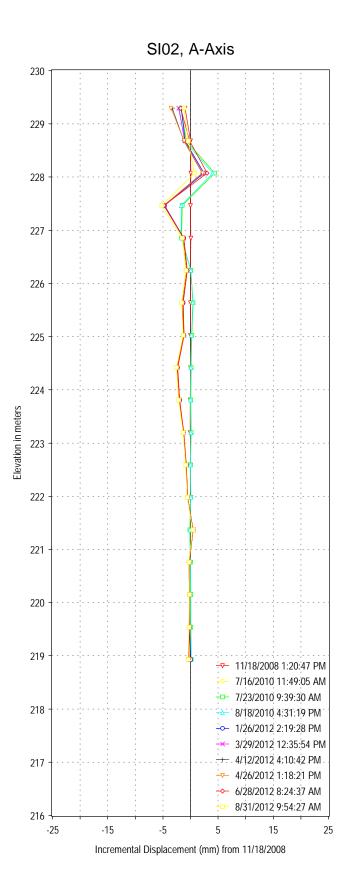
|           |                                        | Mid Town Feedermain at Assiniboine River<br>: 631084 E, 5526520 N, 7 m upstream of existing brid                                                                                                    |             |            | IT: C          |                                       |                                       |                                                                                       | ]                                                                          |                 |                   |                                                              |                                                                            |                                                                                             | ESTHOLE NO: TH12-0                           |          |
|-----------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------------|---------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|-------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------|----------|
|           |                                        | TOR: Paddock Drilling Ltd.                                                                                                                                                                          | -           |            |                |                                       |                                       |                                                                                       | 0.00                                                                       | nina            |                   |                                                              |                                                                            |                                                                                             | ROJECT NO.: 6025612<br>EVATION (m): 224.45   |          |
|           |                                        | •                                                                                                                                                                                                   |             |            | IOD:<br>IT SPO |                                       |                                       | <u>S, н</u><br>Шв                                                                     |                                                                            | ning            |                   |                                                              | NOR                                                                        |                                                                                             |                                              | <u>ر</u> |
| DEPTH (m) | SOIL SYMBOL                            | SOIL DESCRIPTION                                                                                                                                                                                    | SAMPLE TYPE | # <u></u>  | SPT (N)        | ◆ SI<br>0 ::<br>16 1                  | PENETF                                | RATION<br>Becke<br>amic C<br>ndard<br>ws/300<br>0 6<br>tal Unit<br>(kN/m <sup>3</sup> | N TESTS<br>T ₩<br>Cone<br>Pen Te<br>Pen Te<br>0 8<br>Wt ■<br>2 20<br>Liqui | est) ♦<br>0 100 |                   | AINED SI<br>+ Toi<br>× (<br>□ Lab<br>△ Pock<br>� Field<br>(H | HEAR ST<br>vane +<br>QU ×<br>Vane □<br>et Pen. 2<br>U Vane <b>Q</b><br>Pa) | RENGTH                                                                                      | COMMENTS                                     |          |
| 0         |                                        | - Water                                                                                                                                                                                             |             |            |                |                                       |                                       |                                                                                       |                                                                            |                 |                   | · · · · · · · · · · · · · · · · · · ·                        |                                                                            |                                                                                             |                                              | 2        |
| 2         |                                        | ORGANICS - riverbed sediments, rootmat, roots<br>- dark grey, wet, very soft<br>CLAY (Alluvial) - trace to some organics, some silt, trace gravel                                                   |             | S1         | 3              | •                                     |                                       |                                                                                       |                                                                            |                 | · · · · · · · · · |                                                              |                                                                            | · · · · · · · · · · · · · · · · · · ·                                                       | - 2, 2, 1 blows                              | 2        |
| 3         |                                        | (angular/subangular, <20 mm)<br>- intermittent sand seams (<25 mm)<br>- grey, moist, soft<br>- high plasticity                                                                                      |             | S2         | 2              |                                       | · · · · · · · · · · · · · · · · · · · |                                                                                       |                                                                            |                 | - <u>A</u>        |                                                              |                                                                            |                                                                                             |                                              | 2        |
| 4         |                                        | CLAY (Putty Till), silty, some sand, trace gravel                                                                                                                                                   |             | S3         | 3              | •••••                                 | ·<br>·<br>·<br>·<br>·<br>·<br>·       |                                                                                       |                                                                            | ź               | <u>.</u>          |                                                              |                                                                            |                                                                                             | - 1, 1, 2 blows                              |          |
| т<br>_    |                                        | - brown, wet, firm<br>- non-plastic                                                                                                                                                                 |             | S4A        | 12             |                                       |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | - 4, 3, 9 blows                              | :        |
| 5         |                                        | SILT (Till) - sandy, some gravel<br>- grey, moist, compact to dense<br>- non-plastic<br>- high SPT resistance on suspected boulder/cobbles                                                          |             | S4B        | 44             | · · · · · · · · · · · · · · · · · · · |                                       | •                                                                                     |                                                                            |                 | · · · · · · · ·   |                                                              |                                                                            |                                                                                             | -<br>- 6, 5, 39 blows<br>-<br>Recovery = 30% |          |
| 6         | 000000                                 | SAND (Till) - silty, some gravel (angular/sub angular < 20 mm)<br>- grey, moist, compact to dense                                                                                                   |             | S5         | 92             | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                                                                                       |                                                                            | ٠               | · · · · · · · · · |                                                              |                                                                            |                                                                                             | - 20, 42, 50/25 mm<br>blows                  |          |
| 7         | 20000<br>20000<br>20000                | - 150 mm dia boulder<br>- 220 mm dia boulder<br>80 mm dia boulder                                                                                                                                   |             | C2         |                | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                       |                                                                            |                 |                   |                                                              | · · · · · · · · · · · · · · · · · · ·                                      | ·                                                                                           | Recovery = 42%                               |          |
| 8         | 00000000000000000000000000000000000000 | - 80 mm dia boulder                                                                                                                                                                                 |             | S6<br>C3   | 38             | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            | •                                                                                           | - 11, 17, 21 blows                           |          |
| 9         | 0000                                   | Cobble (Till) - gravelly, some sand<br>- angular/sub-angular (< 40 mm dia)                                                                                                                          |             | S7         | 37             | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            | •                                                                                           | - 13, 20, 17 blows                           |          |
| 10        |                                        | BEDROCK - bedrock contact zone, limestone/dolomite, fine grained                                                                                                                                    |             | C3A<br>C3B |                | · · · · · · · · · · · · · · · · · · · |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            |                                                                                             | Recovery = 75%<br>Recovery = 90%, RQD =      |          |
| 11        |                                        | END OF TEST HOLE at 10.7 m in BEDROCK<br>Notes:<br>1) 150 mm casing used upto 3.35 m below riverbed<br>2) HQ coring was used to advance the test hole<br>3) No sloughing observed in the test holes |             |            |                |                                       |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            |                                                                                             | 72%                                          |          |
| 12        |                                        | <ol> <li>The test hole was grouted to the riverbed upon completion</li> </ol>                                                                                                                       |             |            |                |                                       |                                       |                                                                                       |                                                                            |                 |                   |                                                              |                                                                            |                                                                                             | ·<br>·<br>·<br>·                             |          |
| 13        |                                        |                                                                                                                                                                                                     |             |            |                | LO                                    | GGED                                  | BY:                                                                                   | Ome                                                                        | r Eiss          | a                 |                                                              | .:                                                                         | COMPL                                                                                       | _ETION DEPTH: 3.25 m                         |          |
|           |                                        | AECOM                                                                                                                                                                                               |             |            |                |                                       |                                       |                                                                                       | Y: Fa                                                                      |                 |                   |                                                              |                                                                            |                                                                                             | ETION DATE: 5/22/11                          |          |

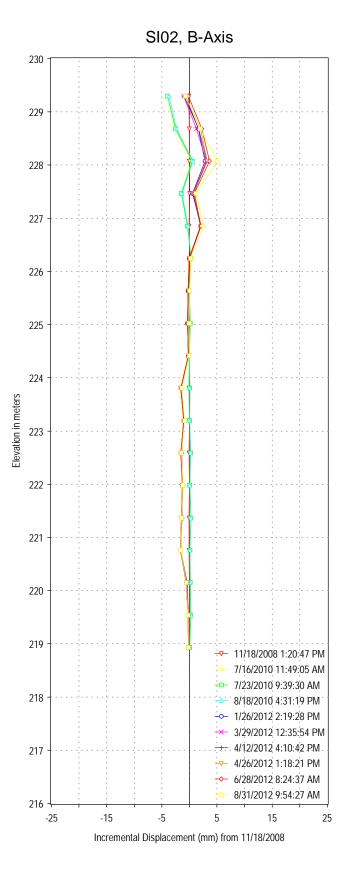

|                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feedermain at Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iniboine River<br>Ipstream of existing bride                   |             |                                           |         |                | <u>f Winnipe</u><br>th bank              | g                                                                                                |                             |         |                                                                          |                                              |       | STHOLE NO: TH12-0<br>OJECT NO.: 6025612                                                                                                             |                                                                                 |
|------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|-------------------------------------------|---------|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|---------|--------------------------------------------------------------------------|----------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dock Drilling Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |             |                                           |         |                | er ASS, H                                |                                                                                                  | rina                        |         |                                                                          |                                              |       | EVATION (m): 224.45                                                                                                                                 |                                                                                 |
| SAMP                                                                               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHELBY TUBE                                                    |             |                                           | IT SPC  |                |                                          | BULK                                                                                             | ning_                       |         |                                                                          | IO REC                                       |       |                                                                                                                                                     | ,                                                                               |
| DEPTH (m)                                                                          | SOIL SYMBOL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SOIL DESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIPTION                                                        | SAMPLE TYPE | SAMPLE #                                  | SPT (N) | ♦ S<br>0<br>16 | Total Ur<br>(kN/n<br>17 18<br>Plastic MC | er ₩<br>Cone ◇<br>d Pen Tes<br>00mm)<br>60 8(<br>nit Wt ■<br>n <sup>3</sup> )<br>19 20<br>Liquic | st) ♦<br>0 100<br>0 21<br>d | 2       | NED SHE/<br>+ Torva<br>×QU<br>□ Lab Va<br>△ Pocket<br>♥ Field Va<br>(kPa | ne +<br>×<br>ane □<br>Pen. △<br>ane <b>⊕</b> |       | COMMENTS                                                                                                                                            |                                                                                 |
| 0<br>-1<br>-2<br>-3<br>-4<br>-5<br>-6<br>-7<br>-7<br>-8<br>-9<br>-10<br>-11<br>-11 |             | (angular/su<br>- intermitter<br>- grey, wet<br>- high plast<br>CLAY (Putt<br>- brown, we<br>- non-plasti<br>SILT (Till) -<br>- grey, wet,<br>- high SPT<br>- 440 mm di<br>- 30 mm dia<br>- 40 mm dia<br>- 40 mm dia<br>- 160 mm di<br>- 30 mm dia<br>- 160 mm di<br>- 30 mm dia<br>- 100 mm di<br>- 30 mm dia<br>- 100 mm di<br>- 30 mm dia<br>- 30 mm dia<br>- 30 mm dia<br>- 40 mo dia<br>- 40 mm dia<br>- 160 mm dia<br>- 30 mo dia<br>- 40 mo dia<br>- 30 mo sloug | bangular, <20 mm)<br>tt sand seams (<25 mm)<br>to moist, soft<br>icity<br>y Till), silty, some sand, f<br>y Till), silty, some sand, f<br>t, firm<br>c<br>sandy, some gravel<br>compact to dense<br>resistance on suspected<br>ia granite boulder<br>a boulder<br>boulder<br>a boulder<br>a boulder<br>a boulder<br>a boulder<br>boulder<br>a boulder<br>a boulder<br>a boulder<br>a boulder<br>boulder<br>a boulder<br>a boulder<br>a boulder<br>boulder<br>boulder<br>a boulder<br>boulder<br>a boulder<br>boulder<br>boulder<br>a boulder<br>a boulder<br>boulder<br>boulder<br>a boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder<br>boulder | race gravel boulder/cobbles ) _L h below riverbed he test hole |             | S8<br>S9<br>S10<br>C4<br>S12<br>C5<br>S13 | 30      |                |                                          |                                                                                                  |                             | 5<br>   |                                                                          |                                              |       | - 1, 1, 1 blows<br>- 3, 2, 3 blows<br>- 2, 4, 4 blows<br>- 6, 7, 23 blows<br>Recovery = 43%<br>- 4, 4, 4 blows<br>Recovery = 30%<br>- 7, 8, 8 blows | 2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2:<br>2 |
| 13                                                                                 |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                |             |                                           |         | 10             | GGED BY                                  | · Omer                                                                                           | r Fice                      | <u></u> |                                                                          |                                              | MPI F | ETION DEPTH: 2.93 m                                                                                                                                 |                                                                                 |
|                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AECON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                              |             |                                           |         |                |                                          | 3Y: Fai                                                                                          |                             |         |                                                                          |                                              |       | ETION DATE: 5/23/11                                                                                                                                 |                                                                                 |


| CONTRACTOR:         Peddod:         Difference         Elevation         Elevation         Contractor           SAMPLE TYPE         Grad         []] SHLIST UBE         SPLIT SPOOL         BALA         [] AD RECOVERY         Cone           SUBJECT SPOOL         BALA         []] SHLIST UBE         SPLIT SPOOL         []] SUBJECT S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |             | Mid Town Feedermain at Assin<br>1: 631070 E, 5526485 N, 1 m up                                                                                                                                                                                                                                                |                                                      |             |                         |               |                 | Winni<br>uth bai                                                                                                                              |                                                                                           |                                                      |                  |   |                                                            |                                                    |   | <u>STHOLE NO: TH12-0</u><br>ROJECT NO.: 6025612                             |                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|-------------------------|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------|------------------|---|------------------------------------------------------------|----------------------------------------------------|---|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| SAMPE TYPE     GAVE     SPLID PROVE     CORE     CORE       SEE     SOIL DESCRIPTION     Use of the second secon |                                             |             |                                                                                                                                                                                                                                                                                                               |                                                      |             |                         |               |                 |                                                                                                                                               |                                                                                           | ) Cori                                               | ina              |   |                                                            |                                                    |   |                                                                             |                                                                                 |
| Openet<br>Big         SOIL DESCRIPTION         Uppeet<br>Big         Status<br>Display         These +<br>Display         These +<br>Display <ththese +<br="">Display         <ththese +<br="">Display</ththese></ththese>                                                                                                                                                                                                                                                                                      |                                             |             |                                                                                                                                                                                                                                                                                                               | SHELBY TUBE                                          |             |                         |               |                 |                                                                                                                                               |                                                                                           |                                                      | ing              |   |                                                            | NO RE                                              |   |                                                                             | ,<br>                                                                           |
| 1     2       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEPTH (m)                                   | SOIL SYMBOL | SOIL DESCR                                                                                                                                                                                                                                                                                                    | RIPTION                                              | SAMPLE TYPE | SAMPLE #                | SPT (N)       | ♦S<br>0<br>16 1 | <ul> <li>₩ Bi</li> <li>◇ Dynai</li> <li>PT (Stand<br/>(Blows)</li> <li>20 40</li> <li>■ Tota<br/>(k</li> <li>7 18</li> <li>Plastic</li> </ul> | ecker 3<br>mic Co<br>dard P<br>s/300n<br>60<br>I Unit V<br>N/m <sup>3</sup> )<br>19<br>MC | ×<br>ven Test<br>mm)<br>0 80<br>Wt ■<br>20<br>Liquid | ) ♦<br>100<br>21 | 2 | + Torva<br>× Ql<br>□ Lab V<br>△ Pockel<br>● Field V<br>(kP | ane +<br>J X<br>⁄ane ⊡<br>t Pen. ∠<br>⁄ane �<br>a) | 2 | COMMENTS                                                                    |                                                                                 |
| BERROCK - bedrock contact zone<br>- limestone/dolomite<br>- fine grained, clay filled seam (<60 mm)<br>9<br>END OF TEST HOLE at 8.8 m in BEDROCK<br>Notes:<br>1) 150 mm casing used up to 3.35 m below riverbed<br>2) HQ coring was used to advance the test hole<br>3) No sloughing observed in the test holes<br>10<br>11<br>12<br>13<br>LOGGED BY: Omer Fissa<br>COMPLETION DEPTH: 2.68 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>-1<br>-2<br>-3<br>-4<br>-5<br>-6<br>-7 |             | SAND (Alluvial)- trace silt, trace grave<br>- dark grey, wet, compact<br>- poorly/uniform graded<br>- some cobbles below 4.4 m<br>SILT (Till) - sandy, some gravel (angu<br>- grey, moist, compact<br>- coarse sand seam <25 mm<br>SAND (Till) - silt, some gravel (angula<br>- grey, moist, compact to dense | ular/sub-angular < 40 mm)<br>ar/sub angular < 20 mm) |             | S15<br>S16<br>S17<br>C7 | 3<br>23<br>50 |                 |                                                                                                                                               |                                                                                           |                                                      |                  |   |                                                            |                                                    |   | - 3, 1, 2 blows<br>- 7, 8, 15 blows<br>- 25, 26, 24 blows<br>Recovery = 40% | 2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2 |
| 9       END OF TEST HOLE at 8.8 m in BEDROCK<br>Notes:       1) 150 mm casing used up to 3.35 m below riverbed       2) HQ coring was used to advance the test hole       2         10       4) The test hole was grouted to the riverbed upon completion       2       2       2         11       11       12       13       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -8                                          |             | <ul> <li>limestone/dolomite</li> </ul>                                                                                                                                                                                                                                                                        | ım)                                                  |             |                         |               | 1               |                                                                                                                                               |                                                                                           |                                                      | ·»•              |   |                                                            | · · · · · · · · · · · · · · · · · · ·              |   | Recovery = 96%, RQD =                                                       | 2                                                                               |
| 11     12     13     10GGED BY: Omer Fissa     COMPLETION DEPTH: 2.68 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9<br>-10                                    |             | Notes:<br>1) 150 mm casing used up to 3.35 m<br>2) HQ coring was used to advance th<br>3) No sloughing observed in the test I                                                                                                                                                                                 | below riverbed<br>e test hole<br>holes               |             |                         |               |                 |                                                                                                                                               |                                                                                           |                                                      |                  |   |                                                            |                                                    |   |                                                                             | 2                                                                               |
| 13 LOGGED BY: Omer Fissa COMPLETION DEPTH: 2.68 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                                          |             |                                                                                                                                                                                                                                                                                                               |                                                      |             |                         |               |                 |                                                                                                                                               |                                                                                           |                                                      |                  |   |                                                            |                                                    |   |                                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |             |                                                                                                                                                                                                                                                                                                               |                                                      |             |                         |               |                 |                                                                                                                                               |                                                                                           |                                                      |                  |   |                                                            | · · · · · · · · · · · · · · · · · · ·              |   |                                                                             |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |             | AECOM                                                                                                                                                                                                                                                                                                         | 1                                                    |             |                         |               |                 |                                                                                                                                               |                                                                                           |                                                      |                  |   |                                                            |                                                    |   | ETION DEPTH: 2.68 m<br>ETION DATE: 5/24/11                                  |                                                                                 |

|           |                                        | Mid Town Feedermain at Assiniboine River                                                                                                                                                           |             |            |         |                     | Winnipeg                                                                                                                                                                                                                                                                | T                                                                                                          | Esthole No: TH12-0                                | )4 |
|-----------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----|
|           |                                        | I: 631080 E, 5526508 N, 2 m upstream of existing brid                                                                                                                                              | -           |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            | ROJECT NO .: 6025612                              |    |
|           |                                        | TOR: Paddock Drilling Ltd.                                                                                                                                                                         |             |            |         |                     | r ASS, HQ Coring                                                                                                                                                                                                                                                        |                                                                                                            | LEVATION (m): 224.45                              | 5  |
| SAMF      | PLET                                   | YPE GRAB SHELBY TUBE                                                                                                                                                                               |             |            | IT SPO  | 1                   |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   |    |
| DEPTH (m) | SOIL SYMBOL                            | SOIL DESCRIPTION                                                                                                                                                                                   | SAMPLE TYPE | SAMPLE #   | SPT (N) | ◆ SF<br>0 2<br>16 1 | ** Becker **         +           ◇ Dynamic Cone ◇         >           YT (Standard Pen Test) ◆         (Blows/300mm)           (Blows/300mm)         □           0         40         60         80         100           ■ Total Unit Wt ■         (kl\vm)         ● F | D SHEAR STRENGT<br>Torvane +<br>×QU ×<br>Lab Vane □<br>ocket Pen. △<br>čield Vane �<br>(kPa)<br>100 150 20 | COMMENTS                                          |    |
| 0<br>-1   |                                        | WATER                                                                                                                                                                                              |             |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   | 2  |
| 2         |                                        |                                                                                                                                                                                                    |             |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   | 2  |
| 3         |                                        | SAND (Alluvial)- trace silt, trace gravel                                                                                                                                                          |             |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   | 2  |
| 4         |                                        | - dark grey, wet, loose<br>- poorly/uniform graded<br>- grey below 3.6 m                                                                                                                           |             | S19<br>S20 |         | •                   |                                                                                                                                                                                                                                                                         |                                                                                                            | - 1, 1, 7 blows                                   | 2  |
| 5         | 00000                                  | SILT (Till) - sandy, some gravel (anguar/sub-angular < 40 mm)<br>- grey, moist, compact                                                                                                            |             | S21        | 10      |                     |                                                                                                                                                                                                                                                                         |                                                                                                            | - 8, 6, 4 blows                                   |    |
| 6         | 00000000000000000000000000000000000000 | dense below 6.1 m                                                                                                                                                                                  |             | C9<br>S22  | 44      |                     | •                                                                                                                                                                                                                                                                       |                                                                                                            | Recovery = 40%                                    |    |
| 7         |                                        | - 180 mm dia limestone boulder                                                                                                                                                                     |             | C10        |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            | Recovery = 30%                                    |    |
| 8         |                                        | BEDROCK - bedrock contact zone<br>- limestone/dolomite<br>- fine grained, clay filled seam (<60 mm)                                                                                                |             | S23        |         |                     |                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                                                      | - 50 blows/ 75 mm<br>Recovery = 92%, RQD =<br>79% |    |
| 9<br>10   |                                        | END OF TEST HOLE at 8.9 m in BEDROCK<br>Notes:<br>1) 150 mm casing used upto 3.35 m below riverbed<br>2) HQ coring was used to advance the test hole<br>3) No sloughing observed in the test holes |             |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   | 2  |
| 10        |                                        | 4) The test hole was grouted to the riverbed upon completion                                                                                                                                       |             |            |         |                     |                                                                                                                                                                                                                                                                         |                                                                                                            |                                                   |    |
| 12        |                                        |                                                                                                                                                                                                    |             |            |         |                     |                                                                                                                                                                                                                                                                         | ····                                                                                                       |                                                   |    |
| 13        |                                        |                                                                                                                                                                                                    |             |            |         |                     | GED BY: Omer Eissa                                                                                                                                                                                                                                                      |                                                                                                            | LETION DEPTH: 2.71 m                              |    |
|           |                                        | <b>AECOM</b>                                                                                                                                                                                       |             |            |         |                     | /IEWED BY: Faris Khalil                                                                                                                                                                                                                                                 |                                                                                                            | LETION DEPTH: 2.71 m<br>LETION DATE: 5/24/11      |    |
|           |                                        |                                                                                                                                                                                                    |             |            |         |                     | DJECT ENGINEER: Faris Khal                                                                                                                                                                                                                                              |                                                                                                            | Page                                              | 1  |

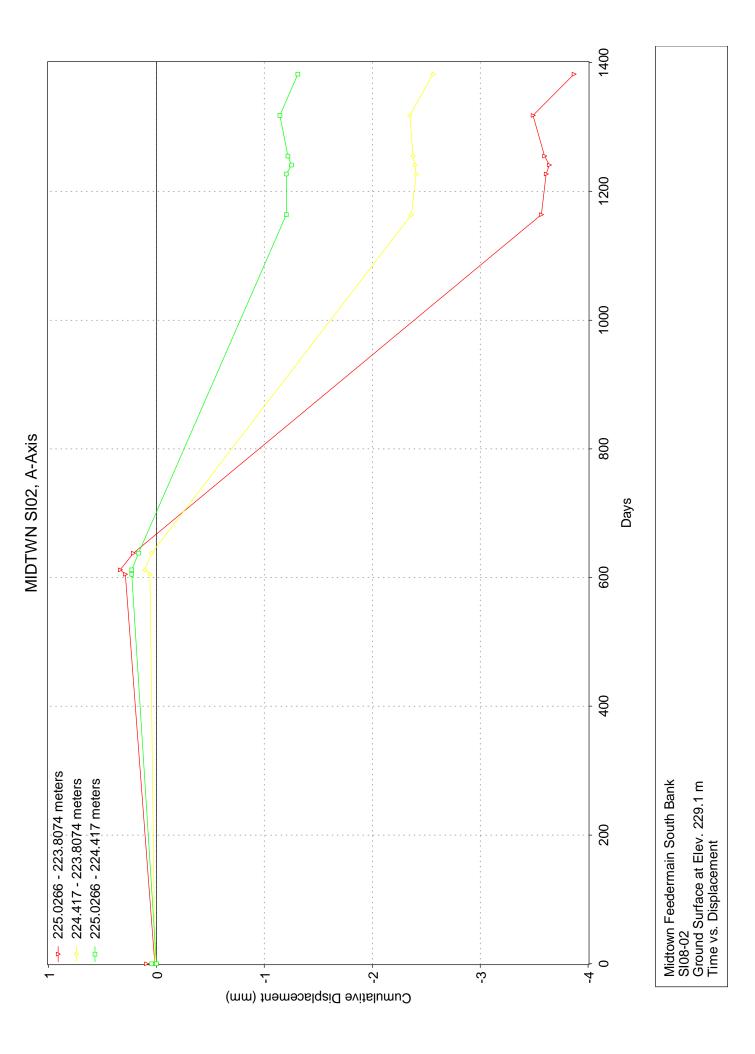
## AECOM

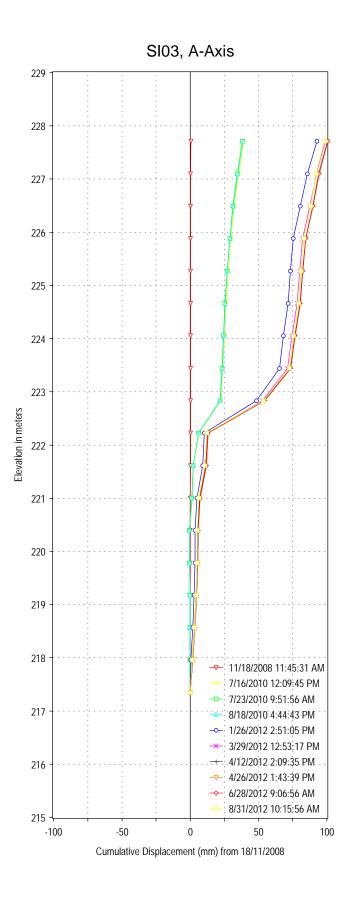

# Appendix C Stability Analysis Results

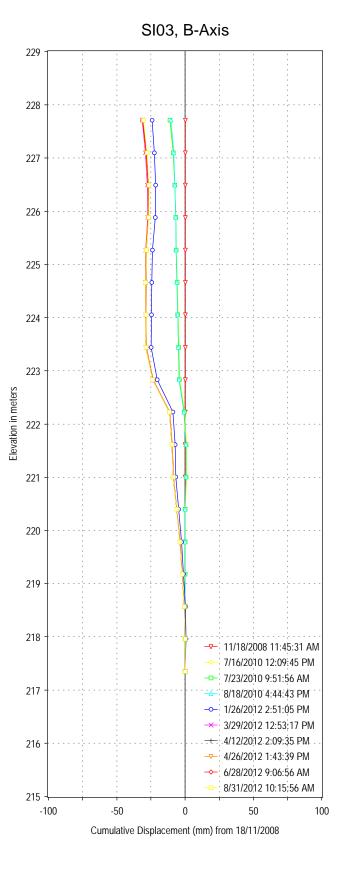





Midtown Feedermain South Bank SI08-02 Ground Surface at Elev. 229.1 m Cumulative Displacement

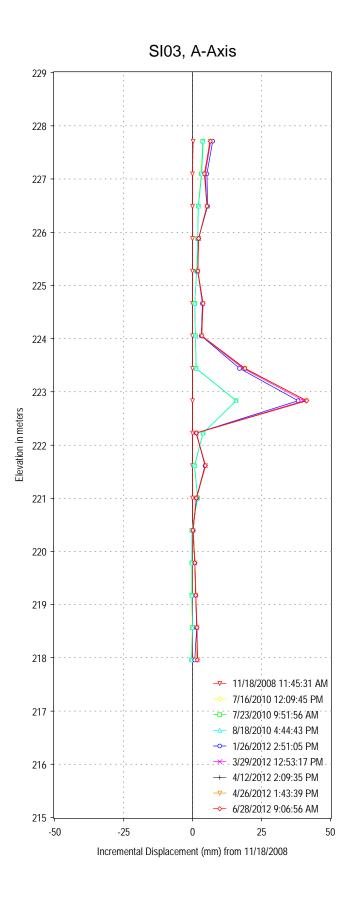


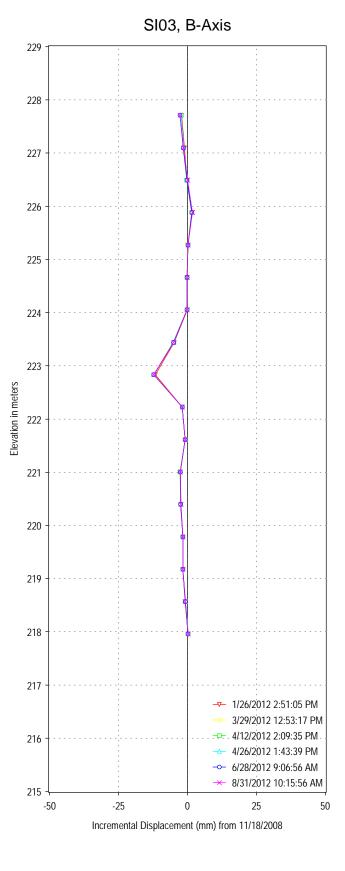




Midtown Feedermain South Bank SI08-02 Ground Surface at Elev. 229.1 Incremental Displacement

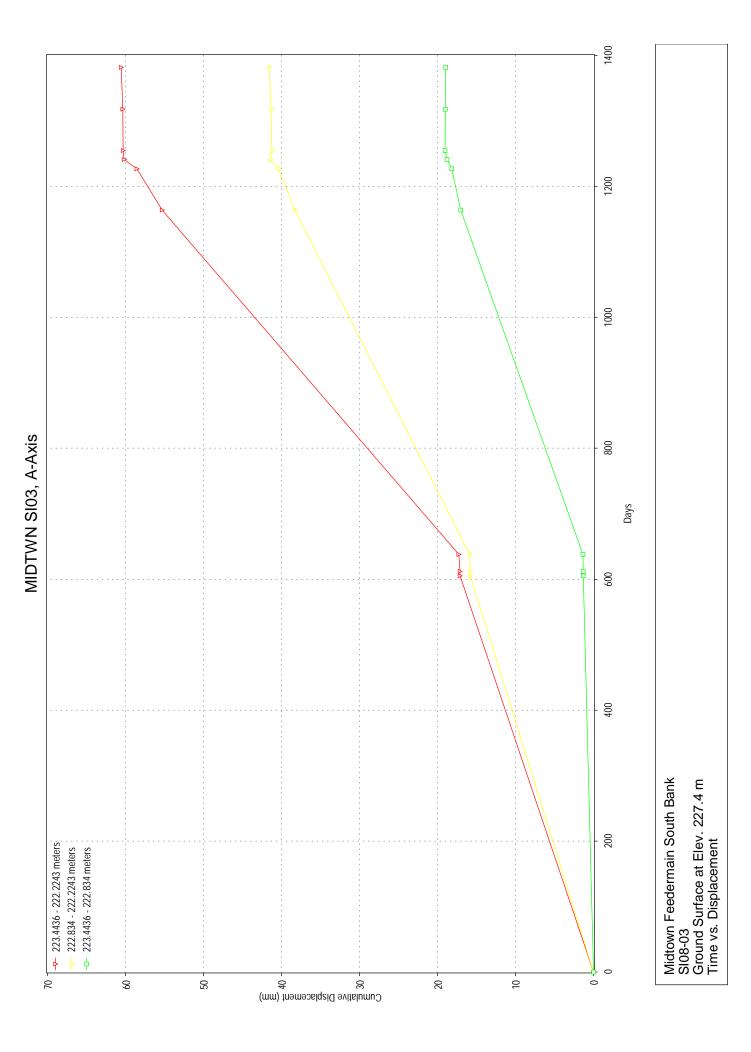




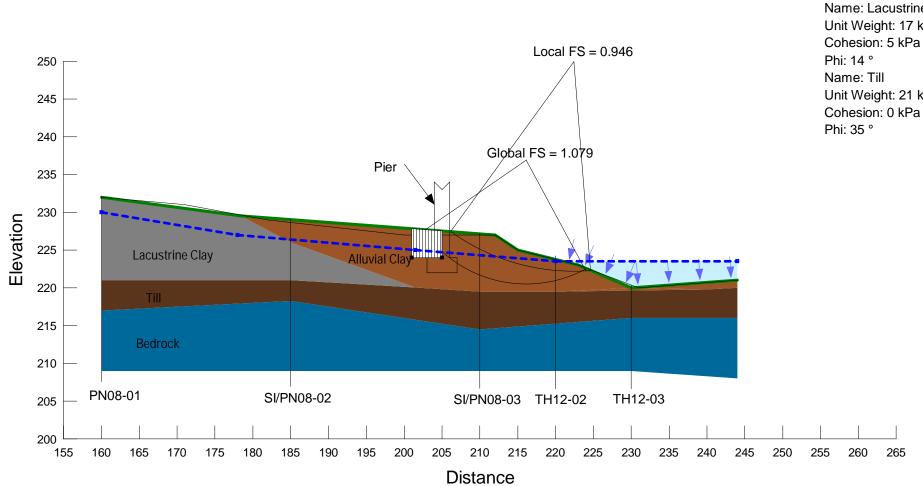






Midtown Feedermain South Bank SI080-03 Ground Surface at Elev. 227.4 m Cumulative Displacement



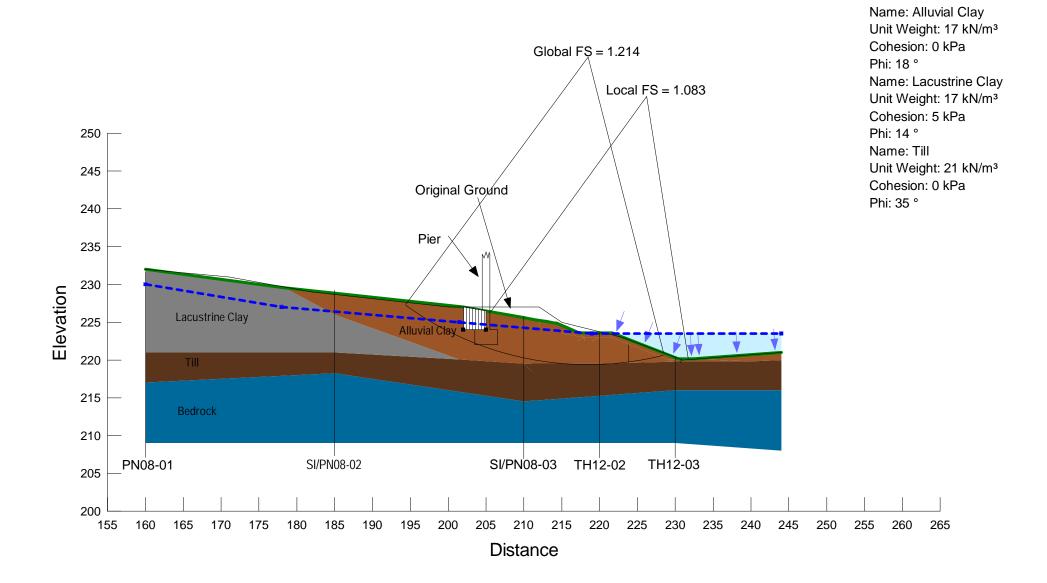


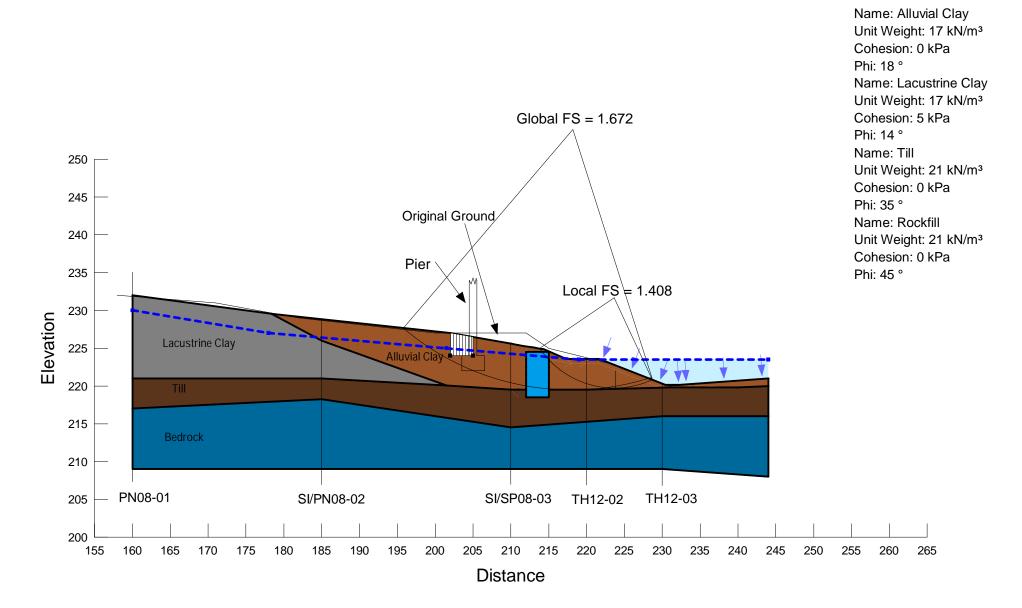

Midtown Feedermain South Bank SI08-03 Ground Surface at Elev. 227.4 m Incremental Displacement



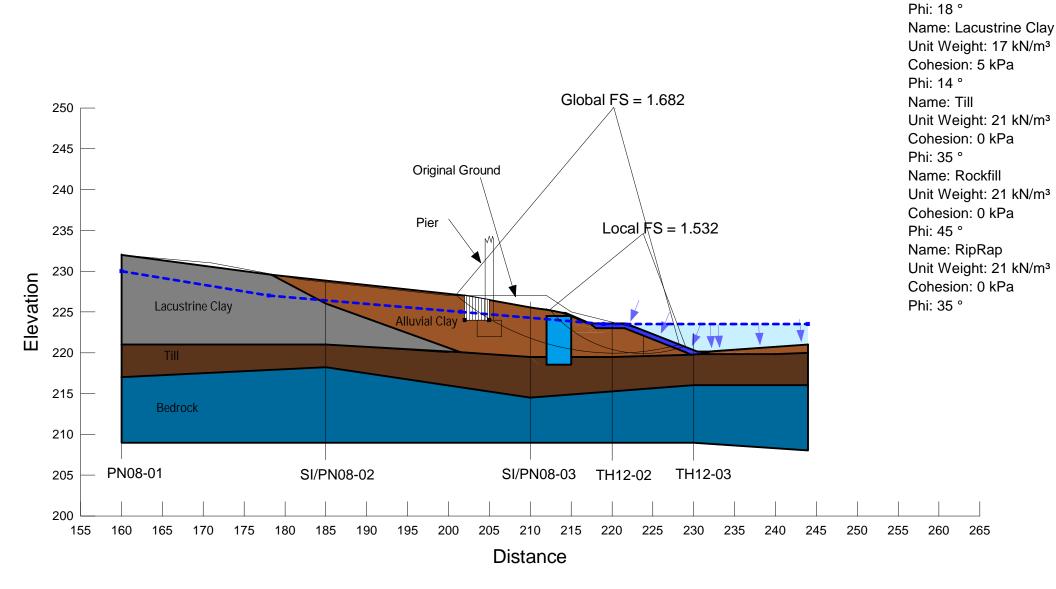



File Name: Midtown Feedermain - #2-South Bank LGW.gsz Name: SLOPE/W Midtown Feedermain- Existing Geometry (WL = 223.5 m) Method: Morgenstern-Price Description: Figure 1: South Bank - Existing Geometry (WL = 223.5 m)




Unit Weight: 17 kN/m<sup>3</sup> Cohesion: 0 kPa Phi: 18 ° Name: Lacustrine Clay Unit Weight: 17 kN/m<sup>3</sup> Unit Weight: 21 kN/m<sup>3</sup>

Name: Alluvial Clay


File Name: Midtown Feedermain - #21 South Bank (Regrading Only).gsz Name: SLOPE/W Midtown FM - Water Level = 223.5 m Method: Morgenstern-Price Description: Figure 2: South Bank - Regrading Only



File Name: Midtown Feedermain - #22 South Bank (Regrading + Compacted 3mRC).gsz Name: SLOPE/W Midtown FM - Water Level = 223.5 m Method: Morgenstern-Price Description: Figure 3: South Bank - Regrading + Shear key (3m)



File Name: Midtown Feedermain - Final#23 South Bank (Compacted 3 m-ReG+RC+RP).gsz Name: SLOPE/W Midtown FM - Water Level = 223.5 m Method: Morgenstern-Price Description: Figure 4: South Bank - Regrading + Shear Key(3m) + Rip Rap Blanket



Name: Alluvial Clay Unit Weight: 17 kN/m<sup>3</sup> Cohesion: 0 kPa

|           |              |                         | own Feedermain Geotec                                                        |                              | C           | LIEN     | NT: C          | ity of                                                              | Winni                                                     | peg                                                                                    |                            |                               |                                                                               |                                       | THOLE NO: PNO                           |               |
|-----------|--------------|-------------------------|------------------------------------------------------------------------------|------------------------------|-------------|----------|----------------|---------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|---------------|
|           |              |                         | 039.365 E, 5526408.918<br>Paddock Drilling Ltd.                              |                              |             | ובדי     |                | Actor                                                               |                                                           | 105                                                                                    | mm C                       | <u>۲</u>                      |                                                                               |                                       | <u>JECT NO.: D26</u><br>/ATION (m): 232 |               |
| SAMF      |              |                         | GRAB                                                                         | SHELBY TUBE                  |             |          | iod:<br>It spo |                                                                     | r ASS                                                     | , 125<br>BULK                                                                          |                            | SA                            |                                                                               | RECOVER                               |                                         | 2.117         |
|           |              | TYPE                    |                                                                              |                              | -           | -        | UGH            |                                                                     |                                                           | GROL                                                                                   |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         | DEINTOINITE                                                                  | GRAVEL                       |             | JSLU     |                | DI                                                                  |                                                           |                                                                                        |                            |                               | ED SHEAR                                                                      |                                       |                                         |               |
| DEPTH (m) | SOIL SYMBOL  | PNEUMATIC<br>PIEZOMETER | SOIL DESC                                                                    | CRIPTION                     | SAMPLE TYPE | SAMPLE # | SPT (N)        | <ul> <li>♦ SP1</li> <li>0 20</li> <li>16 17</li> <li>Pla</li> </ul> | Dynam<br>(Standa<br>(Blows/<br>40<br>Total U<br>(kN<br>18 | cker ₩<br>ic Cone<br>ard Pen 1<br>300mm)<br>60<br>Jnit Wt ∎<br>/m <sup>3</sup> )<br>19 | ♦ Fest) ♦ 80 100 100 20 21 | -<br>ا                        | F Torvane -<br>X QU X<br>Lab Vane<br>Pocket Pen<br>Field Vane<br>(kPa)<br>100 | +<br>                                 | COMMENTS                                |               |
| 0         |              |                         | ORGANICS - topsoil, rootmat<br>CLAY - some silt, trace sand,                 |                              |             |          |                |                                                                     | ••••                                                      |                                                                                        | • • • • • • •              | ·····                         |                                                                               |                                       |                                         | 2             |
|           |              |                         | plasticity                                                                   | brown, moist, inni, nigh     |             | G21      |                |                                                                     | •                                                         | •••••••                                                                                | •                          |                               | · · · · · · · · · · · · · · · · · · ·                                         |                                       |                                         |               |
| 1         | $\mathbf{K}$ |                         | SILT - some clay, brown, dry                                                 | to maint firm, no to low     | _           |          |                |                                                                     | /                                                         | ••••                                                                                   |                            |                               | · · · · · · · · · · · · · · · · · · ·                                         |                                       |                                         |               |
| I         |              |                         | plasticity                                                                   |                              |             | G22      |                |                                                                     |                                                           | · · · · · · · · · · · · · · · · · · ·                                                  |                            |                               |                                                                               |                                       |                                         | :             |
|           |              |                         | CLAY - trace silt inclusions (<                                              | 5 mm dia.), brown, moist,    | _           |          |                |                                                                     | \                                                         |                                                                                        | •                          | ·····                         | · · · · · · · · · · · · · · · · · · ·                                         |                                       |                                         |               |
| 2         |              |                         | firm, high plasticity                                                        |                              |             | G23      |                |                                                                     |                                                           |                                                                                        | ·                          | ·····                         |                                                                               |                                       |                                         |               |
| -         | ш            |                         | SILT - some clay, brown, dry                                                 | to moist, firm, no to low    | 6           |          |                |                                                                     | Ī                                                         |                                                                                        |                            | ····                          |                                                                               |                                       |                                         |               |
|           |              |                         | \plasticity<br>CLAY - trace silt inclusions (<                               | 5 mm dia.), brown, moist,    | /           |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         | firm, high plasticity                                                        | ,                            |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
| 3         |              |                         |                                                                              |                              |             |          |                | :                                                                   |                                                           | · · · · · · · · · · · · · · · · · · ·                                                  |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             | T24      |                |                                                                     | <b>.</b> •                                                |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         | - trace gravel, stiff, trace sulpl                                           | nate inclusions (<4 mm dia ) |             |          |                |                                                                     |                                                           | ••••                                                                                   |                            | ······                        | ×Д                                                                            |                                       |                                         |               |
| 4         |              |                         | below 3.66 m                                                                 |                              |             |          |                |                                                                     |                                                           | ••••                                                                                   |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             | G25      |                |                                                                     | •••••                                                     | )<br>                                                                                  |                            | ······                        | 2. <del>4.</del>                                                              |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                | · · · · ÷                                                           | · · · · ‡ ·  <br>· · · · ‡ · ·                            | ···÷···                                                                                | •                          | ·····;·                       | ·····                                                                         | · · · · · · · · · · · · · · · · · · · |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     | •••••                                                     |                                                                                        | •                          |                               |                                                                               |                                       |                                         |               |
| ō         |              |                         | s file for helen F 10 m                                                      |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         | - soft to firm below 5.18 m                                                  |                              |             | G26      |                |                                                                     | ····;··(                                                  | •                                                                                      |                            | · · · · · · · · · · · · · · · |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
| 6 👤       |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         | Ţ             |
| _         |              |                         |                                                                              |                              |             | T27      |                | <b> </b>                                                            |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             | 121      |                |                                                                     |                                                           | [                                                                                      |                            | ····A                         | <b>→</b>                                                                      |                                       |                                         |               |
| 7         |              |                         | <ul> <li>firm, trace oxides below 6.71</li> <li>grey below 6.86 m</li> </ul> | l m                          |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             | G28      |                |                                                                     | ••••                                                      |                                                                                        |                            | ··· /\-                       |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
| 3         |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               | :                                     |                                         |               |
|           | $\square$    |                         |                                                                              |                              |             | G29      |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        | 2                          | ·····                         | •••••                                                                         |                                       |                                         |               |
| )         |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            | •••••                         |                                                                               |                                       |                                         |               |
|           |              |                         | - silty, trace cobble below 9.4                                              | 5 m                          |             | T30      |                | · · · · ·                                                           |                                                           | ••••••                                                                                 | •                          | ·····;·                       | · · · · · · · · · · · · · · · · · · ·                                         |                                       |                                         |               |
| 10        |              | • • •                   |                                                                              |                              |             |          |                |                                                                     |                                                           |                                                                                        | •                          |                               |                                                                               |                                       |                                         |               |
|           |              |                         |                                                                              |                              |             |          |                |                                                                     | GED B                                                     |                                                                                        |                            |                               |                                                                               |                                       | TION DEPTH: 14                          |               |
|           |              |                         | AECOM                                                                        |                              |             |          |                |                                                                     |                                                           |                                                                                        |                            | llin<br>Jeff Tal              |                                                                               | COMPLE                                | ETION DATE: 10/1                        | 1/08<br>age 1 |

|                   |                                              |                         | own Feedermain Geotech<br>039.365 E, 5526408.918                                                                                                                                                                                                                                         | ů.                                                                                                                                                                                                                 | C           | LIEN              | IT: C   | ity of                                                 | Winnipe                                    | g                                                                                                 |            |                                                                                          |                | STHOLE NO: PN       |       |
|-------------------|----------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|---------|--------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|----------------|---------------------|-------|
|                   |                                              |                         | Paddock Drilling Ltd.                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |             | ІГТЦ              |         | Acko                                                   | r ۸۵۵ ۱                                    | 25 mm S                                                                                           | 12         |                                                                                          |                | EVATION (m): 23     |       |
| SAMP              |                                              |                         | GRAB                                                                                                                                                                                                                                                                                     | SHELBY TUBE                                                                                                                                                                                                        |             |                   | IT SPC  |                                                        |                                            |                                                                                                   | ISA        |                                                                                          | RECOVE         |                     | 2.117 |
|                   |                                              | TYPE                    |                                                                                                                                                                                                                                                                                          | GRAVEL                                                                                                                                                                                                             | -           | SLO               |         |                                                        |                                            | ROUT                                                                                              |            |                                                                                          |                |                     |       |
| DEPTH (m)         | SOIL SYMBOL                                  | PNEUMATIC<br>PIEZOMETER | SOIL DESC                                                                                                                                                                                                                                                                                | CRIPTION                                                                                                                                                                                                           | SAMPLE TYPE | SAMPLE #          | SPT (N) | <ul> <li>♦ SP1</li> <li>0 20</li> <li>16 17</li> </ul> | Total Unit<br>(kN/m³)<br>18 19<br>astic MC | ₩       cone        Pen Test) ◆       mm)       0     80       00     80       00     20       21 | ۔<br>۲     | IED SHEAR<br>+ Torvane<br>× QU ×<br>Lab Vane<br>Pocket Per<br>Field Vane<br>(kPa)<br>100 | +<br>□<br>1. Δ | COMMENTS            | Ĩ     |
| -11               |                                              |                         | dia.), light grey, moist, soft, int<br>SILT (Till) - sandy, clayey, sor                                                                                                                                                                                                                  | (Putty Till) - silty, some sand, trace gravel (<20 mm<br>ight grey, moist, soft, intermediate plasticity<br>Till) - sandy, clayey, some gravel (<20 mm dia.), light<br>noist, firm, low to intermediate plasticity |             |                   |         |                                                        |                                            |                                                                                                   | <u>\</u> + |                                                                                          |                |                     | 2.    |
| 13<br>14          | <u>6060606060606060606066066666666666666</u> |                         | grey, moist, firm, low to interm                                                                                                                                                                                                                                                         | ediate plasticity                                                                                                                                                                                                  | X           | G33<br>S34<br>G35 | 69      |                                                        | •                                          | *                                                                                                 |            |                                                                                          |                | SPT Blows: 8, 30, 3 | 9 2   |
| 15<br>16<br>17    |                                              |                         | End of test hole at 14.94 m in<br>Notes:<br>1) Auger refusal at 14.94 m be<br>2) No sloughing.<br>3) Seepage encountered at 11<br>4) Water level measured at 6.<br>immediately after drilling.<br>5) Pnuematic piezometer (PN0<br>below ground surface.<br>6) Above ground protective me | elow ground suface.<br>.28 m below ground surface<br>1 m below ground surface<br>08-01) installed at 9.14 m                                                                                                        | 2.          |                   |         |                                                        |                                            |                                                                                                   |            |                                                                                          |                |                     | 2     |
| -17<br>-18<br>-19 |                                              |                         |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                    |             |                   |         |                                                        |                                            |                                                                                                   |            |                                                                                          |                |                     | 2     |
| 20                |                                              |                         | AECOM                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                    |             |                   |         |                                                        |                                            | Jared Ba<br>Y: Jeff Ta                                                                            | ldwin      |                                                                                          | COMPL          | ETION DEPTH: 14<br> |       |

|           |                                         |            | n Feedermain Geotech<br>3.861 E, 5526428.148                     |                                                                   |                  | _IEI\      |         | <u>ity 0</u>             | f Winnipe                                                       | <u>eg</u>                                                                                   |                       |                                                                           |            | THOLE NO: SI/PNO<br>DJECT NO.: D265-23 |            |
|-----------|-----------------------------------------|------------|------------------------------------------------------------------|-------------------------------------------------------------------|------------------|------------|---------|--------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|------------|----------------------------------------|------------|
| CONT      | RAC                                     | TOR: P     | addock Drilling Ltd.                                             |                                                                   | М                | ETH        | OD:     | Acke                     | er ASS, <sup>r</sup>                                            | 125 mm 3                                                                                    | SSA                   |                                                                           |            | VATION (m): 229.08                     |            |
| SAMP      | PLE T                                   | YPE        | GRAB                                                             | SHELBY TUBE                                                       |                  |            | T SPO   |                          |                                                                 | BULK                                                                                        |                       |                                                                           |            |                                        |            |
| BACK      | FILL                                    | TYPE       | BENTONITE                                                        | GRAVEL                                                            |                  | SLO        | UGH     |                          |                                                                 | GROUT                                                                                       |                       |                                                                           | FINGS      | SAND                                   |            |
| DEPTH (m) | SOIL SYMBOL                             | PIEZOMETER |                                                                  | SCRIPTION                                                         | SAMPLE TYPE      | SAMPLE #   | SPT (N) | ◆ SF<br>0 2<br>16 1<br>F | (Blows/30<br>20 40<br>■ Total Un<br>(kN/m<br>7 18<br>Plastic MC | er ¥<br>Cone ◇<br>I Pen Test) ♦<br>0mm)<br>60 80 10<br>it Wt ■<br><sup>3</sup> )<br>19 20 2 | 0 △ P<br>11           | Torvane +<br>X QU X<br>Lab Vane [<br>Docket Pen.<br>Tield Vane (<br>(kPa) | -<br>]<br> | COMMENTS                               |            |
| 0         |                                         | •          | ORGANICS - rooted, fr<br>CLAY - silty, some san                  |                                                                   | $\left  \right $ |            |         |                          |                                                                 |                                                                                             |                       |                                                                           |            |                                        | 22         |
| -1        |                                         |            | - firm below 0.91 m                                              |                                                                   |                  | G11        |         |                          | •                                                               |                                                                                             |                       |                                                                           |            |                                        | 2:         |
| 2         |                                         |            | CLAY - some silt inclus<br>sand, brown, moist, firm<br>oxidation | ions (<8 mm dia.), trace<br>n, high plasticity, trace             |                  | G12        |         |                          | •                                                               |                                                                                             | <br>                  |                                                                           |            |                                        | 2          |
| 3         |                                         |            |                                                                  | N                                                                 |                  | T13        |         |                          |                                                                 |                                                                                             | ×.                    | ₽<br>P                                                                    |            |                                        | 2          |
| 5         |                                         |            | - no sand, soft below 3                                          | 90                                                                |                  | G14        |         |                          |                                                                 |                                                                                             |                       |                                                                           |            |                                        | 2          |
| 6 👤       |                                         |            |                                                                  |                                                                   |                  | G15<br>T16 |         |                          |                                                                 | •                                                                                           | +                     |                                                                           |            |                                        | <b>Y</b> 2 |
| 7         |                                         |            | - trace gravel (<10 mm                                           | dia.) below 7.32 m                                                |                  | G17        |         |                          | •                                                               |                                                                                             |                       |                                                                           |            |                                        | 2          |
| 8         | 000000000000000000000000000000000000000 |            | CLAY (Putty Till) - silty,<br>moist, very soft, low pla          | some sand, light grey,<br>isticity<br>dia.), compact below 8.84 r |                  | G18        |         |                          | /                                                               |                                                                                             |                       |                                                                           |            |                                        | 2          |
| 9<br>10   | 00000000000000000000000000000000000000  |            | SILT (Till) - some sand                                          | , trace clay, trace gravel<br>y, moist, compact to dense,         |                  | S19        | 22      |                          | •                                                               |                                                                                             |                       |                                                                           |            | SPT Blows: 12, 11, 11                  | 2          |
|           |                                         |            | AFCON                                                            |                                                                   |                  |            |         |                          |                                                                 | : Jared B                                                                                   |                       |                                                                           |            | ETION DEPTH: 10.67                     | m          |
|           |                                         |            | AECOM                                                            |                                                                   |                  |            |         |                          |                                                                 | 3Y: Jeff T                                                                                  | allin<br>: Jeff Talli |                                                                           | COMPL      | ETION DATE: 9/11/08<br>Page            |            |

|           |              |                         |                       | eedermain Geotecl<br>61 E, 5526428.148                             | N, middle of south ban                |             | LIEN     |         | ity of V           | vinni                                                                   | peg                                                |                               |               |                                                                                     |                                                   |                   | HOLE NO: SI/PN<br>ECT NO.: D265-2 |     |
|-----------|--------------|-------------------------|-----------------------|--------------------------------------------------------------------|---------------------------------------|-------------|----------|---------|--------------------|-------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|---------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-------------------|-----------------------------------|-----|
| CONT      | RAC          | TOR:                    | Pado                  | lock Drilling Ltd.                                                 |                                       | M           | IETH     | IOD:    | Acker              | ASS                                                                     | , 125                                              | mm S                          | SSA           |                                                                                     |                                                   |                   | ATION (m): 229.0                  |     |
| SAMF      | PLE T        | YPE                     |                       | GRAB                                                               | SHELBY TUBE                           |             |          | IT SPC  |                    |                                                                         | BULK                                               |                               |               | N                                                                                   | O RECO                                            | OVERY             | CORE                              |     |
| BACK      | FILL         | TYPE                    | Ξ                     | BENTONITE                                                          | GRAVEL                                |             | ]SLO     | UGH     |                    |                                                                         | GRO                                                | UT                            |               | ⊠c                                                                                  | UTTING                                            | GS                | SAND                              |     |
| DEPTH (m) | SOIL SYMBOL  | PNEUMATIC<br>PIEZOMETER | SLOPE<br>INCLINOMETER | SOIL DE                                                            | SCRIPTION                             | SAMPLE TYPE | SAMPLE # | SPT (N) | ◆<br>◆ SPT<br>0 20 | Here<br>Dynam<br>(Standa<br>(Blows/<br>40<br>Total (<br>(kN<br>18<br>18 | 300mm<br>60<br>Unit Wt<br>I/m <sup>3</sup> )<br>19 | e ♦<br>Test) ♦<br>)<br>80 100 | <u>D</u><br>1 | AINED SHE<br>+ Torvar<br>X QU<br>Lab Va<br>A Pocket F<br>Field Va<br>(kPa<br>50 100 | ne +<br>×<br>une □<br>⊃en. ∆<br>ane <b>⊕</b><br>) |                   | COMMENTS                          |     |
| 10        |              |                         |                       | - wet below 10.06 m                                                |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   | 2   |
|           |              |                         |                       |                                                                    |                                       |             | G20      |         |                    |                                                                         |                                                    |                               |               |                                                                                     | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
|           | <u>.</u> M.M |                         | •                     | End of test hole at 10.6                                           | 57 m in TILL                          |             | 020      |         |                    |                                                                         |                                                    | •••                           |               | · · · · · · · · · · · ·                                                             | •••••                                             |                   |                                   |     |
| 11        |              |                         |                       | Notes:<br>1) Auger refusal at 10 /                                 | 67 m below ground surface.            |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   | 2   |
|           |              |                         |                       | 2) Sloughing below 10.                                             | .62 m below ground sufface            |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   | 4   |
|           |              |                         |                       | surface.                                                           | ed at 9.45 m below ground             |             |          |         |                    | ····                                                                    | · · · · · · · · · · · · · · · · · · ·              |                               |               |                                                                                     | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
|           |              |                         |                       | <ol> <li>Water level measure<br/>surface immediately af</li> </ol> | ed at 6.1 m below ground ter drilling |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 12        |              |                         |                       | 5) Slope inclinometer (<br>below ground surface.                   | SI08-02) installed to 10.62 m         |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       | <ol> <li>6) Pneumatic piezomet</li> </ol>                          | ter (PN08-02) installed               |             |          |         |                    |                                                                         |                                                    | •••                           |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       | adjacent to Sl08-02 at surface.                                    | -                                     |             |          |         |                    | ····                                                                    |                                                    | ••••••••                      |               | ;;;.;<br>;;;.                                                                       | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
| 10        |              |                         |                       |                                                                    | ctive metal casings installed.        |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 13        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | :                                                                                   |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | · · · · · · · · · · · · · · · · · · ·                                               |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    | ••••                                                                    | · · · · · · · · · · · · · · · · · · ·              |                               |               |                                                                                     | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
| 14        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 14        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   | 2   |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         | · · · · · · · · · · · · · · · · · · ·              |                               |               | · · · · · · · · · · · · · · · · · · ·                                               | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
| 15        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | · · · · · · · · · · · ·                                                             |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 16        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | · · · · · · · ·                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 17        |              |                         |                       |                                                                    |                                       |             |          |         |                    | ••••                                                                    | · · · · · · · · · · · · · · · · · · ·              | •••                           |               | · · · · · · · · · · · · · · · · · · ·                                               | · · · · · · · · · · · · · · · · · · ·             |                   |                                   |     |
| 17        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | · · · · · · · · · · · · · · · · · · ·                                               |                                                   |                   |                                   | :   |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    | •••                           |               | · · · · · · · · · · · · · · · · · · ·                                               |                                                   |                   |                                   |     |
| 18        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         | ••••••••                                           | ••••••••                      |               | · · · · · · · · · · · · · · · · · · ·                                               | ·····                                             |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 19        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               | · · · · · · · · · · · · · · · · · · ·                                               | •••••                                             |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
|           |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   |                                   |     |
| 20        |              |                         |                       |                                                                    |                                       |             |          |         |                    |                                                                         |                                                    | •••                           |               | · · · · · · · · · · · · · · · · · · ·                                               |                                                   |                   |                                   |     |
| 20        |              |                         |                       | 1                                                                  |                                       | 1           | l        | I       | LOGO               | GED E                                                                   | BY: Ja                                             | red Ba                        | aldwin        | <u></u>                                                                             | CON                                               | <u> </u><br>MPLET | TION DEPTH: 10.67                 | 7 m |
|           |              |                         |                       | AECOM                                                              |                                       |             |          |         | REVIE              |                                                                         |                                                    |                               |               |                                                                                     |                                                   |                   | TION DATE: 9/11/08                |     |

|                                                |             | Feedermain Geotech<br>453 E, 5526453.423                                          |                                                 | C           | LIEN        | IT: C   | ity of                                | Winn                                                                                        | ipeg                                                                                                |      |                                         |                                                                             |                                                     |                                       | STHOLE NO: SI/SPO<br>DJECT NO.: D265-2 |   |
|------------------------------------------------|-------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-------------|-------------|---------|---------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|-----------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------|---|
|                                                |             | ldock Drilling Ltd.                                                               |                                                 | М           | ETH         | OD:     | Acke                                  | er ASS                                                                                      | 5, 125                                                                                              | mm S | SSA/                                    | HQ C                                                                        | oring                                               |                                       | EVATION (m): 227.44                    |   |
| SAMPLE                                         | E TYPE      | GRAB                                                                              | SHELBY TUBE                                     |             |             | T SPC   |                                       |                                                                                             | BULI                                                                                                |      |                                         |                                                                             |                                                     | ECOVE                                 |                                        |   |
| BACKFII                                        | LL TYPE     | BENTONITE                                                                         | GRAVEL                                          |             | SLO         |         |                                       |                                                                                             | GRO                                                                                                 | UT   |                                         |                                                                             | CUTT                                                | INGS                                  | SAND                                   |   |
| DEPTH (m)                                      | Solt SYMBOL | SOIL DES                                                                          | SCRIPTION                                       | SAMPLE TYPE | SAMPLE #    | SPT (N) | ◆ SP<br>0 2<br>16 17<br>P             | ENETRA<br>★ Be<br>◇ Dynar<br>T (Stanc<br>(Blows<br>0 40<br>■ Total<br>(kl<br>7 18<br>lastic | ATION TE<br>ecker X<br>nic Cone<br>lard Pen<br>5/300mm<br>60<br>Unit Wt<br>V/m <sup>3</sup> )<br>19 | STS  | 0                                       | INED SF<br>+ Torv<br>× Q<br>□ Lab <sup>\</sup><br>△ Pocke<br>� Field<br>(kF | vane +<br>∪ X<br>Vane ⊑<br>tt Pen.<br>Vane €<br>Pa) |                                       | COMMENTS                               |   |
| 0                                              |             | CLAY - some sand, son<br>intermediate plasticity                                  | ne silt, brown, moist, soft,                    |             | G1          |         |                                       | •                                                                                           |                                                                                                     |      |                                         |                                                                             |                                                     |                                       | ·<br>·<br>·<br>·                       | 2 |
| 2                                              |             | - some gravel (<30 mm                                                             |                                                 |             | G2          |         | · · · · · · · · · · · · · · · · · · · | •                                                                                           | •••••••                                                                                             |      | <ul> <li></li></ul>                     |                                                                             |                                                     |                                       |                                        |   |
| 3                                              |             | - trace gravel (<10 mm)                                                           |                                                 |             | Т3          |         |                                       |                                                                                             |                                                                                                     |      |                                         |                                                                             |                                                     |                                       | ·<br>·<br>·<br>·                       |   |
| 4                                              |             | - trace sand, grey below                                                          | / 3.30 III                                      |             | G4          |         | · · · · · · · · · · · · · · · · · · · | •                                                                                           |                                                                                                     |      | <u>₽</u>                                |                                                                             |                                                     |                                       | ·<br>·<br>·<br>·<br>·<br>·             |   |
| 6                                              |             |                                                                                   |                                                 |             | G5          |         |                                       |                                                                                             | • • • • • • • • • • • • • • • • • • •                                                               |      |                                         |                                                                             |                                                     |                                       | ·<br>·<br>·<br>·<br>·                  |   |
| Ţ                                              |             | CLAY (Putty Till) - trace<br>gravel (<10 mm dia.), liq<br>intermediate plasticity | sand, some silt, trace<br>ht grey, moist, soft, |             | T6          |         |                                       | -                                                                                           |                                                                                                     |      | 2×E                                     | ]<br>                                                                       |                                                     | · · · · · · · · · · · · · · · · · · · |                                        | Ţ |
| 8 <u>9000000000000000000000000000000000000</u> |             | SILT (Till) - clayey, sand<br>dia.), light grey, moist, fi                        | dy, some gravel (<25 mm<br>irm, low plasticity  |             | G7          |         |                                       |                                                                                             |                                                                                                     |      | · · · · · · · · · · · · · · · · · · ·   |                                                                             |                                                     |                                       | ·<br>·<br>·<br>·                       |   |
| 200000                                         |             |                                                                                   |                                                 |             | G8          |         |                                       |                                                                                             |                                                                                                     |      | · · · · · · · · · · · · · · · · · · ·   |                                                                             |                                                     | · · · · · · · · · · · · · · · · · · · |                                        |   |
| -90<br>-00<br>-00<br>-00<br>-00<br>10          |             | - wet below 9.14 m                                                                |                                                 |             | S9<br>C10-1 | 15      |                                       |                                                                                             |                                                                                                     |      | - · · · · · · · · · · · · · · · · · · · |                                                                             |                                                     |                                       | SPT Blows: 9, 6, 9                     | 2 |
|                                                |             | AFCON                                                                             |                                                 |             |             |         |                                       |                                                                                             | BY: Ja                                                                                              |      |                                         |                                                                             |                                                     |                                       | ETION DEPTH: 23.62                     |   |
|                                                |             | AECOM                                                                             |                                                 |             |             |         |                                       |                                                                                             | D BY:                                                                                               |      | allin<br>Jeff T                         |                                                                             | (                                                   | JUMPL                                 | ETION DATE: 9/11/08<br>Page            |   |

|           |   |      |                       | eedermain Geotech                                                                                                                  | N, toe of south bank                                      | 10          | LIEN     | II: C   | ity of Win | nipeg                                                                                                                                           |                                       |                                                                                                     |                   | STHOLE NO: SI/SP08<br>DJECT NO.: D265-23                    |                                  |
|-----------|---|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|----------|---------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------|----------------------------------|
|           |   |      | Pade                  | dock Drilling Ltd.                                                                                                                 | SHELBY TUBE                                               |             |          |         |            | S, 125 mn<br>BULK                                                                                                                               | n SSA /                               |                                                                                                     | g ELE<br>RECOVE   | EVATION (m): 227.44                                         | 2                                |
|           |   | TYPE |                       | GRAB<br>BENTONITE                                                                                                                  |                                                           | 2           | SL0      | T SPO   |            |                                                                                                                                                 |                                       |                                                                                                     |                   |                                                             |                                  |
| DEPTH (m) | L |      | SLOTTED<br>PIEZOMETER | -                                                                                                                                  | SCRIPTION                                                 | SAMPLE TYPE | SAMPLE # | SPT (N) | PENETF     | AATION TESTS<br>Becker ₩<br>amic Cone ◇<br>dadrd Pen Test,<br>vs/300mm)<br>0 60 80<br>al Unit Wt ■<br>kN/m <sup>3</sup> )<br>19 20<br>MC Liquid | •                                     | AINED SHEAR<br>+ Torvane<br>× QU ×<br>□ Lab Vane<br>Δ Pocket Per<br>€ Field Vane<br>(kPa)<br>50 100 | STRENGT<br>+<br>D | H COMMENTS                                                  |                                  |
| 10<br>-11 |   |      |                       | COBBLE - (< 300mm d<br>angular), some granite,<br>limestone, some silt till                                                        | lia.), gravely (subangular and predominantly yellow/white |             | C10-2    |         |            |                                                                                                                                                 |                                       |                                                                                                     |                   | Recovery = 63%                                              | 2 <sup>-</sup><br>2 <sup>-</sup> |
| 12        |   |      |                       | REDROCK - bedrock c                                                                                                                | ontact zone                                               |             | S10      |         | •          |                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · |                                                                                                     |                   | SPT Blows: 50/5                                             | 2                                |
| 13        |   |      |                       | BEDROCK - bedrock cont<br>limestone/dolomite, fine gr<br>foliated, occasional rubble                                               | e grained and slightly                                    |             | C10-4    |         |            |                                                                                                                                                 |                                       |                                                                                                     |                   | RQD = 0%, Recovery =<br>28%<br>RQD = 15%, Recovery =<br>55% | 2                                |
| 15        |   |      |                       | LIMESTONE - sound b<br>massive, slight foliation<br>occasional pyrite inclus<br>- R4 strength, class 2 fl<br>discontinuity spacing | ions                                                      | -           | C10-6    |         |            |                                                                                                                                                 |                                       |                                                                                                     |                   | RQD = 47%, Recovery = 100%                                  | 2                                |
| 17        |   |      |                       |                                                                                                                                    |                                                           |             | C10-7    |         |            |                                                                                                                                                 |                                       |                                                                                                     |                   | RQD = 75%, Recovery = 72%                                   | 2                                |
| 19        |   |      |                       | - rubbled zone, 1 to 5 c<br>sand particles between                                                                                 | m pieces, some gravel and<br>18.09 and 18.54 m            |             | C10-8    |         |            |                                                                                                                                                 |                                       |                                                                                                     |                   | RQD = 28%, Recovery = 72%                                   | 2                                |
| 20        |   |      |                       |                                                                                                                                    |                                                           |             | C10-9    |         | 100057     |                                                                                                                                                 |                                       | · • · · · · · · • • · · · • · · · · • · · · · · · · · · · · · · · · · · · · ·                       |                   | RQD = 92%, Recovery =                                       |                                  |
|           |   |      |                       | AECOM                                                                                                                              |                                                           |             |          |         |            | BY: Jared<br>ED BY: Jeff                                                                                                                        |                                       |                                                                                                     |                   | ETION DEPTH: 23.62 n<br>ETION DATE: 9/11/08                 | <u>1</u>                         |
|           |   |      |                       | ALCOM                                                                                                                              |                                                           |             |          |         | -          | T ENGINEE                                                                                                                                       |                                       | Tallin                                                                                              | 551011            | Page                                                        | 2 (                              |

| PROJ                                                                                   | IECT:       | : Midto               | wn F       | eedermain Geotec                                                                                                                          | hnical Investigation                                                                                                                                                         | (           |             | IT: C   | City c         | f Wir | nipe                                                                                    | q                                                           |     |         |                                                                                           |                                      | TES | THOLE NO: SI/SP08             | 3-03                                                                 |
|----------------------------------------------------------------------------------------|-------------|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------|----------------|-------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|---------|-------------------------------------------------------------------------------------------|--------------------------------------|-----|-------------------------------|----------------------------------------------------------------------|
|                                                                                        |             |                       |            |                                                                                                                                           | N, toe of south bank                                                                                                                                                         |             |             |         |                |       | •                                                                                       | 0                                                           |     |         |                                                                                           | F                                    | PRO | JECT NO.: D265-23             | 30-01                                                                |
|                                                                                        |             |                       | Pado       | lock Drilling Ltd.                                                                                                                        |                                                                                                                                                                              | Ν           | <u>AETH</u> | IOD:    | Ack            |       |                                                                                         |                                                             | m S | SA/H    |                                                                                           |                                      |     | VATION (m): 227.44            | 2                                                                    |
| SAMF                                                                                   |             |                       |            | GRAB                                                                                                                                      | SHELBY TUBE                                                                                                                                                                  |             | _           | IT SPC  | DON            |       | BI                                                                                      |                                                             |     |         |                                                                                           | D REC                                |     |                               |                                                                      |
| BACK                                                                                   | FILL        | TYPE                  |            | BENTONITE                                                                                                                                 | GRAVEL                                                                                                                                                                       | Щ           | ]slo        | UGH     |                |       | G                                                                                       | ROUT                                                        |     |         |                                                                                           | JTTINO                               |     | SAND                          | <del></del>                                                          |
| DEPTH (m)                                                                              | SOIL SYMBOL | SLOPE<br>INCLINOMETER | PIEZOMETER | SOIL DE                                                                                                                                   | SCRIPTION                                                                                                                                                                    | SAMPLE TYPE | SAMPLE #    | SPT (N) | ♦ S<br>0<br>16 | ₩     | Becker<br>amic C<br>ndard F<br>ws/300<br>0 6<br>al Unit<br>(kN/m <sup>3</sup> )<br>8 19 | Cone<br>Pen Tes<br>0mm)<br>60 80<br>2Wt ■<br>9 20<br>Liquid |     | Z       | NED SHEA<br>+ Torvan<br>× QU 2<br>□ Lab Var<br>△ Pocket P<br>P Field Va<br>(kPa)<br>0 100 | ie +<br>×<br>ne □<br>?en. △<br>ine ₽ | 200 | COMMENTS                      | ELEVATION                                                            |
| - 20                                                                                   |             |                       |            |                                                                                                                                           |                                                                                                                                                                              |             |             |         |                | ÷     |                                                                                         |                                                             |     |         |                                                                                           |                                      |     | 100%                          |                                                                      |
|                                                                                        |             |                       |            | surface immediately at<br>4) Standpipe piezomet<br>casagrande tip installe<br>surface.<br>5) Slope inclinometer (<br>SP08-03 to 10.16 m b | 9.14 m below ground<br>23.62 m below ground<br>ed at 6.71 m below ground<br>ter drilling.<br>er (SP08-03) with<br>d at 22.94 m below ground<br>SI08-03) installed adjacent t |             | C10-1       |         |                |       |                                                                                         |                                                             |     |         |                                                                                           |                                      |     | RQD = 93%, Recovery =<br>100% | 200 -<br>206 -<br>205 -<br>204 -<br>203 -<br>202 -<br>201 -<br>200 - |
| 29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |             |                       |            |                                                                                                                                           |                                                                                                                                                                              |             |             |         |                | ÷     |                                                                                         |                                                             |     |         |                                                                                           |                                      |     |                               | 199 -<br>198 -                                                       |
| 30                                                                                     | 1           |                       | [          | 1                                                                                                                                         |                                                                                                                                                                              |             |             | I       | 10             | :     | : :                                                                                     | Jarec                                                       |     | :       |                                                                                           | :                                    |     | ETION DEPTH: 23.62 n          | <u>เ</u><br>ท                                                        |
| 5                                                                                      |             |                       |            | AECOM                                                                                                                                     |                                                                                                                                                                              |             |             |         |                |       |                                                                                         | Y: Jef                                                      |     |         |                                                                                           | _                                    |     | ETION DATE: 9/11/08           |                                                                      |
| 201                                                                                    |             |                       |            |                                                                                                                                           |                                                                                                                                                                              |             |             |         | -              |       |                                                                                         |                                                             |     | Jeff Ta | allin                                                                                     |                                      |     |                               | 3 of 3                                                               |

|           |                                        | Midtown Feedermain Geotec<br>: 631099.928 E, 5526535.75                                                                                         | °                                                       |             |                | IT: C   | ity U             |                                                              | mpc                                                                        | 9                                                                   |                         |                                       |                                        |                                                                       |          | THOLE NO: TH<br>JECT NO.: D2     |          |
|-----------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|----------------|---------|-------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------------------------|----------|----------------------------------|----------|
| CONT      | [RAC]                                  | TOR: Paddock Drilling Ltd.                                                                                                                      |                                                         | М           | ETH            | IOD:    | Ack               | er AS                                                        | SS. 1                                                                      | 25 n                                                                | nm S                    | SA /                                  | HO (                                   | Corino                                                                |          | VATION (m): 2                    |          |
| SAMF      | LE T                                   | YPE GRAB                                                                                                                                        | SHELBY TUBE                                             |             |                | T SPC   |                   |                                                              | В                                                                          |                                                                     |                         |                                       |                                        |                                                                       | RECOVE   |                                  |          |
| DEPTH (m) | SOIL SYMBOL                            | SOIL DESC                                                                                                                                       | RIPTION                                                 | SAMPLE TYPE | SAMPLE #       | SPT (N) | ◆ SI<br>0<br>16 1 | ◆ Dyn<br>PT (Sta<br>(Blo<br>20 4<br>■ Tot<br>17 1<br>Plastic | Becke<br>amic (<br>ndard<br>ws/30(<br>0 6<br>al Unit<br>(kN/m <sup>3</sup> | r ₩<br>Cone<br>Pen Te<br>Dmm)<br>50 8<br>Wt ■<br>)<br>9 2(<br>Liqui | est) ♦<br>0 100<br>0 21 |                                       | + To<br>×<br>□ Lat<br>△ Pocl<br>● Fiel | SHEAR S<br>orvane H<br>QU X<br>o Vane [<br>ket Pen.<br>d Vane<br>kPa) | □<br>. △ | COMMENT                          | S        |
| 0         |                                        | CLAY - silty, trace sand, trace reddi<br>dia.), trace organics, brown, firm to<br>plasticity                                                    | sh sand inclusions (<5 mm<br>stiff, moist, intermediate |             | G1             |         |                   | 20 4                                                         | 10 <b>6</b>                                                                | i0 8                                                                | 80 100                  |                                       | 50                                     | 100                                                                   | 150 200  |                                  |          |
| 2         |                                        | - black sandy seam, trace gravel, trabelow 1.22 m                                                                                               | ace cobbles (<50 mm dia.)                               |             | G2<br>T3       |         |                   | +<br>+                                                       |                                                                            | <b>—</b>                                                            |                         |                                       |                                        |                                                                       |          |                                  |          |
| 3         |                                        | SILT - clayey, trace to some sand, I<br>plasticity<br>- some sand to sandy below 3.05 m                                                         |                                                         | e           | G4             |         |                   | •                                                            |                                                                            | <i>I</i>                                                            |                         | ×                                     |                                        | ······                                                                |          |                                  |          |
| 4         |                                        | CLAY - silty, sandy, trace oxide incl<br>soft, moist to wet, high plasticity, int<br>(<25 mm thick) to 4.27 m<br>- grey, some silt below 4.12 m | usions (<5 mm dia.), brown.                             |             | T5<br>G6<br>G7 |         |                   |                                                              |                                                                            |                                                                     |                         | Æ                                     |                                        |                                                                       |          |                                  |          |
| Ţ         |                                        | - some sand, some gravel (<15 mm<br>m                                                                                                           | dia.), brown, wet below 4.57                            |             | G7<br>G8       |         |                   |                                                              |                                                                            |                                                                     |                         |                                       |                                        |                                                                       |          |                                  | <b>_</b> |
| 5         |                                        | - trace sand, trace gravel below 5.7                                                                                                            |                                                         |             | G9             |         |                   |                                                              |                                                                            |                                                                     |                         |                                       |                                        |                                                                       |          |                                  |          |
| 7         | 20000000000000000000000000000000000000 | SILT (Till) - trace clay, trace sand, tr<br>moist, intermediate plasticity                                                                      | מרב קומיפו, ווקדונ קרפא, וסטצפ,                         |             | G10            |         |                   | /                                                            |                                                                            |                                                                     |                         | · · · · · · · · · · · · · · · · · · · |                                        | · · · · · · · · · · · · · · · · · · ·                                 |          |                                  |          |
| }         | 00000000000000000000000000000000000000 | - compact below 7.62 m                                                                                                                          |                                                         |             |                |         |                   |                                                              |                                                                            |                                                                     |                         |                                       |                                        |                                                                       |          |                                  |          |
| )         | 00000000000000000000000000000000000000 | GRAVEL and COBBLE - trace boul limestone gravel, granite cobble                                                                                 | ders, large to medium                                   | -           | G11            |         | •••               |                                                              |                                                                            |                                                                     |                         |                                       |                                        |                                                                       |          |                                  |          |
| 10        |                                        | AECOM                                                                                                                                           |                                                         |             |                |         |                   | GGEI<br>VIEW                                                 | ) BY:                                                                      |                                                                     | n Be                    | bas                                   | ·····                                  |                                                                       | COMPL    | ETION DEPTH: 2<br>ETION DATE: 30 |          |

| CONTRACTOR:       Paddock Drilling Lid.       METHOD:       Acker ASS. 125 pm SSA / HO Comp       Comp       Contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                         | Midtown Feedermain Geotect: 631099.928 E, 5526535.75 | -           |        |          |         |                     | f Winnipeg                                                                                                                                                                                                                                                       |                                                                                                                               |                         | STHOLE NO: TH08-0<br>OJECT NO.: D265-2 |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|------------------------------------------------------|-------------|--------|----------|---------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|----|
| Image: Solution bounds (800 mm da) at 10.21 m         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CMMMENTS         Image: Solution bounds (800 mm da) at 10.02 m         CT         Image: Solution bounds (800 mm da) at 10.02 m         CT         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         CT         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m         Image: Solution bounds (800 mm da) at 10.02 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                         |                                                      |             |        |          |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         |                                        | 76 |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPI          | LE T                                    | YPE GRAB                                             | SHELBY TUBE | $\geq$ | SPL      | t spo   | ON                  | BULK                                                                                                                                                                                                                                                             | NO                                                                                                                            | RECOVE                  | ERY CORE                               |    |
| 10       24       - limestone boulder (480 mm dia.) at 10.21 m       1         11       4       - prantle boulder (300 mm dia.) at 10.82 m       C13         12       13       C13       Recovery = 54%         13       - grantle boulder (180 mm dia.) at 13.41 m       C14       Recovery = 64%         14       - imestone boulder (300 mm dia.) at 13.56 m       C14       Recovery = 64%         15       C15       Recovery = 44%       Recovery = 44%         16       C16       C16       Recovery = 11%         18       C17       C16       Recovery = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPTH (m)      | SOIL SYMBOL                             | SOIL DESC                                            | RIPTION     |        | SAMPLE # | SPT (N) | ◆ SF<br>0 2<br>16 1 | ★ Becker #           ◇ Dynamic Cone ◇           YT (Standard Pen Test)<br>(Blows/300mm)           20         40         60         80           Total Unit Wt<br>(kN/m³)           7         18         19         20           Pastic         MC         Liquid | <ul> <li>+ Torvane</li> <li>× QU ×</li> <li>□ Lab Vane</li> <li>△ Pocket Pe</li> <li>◆ Field Van</li> <li>21 (kPa)</li> </ul> | +<br>₽ □<br>n. △<br>e � | COMMENTS                               |    |
| 11       add - spanne coucle (norm da ) at rock in         12       - grante coucle (norm da ) at rock in         13       - grante coucle (180 mm da ) at 13.41 m         14       - imssione boulder (300 mm da ) at 13.41 m         15       - for an experimentation of the spanne of th                                                                                                                                                                                                                                                                                                                                                                                       | 10             |                                         | - limestone boulder (480 mm dia.) a                  | t 10.21 m   | I      | -        |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         |                                        | 2  |
| 12       12       14       14       13       14       14       15       16       16       16       17       16       16       17       16       17       16       17       17       17       16       17       17       16       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17       17 <td< td=""><td>11 <u>(</u></td><td></td><td>- granite boulder (300 mm dia.) at 10</td><td>0.82 m</td><td></td><td>C12</td><td></td><td></td><td></td><td></td><td></td><td>Recovery = 54%</td><td>2</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 <u>(</u>    |                                         | - granite boulder (300 mm dia.) at 10                | 0.82 m      |        | C12      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | Recovery = 54%                         | 2  |
| <ul> <li>- grantle boulder (180 mm dia.) at 13.41 m</li> <li>- limestone boulder (300 mm dia.) at 13.56 m</li> <li>C 14</li> <li>C 15</li> <li>C 16</li> <li< td=""><td>12</td><td>20000000000000000000000000000000000000</td><td></td><td></td><td></td><td>C13</td><td></td><td></td><td></td><td></td><td></td><td>Recovery = 46%</td><td>2</td></li<></ul> | 12             | 20000000000000000000000000000000000000  |                                                      |             |        | C13      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | Recovery = 46%                         | 2  |
| 14       14       14       14       14       15       15       15       16       16       17       16       17       16       17       16       17       16       17       16       17       16       17       16       17       17       18       17       18       17       18       17       18       17       17       18       17       17       17       17       17       17       18       17       18       17       17       17       17       17       17       17       17       17       18       17       17       17       17       17       18       19       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 <td< td=""><td>13</td><td>00000000000000000000000000000000000000</td><td></td><td></td><td></td><td>C14</td><td></td><td></td><td></td><td></td><td></td><td>Recovery = 66%</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13             | 00000000000000000000000000000000000000  |                                                      |             |        | C14      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | Recovery = 66%                         |    |
| 15 16 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br>č        | 000000000000000000000000000000000000000 | - Imesione bouider (300 mm dia.) a                   | 13.50 M     |        | -        |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | ·<br>·<br>·<br>·                       |    |
| 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15<br><i>č</i> |                                         |                                                      |             |        | C15      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | . Recovery = 41%                       |    |
| 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16 <u>č</u>    | 20000000000000000000000000000000000000  |                                                      |             |        |          |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | ·<br>·<br>·<br>·                       | :  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17             | 20000000000000000000000000000000000000  |                                                      |             |        | C16      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | . Recovery = 17%                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18             | 0000000                                 |                                                      |             |        |          |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | ·<br>·<br>·<br>·                       | :  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19<br>2        | 000000000000000000000000000000000000000 |                                                      |             |        | C17      |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         | Recovery = 0%                          | :  |
| AECOM LOGGED BY: Ryan Belbas COMPLETION DEPTH: 25.48 m REVIEWED BY: Jeff Tallin COMPLETION DATE: 30/9/08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 č           |                                         |                                                      |             |        |          |         |                     |                                                                                                                                                                                                                                                                  |                                                                                                                               |                         |                                        |    |

|                |             |                                                                   | Geotechnical Investigation<br>35.755 N, toe of north bank                        | C           | CLIEN | IF: C   | ity of Winnipeg     |                                                           |       | <u>STHOLE NO: TH08-0</u><br>DJECT NO.: D265-23 |           |
|----------------|-------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|-------|---------|---------------------|-----------------------------------------------------------|-------|------------------------------------------------|-----------|
|                |             | TOR: Paddock Drilling                                             |                                                                                  | N           | /FTH  | IOD:    | Acker ASS, 125 mm   | SSA / HO Corino                                           |       | EVATION (m): 227.07                            |           |
|                | PLE T       |                                                                   | SHELBY TUBE                                                                      |             |       | IT SPO  |                     | NO F                                                      |       |                                                |           |
| DEPTH (m)      | SOIL SYMBOL | SOIL DI                                                           | ESCRIPTION                                                                       | SAMPLE TYPE |       | SPT (N) | PENETRATION TESTS   | □ Lab Vane  <br>○ △ Pocket Pen<br>④ Field Vane<br>1 (kPa) | +<br> | COMMENTS                                       |           |
| 20<br>21<br>22 |             | foliation and bedding                                             | ck, white, massive, fine grained, sligh<br>noderately close discontinuity spacin |             | C17   |         |                     |                                                           |       | RQD 88%, Recovery =<br>100%                    | 2 2 2 2 2 |
| 23<br>24       |             | - limestone becoming more<br>more pronounced below 23             | red with depth, bedding and foliation<br>72 m                                    |             | C18   |         |                     |                                                           |       | RQD 89%, Recovery =<br>100%                    | 2         |
| 25             |             |                                                                   |                                                                                  |             | C19   |         |                     |                                                           |       | RQD 83%, Recovery = 100%                       | 2         |
| 26             |             | Notes:<br>1. Seepage at 4.6 m from c<br>2. No sloughing observed. | Switch from SSA to HQ coring at 10.<br>25.5 m.                                   | 1           |       |         |                     |                                                           |       |                                                | 2         |
| 27             |             |                                                                   |                                                                                  |             |       |         |                     |                                                           |       |                                                |           |
| 28             |             |                                                                   |                                                                                  |             |       |         |                     |                                                           |       |                                                |           |
| 29             |             |                                                                   |                                                                                  |             |       |         |                     |                                                           |       |                                                |           |
| 30             |             | 1                                                                 |                                                                                  |             |       |         | LOGGED BY: Ryan Be  |                                                           |       | .ETION DEPTH: 25.48 r                          | <br>m     |
|                |             | AECO                                                              | M                                                                                |             |       |         | REVIEWED BY: Jeff T |                                                           |       | ETION DATE: 30/9/08                            |           |