#### **APPENDIX A – GEOTECHNICAL REPORT**



Quality Engineering | Valued Relationships

Brady Road Leaf and Yard Waste and Pilot Biosolids Composting

Final Report September 19, 2012

Prepared for:

Ms. Bonnie McIntosh, M.Sc., P.Eng. Project Manager CH2M Hill 211 Bannatyne Avenue, Suite 403 Winnipeg, Manitoba R3B 3P2



Prepared by:

Reviewed by:

TREK Geotechnical Inc. Per:



Kent Bannister, M.Sc., P.Eng. Senior Geotechnical Engineer

Ken Skaftfeld, P.Eng. Senior Geotechnical Engineer



## **Table of Contents**

| 1.0 | Introduction                                 |
|-----|----------------------------------------------|
| 2.0 | Background and Existing Information1         |
| 3.0 | Field Program1                               |
| 3.1 | Subsurface Investigation                     |
| 3.2 | Soil Stratigraphy                            |
| 3.  | 2.1 Groundwater Conditions                   |
| 4.0 | Geotechnical Recommendations                 |
| 4.1 | Clay Liners                                  |
| 4.2 | Leaf and Yard Waste Pad4                     |
| 4.3 | Foundations5                                 |
| 4.  | 3.1 Shallow Footings                         |
| 4.  | 3.2 Thickened Edge Slab                      |
| 4.4 | Grade Supported Concrete Slabs7              |
| 4.5 | Recommendations for Leachate Collection Tank |
| 4.6 | Containment Ponds                            |
| 4.7 | Excavations                                  |
| 4.8 | Foundation Concrete                          |
| 5.0 | Closure                                      |

# List of Figures

Figure 01 Test Hole Location Plan

## List of Appendices

Appendix A Test Hole Logs



## I.0 Introduction

This report summarizes the results of the geotechnical investigation completed by TREK Geotechnical Inc. (TREK) for the Leaf and Yard Waste Composting Facility and Pilot Biosolids Composting Facility at the Brady Road Resource Management Facility in Winnipeg, Manitoba. The terms of reference for the investigation are included in our subconsultant agreement with CH2MHILL that was effective June 15, 2012. The scope of work includes a sub-surface investigation, laboratory testing, and the provision of recommendations for the design and construction of foundations, liners and pavements.

## 2.0 Background and Existing Information

The proposed facility will consist of the following components:

*Leaf and Yard Waste Pad:* This will be a clay lined pad for storage and windrowing of leaf and yard waste. The pad is required to support daily truck traffic and loaders for moving materials on-site. A 0.5 m thick compacted clay liner is proposed below the traffic pad. Various surface treatments options for the top of the pad are under consideration including: wood chips only, lean mix concrete, or a cement stabilized pad.

*Pond in Wetlands Area:* A relatively shallow pond (about 4 m deep) will be developed in the proposed wetlands area located immediately south east of the site. This area will also be used as a borrow source for imported clay fill for the project.

*Aerated Static Pile Bunkers:* This area will consist of a concrete slab on-grade. Dry stack retaining walls e.g. Lock-Block<sup>®</sup> will be placed at several locations along the slab. At these locations the slab will be thickened to support the additional static load from the wall load. The slab will be subjected to loading by construction equipment such as loaders.

*Biofilter:* The biofilter will be a large concrete slab with aeration pipes running through it at regularly spaced intervals. The pad will be subject to heavy equipment loading on an annual basis e.g. loader.

*Mixing and Receiving Building:* This building will consist of a steel truss frame with a canvas cover. There will be a grade supported concrete floor slab throughout.

Leachate Tank: A 2.4 m diameter by 7.5 m long tank will be installed at about 3 m below grade.

All of the above components will be unheated.

## 3.0 Field Program

#### 3.1 Subsurface Investigation

A subsurface investigation was undertaken on June 27 to July 5, 2012 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions across the site. Test holes were drilled using a CME-850 track mounted drill rig equipped with 125 mm solid stem augers. Subsurface soils observed during the drilling were visually classified using the Unified Soil Classification System (USCS). Other pertinent information such as drilling, groundwater and backfill conditions were also recorded. Samples retrieved during drilling included disturbed grab samples, relatively undisturbed Shelby tubes, and disturbed split spoon samples; all samples were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted



of moisture content determination on all samples. Atterberg limit, grain size analysis (hydrometer and mechanical), and undrained shear strength testing (pocket penetrometer, torvane and unconfined compression) testing was performed on select samples. A summary of the soil units encountered including laboratory testing results are included on the test hole logs in Appendix A.

Thirty-four test holes (TH12-01 to TH12-34) were drilled at the locations shown on Figure 01. Thirty test holes were drilled to relatively shallow depth (between 3 and 5 m) to assess near surface conditions. Two test holes were drilled to 6 to 7 m depth (TH12-31 and TH12-32) to assess conditions below the future pond, and two test holes (TH12-29 and TH12-30) were advanced to power auger refusal to evaluate foundation conditions for the mixing and receiving building.

Test hole logs are attached in Appendix A and include a description, the elevation of soil units encountered and other pertinent information such as groundwater levels and sloughing conditions. Test hole locations and elevations were surveyed by TREK personnel on July 5, 2012. The locations for test holes 12-11 and 12-16 could not be surveyed as the stakes used to identify the test hole locations had been removed by others. The approximate locations of these two test holes are shown on Figure 01.

#### 3.2 Soil Stratigraphy

The sub-surface stratigraphy in descending order from ground surface consists of:

- Fill/Organic Clay (Topsoil)
- Silt
- Clay
- Silt (Till)

A brief description of the soil units are provided as follows:

#### Fill / Organic Clay (Topsoil)

Either fill or organic clay was encountered in all test hole locations. The fill was encountered in TH12-14, TH12-15, TH12-16, TH12-20, TH12-21, TH12-22, TH12-23, and TH12-24. The fill extended from surface to a maximum depth of 1.8 m. The fill was generally variable and contained trace to some waste materials including refuse, wood, and compost. In some instances the fill was underlain by organic clay (topsoil).

Organic clay (topsoil) was encountered at surface in all remaining test holes and extended to a maximum depth of 0.8 m. The organic clay is silty, contains some rootlets (<5 mm diam.), trace oxidation, trace silt inclusions (<2 mm diam.), is black to brown, dry to moist, stiff, with low to high plasticity.

Silt

A silt layer ranging in thickness from 0.2 to 1.8 m was encountered in most test holes at depths ranging from 0.4 to 2.4 m from ground surface. A comparison of test hole logs indicates the silt layer across the site is highly variable in elevation, thickness and aerial extent. The silt generally contains some clay to clayey, trace sand, trace organics (rootlets < 1 mm diam.), trace oxidation, is medium brown, moist to wet, soft, and of low plasticity. Moisture contents range from 21% to 32%.



#### Clay

A clay layer underlies the fill and topsoil units to a maximum observed depth of 12.0 m in TH12-29. Near surface the clay is silty and contains trace organics, trace silt inclusions and is brown to grey, stiff, moist, and of high plasticity. With depth the clay transitioned to a grey colour and a soft to firm consistency. Moisture contents tended to increase with depth ranging from 26% to 64%. Bulk unit weights range from 16.2 to  $17.4 \text{ kN/m}^3$ .

#### Silt (Till)

A silt till layer was encountered below the clay at a depths of 11.8 m and 12.0 m in TH12-29 and TH12-30 respectively. The silt till is sandy, contains trace to some gravel, trace clay, and is light grey. The upper 2.6 to 3.1 m of the till, referred to locally as putty till, is compact with moisture contents ranging from 9 % to 25 %, with an average of 13 %. The putty till is underlain by dense to very dense glacial silt till with moisture contents ranging from 6% to 8%. Power auger refusal in the dense till was reached at depths of 15.6 m and 15.7 m. Standard Penetration Tests (SPT) conducted in the dense silt till had blow counts of 60 (over 150 mm) and 100 (over 300 mm) at depths of 15.6 m and 15.7 m depth, respectively.

#### 3.2.1 Groundwater Conditions

Seepage, sloughing, and groundwater conditions observed during drilling are shown on the test hole logs. Seepage was observed on occasion from within near surface fill and silt layers and no seepage was encountered from the silt till unit. Standpipe piezometers were installed within the till layer in THs 12-29 and 12-30 to measure short term groundwater levels. Groundwater levels ranging from El. 227.5 m and 227.8 were measured on July 25 and August 1, 2012. These observations are short term and should not be considered reflective of stabilized (static) groundwater levels. It is also important to note that groundwater conditions may change seasonally, annually, or as a result of construction activities.

## 4.0 Geotechnical Recommendations

#### 4.1 Clay Liners

Clay liners are planned below all areas of the proposed facility. The clay liners will be constructed using imported clay fill from the proposed wetlands area being constructed immediately south east of the site. To assess the suitability of the imported clay for liner construction two test holes were drilled within the borrow area (TH12-33 and TH12-34). Atterberg limits and hydrometer grain size analyses were performed on two samples of the clay and pertinent results are summarized in Table 1 below.

| Sample Depth | Moisture Content | Liquid Limit | Plastic Limit | Clay Content |
|--------------|------------------|--------------|---------------|--------------|
| 0.8 – 0.9 m  | 30%              | 58%          | 16%           | 54%          |
| 2.4 – 2.6 m  | 49%              | 86%          | 24%           | 73%          |

| Table 1 - Summary of Atterberg Limits/ | Grain Size Analysis in TH12-34 |
|----------------------------------------|--------------------------------|
|----------------------------------------|--------------------------------|



Based on the engineering properties shown in Table 1, both samples are considered suitable for use in constructing a clay liner. Although not measured, it is anticipated that hydraulic conductivities of the compacted clay will be well below  $1 \times 10^{-7}$  cm/sec. Clay fill will need to be chosen selectively to avoid surficial organic soils and the silt layer that was observed in both test holes.

The following procedures should be followed for construction of the clay liner:

1. Organic and fill soils should be stripped prior to construction of the clay liner. Excavation should proceed in a way that limits disturbance to the subgrade soils, the subgrade should be protected from inundation, drying, and freezing conditions.

The need to excavate the silt will depend on the elevation of the surface of the silt layer across the site relative to the design subgrade elevation and the final design grades. Silt encountered within 1.5 m of final grade should be excavated and replaced with compacted clay fill. A non-woven geotextile (Geotex 801 or equivalent) should be placed on top of any remaining silt prior to bridging with a layer of compacted clay fill. Depending on the consistency of the silt layer, it may be necessary to use light weight equipment for placing and compacting the initial bridging layer.

Clay subgrade that will be incorporated into the liner should be scarified to a depth of 0.3 m and recompacted to 95% of Standard Proctor Maximum Dry Density (SPMDD). If the liner will be supporting settlement sensitive structures the compaction requirement should be increased to 98% SPMDD. If the subgrade will not be incorporated into the clay liner scarification and compaction will not be required, in this case the subgrade should be protected from disturbance, inundation, drying and freezing. The subgrade should be proof-rolled with a fully loaded tandem truck or other equipment of similar weight to determine the location of any localized soft areas. Soft areas should be repaired and treated as per direction by a geotechnical engineer.

- 2. Clay should be placed in loose lift thicknesses that do not exceed 200 mm and compacted to 95% of SPMDD at a moisture content within 2 % of optimum. If the liner will be supporting settlement sensitive structures the compaction requirement should be increased to 98% SPMDD. Based on the in-situ moisture contents of the clay soil which are expected to be well above optimum for compaction, drying will likely be required. Frozen clay or other deleterious material such as organics, silt, or refuse should not be used as fill.
- 3. Prior to placement of an additional clay lift, the upper 50 mm of the existing surface should be scarified to promote bonding between the clay fill layers.

#### 4.2 Leaf and Yard Waste Pad

The leaf and yard waste pad is to be constructed above a 0.5 m thick compacted clay liner and will be subject to daily truck and construction equipment loading. The pad will be gravel surfaced although there has been some consideration of surface treatment to prevent migration of gravel into the compost material. In considering the above requirements TREK recommends that crushed limestone be used at the site. The recommended minimum cross section present in descending order from the final surface is provided in Table 2.



| Material Gradation | Proposed Depth |
|--------------------|----------------|
| 20 mm down         | 0-100 mm       |
| 50 mm down         | 100 - 250 mm   |
| 100 mm down        | 250 - 450 mm   |

\* Crushed rock should meet specifications identified in CW3110

#### Table 2 – Proposed Granular Section in Leaf and Yard Waste Pad

The following recommendations are provided for construction of the granular pad:

- 1. A non-woven geotextile (Geotex 801 or equivalent) should be placed on top of the clay fill subgrade prior to granular fill placement. To provide additional reinforcement to the granular section, a woven geotextile such as a Geotex 315ST (or equivalent) could be used in place of the non-woven geotextile. The geotextile should be placed according to manufacturer specifications.
- 2. All granular fill should be placed in 150 mm (compacted thickness) lifts. The granular fill should be compacted to 98% SPMDD. Fill should be placed in an unfrozen condition.
- 3. If a rougher travelling surface is acceptable for end-use, the 20 mm down may be replaced with 50 mm down crushed limestone.

Surface treatments for the granular pad that have been discussed include lean mix concrete and cement stabilization. If a cement stabilized pad is selected, the layer of 20 mm down crushed limestone should be increased to 150 mm and mixed with a minimum 5% by weight of Normal Portland cement (type GU). The cement should be mixed uniformly with the crushed limestone prior to compaction to 98% SPMDD. The cement content may be reduced through the use of additives such as fly-ash however the exact mix would need to be optimized through a laboratory testing program to confirm that performance is not compromised.

#### 4.3 Foundations

Foundations are required to support the Mixing and Receiving building. It is our understanding that the proposed building is a steel framed structure with canvas walls. The building will be unheated. Provided the building can tolerate some seasonal movement, shallow footings or a thickened edge slab are considered suitable at this site. If seasonal movements are not tolerable, TREK can provide recommendations on either end bearing or friction piles.

#### 4.3.1 Shallow Footings

Shallow footings founded below 2.5 m depth on undisturbed *in situ* clay can be designed using an allowable bearing capacity of 80 kPa. The maximum settlement form this loading is expected to be 25 mm although shallow foundations may also be subject to additional vertical movement associated with seasonal shrinkage and swelling of the clay subgrade.

Additional considerations for the design and construction of shallow footings are provided below:

- 1. Footings should have a minimum based width of 0.6 m.
- 2. Excavate to the design subgrade elevation while further ensuring that all fill soils and otherwise unsuitable material is removed. Excavation should be completed with a backhoe equipped with a smooth bladed



bucket operating from the edge of the excavation. Care should be taken not to over-excavate and to minimize the subgrade disturbance at all times.

- 3. After excavation, the subgrade should be reviewed by qualified geotechnical personnel. The exposed subgrade surface should be protected from freezing, inundation and disturbance. As such, it may be necessary for the contractor to sequence construction so that only a small portion of the subgrade remains open at a given time and that excavations are backfilled as soon as possible.
- 4. Where soft or weak areas are identified by the geotechnical personnel, these areas should be repaired as directed by the geotechnical engineer. If silt is encountered at the foundation elevation the geotechnical engineer should be notified immediately so that a remediation design can be provided.
- 5. Fill required to raise grades or for levelling should consist of 20 mm down crushed limestone placed in maximum 150 mm thick lifts and compacted to 98% SPMDD.
- 6. Grade supported structures such as floor slabs should be isolated from the footings to limit differential stresses.

#### 4.3.2 Thickened Edge Slab

A thickened edge slab could also be considered appropriate to support the Mixing and Receiving building. An allowable bearing capacity of 80 kPa should be used for design. In addition to the movements described in Section 4.3.1 the thickened edge slab would also be subject to movements associated with freeze/thaw (frost heave) and settlement of any fill soils, such as the compacted clay liner, placed below the thickened edge. To minimize the effects of frost heave, near surface silts should be excavated from below the base of the thickened edge, frost heave can be further minimized by insulating the footings. TREK can provide design recommendations for insulation on request. For clay and crushed limestone compacted to 98% SPMDD settlements of up to 2% and 0.5% respectively of the layer thickness can be anticipated.

Additional considerations for the design and construction of the thickened edge are provided below. Specific recommendations for design and construction of grade supported floor slabs can be found in Section 4.4.

- 1. Thickened edges should have a minimum based width of 0.6 m.
- 2. Excavate to the design subgrade elevation while further ensuring that all organics, silts, and un-compacted fill soils and otherwise unsuitable material is removed. Excavation should be completed with a backhoe equipped with a smooth bladed bucket operating from the edge of the excavation. Care should be taken not to over-excavate and to minimize the subgrade disturbance at all times. It is anticipated that the subgrade below the thickened edge will consist of either the compacted clay liner or compacted crushed rock.
- 3. After excavation, the subgrade should be reviewed by qualified geotechnical personnel. The exposed subgrade surface should be protected from freezing, inundation and disturbance. As such, it may be necessary for the contractor to sequence construction so that only a small portion of the subgrade remains open at a given time and that excavations are backfilled as soon as possible.
- 4. Where soft or weak areas are identified by the geotechnical personnel, these areas should be repaired as directed by the geotechnical engineer.
- 5. Fill required to raise grades or for levelling should consist of 20 mm down crushed limestone placed in maximum 150 mm thick lifts and compacted to 98% SPMDD.



If increased bearing capacity is required beneath the thickened edge, a compacted granular pad may be constructed below the base of the slab or thickened edge to distribute the contact load to maintain a bearing pressure of 80 kPa on the clay. In plan, the compacted granular pad should extend beyond the thickened edge by at least the gravel thickness. The allowable bearing pressure on the gravel pad can be calculated using the following formulae:

#### $q_a = 80 (w+d)/w$

where:  $q_a =$  allowable bearing pressure (kPa)

w = width of thickened edge slab (m)

d = depth of gravel below thickened edge slab (m)

As an example, to accommodate an allowable load of 130 kPa on a 0.6 m wide thickened edge the granular pad would need to be 0.4 m thick, the granular pad would also need to extend at least 0.4 m beyond the thickened edge in all directions. The granular pad should be constructed using 50 mm down crushed limestone with the upper 100 mm of the granular pad constructed using 20 mm down crushed limestone as a levelling course. The crushed limestone should be compacted to a minimum of 98% SPMDD. Some settlement of the compacted granular fill should be expected as identified earlier in this section.

#### 4.4 Grade Supported Concrete Slabs

Grade supported concrete slabs will be subjected to loading from heavy construction equipment such as loaders. Some vertical deformation of grade supported slabs should be expected due to moisture and volume changes of the underlying soil, frost effects and settlement from underlying compacted fill soils. It is our understanding that the concrete slabs will be placed above the compacted clay liner discussed in Section 4.1. The following recommendations are provided to reduce or accommodate potential movements of the slab:

- 1. The sub-grade should be unfrozen and free of any deleterious material such as organics, debris, etc. prior to placement of granular fill.
- 2. Precautions should be taken to prevent desiccation of the sub-grade during construction. If drying of the sub-grade occurs it should be dampened, scarified and re-compacted to a minimum of 98% SPMDD.
- 3. The floor slab should be placed on a granular pad constructed of 200 mm of 50 mm down crushed limestone underlying 100 mm of 20 mm down crushed limestone. The crushed limestone should be placed in lift thickness not exceeding 150 mm and compacted to 98% SPMDD. If there is a desire to increase the granular thickness to protect the clay liner this should be done by increasing the 50 mm down layer thickness.
- 4. To minimize changes in soil moisture beneath grade supported floor slabs, the discharge from roof leaders and run-off from exposed slabs should be directed away from the structures.
- 5. To accommodate slab movements, it may be desirable to provide control joints to reduce random cracking and isolation joints to separate the slab from other structure elements. Allowances should be made to accommodate vertical movements of light partitions, etc. bearing on the slab.
- 6. Consideration should be given to providing a sub-floor drainage system consisting of a perimeter weeping tile drain, as well as interior lateral drains for larger areas.



#### 4.5 Recommendations for Leachate Collection Tank

It is understood that a buried leachate collection tank (2.4 m diameter x 7.5 m long) will be installed at a depth of at least 3 m below grade. The tank should be founded on undisturbed *in situ* clay soils. Silts, fills, or organic soils should be removed from below the base of the tank and replaced with 20 mm down crushed limestone compacted to 98% of SPMDD. The tank should be backfilled according to the manufacturer's specifications. The tank base should also be design to resist buoyancy forces assuming that backfill material becomes completely saturated.

#### 4.6 Containment Ponds

It is understood that a containment pond, located on the southeast corner of the site in the vicinity of TH12-33 and TH12-34 to a depth of no more than 4 m. The stratigraphy in the area of the ponds generally consists of topsoil overlying highly plastic lacustrine clay. Silt was encountered in TH 12-33 from 1.5 to 1.8 m, and in TH 12-34 from 1.3 to 2.2 m.

The natural highly plastic clay soils at this site are extensive and may be suitable as a natural *in situ* liner depending on the level of containment required and regulatory compliance. Natural liners will require that the upper silt layer (where encountered) be excavated and replaced with a minimum of 1 m of compacted clay. We estimate that at depth, the hydraulic conductivity of the undisturbed clay to be  $1 \times 10^{-7}$  cm/s or less although higher values may occur near the surface where seasonal environmental effects may result in a more pervious stratum. Scarification of the upper 300 mm and compaction should therefore be carried out to minimize the effects of construction disturbance and any environmental effects such as fissuring. If an engineered liner is required for the pond it could consist of compacted clay or a synthetic material *e.g.* high density polyethylene (HDPE).

Clay soil from on-site excavations should be suitable for a compacted clay liner if broken up and recompacted in thin lifts. In this regard, loose lifts should not exceed 150 mm and the clay should be compacted to achieve a minimum of 95% of SPMDD. Recommendations for synthetic liner installation can be provided if requested.

Ponds constructed with natural or engineered clay liners should have internal side slopes no steeper than 4H:1V for a maximum depth (measured from the dyke crest to the floor) of 4 m and 5H:1V for ponds up to a maximum depth of 5 m. Recommendations for ponds greater than 5 m depth can be provided if requested. Where applicable, external side slopes for dykes should be constructed no steeper than 4H:1V. Erosion is expected to be minimal for ponds less than 300 x 300 m in aerial extent with maximum side slopes of 4H:1V and with grass cover. Ponds great than 300 x 300 m in aerial extent should have flatter side slopes and/or be provided with stone armouring or rip rap. The recommended pond geometry is based on the ponds remaining full; flatter slopes may be required in rapid drawdown conditions. TREK should be contacted if this operating case is expected or if recommendations for acceptable rates of drawdown are needed.

#### 4.7 Excavations

Temporary excavations at the site should meet Workplace Health and Safety regulations. It may be necessary to excavate open excavation side slopes flatter than 1 horizontal to 1 vertical if saturated silts are encountered.

#### 4.8 Foundation Concrete

Based on local experience the degree of exposure for concrete subjected so sulphate attack in Winnipeg is classified as severe according to CSA A23.1-09. Sulphate resistant (CSA Type HS) cement is recommended for



all below grade concrete works or concrete in contact with soil. Accordingly, all concrete in contact with the native soil should be made with high sulphate-resistant cement (HS or HSb). Furthermore, the concrete should have a minimum specified 56 day compressive strength of 32 MPa and have a maximum water to cement ratio of 0.45 in accordance with CSA A23.1-09. Concrete which may be exposed to freezing and thawing should be adequately air entrained to improve freeze-thaw durability in accordance with this same standard.

## 5.0 Closure


The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.



**Figures** 





150 200m 50 100 SCALE : 1:4000 (279mmx432mm)

#### LEGEND :

- SURVEYED TEST HOLE LOCATIONS

# C.O.W. Leaf and Yard Waste Composting Facility Brady Road Landfill Winnipeg, Manitoba

Figure 01 Test Hole location Plan



Appendix A

**Test Hole Logs** 

## EXPLANATION OF FIELD AND LABORATORY TESTING

#### GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

| Ma                                                                                     | ajor Div                                                         | isions                                                | USCS<br>Classi-<br>fication | Symbols                          | Typical Names                                                                                                            |                                                                                                                                                                                                                                                                                                                                   | Laboratory Classif                                                   | fication C                                | riteria                                                   |               | ş          |                           |               |                                  |              |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|---------------|------------|---------------------------|---------------|----------------------------------|--------------|
|                                                                                        | raction                                                          | gravel<br>no fines)                                   | GW                          |                                  | Well-graded gravels, gravel-sand mixtures, little or no fines                                                            |                                                                                                                                                                                                                                                                                                                                   | $C_{U} = \frac{D_{60}}{D_{10}}$ greater than                         | <sup>n 4;</sup> C <sub>c</sub> = <u> </u> | $\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3 |               | ieve sizes | #10 to #4                 | #40 to #10    | #200 to #40<br>/ #200            | < #200       |
| sieve size)                                                                            | Gravels<br>than half of coarse fraction<br>alarder than 4.75 mm) | Clean<br>(Little or                                   | GP                          |                                  | Poorly-graded gravels, gravel-sand mixtures, little or no fines                                                          | grain size curve,<br>er than No. 200 sieve)<br>ng dual symbols*                                                                                                                                                                                                                                                                   | Not meeting all gradatio                                             | on requiren                               | nents for GW                                              | ە             | ASTM Sieve | #10                       | #401          | #500                             | ¥            |
| ained soils<br>larger than No. 200 sieve                                               | Gra<br>than half o                                               | Gravel with fines<br>(Appreciable<br>amount of fines) | GM                          |                                  | Silty gravels, gravel-sand-silt mixtures                                                                                 | r than No.<br>g dual syn                                                                                                                                                                                                                                                                                                          | Atterberg limits below "A line or P.I. less than 4                   | 'A"                                       | Above "A" line with P.I.<br>between 4 and 7 are border-   | Particle Size | ٩          |                           |               | +                                |              |
| ained soils<br>larger than                                                             | lore                                                             | Gravel w<br>(Appre<br>amount                          | GC                          |                                  | Clayey gravels, gravel-sand-silt mixtures                                                                                | niri o nalla                                                                                                                                                                                                                                                                                                                      | Atterberg limits above "A line or P.I. greater than 7                | 'A"                                       | line cases requiring use of<br>dual symbols               | Par           |            | Ľ                         | , g           | 25                               |              |
| Coarse-Grained (More than half the material is larger                                  | e fraction<br>mm)                                                | sands<br>no fines)                                    | SW                          | *****                            | Well-graded sands, gravelly<br>sands,<br>little or no fines                                                              | Determine percentages of sand and gravel from grain size curve.<br>depending on percentage of fines (fraction smaller than No. 200 s<br>coarse-grained soils are classified as follows:<br>Less than 5 percent GW, GP, SW, SP<br>Less than 12 percent GW, GC, SM, SC<br>6 to 12 percent Borderline case4s requiring dual symbols* | $C_{U} = \frac{D_{60}}{D_{10}}$ greater than                         | <sup>n 6;</sup> C <sub>c</sub> =          | $\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3 |               | шш         | 2 00 to 4 75              | 0.425 to 2.00 | 0.075 to 0.425                   | c/0.0 >      |
| n half the r                                                                           | Sands<br>alf of coarse fi<br>r than 4 75 mi                      |                                                       | SP                          |                                  | Poorly-graded sands, gravelly sands, little or no fines                                                                  | ages of sa<br>entage of 1<br>s are class<br>cent<br>srcent                                                                                                                                                                                                                                                                        | Not meeting all gradatio                                             | on requiren                               | nents for SW                                              |               |            |                           | . 0           | 0                                |              |
| (More thai                                                                             | Sands<br>than half of coarse<br>smaller than 4 75 n              | Sands with fines<br>(Appreciable<br>amount of fines)  | SM                          |                                  | Silty sands, sand-silt mixtures                                                                                          | lemine percentages of s,<br>pending on percentage of<br>arse-grained solls are cla:<br>arse than 5 percent<br>More than 12 percent<br>6 to 12 percent Bord                                                                                                                                                                        | Atterberg limits below "A line or P.I. less than 4                   | 'A"                                       | Above "A" line with P.I.<br>between 4 and 7 are border-   | lai           | 5          |                           |               |                                  | Clay         |
|                                                                                        | (More t                                                          | Sands w<br>(Appre<br>amount                           | SC                          |                                  | Clayey sands, sand-clay mixtures                                                                                         | Determir<br>dependir<br>coarse-g<br>Less<br>More<br>6 to 1                                                                                                                                                                                                                                                                        | Atterberg limits above "A line or P.I. greater than 7                | 'A"<br>7                                  | line cases requiring use of<br>dual symbols               | Material      | ואומוכ     | Sand                      | Medium        | Fine<br>Silt or                  | SIIT OF CIAY |
| e size)                                                                                | ,<br>As                                                          |                                                       | ML                          |                                  | Inorganic silts and very fine sands,<br>rock floor, silty or clayey fine sands<br>or clayey silts with slight plasticity | 80<br>Plasticity                                                                                                                                                                                                                                                                                                                  | Plasticity<br>chart for solid fraction with particles<br>an 0.425 mm | / Chart                                   | r LINE                                                    |               | e Sizes    |                           | -             | i i i                            |              |
| Fine-Grained soils<br>(More than half the material is smaller than No. 200 sieve size) | Silts and Cla                                                    | (Liquid limit<br>less than 50)                        | CL                          |                                  | Inorganic clays of low to medium<br>plasticity, gravelly clays, sandy<br>clays, silty clays, lean clays                  | 70 -<br>60 -                                                                                                                                                                                                                                                                                                                      | an 0.425 mm                                                          |                                           | ,U LI . A LINE                                            | e             | S          | > 12 in.<br>3 in to 12 in | 2             | 3/4 in. to 3 in.<br>#4 to 3/4 in | 15 2 14      |
| soils<br>er than No                                                                    | Si                                                               |                                                       | OL                          | ==                               | Organic silts and organic silty<br>clays of low plasticity                                                               | - 00 (%)                                                                                                                                                                                                                                                                                                                          |                                                                      | CH CH                                     |                                                           | Particle Size | ASTM:      | +                         | _             |                                  | _            |
| e-Grained<br>al is small                                                               | ski                                                              | t<br>50)                                              | MH                          |                                  | Inorganic silts, micaceous or<br>distomaceous fine sandy or silty<br>soils, organic silts                                | - 1 40 -<br>L 40 -<br>L 40 -<br>S30 -                                                                                                                                                                                                                                                                                             |                                                                      |                                           |                                                           | Pa            | mm         | > 300<br>75 to 300        | 222           | 19 to 75<br>4 75 to 19           | P 10         |
| Fine<br>the materi                                                                     | ts and Cla                                                       | (Liquid limit<br>greater than 50)                     | СН                          |                                  | Inorganic clays of high plasticity, fat clays                                                                            | 20-                                                                                                                                                                                                                                                                                                                               |                                                                      |                                           | MH OR OH                                                  |               | L          | 75 1                      | · ·           | 191<br>4 75                      | )<br>F       |
| than half                                                                              | N                                                                |                                                       | OH                          |                                  | Organic clays of medium to high<br>plasticity, organic silts                                                             |                                                                                                                                                                                                                                                                                                                                   | ML or OL<br>16 20 30 40 50<br>LIQUID LI                              | 60 70<br>_IMIT (%)                        | 80 90 100 110                                             |               | 5          | ers                       | 3_            |                                  | -            |
| (More                                                                                  | Highly                                                           | Organic<br>Soils                                      | Pt                          | <u>6 76 76</u><br><u>70 77 7</u> | Peat and other highly organic soils                                                                                      | Von Post Class                                                                                                                                                                                                                                                                                                                    |                                                                      |                                           | lour or odour,<br>fibrous texture                         | Material      | ואומוכ     | Boulders                  | Gravel        | Coarse<br>Fine                   |              |

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

#### Other Symbol Types

| Asphalt  | Bedrock (undifferentiated) | 63 | Cobbles              |
|----------|----------------------------|----|----------------------|
| Concrete | Limestone Bedrock          |    | Boulders and Cobbles |
| Fill     | Cemented Shale             |    | Silt Till            |
|          | Non-Cemented Shale         |    | Clay Till            |

## EXPLANATION OF FIELD AND LABORATORY TESTING

#### LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

#### FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

| TERM        | EXAMPLES      | PERCENTAGE       |
|-------------|---------------|------------------|
| and         | and CLAY      | 35 to 50 percent |
| "y" or "ey" | clayey, silty | 20 to 35 percent |
| some        | some silt     | 10 to 20 percent |
| trace       | trace gravel  | 1 to 10 percent  |

#### TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

| <u>Descriptive Terms</u>                              | <u>SPT (N) (Blows/300 mm)</u>                             |   |
|-------------------------------------------------------|-----------------------------------------------------------|---|
| Very loose                                            | < 4                                                       |   |
| Loose                                                 | 4 to 10                                                   |   |
| Compact                                               | 10 to 30                                                  |   |
| Dense                                                 | 30 to 50                                                  |   |
| Very dense                                            | > 50                                                      |   |
| The Standard Penetration Test blow count (N) of a col | hesive soil can be related to its consistency as follows: | : |

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

| Descriptive Terms | Undrained Shear<br><u>Strength (kPa)</u> |
|-------------------|------------------------------------------|
| Very soft         | < 12                                     |
| Soft              | 12 to 25                                 |
| Firm              | 25 to 50                                 |
| Stiff             | 50 to 100                                |
| Very stiff        | 100 to 200                               |
| Hard              | > 200                                    |



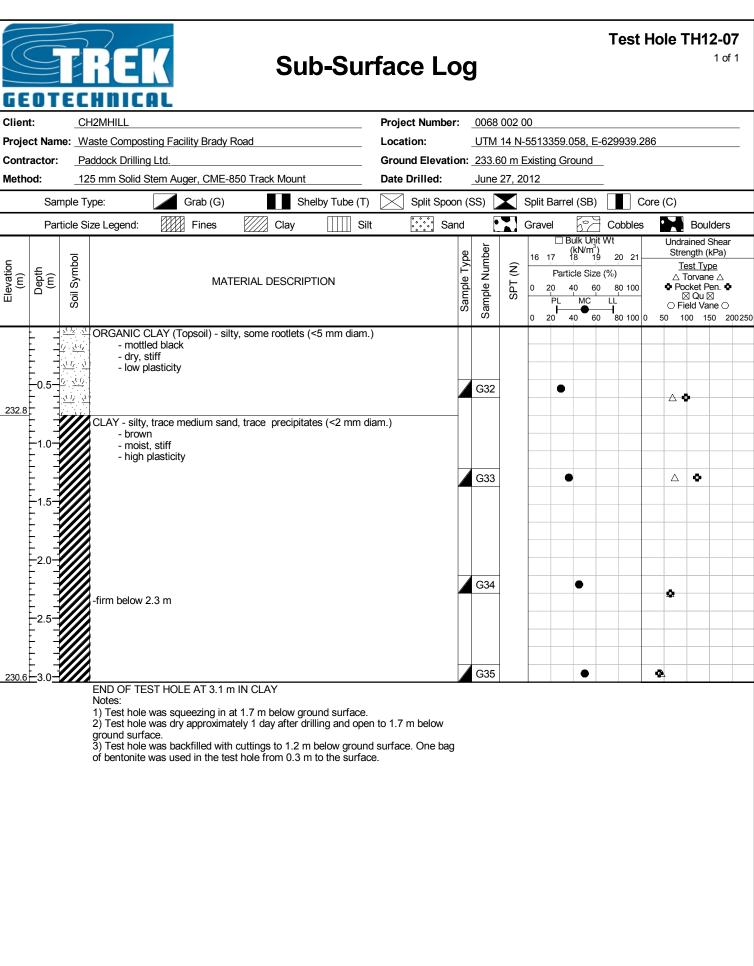
| FREK         | 7 |
|--------------|---|
| GEOTECHNICAL |   |

| Client:                                         | CH2MHILL                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                            |                    | Proje     | ct Num      | ber:        | 0068          | 002 (   | 00       |                                                             |                |        |                                                                                                                                |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|-----------|-------------|-------------|---------------|---------|----------|-------------------------------------------------------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------|
| roject Name:                                    | Waste Comp                                                                                                                                                                                                                                                                  | osting Facility Brady F                                                                                                                                                             | Road                                                       |                    | Loca      | tion:       |             | UTM           | 14 N-   | 551345   | 5.763, E                                                    | -629974.1      | 08     |                                                                                                                                |
| Contractor:                                     | Paddock Drill                                                                                                                                                                                                                                                               | ing Ltd.                                                                                                                                                                            |                                                            |                    | Grou      | nd Elev     | ation:      | 233.3         | 5 m E   | Existing | Ground                                                      | _              |        |                                                                                                                                |
| Method:                                         | 125 mm Solid                                                                                                                                                                                                                                                                | d Stem Auger, CME-8                                                                                                                                                                 | 50 Track Mount                                             |                    | Date      | Drilled:    | 1           | June          | 27, 20  | 012      |                                                             | _              |        |                                                                                                                                |
| Sample                                          | е Туре:                                                                                                                                                                                                                                                                     | Grab (G)                                                                                                                                                                            | Sh                                                         | elby Tube (T)      | $\square$ | Split S     | poon (S     | SS)           |         | Split Ba | rrel (SB)                                                   | C              | ore (C | )                                                                                                                              |
| Particle                                        | Size Legend:                                                                                                                                                                                                                                                                | Fines                                                                                                                                                                               | Clay                                                       | Silt               |           | · · · · · · | Sand        | •             |         | Gravel   | 67                                                          | Cobbles        |        | Boulder                                                                                                                        |
| Elevation<br>(m)<br>Depth<br>(m)<br>Soil Symbol |                                                                                                                                                                                                                                                                             | MAT                                                                                                                                                                                 | ERIAL DESCRIF                                              | -                  |           |             | Sample Type | Sample Number | SPT (N) | 16 17    | Bulk Unit<br>(kN/m <sup>3</sup> )<br>18 19<br>Particle Size | 20 21<br>: (%) | •<br>• | drained Shea<br><u>Strength (kPa)</u><br><u>Test Type</u><br>△ Torvane △<br>Pocket Pen.<br>△ Qu △<br>) Field Vane (<br>100 150 |
|                                                 | - mc           - mc           - hig           SILT - trac           - me           - me | C CLAY (Topsoil) - silt<br>titled black and grey<br>ist, stiff<br>h plasticity<br>ce clay, trace fine san<br>edium brown<br>ist to wet, soft<br>/ plasticity<br>ty, trace oxidation |                                                            |                    | n diam    | ı.)         |             | G01<br>G02    |         |          |                                                             |                |        |                                                                                                                                |
|                                                 | - ligt<br>- mc<br>- hig                                                                                                                                                                                                                                                     | it grey<br>ist, stiff<br>h plasticity<br>ions (<5 mm diam.) b                                                                                                                       | elow 1.8 m                                                 |                    |           |             |             | G03           |         |          |                                                             |                |        |                                                                                                                                |
| 2.5                                             | -firm below                                                                                                                                                                                                                                                                 | v 2.3 m                                                                                                                                                                             |                                                            |                    |           |             |             | G04<br>G05    |         |          |                                                             |                |        |                                                                                                                                |
| <u>230.3</u> -3.0                               | Notes:<br>1) Test ho<br>2) Test ho<br>below grou<br>3) Test ho                                                                                                                                                                                                              | TEST HOLE AT 3.1 m<br>le was squeezing in a<br>le was dry approximat<br>und surface.<br>le was backfilled with<br>te was used in the tes                                            | t 0.6 m below gro<br>ely 15 minutes a<br>cuttings to 0.3 m | after drilling and | surfac    |             |             |               |         |          |                                                             |                |        |                                                                                                                                |
| _ogged By: _⊺o                                  |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                     | Reviewed By                                                |                    |           |             |             |               |         |          |                                                             | ent Banni      |        |                                                                                                                                |

| Sample Type:       Grab (G)       Shelby Tube (T)       Split Spoon (SS)       Split Barrel (SB)       Core         Particle Size Legend:       Fines       Clay       Silt       Sand       Gravel       Cobbles         Image: Split S | re (C)<br>Boulders<br>Undrained Shear<br>Strength (kPa)<br><u>Test Type</u><br>△ Torvane △<br>● Pocket Pen. ●<br>⊠ Qu ⊠<br>○ Field Vane ○                 | 250 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Contractor:       Paddock Drilling Ltd.       Ground Elevation:       233.48 m Existing Ground         Method:       125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       June 27, 2012         Sample Type:       Image: Contract Mount       Date Drilled:       June 27, 2012         Particle Size Legend:       Fines       Clay       Sample Type:       Gravel       Gravel <th< th=""><th>rre (C)<br/>Boulders<br/>Undrained Shear<br/>Strength (kPa)<br/><u>Test Type</u><br/>△ Torvane △<br/>♥ Pocket Pen. ♥<br/>⊠ Qu ⊠<br/>○ Field Vane ○</th><th>250</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rre (C)<br>Boulders<br>Undrained Shear<br>Strength (kPa)<br><u>Test Type</u><br>△ Torvane △<br>♥ Pocket Pen. ♥<br>⊠ Qu ⊠<br>○ Field Vane ○                | 250 |
| Method:       125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       June 27, 2012         Sample Type:       Grab (G)       Shelby Tube (T)       Split Spoon (SS)       Split Barrel (SB)       Core         Particle Size Legend:       Fines       Clay       Silt       Sand       Grave       Cobbles         Image: Second State Legend:       MATERIAL DESCRIPTION       MATERIAL DESCRIPTION       Image: Second State Legend:       Particle Size (%)       Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Boulders         Undrained Shear         Strength (kPa)         Test Type         △ Torvane △         Pocket Pen. ◆         ☑ Qu ☑         ○ Field Vane ○ | 250 |
| Sample Type:       Grab (G)       Shelby Tube (T)       Split Spoon (SS)       Split Barrel (SB)       Core         Particle Size Legend:       Fines       Clay       Sold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boulders         Undrained Shear         Strength (kPa)         Test Type         △ Torvane △         Pocket Pen. ◆         ☑ Qu ☑         ○ Field Vane ○ | 250 |
| Particle Size Legend:       Fines       Clay       Silt       Sand       Gravel       Cobbles         5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Boulders         Undrained Shear         Strength (kPa)         Test Type         △ Torvane △         Pocket Pen. ◆         ☑ Qu ☑         ○ Field Vane ○ | 250 |
| Image: Second constraints       Image:                                                                                                                                                                                                                                                                                                   | Undrained Shear<br>Strength (kPa)<br><u>Test Type</u><br>△ Torvane △<br>♥ Pocket Pen. ●<br>⊠ Qu ⊠<br>○ Field Vane ○                                       | 250 |
| 233.0       0.5       CLAY - silty, trace silt inclusions (<2 mm diam.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Test Type</u><br>△ Torvane △<br>● Pocket Pen. ●<br>⊠ Qu ⊠<br>○ Field Vane ○                                                                            | 250 |
| 233.0       - mottled black and grey<br>- dry to moist, stiff, high plasticity         0.5       CLAY - silty, trace silt inclusions (<2 mm diam.) trace oxidation<br>- light grey<br>- moist, stiff<br>- high plasticity         1.0       G07         1.0       G07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           |     |
| - mottled black and grey<br>- dry to moist, stiff, high plasticity<br>0.5<br>- light grey<br>- moist, stiff<br>- high plasticity<br>1.0<br>- 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           |     |
| 233.0       0.5       CLAY - silty, trace silt inclusions (<2 mm diam.) trace oxidation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           |     |
| - light grey<br>- moist, stiff<br>- high plasticity<br>1.0<br>-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |     |
| - high plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
| G08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
| -firm below 2.3 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u></u>                                                                                                                                                   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |     |
| 230.4 – 3.0 G10 • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$                                                                                                                                                        |     |
| END OF TEST HOLE AT 3.1 m IN CLAY<br>Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                           |     |
| <ol> <li>Test hole was squeezing in at 0.6 m below ground surface.</li> <li>Test hole was dry approximately 15 minutes after drilling and open to 0.6 m below ground surface.</li> <li>Test hole was backfilled with cuttings to 0.3 m below ground surface. One bag of bentonite was used in the test hole from 0.3 m to the surface.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |     |

| <b>TREK</b>  |
|--------------|
| GEOTECHNICAL |

| Client:                          | CH2MHILI                                                                                         |                           |                                                                                                                                                                                                    |                                                                                                                                  | Proje             | ct Numbe                        | er:         | 0068                            | 3 002   | 00          |                                                             |                       |         |                                                                          |                                                    |
|----------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|-------------|---------------------------------|---------|-------------|-------------------------------------------------------------|-----------------------|---------|--------------------------------------------------------------------------|----------------------------------------------------|
| Proiect Name:                    | Waste Cor                                                                                        | mposting Facility Brady F | Road                                                                                                                                                                                               |                                                                                                                                  | Locat             |                                 |             |                                 |         |             | 377.282. 6                                                  | -629833.              | 332     |                                                                          |                                                    |
| Contractor:                      | Paddock D                                                                                        |                           |                                                                                                                                                                                                    |                                                                                                                                  |                   | nd Elevati                      |             |                                 |         |             |                                                             |                       |         |                                                                          |                                                    |
| Method:                          |                                                                                                  | olid Stem Auger, CME-8    | 50 Track Mount                                                                                                                                                                                     |                                                                                                                                  |                   | Drilled:                        |             |                                 | 27, 2   |             |                                                             | _                     |         |                                                                          |                                                    |
|                                  |                                                                                                  |                           |                                                                                                                                                                                                    | elby Tube (T)                                                                                                                    |                   | Split Spo                       |             |                                 |         |             | Barrel (SB                                                  |                       | Core (C | 、<br>、                                                                   |                                                    |
|                                  | е Туре:                                                                                          | Grab (G)                  |                                                                                                                                                                                                    |                                                                                                                                  |                   |                                 | -           | ວວ) [<br>                       |         | -           |                                                             |                       |         |                                                                          |                                                    |
| Particle                         | e Size Lege                                                                                      | nd: Fines                 | Clay                                                                                                                                                                                               | Silt                                                                                                                             |                   | Sa                              | and         |                                 |         | Grave       |                                                             |                       |         |                                                                          | Iders                                              |
| Elevation<br>(m)<br>Depth<br>(m) | CLAY -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                           | ERIAL DESCRIP<br>y, some rootlets (<br>trace organics (r<br>d, trace organics<br>d, trace precipitate<br>IN CLAY<br>t 1.2 m below gro<br>ely 15 minutes af<br>ground approxim<br>cuttings to 1.2 m | TION 5 mm diam.) ootlets <10 mm (rootlets <10 mm (rootlets <1 mm es ound surface. ter drilling and ately one day is below ground | n diam<br>Im diam | .)<br>n.)<br>o 1.2 m<br>illing. | Sample Type | G11<br>G12<br>G13<br>G15<br>G15 | SPT (N) | 16 1<br>0 2 | Bulk Ur<br>(kN/m<br>7 18<br>Particle Siz<br>0 40 6<br>PL MC | it Wt<br>)<br>9 20 21 |         | ndrained<br>Strength (<br><u>Test Ty</u><br>△ Torvar<br>Pocket F<br>⊠ Qu | Shear<br>(kPa)<br>pe<br>∩e ∆<br>Pen. <b>Φ</b><br>⊠ |




| LEVIE                                 | CHNIC                                                                 | AL                                                    |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
|---------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|---------------------------------|-------------|----------|-------------|---------------|---------|------------|-----------|------------------------------|----------|------------------------------------------------------------------------------------|-----------------------------------------------|
| Client:                               | CH2MHILL                                                              |                                                       |                                                                  |                                 | Proje       | ect Num  | ber:        | 0068          | 002 0   | 00         |           |                              |          |                                                                                    |                                               |
| Project Name:                         | Waste Compos                                                          | sting Facility Brady F                                | Road                                                             |                                 | Loca        | tion:    |             | UTM           | 14 N-   | 5513358    | 8.49, E-6 | 29746.183                    |          |                                                                                    |                                               |
| -                                     | Paddock Drilling                                                      | -                                                     |                                                                  |                                 | Grou        | nd Eleva | ation:      | 233.8         | 81 m E  | Existing ( | Ground    | -                            |          |                                                                                    |                                               |
| Method:                               | 125 mm Solid S                                                        | Stem Auger, CME-8                                     | 50 Track Mount                                                   |                                 | Date        | Drilled: |             | June          | 27, 20  | 012        |           |                              |          |                                                                                    |                                               |
| Sample                                | е Туре:                                                               | Grab (G)                                              | She                                                              | Iby Tube (T)                    | $\boxtimes$ | Split Sp | 000n (\$    | SS)           |         | Split Bar  | rel (SB)  | Co                           | re (C)   |                                                                                    |                                               |
| Particle                              | Size Legend:                                                          | Fines                                                 | Clay                                                             | Silt                            |             |          | Sand        |               |         | Gravel     | 62        | Cobbles                      |          | Boul                                                                               |                                               |
| Elevation<br>(m)<br>(m)<br>(m)<br>(m) |                                                                       |                                                       | ERIAL DESCRIPT                                                   | -                               |             |          | Sample Type | Sample Number | SPT (N) | 16 17      |           | 20 21<br>(%)<br>80 100<br>LL | Stre<br> | ained S<br>ength (I<br>est Typ<br>Torvan<br>ocket P<br>⊠ Qu ⊉<br>ield Vai<br>00 15 | kPa)<br><u>⊃e</u><br>e ∆<br>en. <b>Φ</b><br>⊠ |
|                                       | - mottl                                                               | CLAY (Topsoil) - silty<br>led black and grey          |                                                                  | 5 mm diam.)                     |             |          |             | 040           | -       |            |           |                              |          |                                                                                    |                                               |
| 233.5                                 | - mois                                                                | t, stiff, high plasticity<br>, trace organics (roo    | /<br>tlets <1 mm diam                                            | ) trace oxidat                  | tion tra    | ace silt |             | G16           |         |            | •         |                              |          |                                                                                    |                                               |
| 233.2 0.5                             | inclusions (                                                          | <10 mm diam.)<br>grey, moist, stiff,hig               |                                                                  | ), 11000 0,100                  |             |          |             | G17           | -       |            |           |                              |          | •                                                                                  |                                               |
|                                       | SILT AND C                                                            | CLAY LAYERS<br>ers 50-75 mm thick                     |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
| 232.9                                 | 2 silt layer                                                          | rs I25 mm thick                                       |                                                                  |                                 |             |          | _/          | G18           | -       | •          |           |                              |          |                                                                                    |                                               |
|                                       | - medi                                                                | e clay, trace fine san<br>ium brown, dry, soft,       | d, trace organics (<br>low plasticity                            | rootlets <1 m                   | m dian      | n.)      |             | G19           | -       | •          |           |                              |          |                                                                                    |                                               |
|                                       | -moist below                                                          | v 1.1 m                                               |                                                                  |                                 |             |          |             | 010           | -       |            | _         |                              |          |                                                                                    |                                               |
| 232.3 -1.5                            |                                                                       |                                                       |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
|                                       | - light<br>- mois                                                     | , trace medium sand<br>grey<br>t, stiff<br>plasticity | l, trace precipitate                                             | es                              |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
| -2.0-                                 |                                                                       |                                                       |                                                                  |                                 |             |          |             | G20           |         |            | •         |                              |          | •                                                                                  |                                               |
| -2.5                                  | -firm below 2                                                         | 2.3 m                                                 |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
| 230.8 3.0                             |                                                                       | ST HOLE AT 3.1 m                                      |                                                                  |                                 |             |          |             | G21           | _       |            |           |                              |          |                                                                                    |                                               |
|                                       | Notes:<br>1) Test hole<br>2) Test hole<br>below groun<br>3) Test hole | was squeezing in a was dry approximat                 | t 0.6 m below grou<br>ely 15 minutes afte<br>cuttings to 1.2 m t | er drilling and<br>below ground | surfac      |          | ag          |               |         |            |           |                              |          |                                                                                    |                                               |
|                                       |                                                                       |                                                       |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
|                                       |                                                                       |                                                       |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
|                                       |                                                                       |                                                       |                                                                  |                                 |             |          |             |               |         |            |           |                              |          |                                                                                    |                                               |
| Logged By: _To                        | om Hildahl                                                            |                                                       | Reviewed By:                                                     | Kent Banni                      | ster        |          |             |               | Proje   | ct Engin   | neer: _K  | ent Bannis                   | er       |                                                                                    |                                               |

| FREK         |  |
|--------------|--|
| GEOTECHNICAL |  |

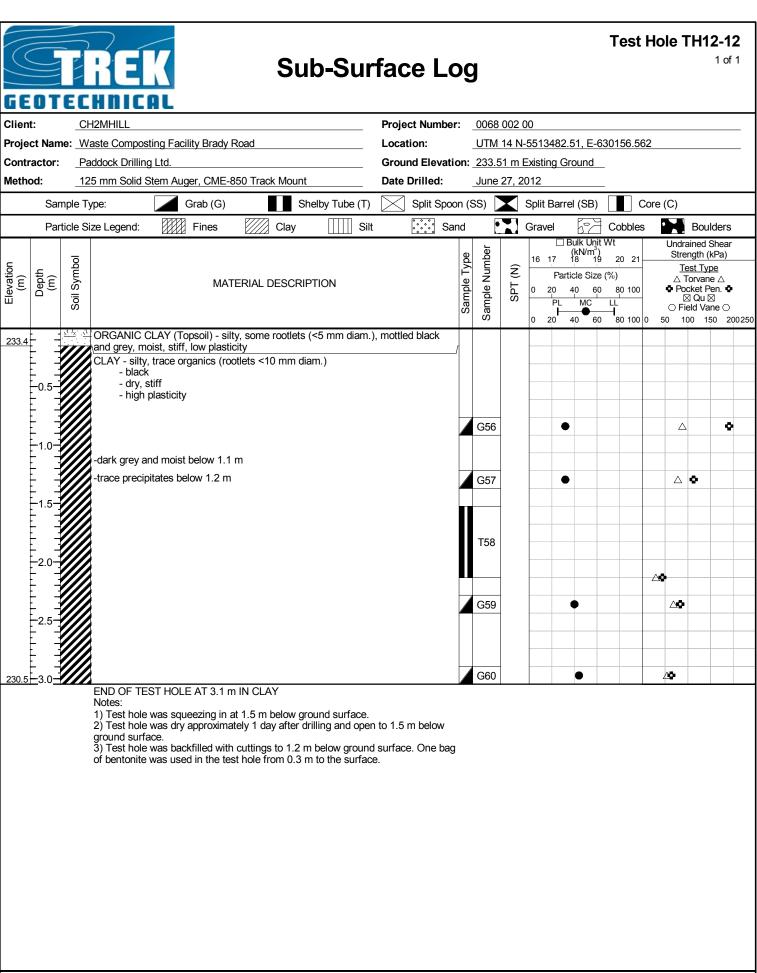
| Client:                          | CH2MHILL               |                                              |                      |                | Proje         | ct Number   | :           | 0068          | 002 (   | 00      |                    |                            |          |       |        |                       |          |   |
|----------------------------------|------------------------|----------------------------------------------|----------------------|----------------|---------------|-------------|-------------|---------------|---------|---------|--------------------|----------------------------|----------|-------|--------|-----------------------|----------|---|
| Project Name:                    | Waste Compos           | sting Facility Brady F                       | Road                 |                | Locat         | ion:        | -           | UTM           | 14 N-   | 5513    | 281.7              | '84, E-                    | 6297     | 92.11 | 8      |                       |          |   |
| Contractor:                      | Paddock Drillin        | ig Ltd.                                      |                      |                | Grou          | nd Elevatio | on:         | 233.6         | 60 m E  | Existin | ng Gro             | ound                       | _        |       |        |                       |          |   |
| Method:                          | 125 mm Solid           | Stem Auger, CME-8                            | 50 Track Mount       |                | Date          | Drilled:    | -           | June          | 27, 2   | 012     |                    |                            | _        |       |        |                       |          |   |
| Sample                           | e Type:                | Grab (G)                                     | She                  | elby Tube (T)  | $\square$     | Split Spoo  | on (S       | SS)           |         | Split E | Barrel             | (SB)                       |          | Co    | ore (C | C)                    |          |   |
| Particle                         | e Size Legend:         | Fines                                        | Clay                 | Silt           |               | Sar         | nd          | ۲             |         | Grave   |                    | 53                         |          | bles  | •      | В                     | oulder   | s |
|                                  | 5                      |                                              |                      |                |               |             | e           | ber           |         | 16 1    | □ Bu<br>( <br>17 1 | ulk Unit<br>kN/m³)<br>8 19 | Wt 20    | 21_   |        | Indraine<br>Strengt   |          |   |
| Elevation<br>(m)<br>Depth<br>(m) |                        |                                              |                      |                |               |             | Sample Type | Sample Number | (Z      |         |                    | le Size                    |          | 21    |        | <u>Test</u><br>∆ Torv |          |   |
| Elevatio<br>(m)<br>Depth<br>(m)  |                        | MAT                                          | ERIAL DESCRIP        | HON            |               |             | mple        | l aldı        | SPT (N) | 0 2     | 1 1                | 0 60<br>MC                 | 80<br>LL | 100   | 4      | Pocke                 | t Pen. • |   |
|                                  | )                      |                                              |                      |                |               |             | s           | San           |         | 0 2     |                    | 0 60                       | _        | 100 0 |        | ⊃ Field<br>100        |          |   |
|                                  | ]                      | CLAY (Topsoil) - silt                        | y, some rootlets (•  | <5 mm diam.)   |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| E di i                           | - drv                  | led black and grey stiff, high plasticity    |                      |                |               |             |             | G22           |         |         | •                  |                            |          |       |        |                       |          |   |
| <u>233.2</u><br>-0.5             | SILT - some            | e clay, trace oxidatio                       | n                    |                |               |             |             |               |         |         | _                  |                            |          |       |        |                       |          |   |
|                                  | - mois                 | lium brown<br>st to wet, firm                |                      |                |               |             |             | G23           |         |         | •                  |                            |          |       |        |                       | _        |   |
| F                                | - low  <br>-soft below | plasticity<br>0.6 m                          |                      |                |               |             |             | G24           |         |         | •                  |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         | -                  |                            |          |       |        |                       |          | _ |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| 232.2                            |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| -1.5-                            |                        | , trace medium sand                          | d, trace precipitate | es (<2 mm dia  | m.)           |             | 1           |               |         |         |                    |                            |          |       | _      |                       |          | _ |
|                                  |                        | st, stiff                                    |                      |                |               |             |             |               |         |         |                    |                            |          |       | _      |                       |          |   |
|                                  | - high                 | plasticity                                   |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| -2.0-                            |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             | G25           |         |         | •                  |                            |          |       | Δ      | •                     |          |   |
|                                  | -firm below            | 2.3 m                                        |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| - 2.3                            |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       | _      |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          | _ |
| 230.6 - 3.0 -                    |                        |                                              |                      |                |               |             |             | G26           |         |         |                    | •                          |          |       | ∆¢     |                       |          |   |
|                                  | END OF TE<br>Notes:    | EST HOLE AT 3.1 m                            | IN CLAY              |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  | 1) Test hole           | e was squeezing in a<br>e was dry approximat | t 0.8 m below gro    | und surface.   | to 0.9        | n holow     |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  | ground surf            | ace.                                         |                      | •              |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  | of bentonite           | e was backfilled with<br>was used in the tes | t hole from 0.3 m    | to the surface | surrace<br>e. | e. Une bag  |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
|                                  |                        |                                              |                      |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |
| Logged By: _T                    |                        |                                              | Reviewed By:         |                |               |             |             |               |         |         |                    |                            |          |       |        |                       |          |   |

|                                  | <u>, 11</u>         | RE                                                  | K                                                                                            | S             | Sub-Su              | irfac       | e Lo        | bg          |                          |        |            |                                            | Test H     | lole T       |                            | - <b>06</b><br>of 1 |
|----------------------------------|---------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|---------------------|-------------|-------------|-------------|--------------------------|--------|------------|--------------------------------------------|------------|--------------|----------------------------|---------------------|
| GEOT                             | EC                  | HNIC                                                | AL                                                                                           |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
| Client:                          |                     | H2MHILL                                             |                                                                                              |               |                     | Proje       | ct Number   | :           | 0068                     | 002 0  | 0          |                                            |            |              |                            |                     |
| Project Nam                      | e: W                | aste Compos                                         | sting Facility Brady                                                                         | Road          |                     | Locat       |             |             | υтм                      | 14 N-  | 551332     | 21.603, E                                  | -629865.74 | 1            |                            |                     |
| Contractor:                      | Pa                  | addock Drilling                                     | g Ltd.                                                                                       |               |                     | Grou        | nd Elevatio | on: _       | 233.6                    | 62 m E | Existing   | Ground                                     | _          |              |                            |                     |
| Method:                          | 12                  | 5 mm Solid S                                        | Stem Auger, CME-                                                                             | 850 Track N   | lount               | Date        | Drilled:    | _           | June                     | 27, 20 | 012        |                                            | _          |              |                            |                     |
| Sam                              | nple Ty             | ype:                                                | Grab (G)                                                                                     |               | Shelby Tube (       | T) 🔀        | Split Spoo  | on (S       | S)                       |        | Split Ba   | arrel (SB)                                 | Co         | re (C)       |                            |                     |
| Part                             | ticle Si            | ze Legend:                                          | Fines                                                                                        | CI            | ay 🔛 :              | Silt        | Sar         | nd          | ۲                        |        | Gravel     | 52                                         | Cobbles    |              | Boulde                     | ers                 |
|                                  | _                   |                                                     |                                                                                              |               |                     |             |             | e           | oer                      |        |            | Bulk Unit<br>(kN/m <sup>3</sup> )<br>18 19 | t Wt       |              | ned She<br>gth (kPa        |                     |
| tion                             | Symbol              |                                                     |                                                                                              |               |                     |             |             | Sample Type | Sample Number            | 2      | 16 17<br>F | 18 19<br>Particle Size                     |            | Tes          | <u>st Type</u><br>srvane ∠ |                     |
| Elevation<br>(m)<br>Depth<br>(m) | il Sy               |                                                     | MA                                                                                           | TERIAL DES    | SCRIPTION           |             |             | nple        | ple N                    | SPT    | 0 20       | 40 60                                      | . ,        | Pocl         | ket Pen.<br>Qu 🛛           |                     |
| ш                                | Soil                |                                                     |                                                                                              |               |                     |             |             | Sar         | Sam                      | 0,     | P          |                                            |            | ○ Fiel       | d Vane                     | -                   |
|                                  | <u>zi k</u> <u></u> | ORGANIC (                                           | CLAY (Topsoil) - s                                                                           | Ity, some roo | otlets (<5 mm dia   | n.), mottle | d black     |             |                          |        | 0 20       | 40 60                                      | 80 100 0   | 50 100       | 150                        | 200250              |
| 233.5                            |                     | and grey, dr                                        | y, stiff, high plastic                                                                       | ity           |                     |             |             |             | 021                      |        |            |                                            |            |              |                            |                     |
|                                  |                     | - mottl                                             | ed grey and brown                                                                            | nd, trace pre | cipitates (<2 mm    | uam.)       |             |             |                          |        |            |                                            |            |              |                            |                     |
| -0.5-                            |                     |                                                     | t, stiff<br>plasticity                                                                       |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          | -      |            |                                            |            | _            |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             | A           | G28                      | -      |            | •                                          |            |              |                            |                     |
| -1.0-                            |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
| -1.5-                            |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             | н           | <b>T</b> 20              |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             | н           | 129                      |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            | _            |                            |                     |
|                                  |                     | -firm below                                         | 2.3 m                                                                                        |               |                     |             |             |             | 000                      | -      |            |                                            |            |              |                            |                     |
| -25-                             |                     |                                                     | 2.5 11                                                                                       |               |                     |             |             | A           | G30                      |        |            | -                                          |            | ₩ <u>₽</u> _ |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
| 230.6-3.0-                       |                     |                                                     |                                                                                              |               |                     |             |             |             | G31                      |        |            |                                            |            | ۵            |                            |                     |
|                                  |                     | END OF TE<br>Notes:                                 | ST HOLE AT 3.1                                                                               | m IN CLAY     |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     | 1) Test hole                                        | was dry approxim                                                                             | ately 1 day a | fter drilling and o | pen to 3.1  | m below     |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     | 2) Test hole                                        | was backfilled wit                                                                           | h cuttings to | 1.2 m below grou    | ind surface | e. One bag  |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     | or bentonite                                        | was used in the te                                                                           | est noie from | 0.3 m to the sun    | ace.        |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     |                                                     |                                                                                              |               |                     |             |             |             |                          |        |            |                                            |            |              |                            |                     |
|                                  |                     | END OF TE<br>Notes:<br>1) Test hole<br>around surfa | , trace medium sa<br>led grey and brown<br>t, stiff<br>plasticity<br>2.3 m<br>ST HOLE AT 3.1 | mi, trace pre | cipitates (<2 mm    | diam.)      | m below     |             | G27<br>G28<br>T29<br>G30 |        |            |                                            |            |              |                            |                     |

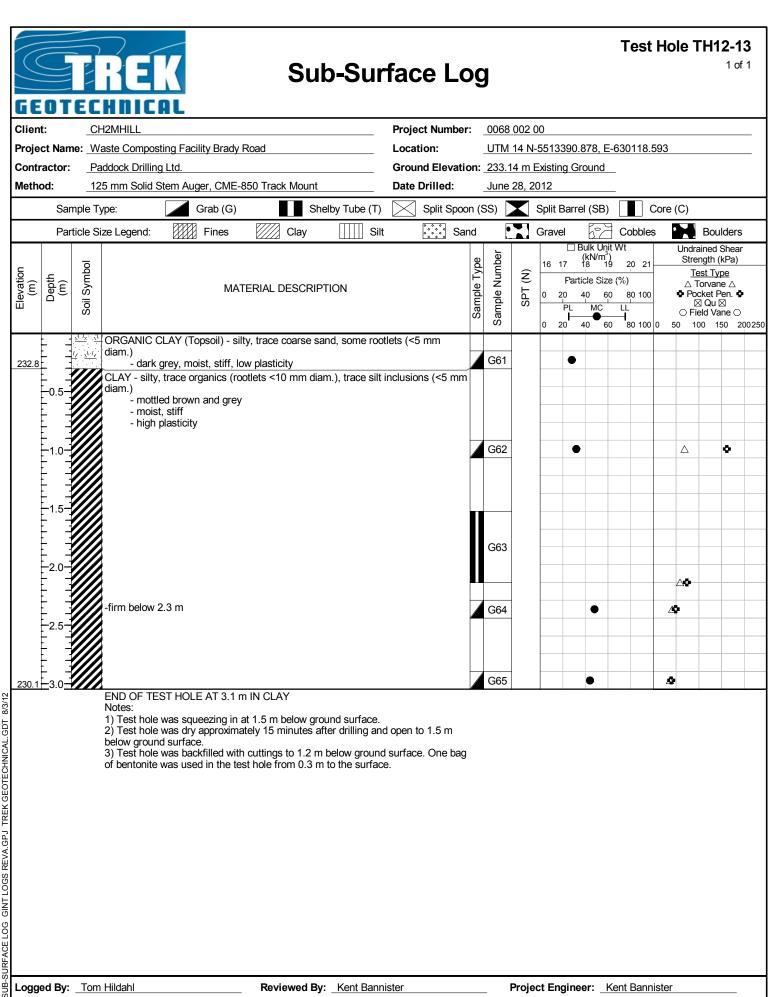


8/3/12

|                  |                      |                                     | RE                                                                          |                                                                                                                          | Su                                     | b-Sur             | fac             | e Lo                                      | bg          |                          |         |                    |                                                        |                                              | Test    | Но     | le 1                                        | "H1:                                                                            | <b>2-0</b> 8<br>1 of                              | - |
|------------------|----------------------|-------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-----------------|-------------------------------------------|-------------|--------------------------|---------|--------------------|--------------------------------------------------------|----------------------------------------------|---------|--------|---------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|---|
| Clien            | t:<br>ct Na<br>racto | <u>_C</u><br>ame: <u>_</u><br>r: _P | H2MHILL<br>/aste Compos<br>addock Drillin                                   | sting Facility Brady I                                                                                                   |                                        |                   | Locati<br>Groun | t Number<br>on:<br>d Elevatio<br>Drilled: | <u> </u>    | JTM<br>33.1              |         | -55133<br>Existing |                                                        |                                              | 30011.4 | 154    |                                             |                                                                                 |                                                   | _ |
|                  | S                    | ample 1                             | уре:                                                                        | Grab (G)                                                                                                                 | St                                     | elby Tube (T)     | $\square$       | Split Spoo                                | n (SS       | 5)                       |         | Split Ba           | arrel (S                                               | B)                                           |         | Core ( | (C)                                         |                                                                                 |                                                   |   |
|                  | Р                    | article S                           | Size Legend:                                                                | Fines                                                                                                                    | Clay                                   | Silt              |                 | Sar                                       | nd          | ٠                        |         | Gravel             | 5                                                      | 2                                            | Cobbles | ;      |                                             | Boul                                                                            | ders                                              |   |
| Elevation<br>(m) | Depth                | Soil Symbol                         |                                                                             | MAT                                                                                                                      | ERIAL DESCRIF                          | PTION             |                 |                                           | Sample Type | Sample Number            | SPT (N) | 16 17<br>F<br>0 20 | Bulk       (kN/     18     Particle \$     40     PL M | m <sup>3</sup> )<br>19<br>Size ('<br>60<br>C | 20 21   |        | Stre<br><u>T</u> e<br>△ T<br>● Poo<br>○ Fie | ained S<br>ngth (H<br>est Typ<br>orvane<br>cket P<br>2 Qu D<br>eld Var<br>00 15 | kPa)<br><u>&gt;e</u><br>≥ ∆<br>en. ●<br>⊴<br>ne ⊖ |   |
| 233.0            |                      |                                     | and grey, m<br>CLAY - silty<br>- light<br>- mois<br>- high<br>-trace precip | it, stiff<br>plasticity<br>pitates (< 50 mm dia                                                                          | icity<br>d<br>am.) below 0.8 m         | <u> </u>          | , mottlec       | i black                                   |             | 536<br>537<br>738<br>539 |         |                    |                                                        |                                              |         | •<br>• |                                             |                                                                                 |                                                   |   |
|                  |                      |                                     | Notes:<br>1) Test hole<br>2) Test hole<br>below arour                       | EST HOLE AT 3.1 m<br>was squeezing in a<br>was dry approxima<br>d surface.<br>was backfilled with<br>was used in the tes | at 1.7 m below gr<br>tely 15 minutes a | fter drilling and |                 |                                           |             |                          |         |                    |                                                        |                                              |         |        |                                             |                                                                                 |                                                   |   |


| <b>TREK</b>  |
|--------------|
| GEOTECHNICAL |

| GE               |                             | HNIC                                                                   | AL                                                                                                                      |                                                               |                                |           |             |             |               |         |                            |                                                            |            |         |                                                                |                                            |
|------------------|-----------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|-----------|-------------|-------------|---------------|---------|----------------------------|------------------------------------------------------------|------------|---------|----------------------------------------------------------------|--------------------------------------------|
| Client:          |                             | 12MHILL                                                                |                                                                                                                         |                                                               |                                | -         | ct Number   |             |               |         |                            |                                                            |            |         |                                                                |                                            |
| -                |                             |                                                                        | ting Facility Brady I                                                                                                   | Road                                                          |                                | Loca      |             |             |               |         |                            |                                                            | 630081.8   | 24      |                                                                |                                            |
| Contra           |                             | ddock Drilling                                                         | -                                                                                                                       |                                                               |                                |           | nd Elevatio |             |               |         | -                          | Fround                                                     | -          |         |                                                                |                                            |
| Method           |                             |                                                                        | Stem Auger, CME-8                                                                                                       |                                                               |                                |           | Drilled:    |             | une 2         |         |                            |                                                            |            |         |                                                                |                                            |
|                  | Sample Ty                   | -                                                                      | Grab (G)                                                                                                                |                                                               | elby Tube (T)                  | $\bowtie$ | Split Spoo  | -           | 5)            |         | Split Barr                 | el (SB)                                                    |            | ore (C) | 1                                                              |                                            |
|                  | Particle Si                 | ze Legend:                                                             | Fines                                                                                                                   | Clay                                                          | Silt                           |           | ःःःः Sar    | nd          | •             |         | Gravel                     | Bulk Unit                                                  | Cobbles    |         |                                                                | ulders<br>Shear                            |
| Elevation<br>(m) | Depth<br>(m)<br>Soil Symbol |                                                                        | MAT                                                                                                                     | ERIAL DESCRIP                                                 | TION                           |           |             | Sample Type | Sample Number | SPT (N) | 16 17<br>Par<br>0 20<br>PL | (kN/m <sup>3</sup> )<br>18 19<br>ticle Size<br>40 60<br>MC | 20 21      |         | rength<br><u>Test Ty</u><br>Torva<br>Pocket<br>⊠ Qu<br>Field V | (kPa)<br>/pe<br>∩e ∆<br>Pen. <b>Φ</b><br>⊠ |
| 233.3            |                             | - mottle                                                               | CLAY (Topsoil) - silf<br>ed black and grey<br>, stiff, high plasticit                                                   | -                                                             | <5 mm diam.)                   |           |             |             | 541           |         |                            | )                                                          |            |         |                                                                |                                            |
| 232.5            | 0.5                         | CLAY - silty,<br>- dark g<br>- dry to                                  | trace coarse sand                                                                                                       |                                                               | ootlets <10 mr                 | n diam    | .)          |             | 642           |         |                            |                                                            |            |         | △ •                                                            |                                            |
| 231.9            | 1.5                         | - mediu<br>- moist<br>- low pl                                         | lasticity                                                                                                               |                                                               |                                | m dian    | 1.)         | G           | 42A           |         | •                          |                                                            | 2          | •       |                                                                |                                            |
|                  | 2.0                         | - browr<br>- moist                                                     |                                                                                                                         | d, trace precipital                                           | ies                            |           |             |             | 643           |         |                            |                                                            |            |         | •                                                              |                                            |
| 230.6            | 2.5                         |                                                                        |                                                                                                                         |                                                               |                                |           |             |             | 644           |         |                            | •                                                          |            |         |                                                                |                                            |
| Loggeo           |                             | Notes:<br>1) Test hole<br>2) Test hole<br>below ground<br>3) Test hole | ST HOLE AT 3.1 m<br>was squeezing in a<br>was dry approxima<br>d surface.<br>was backfilled with<br>was used in the tes | at 1.1 m below gro<br>tely 15 minutes at<br>cuttings to 1.2 m | fter drilling and below ground | surfac    |             |             |               |         |                            |                                                            |            |         |                                                                |                                            |
| Logged           | <b>d By:</b> _Tom           | Hildahl                                                                |                                                                                                                         | Reviewed By                                                   | : Kent Banni                   | ster      |             |             | P             | Proje   | ct Engine                  | eer: _K                                                    | ent Bannis | ster    |                                                                |                                            |


|                  |                       |                                 | RE                                                               | K                                                                  |                                                       |                      | Su                                    | b-Sur                                                              | fac            | e Lo                                         | bg       |                                 |               |                   |                                                                         |      | Tes   | st H  | ole 1 | ΓH1                                                                      | <b>2-1</b><br>1 of                              | - |
|------------------|-----------------------|---------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|----------------------|---------------------------------------|--------------------------------------------------------------------|----------------|----------------------------------------------|----------|---------------------------------|---------------|-------------------|-------------------------------------------------------------------------|------|-------|-------|-------|--------------------------------------------------------------------------|-------------------------------------------------|---|
| Client           | :<br>t Name<br>actor: | <u>CH</u><br>e: <u>Wa</u><br>Pa | 2MHILL<br>aste Compos<br>ddock Drilling<br>5 mm Solid S          | sting Fac<br>g Ltd.                                                |                                                       |                      | ck Mount                              |                                                                    | Locat<br>Grour | ct Number<br>ion:<br>nd Elevatio<br>Drilled: | <u> </u> |                                 | 14 N<br>1 m l | -55134<br>Existin |                                                                         |      | 63004 | 8.068 | 3     |                                                                          |                                                 |   |
| Metho            |                       | ple Ty                          |                                                                  |                                                                    | Grab (G)                                              | 500 114              |                                       | elby Tube (T)                                                      |                | Split Spoo                                   |          |                                 |               | Split E           | Barrel (                                                                | (SB) |       | Core  | e (C) |                                                                          |                                                 |   |
|                  |                       |                                 | ze Legend:                                                       |                                                                    | . ,                                                   | <i>\</i> ///         | Clay                                  | Silt                                                               |                | Sar                                          | -        |                                 |               | Grave             |                                                                         | 707  | Cobb  |       |       | Bou                                                                      | Iders                                           |   |
| Elevation<br>(m) | Depth<br>(m)          | Soil Symbol                     |                                                                  |                                                                    |                                                       | ERIAL                | DESCRIP                               |                                                                    |                |                                              |          | Sample Number                   | SPT (N)       | 16 1<br>0 2       | Bul     (kl     (kl     7     18     Particle     0     40     PL     L |      | 20    | 00    | Stre  | ained sength (<br>est Typ<br>Forvan<br>cket P<br>⊴ Qu<br>eld Va<br>00 15 | kPa)<br>pe<br>e ∆<br>Ven. <b>Ф</b><br>⊠<br>ne ⊖ | • |
| 233.2            |                       |                                 | - black<br>- mois<br>CLAY - silty<br>- mottl<br>- dry to         | t, stiff, hi<br>, trace cc<br>ed brown<br>o moist, v<br>plasticity | gh plastici<br>barse sand<br>h and grey<br>very stiff | ty<br>, trace o      |                                       | <5 mm diam.)<br>potlets <10 mr                                     | n diam.        | )                                            |          | G45<br>G46<br>T47<br>G48<br>G49 |               |                   |                                                                         |      |       |       |       |                                                                          |                                                 |   |
|                  |                       |                                 | <ol> <li>Test hole<br/>below groun</li> <li>Test hole</li> </ol> | was squ<br>was dry<br>d surfac<br>was bac                          | leezing in a<br>approxima<br>e.<br>kfilled with       | at 1.4 m<br>Itely 15 | below gro<br>minutes af<br>s to 1.2 m | und surface.<br>ter drilling and<br>below ground<br>to the surface | surface        |                                              |          |                                 |               |                   |                                                                         |      |       |       |       |                                                                          |                                                 |   |

| <b>TREK</b>  |
|--------------|
| GEOTECHNICAL |

| Client:                   | CH2MHILL                                                 |                       |                                            |                 | Droige    | t Number        |             | 0060          | 002 0 | 0     |                    |                             |          |         |                   |        | - |
|---------------------------|----------------------------------------------------------|-----------------------|--------------------------------------------|-----------------|-----------|-----------------|-------------|---------------|-------|-------|--------------------|-----------------------------|----------|---------|-------------------|--------|---|
|                           |                                                          | ting Facility Brady F | Road                                       |                 | Locati    |                 |             |               |       |       | 341 2              | 77 E_4                      | 629760.5 | 574     |                   |        |   |
| Contractor:               | Paddock Drilling                                         |                       | (Oau                                       |                 |           | d Elevatio      | _           |               |       |       | J <del>4</del> 1.J | <i>11</i> , <b>∟</b> -0     | 023700.0 | <i></i> |                   |        |   |
| Method:                   |                                                          | Stem Auger, CME-8     | 50 Track Mount                             |                 | Date D    |                 | _           |               | 27, 2 |       |                    |                             |          |         |                   |        |   |
| Samr                      | ble Type:                                                | Grab (G)              |                                            | by Tube (T)     |           | Split Spoo      | _           | _             |       |       | Barrel             | (SB)                        |          | Core (C | )                 |        |   |
|                           | cle Size Legend:                                         | Fines                 |                                            | Silt            |           | San             |             |               |       | Grave |                    | 62                          | Cobbles  | ·       |                   | oulder |   |
| T aluc                    | le Olze Legena.                                          | MMM 1 mes             |                                            |                 | l         | <u>,,,,</u> Oai |             | <u> </u>      |       |       | 🗆 Βι               | ılk Unit                    |          |         | ndraine           |        |   |
| R                         |                                                          |                       |                                            |                 |           |                 | ype         | Sample Number |       | 16 1  | 17                 | kN/m <sup>3</sup> )<br>8 19 | 20 21    | 5       | Strength<br>Test  |        | ) |
| Depth<br>(m)<br>il Symbol |                                                          | MATER                 | IAL DESCRIPTION                            | I               |           |                 | ole T       | e Nu          | (N)   | 0 2   |                    |                             | ``'      |         | ∆ Torva<br>Pocket | ane 🛆  |   |
| Soil                      |                                                          |                       |                                            |                 |           |                 | Sample Type | ample         | SPT   |       | 20 40<br>PL        | 0 60<br>MC                  | 80 100   |         | Field V           | u 🖂    |   |
|                           |                                                          |                       |                                            |                 |           |                 | 0)          | ŝ             |       | 0 2   | 20 4               | 0 60                        | 80 100   |         | 100               |        |   |
|                           | RGANIC CLAY (T<br>lasticity                              | Γopsoil) - silty, som | e rootlets (<5 mm o                        | diam.), black,  | moist, s  | tiff, low       | 4           | G50           | -     |       | •                  |                             |          |         |                   |        |   |
|                           | LAY - silty, trace c                                     | organics (rootlets <  | 10 mm diam.), trac                         | e oxidation, tr | race silt |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
| 0.5- <b>///</b>           | nclusions (<5 mm o<br>- medium brov                      |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   | _      | + |
|                           | <ul> <li>moist, stiff</li> <li>high plasticit</li> </ul> | <sup>t</sup> y        |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
| <u>-///</u>               |                                                          |                       |                                            |                 |           |                 |             | G51           |       |       | •                  |                             |          |         |                   | Þ      |   |
| 1.0                       |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       | ity from 1.1 to 1.2 r                      |                 |           |                 | 4           | G52           | -     |       | •                  |                             |          |         |                   |        |   |
|                           | race medium sanc<br>elow 1.2 m                           | d, trace precipitates | (<5 mm diam.), ar                          | nd mottled gre  | ey and b  | rown            |             | <u> </u>      | -     |       |                    |                             |          |         |                   |        |   |
| 1.5-                      |                                                          |                       |                                            |                 |           |                 | A           | G53           | -     |       | •                  | )                           |          |         | -                 | •      |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   | _      | _ |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        | _ |
| 2.0                       |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             | G54           |       |       |                    | •                           |          | -       |                   |        |   |
|                           | irm below 2.3 m                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
| 2.5-                      |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   | _      |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             | G55           |       |       |                    | •                           |          | ΦΔ      |                   |        | _ |
|                           |                                                          | LE AT 3.1 m IN CL     | AY                                         |                 |           |                 |             | 000           |       |       |                    | -                           |          | • -     |                   |        |   |
|                           | lotes:<br>) Test hole was sq                             | ueezing in at 0.9 m   | h below ground surf                        | ace.            |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
| 2                         |                                                          |                       | minutes after drillir                      |                 | o 0.9 m   | below           |             |               |       |       |                    |                             |          |         |                   |        |   |
| 3                         | ) Test hole was ba                                       |                       | gs to 1.2 m below g<br>m 0.3 m to the surf |                 | e. One b  | ag of           |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          | n based off of GPS    |                                            | ace.            |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |
|                           |                                                          |                       |                                            |                 |           |                 |             |               |       |       |                    |                             |          |         |                   |        |   |



8/3/12



|                       |                                |                 | REK                                                                                                                                                                                                                                               |                        | Su                                           | b-Sur                                | face Lo                                                         | DC<br>DC      | J                                      |               |               |                                    | Test H           | lole <sup>-</sup>                                                                    |                                 | <b>2-14</b><br>1 of 1 |  |
|-----------------------|--------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------------------------------|---------------|----------------------------------------|---------------|---------------|------------------------------------|------------------|--------------------------------------------------------------------------------------|---------------------------------|-----------------------|--|
| Clien<br>Proje        | t:<br>ct Nar<br>ractor:<br>od: | <br>me:W<br>:Pa | HINICAL<br>H2MHILL<br>aste Composting Facilit<br>addock Drilling Ltd.<br>5 mm Solid Stem Auge<br>ype:                                                                                                                                             |                        | ) Track Mount                                | nelby Tube (T)                       | Project Number<br>Location:<br>Ground Elevatio<br>Date Drilled: | on:           | 234.8 <sup>-</sup><br>June 2           |               | re (C)        |                                    |                  |                                                                                      |                                 |                       |  |
|                       | Pa                             | rticle S        | ize Legend:                                                                                                                                                                                                                                       | Fines                  | Clay                                         | Silt                                 | Sar                                                             | nd            | •                                      |               | Grave         | 62                                 | Cobbles          |                                                                                      | Bould                           | ders                  |  |
| Elevation<br>(m)      | Depth<br>(m)                   | Soil Symbol     |                                                                                                                                                                                                                                                   |                        | RIAL DESCRIF                                 |                                      | Sample Type                                                     | Sample Number | SPT (N)                                | 16 17<br>0 20 | Particle Size | ) 20 21<br>∋ (%)<br>⊃ 80 100<br>LL | Stre<br><u>I</u> | ained S<br>ength (k<br>est Typ<br>Torvane<br>cket Pe<br>⊠ Qu ⊠<br>ield Van<br>00 150 | Pa)<br><u>e</u><br>en. <b>Φ</b> | 250                   |  |
| <u>233.3</u><br>233.1 | - 1.0                          |                 | CLAY (Fill) - silty, trace<br>diam.), trace oxidation,<br>- mottled grey an<br>- moist, firm<br>- high plasticity<br>ORGANIC CLAY (Top<br>black and grey, moist,<br>CLAY - silty, trace coa<br>- dark grey<br>- moist, stiff<br>- high plasticity | trace glass<br>d brown | some organica<br>lasticity<br>ace organics ( | s (rootlets <5 m                     | m diam.), mottled                                               |               | G66<br>G67<br>G68<br>G70<br>G71<br>G72 |               |               |                                    |                  |                                                                                      |                                 |                       |  |
|                       |                                |                 | <ol> <li>Test hole was squee</li> <li>Test hole was dry ap<br/>below ground surface.</li> <li>Test hole was backf<br/>of bentonite was used</li> </ol>                                                                                            | oproximatel            | y 15 minutes a<br>uttings to 1.2 n           | after drilling and<br>n below ground | surface. One bag                                                |               |                                        |               |               |                                    |                  |                                                                                      |                                 |                       |  |
| Logg                  | ed By:                         | Tom             | Hildahl                                                                                                                                                                                                                                           |                        | Reviewed B                                   | y: Kent Banni                        | ster                                                            |               | Р                                      | roie          | ct Enc        | ineer: ł                           | Kent Bannist     | er                                                                                   |                                 |                       |  |

SUB-SURFACE LOG GINT LOGS REVA.GPJ TREK GEOTECHNICAL.GDT 8/3/12

|         | 7    |                           |
|---------|------|---------------------------|
|         | ťΞ   | $\langle \langle \rangle$ |
| GEOTECI | HNIC | AL                        |

| Client:                          | CH2     | 2MHILL                      |                                           |                                               |                   | Proje          | ct Number   | :           | 0068 002 00<br>UTM 14 N-5513342.445, E-630049.451 |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|----------------------------------|---------|-----------------------------|-------------------------------------------|-----------------------------------------------|-------------------|----------------|-------------|-------------|---------------------------------------------------|-------------------|--------|------|--------------------------------------------|---------|----------|--------------------------------------------------------------|--------------------|----------|--|
| Project Name                     | e:_Wa   | ste Compos                  | sting Facility Brady                      | Road                                          |                   | Loca           | tion:       |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| Contractor:                      | Pad     | dock Drillin                | g Ltd.                                    |                                               |                   | Grou           | nd Elevatio | on:         | : 234.70 m Existing Ground                        |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| Method:                          | 125     | mm Solid S                  | Stem Auger, CME-                          | 850 Track Mount                               |                   | Date           | Drilled:    |             | June                                              | e 28, 2           | 2012   |      |                                            | _       |          |                                                              |                    |          |  |
| Sam                              | ple Typ | e:                          | Grab (G)                                  | Sh                                            | Split Spoon (     |                |             | SS)         |                                                   | Split Barrel (SB) |        |      | Core (C)                                   |         |          |                                                              |                    |          |  |
| Parti                            | cle Siz | e Legend:                   | Fines                                     | Clay                                          | Silt              |                | Sar         | nd          |                                                   |                   | Gravel |      | Cobbles                                    |         | Boulders |                                                              | ders               |          |  |
|                                  | _       |                             |                                           |                                               |                   |                |             | ۵           | ber                                               |                   |        |      | Bulk Unit<br>(kN/m <sup>3</sup> )<br>18 19 | Wt      |          |                                                              | ained S<br>ngth (k |          |  |
| tion                             | Symbol  |                             |                                           |                                               |                   |                |             | Typ         | Im                                                | Î                 | 16     |      | icle Size                                  |         | 1        | <u>Test Type</u><br>△ Torvane △<br>◆ Pocket Pen. ◆<br>⊠ Qu ⊠ |                    | t Type   |  |
| Elevation<br>(m)<br>Depth<br>(m) | il Sy   |                             | MA                                        | TERIAL DESCRIP                                | TION              |                |             | Sample Type | ample Number                                      | SPT               | 0 2    | 20   | 40 60                                      | 80 10   | 0        |                                                              |                    | en. 🕈    |  |
| ш                                | Soil    |                             |                                           |                                               |                   |                |             | Sar         | Sam                                               |                   |        | PL   | MC                                         |         |          | ⊖ Fi                                                         | eld Var            | ne 🔿     |  |
|                                  | XXX (   | CLAY (Fill)                 | - silty, trace to som                     | ie sand, trace coar                           | se gravel, trac   | e orgar        | lics        | -           |                                                   |                   | 0 2    | 20   | 40 60                                      | 80 10   |          | 50 1                                                         | 10 15              | 0 200    |  |
| E R                              | ××      | rootlets <5                 | mm diam.), trace of led grey and brown    | oxidation, trace gla                          | SS                | - 0            |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| 234.2                            |         | - mois                      | st, firm, high plastic                    | ity                                           |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| -0.5-                            | ۱       | NOOD                        |                                           |                                               |                   |                |             | 1           |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| F ¥                              |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| ĒĪ                               |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| -1.0-                            |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| E IX                             |         |                             |                                           |                                               |                   |                |             |             | G73                                               | ,                 |        |      |                                            |         |          |                                                              |                    |          |  |
| 233.3                            |         |                             |                                           |                                               |                   |                |             |             | Gra                                               | <b>`</b>          |        |      |                                            |         |          |                                                              |                    |          |  |
| -1.5-                            |         | CLAY - silty<br>- dark      | ootlets <10 m                             | m diam                                        | .)                |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | - mois                      | st, stiff                                 |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | - nign                      | plasticity                                |                                               |                   |                |             |             | G74                                               | L I               |        |      | •                                          |         |          | _ <b>_</b> _                                                 |                    |          |  |
| 232.7                            |         |                             |                                           |                                               | (                 |                |             | -           |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | SIL I - some                | e clay, trace fine sa                     | race fine sand, trace organics (rootlets <1 m |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| E E                              |         | - medi<br>- mois            | ium brown                                 |                                               |                   |                |             |             | _                                                 |                   |        |      |                                            |         | _        |                                                              |                    |          |  |
|                                  |         |                             | plasticity                                |                                               |                   |                |             |             | G75                                               | >                 |        | •    |                                            |         |          | <b>^</b>                                                     |                    |          |  |
| 232.1 - 2.5 -                    |         | CLAY - siltv                | , trace medium sar                        | nd trace precipita                            | tes               |                |             | -           |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | - brow                      | 'n                                        |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | - mois<br>- high            | it, stiff<br>plasticity                   |                                               |                   |                |             |             | G76                                               |                   |        |      |                                            |         |          |                                                              |                    | <b>b</b> |  |
| -3.0-                            |         | -                           |                                           |                                               |                   |                |             | 'n          | 0/0                                               | 4                 |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             | T77                                               | ·                 |        |      |                                            |         |          |                                                              |                    |          |  |
| -3.5-                            |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             |                                                   | 1                 |        |      |                                            |         |          |                                                              |                    | •        |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| 4.0                              |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             | G78                                               | 3                 |        |      | •                                          |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             |                                                   | ]                 |        |      |                                            |         |          |                                                              |                    |          |  |
| 230.1 4.5                        |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | END OF TE<br>Notes:         | ST HOLE AT 4.6 r                          | m IN CLAY                                     |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | I) Test hole                | was squeezing in                          |                                               |                   | 1 au           | - 0 5 -     |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         | 2) Test hole<br>below grour | e was dry approxima<br>nd surface.        | ately 15 minutes a                            | tter drilling and | a open t       | o 3.5 m     |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  | 3       | <ol><li>Test hole</li></ol> | was backfilled with<br>was used in the te | h cuttings to 1.2 m                           | below ground      | surfac         | e. One bag  |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  | C       |                             |                                           | at noi <del>c</del> noin 0.3 N                |                   | <del>.</del> . |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
|                                  |         |                             |                                           |                                               |                   |                |             |             |                                                   |                   |        |      |                                            |         |          |                                                              |                    |          |  |
| .ogged By:                       | Tom H   | Hildahl                     |                                           | Reviewed By                                   | : Kent Banni      | ister          |             |             | _                                                 | Proje             | ect En | gine | er: _K                                     | ent Ban | niste    | r                                                            |                    |          |  |

|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     | Test             | Hole              | • TH <sup>′</sup>    | 12-1   | 6   |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------|---------------|------------------------|---------------------|------------------|-------------------|----------------------|--------|-----|--|--|--|
|                         | <b>REK</b> Sub-Surf                                                                                                                                          | ace Lo           | bg                                                      |               |                        |                     |                  |                   |                      | 1 0    | f 1 |  |  |  |
| GEUT<br>Client:         | ECHNICAL<br>CH2MHILL I                                                                                                                                       | Project Number   | . 0                                                     | 069.0         | 22.0                   | 0                   |                  |                   |                      |        |     |  |  |  |
|                         |                                                                                                                                                              | Location:        | nber: 0068 002 00<br>UTM 14 N-5513341.996, E-630046.535 |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| Contractor:             |                                                                                                                                                              | Ground Elevation |                                                         |               |                        |                     | <u>L-030040.</u> | 555               |                      |        |     |  |  |  |
| Method:                 |                                                                                                                                                              | Date Drilled:    |                                                         | une 28        |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | nple Type: Grab (G) Shelby Tube (T)                                                                                                                          | Split Spoo       |                                                         |               | _                      | Split Barrel (SE    |                  | Core (C           | )                    |        |     |  |  |  |
|                         | ticle Size Legend:                                                                                                                                           | Spint Spoo       | -                                                       |               |                        | Gravel              |                  |                   |                      | ulders | 3   |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         | e             |                        | Bulk U              | nit Wt           | 6                 | ndrainec<br>Strength |        | r   |  |  |  |
| Symbol                  |                                                                                                                                                              |                  | Sample Type                                             | Sample Number | 2                      | (kN/m)<br>16 17 18  |                  |                   | Test T               |        |     |  |  |  |
| Depth<br>(m)<br>il Symł | MATERIAL DESCRIPTION                                                                                                                                         | ole              | e N                                                     | SPT (I        | Particle Si<br>0 20 40 | ze (%)<br>60 80 100 | -                | ∆ Torva<br>Pocket |                      | 5      |     |  |  |  |
| Soil                    |                                                                                                                                                              | am               | du                                                      | ŝ             | PL MC                  |                     |                  |                   | ield Vane ⊖          |        |     |  |  |  |
|                         |                                                                                                                                                              |                  | 5                                                       | Sa            |                        | 0 20 40             | 60 80 100        | 1                 | 100                  |        |     |  |  |  |
|                         | CLAY (Fill) - silty, trace to some sand, trace coarse gravel, trace to some                                                                                  | e organics       |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | (roots <50 mm diam.), trace oxidation, trace glass<br>- mottled grey and brown                                                                               |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 3                       | - moist, firm                                                                                                                                                |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 0.5                     | - high plasticity                                                                                                                                            |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 1 0-                    |                                                                                                                                                              |                  |                                                         | 579           |                        | •                   |                  |                   |                      |        |     |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| *****                   |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | ORGANIC CLAY (Topsoil) - silty, some rootlets (<5 mm diam.), mottled                                                                                         | black and grey,  |                                                         | 380           |                        | •                   |                  |                   |                      |        |     |  |  |  |
| -////                   | moist, stiff, high plasticity                                                                                                                                | /                |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| -///                    | CLAY - silty, trace organics (rootlets <10 mm diam.), trace oxidation, tra (<1 mm diam.)                                                                     | ace precipitates |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 2.0-                    | - black<br>- dry to moist, stiff                                                                                                                             |                  |                                                         | 381           |                        | •                   |                  |                   | Δ                    | 0      |     |  |  |  |
|                         | - high plasticity                                                                                                                                            |                  |                                                         |               |                        |                     |                  |                   |                      | -      |     |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 2.5-                    | SILT - trace to some clay, trace fine sand, trace organics (rootlets <1 mil                                                                                  | m diam.), trace  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | oxidation                                                                                                                                                    | ,,               |                                                         | 382           |                        | •                   |                  | ΦΔ                |                      |        |     |  |  |  |
| 3                       | - medium brown<br>- moist, firm, low plasticity                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | CLAY - silty, trace medium sand, trace precipitates                                                                                                          |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 3.0-                    | - brown<br>- moist, stiff                                                                                                                                    |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | - high plasticity                                                                                                                                            |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| -///                    |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| 3.5-                    |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        | -   |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        | -   |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         | 383           |                        |                     |                  | A                 |                      |        |     |  |  |  |
| 4.0-                    |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   | _                    |        | -   |  |  |  |
|                         |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
| -///                    |                                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        | -   |  |  |  |
| 4 5 <b>111</b>          |                                                                                                                                                              |                  |                                                         | 384           |                        |                     |                  | 4                 |                      |        | -   |  |  |  |
| ч.0° <b>////</b>        | END OF TEST HOLE AT 4.6 m IN CLAY                                                                                                                            |                  |                                                         | -04           |                        | <b>↓</b>   <b>▼</b> |                  |                   |                      |        |     |  |  |  |
|                         | Notes:                                                                                                                                                       |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | <ol> <li>Test hole was squeezing in at 2.1 m below ground surface.</li> <li>Test hole was dry approximately 15 minutes after drilling and open to</li> </ol> | 2.1 m below      |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | ground surface.                                                                                                                                              |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | <ol><li>Test hole was backfilled with cuttings to 1.2 m below ground surface.<br/>bentonite was used in the test hole from 0.3 m to the surface.</li></ol>   | One bag of       |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | 4) Test hole location based off of GPS coordinates.                                                                                                          |                  |                                                         |               |                        |                     |                  |                   |                      |        |     |  |  |  |
|                         | Tom Hildohl Devision a Devision                                                                                                                              | or               |                                                         | <b>D</b>      |                        | t Engine            | Kont Daw         | viotor            |                      |        |     |  |  |  |
| Loggea By:              | Tom Hildahl Reviewed By: Kent Bannist                                                                                                                        | .er              |                                                         | Pr            | ojeo                   | ct Engineer:        | rvent Banr       | uster             |                      |        |     |  |  |  |

|                  |              |                                               | RE                   | K                                           | Sul                  | b-Sur                               | face L               | 0           | 3             |            |            |                                            | Test F   | lole T                   |                     | <b>2-17</b><br>1 of 1 |  |  |
|------------------|--------------|-----------------------------------------------|----------------------|---------------------------------------------|----------------------|-------------------------------------|----------------------|-------------|---------------|------------|------------|--------------------------------------------|----------|--------------------------|---------------------|-----------------------|--|--|
| GE               | ΠΤ           | EC                                            | HNIC                 |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
| Clien            |              |                                               | H2MHILL              |                                             |                      |                                     | Project Numb         | er:         |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      | ting Facility Brady I                       | Road                 |                                     | Location:            |             |               |            |            |                                            |          |                          |                     |                       |  |  |
| Contr            | actor:       | Pa                                            | addock Drilling      | g Ltd.                                      |                      |                                     | Ground Eleva         |             |               |            |            |                                            |          |                          |                     |                       |  |  |
| Methe            | od:          | _12                                           | 25 mm Solid S        | Stem Auger, CME-8                           | 350 Track Mount      | Date Drilled:         June 28, 2012 |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  | Sa           | mple T                                        | ype:                 | Grab (G)                                    | Split Sp             | oon (                               | SS)                  | X           | Split Ba      | arrel (SB) | Со         | re (C)                                     |          |                          |                     |                       |  |  |
|                  | Pa           | ticle S                                       | ize Legend:          | Fines                                       | Clay                 | Silt                                |                      | Sand        | •             |            | Gravel     | 50                                         | Cobbles  | Boulders                 |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      | 0           | er            |            |            | Bulk Unit<br>(kN/m <sup>3</sup> )<br>18 19 | Wt       |                          | iined S<br>ngth (kl |                       |  |  |
| (                | , t          | Symbol                                        |                      |                                             |                      |                                     |                      | Sample Type | Sample Number | Ĵ          | 16 17<br>F | 18 19<br>Particle Size                     |          | Te                       | st Type             | 2                     |  |  |
| Elevation<br>(m) | Depth<br>(m) | il Sy                                         |                      | MAT                                         | FERIAL DESCRIP       |                                     | nple                 | ole N       | SPT           | 0 20       |            |                                            | Poc      | orvane<br>ket Pe<br>Qu 🛛 | n. 🗣                |                       |  |  |
| ш                |              | Soil                                          |                      |                                             |                      |                                     |                      | Sar         | Sam           |            | P          |                                            |          | ⊖ Fie                    | eld Van             | eO                    |  |  |
| 233.5            |              | <u>, , , , , , , , , , , , , , , , , , , </u> |                      | LAY (Topsoil) - sili                        | tv. some rootlets (  | <5 mm diam.).                       | black, drv mois      | st.         | 0,            |            | 0 20       | 40 60                                      | 80 100 0 | 50 10                    | 0 150               | 200250                |  |  |
|                  |              |                                               | stiff, high pla      | sticity                                     |                      |                                     | -                    |             |               |            |            |                                            |          | _                        |                     |                       |  |  |
|                  |              |                                               | inclusions (<        | trace organics (roo<br>3 mm diam.), trace   | e precipitates (<1 r | mm diam.)                           |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  | -0.5-        |                                               | - moist              |                                             | own                  |                                     |                      |             | G85           | ]          |            | •                                          |          |                          | •                   |                       |  |  |
|                  |              |                                               | - high ı             | plasticity                                  |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  | -1.0-        |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  | · · ·        |                                               |                      |                                             |                      |                                     |                      |             | G86           | -          |            | •                                          |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             | 000           | -          |            |                                            |          |                          | -                   |                       |  |  |
|                  | -1.5-        |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             | T87           |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             | 107           |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          | • _                      |                     |                       |  |  |
|                  |              |                                               | -firm below 2        | ) 3 m                                       |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  | -25-         |                                               |                      | 2.5 111                                     |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             | G88           |            |            | •                                          |          | 2                        |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
| 230.6            | 3.0          |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               | END OF TES<br>Notes: | ST HOLE AT 3.1 n                            | 1 IN CLAY            |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               | 1) Test hole         | was squeezing in a was dry approxima        | at 1.8 m below gro   | und surface.                        | open to 1.8 m        |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               | below ground         | d surface.                                  | -                    | -                                   |                      | ~~          |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               | of bentonite         | was backfilled with<br>was used in the test | st hole from 0.3 m   | to the surface                      | surface. One b<br>e. | ag          |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |
|                  |              |                                               |                      |                                             |                      |                                     |                      |             |               |            |            |                                            |          |                          |                     |                       |  |  |

| FR       | EK   |
|----------|------|
| GEOTECHI | ICAL |

| Client: _C                                      | H2MHILL                                                                                                      | Proje                                                                                                              | ct Numbe                                                              | er:                               | _0068 002 00                       |           |             |                                    |               |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|------------------------------------|-----------|-------------|------------------------------------|---------------|-------------|---------------------------------------------------------------|----------------------------|---------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| Project Name: <u>W</u>                          | aste Compos                                                                                                  | Locat                                                                                                              | ion:                                                                  |                                   | UTM 14 N-5513202.276, E-629839.114 |           |             |                                    |               |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
| Contractor: P                                   | addock Drilling                                                                                              | g Ltd.                                                                                                             |                                                                       |                                   | Grou                               | nd Elevat | ion:        | 233.52 m Existing Ground           |               |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
| Method: 12                                      | 25 mm Solid Stem Auger, CME-850 Track Mount                                                                  |                                                                                                                    |                                                                       |                                   |                                    | Drilled:  |             | June                               | June 28, 2012 |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
| Sample 1                                        | уре:                                                                                                         | Grab (G)                                                                                                           | She                                                                   | lby Tube (T)                      | $\square$                          | Split Spo | on (S       | SS)                                |               | Split E     | Barrel (SB)                                                   | C                          | ore (C) | )                                                                                             |                                                                     |  |  |
| Particle S                                      | ize Legend:                                                                                                  | Fines                                                                                                              | Clay                                                                  | Silt                              |                                    | Si Si     | and         | ۲                                  |               | Grave       |                                                               | -                          |         | Bou                                                                                           | Iders                                                               |  |  |
| Elevation<br>(m)<br>Depth<br>(m)<br>Soil Symbol | ORGANIC C<br>- mottl<br>- dry tc<br>CLAY - silty,<br>precipitates<br>- black<br>- black<br>- black<br>- high | MAT<br>CLAY (Topsoil) - silt<br>ed black and grey<br>moist, stiff, high pl<br>trace organics (roc<br>(<1 mm diam.) | ERIAL DESCRIPT<br>y, some organics (<br>asticity<br>tlets <10 mm diar | (rootlets <5 m<br>n.), trace oxid | m diam<br>ation, ti                | .)<br>ace | Sample Type | Sample Number<br>069<br>069<br>069 | SPT (N)       | 16 1<br>0 2 | Bulk Un<br>(kN/m<br>7 18 1<br>Particle Siz<br>0 40 6<br>PL MC | t Wt<br>9 20 21 –<br>∋ (%) | Un<br>S | drained<br>trength (<br><u>Test Ty</u><br>∆ Torvar<br>Pocket F<br>⊠ Qu I<br>Field Va<br>100 1 | Shear<br>(kPa)<br>p <u>e</u><br>ne ∆<br>Pen. <b>⊄</b><br>⊠<br>ane ⊖ |  |  |
|                                                 | CLAY - silty,<br>- brow<br>- moist                                                                           | t, stiff<br>plasticity                                                                                             |                                                                       | es.                               |                                    |           |             | G92<br>G93                         |               |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
| <u>230.5</u> —3.0 <u>—</u>                      | Notes:<br>1) Test hole<br>below groun<br>2) Test hole                                                        | ST HOLE AT 3.1 m<br>was dry approximat<br>d surface.<br>was backfilled with<br>was used in the tes                 | ely 15 minutes aft                                                    | below around                      | surface                            |           | g           |                                    |               |             |                                                               |                            |         |                                                                                               |                                                                     |  |  |
| _ogged By: _Ton                                 | n Hildahl                                                                                                    |                                                                                                                    | Reviewed By:                                                          | Kent Banni                        | ster                               |           |             |                                    | Proje         | ct Eng      | gineer: _ł                                                    | Kent Bannis                | ster    |                                                                                               |                                                                     |  |  |

|                  |              |                               | RE                                             | K                                          | ;                             | Sub                    | -Sur                         | fac       | e Lo         | bg            |            |       |         |                       | Test           | Hol | e Tŀ              |         | • <b>19</b><br>of 1 |
|------------------|--------------|-------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------|------------------------|------------------------------|-----------|--------------|---------------|------------|-------|---------|-----------------------|----------------|-----|-------------------|---------|---------------------|
| GE               | 01           | <b>TEC</b>                    | HNIC                                           | AL                                         |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
| Clien            | t:           | C                             | H2MHILL                                        |                                            |                               |                        |                              | Proje     | ct Number    | : _           | 0068       | 002 ( | 00      |                       |                |     |                   |         |                     |
| Proje            | ct Nai       | me: _\\                       | aste Compos                                    | sting Facility Brady                       | Road                          |                        |                              | Locat     | ion:         | _             | UTM        | 14 N- | 551313  | 30.536, E             | -629881.3      | 817 |                   |         |                     |
| Contr            |              |                               | addock Drillin                                 | -                                          |                               |                        |                              |           | nd Elevation |               |            |       | -       | Ground                | _              |     |                   |         |                     |
| Methe            |              |                               |                                                | Stem Auger, CME-                           | 850 Track I                   | _                      | by Tube (T)                  | Date I    | Drilled:     |               | June       |       |         |                       | _              |     |                   |         |                     |
|                  |              | ample T                       |                                                | Grab (G)                                   | $\bowtie$                     | Split Spoo             |                              | . 19      |              | Split Ba      | arrel (SB) |       | Core (C |                       |                |     |                   |         |                     |
|                  | Pa           | article S                     |                                                | 👬 Sar                                      | nd                            | •                      |                              | Gravel    | Bulk Unit    |               |            |       | oulde   |                       |                |     |                   |         |                     |
| _                |              | -                             |                                                |                                            |                               |                        |                              |           |              | e             | her        |       | 16 17   | (kN/m <sup>3</sup> )  |                |     | Jndrain<br>Streng | th (kPa |                     |
| Elevation<br>(m) | Depth<br>(m) | Symbol                        |                                                |                                            |                               | Sample Type            | Sample Number                | (Z)       | F            | Particle Size | € (%)      |       |         | <u>Type</u><br>/ane ∆ |                |     |                   |         |                     |
| Elev<br>C        | De<br>De     | Soil S                        |                                                | MATERIAL DESCRIPTION                       |                               |                        |                              |           |              | dmg           | nple       | SPT   | 0 20    |                       | ) 80 100<br>LL |     |                   | )u 🛛    |                     |
|                  |              | S S                           |                                                |                                            |                               |                        |                              |           |              | w.            | Sar        |       | 0 20    |                       | 80 100         |     | Field<br>100      |         | ⊖<br>200250         |
|                  |              | <u> <u>zi v</u> <u>zi</u></u> | ORGANIC (                                      | CLAY (Topsoil) - si<br>led black and grey, | ty, some ro                   | otlets (<              | 5 mm diam.)                  |           |              |               | G94        |       |         | _                     |                |     |                   |         |                     |
| 233.4            |              |                               | CLAY - silty                                   | , trace organics (ro                       |                               |                        |                              | ation, tr | ace silt     |               | 004        |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | inclusions (•<br>- mottl                       | <3 mm diam.)<br>led dark grey and b        | rown                          |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | - mois                                         |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              | G95           |            |       | •       |                       |                | Δ   | •                 |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  | <br>         |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  | -1.5-        |                               | traco procir                                   | oitates (<1 mm diar                        | n) holow 1 E m                |                        |                              |           |              |               |            |       |         |                       |                |     |                   | _       |                     |
|                  |              |                               | -trace precip                                  |                                            |                               | .5 11                  |                              |           |              |               | G96        |       |         |                       |                |     | •                 |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               | 090        |       |         |                       |                |     | _ <b>_</b>        |         |                     |
|                  | 2.0-         |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  | -2.5-        |                               | -firm below :                                  | 2.6                                        |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | -IIIII below                                   | 2.0 111                                    |                               |                        |                              |           |              | A             | G97        |       |         | •                     |                | •2  |                   | _       |                     |
| 230.6            | <br>         |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   | _       |                     |
| 230.0            | _3.0_        |                               |                                                | ST HOLE AT 3.1 r                           | n IN CLAY                     |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | Notes:<br>1) Test hole                         | was squeezing in                           | at 2.1 m be                   | low grou               | nd surface.                  |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | below aroun                                    | e was dry approxima<br>nd surface.         | •                             |                        | •                            |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               | <ol> <li>Test hole<br/>of bentonite</li> </ol> | was backfilled with was used in the te     | n cuttings to<br>st hole fron | o 1.2 m b<br>n 0.3 m t | elow ground<br>o the surface | surface   | e. One bag   |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |
|                  |              |                               |                                                |                                            |                               |                        |                              |           |              |               |            |       |         |                       |                |     |                   |         |                     |

|                                  |              | R                                                   | EK                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | Su                                                               | b-Sur                                                                         | fac                     | e Lo              | DC          | J                                                  |         |         |               | Te                 | st Ho   | ole 1 | <b>[H1</b> ]                                                                      | <b>2-2</b><br>1 of                             | - |
|----------------------------------|--------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|-------------------|-------------|----------------------------------------------------|---------|---------|---------------|--------------------|---------|-------|-----------------------------------------------------------------------------------|------------------------------------------------|---|
|                                  |              |                                                     | ICAL                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                             |                                                                  |                                                                               |                         |                   |             |                                                    |         |         |               |                    |         |       |                                                                                   |                                                |   |
| Clien                            |              | <u>CH2MH</u><br>Waste (                             | ILL<br>Composting Fa                                                                                                                                                                                                                                                                                                                                                                                    | cility Brady                                                                                                                                                | Road                                                             |                                                                               | Proje                   | ct Numbeı<br>ion: |             | 0068<br>UTM                                        |         |         | 177.989, E    | -62995             | 0.647   |       |                                                                                   |                                                | _ |
| -                                | ractor:      |                                                     | Corilling Ltd.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                  |                                                                               |                         | nd Elevati        |             |                                                    |         |         |               |                    | 0.0.11  |       |                                                                                   |                                                |   |
| Meth                             | od:          | 125 mm                                              | Solid Stem A                                                                                                                                                                                                                                                                                                                                                                                            | uger, CME-                                                                                                                                                  | 850 Track Mount                                                  |                                                                               | Date                    | Drilled:          |             | June                                               | 28, 2   | 012     |               | _                  |         |       |                                                                                   |                                                |   |
|                                  | Samp         | le Type:                                            |                                                                                                                                                                                                                                                                                                                                                                                                         | Grab (G)                                                                                                                                                    | Sh                                                               | elby Tube (T)                                                                 | $\boxtimes$             | Split Spoo        | on (S       | SS)                                                |         | Split B | arrel (SB)    |                    | Core    | (C)   |                                                                                   |                                                |   |
|                                  | Partic       | le Size Le                                          | gend:                                                                                                                                                                                                                                                                                                                                                                                                   | Fines                                                                                                                                                       | Clay                                                             | Silt                                                                          |                         | Sa                | nd          | •                                                  |         | Grave   | 1 67          | Cobb               | oles    |       | Boul                                                                              | ders                                           |   |
| Elevation<br>(m)                 | Depth<br>(m) | Soil Symbol                                         |                                                                                                                                                                                                                                                                                                                                                                                                         | MA                                                                                                                                                          | TERIAL DESCRIF                                                   | PTION                                                                         |                         |                   | Sample Type | Sample Number                                      | SPT (N) | 0 20    | Particle Size | )<br>9 20<br>e (%) | 00      | Stre  | ained S<br>ength (H<br>est Typ<br>Forvane<br>cket P<br>⊠ Qu ⊵<br>eld Var<br>00 15 | kPa)<br><u>pe</u><br>e ∆<br>en. Ф<br>⊲<br>ne ⊖ | 1 |
| 233.5<br>232.2<br>231.9<br>230.3 |              | orga<br>diam<br>CLA<br>preci<br>-brov<br>CLA<br>CLA | <ul> <li>inics (wood mu.)</li> <li>mottled grey</li> <li>moist, firm</li> <li>high plasticit</li> <li>Y - silty, trace of pitates (&lt;1 mn</li> <li>black</li> <li>dry to moist,</li> <li>high plasticit</li> <li>vn below 2.1 m</li> <li>Y - silty, trace fittion</li> <li>medium bro</li> <li>Y - silty, trace fittion</li> <li>motiled brow</li> <li>most, stiff</li> <li>high plasticit</li> </ul> | Ich <75 mn<br>and brown<br>ty<br>organics (rc<br>n diam.)<br>stiff<br>ty<br>fine sand, tr<br>wn, moist, s<br>medium sar<br>vn and grey<br>ty<br>LE AT 4.6 r | ootlets <10 mm dia                                               | am.), trace silt ind<br>am.), trace oxic<br>tlets <1 mm dia<br>res (<5 mm dia | lation, tr<br>am.), tra | ace               |             | G98<br>G99<br>G100<br>G101<br>G102<br>G103<br>G104 | -       |         |               |                    |         |       |                                                                                   |                                                |   |
|                                  |              | belov<br>3) Te                                      | v ground surfa<br>est hole was ba                                                                                                                                                                                                                                                                                                                                                                       | ce.<br>ackfilled with                                                                                                                                       | ately 15 minutes a<br>h cuttings to 1.2 m<br>est hole from 0.3 m | n below ground                                                                | surface                 |                   |             |                                                    |         |         |               |                    |         |       |                                                                                   |                                                |   |
| Logg                             | ed By:       | Tom Hilda                                           | hl                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | Reviewed By                                                      | : Kent Bann                                                                   | ister                   |                   |             | _                                                  | Proje   | ct Eng  | gineer: _     | Kent Ba            | nnister |       |                                                                                   |                                                |   |

| FREK         |
|--------------|
| GEOTECHNICAL |

| lient:                     | CH2MHILL                                                                                                                                           |                                                                   |                                         |                        | Proje     | ct Number   | :           | 0068             | 3 002   | 00      |            |                                                    |                  |      |                    |                                         |                    |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|------------------------|-----------|-------------|-------------|------------------|---------|---------|------------|----------------------------------------------------|------------------|------|--------------------|-----------------------------------------|--------------------|
| roject Name:               | Waste Compos                                                                                                                                       | sting Facility Brady I                                            | Road                                    |                        | Locat     | ion:        |             | UTM              | 1 14 N  | -5513   | 217.8      | 92, E-                                             | 630031           | 794  |                    |                                         |                    |
| ontractor:                 | Paddock Drilling                                                                                                                                   | g Ltd.                                                            |                                         |                        | Grour     | nd Elevatio | on:         | 235.             | 09 m    | Existin | ng Gro     | ound                                               | _                |      |                    |                                         |                    |
| lethod:                    | 125 mm Solid S                                                                                                                                     | Stem Auger, CME-8                                                 | 350 Track Mount                         |                        | Date I    | Drilled:    |             | June             | e 28, 2 | 012     |            |                                                    | -                |      |                    |                                         |                    |
| Sample                     | е Туре:                                                                                                                                            | Grab (G)                                                          | She                                     | elby Tube (T)          | $\square$ | Split Spoo  | n (S        | SS)              |         | Split E | Barrel     | (SB)                                               |                  | Core | (C)                |                                         |                    |
| Particle                   | e Size Legend:                                                                                                                                     | Fines                                                             | Clay                                    | Silt                   |           | Sar         | nd          |                  |         | Grave   | el         | 67                                                 | Cobble           | s    |                    | Boul                                    | ders               |
|                            |                                                                                                                                                    |                                                                   |                                         |                        |           |             | Type        | ample Number     | (N)     | 16 1    | 17 1       | ulk Unit<br>kN/m <sup>3</sup> )<br>8 19<br>le Size | 20 2             |      | Stre<br><u>T</u> e | ained S<br>ngth (k<br>est Typ<br>orvane | (Pa)               |
| Depth<br>(m)<br>(m)<br>(m) |                                                                                                                                                    | MAT                                                               | ERIAL DESCRIP                           | TION                   |           |             | Sample Type | Sample N         | SPT     |         | 20 4<br>PL | 0 60<br>MC                                         | 80 100<br>LL<br> |      | ● Po<br>◎<br>○ Fi  | cket Pe<br>Qu ⊠<br>eld Var<br>00 15     | en. Φ<br>⊴<br>ne ⊖ |
|                            | Coarse grave                                                                                                                                       | - silty, some munici<br>el<br>led grey and brown,                 |                                         |                        |           | d, trace    |             |                  |         |         |            |                                                    |                  |      |                    |                                         |                    |
|                            | -wet below (                                                                                                                                       |                                                                   |                                         |                        |           | G10         |             |                  | •       |         |            |                                                    |                  |      |                    |                                         |                    |
| <u>34.0</u> -1.0-          |                                                                                                                                                    | late <1 mm dia                                                    | am ) tra                                |                        | 1         | G106        | -           |                  |         | •       |            | 2                                                  | 2                |      |                    |                                         |                    |
| 33.9                       | oxidation, m                                                                                                                                       | , trace fine sand, tra<br>edium brown, mois<br>, trace medium san | ty                                      | ann.), u c             |           |             | G107        |                  |         | •       |            |                                                    |                  |      |                    |                                         |                    |
| -1.5-                      | - light<br>- mois                                                                                                                                  | to dark grey<br>t, firm to stiff<br>plasticity                    |                                         |                        |           |             |             | G108             | В       |         | •          | •                                                  |                  |      | •                  |                                         |                    |
|                            | - medi<br>- mois                                                                                                                                   | y, trace organics (ro<br>um brown<br>t, soft<br>plasticity        | ootlets <1 mm dia                       | m.) trace oxida        | ation     |             |             | G109             | 9       |         | •          |                                                    |                  | \$   |                    |                                         |                    |
| 2.5                        |                                                                                                                                                    |                                                                   |                                         |                        |           |             |             | G11(             | 0       |         | •          |                                                    |                  |      |                    |                                         |                    |
| 32.1 3.0                   | firm, high pl                                                                                                                                      | , trace medium san<br>asticity<br>y, trace organics (re           |                                         |                        |           | moist,      |             |                  |         |         |            |                                                    |                  | 40   |                    |                                         |                    |
| 31.5                       | - medi<br>- mois                                                                                                                                   | um brown                                                          |                                         | )                      |           |             |             | G11 <sup>,</sup> | 1       |         | •          |                                                    |                  | 4    |                    |                                         |                    |
| 4.0                        | CLAY - silty, trace medium sand, trace precipitates<br>- mottled brown and grey<br>- moist, firm<br>- high plasticity<br>-25 cm silt seam at 3.7 m |                                                                   |                                         |                        |           |             |             |                  |         |         |            |                                                    |                  |      |                    |                                         |                    |
| 30.5 4.5                   |                                                                                                                                                    |                                                                   |                                         |                        |           | G112        | 2           |                  |         | •       |            |                                                    | •                |      |                    |                                         |                    |
|                            |                                                                                                                                                    | ST HOLE AT 4.6 m                                                  | 1 IN CLAY                               |                        |           |             |             |                  | 1       |         |            |                                                    |                  |      | 1                  |                                         |                    |
|                            | <ol> <li>2) Seepage<br/>drilling.</li> <li>3) Test hole</li> </ol>                                                                                 | was squeezing in a was observed at 0.<br>was open to 2.1 m        | 6 m below ground below ground sur       | surface on co<br>face. |           |             |             |                  |         |         |            |                                                    |                  |      |                    |                                         |                    |
|                            | <ol><li>Test hole</li></ol>                                                                                                                        | was backfilled with                                               | cuttings to 1.2 m<br>st hole from 0.3 m | below ground           | surface   | e. One bag  |             |                  |         |         |            |                                                    |                  |      |                    |                                         |                    |

|          | EK   |
|----------|------|
| GEOTECHN | ICAL |

| GE               | OTEC                          | HNIC                                                                                              | AL                                                                                                                                |                                                                                                         |                                                         |           |            |             |               |         |        |                        |              |           |         |                                               |                                                                             |                       |
|------------------|-------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|------------|-------------|---------------|---------|--------|------------------------|--------------|-----------|---------|-----------------------------------------------|-----------------------------------------------------------------------------|-----------------------|
| Clien            | t: <u>C</u> l                 | H2MHILL                                                                                           |                                                                                                                                   |                                                                                                         |                                                         | Proje     | ct Numbe   | er:         | 0068          | 002 (   | 00     |                        |              |           |         |                                               |                                                                             |                       |
| Proje            | ct Name: W                    | aste Compos                                                                                       | ting Facility Brady I                                                                                                             | Road                                                                                                    |                                                         | Loca      | tion:      | -           | UTM           | 14 N-   | -5513  | 3270.                  | 403, E-      | 630092.3  | 92      |                                               |                                                                             |                       |
| Contr            | ractor: Pa                    | addock Drilling                                                                                   | g Ltd.                                                                                                                            |                                                                                                         |                                                         | Grou      | nd Elevati | ion:        | 235.0         | )7 m E  | Existi | ing Gr                 | round        | -         |         |                                               |                                                                             |                       |
| Metho            | od: <u>12</u>                 | 25 mm Solid S                                                                                     | Stem Auger, CME-8                                                                                                                 | 50 Track Mount                                                                                          |                                                         | Date      | Drilled:   | -           | June          | 28, 2   | 012    |                        |              | _         |         |                                               |                                                                             |                       |
|                  | Sample T                      | ype:                                                                                              | Grab (G)                                                                                                                          | She                                                                                                     | elby Tube (T)                                           | $\bowtie$ | Split Spo  |             | SS)           | X       | Split  | Barre                  | el (SB)      | C         | core (C | C)                                            |                                                                             |                       |
|                  | Particle S                    | ize Legend:                                                                                       | Fines                                                                                                                             | Clay                                                                                                    | Silt                                                    |           | Sa         | and         |               |         | Grav   |                        | 62           | Cobbles   |         |                                               | Bould                                                                       |                       |
| Elevation<br>(m) | L Depth<br>(m)<br>Soil Symbol | REFUSE (F                                                                                         | ill) - clayey, trace to                                                                                                           | ERIAL DESCRIP                                                                                           | coarse grave                                            | I, trace  | to some    | Sample Type | Sample Number | SPT (N) | 0      | 17<br>Part<br>20<br>PL | MC           | 20 21     | •       | Stren<br><u>Tes</u><br>△ To<br>Pocl<br>○ Fiel | ned Sł<br>gth (kł<br>st Type<br>rvane<br>ket Per<br>Qu ⊠<br>d Vano<br>0 150 | Pa)<br>≙<br>∆<br>n. Ф |
| 234.0            |                               | organics (wo<br>waste (plast                                                                      | ood mulch <75 mm<br>ics, scrap metals, c<br>ed grey and brown<br>t, soft                                                          | diam.), trace glass                                                                                     | s, trace to sor                                         | ne mun    | iciple     |             | G113          | -       |        | •                      |              |           |         |                                               |                                                                             |                       |
| 233.2            |                               | organics<br>- mottl<br>- mois<br>- high                                                           | plasticity                                                                                                                        |                                                                                                         | 0                                                       |           |            |             | G114          | -       |        |                        |              |           |         | •                                             |                                                                             |                       |
|                  |                               | precipitates<br>- black<br>- mois<br>- high                                                       |                                                                                                                                   |                                                                                                         | rootlets <1 m                                           | m diam    | .), trace  |             | G115          |         |        |                        |              |           |         |                                               |                                                                             |                       |
|                  |                               |                                                                                                   |                                                                                                                                   |                                                                                                         |                                                         |           |            |             | G116          | -       |        |                        |              |           |         |                                               |                                                                             |                       |
|                  |                               |                                                                                                   |                                                                                                                                   |                                                                                                         |                                                         |           |            |             | G117          | -       |        |                        |              |           |         | <b>.</b>                                      |                                                                             |                       |
| 230.5            | 4.5-                          | -firm to stiff                                                                                    | below 4.4 m                                                                                                                       |                                                                                                         |                                                         |           |            |             | G118          |         |        |                        | •            |           | ۵       |                                               |                                                                             |                       |
| 230.5            |                               | Notes:<br>1) Test hole<br>2) Seepage<br>drilling.<br>3) Test hole<br>4) Test hole<br>bag of bento | ST HOLE AT 4.6 m<br>was squeezing in a<br>was observed at 0.0<br>was open to 2.1 m<br>was backfilled with<br>onite was used in th | t 1.2 m below grou<br>6 m below ground<br>below ground surf<br>cuttings to 1.2 m<br>e test hole from 0. | surface on co<br>face.<br>below ground<br>3 m to the su | surface.  |            |             |               |         |        |                        |              |           |         |                                               |                                                                             |                       |
| Logg             | ed By: Tom                    | Hildahl                                                                                           |                                                                                                                                   | Reviewed By:                                                                                            | Kent Bann                                               | ister     |            |             | _             | Proje   | ct Ei  | ngine                  | er: <u>K</u> | ent Banni | ster    |                                               |                                                                             |                       |

| LI C             |              |             | HNIC<br>12MHILL           | нс                               |           |           |               |                 | Proie     | ct Number   | r:          | 0068         | 002 (  | 00     |           |                            |        |      |          |                               |           |
|------------------|--------------|-------------|---------------------------|----------------------------------|-----------|-----------|---------------|-----------------|-----------|-------------|-------------|--------------|--------|--------|-----------|----------------------------|--------|------|----------|-------------------------------|-----------|
|                  |              |             |                           | sting Facility Br                | ady Roa   | ad        |               |                 | Loca      |             | •           |              |        |        | 329.1     | 56, E-                     | 630168 | .928 |          |                               |           |
| -                | actor:       |             | ddock Drillin             |                                  |           |           |               |                 | Grou      | nd Elevatio | on:         | 234.2        | 24 m l | Existi | ng Gro    | ound                       | _      |      |          |                               |           |
| Metho            | od:          | _12         | 5 mm Solid                | Stem Auger, C                    | ME-850    | Track N   | <i>l</i> ount |                 | Date      | Drilled:    |             | June         | 28, 2  | 012    |           |                            | _      |      |          |                               |           |
|                  | Sa           | mple Ty     | vpe:                      | Grab                             | G)        |           | She           | lby Tube (T)    | $\bowtie$ | Split Spoo  | on (        | SS)          |        | Split  | Barrel    | (SB)                       |        | Core | (C)      |                               |           |
|                  | Pa           | rticle Si   | ze Legend:                | Fine                             | s         | //// с    | lay           | Silt            |           | Saı         | nd          | ۲            |        | Grav   | el        | 62                         | Cobble | es   |          | Boul                          | lders     |
|                  |              |             |                           |                                  |           |           |               |                 |           |             | 0           | er           |        |        | □ Bι<br>( | ulk Unit<br>kN/m³)<br>8 19 | Wt     |      |          | rained S<br>ength (k          |           |
| tion             | ₽<br>C       | Soil Symbol |                           |                                  |           |           |               |                 |           |             | Sample Type | ample Number | (N     | 16     |           | 8 19<br>de Size            |        | 1    | I        | est Typ                       | <u>be</u> |
| Elevation<br>(m) | Depth<br>(m) | il Sy       |                           |                                  | MATEF     | RIAL DES  | SCRIPT        | ION             |           |             | nple        | ple N        | SPT    | 0      | 20 4      | 0 60                       | 80 10  | D    | Pc       | Torvane<br>ocket Pe<br>⊠ Qu ⊠ | en. 🕈     |
| Ш                |              | So          |                           |                                  |           |           |               |                 |           |             | Sar         | Sam          | 0)     |        |           | MC                         |        |      | ΟF       | ield Var                      | ne 🔿      |
|                  |              |             | CLAY (Fill)               | - silty, trace to                | some s    | and. trac | e coars       | e gravel (<25   | i mm di   | am.). trace | -           | 0,           |        | 0      | 20 4      | 0 60                       | 80 10  | 0 0  | 50 1     | 100 15                        | 50 20     |
| -                |              |             | to some org<br>(<25 mm di | anics (wood m                    | ulch <7   | 5 mm dia  | am.), tra     | ace glass, tra  | ce silt i | nclusions   |             |              |        | -      |           |                            |        | -    |          |                               |           |
| -                |              |             | ` - mott                  | led black and b                  | rown      |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
|                  | -0.5-        |             |                           | st, stiff<br>mediate plastic     | ity       |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           |                                  |           |           |               |                 |           |             |             | G119         |        |        | •         |                            |        |      |          |                               |           |
|                  |              |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                | -1.0-        |             |                           |                                  |           |           |               |                 |           |             |             |              |        | -      |           |                            |        | -    |          |                               |           |
| 233.0            |              |             | CLAY - siltv              | /, trace organic                 | s (rootle | ets <10 n | nm dian       | n.). trace oxid | ation. t  | race        |             | G120         |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           | (<1 mm diam.                     |           |           |               | ,,              |           |             |             | G120         |        |        | •         |                            |        |      | 2        | \ •                           |           |
|                  |              |             | - mois                    | st, stiff<br>plasticity          |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           | own and grey b                   | elow 1.4  | l m       |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
|                  | -2 0-        |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      | <u> </u> |                               |           |
|                  |              |             |                           |                                  |           |           |               |                 |           |             |             | G122         |        |        | •         |                            |        |      |          | •                             |           |
|                  |              |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| 231.6<br>231.5   |              |             |                           | ne silt, trace fin               | e sand,   | trace ox  | idation,      | medium brow     | vn, moi   | st, soft,   |             | G123         |        |        | •         |                            |        |      | 0        |                               |           |
| 201.0            |              |             | low plasticit             | y<br>/, trace medium             | sand      | trace nre | cinitate      | <u> </u>        |           |             | /           |              |        |        |           |                            |        |      |          |                               |           |
| -                | 3.0-         |             | - mott                    | led brown and                    | grey      |           | cipitates     | 5               |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             | - mois<br>- high          | st, firm to stiff<br>plasticity  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           |                                  |           |           |               |                 |           |             |             | G124         |        |        |           |                            |        |      |          |                               |           |
| -                | -3.5-        |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| -                |              |             |                           |                                  |           |           |               |                 |           |             | P           |              |        |        |           |                            |        |      | 4        |                               |           |
| -                |              |             |                           |                                  |           |           |               |                 |           |             |             |              |        | -      |           |                            |        | -    |          |                               |           |
| -                | 4.0          |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
| ł                |              |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      | 1        |                               |           |
|                  |              |             |                           |                                  |           |           |               |                 |           |             |             | G125         |        |        |           |                            |        | 0    |          |                               |           |
| 229.7            | -4.5-        |             |                           |                                  |           |           |               |                 |           |             |             |              |        |        |           |                            |        |      | <u>م</u> |                               |           |
|                  |              |             | END OF TE Notes:          | EST HOLE AT 4                    | .6 m IN   | I CLAY    |               |                 |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
|                  |              |             | 1) Test hole              | was squeezing<br>was dry appro   | in at 3   | .1 m belo | ow grou       | nd surface.     | onen t    | 0.3.1 m     |             |              |        |        |           |                            |        |      |          |                               |           |
|                  |              |             | below grour               | nd surface.                      |           |           |               | -               |           |             |             |              |        |        |           |                            |        |      |          |                               |           |
|                  |              |             | 3) lest hole              | was backfilled<br>onite was used | with cu   | tings to  | 1.2 m b       | pelow ground    | surface   | e. One      |             |              |        |        |           |                            |        |      |          |                               |           |

| FREK         |
|--------------|
| GEOTECHNICAL |

## Sub-Surface Log

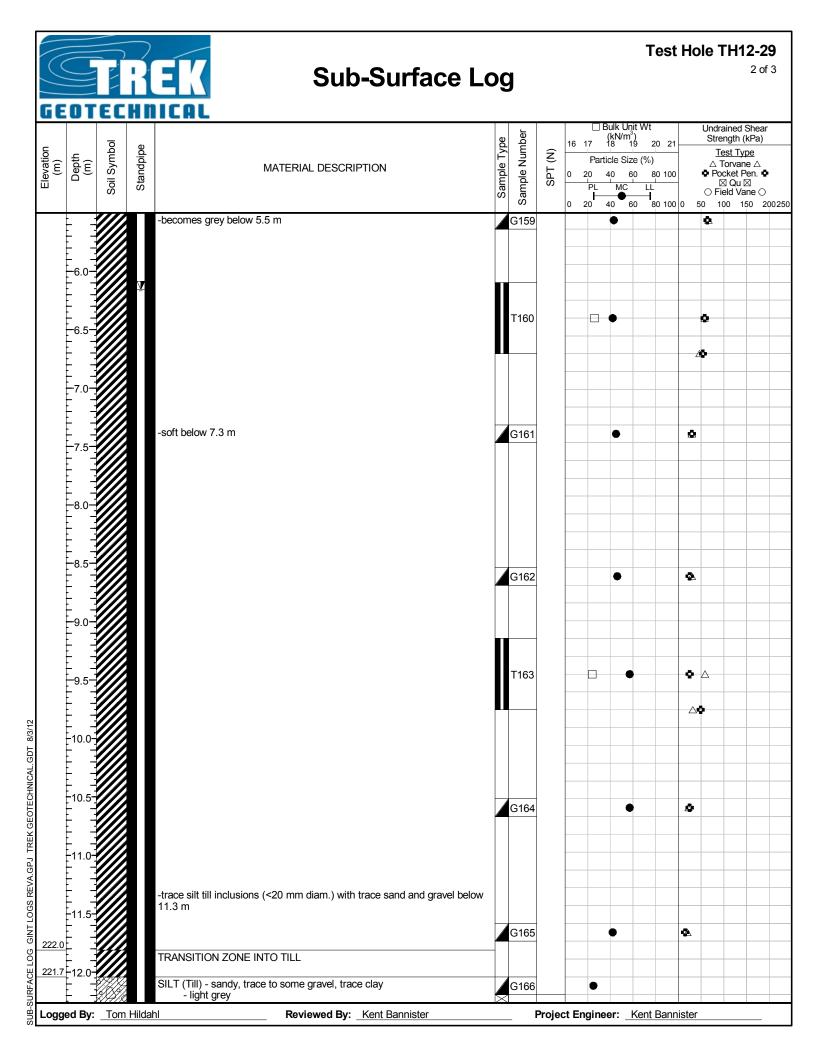
| Client           | ··                                      | CH2       | MHILL                     |                                |            |              |           |                | Proie     | ct Numbe   | r.          | 0068          | 8 002   | 00       |                 |                  |          |          |                    |                        |          |
|------------------|-----------------------------------------|-----------|---------------------------|--------------------------------|------------|--------------|-----------|----------------|-----------|------------|-------------|---------------|---------|----------|-----------------|------------------|----------|----------|--------------------|------------------------|----------|
|                  | -                                       |           |                           | ting Facility E                | Brady R    | oad          |           |                | Loca      |            |             |               |         |          | 66.386, I       | =-630            | 232 24   | 16       |                    |                        |          |
|                  | _                                       |           | lock Drillin              |                                | Diady it   | 000          |           |                |           | nd Elevati | -           |               |         |          |                 |                  | 202.27   | 10       |                    |                        |          |
| Metho            |                                         |           |                           | Stem Auger, (                  | CME-85     | 50 Track M   | lount     |                |           | Drilled:   |             |               | e 28, 2 | -        | Cround          |                  |          |          |                    |                        |          |
|                  |                                         |           |                           | a                              |            |              | _         |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  | Sample                                  |           |                           | Grat                           |            |              | _         | by Tube (T)    | $\square$ | Split Spo  |             | 50)           |         | -        | arrel (SB       |                  |          | ore (C   |                    |                        |          |
|                  | Particle                                | e Size    | Legend:                   | Fir                            | nes        | Cl           | ay        | Silt           |           | Sa         | and         |               |         | Gravel   | 52<br>⊡ Bulk Ur | _                | obbles   | <u> </u> |                    | Bould                  |          |
|                  | _                                       | 5         |                           |                                |            |              |           |                |           |            | e           | lber          |         | 16 17    | (kN/m           | ]]<br>3)<br>19 2 | 20 21    |          | Indraii<br>Stren   |                        |          |
| Elevation<br>(m) | Depth<br>(m)<br>Soil Symbol             |           |                           |                                |            |              |           | ~              |           |            | Sample Type | Sample Number | Î       |          | Particle Siz    |                  |          |          | <u>Tes</u><br>∆ To | <u>t Type</u><br>rvane |          |
| (T)              | Depth<br>(m)                            |           |                           |                                | MATE       | RIAL DES     | SCRIPTI   | ON             |           |            | mple        | ple I         | SPT     | 0 20     |                 | 1                | 30 100   | •        | Pock               | tet Pe<br>Qu ⊠         | n. 🗭     |
| ш                | , v                                     | 5         |                           |                                |            |              |           |                |           |            | Sai         | Sam           |         |          |                 |                  |          |          | ⊃ Fiel             | d Van                  | e 🔿      |
|                  |                                         | X         | AND and (                 | GRAVEL (Fill                   | l) - clave | 21/          |           |                |           |            |             | 0)            |         | 0 20     | 40 6            | 30 8             | 30 100 0 | 50       | 100                | 150                    | 2002     |
|                  | = 💥                                     | $\otimes$ | - black                   | , dry, loose, s                |            |              | raded co  | parse sand t   | o medii   | um gravel  |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         | (<        | <50 mm dia                | am.)                           |            |              |           |                |           |            |             | G126          | 6       | •        |                 |                  |          |          |                    |                        |          |
| 233.8            | -0.5-***                                | Жc        | LAY (Fill)                | - silty, trace s               | sand tra   | ice coarse   | oravel    | trace to som   | e orgar   | nics (wood | -           |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         | Жr        | ulch <75 r                | nm diam.), tr                  | race glas  | ss, trace si | It inclus | ions (<25 m    | m diam    | i.)        |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | = = = = = = = = = = = = = = = = = = = = | $\otimes$ | - dark<br>- mois          |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                |                                         | $\otimes$ |                           | plasticity                     |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | - '' - 💥                                | $\otimes$ |                           |                                |            |              |           |                |           |            |             | G127          | 7       |          | •               |                  |          |          |                    | •                      |          |
| -                | = 🔣                                     | $\otimes$ |                           |                                |            |              |           |                |           |            |             | 0121          | -       |          | •               |                  |          |          | -                  | -                      |          |
| -                |                                         | $\otimes$ |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | -1.5-                                   | $\otimes$ |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| 000 5            |                                         | $\otimes$ |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| 232.5            | - 1                                     | Żc        | LAY - silty               |                                |            |              |           |                |           |            |             | G128          | 8       |          | •               |                  |          |          |                    | 4                      | <b>b</b> |
| 232.2            | 2.0                                     |           |                           | grey, moist, s                 | -          |              |           |                |           |            |             |               | 1       |          | -               |                  |          |          |                    |                        |          |
| 232.0            |                                         | C         |                           | , trace fine sa<br>um brown, m |            |              |           |                |           |            |             | G129          | 9       |          | •               |                  |          |          |                    |                        |          |
| 202.0            |                                         | C         | LAY - silty               | , trace mediu                  | im sand    |              |           | i              |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | -2.5-                                   |           | - mottl<br>- mois         | ed brown and                   | d grey     |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | 11                                      |           |                           | plasticity                     |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | //                                      |           |                           |                                |            |              |           |                |           |            |             | G130          | D       |          | •               |                  |          | Z        | <u> </u>           | •                      |          |
|                  | -30-                                    |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | //                                      |           |                           |                                |            |              |           |                |           |            | Π           |               | _       |          |                 |                  |          |          |                    |                        |          |
| ļ                | = = 11                                  |           |                           |                                |            |              |           |                |           |            |             | ~ . ~         |         |          |                 |                  |          |          |                    |                        |          |
| -                |                                         |           |                           |                                |            |              |           |                |           |            |             | G13′          | 1       |          |                 |                  |          |          |                    |                        |          |
| Ī                |                                         |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  | : <i>1</i> //                           |           |                           |                                |            |              |           |                |           |            |             |               | 1       |          |                 |                  |          |          | •                  |                        |          |
| ł                | 11                                      |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  | -4.0-                                   |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| -                | //                                      |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| ļ                | = =//                                   |           |                           |                                |            |              |           |                |           |            |             | G132          | 2       |          | •               |                  |          | 4        |                    |                        |          |
| 229.7            | -4.5-                                   |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         |           | ND OF TE<br>otes:         | ST HOLE AT                     | 4.6 m l    | N CLAY       |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         | 1         | ) Test hole               | was squeezir                   |            |              |           |                |           | •          |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         |           | ) Test hole<br>elow groun | was dry appr<br>d surface.     | roximate   | ly 15 minu   | ites afte | r drilling and | l open t  | o 2.4 m    |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         | 3         | ) Test hole               | was backfille                  | ed with c  | uttings to   | 1.2 m b   | elow ground    | surfac    | e. One     |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         | b         | ag of bento               | onite was use                  | ed in the  | test hole f  | rom 0.3   | m to the su    | rtace.    |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
|                  |                                         |           |                           |                                |            |              |           |                |           |            |             |               |         |          |                 |                  |          |          |                    |                        |          |
| Logge            | ed By: _To                              | om H      | ildahl                    |                                |            | Review       | ed By:    | Kent Bann      | ister     |            |             |               | Proje   | ect Engi | ineer:          | Kent             | Bannis   | ter      |                    |                        |          |

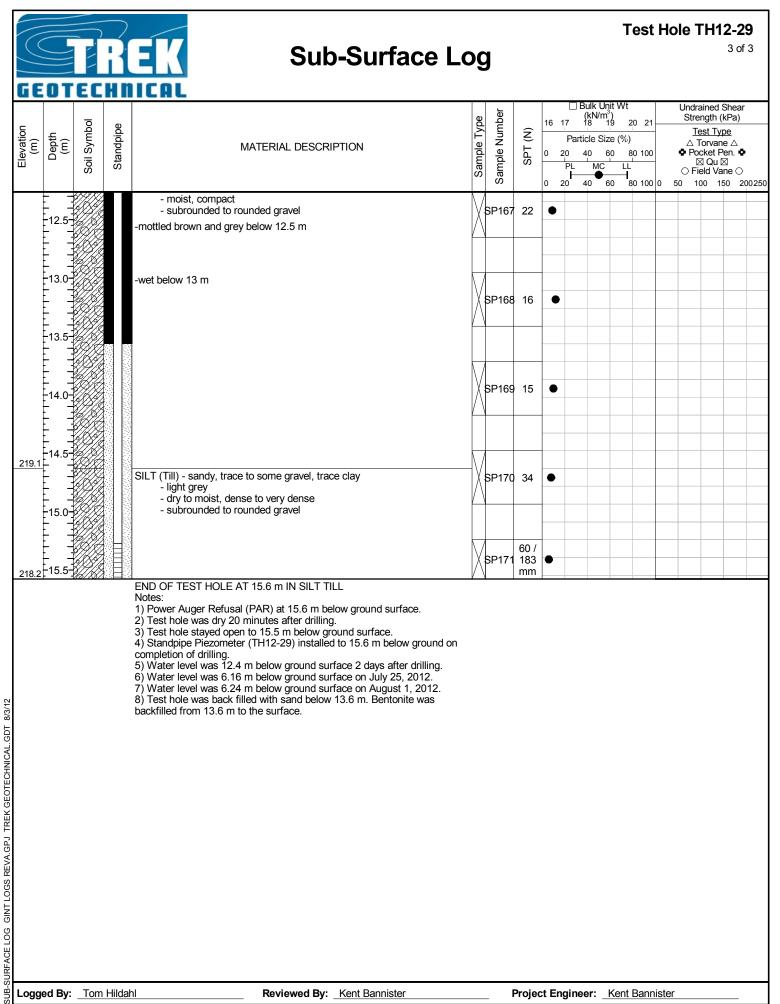
| <b>FREK</b> |  |
|-------------|--|
| GEOTECHNICA |  |

| Client:                          | CH2MHILL                                |                                              |                      | Proie                           | ct Number | : (                | 0068        | 002 (         | 00     |         |            |                           |         |        |             |                           |     |
|----------------------------------|-----------------------------------------|----------------------------------------------|----------------------|---------------------------------|-----------|--------------------|-------------|---------------|--------|---------|------------|---------------------------|---------|--------|-------------|---------------------------|-----|
| Project Name:                    |                                         | ting Facility Brady F                        | Road                 |                                 | Loca      |                    |             |               |        |         | 119.6      | 687, E-                   | 630131  | .593   |             |                           |     |
| Contractor:                      | Paddock Drilling                        |                                              |                      |                                 | Grou      | nd Elevatio        |             |               |        |         |            |                           |         |        |             |                           |     |
| Method:                          |                                         | Stem Auger, CME-8                            | 50 Track Mount       |                                 |           | Drilled:           |             |               | 3, 201 |         | 0 -        |                           | _       |        |             |                           |     |
| Sampl                            | е Туре:                                 | Grab (G)                                     | She                  | lby Tube (T)                    | $\square$ | Split Spoo         |             |               |        | Split I | Barre      | I (SB)                    |         | Core   | (C)         |                           |     |
|                                  | e Size Legend:                          | Fines                                        | Clay                 | Silt                            |           | Sar                |             |               |        | Grave   |            | 62                        | Cobble  |        | . ,         | Bould                     | ore |
| Faitici                          | le Size Legeriu.                        |                                              |                      |                                 |           | <u>°,•,•</u> , Sai |             |               |        |         | B          | ulk Unit                  | Wt      |        |             | ined Sh                   |     |
| <u>د</u>                         | <u>o</u>                                |                                              |                      |                                 |           |                    | ype         | Sample Number |        | 16 1    | 17 1       | ( <b>kN/m</b> ³)<br>18 19 | 20 2    | 1      |             | igth (kF<br>st Type       | ,   |
| Elevation<br>(m)<br>Depth<br>(m) | myo                                     | МАТ                                          | ERIAL DESCRIPT       | ION                             |           |                    | le          | Nu            | L (N   |         |            | cle Size                  | . ,     |        |             | orvane .                  | Δ   |
|                                  |                                         |                                              |                      |                                 |           |                    | Sample Type | mple          | SPT    | 0 2     | 20 4<br>PL | MC 60                     | 80 10   |        | $\boxtimes$ | ket Per<br>Qu⊠<br>Id Vane |     |
|                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                              |                      |                                 |           |                    | S           | Sa            |        | 0 2     | 20 4       | 0 60                      | 80 10   | 0 0    | 50 10       |                           |     |
|                                  | CLAY (Fill) -                           | - silty, trace sand, tr                      | ace coarse gravel,   | trace to som                    | e orgar   | nics               |             |               |        |         |            |                           |         |        |             |                           |     |
| E 38                             | - brow                                  |                                              | giass, trace sit in  |                                 | minu      | d111.)             |             |               |        |         |            |                           |         |        |             |                           |     |
| F                                | - moisi<br>- hiah                       | t, soft<br>plasticity                        |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| -0.5-                            | ×                                       |                                              |                      |                                 |           |                    |             |               | -      |         |            |                           |         |        |             |                           |     |
| E 🕉                              | $\bigotimes$                            |                                              |                      |                                 |           |                    |             | 5133          | -      |         |            | ٠                         |         | •      |             |                           |     |
|                                  |                                         | ck and brown below                           | 0.0 m                |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| -1.0-                            |                                         |                                              | 0.9111               |                                 |           |                    |             | 2404          | -      |         |            |                           |         |        |             |                           |     |
| 233.0                            | CLAY - siltv                            | , trace silt inclusions                      | s (<5 mm diam )      |                                 |           |                    |             | 6134          |        |         |            | •                         |         |        | 4           |                           |     |
|                                  | - mottl                                 | ed black and brown                           | . ,                  |                                 |           |                    |             |               |        | -       |            |                           |         |        |             |                           |     |
| -1.5-                            | - mois                                  | t, stiff, high plasticit                     | y                    |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             | 5135          |        |         |            |                           |         |        | <b>/</b> 0  |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| 232.1 2.0                        |                                         | trace evidetion me                           | dium brown, maio     | t ooft low al                   |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| 232.0                            |                                         | , trace oxidation, me                        |                      |                                 | asticity  |                    |             | 6136          | -      |         | -          |                           |         |        |             |                           |     |
|                                  | - mottl                                 | ed brown and grey                            |                      | 5                               |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| -2.5-                            | - moisi<br>- high                       | t, stiff<br>plasticity                       |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         | . ,                                          |                      |                                 |           |                    |             |               | -      |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             | 5137          | -      |         |            | •                         |         |        |             |                           |     |
| <u>231.1</u> 3.0                 |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  | Notes:                                  | ST HOLE AT 3.1 m                             | IN CLAY              |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  | 1) Test hole                            | was squeezing in a<br>was dry approximat     | t 1.8 m below grou   | ind surface.<br>er drilling and | onen t    | o 1 8 m            |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  | below groun                             | d surface.                                   |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  | bag of bento                            | was backfilled with<br>onite was used in the | e test hole from 0.2 | 3 m to the su                   | surrace.  | e. One             |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
|                                  |                                         |                                              |                      |                                 |           |                    |             |               |        |         |            |                           |         |        |             |                           |     |
| Logged By: _]                    | Fom Hildahl                             |                                              | Reviewed By:         | Kent Bann                       | ster      |                    | _           | -             | Proie  | ct En   | aine       | ər K                      | ent Ban | nister |             |                           |     |

|                  |              |             | RE                                                                    | K                                                                                                                          | Sul                                                              | o-Sur                           | face         | e Lo      | )Q          | J                            |         |                    |              | Tes                                   | st H  | ole⊺                             | [H1:                                                                               | <b>2-26</b><br>1 of 1                       |     |
|------------------|--------------|-------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|--------------|-----------|-------------|------------------------------|---------|--------------------|--------------|---------------------------------------|-------|----------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|-----|
|                  |              |             |                                                                       | HL                                                                                                                         |                                                                  |                                 |              |           |             |                              |         |                    |              |                                       |       |                                  |                                                                                    |                                             |     |
| Clien            |              |             | H2MHILL                                                               |                                                                                                                            |                                                                  |                                 | Project      |           |             | 0068                         |         |                    |              |                                       |       |                                  |                                                                                    |                                             |     |
| -                |              |             |                                                                       | sting Facility Brady F                                                                                                     | Road                                                             |                                 | Location     |           | -           |                              |         |                    | 90.969, E    |                                       | 7.945 | )                                |                                                                                    |                                             |     |
| Conti            |              |             | addock Drillin                                                        | -                                                                                                                          |                                                                  |                                 |              |           |             |                              |         |                    | Ground       | _                                     |       |                                  |                                                                                    |                                             |     |
| Meth             |              |             |                                                                       | Stem Auger, CME-8                                                                                                          |                                                                  |                                 | Date Dri     |           |             | July 3                       |         |                    |              |                                       |       |                                  |                                                                                    |                                             |     |
|                  | Sa           | mple T      | ype:                                                                  | Grab (G)                                                                                                                   | She                                                              | elby Tube (T)                   |              | olit Spoo | n (S        | . 19                         |         | Split B            | arrel (SB)   |                                       | Cor   | e (C)                            |                                                                                    |                                             |     |
|                  | Pa           | rticle Si   | ize Legend:                                                           | Fines                                                                                                                      | Clay                                                             | Silt                            | *<br>*       | 🔅 Sar     | nd          | ۲                            |         | Gravel             | 62           | Cobb                                  | les   |                                  | Boul                                                                               | ders                                        |     |
| Elevation<br>(m) | Depth<br>(m) | Soil Symbol |                                                                       |                                                                                                                            | ERIAL DESCRIPT                                                   |                                 |              |           | Sample Type | Sample Number                | SPT (N) | 16 17<br>I<br>0 20 | Particle Siz | )<br>9 20 2<br>e (%)<br>0 80 10<br>LL | 00    | Stre<br><br>← Po<br>© Fi<br>50 1 | ained S<br>ength (k<br>est Typ<br>Forvane<br>cket Pe<br>⊠ Qu ⊠<br>eld Var<br>00 15 | (Pa)<br><u>e</u><br>è∆<br>en. <b>Φ</b><br>3 | 250 |
| 233.5            |              |             | plasticity<br>CLAY - silty<br>- brow<br>- mois                        |                                                                                                                            |                                                                  | n diam. ), grey.                | , moist, tin | n, nign   |             | G138<br>G139<br>G140<br>G141 |         |                    |              |                                       |       |                                  |                                                                                    |                                             |     |
|                  |              |             | Notes:<br>1) Test hole<br>2) Test hole<br>below groun<br>3) Test hole | ST HOLE AT 3.1 m<br>was squeezing in a<br>was dry approximat<br>id surface.<br>was backfilled with<br>onite was used in th | t 1.8 m below grou<br>tely 15 minutes aft<br>cuttings to 1.2 m l | er drilling and<br>below ground | surface. C   |           | · · · · ·   |                              |         |                    |              |                                       |       |                                  |                                                                                    |                                             |     |

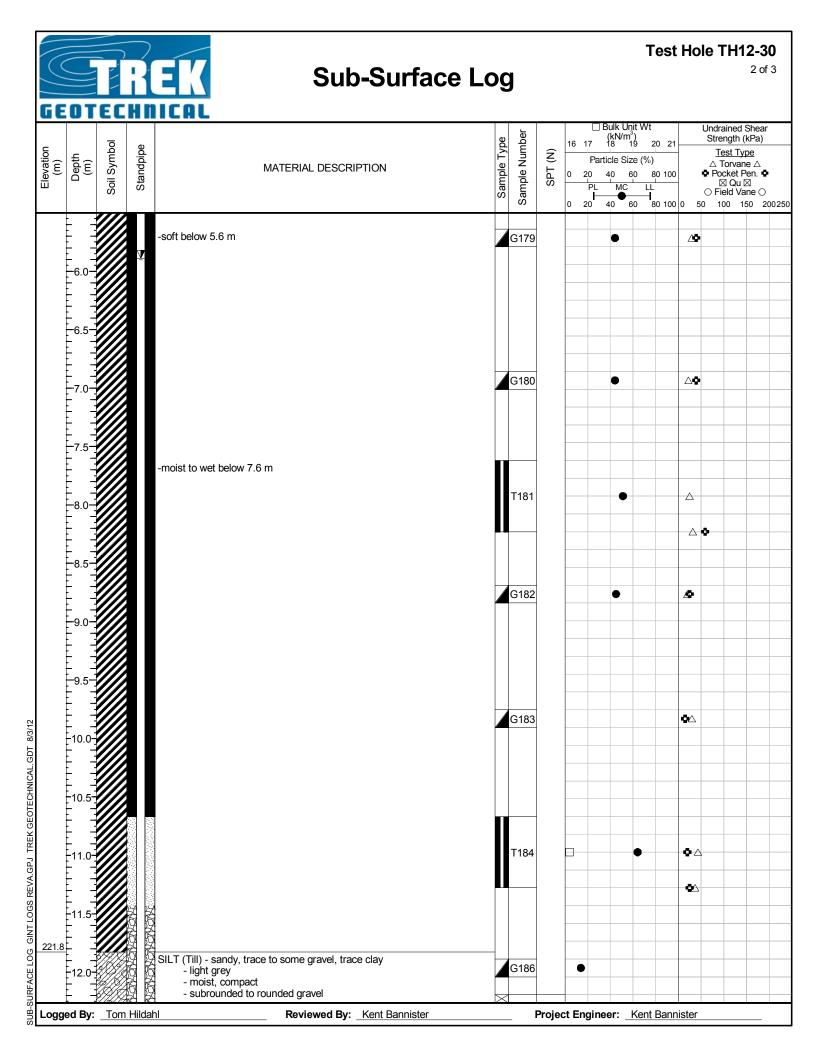
| GEOTECHNICAL |
|--------------|


| <u>GEOTE</u>                                    | <u>CHNIC</u>                                                           | AL                                          |                                                                  |                                 |              |             |                      |         |            |                                                                                  |            |               |                                                                                            |             |
|-------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|---------------------------------|--------------|-------------|----------------------|---------|------------|----------------------------------------------------------------------------------|------------|---------------|--------------------------------------------------------------------------------------------|-------------|
| Client: _(                                      | CH2MHILL                                                               |                                             |                                                                  |                                 | Project Nu   | mber:       | 0068                 | 002 0   | 00         |                                                                                  |            |               |                                                                                            |             |
| Project Name: _\                                | Naste Compos                                                           | ting Facility Brady F                       | Road                                                             |                                 | Location:    |             | UTM <sup>·</sup>     | 14 N-   | 5512946    | .115, E-                                                                         | 630005.79  | 96            |                                                                                            |             |
| Contractor:                                     | Paddock Drilling                                                       | g Ltd.                                      |                                                                  |                                 | Ground Ele   | vation      | 233.68               | 8 m E   | Existing C | Ground                                                                           |            |               |                                                                                            |             |
| Method:                                         | 125 mm Solid S                                                         | Stem Auger, CME-8                           | 50 Track Mount                                                   |                                 | Date Drille  | d:          | July 3               | , 201   | 2          |                                                                                  |            |               |                                                                                            |             |
| Sample                                          | Туре:                                                                  | Grab (G)                                    | She                                                              | lby Tube (T)                    | Split        | Spoon (     | (SS)                 |         | Split Barı | el (SB)                                                                          | Co         | ore (C)       |                                                                                            |             |
| Particle                                        | Size Legend:                                                           | Fines                                       | Clay                                                             | Silt                            | ****<br>**** | Sand        | •                    |         | Gravel     | 62                                                                               | Cobbles    |               | Boulde                                                                                     | ers         |
| Elevation<br>(m)<br>Depth<br>(m)<br>Soil Symbol |                                                                        | MAT                                         | ERIAL DESCRIPT                                                   | ION                             |              | Sample Type | Sample Number        | SPT (N) | 16 17      | Bulk Unit<br>(kN/m <sup>3</sup> )<br>18 19<br>ticle Size<br>40 60<br>MC<br>40 60 | 20 21      | Stre          | ained Sh<br>ength (kP<br>est Type<br>Forvane ∠<br>cket Pen<br>⊠ Qu ⊠<br>eld Vane<br>00 150 | a)<br><br>● |
|                                                 |                                                                        | CLAY (Topsoil) - tra                        |                                                                  | ı diam.)                        |              |             | C142                 |         |            |                                                                                  |            |               |                                                                                            |             |
| 233.5                                           |                                                                        | moist, firm, high pl<br>trace organics (roo | ,                                                                | )                               |              |             | G142                 |         |            |                                                                                  |            |               |                                                                                            |             |
| 233.2                                           | - mottle                                                               | ed black and brown                          | , moist, firm, high                                              | plasticity                      |              |             | G143                 |         |            |                                                                                  |            | $\triangle 0$ |                                                                                            |             |
|                                                 |                                                                        | y, trace oxidation<br>um brown              |                                                                  |                                 |              |             |                      |         |            |                                                                                  |            |               |                                                                                            |             |
| 232.9                                           | - moist<br>CLAY - silty                                                | t, soft, low plasticity                     | ,                                                                |                                 |              | /           | G144                 |         |            |                                                                                  |            | ∆ <b>∲</b>    |                                                                                            |             |
|                                                 | - mottle<br>- moist                                                    | ed brown and grey<br>t, stiff<br>plasticity |                                                                  |                                 |              |             |                      |         |            |                                                                                  |            |               |                                                                                            |             |
|                                                 |                                                                        | itates (<5 mm dian                          |                                                                  |                                 |              |             | G145<br>G146<br>G147 |         |            |                                                                                  |            |               |                                                                                            |             |
|                                                 | Notes:<br>1) Test hole<br>2) Test hole<br>below ground<br>3) Test hole | was squeezing in a<br>was dry approximat    | t 1.5 m below grou<br>ely 15 minutes afte<br>cuttings to 1.5 m b | er drilling and<br>below ground | surface. One |             |                      |         |            |                                                                                  |            |               |                                                                                            |             |
| Logged By: _To                                  | m Hildahl                                                              |                                             | Reviewed By:                                                     | Kent Bann                       | ster         |             | F                    | Projec  | ct Engin   | eer: K                                                                           | ent Bannis | ter           |                                                                                            | _           |


| <b>TREK</b>  |
|--------------|
| GEOTECHNICAL |

| Client:       | CH2MHILL                                                      |                                                                                                                                           |                                                            |                   | Proje       | ct Numbe   | r:          | 0068          | 002 (   | 00      |                          |                                         |             |         |                                                                                                |                                        |
|---------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|-------------|------------|-------------|---------------|---------|---------|--------------------------|-----------------------------------------|-------------|---------|------------------------------------------------------------------------------------------------|----------------------------------------|
| Project Name: | Waste Comp                                                    | osting Facility Brady F                                                                                                                   | Road                                                       |                   | Loca        | tion:      |             | UTM           | 14 N    | -5513   | 079.099                  | ), E-6                                  | 30048.45    | 57      |                                                                                                |                                        |
| Contractor:   | Paddock Dril                                                  | ling Ltd.                                                                                                                                 |                                                            |                   | Grou        | nd Elevati | on:         | 233.5         | 52 m l  | Existin | g Grour                  | nd                                      |             |         |                                                                                                |                                        |
| Method:       | 125 mm Soli                                                   | d Stem Auger, CME-8                                                                                                                       | 50 Track Mount                                             |                   | Date        | Drilled:   |             | July 3        | 3, 201  | 12      |                          |                                         |             |         |                                                                                                |                                        |
| Samp          | е Туре:                                                       | Grab (G)                                                                                                                                  | Sh                                                         | elby Tube (T)     | $\boxtimes$ | Split Spor | on (S       | SS)           |         | Split E | Barrel (S                | SB)                                     | Co          | ore (C) |                                                                                                |                                        |
| Partic        | e Size Legend                                                 | : Fines                                                                                                                                   | Clay                                                       | Silt              |             | Sa         | nd          | ٠             |         | Grave   | <b>a</b> 6               | 2                                       | Cobbles     |         | Bould                                                                                          | lers                                   |
| Depth (m)     |                                                               | MAT<br>C CLAY (Topsoil) - tra                                                                                                             | ERIAL DESCRIF                                              |                   |             |            | Sample Type | Sample Number | SPT (N) |         | Particle<br>0 40<br>PL M | /m <sup>3</sup> )<br>19<br>Size (<br>60 | 20 21<br>%) | Str<br> | Irained Sl<br>rength (kl<br>Test Type<br>Torvane<br>ocket Pe<br>⊠ Qu ⊠<br>Field Van<br>100 150 | Pa)<br>≙<br>∩. <b>√</b><br>n. <b>√</b> |
| 233.0 0.5     | <u></u>                                                       |                                                                                                                                           |                                                            |                   |             |            |             | G148          |         |         | •                        |                                         |             |         |                                                                                                |                                        |
| 232.8         | - me                                                          | edium brown, dry to m                                                                                                                     | oist, soft, low pla                                        | sticity           |             |            |             | G149          |         |         | •                        |                                         |             |         |                                                                                                |                                        |
|               | - ma<br>- ma<br>- hig                                         | Ity, trace precipitates<br>ottled brown and grey<br>pist, firm to stiff<br>gh plasticity<br>nick silt seam at 1.2 m                       |                                                            |                   |             |            |             | G150          |         |         |                          |                                         |             |         | 0                                                                                              |                                        |
|               |                                                               |                                                                                                                                           |                                                            |                   |             |            |             | T151          |         |         |                          |                                         |             |         |                                                                                                |                                        |
| 230.5 - 3.0 - |                                                               | iff below 2.9 m                                                                                                                           |                                                            |                   |             |            |             | G152          |         |         |                          | •                                       |             |         |                                                                                                |                                        |
|               | Notes:<br>1) Test ho<br>2) Test ho<br>below gro<br>3) Test ho | TEST HOLE AT 3.1 m<br>le was squeezing in a<br>le was dry approximat<br>und surface.<br>le was backfilled with<br>ntonite was used in the | : 1.5 m below gro<br>ely 15 minutes a<br>cuttings to 1.2 m | fter drilling and | surface     |            |             |               |         |         |                          |                                         |             |         |                                                                                                |                                        |
|               |                                                               |                                                                                                                                           |                                                            |                   |             |            |             |               |         |         |                          |                                         |             |         |                                                                                                |                                        |
|               |                                                               |                                                                                                                                           |                                                            |                   |             |            |             |               |         |         |                          |                                         |             |         |                                                                                                |                                        |



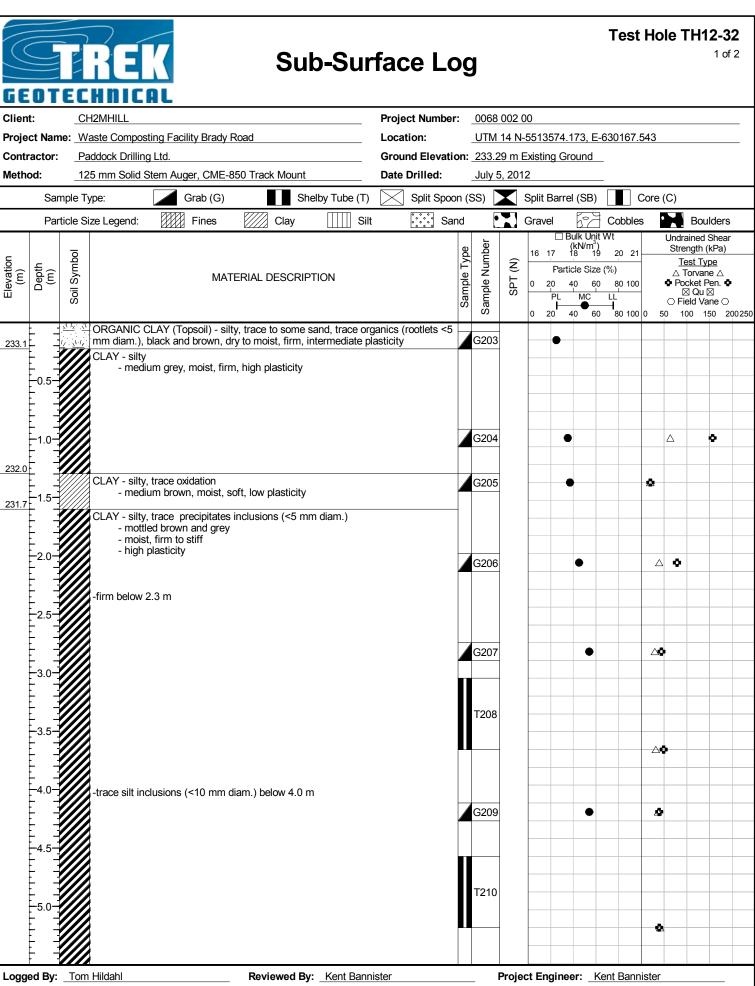

| CH2MHIL                  | L                                                                                            |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            | Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 002 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          |                                                                                              | Road                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                            | Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37.651, E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 629994.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          |                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            | Ground Elevatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 233.78 m Existing Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          |                                                                                              | 850 Track Mount                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            | Date Drilled:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| le Type:                 | Grab (G)                                                                                     | She                                                                                                                                                                                                                                                                  | lby Tube (T)                                                                                                                                                                                                                                                                               | Split Spoor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Split B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arrel (SB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | re (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| le Size Lege             | end: Fines                                                                                   | Clay                                                                                                                                                                                                                                                                 | Silt                                                                                                                                                                                                                                                                                       | San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cobbles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| ill Legend:              | Bentonite S                                                                                  |                                                                                                                                                                                                                                                                      | · E:                                                                                                                                                                                                                                                                                       | Slotted Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ank Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | asing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Soil Symbol<br>Standpipe | ORGANIC CLAY (Tops                                                                           | MATERIAL DESCR                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                            | diam.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPT (N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 20<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (kN/m <sup>3</sup> )<br>18 19<br>Particle Size<br>40 60<br>PL MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 21<br>(%)<br>80 100<br>LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ained Shear<br>ength (kPa)<br>est Type<br>Torvane ∆<br>ocket Pen. ♠<br>⊠ Qu ⊠<br>ield Vane ○<br>00 150 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| . <u></u>                | - dry, firm<br>- high plasticity<br>-moist below 0.3 m<br>SILT - clayey, trace oxid          | ation                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          | - medium brown<br>- dry to moist, soft<br>- low plasticity<br>CLAY - silty, lamitated (      | <2mm thick)                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          | - moist, stiff<br>- high plasticity<br>-10 mm thick silt seam a<br>-trace precipitates (<5 r | at 1.4 m                                                                                                                                                                                                                                                             | 3 m                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          | -firm below 2.6 m                                                                            |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          |                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          |                                                                                              |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                          | Waste Co<br>Paddock I<br>125 mm S<br>le Type:<br>le Size Lege<br>ill Legend:                 | Waste Composting Facility Brady         Paddock Drilling Ltd.         125 mm Solid Stem Auger, CME-         Ie Type:       Grab (G)         le Size Legend:       Fines         ill Legend:       Bentonite S         Image: Step Step Step Step Step Step Step Step | Waste Composting Facility Brady Road         Paddock Drilling Ltd.         125 mm Solid Stem Auger, CME-850 Track Mount         le Type:       Grab (G)         Ie Size Legend:       Fines         Il Legend:       Bentonite Seal         Image: Step Step Step Step Step Step Step Step | Waste Composting Facility Brady Road         Paddock Drilling Ltd.         125 mm Solid Stem Auger, CME-850 Track Mount         le Type:       Grab (G)         Site Legend:       Fines         Bentonite Seal       Filter Pack         Sand       Sand         It Legend:       Bentonite Seal         Site       Sand         Sand       Sand | Waste Composting Facility Brady Road       Location:         Paddock Drilling Ltd.       Ground Elevation         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:         le Type:       Grab (G)       Shelby Tube (T)       Split Spoo         le Size Legend:       Files       Silt       Silt       Silt         ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Bentonite Seal       Filter Pack       Slotted Pipe       Slotted Pipe         Ill Legend:       Slotted Pipe       MATERIAL DESCRIPTION       ORGANIC CLAY (Topsoil) - silty, some rootlets (<5 mm diam.) | Waste Composting Facility Brady Road       Location:         Paddock Drilling Ltd.       Ground Elevation:         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:         Terpe:       Grab (G)       Shelby Tube (T)       Split Spoon (S         le Size Legend:       Fines       Site State Split Spoon (S       Selety Tube (T)       Split Spoon (S         le Size Legend:       Fines       Site Split Spoon (S       Solid Pipe       B         op       MATERIAL DESCRIPTION       Solid Pipe       B         op       MATERIAL DESCRIPTION       Solid Pipe       B         op       ORGANIC CLAY (Topsoil) - silty, some rootlets (<5 mm diam.) | Waste Composting Facility Brady Road       Location:       UTM         Paddock Drilling Ltd.       Ground Elevation:       233.7         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       July 3         Ite Type:       Image: Grab (G)       Shelby Tube (T)       Split Spoon (SS)         Ite Size Legend:       Image: Grab (G)       Shelby Tube (T)       Split Spoon (SS)         Ite Legend:       Image: Grab (G)       Filter Pack       Slotted Pipe       Blank Ca         Ite Legend:       Image: Grab (CLAY (Topsoil) - silty, some rootlets (<5 mm diam.) | Waste Composting Facility Brady Road       Location:       UTM 14 N         Paddock Drilling Ltd.       Ground Elevation:       233.78 ml         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       July 3, 201         te Type:       Grab (G)       Shelby Tube (T)       Split Spoon (SS)       Image: Split Spoon (SS)         te Size Legend:       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)         iii Legend:       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)         00       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)         10       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)       Image: Split Spoon (SS)         11       Legend:       Image: Split Spoon (SS)       Image: Split Split Split Spoon (SS)       Image: Split Sp | Waste Composting Facility Brady Road       Location:       UTM 14 N-55130         Paddock Drilling Ltd.       Ground Elevation:       233.78 m Existing         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       July 3. 2012         le Type:       Grab (G)       Shelby Tube (T)       Split Spcon (SS)       Split B         le Size Legend:       Image: Split Spcon (SS)       Split Spcon (SS)       Split B         lil Legend:       Bentonite Seal       Solited Pipe       Benk Casing         Gravel       Image: Split B       Benk Casing       Gravel         ORGANIC CLAY (Topsoil) - silty, some rootlets (<5 mm diam.) | Waste Composing Facility Brady Road       Location:       UTM 14 N-5513037.651, E         Paddock Drilling Ltd.       Ground Elevation:       233.78 m Existing Ground         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       July 3, 2012         le Type:       Grab (G)       Shetby Tube (T)       Split Spoon (SS)       Split Barrel (SB)         le Size Legend:       Fines       Clay       Split Spoon (SS)       Split Barrel (SB)         lil Legend:       Bentonite Seal       Split Spoon (SS)       Split Barrel (SB)         of group       MATERIAL DESCRIPTION       Split Barrel (SB)       Split Barrel (SB)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Barrel (SB)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Barrel (SB)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Spoon (SS)       Split Spoon (SS)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Spoon (SS)       Split Spoon (SS)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Spoon (SS)       Split Spoon (SS)         of group       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Spoon (SS)       Split Spoon (SS)         Silt - clayer, trace ox | Waste Compositing Facility Bredy Road       Location:       UTM 14 N-5513037 651, E-629994.32         Paddock Drilling Ltd.       Ground Elevation:       233.78 m Existing Ground         125 mm Sold Stem Auger, CME-850 Track Mount       Date Drillet:       July 3, 2012         ite Type:       Grab (G)       Shelby Tube (T)       Split Spoon (SS)       Split Barrel (SB)       C could be | Waste Composting Facility Brady Road       Location:       UTM 14 N-5613037.651, E-629994.321         Paddock Drilling Ltd.       Ground Elevation:       233.78 m Existing Ground         125 mm Solid Stem Auger, CME-850 Track Mount       Date Drilled:       July 3, 2012         Le Type:       Grab (G)       Shelty Tube (T)       Split Spoon (SS)       Split Barrel (SB)       Core (C)         Is Size Legend:       Bentonie Seel       Split Park       Slotted Pipe       Blank Caing         Bentonie Seel       Split Spoon (SS)       Split Barrel (SB)       Core (C)         0       Bentonie Seel       Split Park       Slotted Pipe       Blank Caing         0       Bentonie Seel       Split Spoon (SS)       Split Barrel (SB)       Core (C)         0       Bentonie Seel       Split Spoon (SS)       Split Barrel (SB)       Core (C)         0       Bentonie Seel       Split Spoon (SS)       Split Spoon (SS)       Split Barrel (SB)       Core (C)         0       MATERIAL DESCRIPTION       Split Spoon (SS)       Split Spoon (SS)       Split Spl |  |  |  |







| UCUIC                            |                  | M C                                               |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|----------------------------------|------------------|---------------------------------------------------|------------------------------------------------------------|---------------|------------------|------------------------------|-----------|-----------------------|----------------------------------------|---------|-------------|------------------------------|--------|
| -                                | CH2MHILL         |                                                   |                                                            |               | Project Number   |                              |           | 10000                 | -                                      |         |             |                              |        |
|                                  |                  | sting Facility Brady Roa                          | ad                                                         |               | Location:        |                              |           | 13039.323             |                                        | 4.993   |             |                              |        |
|                                  | Paddock Drilling |                                                   | Trook Mount                                                |               | Ground Elevation |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  | Stem Auger, CME-850                               |                                                            |               | Date Drilled:    |                              |           | July 5, 201           |                                        |         | (0)         |                              |        |
| Sample                           |                  | Grab (G)                                          |                                                            | by Tube (T)   | Split Spoc       |                              |           | lit Barrel (S         | ·                                      | Core    |             |                              |        |
|                                  | e Size Legend:   | Fines                                             | Clay                                                       | Silt          | Saı              |                              | Gra       |                       | Cobb                                   | les     | N.          | Bould                        | ders   |
| Backfill                         | Legend:          | Bentonite Seal                                    | Filter Pack<br>Sand                                        |               | nd at ttom       | Slough E                     | ackfill   | Slotted               | · ·                                    | В       | Blank C     | -                            |        |
|                                  | ξω               |                                                   |                                                            |               |                  | 'pe<br>nber                  | 16        | Bulk<br>(kN/<br>17 18 | Unit Wt<br>m <sup>3</sup> )<br>19 20 2 | 21      | Stre        | ained S<br>ngth (k           | Pa)    |
| Elevation<br>(m)<br>Depth<br>(m) | Standpipe        | MA                                                | TERIAL DESCRI                                              | PTION         |                  | Sample Type<br>Sample Number | SPT (N)   | Particle S            |                                        |         | ΔT          | est Typ<br>orvane            | eΔ     |
|                                  | Star             |                                                   |                                                            |               |                  | amp<br>mple                  | -dS       | 20 40<br>PL M         | 60 80 10<br>C LL                       | 00      | Σ           | cket Pe<br>I Qu ⊠<br>eld Var | ]      |
|                                  |                  |                                                   |                                                            |               |                  | Sa                           | 0         | 20 40                 | 60 80 1                                | 00 0 9  |             |                              | 0 2002 |
| 233.4                            |                  | ANIC CLAY (Topsoil) -<br>- black, moist, firm, hi | <ul> <li>silty, some rootle</li> <li>plasticity</li> </ul> | ets (<5mm dia | ım.)             | G172                         |           | •                     |                                        |         |             |                              |        |
|                                  | CLAY             | ' - silty, trace precipitat                       |                                                            | 5 mm diam.)   |                  |                              |           |                       |                                        |         |             |                              |        |
| -0.5                             |                  | - grey<br>- moist, stiff                          |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  | - high plasticity                                 |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  | G173                         |           | •                     |                                        |         | $\triangle$ | ۰                            |        |
| -1.0-                            |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  | -low p           | plasticity from 1.3 to 1.                         | 5 m                                                        |               |                  | G174                         |           | •                     |                                        |         | ٠           |                              |        |
| -1.5-                            | -trace           | silt inclusions (<10 m                            | m diam.) below 1                                           | l.5 m         |                  |                              |           |                       |                                        |         |             |                              |        |
| //                               |                  |                                                   | ,                                                          |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  | T175                         |           |                       |                                        |         |             |                              |        |
| -2.0-                            |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         | •           |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  | -firm I          | below 2.6 m                                       |                                                            |               |                  | G176                         |           | •                     |                                        |         | •           |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
| -3.0-                            |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
| Logged By:                       |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
| -3.5-                            |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  | G177                         |           | •                     | )                                      |         | •           |                              |        |
| 4.0-                             |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
| -4.5-                            |                  |                                                   |                                                            |               |                  |                              | -         |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  | T178                         |           |                       |                                        | _       | ۵           |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         | ^ <b>0</b>  |                              |        |
|                                  |                  |                                                   |                                                            |               |                  |                              |           |                       |                                        |         |             |                              |        |
| Logged By: _T                    | om Hildahl       |                                                   | Reviewed By:                                               | Kent Bannist  | er               | F                            | Project E | Engineer:             | Kent Ba                                | nnister |             |                              |        |






|                  |                |             |                              | ICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type        | umber         | ź       | 16 | □ Bulk<br>(kh<br>17 18<br>Particle    | √m³)<br>19     | 20 2                 | 1 | Stre<br>T         | ained Sh<br>ength (kP<br>est Type                   | a)              |
|------------------|----------------|-------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|---------|----|---------------------------------------|----------------|----------------------|---|-------------------|-----------------------------------------------------|-----------------|
| Elevation<br>(m) | Depth<br>(m)   | Soil Symbol | Standpipe                    | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Type | Sample Number | SPT (N) |    | 20 40<br>PL I                         | 60<br>/<br>//C | 80 10<br>LL<br>80 10 | 1 | ∲ Po<br>[<br>○ Fi | Forvane<br>cket Per<br>⊠ Qu ⊠<br>eld Vane<br>00 150 | . <b>•</b><br>0 |
|                  | 12.5           |             | CINCINCIN<br>CINCINCIN       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           | SP1           | 87 20   |    | • • • • • • • • • • • • • • • • • • • |                |                      |   |                   |                                                     |                 |
|                  | -13.0<br>-13.0 |             | NGNGNGNGNGN                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | SP1           | 88 31   | •  |                                       |                |                      |   |                   |                                                     |                 |
|                  | -14.0          |             | Lananananana<br>Lananananana |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | SP1           | 89 33   | •  |                                       |                |                      |   |                   |                                                     |                 |
| 218.7            | -14.5          |             | NONONONONON                  | SILT (Till) - sandy, trace to some gravel, trace clay<br>- light grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | SP1           | 90 29   | •  |                                       |                |                      |   |                   |                                                     |                 |
| 217.9            | -15.5          |             |                              | - dry to moist, dense to very dense<br>- subrounded to rounded gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | SP1           | 91 100  | •  |                                       |                |                      |   |                   |                                                     |                 |
|                  |                |             |                              | <ul> <li>END OF TEST HOLE AT 15.7 m IN SILT TILL<br/>Notes:</li> <li>1) Power Auger Refusal (PAR) at 15.7 m below ground surface.</li> <li>2) Test hole squeezed in at 11.4 m below ground surface.</li> <li>3) Test hole was dry 20 minutes after drilling.</li> <li>4) Standpipe Piezometer (TH12-30) installed to 15.6 m below ground on<br/>completion of drilling.</li> <li>4) Water level was 5.89 m below ground surface on July 25, 2012.</li> <li>5) Water level was 5.96 m below ground surface on August 1, 2012.</li> <li>6) Test hole was back filled with sand below 13.6 m. Bentonite was<br/>backfilled from 13.6 m to the surface.</li> </ul> |             |               |         |    |                                       |                |                      |   |                   |                                                     |                 |
|                  | od By          | : _Tom      | Hilda                        | Reviewed By:         Kent Bannister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |               | Proje   |    |                                       |                |                      |   |                   |                                                     |                 |

| $\subseteq$                              |                                | 111                              | REK Sub-Su                                                                                                                                                                                                                                            | rface                                            | Lo       | g                             |         |                   |                                              | T                                                   | est H                    | lole <sup>-</sup> | ΓH1:                                                             | <b>2-31</b><br>1 of 2                   |
|------------------------------------------|--------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------|-------------------------------|---------|-------------------|----------------------------------------------|-----------------------------------------------------|--------------------------|-------------------|------------------------------------------------------------------|-----------------------------------------|
| Client:<br>Project<br>Contrac<br>Method: | Name                           | <u>CH</u><br>e: <u>Wa</u><br>Pao | HINICAL<br>H2MHILL<br>aste Composting Facility Brady Road<br>Iddock Drilling Ltd.<br>5 mm Solid Stem Auger, CME-850 Track Mount                                                                                                                       | Project N<br>Location:<br>Ground E<br>Date Drill | levatio  | <u>UTM</u><br>n: <u>233</u> . |         | -55135<br>Existin | 508.6, E-<br>g Ground                        |                                                     | 0.85                     |                   |                                                                  |                                         |
|                                          | Sam                            | ple Ty                           | vpe: Grab (G) Shelby Tube                                                                                                                                                                                                                             | r) 🔀 Spl                                         | it Spoon |                               |         |                   | Barrel (SE                                   | 3)                                                  | Со                       | re (C)            |                                                                  |                                         |
|                                          | Part                           | icle Siz                         | ze Legend: Fines Clay                                                                                                                                                                                                                                 | Silt 🕴                                           | Sano     |                               |         | Grave             |                                              |                                                     | bbles                    |                   | Boul<br>ained S                                                  |                                         |
| Elevation<br>(m)<br>Denth                | (m)                            | Soil Symbol                      | MATERIAL DESCRIPTION                                                                                                                                                                                                                                  |                                                  |          | Sample Type<br>Sample Number  | SPT (N) | 0 2               | (kN/n<br>7 18<br>Particle S<br>0 40<br>PL MC | n <sup>3</sup> )<br>19 20<br>ize (%)<br>60 80<br>LL | 0 21<br>0 100<br>0 100 0 | Stre              | ength (k<br>est Typ<br>Torvane<br>icket Pe<br>⊠ Qu ⊠<br>ield Var | (Pa)<br><u>e</u><br>e ∆<br>en. <b>Φ</b> |
| 233.6                                    | 0.5                            | 1. 1.11                          | ORGANIC CLAY (Topsoil) - silty, trace to some sand, trace<br>mm diam.), black and brown, dry to moist, very stiff, low pla<br>CLAY - silty, trace coarse sand, trace precipitates (<25 mn<br>- medium grey,<br>- dry, very stiff<br>- high plasticity | ticity                                           | ets <5 - | G21:                          | 3       |                   | •                                            |                                                     |                          |                   |                                                                  |                                         |
|                                          | 1.0<br>1.1<br>1.0              |                                  | -moist and stiff below 0.9 m                                                                                                                                                                                                                          |                                                  | 4        | G214                          | 1       |                   |                                              |                                                     |                          |                   | <u> </u>                                                         | •                                       |
| 1<br>                                    | 1.5<br>1.5<br>1<br>1           |                                  | CLAY - silty, trace oxidation                                                                                                                                                                                                                         |                                                  |          | G21                           |         |                   | •                                            |                                                     |                          |                   | •                                                                |                                         |
| 231.7 2                                  | 2.0<br>                        |                                  | <ul> <li>- medium brown, moist, soft, low plasticity</li> <li>CLAY - silty, trace precipitates inclusions (&lt;25 mm diam.)</li> <li>- mottled brown and grey</li> <li>- moist, stiff</li> <li>- high plasticity</li> </ul>                           |                                                  |          | T217                          | _       |                   |                                              |                                                     |                          | φ<br><br>         |                                                                  |                                         |
|                                          | 11111<br>3.5<br>1111111<br>4.0 |                                  |                                                                                                                                                                                                                                                       |                                                  | -        | G218                          | _       |                   |                                              |                                                     |                          |                   |                                                                  |                                         |
|                                          | 4.5<br>                        |                                  |                                                                                                                                                                                                                                                       |                                                  | -        | G219                          | )       |                   | <u></u>                                      |                                                     |                          |                   |                                                                  |                                         |

|                  |         | EC          | REK Sub-Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | face Log    |               |         |                                                                        | Test                                                          | Hole T           | <b>*H12-31</b><br>2 of 2                                                                             |
|------------------|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|---------|------------------------------------------------------------------------|---------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|
| Elevation<br>(m) |         | Soil Symbol | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Type | Sample Number | SPT (N) | □ Bulk<br>(KNV<br>16 17 18<br>Particle 9<br>0 20 40<br>PL M<br>0 20 40 | m <sup>3</sup> )<br>19 20 21<br>Size (%)<br>60 80 100<br>C LL | Stre<br><u> </u> | ained Shear<br>ngth (kPa)<br>orvane △<br>Sket Pen. <b>Φ</b><br>3 Qu ⊠<br>eld Vane ○<br>00 150 200250 |
| 227.7            | 6.0     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T2          | 220           |         |                                                                        |                                                               | <b>\$</b>        |                                                                                                      |
|                  |         |             | END OF TEST HOLE AT 6.1 m IN CLAY<br>Notes:<br>1) Test hole was dry approximately 15 minutes after drilling<br>2) Test hole was open to 6.1 m below ground surface.<br>3) Test hole was backfilled with Bentonite from 6.1 m to the surface<br>surface of the surface of the sur | face.       |               |         |                                                                        |                                                               |                  |                                                                                                      |
| Load             | jed By: | Tom         | Hildahl Reviewed By: Kent Banni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ster        | P             | roiect  | t Engineer:                                                            | Kent Bann                                                     | ister            |                                                                                                      |



SUB-SURFACE LOG GINT LOGS REVA.GPJ TREK GEOTECHNICAL.GDT 8/3/12



|     |                                     | EC          |                                                                                                                                                                                                                      |             | er            |         |              |                 | Bulk U<br>(kN/m<br>18 | njit Wt              |                          | Und<br>Str           | rained S<br>ength (k                                               | near<br>Pa)           |
|-----|-------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|---------|--------------|-----------------|-----------------------|----------------------|--------------------------|----------------------|--------------------------------------------------------------------|-----------------------|
| (m) | (III)<br>Depth<br>(m)<br>Soil Symbo | Soil Symbol | MATERIAL DESCRIPTION                                                                                                                                                                                                 | Sample Type | Sample Number | SPT (N) | 16<br>0<br>0 | Pai<br>20<br>PL | ticle Si<br>40<br>MC  | ze (%)<br>60 8<br>LL | 0 21<br>0 100<br>0 100 0 | 2<br>A<br>O P<br>O F | Test Type<br>Torvane<br>ocket Pe<br>⊠ Qu ⊠<br>Tield Van<br>100 150 | 2<br>Δ<br>n. Φ<br>e O |
|     |                                     |             |                                                                                                                                                                                                                      |             | G211          |         |              |                 | •                     |                      |                          | ٩                    |                                                                    |                       |
|     | 6.0-                                |             |                                                                                                                                                                                                                      |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
| 6.6 | 6.5                                 |             |                                                                                                                                                                                                                      |             | T212          |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
|     |                                     |             | <ol> <li>Test hole was dry approximately 15 minutes after drilling</li> <li>Test hole was open to 6.7 m below ground surface.</li> <li>Test hole was backfilled with Bentonite from 6.7 m to the surface.</li> </ol> |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
|     |                                     |             |                                                                                                                                                                                                                      |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
|     |                                     |             |                                                                                                                                                                                                                      |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
|     |                                     |             |                                                                                                                                                                                                                      |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |
|     |                                     |             |                                                                                                                                                                                                                      |             |               |         |              |                 |                       |                      |                          |                      |                                                                    |                       |

|                                  |                                                                                                                                                                                                                                                                                                                                                    | Test Hole TH12-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:                          | CHINICAL<br>CH2MHILL<br>Waste Composting Facility Brady Road<br>Paddock Drilling Ltd.<br>125 mm Solid Stem Auger, CME-850 Track Mount                                                                                                                                                                                                              | Project Number:         0068 002 00           Location:         UTM 14 N-5513198.622, E-630388.312           Ground Elevation:         233.26 m Existing Ground           Date Drilled:         July 5, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampl                            | e Type: Grab (G) Shelby Tube (T)                                                                                                                                                                                                                                                                                                                   | Split Spoon (SS) Split Barrel (SB) Core (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Particl                          | Size Legend: Fines Clay Silt                                                                                                                                                                                                                                                                                                                       | Sand Gravel Cobbles Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Elevation<br>(m)<br>Depth<br>(m) | MATERIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                               | Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa)       Image: Strength (kPa)         Image: Strength (kPa)       Image: Strength (kPa) |
| 233.0                            | <ul> <li>ORGANIC CLAY (Topsoil) - silty, trace roots (&lt;5 mm diam.)</li> <li>black, moist, firm, high plasticity</li> <li>CLAY - silty, trace organics (rootlets &lt;5 mm diam.)</li> <li>light grey</li> <li>moist, stiff</li> <li>high plasticity</li> </ul>                                                                                   | G192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                  | -firm below 1.4 m<br>SILT - some clay<br>- medium brown, moist, soft, low plasticity<br>CLAY - silty, trace precipitate inclusions (<3 mm diam.)<br>- mottled brown and grey<br>- moist, stiff<br>- high plasticity                                                                                                                                | G193       ●       △       ◆         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I         I       I       I       I       I       I         I       I       I       I       I       I       I         I       I       I       I       I       I       I       I         I       I       I       I </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 71.50                            |                                                                                                                                                                                                                                                                                                                                                    | G195<br>T196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | <ul> <li>END OF TEST HOLE AT 3.7 m IN CLAY<br/>Notes:</li> <li>1) Test hole was dry approximately 15 minutes after drilling</li> <li>2) Test hole was open to 3.7 m below ground surface.</li> <li>3) Test hole was backfilled with cuttings to 1.5 m below ground<br/>bag of bentonite was used in the test hole from 0.3 m to the sur</li> </ul> | surface. One rface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| GEDT                             | <b>REK</b> Sub-Surfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Hole TH12-34<br>1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ct Number: 0068 002 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project Name                     | : Waste Composting Facility Brady Road Locat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Contractor:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd Elevation: 233.25 m Existing Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Method:                          | 125 mm Solid Stem Auger, CME-850 Track Mount Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drilled:July 5, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sam                              | ole Type: Grab (G) Shelby Tube (T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Split Spoon (SS) Split Barrel (SB) Core (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Parti                            | cle Size Legend:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sand Gravel 7 Cobbles M Boulders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Elevation<br>(m)<br>Depth<br>(m) | To and the second secon | add         add |
| 233.0                            | <ul> <li>△ ORGANIC CLAY (Topsoil) - silty, trace organics (roots &lt;5 mm diam.)</li> <li>→ black, moist, firm, high plasticity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G197 • 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  | CLAY - silty, some fine sand, trace oxidation<br>- mottled brown and grey<br>- moist, stiff<br>- high plasticity<br>-25 mm fine sand seam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>232.0</u><br>231.9            | SAND with the maint loope fine and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 201.0                            | SAND - silty, brown, moist, loose, fine sand<br>SILT - some clay, some sand<br>- medium brown<br>- moist to wet, soft<br>- low plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                  | CLAY - silty, trace fine sand, trace precipitate inclusions (<3 mm diam.<br>- mottled brown and grey<br>- moist, firm<br>- high plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | <ul> <li>END OF TEST HOLE AT 3.7 m IN CLAY<br/>Notes:</li> <li>1) Water level was 3.4 m below ground surface approximately 15 minu<br/>drilling</li> <li>2) Test hole was open to 3.7 m below ground surface.</li> <li>3) Test hole was backfilled with cuttings to 1.5 m below ground surface<br/>bag of bentonite was used in the test hole from 0.3 m to the surface.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |