

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Marvin McDonald	Page 1
СС		
Subject	Preliminary Geotechnical Assessment- Fort Garry Interceptor Sewer Crossing at the Red River	
From	Alex Hill	
Date	December 12, 2013	Project Number 60274906 (403.9.2)

This assessment forms part of the Preliminary Geotechnical Assessment undertaken in accordance with the scope of work outlined in the AECOM Proposal (04001205.4016.035) dated July 10, 2013 in regards to the provision of Professional Engineering Services for the Repair of the Fort Garry Interceptor Sewer Crossing the Red River.

1. Introduction

1.1 General

The primary focus of the geotechnical assessment was to establish the current stability of the riverbank slope within the study area and to identify the potential for slope failure engaging the sewer pipe. Recommendations are provided as part of this Memorandum should there be a risk of slope failure and its potential to engage of the sewer pipe. Further geotechnical recommendations are provided to address erosion at toe of the riverbank slope.

1.2 Scope

The Preliminary Geotechnical Assessment included the following components:

- Visual inspection of the subject site and its boundaries;
- Review of existing reports and as-built drawings relevant to the subject site and adjacent structures, if available;
- Completion of a geotechnical field program including the undertaking of a series of test holes and the subsequent installation of groundwater monitoring instruments (i.e., standpipe piezometers);
- An evaluation of current slope stability and identification of mechanisms (where appropriate and applicable) that may contribute to potential slope instability;
- An evaluation of potential stabilisation measures should the results of the stability analysis indicate potential risk to current conditions and/or adjacent structures; and

• Provision of recommendations for remediation of the slope should the stability analysis indicate potential instability.

1.3 Background

The following sources of background information were reviewed as part of this preliminary geotechnical assessment:

Reports:

- AECOM Canada Ltd. (May 23, 2012), Technical Memorandum Test Hole Adjacent to Interceptor; Fort Garry to St. Vital Interceptor, East Bank of Red River at Bishop Grandin Boulevard.
- UMA Engineering Ltd. (December 4, 2006), Functional Design Report *St. Vital Park Riverbank Stability Study and Functional Design of Stabilization Measures.*
- Klohn Leonoff Consultants (April 5, 1976), Sub-soils Investigation- Fort Garry St. Vital Corridor, Winnipeg Manitoba.

Drawings:

- Wardrop Engineering Inc. (June 23, 1997), Fort Garry Bridge (Route 165) Flood '97 Monitoring Riverbed Soundings - *Scour Investigation Plan (*B173-97-S1).
- Wardrop Engineering Inc. (June 23, 1997), Fort Garry Bridge (Route 165) Flood '97 Monitoring Riverbed Soundings - *Scour Investigation; Section A-A* (B173-97-S2).
- Wardrop Engineering Inc. (June 23, 1997), Fort Garry Bridge (Route 165) Flood '97 Monitoring Riverbed Soundings - *Scour Investigation; Section B-B* (B173-97-S3).
- W.L Wardrop & Associates (March 25, 1977), As-Built Drawings *Route 165, South Bridge Soils Data* (B-5092-205).
- W.L Wardrop & Associates (March 25, 1977), As-Built Drawings *Route 165, North Bridge Soils Data* (B-5092-206).
- W.L Wardrop & Associates (March 25, 1977), As-Built Drawings *Route 165, Aqueduct Soils Data* (B-5092-207)..
- W.L Wardrop & Associates (March 25, 1977), As-Built Drawings *Route 165, Water Level Data* (B-5092-207).

2. Field Program

2.1 Site Reconnaissance

A detailed site reconnaissance was conducted on November 6, 2013 by AECOM personnel to document and photograph site conditions (topography, evidence of instabilities, vegetation, etc.) and to evaluate site access for field investigation and potential construction access. The riverbank characterization described in Section 3.0 of this Memorandum is based on information collected during the site reconnaissance trip.

2.2 Surveys

Topographic surveys were not included as part of the geotechnical field program, and as such, all subsequent geotechnical analysis has been based on previous surveys conducted on the study area, specifically along the sewer alignment.

2.3 Geotechnical Investigation

To supplement soil and groundwater information obtained from previous geotechnical investigations and reports, two (2) test holes were advanced under the supervision of AECOM at the locations shown on Figure A1, enclosed within Appendix A of this Memorandum.

The geotechnical investigation was conducted on November 8 and 19, 2013, using an Acker MP-8/SS3 drill rig equipped with 125 mm diameter solid stem augers, operated by Paddock Drilling Ltd. Two (2) test holes (TH13-01 and TH13-02) were advanced to power auger refusal (within Glacial Till) at depths of 13.8 m (TH13-01) and 11.6 m (TH13-02) below ground surface. Both test holes were completed under the supervision of AECOM personnel, who visually classified and logged soils, retrieved samples for laboratory testing, and supervised in-situ soil testing, instrumentation installation, and test hole backfilling. In-situ soil testing consisted of Standard Penetration Tests (SPTs) performed at regular intervals throughout each test hole. Instrumentation installation included 25 mm diameter polyvinyl chloride (PVC) standpipe piezometers with 0.3 m casagrande tips installed in each test hole upon completion. Each test hole was backfilled with silica sand around the casagrande tip with the remaining annulus sealed with bentonite chips.

Test hole locations were measured using the Universal Transverse Mercator (UTM) coordinate system by AECOM personnel using handheld GPS, generally considered accurate to +/- 3 m. Ground elevations at each test hole were not measured. Detailed test hole logs summarizing the location and completion depths of test holes, encountered soil conditions, and seepage and sloughing conditions are presented within Appendix B of this Memorandum.

A summary of the test hole drilling is presented in Table 2-1 below.

	•	U
Test Hole	Depth to Base of Hole	Soil Unit at
	(m)	Termination Depth
TH13-01	13.8	Glacial Till
TH13-02	11.6	Glacial Till

Table 2-1: Summary of Test Holes Drilling

Notes: *- Elevations not recorded as part of the Geotechnical Investigation

2.4 Laboratory Testing

Laboratory testing was conducted on selected soil samples collected during the site investigation. The laboratory testing program included determination of moisture contents, grain size distribution (hydrometer method), Atterberg limits, unconfined compressive strengths and density testing. The laboratory test results are shown on the test hole logs in Appendix B and are also presented separately in Appendix C (Laboratory Test Results). Table 2-2 summarizes the number and type of the tests completed.

Table 2-2: Laboratory Testing Summary

Test	Number
Moisture Content	24
Hydrometer Analysis	5
Atterberg Limits	5
Unconfined Compressive Strength	2
Bulk and Dry Density	5

MEM-2013-12-12-MMcDonald-Fort Garry Interceptor Sewer Crossing-60274906-FINAL.docx

3. Riverbank Characterisation

3.1 General

The Fort Garry Interceptor Sewer is located in a large alluvial flood plain that extends from just south of Bishop Grandin Boulevard to approximately 1 km north of the project site. The alluvial soils that form the flood plain are comprised mainly of clay beds of silt, sand, and gravel, which were deposited either directly on glacial till or on a layer of lacustrine clay. The alluvial deposits are exposed over the full height of the subject riverbank throughout the study area.

The system of bank characterization as detailed in the City of Winnipeg Waterways Authority's *Riverbank Characterization Study* (May 2000) has been adopted for characterizing the subject riverbank slope within the project study area. Following the 2000 study, the riverbank slope associated with this project has been classified as an *Erosion Controlled Bank* based on site conditions.

3.1.1 Site Reconnaissance Observations

Photographs taken during the course of the site reconnaissance visit are presented as Appendix D enclosed with this Memorandum.

Vegetation

The east bank of the Red River within the study area largely consisted of a manicured lawn along the upper bank, a flattened mid-slope (inclusive of an asphalt walkway), and a non-maintained lower slope with overgrown mature trees and brush as vegetation cover. Directly at the toe of the slope, vegetation cover is absent due to erosion.

Instability Features

The following slope instability features were identified during the site reconnaissance visit:

- A tension crack was observed on the asphalt walkway running approximately 10 meters in both directions perpendicular to interceptor alignment. No vertical displacement within the pavement surface was noted. It was further evident that historical movement along the tension crack in the horizontal direction may have occurred, which appeared to have been partially repaired. There may be a number of mechanisms attributable to the identified pavement cracking including sub-base/sub-grade failure, seasonal swelling and shrinkage of sub-grade, and movement within the riverbank slope.
- Dislocated trees were observed along the lower slope parallel to the alignment of the interceptor. Based on the direction at which the trees leaned, it was inconclusive as to the nature of the movement within the slope. It is likely, however that tree movement may be a consequence of shallow topsoil creep or shallow subsoil movement.
- An erosional scarp was present along the complete length of the toe of slope along the study area, perpendicular to the interceptor alignment. The erosional scarp measured approximately 0.9 m (average) in vertical height, and had exposed the alluvial clays along the

entire length. It was evident that in certain segments, the alluvial soils comprised of silty clays with intermittent silt and sand lenses (<25 mm thickness).

Drainage Observations

Erosion scour from land drainage sewer outfall at bridge pier of eastbound Fort Garry Bridge was observed approximately 12.0 m south of sewer interceptor pipe alignment. Rip-rap, where present at the toe of the bridge abutment slope, was relatively intact, with erosion being limited to the alluvial materials deposited on the previously placed rip-rap.

There appeared to be no clear indication of deep-seated rotational or translational movement/failure within the riverbank slope either historically or at present. Based on the erosion of the alluvial soils at the toe of the slope, the most significant driver of any slope instability would likely be the localized softening and weathering of soils due to water erosion, and the further reduction of toe weight due to erosion. A loss of materials at the toe of the slope may, in time, propagate further upslope by a process of retrogressive failure.

3.2 Erosion Controlled Bank

Based on site observations obtained via site reconnaissance, the riverbank slope within the project study area is classified as an erosion controlled bank in accordance with the criteria described in the City of Winnipeg Waterways Authority's *Riverbank Characterization Study* (May 2000). This classification is attributed to a riverbank slope where riverbank loss is primarily the result of erosion along the edge of the river at summer water levels. Bank failures typically are localized toppling of over steepened riverbank slopes created as a result of excessive toe erosion.

Shallow failures or sloughing of the bank face often follow floods or heavy precipitation which can saturate the bank and reduce the strength of the soil. There is no evidence of deep-seated or rotation failures along the subject riverbank slope, but the rate of bank loss may be accelerated following heavy precipitation or rapid drawdown events. For the most part, the lower portion of the riverbank slope is covered with semi-mature trees and tall shrubs which contribute to reducing erosion to the near-surface soils during heavy rainfall. Little or no vegetation was observed on the over-steepened bank face above the river level, leaving it vulnerable to erosion.

4. Subsurface Conditions

The following sections describe the subsurface stratigraphy directly within the area of investigation (i.e., riverbank section) based on the findings of the field investigation. Subsurface conditions can vary within the site and the information provided in this section is a summary of the findings from the field investigation and laboratory testing program.

4.1 Soil Stratigraphy

Based on the results of the test holes performed at the subject site, the general soil profile in descending order from ground surface is as follows:

- Topsoil
- Alluvial Clay
- Lacustrine Clay
- Glacial Till

Each major stratigraphic unit is discussed separately as follows:

4.1.1 Topsoil

Topsoil was encountered in the both test holes (TH13-01 and TH13-02) with a thickness ranging between 100 to 200 mm.

4.1.2 Alluvial Clay

Based on visual observations for and laboratory findings associated with the alluvial soils, it is considered suitable to separate the soils into two separate sub-units based on composition and engineering behaviour for the purposes of soil modelling.

The Alluvial Clay contained silt and sand inclusions, seams and laminations at various depths. The silt and sand seams ranged from 1 to 100 mm in thickness, whilst the laminations are less than 2 mm in thickness. The upper portion of the Alluvial Clay is generally brown with a stiff consistency becoming grey and soft with increasing depth, marking the transition into the lower sub-unit.

Upper Alluvial Clay

The Upper Alluvial Clay was encountered directly below the topsoil, with a corresponding thickness of 2.0 m as observed in test hole TH13-02. The upper alluvial unit was generally noted as a trace to silty, trace to some sand, dark brown to grey, intermediate to high plastic clay (CI-CH). The clay had a firm to stiff consistency and was also noted to be dry to moist. Trace organics and sulphates were also observed within the upper unit. Desiccation to the soil was also evident during the drilling of the test holes within the clay, likely a consequence of shrinkage.

A single SPT blow count was recorded at 9 blows per 300 mm, indicating that the intermediate to high plasticity clay was stiff. The moisture content of the clay varied from 29.3 to 32.4%. A summary of the index properties of the Upper Alluvial Clay is presented in Table 4-1 below;

	Minimum Value	Maximum Value	Average Value
Moisture Content (%)	29.3	32.4	30.5
Reported Value			
SPT 'N' Blow Counts (uncorrected)		9	

Table 4-1: Summary of Index Properties of the Upper Alluvial Clay

Lower Alluvial Clay

The Lower Alluvial Clay was encountered directly beneath the Upper Alluvial Clay at a depth of 2.1 m below existing grade within one test hole (TH13-02). The lower alluvial unit was generally noted as a some to silty, trace to some sand, dark brownish grey to grey, high plastic clay (CH). The clay had a firm to stiff consistency, and was also noted to be damp to wet. Trace organics were also observed throughout the lower unit.

A single SPT blow count was recorded as 15 blows per 300 mm, indicating that the high plasticity clay was stiff to very stiff. However, based on values of undrained shear strength, generally the Lower Alluvial Clay had a soft to firm consistency (25 to 50 kPa). The moisture content of the clay varied from 32.7 to 37.2%. A summary of the index properties of the Lower Alluvial Clay is presented in Table 4-2 below;

	Minimum Value	Maximum Value	Average Value	
Moisture Content (%)	32.7	37.2	35.0	
Grain Size Analysis - Gravel (%)	0.0	0.1	0.05	
Grain Size Analysis - Sand (%)	0	5.2	2.6	
Grain Size Analysis - Silt (%)	39.0	44.0	41.5	
Grain Size Analysis - Clay (%)	50.7	61.0	56.0	
Undrained Shear Strength (kPa)	47.9	49.0	48.5	
		Reported Value		
Dry Unit Weight (kN/m ³)		13.83		
Bulk Unit Weight (kN/m ³)		18.40		
SPT 'N' Blow Counts (uncorrected)		15		
Liquid Limit (%)		53.8		
Plastic Limit (%)		18.9		

Table 4-2: Summary of Index Properties of the Lower Alluvial Clay

4.1.3 Lacustrine Clay

Lacustrine Clay was encountered in both test holes (TH13-01 and TH13-02) either directly beneath the topsoil or alluvial clay deposits. The thickness of the Lacustrine Clay ranged from 4.0 to 11.7 m.

The Lacustrine Clay was noted as a greyish brown, moist to wet, soft to very stiff, high plastic silty clay. However, the results of a single grain size analysis test (by hydrometer method) indicate a

predominant silt and clay (each grain size proportion exceeding 35%) soil based on the percentage passing by dry unit weight. However, this result is not believed to be a characteristic representation of the Composition of the Lacustrine Clay throughout the sequence of riverbank deposits.

SPT blow counts were recorded at values between 7 and 11 blows per 300 mm, indicating that the high plasticity clay was firm to stiff in consistency. Based on values of undrained shear strength, the Lacustrine Clay had a firm (25 to 50 kPa) to very stiff (100 to 200 kPa) consistency. A summary of the index properties of the Lacustrine clay is presented in Table 4-3 below;

	Minimum Value	Maximum Value	Average Value
Moisture Content (%)	26.5	42.7	33.8
Liquid Limit (%)	62.3	76.2	68.7
Plastic Limit (%)	18.8	27.2	23.0
Dry Unit Weight (kN/m ³)	11.66	13.74	12.82
Bulk Unit Weight (kN/m ³)	16.60	18.20	17.53
SPT 'N' Blow Counts (uncorrected)	7.0	11.0	9.6
Grain Size Analysis - Gravel (%)	0.0	1.4	0.5
Grain Size Analysis - Sand (%)	0.0	10.6	4.2
Grain Size Analysis - Silt (%)	27.9	47.8	35.3
Grain Size Analysis - Clay (%)	50.8	69.2	60.0
Undrained Shear Strength (kPa)	35.9	133.6	82.0

Table 4-3: Summary of Index Properties of the Lacustrine Clay

4.1.4 Glacial Till

Glacial Till was encountered underlying the Lacustrine Clay at a depth of between 10.0 and 11.9 m below grade in both test holes (TH13-01 and TH13-02). The Glacial Till was predominately characterized as a silt dominated matrix, with sub-components of some gravel to gravelly, some sand to sandy, and trace to some clay. The Glacial Till was tan in colour, wet, and compact to very dense. However, the general consistency/density of the upper 0.5 m of the till was noted as a soft/loose deposit, locally referred to as putty till.

All test holes were terminated in the dense till due to power auger refusal. Moisture contents decrease from 12.3 to 9.8% over a depth of 10.0 to 13.8 m below grade. Seepage and sloughing was noted at the base of the till. A summary of the index properties of the Glacial Till is presented in Table 4-4 below;

Table 4-4: Summary of Index Properties of the Glacial Till

	Minimum Value	Maximum Value	Average Value
Moisture Content (%)	9.8	12.3	11.3
SPT 'N' Blow Counts (uncorrected)	17	>50	45

4.2 Groundwater Conditions

The measured groundwater levels (GWL) in the two standpipe piezometers are presented in Table 4-5.

Test Hole	Soil Unit	Groundwater Observations During Drilling (m)	Depth to Groundwater Level Below Grade (m)	
			November 19, 2013	November 26, 2013
TH13-01	Glacial Till (CL)	Groundwater seepage observed at 6.7	5.77	6.02
		m below grade		
TH13-02	Glacial Till (CL)	Groundwater seepage observed at 4.9	10.29	5.97
		m below grade.		

Table 4-5: Summary of Standpipe Piezometer Readings

Groundwater levels should be expected to fluctuate seasonally and in response to climatic conditions (precipitation). Groundwater levels may vary from those reported when construction commences. It is recommended to monitor the groundwater periodically prior to construction to observe seasonal fluctuations.

5. Model Construction

Computer aided numerical modelling software utilizing Slope/W (Geoslope International) was used for the slope stability analysis and the resultant stability output models are presented as part of Appendix E, enclosed within this Memorandum. The soil stratigraphy used in the analysis was based on the information contained Section 4.0.

Slope stability assessment was performed using Morgenstern-Price's general method of slices based on a limit equilibrium approach. More advanced methods (such as finite element analysis) were not used for this study

As part of the analysis, the following slip surfaces were considered of interest and are presented graphically in Figure 1 below. A Factor of Safety (FS) was assigned to each of the following:

- **Global Slip Surface (GS)**: Defined as a slip surface that largely encompasses the slope soil mass, and has an entry and exit point at or just beyond the slope crest and toe.
- Global Slip Surface Engaging Pipe (GS+P): Defined as a slip surface that meets the criteria of a global slip surface and encompasses part of the buried pipe.
- Toe Slip Surface (TS): Defined as a slip surface that is localised to the toe of the slope, which has a minimum depth of 0.5 m. At some locations the FS of this slip surface may be lower than the critical or global FS. Instability at the toe of the slope may reduce the FS for the global or critical slip surfaces. Retrogressive failures starting at the toe may also work towards the riverbank.

Figure 1: Assessed Slip Surfaces within Analysis

5.1.1 Groundwater Conditions

Groundwater conditions within the stability models are based upon measurements taken from the standpipe piezometers installed within test holes completed as part of the field investigation. These groundwater readings are representative of winter conditions only, and therefore, to replicate summer groundwater conditions, groundwater has been modified to reflect the increase in summer river

elevations. Groundwater conditions adopted within the modelling are summarized in Table 5-1, below.

5.1.2 River Elevations

As part of the slope stability assessment, river elevations were modelled to reflect both summer and winter levels, as follows:

- Summer Water Level: 223.74 m (August 22, 2012)
- Winter Water/Ice Level: 222.02 m (December 1970)

An assessment of current slope conditions during a rapid drawdown event was also undertaken as part of the slope stability analysis to ascertain the FS following spring melt and heavy precipitation events.

5.2 Selection of Ground Model Parameters

Based on the geotechnical index properties of the soils and based on the range of values expected for Winnipeg clays, the soil strength parameters shown in Table 5-1 have been adopted for use as part of slope stability assessment.

Stratum	Moist Bulk Unit	Internal Angle of Cohesion (kPa)		Groundwater Elevations (m)	
	weight (kivin)	(Degrees)		Summer Conditions	Winter Conditions
Alluvial Clay*	18	18	5		
Lacustrine Clay	18	14	5	223.74 to 227.53	222.02 to 227.53
Glacial Till	21	30	10		

Table 5-1: Soil Strength Parameters for Stability Analysis

Notes: * Inclusive of upper and lower alluvial clay

These soil parameters are further validated by the work undertaken as part of the AECOM (formerly UMA) through the *St. Vital Park Riverbank Stability Study* (2006). The work undertaken by AECOM focused solely on the study of failed riverbank slopes within 1 km of the Fort Garry Sewer Interceptor Crossing predominantly composed of alluvial clays.

Fully softened shear strength values were assigned to the Lower Alluvial and Lacustrine Clays. The depth of bedrock, although not proven as part of the AECOM field investigation, was referenced from as-built drawings for use in the assessment. The bedrock was treated as an *impenetrable layer* within the analysis, and therefore not assigned a shear strength value.

5.3 Current Riverbank Stability

Based on the topographic cross-section taken along the pipe alignment and the selected ground model parameters shown in Table 5-1, the current slope stability was assessed in terms of both global stability and the probability of failure engaging the sewer pipe. The Factors of Safety derived from this assessment are presented in Table 5-2, below.

River Conditions	Global Slip Stability (GS)	Global Stability Engaging the Pipe (GS+P)	Toe Slip Surface (TS)	Reference
Normal Summer Water Level (NWWL)	1.41	1.41	>1.5	Figure E2, Appendix E
Normal Winter Water Level (NSWL)	1.37	1.37	> 1.5	Figure E3, Appendix E
Rapid Drawdown	1.19	1.19	> 1.5	Figure E4, Appendix E

Table 5-2: Current Slope Stability of Riverbank Slope along Pipe Alignment

Stability assessment was performed by analysing three different river condition scenarios as shown in Table 5-2. As illustrated by the results presented in Table 5-2, stability of the current slope generally falls within the accepted design range of 1.3 to 1.5 as discussed in Section 6.2 of this Memorandum. However, during and directly following rapid drawdown events (e.g., spring melt, transition from summer to winter river levels), the stability of riverbank slope decreases significantly towards an FS of 1.0 (or unity). As the soil remains saturated during drawdown, the hydrostatic force (i.e., river level) supporting the riverbank is lost, and therefore this results in significantly lower stability values as shown by an FS of 1.19.

Whilst it may not be considered necessary to fully remediate or strengthen the riverbank slope, under extreme conditions (i.e., rapid drawdown, heavy precipitation event) coupled with erosion of the bank toe, potential slope failure may present a risk to the integrity of the sewer pipe.

6. Riverbank Recommendations

6.1 Design Considerations

The design of bank stabilization measures requires the consideration of a number of factors including physical constraints, safety, aesthetics, preservation of mature trees and cost. The remedial work must also be acceptable from a hydraulic perspective, in particular with respect to negative impacts on river channel hydraulics.

6.1.1 Aesthetics

Once the design objectives are met for slope stability, it is desirable that the stabilization measures visually fit in with existing development. In this regard, import design considerations will be final grading contours (i.e., avoiding straight lines where possible) and site restoration (i.e., re-vegetation) where existing vegetation cover is removed.

6.1.2 Preservation of Mature Trees

It was noted that some of the existing mature trees along the mid-slope of the riverbank within the study area are either dead or dying. This may be a result of root damage or submergence during high water events (i.e., flooding). This scenario is however considered unlikely given that ground elevations at these locations exceed normal summer water levels. As a consequence of potential future construction activity, the removal of both healthy and unhealthy trees maybe unavoidable but should be limited where feasible. Where possible, the stabilization measures should be designed to minimize the loss of trees.

6.1.3 Cost

The undertaking of any remedial or repair scheme should take into consideration the overall cost required to accomplish the objectives of the design. In regards to the subject riverbank slope within the study area, to exceed a design FS of greater than 1.5 would require substantial cost and effort for limited improvement.

6.2 Design Objectives

Acceptable Factors of Safety (FS) for the design of slope stabilization measures should typically range from 1.3 to 1.5, with the consideration of lower values possible on a case by case basis. For any particular project, the selection of an appropriate FS for design against slope failure should consider the uncertainty in geotechnical parameters (soil strength, groundwater levels, etc.), the level of importance of the geotechnical asset in context to existing/proposed infrastructure, and the level of analysis undertaken and the consequences of failure. To some degree, it is also useful to visualize slopes as existing in various stages of stability when the justification of lower factors of safety is under consideration. For example, the fact that a particular bank has historically been stable might factor in the perceived urgency to provide stabilization measures and to establish priority areas for work.

When considering the potential benefits of improving the current stability of the riverbank slope within the study area through the implementation of various remedial measures (i.e., major slope regrades, shear keys, etc.), the costs of which should not be disproportional to any perceived benefits. Given that the current stability of the existing riverbank has a FS of between 1.19 and 1.41, it would be considered uneconomical to improve stability of the riverbank beyond a design FS of 1.5, as

discussed in Section 6.1.3 of this Memorandum. In this regard, all future remedial activities should be focused on limiting toe erosion and localized riverbank loss.

6.3 Recommended Protection Measures

A number of alternatives for bank stabilization and erosion protection have been assessed as part of the slope stability analysis, and are summarised as follows:

- Rip-Rap Blanket
- Slope Regrading

It is recommended that monitoring of the groundwater be conducted periodically prior to construction to observe seasonal fluctuations and to provide validation of the below groundwater condition scenarios applied in the slope design models.

6.3.1 Rip Rap Blanket

A rip-rap blanket consisting of quarried limestone is recommended along the lower slope from an elevation of approximately 222.02 m, to an approximate elevation of 225 m, with a corresponding thickness of 1 m. It is anticipated that partial sub-cut into the existing riverbank slope (between NWWL and NSWL) of approximately 0.5 m will be required.

The following slope stability improvements would be achievable through use of a rip-rap erosion control blanket summarised in Table 6-1 below.

River Conditions	Global Slip Stability (GS)	Global Stability Engaging the Pipe (GS+P)	Percentage Improvement	Reference
Normal Winter Water Level (NWWL)	1.45	1.45	5.0	Figure E5, Appendix E
Normal Summer Water Level (NSWL)	1.48	1.48	8.0	Figure E6, Appendix E
Rapid Drawdown	1.31	1.31	9.2	Figure E7, Appendix E

Table 6-1: Estimated Factors of Safety w	ith Rip-Rap Blanket
--	---------------------

Preliminary analysis determined that adopting a design solution comprising the use of a rip-rap erosion control blanket at the toe of the slope would provide sufficient Factors of Safety for slope stability and toe protection. The greatest percentage improvement was noted during drawdown conditions. Given that drawdown conditions may be only temporary in duration, a FS of 1.3 or greater is sufficient.

Any remaining improvement in bank stability would have to be achieved through alternate measures such as a shear key or toe berm (not assessed as part of this analysis).

6.3.2 Slope Regrading

Slope regrading has been assessed in conjunction with the use of rip-rap along the toe of the riverbank. Regrading of the riverbank toe to a cut profile of 4.0(H):1.0(V) for an approximate length of 9.5 m from the edge of the existing bank toe has been assumed as part of the analysis.

The estimated Factors of Safety determined as part of this analysis are summarised in Table 6-2 below. Assessment has also be undertaken to determine the FS of the riverbank slope during temporary conditions associated with the construction phase as discussed in Sections 6.3.1 and 6.3.2 of this Memorandum. Stability of the riverbank during this period has been calculated with a FS of greater than 1.3, therefore this is considered adequate.

River Conditions	Global Slip Stability (GS)	Global Stability Engaging the Pipe (GS+P)	Percentage Improvement	Reference
Normal Winter Water Level (NWWL)	1.50	1.50	8.0	Figure E8, Appendix E
Normal Summer Water Level (NSWL)	1.56	1.56	8.4	Figure E9, Appendix E
Rapid Drawdown	1.35	1.35	11.9	Figure E10, Appendix E

Table 6-2: Estimated Factors of Safety for Toe Regrading

Based on the FS stability values presented in Table 6-2, it considered that a rip-rap blanket in conjunction with partial regrading at the toe slope produces the greatest level of improvement and performance of the riverbank slope within the study area. The precise dimensions and extents of rip-rap blanket and slope regrading may be optimised during the design phase.

6.3.3 Site Restoration

Some plantings might be installed to help reinforce the slope immediately above the rip-rap (i.e., along areas of slope regrading and excavation) should there be significant loss of vegetation and mature tree cover.

Page 17 Memorandum to Marvin Macdonald December 12 2013

7. Closing

If we can be of further assistance, please call either Alex Hill or Zeyad Shukri directly at 204-928-8359 or 204-928-9221, respectively. Please do not hesitate to call with any further comments or questions.

Respectfully Submitted,

Reviewed by:

Alex Hill, B.Sc. (Hons), FGS Geotechnical Engineering

Zeyad Shukri, M.Sc. Senior Geotechnical Engineer

8. References

- AECOM Canada Ltd (May 23, 2012), Technical Memorandum Test Hole Adjacent to Interceptor; Fort Garry to St. Vital Interceptor, East Bank of Red River at Bishop Grandin Boulevard.
- UMA Engineering Ltd (December 4, 2006), Functional Design Report *St. Vital Park Riverbank Stability Study and Functional Design of Stabilization Measures.*
- D. E. Kingerski, P. (2000) *River Stability Characterization Study for City Owned Riverbanks* City of Winnipeg, Planning, Property & Development Department, Waterways Section. May 2000.
- Klohn Leonoff Consultants (April 5, 1976), Sub-soils Investigation Fort Garry St. Vital Corridor, Winnipeg Manitoba.

APPENDIX A

TEST HOLE LOCATION PLAN

A=COM Figure: A1

City of Winnipeg, Fort Garry Sewer Interceptor

APPENDIX B

TEST HOLE LOGS

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

Description			AECOM	USCS			Laborator	y Classification Crite	eria		
		ion		Log Symbols	Classificatio	on	Fines (%)	Grading	Plasticity	Notes	
		CLEAN GRAVELS	Well graded sandy gravel or no f	d gravels, s, with little ines	200	GW		0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More that 50% of	(Little or no fines)	Poorly grade sandy gravel or no f	ed gravels, s, with little ines		GP		0-5	Not satisfying GW requirements		Dual symbols if 5-
OILS	fraction o gravel size)	of DIRTY Silty gravels, silty sandy gravels			GM		> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and	
AINED SC		(With some fines)	Clayey grav sandy g	els, clayey ravels		GC		> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
ARSE GR		CLEAN SANDS	Well grade gravelly sand or no f	d sands, s, with little ines		SW		0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$
CO/	SANDS (More tha 50% of	(Little or no fines)	Poorly grad gravelly sand or no f	ed sands, s, with little ines	000	SP		0-5	Not satisfying SW requirements		$C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$
	coarse fraction o sand size	DIRTY SANDS	Silty sa sand-silt r	ands, nixtures		SM		> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)	e Clayey sands, sand-clay mixtures			SC		> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A line	W _L <50	Inorganic si clayey fine s slight pla	lts, silty or ands, with asticity		ML					
	negligible organic content)	W _L >50	Inorganic si plasti	lts of high city		MH					
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity	lays, silty y clays of , lean clays		CL					
GRAINED	(Above 'A line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic cla clays of n plasti	Inorganic clays and silty clays of medium plasticity		CI				Classification is Based upon Plasticity Chart	
FINE (content)	W _L >50	Inorganic cla plasticity,	ays of high fat clays		СН					
	ORGANIO SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	silts and clays of low city		OL					
	(Below 'A line)	W _L >50	Organic cla plasti	ys of high city		ОН					
H	IIGHLY OR	GAINIC SOILS	Peat and ot organic	her highly soils		Pt		V Classi	on Post fication Limit	Strong colour o fibrou	r odour, and often s texture
		Asphalt			Till						
		Concrete		E (Undi	Bedrock fferentiated)					AE	COM
Fi		Fill		E (Lii	Bedrock mestone)						

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N – BLOWS/0.30 M	COMPACINESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

PRO	PROJECT: FGSV Interceptor Siphon							CLIENT: City of Winnipeg TESTHOLE N 633705 PROJECT NO								
CON	TRAC	TOR:	Paddock Drilling	14 0, 11 3320430, E 0	N	METHOD: Truck Mounted Acker MP-8 FLEVATION (m).									0	
SAM	PLET	YPE	GRAB	SHELBY TUBE			T SPO	ON		BULK			NO REC			
BAC	FILL	TYPE	BENTONITE	GRAVEL		_]slo	UGH			GROUT	Г		CUTTIN	GS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESCR	IPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	PENETRA * Be > Dynan PT (Stand (Blows. 20 40 Total (kh 7 18 Plastic 1 20 40	TION TEST cker ₩ nic Cone \$ ard Pen Te /300mm) 60 8 Unit Wt ■ V/m ³) 19 2(WC Liqui ● 60 8	S est) ♦ 0 100 0 21 d	UNDRAINED SH + Tor	HEAR STRE vane + QU × Vane □ et Pen. △ I Vane € Pa)	NGTH	COMMENTS	DEPTH
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1			TOPSOIL and ORGANICS - some - brown, dry CLAY - silty, trace sand, trace orga - brown, dry, stiff - high plasticity - moderately fissured CLAY and SILT - trace sand - brown, stiff, dry to moist - high plasticity - mottled brown grey below 4.1 m - wet at 6.7 m - fine sand lense (25 mm thickness - grey below 7.8 m - trace gravel (rounded, 20 mm) at - fissuring at 10.7 m - trace silt, sand, and gravel below SILT (TILL) - sandy, some clay, tra - tan, wet, compact END OF TEST HOLE AT 13.8 m If Notes:	clay		G01 S02 G03 T04 G05 S06 T07 S08 S08 S09 S10 S11 G12 S13	10 11 11 9 11 10 17 50/ 51mm	*				<i>∆</i> . .×.	X		 SPT Blows: 4, 5, 5 40% Recovery Gravel: 0.0%, Sand: 0.5%, Silt: 30.3%, Clay: 69.2% (T04): 60% Recovery SPT Blows: 5, 4, 7 100% Recovery Gravel: 0.0%, Sand: 1.4%, Silt: 47.8%, Clay: 50.8% (TO7): 100% Recovery SPT Blows: 3, 4, 5 100% Recovery SPT Blows: 3, 5, 6 100% Recovery SPT Blows: 4, 7, 3 100% Recovery SPT Blows: 3, 6, 11 100% Recovery SPT Blows: 50/51mm, No Recovery 	1 2 3 4 5 6 7 7 8 9 10 11 12 13 14
TEST HOLE TEST HOLE LOGS.GPJ UMA WINN.ISI 10 11 12 12 12 12 13 14 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10			Notes: 1. Power auger refusal at 13.8 m b 2. Seepage noted at 6.7 m below g drilling. 3. Sloughing not observed. 4. Standpipe piezometer (SP13-01 completion with casagrande tip at surface and 0.9 m stick-up. 5. Test hole backfilled with silica sa m, bentonite chips from 11.3 to 6.1 6.1 to 1.2 m, and bentonite chips fr 6. Water levels: - Nov 8, 2013 (install): 12.95 m - Nov 19, 2013: 5.70 m - Nov 26, 2013: 6.02 m	elow ground surface. ground surface during 1) installed upon 13.7 m below ground and from 13.7m to 11.3 m, auger cuttings from rom 1.2 m to surface.				LOO	GGED E	iY: Aaro	n Kal	uzniak		MPLE	TION DEPTH: 13.76 m	15 16 17 18
G OF			AECOM					RE\	/IEWED) BY: Ale	ex Hil	I	CO	MPLE	ETION DATE: 11/8/13	
ŏ								PRO	DJECT	ENGINE	ER: I	Marvin McDo	nald		Page	1 of 1

PROJ	PROJECT: FGSV Interceptor Siphon CLIENT: City of Winnipeg TESTHOLE NO: TH13-02												
LOCA		: Low	er Bank of Red River, UTM	1: 14 U, N 5520490, E (0633	33691						PROJECT NO.: 60274906	
SAME		VDE			N								
BACK			BENTONITE				UGH						
DEPTH (m)	SOIL SYMBOL	SLOTTED	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	PENETRATION TESTS	UNDRAINED SHEA + Torvar × QU Lab Va • Pocket F • Field Va (kPa	R STRENGTH he + × ne □ Pen. △ ane �)	COMMENTS	DEPTH
= 0			TOPSOIL and ORGANICS - so	me clav				2	20 40 60 80 100	50 100	150 200	o	
-1			- brown, dry CLAY- trace to some sand, trac grey-brown, dry to moist, firm - Intermediate to high plasticity	e silt, trace organics to stiff		G1	9		•	<u>Å</u>		SPT Blows: 3, 4, 5 61% Recovery	1-
3			CLAY and SILT - trace sand, tra- brown, firm to stiff, dry to mois - high plasticity	ace organics t		G3 T4			•	A A		100% Recovery	3-
4			 greyisn brown below 3.5 m grey, moist, silty, below 5.0 m 			G5 S6	15		•			Gravel: 0.1 %, Sand: 5.2%, Silt: 44.0%, Clay: 50.7% SPT Blows: 3, 6, 9 100% Recovery	4
6		Ţ				G7			•			Gravel: 0.0 %, Sand: 0.0%, Silt: 39.0%, Clay: 61.0% 100% Recovery	6-
7			 brown to greyish brown, firm, high plasticity grey, wet below 7.2 m intermittant sand seams (<25 	moist mm thickness) below 7.2 m		S9	7		•	Δ.		SPT Blows: 3, 4, 3 100% Recovery	7
9			grey, very soft below 9.1 m trace gravel below 9.8 m			T10			⊢ ● 1	A -		100% Recovery Gravel: 1.4 %, Sand: 10.6%, Silt: 27.9%, Clay: 60.1%	9-
-11	beoece beoece		- tan, wet, compact to very dens	Se	X	S11	61				Ζ	SPT Blows: 20, 28, 33 78% Recovery SPT Blows: 51/0 mm	11-
12/0/13 11/1/1/13			END OF LEST HOLE AT 11.6 r Notes: 1. Power auger refusal at 11.6 r suspected bedrock. 2. Seepage noted at 4.9 m belo drilling.	m IN SILT (TILL) m below ground surface on w ground surface during									12-
MINN 14 14			 No sloughing observed. Standpipe piezometer (SP13 completion with casagrande tip surface and 0.91 m stick-up. Test hole backfilled with silication of the standard standard	8-02) installed upon at 11.6 m below ground a sand from 11.6m to 10.4									14 -
			m, pentonite chips from 10.4 to 6. Water levels: - Nov 19, 2013 (install): 10.2 - Nov 26, 2013: 5.97 m	grouna surface. 19 m									15 -
HOLE TEST HOL													17 -
18			0.000					100	CED BV. Som Och	 ati	COMP		
1 OF 1			AECOM					RE	/IEWED BY: Alex Hil	ии 	COMPL	ETION DATE: 11/19/13	
	ALCOM						PROJECT ENGINEER: Marvin McDonald					1 of 1	

APPENDIX C

LABORATORY REPORTS

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

Memorandum

То	Alex Hill	Page 1
СС		
Subject	City of Winnipeg – FGSV Inte	rceptor Siphon
From	Jared Baldwin	
Date	November 20, 2013	Project Number 60274906

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Ten (10) Moisture Content tests.
- Two (2) Grain Size Distribution (hydrometer method) tests.
- Two (2) Atterberg Limits (3 points) tests.
- Two (2) Torvane, Pocket Penetrometer, Unconfined Compressive Strength, Moisture Content, Bulk Density and Visual Description on a Shelby tube sample.

If you have any questions, please contact the undersigned.

Sincerely,

Jared Baldwin, M.Sc., P.Eng. Geotechnical Engineer

Att.

MOISTURE CONTENT

JOB No.: 60274906 CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon DATE: November 14, 2013

HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %	13-01 G01 2.5 - 3.0 26.5	- S02 5.0 - 65 30.4	- G03 7.5 - 8.0 30.1	- G05 12.5 - 13.0 33.6	- S06 15.0 - 16.5 32.0	- S08 25.0 - 26.5 35.7				
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %	13-01 S09 30.0 - 31.5 33.0	- S10 35.0 - 36.5 30.4	- S11 40.0 - 41.5 12.3	- S12 44.5 - 45.0 11.9						
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %										
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %										
NOTES:										
AECOM 99 Commerce Drive, Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040										

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

AECOM AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60274906	
City of Winnipeg	
FGSV Interceptor Siphon	
18-Nov-13	_
ML	

13-01
S02
1.5 - 2.0m
8-Nov-13
AECOM (AK)

GRAVE	EL SIZES	SAND	SIZES	FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	100.0	0.0750	100.0	
38.0	100.0	0.83	100.0	0.0491	100.0	
25.0	100.0	0.43	100.0	0.0347	100.0	
19.0	100.0	0.18	100.0	0.0246	100.0	
12.5	100.0	0.15	100.0	0.0174	100.0	
9.5	100.0	0.075	100.0	0.0124	98.4	
4.75	100.0			0.0093	93.6	
2.00	100.0			0.0067	90.5	
				0.0049	85.7	
				0.0035	79.3	
				0.0026	73.0	
				0.0019	68.2	
	· · · · · · · · · · · · · · · · · · ·			0.0010	61.9	
				0.0011	01.0	
	GRAIN	SIZE DISTR	IBUTION CU	RVE		
Clay	Silt	Coorea Eina	Sand	Gravel	Castra	

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

MATERIALS LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60274906 City of Winnipeg FGSV Interceptor Siphon 18-Nov-13 ML

Hole No .: 13-01 S06 Sample No.: Depth: 4.5 - 5.0m Date Sampled: 8-Nov-13 Sampled By: AECOM (AK)

GRAVEL SIZES		SAND	SIZES	FINES					
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing				
50.0	100.0	2.00	100.0	0.0750	98.8				
38.0	100.0	0.83	100.0	0.0496	98.4				
25.0	100.0	0.43	100.0	0.0354	96.8				
19.0	100.0	0.18	99.6	0.0255	93.6				
12.5	100.0	0.15	99.2	0.0183	90.5				
9.5	100.0	0.075	98.8	0.0134	84.1				
4.75	100.0			0.0100	79.3				
2.00	100.0			0.0073	73.0				
				0.0053	66.6				
				0.0038	61.9				
				0.0028	55.5				
				0.0020	50.8				
				0.0012	46.0				
Canada and a subscription of the									
	GRAIN SIZE DISTRIBUTION CURVE								
Clay _	Silt		Sand	Gravel					

Fax: 204 284 2040

Project Name:	FGSV Interceptor Siphon	Supplier:	N/A	
Project Number:	60274906	Specification:	N/A	
Client:	City of Winnipeg	Field Technician:	AKaluzniak	
Sample Location:	TH13-01	Sample Date:	September 9, 2013	
Sample Depth:	1.5 - 2.0m	Lab Technician:	MLotecki	
Sample Number:	S02	Date Tested:	November 18, 2013	

Atterberg Limits

Fax: 204 284 2040

Project Name:	FGSV Interceptor Siphon	Supplier:	N/A
Project Number:	60274906	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	AKaluzniak
Sample Location:	TH13-01	Sample Date:	November 8, 2013
Sample Depth:	4.5 - 5.0m	Lab Technician:	MLotecki
Sample Number:	S06	Date Tested:	November 18, 2013

Atterberg Limits

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-01
SAMPLE NO.:	Т07
SAMPLE DEPTH:	20 - 22'
DATE TESTED:	8-Oct-13
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.65
Vane Size (S, M, L)	
Undrained Shear Strength (kPa)	63.8
Undrained Shear Strength (ksf)	1.33
Reading - Qu (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
Reading - Qu (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
Reading - Qu (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
	๚๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚
UNCONFINED COMPRESSIVE STRENGTH TEST	สามหายเหตุสายการเรือกรายการเรือกรายการเรือกรายการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นการเป็นกา
Unconfined compressive strength (kPa)	68.8
Unconfined compressive strength (ksf)	1.4
Undrained Shear Strength (kPa)	34.4
Undrained Shear Strength (ksf)	0.719
	กปัตรุษประเทศการกระหงานสาวารแสดงสาวกระหว่านและการกระหว่านสาวารกระหว่านสาวารกระหว่านสาวารกระหว่านสาวารกระหว่านสา
Wit Sample wet + taro (a)	10112 200.6
Wt. Sample weit + tare (g) Wt	200.0
Wt. Sample dry + (ale (g)	300.0
VVI. Tate (y) Moisture Content V	0.0
	34,2
BULK DENSITY	กมารถสารประสบการและสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสา การประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารประกาศสารป
Sample Wt. (g)	1185.8
Diameter 1 (cm)	7.28
Diameter 2 (cm)	7 29
Diameter 3 (cm)	7 29
Avg. Diameter (cm)	7.29
l ength 1 (cm)	15.34
Length 2 (cm)	15 34
Longt 2 (GII)	15.04
Ava Length (cm)	15.30
Vuluine (Cm.) Moisture content (%)	
Rulk Density (c/om ³	07.2 1 853
Bulk Density (VNIm ³)	
Bulk Density (KN/III) Rulk Density (ncf)	илисторалистически и полнование и 1157
Dry Density (PO)	
	10,04

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

MOISTURE CONTENT:

34.2

ΑΞϹΟΜ

CLIENT:	City of Winnipeg	
PROJECT:	FGSV Interceptor Siph	การการการการการการการการการการการการการก
JOB NO.:	60274906	KerlphHttDH+DestDH5sLb5erparadDH2rN0+DDDreslastaharnaa.bruzuskriDh9sl68usslannaamumassuustarmennamumannamuzusti
TEST HOLE NO.:	TH13-01	SOIL DESCRIPTION:
SAMPLE NO.:	T07	CLAY; silty, trace sand, trace till inclusions, brown, moist, crumbly, medium to
SAMPLE DEPTH:	20 - 22'	high plasticity, homogeneous
OANDIE DATE	17 0 13	

		-			
SAMPLE DIAM.(Do):	72.87	(mm)	INITIAL AREA, Ao:	4170.1	(mm²)
SAMPLE LENGTH, (Lo):	153.47	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.1	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATE:

8-Oct-13

IESI DATA - DIAL	READINGS						
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPF	RESSIVE STRESS, C	3 _C
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0006	0.00	6.46	5.62	0.87	0.125	6.0
0.02	0.0010	0.14	6.47	9.37	1.45	0.208	10.0
0.03	0.0013	0.28	6.48	12.18	1.88	0.271	13.0
0.03	0.0016	0.42	6.49	14.99	2.31	0.333	15,9
0.04	0.0019	0.56	6.50	17.80	2.74	0.394	18.9
0.05	0.0021	0.70	6.51	19.68	3.02	0.435	20.8
0.06	0.0022	0.84	6.52	20.61	3.16	0.455	21.8
0.07	0.0025	0.98	6,53	23.43	3.59	0.517	24.7
0.08	0.0026	1.13	6.54	24.36	3.73	0.537	25.7
0.09	0.0028	1.27	6.55	26.24	4.01	0.577	27.6
0.09	0.0030	1.41	6.56	28.11	4.29	0.617	29.6
0.10	0.0032	1.55	6.57	29.98	4.57	0.658	31.5
0.11	0.0035	1.69	6.57	32.80	4.99	0.718	34.4
0.12	0.0037	1.83	6.58	34.67	5.27	0.758	36.3
0.13	0.0039	1.97	6.59	36.54	5.54	0.798	38.2
0.14	0.0041	2.11	6.60	38.42	5.82	0.838	40.1
0.14	0.0044	2.25	6,61	41.23	6.23	0.898	43.0
0.15	0.0046	2.39	6.62	43.10	6.51	0.937	44.9
0.16	0.0049	2.53	6.63	45.91	6.92	0.997	47.7
0.17	0.0051	2.67	6.64	47.79	7.20	1.036	49.6
0.18	0.0053	2.81	6.65	49.66	7.47	1.075	51.5
0.19	0.0056	2.95	6.66	52.47	7.88	1.134	54.3
0.20	0.0058	3.10	6.67	54.35	8.15	1.173	56.2
0.20	0.0060	3.24	6,68	56.22	8.42	1.212	58.0
0.21	0.0063	3.38	6.69	59.03	8.82	1.271	60.8
0.22	0.0065	3.52	6.70	60.91	9.09	1.309	62.7
0.23	0.0067	3.66	6.71	62.78	9.36	1,347	64.5
0.24	0.0068	3.80	6.72	63.72	9.48	1.366	65.4
0.25	0.0070	3.94	6,73	65.59	9.75	1.404	67.2
0,26	0.0071	4.08	6.74	66.53	9.87	1.422	68.1
0,26	0.0071	4.22	6.75	66.53	9.86	1.420	68.0
U.27	0.0072	4.36	6.76	67.46	9.98	1.437	68.8
0.20	0.0071	4.30	0.77	66.53	9.63	1.415	67.8
0.29	0.0070	4,04	6.70	60.09	9.68	1.393	00./
0.30	0.0009	4.70	0.79	61.03	5.52	1.3/1	00.1
0.31	0.0007	4.92	6.00	60.01	9.23	1.330	61 7
0.31	0.0003	5 21	6.87	58.00	8.53	1,200	58.7
0.02	0.0002	V , <u>Z</u> 1	0.02	50.00	0.02	1.666 /	
	**************************************			· · · · · · · · · · · · · · · · · · ·			
						***	***************************************
	and a state of the						
					*****		****
and a second	e erobien ekenedia inna di inne aka (ande						
	000101-001-001-0010-00100-0000-00000-0000-00000-000-000	······································			1119 (**********************************		
	••••••••••••••••••••••••••••••••••••••						
					(in a colline in the internet of the second s		nata ininina hini ani ani ani ani ani ani ani ani ani
		······································		T			
		and a second sec					
				11/11/14/10/09/19/00/14/000/14/000/14/000/14/000/14/00000000	07/200000000000000000000000000000000000		

L	L	L					L
				า			
UNCONFINED COMPRESS	IVE STRENGTH, qu:	68.82	кРа		NUIES:		
(based on maximur	n q _u value)	1.437	ksf	J			
UNDRAINED SHE	EAR STRENGTH, Su	34.41	kPa				
(based on maximur	n q _u value)	0.719	ksf				

Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-01			
SAMPLE NO.:	T04			
SAMPLE DEPTH:	10 - 12'			
DATE TESTED:	8-Oct-13			
SHEAR STRENGTH TESTS	Ⴍ <i>Ⴙ</i> ႼჃჃჂჂႶჃႮႭႱჂჂ <i>ჂჃჽႧ</i> ჃႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦႦ			
	unnassan an a			
Reading	1.00			
Vane Size (S, M, L)	นแห่งหระกอนสีเป็นระหนึ่งที่มีหมายในสีมีครามสามส์สาวานสีมีสาวานสีมาการการการการการการการการการการการการการ			
Undrained Shear Strength (kPa)	98.1			
Undrained Shear Strength (ksf)	0.001/01/02/02/02/02/02/02/02/02/02/02/02/02/02/			
POCKET PENETROMETER	ĸŢġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġġ			
Reading - Qu (tsf)	2.75			
Undrained Shear Strength (kPa)	131.7			
Reading - Ou (tsf)	2,50			
Undrained Shear Strength (kPa)	119.7			
Reading - Ou (tsf)	2.50			
Lindrained Shear Strength (kPa)				
	113.7			
	สระวรรถและสารแสสระสระวรรษที่สารแสดสารและสารแสสระสระสระสระสรารและสารแสสระสรรษที่ได้เห็นสารแสสระสรรษที่ได้ได้สารไ			
Linconfined compressive strength (kPa)				
Linconfined compressive strength (krd)				
Lindrained Complexitive Stieringth (kBa)				
Undrained Shear Strength (kra)				
	1.555			
	พระระสายสายสายสายสายสายสายสายสายสายสายสายสายส			
Wit Sample wet + tare (a)	359.0			
Wit Sample $dr_i + tare (q)$	275.8			
Wt. Sample ury - tare (g)	8.2			
Moisturo Content %	31.1			
	7.00			
	7.23			
	/ .24 7.00			
Diameter 3 (cm)				
Avg. Diameter (cm)	7.24			
Length 1 (cm)	15.36			
Length 2 (cm)	15.35			
Length 3 (cm)	15.35			
Avg. Length (cm)	15.35			
Volume (cm ³)	632.1			
Moisture content (%)	31.1			
Bulk Density (g/cm ³)	1.837			
Bulk Density (kN/m ³)	18.0			
Bulk Density (pcf)	114.7			
Drv Density (kN/m ³)	13.74			

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AXIAL STRAIN RATE, R:

0.84

(0.5<R<2 % / minute)

AECOM

CLIENT:	City of Winnipe	9			
PROJECT:	FGSV Intercep	tor Siphon			
JOB NO.:	60274906				2/// 3 (c) (2// 3 (c) (2// 3 (c) (
		~~			
TEST HOLE NO .:	TH13-01		SOIL	DESCRIPTION	:
SAMPLE NO.:	T04		CLAY; silty, trace till inclusions, bro	own, moist, firm,	medium to high plasticity,
SAMPLE DEPTH:	10 - 12'		homogeneous		
SAMPLE DATE:	17-Sep-13				
TEST DATE:	8-Oct-13		MOISTURE CONTENT:	31.1	
SAMPLE DIAM.(Do):	72.40	(mm)	INITIAL AREA, Ao:	4116.9	(mm²)
SAMPLE LENGTH, (Lo):	153.53	(mm)	PISTON RATE:	0.051	(inches / minute)

L / D RATIO:

2.1

(2 < L/D < 2.5)

TEST DATA - DIAL	READINGS	1					
AXIAL	PROVING RING	TOTAL AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPR	ESSIVE STRESS, C	σ _c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0007	0.00	6.38	6.56	1.03	0.148	7.1
0.02	0.0015	0.14	6.39	14.06	2.20	0.317	15.2
0.03	0.0023	0.28	6.40	21.55	3.37	0.485	23.2
0.03	0.0032	0.42	6.41	29,98	4.68	0.674	32,3
0.04	0.0040	0.56	6.42	37.48	5.84	0.841	40.3
0.05	0.0047	0.70	6,43	44.04	6.85	0.987	47.2
0.08	0.0052	0.84	6.44 6.44	48.72	1,5/	1.090	52.2 E7 1
0.07	0.0057	1 1 2	0.444 8 45	59 00	0.29	1.193	62.1
0.00	0.0002	1.12	646	62.78	9 71	1 399	67.0
0.09	0.0072	1,41	6.47	67.46	10.42	1.501	71.9
0.10	0.0077	1,55	6.48	72.15	11.13	1.603	76.8
0.11	0.0081	1.69	6.49	75.90	11.69	1.684	80.6
0.12	0.0085	1.83	6.50	79.65	12.25	1.764	84.5
0.13	0.0088	1.97	6.51	82.46	12,67	1.824	87.3
0.14	0.0092	2,11	6.52	86.20	13.22	1.904	91.2
0.14	0.0095	2.25	6,53	89.02	13.64	1.964	94.0
U.10 D.16	0.0099	2.39	4C.0	92.70	14.19 1 <i>A</i> 7 <i>A</i>	2.043	9/.0 101.6
0.10	0.0105	2.55	6.55 6.56	99.37	15 15	2 181	101.0
0,18	0.0109	2.81	6.57	102.13	15.56	2.240	107.2
0,19	0,0112	2.95	6,58	104,94	15.96	2.298	110.0
0.20	0.0115	3.09	6.58	107.76	16.36	2.356	112.8
0.20	0.0118	3.23	6.59	110.57	16,77	2 414	115.6
0.21	0.0120	3.37	6.60	112.44	17.03	2.452	117.4
0.22	0.0123	3.52	6,61	115.25	17.43	2.509	120.1
0.23	0.0125	3,66	6.62	117.13	17.68	2.546	121.9
0.24	0.0127	3.80	6.63	119.00	17.94	2.583	123.7
0.25	0.0129	3.94	6.04	120.07	18.31	2.020	125.5
0.20	0.0130	4 22	6.66	121.01	18.57	2.037	128.0
0.27	0.0134	4.36	6.67	125.56	18.82	2 710	129.7
0.28	0.0135	4.50	6.68	126.50	18.93	2.726	130.5
0.29	0.0136	4.64	6.69	127.43	19.04	2.742	131.3
0.30	0.0137	4.78	6.70	128.37	19.16	2.758	132.1
0.31	0.0138	4.92	6.71	129.31	19.27	2.774	132.8
0.31	0.0139	5.06	6.72	130.24	19.38	2.790	133.6
0.32	0.0139	5.20	6.73	130.24	19.35	2./86	133.4
0.33	0.0139	D.34 6 40	0.74 8 75	130.24	19.32	2.102	133.2
0.34	0.0139	5.40	6 76	129 31	19.25	2.7754	131.9
0.36	0.0137	5 77	6 77	128.37	18.96	2 730	130.7
0.37	0.0135	5.91	6.78	126.50	18.65	2.686	128.6
0.37	0.0132	6.05	6,79	123.68	18.21	2.622	125.6
0.38	0.0127	6.19	6.80	119.00	17.49	2.519	120.6
							anna am bhann dalanna
					• 21 C ==================================	*****	*****
******							0201202-07000000000000000000000000000000
		••••••••				******	
		0.0000000000000000000000000000000000000		• 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
***************************************				······································	4014 464 1014 464 464 464 464 464 464 464 464 464 4	***	
			3		1419 1411-13113-1314-1444 (4414) - 14-0400) - 14-0400 - 14-04000 - 14-04000 - 14-0400000 - 14-040000000000	ren:	······································
C-10400000000000000000000000000000000000				nonest and a constraint of the			

					an		
L	L	L		1	1	1	J
UNCONFINED COMPRESSI	VE STRENGTH, q.:	133.60	kPa	1	NOTES:		
(based on maximum	1 q _u value)	2.790	ksf				
UNDRAINED SHE	AR STRENGTH, S.	66.80	kPa				
(based on maximum	q _u value)	1.395	ksf				

FAILURE SKETCH

Axial Strain (%)

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Alex Hill	Page 1
сс		
Subject	City of Winnipeg – FGSV Inte	rceptor Siphon
From	Jared Baldwin	
Date	December 3, 2013	Project Number 60274906

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Eight (8) Moisture Content tests.
- Three (3) Grain Size Distribution (hydrometer method) tests.
- Three (3) Atterberg Limits (3 points) tests.
- Three (3) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description without Unconfined Compressive Strength, on Shelby tube samples.

If you have any questions, please contact the undersigned.

Sincerely,

Jared Baldwin, M.Sc., P.Eng. Geotechnical Engineer

Att.

MOISTURE CONTENT

JOB No.: 60274906 CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon

DATE: November 25, 2013

HOLE NO. SAMPLE NO. DEPTH (FT)	13-02 G1 2.5	- S2 5.0	- G3 7.5	- G5 12.5	- S6 15.0	- G7 17.5
MOISTURE CONTENT %	29.3	29.7	32.4	32.7	36.2	37.2
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %	13-02 S9 25.0 39.2	- S11 35.0 9.8				
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %						
HOLE NO. SAMPLE NO. DEPTH (FT) MOISTURE CONTENT %						
NOTES:						
AEC	:OM	MATERIALS LA AECOM 99 Commerce Dri tel (204) 477-538	NBORATORY ive, Winnipeg, ME 1 fax (204) 284	3 R3P 0Y7 Cana 1-2040	da	

GRAIN SIZE DISTRIBUTION

(ASTM D422-63)

AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

602	274906
City	y of Winnipeg
FG	SV Interceptor Siphon
27-	Nov-13
ML	

 Hole No.:
 13-02

 Sample No.:
 G5

 Depth:
 15.0 - 16.5'

 Date Sampled:
 8-Nov-13

 Sampled By:
 AECOM (SO)

GRAVEL SIZES		SAND	SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	99.9	0.0750	95.5
	100.0	0.83	99.7	0.0508	94.2
25.0	100.0	0.43	99.5	0.0363	91.9
19.0	100.0	0.18	99.3	0.0266	85.6
12.5	100.0	0.15	98.7	0.0191	82.4
9.5	100.0	0.075	95.5	0.0138	77.7
4.75	100.0			0.0103	72.9
2.00	99.9			0.0074	68.2
				0.0054	63.4
				0.0039	58.6
				0.0028	53.9
				0.0020	50.7
				0.0012	45.9
	GRAIN SIZE DISTRIBUTION CURVE				
	Silt		Sand	Gravel	

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

MATERIALS LABORATORY AECOM AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60274906
City of Winnipeg
FGSV Interceptor Siphon
27-Nov-13
ML

Hole No.:	13-02
Sample No.:	G7
Depth:	25.0 - 26.5'
Date Sampled:	8-Nov-13
Sampled By:	AECOM (SO)

GRAVE	L SIZES	SAND	SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	100.0
38.0	100.0	0.83	100.0	0.0491	100.0
25.0	100.0	0.43	100.0	0.0347	100.0
19.0	100.0	0.18	100.0	0.0246	100.0
12.5	100.0	0.15	100.0	0.0175	98.4
9.5	100.0	0.075	100.0	0.0125	96.8
4.75	100.0			0.0094	91.1
2.00	100.0			0.0069	84.1
				0.0050	77.8
				0.0037	71.4
				0.0026	66.6
				0.0019	60.3
				0.0011	53.9
	GRAIN	SIZE DISTR	IBUTION CU	RVE	
Clay	Silt		Sand	Gravel	
90 80 70					

GRAIN SIZE DISTRIBUTION (ASTM D422-63)

MATERIALS LABORATORY AECOM AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60274906	
City of Winnipeg	
FGSV Interceptor Siphon	
27-Nov-13	
ML	

Hole No.:	13-02
Sample No.:	T10
Depth:	40.0 - 41.5'
Date Sampled:	8-Nov-13
Sampled By:	AECOM (SO)

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	98.6	0.0750	87.7
38.0	100.0	0.83	95.0	0.0518	86.0
25.0	100.0	0.43	92.7	0.0373	86.0
19.0	100.0	0.18	90.7	0.0268	82.9
12.5	100.0	0.15	88.5	0.0192	79.8
9.5	100.0	0.075	87.7	0.0137	78.2
4.75	100.0			0.0101	76.7
2.00	98.6			0.0072	75.1
				0.0052	72.0
				0.0037	68.8
				0.0026	65.7
				0.0019	59.4
				0.0011	51.6

GRAIN SIZE DISTRIBUTION CURVE

Fax: 204 284 2040

Project Name:	FGSV Interceptor Siphon	Supplier:	N/A
Project Number:	60274906	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	SOshati
Sample Location:	TH13-02	Sample Date:	September 9, 2013
Sample Depth:	3.0 - 3.6m	Lab Technician:	MLotecki
Sample Number:	T4	Date Tested:	November 26, 2013

Atterberg Limits

Fax: 204 284 2040

Project Name:	FGSV Interceptor Siphon	Supplier:	N/A
Project Number:	60274906	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	SOshati
Sample Location:	TH13-02	Sample Date:	September 9, 2013
Sample Depth:	9.1 - 9.6m	Lab Technician:	MLotecki
Sample Number:	Т8	Date Tested:	November 26, 2013

Atterberg Limits

Fax: 204 284 2040

Project Name:	FGSV Interceptor Siphon	Supplier:	N/A
Project Number:	60274906	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	SOshati
Sample Location:	TH13-02	Sample Date:	September 9, 2013
Sample Depth:	12.1 - 12.9m	Lab Technician:	MLotecki
Sample Number:	T10	Date Tested:	November 26, 2013

Atterberg Limits

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-02
SAMPLE NO.:	Τ4
SAMPLE DEPTH:	10.0 - 12.0
DATE TESTED:	26-Nov-13
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.50
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	49.0
Undrained Shear Strength (ksf)	1.02
POCKET PENETROMETER	
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
NCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	N/A
Unconfined compressive strength (ksf)	N/A
Undrained Shear Strength (kPa)	N/A
Undrained Shear Strength (ksf)	N/A
Wt Sample wet + tare (a)	1712
Wt. Sample wet + tare (g)	420.1
vvi. Sample dry + tare (g)	521.1
VVI. Tare (g)	0.4
Moisture Content %	33.3
	I
BULK DENSITY	
Sample Wt. (g)	1185.6
Diameter 1 (cm)	7.23
Diameter 2 (cm)	7.24
Diameter 3 (cm)	7.24
Avg. Diameter (cm)	7.24
Lenath 1 (cm)	15.35
Length 2 (cm)	15.34
Length 3 (cm)	15.32
Δva Length (cm)	15 34
Volume (cm ³)	630.8
Voluine (cm.) Moisture contont (%)	32.2
	1 870
Buik Density (g/cm [*])	1.073 40 A
Bulk Density (kN/m [*])	10.4
	TT7.3
Dry Density (kN/m ³)	13.83

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

CLIENT:	City of Winnipeg						
PROJECT:	FGSV Interceptor Siphon						
JOB NO.:	60274906	50274906					
TEST HOLE NO.:	TH13-02		so	IL DESCRIPTION:			
SAMPLE NO.:	T4 CLAY; silty, trace sand, trace oxidation, brown, moist, firm, medium to high						
SAMPLE DEPTH:	10.0 - 12.0	10.0 - 12.0 plasticity, homogeneous					
SAMPLE DATE:	19-Nov-13						
TEST DATE:	26-Nov-13		MOISTURE CONTENT:	33.3			
SAMPLE DIAM.(Do):	72.37	(mm)	INITIAL AREA, Ao:	4113.1	(mm²)		
SAMPLE LENGTH, (Lo):	153.37	(mm)	PISTON RATE:	0.051	(inches / minute)		
L/D RATIO:	2.1	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>		

FAILURE SKETCH

AXIAL	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPRE	ESSIVE STRESS, C	5 _c
(inches)	0.5	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
· · · · · · · · · · · · · · · · · · ·							
		••••••				••••••	

							<u> </u>
	*****			[
	ļ			.			
	<u> </u>						
••••••	+						
	<u>+</u>			••••••			
••••••••••••••••							h
	t			1			1
	[I		[[
	ļ						l
	ļ						
							<u> </u>
							<u> </u>
 							<u> </u>
				••••••			
						l	l
		[I	l	[[
		[[
		1	l		L		
UNCONFINED COMPRESSI	VE STRENGTH, qu:	0.00	kPa		NUTES:		
(based on maximum q _u value)		0.000	ksf				
UNDRAINED SHE	AR STRENGTH, Su:	0.00	kPa				
(based on maximum q _a value)		0.000	ksf				

SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-02
SAMPLE NO.:	Т8
SAMPLE DEPTH:	30.0 - 31.5
DATE TESTED:	26-Nov-13
SHEAK SIKENGIN 16313	
	0.70
	U./U
Value Size (S, IVI, L)	
Undrained Shear Strength (kra)	bö./
	1.43
POCKET DENETROMETER	
	1 75
Lindrained Shoar Strength (KPa)	1,10
Deading Out (kPa)	63.8
Reading - Qu (ISI)	1,50
Undrained Snear Strength (KPa)	/1.8
Reading - Qu (tst)	1.50
Undrained Snear Strength (KPa)	/1.8
UNCONFINED COMPRESSIVE STRENCTH TEST	
Linconfined compressive strength (EDs)	N/A
Uncontined compressive strength (kea)	N/A
Unconlined compressive strength (ksi)	N/A
Undrained Shear Strength (KPA)	N/A
	N/A
MOISTURE CONTENT	
Tare Number	M12
Wt_Sample wet + tare (q)	426.6
Wt. Sample dry + tare (g)	307.4
Wt Tare (g)	83
Moisture Content %	30.0
	J3.3
BULK DENSITY	
Sample Wt. (g)	1111.5
Diameter 1 (cm)	7.23
Diameter 2 (cm)	7.23
Diameter 3 (cm)	7.25
Avg. Diameter (cm)	7.24
Length 1 (cm)	15.35
Length 2 (cm)	15.34
Length 3 (cm)	15.34
Avg. Length (cm)	15.34
Volume (cm ³)	631 1
Moisture content (%)	39.9
Bulk Density (a/om ³)	1 761
Bulk Density (g/cm)	17 3
Bulk Density (Kiv/iii)	110.0
Dur Density (pc)	12 35
	12,33

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-02
SAMPLE NO.:	Т8
SAMPLE DEPTH:	30.0 - 31.5
SAMPLE DATE:	19-Nov-13
TEST DATE:	26-Nov-13

(based on maximum q_u value)

CLAY; silty, trace sand, brown with	grey, moist, firm, medium to high plasticity,
homogeneous	
MOISTURE CONTENT:	30.0

SAMPLE DIAM.(Do):	72.37	(mm)	INITIAL AREA, Ao:	4113.1	(mm²)
SAMPLE LENGTH, (Lo):	153.43	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.1	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL READINGS		l					
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPRI	ESSIVE STRESS, C	fc
(inches)	0.7	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)

	•••••						
	[[[
				 		<u> </u>	
.				+			

						ļ	
							•••••
							•••••
				+			
	[[[
				••••••			••••••••••
	L						
	ļ			.		ļ	
				<u>+</u>		}	
	<u> </u>						
L	L		4			1	
UNCONFINED COMPRESSI	VE STRENGTH, q _u :	0.00	kPa		NOTES:		
(based on maximum	n q _u value)	0.000	ksf				
UNDRAINED SHE	AR STRENGTH, S.	0.00	kPa				
(based on maximum q _u value)		0.000	ksf				

AECOM

FAILURE SKETCH

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: FGSV Interceptor Siphon JOB NO.: 60274906

TEST HOLE NO.:	TH13-02
SAMPLE NO.:	T10
SAMPLE DEPTH:	40.0 - 41.5
DATE TESTED:	26-Nov-13
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.75
Vane Size (S, M, L)	, M
Undrained Shear Strength (kPa)	73.6
Undrained Shear Strength (ksf)	1.54
POCKET PENETROMETER	
Reading - Qu (tsf)	0.75
Undrained Shear Strength (kPa)	35.9
Reading - Qu (tsf)	0.75
Undrained Shear Strength (kPa)	35.9
Reading - Qu (tsf)	0.75
Undrained Shear Strength (kPa)	35.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	N/A
Unconfined compressive strength (ksf)	N/A
Undrained Shear Strength (kPa)	N/A
Undrained Shear Strength (ksf)	N/A
MOISTURE CONTENT	
l are Number	M12
Wt. Sample wet + tare (g)	390.2
Wt. Sample dry + tare (g)	275.9
Wt. Tare (g)	8.2
Moisture Content %	42.7
DULK DENJI I Samnla Wt. (a)	1072
Diamotor 1 (cm)	7.02
Diameter 1 (CII)	7.25
Diameter 2 (CIII)	7.75
	7.24
Avg. Diameter (CM)	1.24
Lengin 1 (CM)	10.00
Length 2 (cm)	13.32
Length 3 (cm)	10.32
Avg. Length (cm)	15.33
Volume (cm°)	631.7 40.7
Moisture content (%)	42.7
Bulk Density (g/cm ³)	1.69/
Bulk Density (kN/m³)	16.6
Bulk Density (pcf)	105.9
Drv Density (kN/m ³)	11.66

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

CLIENT:	City of Winnipeg						
PROJECT:	FGSV Interceptor Siphon						
JOB NO.:	60274906						
TEST HOLE NO.:	TH13-02]	SO	IL DESCRIPTION:			
SAMPLE NO.:	T10]	CLAY; silty, trace till inclusions, trace sand, trace silt inclusions, trace stones				
SAMPLE DEPTH:	40.0 - 41.5	0.0 - 41.5 (5mm), brown, moist, firm, medium to high plasticity, homogeneous					
SAMPLE DATE:	19-Nov-13						
TEST DATE:	26-Nov-13		MOISTURE CONTENT:	42.7			
SAMPLE DIAM.(Do):	72.43	(mm)	INITIAL AREA, Ao:	4120.7	(mm²)		
SAMPLE LENGTH, (Lo):	153.30	(mm)	PISTON RATE:	0.051	(inches / minute)		
L / D RATIO:	2.1	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.85	(0.5 <r<2 %="" minute)<="" td=""></r<2>		

TEST DATA - DIAL READINGS TOTAL AXIAL STRAIN, E₁ AVERAGE CROSS-SECTIONAL AREA, A APPLIED AXIAL LOAD, P AXIAL COMPRESSION PROVING RING COMPRESSIVE STRESS, σ_c (inches2) (ibs) (inches) (%) (psi) (inches) (ksf) N/A N/A N/A N/A UNCONFINED COMPRESSIVE STRENGTH, qu: 0.00 NOTES: kPa (based on maximum q, value) UNDRAINED SHEAR STRENGTH, S. 0.000 ksf kPa ksf (based on maximum q_u value)

0.000

FAILURE SKETCH

APPENDIX D

PHOTOGRAPHS

Photo 1: Cracking along the existing asphalt access road, mid-slope facing north.

Photo 2: Erosion of riverbank toe, facing east.

Photo 3: Exposed alluvial soils within eroded riverbank toe (highly weathered and softened), facing east.

Photo 4: Rip-rap blanket placed below eastbound Bishop Grandin Bridge, facing south.

Photo 5: River elevations (November 2013), facing northwest.

Photo 6: Erosion of riverbank toe, facing north.

APPENDIX E

SLOPE STABILTY OUTPUTS

Current Slope Conditions (Summer River Elevations)

Current Slope Conditions (Winter River Elevations)

Current Slope Conditions (Rapid Drawdown)

Riverbank Protection Measures- Rip Rap Erosion Control Blanket (Winter Elevations)

Riverbank Protection Measures- Rip Rap Erosion Control Blanket (Summer Elevations)

Riverbank Protection Measures- Rip Rap Erosion Control Blanket (Rapid Drawdown)

Riverbank Protection Measures- Rip Rap Erosion Control Blanket and Toe Regrade (Summer Elevations)

Riverbank Protection Measures- Rip Rap Erosion Control Blanket and Toe Regrade (Rapid Drawdown)