
				X:\A-G\CITY OF WINNIF	PEG – WATER & WASTE DEPARTMENT – 0012\10001203.00 ·	- FERRY ROAD AND RIVERBEND CSR WORKS DESIGN AND	CA\CONTRACT 2\CAD\FERRY ROAD 2012 WORK CIVIL 3D DATA SHORTCUTS\PRODUCTION DRAWINGS\0208-0214 QUEEN ST.DWG 13.11.27 13
		8 8 0 0 0 0 0 0 0 0 0 0 0 0 0					
	<u>2.11.01</u>				H 12-65 012.11.02		
235.0		3+550 3+550				2	235.0
234.0			× ·····			· - ⊡	34.0
					0.6		
233.0					TE: ACT DEPTH OF EXISTING WATERMAIN UNKNOWN.	2	233.0
232.0			EX 150 WM			2	32.0
231.0		20.09 (MH TO MH) LDS AT 0.21% (C76-CL IV)		84.89 OF 525 LDS AT 0.2	ГО МН) EX 150 WM		31.0
	EX 375 CS (C			150 INV 31.45±			
230.0	CLAY		RIM 34.310			2	230.0
229.0			450 N INV 30.120 375 S INV 30.085 MH S229			2	29.0
			RIM 34.30 525 N & S INV 230.831		6.1(EOH)		
	7.6(EOH)						
						00	
						L	
	VATCH	3+43.0		4+00 00		AATCH	
	246 250 11.735 11.582 11.582 525 LDS 525 LDS 375 CS (CONC)	252 7.772 7.772 15.545		264 7.772 7.772 15.545 			 LOCATION OF ALL SEWER AND WATER LINES TO BE CONFIRMED IN THE FIELD. SEWER AND WATER SERVICES SHOWN ON DRAWINGS ARE APPROXIMATE ONLY. INSTALL NEW SEWER AND CATCHBASIN LEADS BY TRENCHLESS METHODS, UNLESS NOTED OTHERWISE. GENERAL NOTES: CHAINAGE IS ALONG WEST LIMIT OF QUEEN STREET. STATION 6+00 = NORTH LIMIT OF NESS AVENUE. SEE SPECIFICATIONS FOR DETAILED TEST HOLE INFORMATION.
			150 WM			5.51 	BID OPPORTUNITY No. 990-201
	150 WM BUILT IN 2012 243 APARTMENTS	6.096	000000000000000000000000000000000000	3.20		MATCH LINE 4+30	BOURKEVALE DR HAMPTON ST CAVELL DR BERRY ST WINSTON DR BROOKLYN R PARKSIDE DR ST ST QUEEN ST ST ST RD CENTURY ST ST RD DRAWING ST ST
WARNING IF POWER EQUIPMENT OR EXPLOSIVES ARE TO BE USED FOR EXCAVATION ON THIS PROJECT THE CONTRACTOR MUST: 1. NOTIFY THE GAS COMPANY OF THE PROPOSED LOCATION OF EXCAVATION. 2. TAKE PRECAUTION TO AVOID DAMAGE TO GAS COMPANY INSTALLATIONS. SEE PROVINCIAL REGULATION 140/92 FOR DETAILS. 150 WM WATERMAIN	Ky BEND Ky		PLUG CATCHBASIN LEAD INSTALL NEW CATCHBASIN (SD-024) C/W 8.4 OF 250 CB LEAD AT 2% RIM 34.280 INV 32.630, BOT 32.030	STREET			KEY PLAN
400 FM FEEDERMAIN 400 FM 300 LDS LAND DRAINAGE SEWER 300 LDS	中 TEE 中 ♂ CURB STOP 1	TREE 5.240 LEGAL DIMENSION	LOCATION APPROVED		TETRA TEC		Winnipeg THE CITY OF WINNIPEG WATER AND WASTE DEPARTMENT
250 WWS WASTEWATER SEWER 250 WWS 300 CS COMBINED SEWER 300 CS 200 FCM FORCEMAIN 200 FCM JUNCTIONS HYDRANT REDUCER So	O MANHOLE □ CATCHBASIN ▽ CURB INLET ⑥ ADDRESS ● HYDRO POLE			D FOR TENDER 13.11.28 KJM VERTIC	NL, GMD APPROVED BY CALE: 1 : 250 RELEASED FOR CONSTRUCTION	GS CONSULTANT DRAWING REVISION "00" SEALED E K.J. McRAE 13.11.27	BY FERRY ROAD AND RIVERBEND CITY DRAWING NUMBER COMBINED SEWER RELIEF WORKS 10686 CONTRACT 2 SHEET 9 QUEEN STREET 17
LREDUCEREXISTINGLEGEND-PLANPROPOSEDEXISTING		STING LEGEND-PLAN PROPOSED	OBTAINED FROM THE INDIVIDUAL UTILITIES BEFORE PROCEEDING WITH CONSTRUCTION.	DTOK AFFROVAL 13.11.27 KJW		1000120300-DWG-C0209	216m NORTH OF PORTAGE AVENUE 10 CU2U9 3 138m SOUTH OF NESS AVENUE

