The City of Winnipeg Bid Opportunity No. 528-2014

APPENDIX 'A'

GEOTECHNICAL INVESTIGATION

Quality Engineering | Valued Relationships

Dillon Consulting Ltd. Dugald Drain Crossing Replacement at Happyland Park

Prepared for:

Dillon Consulting Ltd. 1558 Willson Place Winnipeg, MB R3T 0Y4

Project Number: 0022 011 00

Date: December 9, 2013

Quality Engineering | Valued Relationships

December 9, 2013

Our File No. 0022 011 00

Mr. Mark Doucet Dillon Consulting Ltd. 1558 Willson Place Winnipeg, MB R4T 0Y4

RE: Geotechnical Investigation for Dugald Drain Crossing Replacement at Happyland Park

TREK Geotechnical Inc. is pleased to submit our Final Report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Ken Skaftfeld, P.Eng.

Geotechnical Engineer Tel: 204.975.9433 ext. 106

JB: jh Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	KMS	Dec. 9, 2013	Final Report

Authorization Signatures

Prepared By:

Ken Skaftfeld, P.Eng. Senior Geotechnical Engineer

Reviewed By:

James Blatz, Ph.D., P.Eng. Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introduction			
2.0	Background and Existing Information1			
3.0	Field	Program	1	2
	3.1	Site Re	econnaissance	2
	3.2	Sub-Su	Irface Investigation	2
	3.3	Labora	tory Testing	3
4.0	Site C	Conditior	ns	3
5.0	Sub-S	Surface C	Conditions	4
	5.1	Soil St	ratigraphy	4
	5.2	Power	Auger Refusal	5
	5.3	Seepag	e and Sloughing Conditions	5
6.0	Found	dation Re	ecommendations	6
	6.1	Limit S	States Design	6
	6.2	Shallow	w Foundations	6
	6.3	Deep F	Foundations	8
		6.3.1	Cast-in-Place Concrete Friction Piles	8
		6.3.2	Driven Precast Concrete Piles	9
		6.3.3	Steel Piles	. 11
	6.4	Lateral	Loads	. 11
	6.5	Ad-free	ezing	. 12
7.0	Found	dation Co	oncrete	. 12
8.0	Excavations and Shoring			. 12
9.0	Latera	al Earth I	Pressure	. 13
10.0	Slope	Stability	у	. 13
11.0	Closu	re		. 14

List of Tables

Table 6-1	ULS Resistance Factors For Foundations	. 4
Table 6-2	Adhesion values For Cast-in-Place Concrete Friction Piles	. 5
Table 6-3	Recommended ULS and SLS Pile Capacity for Driven PPHC Piles	. 9
Table 6-4	Recommended Lateral Subgrade Reaction Modulus (Ks)	. 8
Table 8-1	Recommended Design Parameters for Cantilevered Walls (Shoring)	10
Table 10-1	Recommended Channel Side Slopes	10

List of Drawings

Drawing 01 Site Plan

List of Appendices

- Appendix A Site Reconnaissance Photographs
- Appendix B Test Hole Logs
- Appendix C Laboratory Test Results

I.0 Introduction

This report summarizes the results of the geotechnical investigation completed by TREK Geotechnical Inc. (TREK) for the proposed Dugald Drain crossing replacement at the Happyland Park in Winnipeg, Manitoba. A site plan showing the crossing location is presented on Drawing 01. The terms of reference for the investigation are included in our proposal to Dillon Consulting Limited (Dillon) dated October 9, 2013. The scope of work includes a sub-surface investigation, laboratory testing, and the provision of recommendations for foundations, general site works and slope geometry.

2.0 Background and Existing Information

The existing crossing consists of a single 2.7 m diameter by 7.9 m long concrete pipe with concrete headwalls and wingwalls (Figure 01). While the concrete pipe appears to be in relatively good condition (Figure 02), the wingwalls are badly cracked and are leaning towards the channel (Figure 03). The crossing has reached the end of its service life and is scheduled for replacement. It is our understanding that replacement options include a single precast concrete pipe without headwalls, a reinforced concrete box culvert with headwalls and wingwalls, and a clear span bridge¹.

Figure 01 View SE at Crossing

¹ Report by Bruce Harding Consultants dated November 2013

Figure 02 View E (upstream) at Concrete Pipe

Figure 03 View SE at Wingwall

3.0 Field Program

3.1 Site Reconnaissance

A site reconnaissance was carried out on November 4th by Mr. Ken Skaftfeld, P.Eng. and Mr. Brent Hay, P.Eng. of TREK. A set of photographs taken at the time of the reconnaissance are included in Appendix A with select photos presented in this report. Photo locations are based on a hand held GPS and are shown on the attached figure in Appendix A. The reconnaissance was carried out to assess the general condition of the channel in the vicinity of the crossing, in particular, any visual evidence of bank instabilities. Test hole locations were also determined at the time of the site reconnaissance.

3.2 Sub-Surface Investigation

A sub-surface investigation was undertaken on November 15, 2013 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test holes TH13-01 and TH13-02 were drilled to power auger refusal (PAR) at the locations shown on Drawing 01. Test holes were drilled using a Soilmec STM-20 truck mounted piling rig equipped with a 508 mm diameter auger. Sub-surface soils observed during the drilling were visually classified based on the Unified Soil Classification System (USCS). Samples retrieved during drilling included disturbed grab samples and relatively undisturbed Shelby tube samples which were transported to TREK's laboratory in Winnipeg, Manitoba for further classification and testing.

Test hole logs are attached in Appendix B and include soil descriptions, the elevation of soil units encountered and other pertinent information such as groundwater levels and sloughing conditions. Test hole locations were referenced to existing features at the site and elevations were surveyed by TREK personnel using a local benchmark established by Dillon.

3.3 Laboratory Testing

Laboratory testing consisted of moisture content determination on all samples. Undrained shear strength testing (pocket penetrometer, torvane and unconfined compression) and unit weight determination was also completed on select undisturbed samples. The laboratory test results are shown on the test hole logs in Appendix A or separately in Appendix B.

4.0 Site Conditions

The Dugald drain consists of a narrow meandering main channel which is incised into a wider overflow channel (Figure 04). The incised channel is about 1 m wide and up to 1 m deep while the overflow channel is terraced and up to about 75 m wide in some locations (below prairie level). The incised channel bed is mud with woody debris. Concrete debris and cobble size rocks can be seen within the channel at the inlet and outlet to the concrete pipe (Figure 05). The overflow channel is grassed with mature trees.

There are a number of localized slump blocks along the toe of the main channel upstream and downstream of the crossing; these slumps are typically at the outside bend of the incised channel and likely as a consequence of continued bank erosion and over-steepening at these locations (Figures 06 and 07). The terraces visible along the overflow channel are believed to be remnants of historical slope movements although none of these appear active. The channel banks in the immediate vicinity of the crossing appear stable, although they are generally over-steepened (Figures 08 and 09).

Figure 04 View W Downstream of Crossing Figure 05 Channel at Outlet of Concrete Pipe

Figure 06 Toe Slump Downstream of Crossing

Figure 07 Toe Slump Upstream of Crossing

Figure 08 Bank at SW Wingwall Figure 09 Bank at NW Wingwall

5.0 Sub-Surface Conditions

5.1 Soil Stratigraphy

The soil stratigraphy in descending order from ground surface generally consists of clay fill, silty clay, and silt till. A brief description of the soil units encountered at test hole locations is provided below. Interpretations of soil stratigraphy for the purposes of design should refer to the detailed test hole logs provided in Appendix A.

Clay (Fill)

Silty clay (fill) was encountered at surface in both test holes drilled behind the wingwalls and extends to 2.1 m to 2.4 m below ground surface (bgs). The clay is dark brown to black with trace organics and contains varying amounts of gravel (estimated to range from 20% to 35% by weight). Moisture

contents range from 13% to 20%, with an average of 16%. The bulk unit weight (based on one sample) is 18.4 kN/m^3 . The clay portion of the fill is considered to be highly plastic with a stiff consistency.

Silty Clay

High plastic silty clay was observed below the clay fill in both test holes to 13.7 m (TH13-02) and 14.6 m (TH 13-01) bgs. The clay is mottled brown and grey, becoming grey at a depth of approximately 7.6 m bgs. Moisture contents generally increase with depth, ranging from 36% to 61%, with an average of 46%. Bulk unit weights range from 17.0 to 17.4 kN/m³ with an average of 17.2 kN/m³ based on seven tests. Undrained shear strengths generally decrease with increasing depth, ranging from about 75 kPa immediately below the clay fill (stiff) to 25 kPa below a depth of approximately 9 m (soft).

It should be noted that cobbles were encountered in the clay below a depth of 7 m in TH 13-02 and 12.5 m in TH 12-01. Based on observations of auger resistance by the operator, it is also possible a boulder was encountered at a depth of 8.3 m in TH 13-02.

Silt (Till)

Silt (till) underlies the silty clay at a contact elevation of 214.0 m (TH 13-01) and 215.2 m (TH 13-02). The till contains trace clay, trace gravel, is moist, light grey and has low plasticity. Moisture contents decrease with depth, ranging from 15% below the clay contact to 3% near the termination of the test holes. Corresponding to the moisture contents, the consistency of the till ranges from loose below the clay contact to very dense near the termination of the test holes (at power auger refusal).

5.2 Power Auger Refusal

Power auger refusal was reached at depths between 16.6 to 17.4 m in silt till. It is unclear if refusal occurred on boulders within the till but the very low moisture contents from samples collected near the termination depth are reflective of a very dense till matrix often associated with power auger refusal in Winnipeg.

5.3 Seepage and Sloughing Conditions

Minor seepage occurred at undetermined depths within the silt (till). The depth to water in the open holes was 14.2 m bgs in TH 13-02 and 14.9 m bgs in TH 13-01 about 10 to 15 minutes after drilling. Sloughing of the till was observed below the measured water levels in both test holes.

These observations are short term and should not be considered reflective of (static) groundwater levels in the silt (till), which would require monitoring over an extended period to determine. It is important to recognize that groundwater conditions may change seasonally, annually, or as a result of construction activities.

6.0 Foundation Recommendations

6.1 Limit States Design

A shallow foundation (*e.g.* wide footing or mat foundation) would be a feasible alternative for the concrete pipe or box culvert options. The single span bridge option would require a deep (piled) foundation. Recommendations for foundation design provided in this report are based on limit states design following the 2006 Canadian Highway Bridge Design Code (CHBDC). Table 6-1 summarizes the resistance factors provided in Chapter 6 of the CHBDC and which have been used where applicable to determine the factored geotechnical resistance or capacities at the Ultimate Limit State (ULS) for shallow and deep foundations. Unless otherwise noted, a resistance factor based on the results of static analysis (*e.g.* 0.4 for compression) has been used to determine the factored geotechnical resistance factors can only be used if static or dynamic load tests are carried out which are not likely economical for a project of this size.

APP	RESISTANCE FACTOR	
	Bearing resistance	0.5
Shallow Foundations	Passive resistance	0.5
	Horizontal resistance (sliding)	0.8
Ground anabara (apil or rock)	Static analysis - Tension	0.4
Ground anchors (Soli of Tock)	Static analysis - Tension	0.6
	Static analysis – Compression	0.4
	Static Analysis – Tension	0.3
	Static Test – Compression	0.6
	Static test – Tension	0.4
Doon Foundations - Bilos		
Deep Foundations - Files	Dynamic analysis – Compression	0.4
	Dynamic test – Compression (field measurements	0.5
	and analysis)	
	Horizontal passive resistance	0.5

Table 6-1	ULS Resis	tance Factor	s for Found	ations	(CHBDC,	2006)
-----------	------------------	--------------	-------------	--------	---------	-------

6.2 Shallow Foundations

Provided seasonal movements relating to moisture changes and freeze/thaw are tolerable for lightly loaded structures such as the concrete pipe or box culvert options, a shallow (mat) foundation would be an appropriate foundation system, with the option of thickened edges around the perimeter of the mat. A circular concrete pipe may have a concrete cradle.

Shallow foundations bearing on undisturbed clay can be designed using a Service Limit State (SLS) bearing capacity of 100 kPa and a factored geotechnical resistance at the Ultimate Limit State (ULS)

of 150 kPa (based on a resistance factor of 0.5). Sliding is not expected to be a concern for design; however Limit States design values can be provided if necessary once the bedding material type is known.

Additional considerations for the design and construction of the circular pipe and box culvert options are provided below:

- 1. Based on an anticipated elevation of about 224.0 m for the foundation base, it is expected that the bearing surface for either the circular pipe or box culvert will be undisturbed clay. However, if encountered, any organics, silts, fill soils, and any other deleterious material should be stripped such that the subgrade consists of native, undisturbed high plastic clay. No such deleterious materials were encountered at this depth in the test holes, although conditions may vary between test holes.
- 2. Subgrade excavation should be completed by a backhoe equipped with a smooth bladed bucket in a manner which minimizes disturbance to the exposed subgrade. Care should be taken not to over-excavate and to minimize the subgrade disturbance at all times.
- 3. After excavation, the subgrade should be inspected by a qualified geotechnical engineer and compacted to 95% of Standard Proctor Maximum Dry Density (SPMDD). The exposed subgrade surface should be protected from freezing, drying, inundation and disturbance. If any of these conditions occur the subgrade should be scarified, moisture conditioned as appropriate, and recompacted to a minimum of 95% of SPMDD.
- 4. Where soft or weak subgrade materials are identified by the geotechnical engineer, these areas should be repaired as directed by the geotechnical engineer. This may require excavation and placement/compaction of in-situ material or granular material.
- 5. A concrete cradle for a circular pipe can be poured neat with the subgrade if in agreement and in accordance with the supplier's recommendations.
- 6. The granular bedding for a circular pipe should consist of granular fill and thickness in accordance with the supplier's recommendation. The granular bedding for a concrete box culvert should consist of a minimum of 150 mm of crushed limestone base material (19 mm down) with a 75 mm thick levelling course of finer granular fill material if necessary. The granular base for box culverts should be placed in lifts not exceeding 150 mm thickness and compacted to 98% of SPMDD.
- 7. Where the underside of the granular fill is less than 2.4 m below grade, ground freezing can be expected in the long-term and frost heave may occur. If potential ground movements associated with ground freezing cannot be tolerated, TREK can provide additional recommendations for remedial measures, which may consist of a thickened sub-base or a rigid polystyrene skirt for insulation.
- 8. A concrete toe (curtain) wall is recommended at the upstream and downstream ends of the box culvert structure. The wall should extend 300 mm minimum below the underside of the structure and in any case, should penetrate through the full thickness of the granular base material and into

the underlying clay. Any exposed granular base and granular base materials beyond the perimeter of the structural slab should be capped with impermeable clay compacted to 95% SPMDD to prevent saturation of the bearing soil and scouring during high flow events.

6.3 Deep Foundations

6.3.1 <u>Cast-in-Place Concrete Friction Piles</u>

The factored geotechnical resistance values (adhesion and end bearing) at the ULS for determining the capacity of cast-in-place concrete friction piles are provided in Table 6-2 (based on a resistance factor of 0.4). The pile capacity can be calculated based on the adhesion values provided in Table 6-2 for evaluation of the Service Limit State. The contribution from end bearing should be ignored for the calculation of the SLS pile capacity. The pile settlement under applied (unfactored) loads equal to the SLS pile capacity can be expected to be 25 mm or less. If required, a detailed settlement analysis can be provided by TREK once the final pile loads are known.

Table 6-2	Adhesion Values	for Cast-in-Place	Concrete Friction	Piles (Com	pression)
				1 1100 (0011	

	Depth (m)		UL	SI S	
Soil From To		Factored Adhesion	Factored End- Bearing	Skin Friction Value	
Silty Clay / Frost Zone	0.0	2.4	0	0	0
Silty Clay	2.4	Elev. 220 m	18 kPa	160 kPa	15 kPa
Silty Clay	Elev. 220 m	Elev. 214m	12 kPa	100 kPa	10 kPa

¹ ULS - A Resistance Factor of 0.4 has been applied.

Additional design and construction recommendations for cast-in-place concrete piles are provided below:

- 1. The weight of the embedded portion of the pile may be neglected.
- 2. Cobbles (and possibly boulders) may be encountered during drilling for cast-in-place piles. While it is not anticipated that the frequency or size of cobbles is sufficient to prevent auger advancement, piling contractors should be made aware of the possibility of boulders and be prepared to extract any such obstructions if necessary.
- 3. Adhesion within the upper 2.4 m of the pile should be ignored to take into consideration potential shrinkage and environmental effects such as frost action over that depth. Shaft support within any fill materials should also be ignored.
- 4. A minimum pile length of 9 m below ground surface is generally recommended for exterior or unheated straight shaft piles to protect against frost jacking. In this regard, uplift forces due to ad-freezing in the upper 2.4 m below ground should be based on an uplift adhesion of 65 kPa. Frost

jacking can be resisted by structural dead loads as well as uplift resistance afforded by the pile length below the depth of frost.

- 5. A factored geotechnical resistance value for uplift against frost jacking forces or due to live loads on the piles of 13 kPa to a depth of 8 m (approx. Elev. 220m) and 8 kPa below Elev. 220.0 m should be used (a resistance factor of 0.3 has been applied).
- 6. Pile spacing should not be less than 2.5 pile diameters, measured centre to centre. If pile spacing must be closer than 2.5 pile diameters, TREK should be notified so that an evaluation of pile group effects can be performed.
- 7. All piles should be reinforced for their full length.
- 8. Based on observed conditions, sleeving of drilled shafts will likely be unnecessary. Seepage conditions at the time of construction may differ from that observed at the time of drilling, in particular from near surface layers. If seepage and sloughing conditions are observed during drilling, sleeves should be used.
- 9. Piles should not extend any deeper than elevation 214.0 m to avoid drilled shafts from penetrating the till unit, which may result in seepage or sloughing during construction.
- 10. Drilling and concrete placement for the piles should be inspected by a geotechnical engineer to verify the soil conditions and proper installation of the piles.
- 11. Prior to casting the pile, any groundwater within the shaft should be removed or controlled. If water is present the concrete should be placed using Tremie methods.
- 12. Concrete should be placed as soon as possible after drilling of the pile shaft.
- 13. Grade beams and pile caps should be constructed with a minimum 150 mm void space between soils and the underside of the concrete to minimize the effects of soil heave due to swelling or frost action.
- 14. All cast-in-place piles require reinforcement design by a qualified structural engineer for the required axial, lateral and bending loads from the structure.

6.3.2 Driven Precast Concrete Piles

Both SLS and ULS pile capacities are provided in Table 3 for precast-prestressed hexagonal concrete (PPHC) piles driven to practical refusal within the glacial till with the specified hammer and set criteria. Based on field observations and laboratory testing, the use of a resistance factor value of 0.4 has been applied to the estimated nominal end bearing value to arrive at the recommended ULS values provided in Table 6-3.

The SLS capacity provided in Table 6-3 will result in settlements of less than 25 mm. If a more stringent settlement criterion is required, a detailed settlement analysis can be provided by TREK once the final pile loads are specified.

Table 6-3 Recommended ULS and SLS Pile Capacity for Driven Precast Concrete Piles

Pile Type	Pile Size	ULS Capacity (kN)	SLS Capacity (kN)	Refusal Criteria (Blows/25 mm)
Driven Precast Piles	300 mm	570	445	5
	360 mm	800	625	8
	405 mm	1000	800	12

*Refusal criteria to be met on three consecutive sets using a hammer with a minimum rated energy of 40 kJ per blow

Additional design and construction recommendations for driven precast concrete piles are provided below:

- 1. The weight of the embedded portion of the pile may be neglected.
- 2. The piles must be designed to withstand design loads, handling stresses, and driving forces during installation.
- 3. Cobbles (and possibly boulders) may be encountered in the clay unit overlying till. If a pile cannot be advanced into the till, a replacement pile may be necessary.
- 4. Pile spacing should not be less than 2.5 pile diameters, measured centre to centre. If pile spacing must be closer than 2.5 pile diameters, TREK should be notified so that an evaluation of pile group effects can be performed.
- 5. The piles should be specified to have cured for at least 7 days prior to driving.
- 6. To aid in pile alignment, reduce ground vibrations, and reduce pile heave during driving, preboring may be undertaken. The pre-bore depth should be less than 3 m and the pre-bore diameter should be no more than 50 mm larger than the pile diameter. If lateral resistance is required in the piles, the annulus surrounding the pre-bore section of the piles must be filled with lean mix concrete for compliance with the surrounding soil.
- 7. Piles should be driven continuously once driving is initiated to the required refusal criteria.
- 8. All piles driven within 5 pile diameters of a previously installed (driven) pile should be monitored for pile heave. If pile heave is observed, all piles should be checked. Piles that have heaved should be re-driven to the refusal criteria.
- 9. Where a steel follower is required to install piles below the surrounding ground surface, the refusal criteria should be increased by up to 50% in order to account for additional energy losses through the use of the follower. TREK should be contacted to provide recommendations in this regard during construction.
- 10. Inspection of driven pile installation should be undertaken by qualified and experienced geotechnical engineer familiar with this type of pile installation.
- 11. Any piles damaged, misaligned an excessive amount or reaching premature refusal may need to

be abandoned and replaced. The structural designer should assess non-conforming piles to determine if they are acceptable.

12. Grade beams and pile caps should be constructed with a minimum 150 mm void space to minimize the effects of soil heave due to swelling or frost action. Any existing foundations should be excavated and removed to a depth of at least 0.5 m from the underside of grade beams and pile caps.

6.3.3 <u>Steel Piles</u>

Steel H piles or pipe piles driven to practical refusal could be considered, in particular if it is necessary to achieve individual pile capacities higher than for PPHC piles. Capacities for steel piles and recommendations for their installation can be provided upon request.

6.4 Lateral Loads

The soil response (subgrade reaction) to lateral loads can be modeled in a simplified manner that assumes the soil around a pile can be simulated by a series of horizontal springs for the preliminary design of pile foundations. The soil behaviour can be estimated using an equivalent spring constant referred to as the lateral subgrade reaction modulus (Ks). For clays, the lateral subgrade reaction modulus is typically independent of depth or vertical overburden stress. Table 6-4 provides the recommended subgrade reaction modulus for the lateral load analysis.

The majority of lateral resistance will typically be offered by the upper 5 to 10 m of soil, depending on the relative stiffness of the pile and soil units. The lateral subgrade reaction within 2.4 m of ground surface should be neglected due to fill materials, silts, seasonal moisture changes and freeze/thaw effects. Void spaces surrounding piles due to pre-boring activities should be in-filled with lean-mix concrete to ensure compliance with the surrounding soil.

	Dept	h (m)	ĸ	
Soil	From	То	(kN/m³)	
Fill Soils, Silts, and Frost Zone	0.0	2.4	0	
Clays	2.4	6.0	2000 / d ¹	

Table 6-4 Recommended Values for Lateral Subgrade Reaction Modulus (Ks)

¹ d is the pile diameter in metres.

As part of detailed design, a more rigorous lateral pile and group analysis that incorporates the material and section properties of the pile, final lateral deflection criteria and a more rigorous elastic-plastic model of the soil response to loading can be carried out by TREK out to confirm the lateral load capacity of the piles and pile groups, if required.

6.5 Ad-freezing

Buried concrete structures can be subject to ad-freezing forces acting along their vertical surfaces. For foundation components located within the depth of frost penetration, an ultimate (unfactored) load of 65 kPa is recommended for design. These forces will be resisted by structural dead loads and uplift resistance afforded by the length of the foundation system below the depth of frost penetration. For design, a frost penetration depth of 2.4 m should also be assumed. A factored geotechnical resistance value for uplift against frost jacking forces or due to live loads on the piles of 13 kPa to a depth of 8 m (approx. Elev. 220m) and 8 kPa below Elev. 220.0 m should be used (a resistance factor of 0.3 has been applied). Alternatively, measures such as rigid Styrofoam insulation could be considered to reduce frost penetration depths and thereby uplift forces.

7.0 Foundation Concrete

The degree of exposure for concrete subjected to sulphate attack is classified as severe according to Table 3, CSA A23.1-09 (Concrete Materials and Methods of Concrete Construction). Accordingly, all concrete in contact with the native soil should be made with high sulphate-resistant cement (HS or HSb). Furthermore, the concrete should have a minimum specified 56 day compressive strength of 32 MPa and have a maximum water to cement ratio of 0.45 in accordance with Table 2, CSA A23.1-09 for concrete with severe sulphate exposure (S2). Concrete which may be exposed to freezing and thawing should be adequately air entrained to improve freeze-thaw durability in accordance with Table 4, CSA A23.1-09.

8.0 Excavations and Shoring

All excavations must be carried out in compliance with the appropriate regulation(s) under the Manitoba Workplace Safety and Health Act. Cantilevered (unbraced) walls should be designed using the earth pressure coefficients outlined in Table 8-1 for the appropriate earth pressure condition. Braced excavations in silt or clay/clay fill should be designed using the earth pressure distributions shown on Figure 10 (attached). The effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures, as noted in the figures.

Earth Pressure	Earth Pressure Coefficient
Condition	Clay / Clay Fill
Active (Ka)	0.5
At-rest (K _o)	0.65
Passive (K _p)	2.0

 Table 8-1
 Recommended Design Parameters for Cantilevered Walls (Shoring)

A certain amount of ground movement behind the shoring will occur, and is largely unavoidable. The amount of movement that will occur cannot be accurately predicted, mainly because the movement is as much a function of excavation procedures and workmanship as it is a function of theoretical considerations. It is anticipated that the design of temporary shoring will be the responsibility of the Contractor. The proposed shoring design should be reviewed prior to construction and the performance of the excavation system monitored during and subsequent to construction. Basal instability in the clay/clay fill is not expected to be of concern for the anticipated depth of any necessary excavations (less than 4m).

9.0 Lateral Earth Pressure

The magnitude of lateral earth pressures from retained soil against permanent culvert wing-walls will depend on the backfill material type, method of placement, backfill compaction and the magnitude of horizontal deflection of the wall after the backfill is placed. It is recommended that free draining granular soil be used as backfill against permanent walls to improve drainage properties and minimize the potential of lateral frost heave loading. A sub-drainage system consisting of filter-wrapped drainage pipe backfilled with clean gravel should be used at the base of the wall to prevent the build-up of hydrostatic pressures behind the wall structures. Cohesive soils should not be used as backfill behind permanent walls as these soils could generate excessive lateral earth pressures from swelling.

An active pressure coefficient (Ka) of 0.3 should be used to calculate lateral loads from free draining granular soils against retaining structures which are free to translate horizontally by at least 0.2 percent of the wall height. For retaining structures which are not free to translate, an at-rest earth pressure coefficient (Ko) of 0.4 should be used. An appropriate surface surcharge should also be included in the earth pressure distribution to account for potential surface loads. The active pressure coefficient (Ka) can be used to calculate the component of lateral load on wall structures due to surcharge loads.

Over-compaction of the backfill soils adjacent to walls may result in earth pressures that are considerably higher than those predicted in design. Compaction of the granular fills within about 1.5 m of walls should be conducted with a light hand-operated vibrating plate compactor and the number of compaction passes should be limited. A maximum compacted density of 92% of Standard Proctor Maximum Dry Density (SPMDD) should be specified for fill placed adjacent to walls. Backfilling procedures should be reviewed during construction to verify that they are consistent with the design assumptions.

10.0 Slope Stability

Slope stability analysis was carried out to estimate the factor of safety (FS) of the existing slopes at the crossing and determine appropriate slope geometry for long term stability. In this regard, the existing FS for the existing slopes on either side of the drain are estimated to range from 1.1 to 1.3 with the lower values associated with steeper slopes (*e.g.* the southwest side). With respect to a design objective for long term stability, we recommend a minimum FS of 1.3 be used under channel

drawdown conditions associated with the recession of a spring flood. To satisfy this design objective, the recommended slope geometry for varying bank heights up to 6 m are summarized in Table 10-1. The slope angles in Table 10-1 should extend laterally to a distance equal to or greater than the length of the slope measured from the structure.

Slope Height (from base of channel)	Recommended Channel Side Slope (horizontal to vertical)
Less than 4 m	3H:1V
Between 4 and 5 m	4H:1V
Between 5 and 6 m	4.5H:1V
Greater than 6 m	Additional analysis required if slope height exceed 6 m

Table 10-1 Recommended Channel Side Slopes

II.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Dillon Consulting Limited (the Client) and their agents for the proposed crossing replacement. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant.

Figures

Figure 10 Apparent Earth Pressure Distributions Temporary Braced Shoring

Drawings

0022 011 00

Dillon Consulting Ltd. Happyland Park Culvert Replacement

Appendix A

Photographs From site Reconnaissance

Dugald Drain Crossing Replacement - Happyland Park

Google earth

Photograph Locations

PB040086 PB040088

PB040091

PB040092

PB040095

PB040096

PB040103

PB040104

PB040105 PB040106 PB040107 PB040108

PB040111

PB040112

PB040115

PB040116

PB040125

PB040127

Dugald Drain Crossing at Happyland Park - November 4, 2013

PB040129

Dugald Drain Crossing at Happyland Park - November 4, 2013

PB040133

PB040134

Dugald Drain Crossing at Happyland Park - November 4, 2013

Appendix B

Test Hole Logs

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ма	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criteria				s				
	raction	gravel no fines)	GW	215	Well-graded gravels, gravel-sand mixtures, little or no fines	$C_{U} = \frac{D_{60}}{D_{10}} \text{ greater than 4; } C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} \text{ between 1 and 3}$			eve size	Р П	to #4 io #10	to #40	200		
sieve size	vels of coarse fi n 4.75 mn	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines		juirements for GW		STM Si	07#	# 10 #40 t	#200	*		
No. 200	Gra than half o larger the	vith fines sciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	rain size o r than No. g dual syn	Atterberg limits below line or P.I. less than 4	v "A" 4	Above "A" line with P.I. between 4 and 7 are bord		4				
ained soils larger thar	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	ivel from g ion smalle illows: W, SP SM, SC ts requirin	Atterberg limits above line or P.I. greater that	e "A" an 7	line cases requiring use of dual symbols	Par		ı	ο S	25	
Coarse-Gr naterial is	action	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	ines (fracti ines (fracti sified as fo SW, GP, S GM, GC, S GM, GC, Iline case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater th	an 6; C _c =-	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		шш	<u> </u>	2 uu iu 4 <i>i</i>) 425 to 2 (075 to 0.4	< 0.075
half the r	nds of coarse fr an 4.75 mr	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sal entage of f s are class centG srcent	Not meeting all gradation requirements for SW							0	
(More than	Sat Sat Smaller th	vith fines sciable of fines)	SM		Silty sands, sand-silt mixtures	ie percents ag on perce rained soil than 5 per than 12 pe 2 percent.	Atterberg limits below "A" Atterberg limits below "A" line or P.I. less than 4 between 4 and 7 are bord		er-					Clay	
	(More is	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determin dependir coarse-g Less More 6 to 1	Line cases requiring use Line cases requiring use dual symbols Line or P.I. greater than 7				INIALE	Sand	Mediur	Fine	Silt or
e size)	Ś		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticit	Plastici	ty Char	t A Série III		e Sizes		ġ		L
200 sieve	Its and Cla	Liquid limit ss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70- 60-					M Sieve	> 12 in 3 in to 12 ir	3 ID. 10 12	3/4 in. to 3	#4 to 3/4
soils er than No	Sil	<u> </u>	OL	<u> </u>	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH		rticle Siz	AST	_	+		_
e-Grained al is small	Fine-Graned s the material is smalle is and Clays ater than 50)		MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts		0			Pa	E	300	0 300	to 75	to 19
Fine the materi			СН		Inorganic clays of high plasticity, fat clays	20-			MH or OH		E	< /	10/	19	4.75
than half	ເ ຮັ	- sig	ОН		Organic clays of medium to high plasticity, organic silts) 60 7 D LIMIT (%)	0 80 90 100 110			ers	- es		
(More	Highly	Organic Soils	Pt	<u>6 77 76</u> <u>16 57 7</u>	Peat and other highly organic soils	Von Post Classification Limit Strong colour or odour, and often fibrous texture				V10th	INIAIE	Bould	Grave	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	62	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- \bigtriangledown Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE		
and	and CLAY	35 to 50 percent		
"y" or "ey"	clayey, silty	20 to 35 percent		
some	some silt	10 to 20 percent		
trace	trace gravel	1 to 10 percent		

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Tes	t blow count (N) of a coh	esive soil can be related to its cc	onsistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

TREK	Sub-Surface	Log			Test	Hole TH1	3-01 1 of 2
Client: Dillon Consulting Limited Project Name: Dugald Drain Crossing Replacement, Ha Contractor: Subterranean Ltd.	Project Dopyland Park Location Ground	Number: <u>002</u> n: <u>8m</u> Elevation: <u>228</u>	22 011 0 n N from o 8.67 m	0 center of culv	vert, 6m E of	centerline of p	pathway.
Method: 508 mm Auger, Soilmec STM-20 Truck Mount	Date Dri	lled: <u>15</u>	Novembe	er 2013			
Sample Type: Grab (G)	Shelby Tube (T) Spli	t Spoon (SS)		lit Barrel (SB	3) Cohblee	re (C)	
MATER	IAL DESCRIPTION		Sample Type	U = 1/2 / 20 / 20 / 20 / 40	Unit Wt /m ³) 19 20 21 Size (%) 60 80 100 C LL 60 80 100	Undrained Strength I <u>Test Ty</u> △ Torvar ● Pocket F ⊠ Qu ○ Field Va 0 50 100 1	Shear (kPa) ne △ Pen. Ф ⊠ ane ○ 50 200250
CLAY (FILL) - silty, some gravel, trace organics (rootlets) -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5	e sand, trace	-	G01				
CLAY - silty, trace sand, trace silt inclustrace oxidation, trace organics (rootlet - mottled grey and brown	usions (<10mm), trace precipitates s) to 6.7 m	(<10mm),	T02			• • • •	
- molst, still 			T04				
		-	G05				
			T06			× •	
ПО 17.0 17			G07			9	
51	.1 m		Т08				
장 · · · · · · · · · · · · · · · · · · ·	viewed By: Ken Skaftfeld		Projec	t Engineer:	Ken Skaftf	eld	

		RE	K	S	ub-Su	rface Log)			Т	est F	lole T	-H13	}-02 1 of 2
Clier Proje Cont	nt: <u>Di</u> ect Name: <u>Du</u> tractor: <u>Su</u> hod: 50/	llon Consult ıgald Drain ıbterranean 3 mm Auger, 5	ing Limited Crossing Replace Ltd. Soilmec STM-20 Truc	ment, Happylan k Mount	d Park	Project Number: Location: Ground Elevation: Date Drilled:	0022 01 7m S fro 228.87 15 Nove	1100 om cen m ember 2	ter of culv	ert, 3.7	m W o	f centerl	ine of	pathway
	Sample Type	:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	5)	Split E	Barrel (SB)	Core	e (C)		
	Particle Size	Legend:	Fines	Clay	Silt	Sand Sand		Gravel	62	Cobb	es	Во	ulders	;
Elevation (m)	Depth (m) Soil Symbol			MATERIAL DI	ESCRIPTION		Sample Type	Sample Number 0 0	□ Bulk ((kN/ 17 18 Particle \$ 20 40 PL M 20 40 20 40	Unit Wt m ³) Size (%) 60 & C LL 60 &	0 21 0 100 0 100 0	Undra Strei △ T ● Poo ☑ ○ Fie 50 10	ained S ngth (kl est Type orvane cket Pe I Qu ⊠ eld Van 00 150	hear Pa) ⊉ ∆ n. Ф e ⊖ 0 200250
SURFACE LOG 0022 011 00 HAPPYLAND PARK CULVERT REPLACEMENT - LOGS.GPJ TREK GEOTECHNICAL.GDT 9/12/13		CLAY (FIL trace oxida - blac - mois - bloc - high - trace to s CLAY - silt precipitates - mot - mois - high	L) - silty, some gr tion, trace organic k st, very stiff ky/friable plasticity some gravel below ty laminations (<2r s (<5mm), trace o tled grey and brow st, very stiff plasticity	avel to gravelly, cs (rootlets) 1.5m mm), trace sanc xidation, trace o /n	trace sand, trace	silt inclusions (<10mm)		220 318 318 318 318 318 318 318 318						
b Log	ged By: Mart	ial Lemoine)	Reviewe	d By: Ken Skaf	tfeld	_ Pro	oject E	ngineer:	Ken S	Skaftfeld	b		

Appendix C

Laboratory Testing Results

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Sample Date	15-Nov-13
Test Date	18-Nov-13
Technician	Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	0.5 - 0.6	2.4 - 2.6	4.6 - 4.7	7.6 - 7.8	10.5 - 10.7	11.9 - 12.0
Sample #	G01	G03	G05	G07	G09	G11
Tare ID	A23	K13	F122	N56	F75	N06
Mass of tare	8.5	8.4	8.3	8.3	8.5	8.4
Mass wet + tare	355.2	408.9	302.6	289.3	272.3	364.5
Mass dry + tare	312.8	294.1	218.7	206.0	184.3	266.0
Mass water	42.4	114.8	83.9	83.3	88.0	98.5
Mass dry soil	304.3	285.7	210.4	197.7	175.8	257.6
Moisture %	13.9%	40.2%	39.9%	42.1%	50.1%	38.2%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-02	TH13-02
Depth (m)	13.6 - 13.7	14.6 - 14.8	16.2 - 16.3	16.5 - 16.6	0.0 - 0.3	0.6 - 0.8
Sample #	G12	G13	G14	G15	G16	G17
Tare ID	E117	Z43	Z137	Z20	N57	W30
Mass of tare	8.3	8.4	8.2	8.3	8.4	8.5
Mass wet + tare	314.5	379.9	524.9	525.2	300.5	302.1
Mass dry + tare	218.3	290.4	458.9	510.7	267.6	263.4
Mass water	96.2	89.5	66.0	14.5	32.9	38.7
Mass dry soil	210.0	282.0	450.7	502.4	259.2	254.9
Moisture %	45.8%	31.7%	14.6%	2.9%	12.7%	15.2%

Test Hole	TH13-02	TH13-02	TH13-02	TH13-02	TH13-02	TH13-02
Depth (m)	1.4 - 1.8	4.0 - 4.1	6.1 - 6.2	8.8 - 9.0	13.6 - 13.7	15.2 - 15.4
Sample #	G18	G20	G22	G24	G27	G29
Tare ID	F68	Z84	H18	K31	W87	N09
Mass of tare	8.6	8.3	8.5	8.3	8.3	8.5
Mass wet + tare	472.2	312.5	308.6	425.1	301.9	463.2
Mass dry + tare	395.9	221.7	229.4	298.2	190.4	404.5
Mass water	76.3	90.8	79.2	126.9	111.5	58.7
Mass dry soil	387.3	213.4	220.9	289.9	182.1	396.0
Moisture %	19.7%	42.5%	35.9%	43.8%	61.2%	14.8%

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Sample Date	15-Nov-13
Test Date	18-Nov-13
Technician	Chiran Peiris

Test Hole	TH13-02	TH13-02	TH13-02		
Depth (m)	16.2 - 16.3	16.3 - 16.5	17.2 - 17.4		
Sample #	G30	G31	G32		
Tare ID	N44	W59	N60		
Mass of tare	8.2	8.3	8.2		
Mass wet + tare	450.8	438.3	330.1		
Mass dry + tare	400.3	389.7	307.4		
Mass water	50.5	48.6	22.7		
Mass dry soil	392.1	381.4	299.2		
Moisture %	12.9%	12.7%	7.6%		

Test Hole			
Depth (m)			
Sample #			
Tare ID			
Mass of tare			
Mass wet + tare			
Mass dry + tare			
Mass water			
Mass dry soil			
Moisture %			

Test Hole			
Depth (m)			
Sample #			
Tare ID			
Mass of tare			
Mass wet + tare			
Mass dry + tare			
Mass water			
Mass dry soil			
Moisture %			

Project No. Client	0022 011 00 Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement
Test Hole	TH13-01
Sample #	T04
Depth (m)	3.0 - 3.7
Sample Date	15-Nov-13
Test Date	16-Nov-13
Technician	Hachem Ahmed

Tube Extraction

Recovery (mm) 410

Bottom - 5.1 m							4.6 m - Top
PP Vi	sual		Qu				
Tv							
Ma	oisture		Y _{Bulk}				
100 mi	m		160 mm			160 mm	
Visual Classif	ication			Moisture	e Content		
Material	CLAY		_	Tare ID			N10
Composition	silty			Mass tare	e (g)		8.4
trace precipitatio	n (sulphates <5%	b)		Mass wet	: + tare (g)		348.6
trace oxidation				Mass dry	+ tare (g)		240.7
trace organics			_	Moisture	%		46.4%
			_				
				<u>Unit We</u>	ight		
<u> </u>			_	Bulk Wei	ght (g)		927.50
Color	brown		_				101.11
Moisture	moist		_	Length (n	nm) 1		131.44
Consistency	SUIII		_		2		131.23
Plasticity		m ailt infilled			3		131.22
Structure	lamination < m	m siit inniied			<u> </u>		131.30
Grauation	-		_	Average	Length (m)		0.131
Torvane			_	Diam. (mi	m) 1		71.52
Reading		0.35			2		72.47
Vane Size (s,m,	I)	S			3		71.82
Undrained Shea	ar Strength (kPa)	85.8	_		4		71.91
				Average I	Diameter (m)		0.072
Pocket Penet	rometer		_		2		
Reading	1	1.50	_	Volume (I	mš)		5.34E-04
	2	1.50	_	Bulk Unit	Weight (kN/m [°])		17.0
	J Average	1.50	_				108.5
Undrained She	Average	1.50	_	Dry Unit V	/veight (KN/m [*]) Noight (pof)		11.0
onuraineu Shea	ai Sulengui (KPa)	/ 3.0	_	Diy Unit V	weight (pci)		/4.1

0022 011 00

Project No.

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Client	Dillon Consulting Ltd.			
Project	Happyland Park Culvert Replacement			
Test Hole	TH13-01			
Sample #	T04			
Depth (m)	3.0 - 3.7	Unconfined	Strength	
Sample Date	15-Nov-13		kPa	ksf
Test Date	16-Nov-13	Max q _u	77.2	1.6
Technician	Hachem Ahmed	Max S _u	38.6	0.8

Specimen Data

Description CLAY - silty, trace of precipitation (sulphates 5%), trace of oxidation, trace of organic, brown, moist, stiff, high plastic, lamination <1mm silt infilled

Length	131.3	(mm)	Moisture %	46%	
Diameter	71.9	(mm)	Bulk Unit Wt.	17.0	(kN/m ³)
L/D Ratio	1.8		Dry Unit Wt.	11.6	(kN/m^3)
Initial Area	0.00406	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Penetrometer			
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	85.8	1.79	1.50	73.6	1.54	
Vane Size			1.50	73.6	1.54	
S			1.50	73.6	1.54	
			1.50	73.6	1.54	

Failure Geometry

Sketch:

Photo:

Unconfined Compressive Strength ASTM D2166

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004064	0.0	0.00	0.00
10	1	0.2540	0.19	0.004071	3.3	0.80	0.40
20	8	0.5080	0.39	0.004079	26.2	6.41	3.21
30	18	0.7620	0.58	0.004087	58.9	14.42	7.21
40	26	1.0160	0.77	0.004095	85.7	20.93	10.47
50	35	1.2700	0.97	0.004103	115.4	28.12	14.06
60	43	1.5240	1.16	0.004111	141.8	34.48	17.24
70	50	1.7780	1.35	0.004119	164.9	40.02	20.01
80	57	2.0320	1.55	0.004127	187.9	45.53	22.77
90	62	2.2860	1.74	0.004136	204.4	49.42	24.71
100	68	2.5400	1.93	0.004144	224.2	54.10	27.05
110	73	2.7940	2.13	0.004152	240.7	57.97	28.99
120	77	3.0480	2.32	0.004160	253.9	61.02	30.51
130	81	3.3020	2.51	0.004168	267.1	64.07	32.04
140	84	3.5560	2.71	0.004177	276.9	66.31	33.15
150	88	3.8100	2.90	0.004185	290.2	69.33	34.67
160	90	4.0640	3.09	0.004193	296.7	70.76	35.38
170	92	4.3180	3.29	0.004202	303.3	72.19	36.09
180	94	4.5720	3.48	0.004210	309.9	73.61	36.80
190	95	4.8260	3.68	0.004219	313.2	74.24	37.12
200	96	5.0800	3.87	0.004227	316.5	74.88	37.44
210	97	5.3340	4.06	0.004236	319.8	75.51	37.75
220	98	5.5880	4.26	0.004244	323.1	76.13	38.07
230	99	5.8420	4.45	0.004253	326.4	76.75	38.38

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
 240	99	6.0960	4.6424	0.004261	326.4	76.60	38.30
250	100	6.3500	4.84	0.004270	329.7	77.21	38.61
260	100	6.6040	5.03	0.004279	329.7	77.06	38.53
270	100	6.8580	5.22	0.004288	329.7	76.90	38.45
280	100	7.1120	5.42	0.004296	329.7	76.74	38.37
290	99	7.3660	5.61	0.004305	326.4	75.82	37.91
300	98	7.6200	5.80	0.004314	323.1	74.90	37.45
310	97	7.8740	6.00	0.004323	319.8	73.99	36.99
320	96	8.1280	6.19	0.004332	316.5	73.07	36.54
330	94	8.3820	6.38	0.004341	309.9	71.40	35.70
340	92	8.6360	6.58	0.004350	303.3	69.74	34.87
350	89	8.8900	6.77	0.004359	293.4	67.33	33.66
360	87	9.1440	6.96	0.004368	286.8	65.67	32.83
370	84	9.3980	7.16	0.004377	276.9	63.28	31.64
380	81	9.6520	7.35	0.004386	267.1	60.89	30.45
390	77	9.9060	7.54	0.004395	253.9	57.76	28.88
400	73	10.1600	7.74	0.004404	240.7	54.65	27.32

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement
Test Hole	TH13-01
Sample #	T06
Depth (m)	6 - 6.7
Sample Date	15-Nov-13
Test Date	16-Nov-13
Technician	Hachem Ahmed

600

Tube Extraction

Recovery (mm)

Bottom - 5.1 m						4.6 m - Top
PP Tv Visual Moisture	Qu Y _{Bulk}		Visual			
100 mm	160 mm		120 mm		220 m	ım
				Maiatana Oa		
Visual Classif				Moisture Cor	ntent	
Material	CLAY			Tare ID		W108
Composition	silty			Mass tare (g)	<i>(</i>)	8.7
trace slit inclusion	ns (<10mm diameter)			Mass wet + tar	e (g)	383.2
trace gravel (<10	mm diameter)			Mass dry + tar	e (g)	270.7
trace organics				Moisture %		42.9%
				LInit Weight		
				Bulk Weight (a)	1089.00
Color	brown			(g	17	
Moisture	moist			Lenath (mm)	1	150.44
Consistency	stiff				2	150.30
Plasticity	high plastic				3	150.41
Structure	somewhat slicken side	ed			4	150.12
Gradation	-			Average Lengt	h (m)	0.150
		-		0 0	()	
Torvane				Diam. (mm)	1	72.38
Reading		0.70			2	72.93
Vane Size (s,m,l)	m			3	72.75
Undrained Shea	r Strength (kPa)	68.7			4	72.03
				Average Diame	eter (m)	0.073
Pocket Penet	rometer					
Reading	1	1.40		Volume (m ³)		6.21E-04
	2	1.20		Bulk Unit Weig	ıht (kN/m³)	17.2
	3	1.30		Bulk Unit Weig	ht (pcf)	109.5
	Average	1.30		Dry Unit Weigh	nt (kN/m³)	12.0
Undrained Shea	r Strength (kPa)	63.7		Dry Unit Weigh	nt (pcf)	76.6

0022 011 00

Project No.

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Client	Dillon Consult	ing Ltd.				
Project	Happyland Pa	ark Culvert Replacemen	t			
Test Hole	TH13-01					
Sample #	T06					
Depth (m)	6 - 6.7			Unconfine	ed Strength	
Sample Date	15-Nov-13				kPa	ksf
Test Date	16-Nov-13			Max q _u	92.5	1.9
Technician	Hachem Ahm	ed		Max S _u	46.3	1.0
Specimen D	Data					
Description	CLAY - silty, t high plastic, s	race silt inclusions (<10 omewhat slicken sided	mm thick), trace of gravel ((<10mm), tra	ce of organic, brown	, moist, stiff,
Length	150.3	(mm)	Moisture %	43%		
Diameter	72.5	(mm)	Bulk Unit Wt.	17.2	(kN/m ³)	
L/D Ratio	2.1	(),	Dry Unit Wt.	12.0	(kN/m^3)	
Initial Area	0.00413	(m ²)	Liquid Limit	-	(
Load Rate	1.00	(%/min)	Plastic Limit	-		
		. ,	Plasticity Index	-		
Undrained S	Shear Streng	gth Tests				
Torvane			Pocket Penetr	rometer		
Reading	Undrained S	Shear Strength	Reading	Undraine	d Shear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.70	68.7	1.43	1.40	68.7	1.43	
Vane Size			1.20	58.9	1.23	
m			1.30	63.8	1.33	
			1.30	63.8	1.33	

Failure Geometry

Sketch:

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004131	0.0	0.00	0.00
10	3	0.2540	0.17	0.004138	9.8	2.37	1.18
20	6	0.5080	0.34	0.004145	19.6	4.73	2.37
30	12	0.7620	0.51	0.004152	39.3	9.46	4.73
40	18	1.0160	0.68	0.004159	58.9	14.17	7.08
50	27	1.2700	0.84	0.004166	89.0	21.37	10.68
60	42	1.5240	1.01	0.004173	138.5	33.18	16.59
70	55	1.7780	1.18	0.004180	181.4	43.38	21.69
80	65	2.0320	1.35	0.004187	214.3	51.18	25.59
90	73	2.2860	1.52	0.004195	240.7	57.38	28.69
100	80	2.5400	1.69	0.004202	263.8	62.78	31.39
110	86	2.7940	1.86	0.004209	283.5	67.36	33.68
120	94	3.0480	2.03	0.004216	309.9	73.50	36.75
130	98	3.3020	2.20	0.004224	323.1	76.50	38.25
140	103	3.5560	2.37	0.004231	339.8	80.31	40.16
150	107	3.8100	2.53	0.004238	353.3	83.35	41.68
160	111	4.0640	2.70	0.004246	366.8	86.39	43.19
170	114	4.3180	2.87	0.004253	376.9	88.61	44.30
180	117	4.5720	3.04	0.004260	387.0	90.83	45.41
190	118	4.8260	3.21	0.004268	390.3	91.46	45.73
200	119	5.0800	3.38	0.004275	393.7	92.08	46.04
210	119	5.3340	3.55	0.004283	393.7	91.92	45.96
220	120	5.5880	3.72	0.004290	397.0	92.55	46.27
230	117	5.8420	3.89	0.004298	387.0	90.03	45.02

Project No.0022 011 00ClientDillon Consulting Ltd.ProjectHappyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	112	6.0960	4.0554	0.004305	370.1	85.97	42.99
250	106	6.3500	4.22	0.004313	349.9	81.13	40.56
260	98	6.6040	4.39	0.004321	323.1	74.79	37.39
270	78	6.8580	4.56	0.004328	257.2	59.41	29.71
280	59	7.1120	4.73	0.004336	194.5	44.86	22.43
290	52	7.3660	4.90	0.004344	171.4	39.47	19.73
300	50	7.6200	5.07	0.004351	164.9	37.88	18.94

Dillon Consulting Ltd. Happyland Park Culvert Replacement
TH13-01 T08 9.1 - 9.8 15-Nov-13 16-Nov-13 Hachem Ahmed

Tube Extraction

Recovery (mm) 250

Bottom - 5.1 m						4.6 m - Top
PP Tv Moisture		Qu Y _{Bulk}				Visual
30 mm	l		160 mm		ĺ	60 mm
	action			Maiatura Car	tant	
					lieni	750
Material	CLAY					<u></u>
Composition	Slity			Mass tare (g)	- ()	8.3
trace silt inclusion		ſ		Mass wet + tar	e (g)	323.8
liace graver				Mass ury + tare	(g)	/8.0%
						40.970
				Unit Weight		
				Bulk Weight (g)	1040.70
Color	dark grey			• ••		
Moisture	moist			Length (mm)	1	146.35
Consistency	firm				2	146.06
Plasticity	high plastic				3	146.38
Structure	lamination (<1mm	n) silt infilled			4	146.03
Gradation	-			Average Lengt	h (m)	0.146
Torvane				Diam. (mm)	1	70.97
Reading		0.25			2	73.40
Vane Size (s,m,I)	m			3	73.15
Undrained Shea	r Strength (kPa)	24.5			4	70.79
				Average Diame	eter (m)	0.072
Pocket Penetr	ometer					
Reading	1	0.50		Volume (m ³)		5.97E-04
	2	0.60		Bulk Unit Weig	ht (kN/m³)	17.1
	3	0.65		Bulk Unit Weig	ht (pcf)	108.9
	Average	0.58		Dry Unit Weigh	t (kN/m ³)	11.5
Undrained Shea	r Strength (kPa)	28.6		Dry Unit Weigh	t (pcf)	73.1

Project No.	0022 011 00					
Client	Dillon Consult	ing Ltd.				
Project	Happyland Pa	rk Culvert Replacement				
Test Hole	TH13-01					
Sample #	T08					
Depth (m)	9.1 - 9.8			Unconfine	d Strength	
Sample Date	15-Nov-13				kPa	ksf
Test Date	16-Nov-13			Max q _u	62.2	1.3
Technician	Hachem Ahm	ed		Max S _u	31.1	0.6
Description	CLAY - silty, t (<1mm) silt in	race of silt inclusion < 10 filled	mm, trace of gravel, darl	k grey, moist, t	firm, high plastic, lar	nination
Length	146.2	(mm)	Moisture %	49%		
Diameter	72.1	(mm)	Bulk Unit Wt.	17.1	(kN/m ³)	
L/D Ratio	2.0		Dry Unit Wt.	11.5	(kN/m ³)	
Initial Area	0.00408	(m ²)	Liquid Limit	-	. ,	
Load Rate	1.00	(%/min)	Plastic Limit	-		
			Plasticity Index	-		
Undrained S	Shear Streng	gth Tests				
Torvane			Pocket Penet	rometer		

Reading	Undrained Shear Strength		Reading	Undrained Shear Strength	
tsf	kPa	ksf	tsf	kPa	ksf
0.25	24.5	0.51	0.50	24.5	0.51
Vane Size			0.60	29.4	0.61
m			0.65	31.9	0.67
			0.58	28.6	0.60

Failure Geometry

55°

Sketch:

Unconfined Compressive Strength ASTM D2166

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004080	0.0	0.00	0.00
10	2	0.2540	0.17	0.004087	6.5	1.60	0.80
20	4	0.5080	0.35	0.004095	13.1	3.19	1.60
30	6	0.7620	0.52	0.004102	19.6	4.78	2.39
40	11	1.0160	0.69	0.004109	36.0	8.76	4.38
50	18	1.2700	0.87	0.004116	58.9	14.32	7.16
60	24	1.5240	1.04	0.004123	78.6	19.07	9.54
70	31	1.7780	1.22	0.004131	102.2	24.75	12.37
80	36	2.0320	1.39	0.004138	118.7	28.68	14.34
90	41	2.2860	1.56	0.004145	135.2	32.61	16.31
100	46	2.5400	1.74	0.004152	151.7	36.53	18.26
110	49	2.7940	1.91	0.004160	161.6	38.84	19.42
120	52	3.0480	2.08	0.004167	171.4	41.14	20.57
130	54	3.3020	2.26	0.004175	178.0	42.64	21.32
140	57	3.5560	2.43	0.004182	187.9	44.94	22.47
150	59	3.8100	2.61	0.004189	194.5	46.43	23.22
160	61	4.0640	2.78	0.004197	201.1	47.92	23.96
170	63	4.3180	2.95	0.004204	207.7	49.41	24.70
180	65	4.5720	3.13	0.004212	214.3	50.88	25.44
190	66	4.8260	3.30	0.004220	217.6	51.57	25.79
200	67	5.0800	3.47	0.004227	220.9	52.26	26.13
210	68	5.3340	3.65	0.004235	224.2	52.94	26.47
220	69	5.5880	3.82	0.004242	227.5	53.62	26.81
230	71	5.8420	4.00	0.004250	234.1	55.08	27.54

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	72	6.0960	4.1695	0.004258	237.4	55.76	27.88
250	73	6.3500	4.34	0.004266	240.7	56.43	28.21
260	74	6.6040	4.52	0.004273	244.0	57.10	28.55
270	74	6.8580	4.69	0.004281	244.0	56.99	28.50
280	75	7.1120	4.86	0.004289	247.3	57.65	28.83
290	76	7.3660	5.04	0.004297	250.6	58.32	29.16
300	77	7.6200	5.21	0.004305	253.9	58.97	29.49
310	78	7.8740	5.39	0.004313	257.2	59.63	29.81
320	78	8.1280	5.56	0.004320	257.2	59.52	29.76
330	79	8.3820	5.73	0.004328	260.4	60.17	30.09
340	79	8.6360	5.91	0.004336	260.4	60.06	30.03
350	80	8.8900	6.08	0.004344	263.8	60.72	30.36
360	81	9.1440	6.25	0.004352	267.1	61.36	30.68
370	81	9.3980	6.43	0.004361	267.1	61.25	30.62
380	81	9.6520	6.60	0.004369	267.1	61.13	30.57
390	82	9.9060	6.78	0.004377	270.4	61.77	30.89
400	82	10.1600	6.95	0.004385	270.4	61.66	30.83
410	82	10.4140	7.12	0.004393	270.4	61.54	30.77
420	83	10.6680	7.30	0.004401	273.7	62.17	31.09
430	83	10.9220	7.47	0.004410	273.7	62.06	31.03
440	83	11.1760	7.64	0.004418	273.7	61.94	30.97
450	83	11.4300	7.82	0.004426	273.7	61.82	30.91
460	83	11.6840	7.99	0.004435	273.7	61.71	30.85
470	83	11.9380	8.17	0.004443	273.7	61.59	30.80
480	83	12.1920	8.34	0.004451	273.7	61.47	30.74
490	83	12.4460	8.51	0.004460	273.7	61.36	30.68
500	83	12.7000	8.69	0.004468	273.7	61.24	30.62
510	83	12.9540	8.86	0.004477	273.7	61.13	30.56
520	82	13.2080	9.03	0.004485	270.4	60.28	30.14
530	82	13.4620	9.21	0.004494	270.4	60.16	30.08
540	82	13.7160	9.38	0.004503	270.4	60.04	30.02
550	81	13.9700	9.56	0.004511	267.1	59.20	29.60
560	81	14.2240	9.73	0.004520	267.1	59.09	29.54
570	80	14.4780	9.90	0.004529	263.8	58.25	29.12
580	80	14.7320	10.08	0.004537	263.8	58.13	29.07
590	79	14.9860	10.25	0.004546	260.4	57.29	28.64
600	79	15.2400	10.42	0.004555	260.4	57.18	28.59
620	77	15.7480	10.77	0.004573	253.9	55.51	27.76
640	75	16.2560	11.12	0.004591	247.3	53.86	26.93
660	74	16.7640	11.47	0.004609	243.9850	52.94	26.47
680	72	17.2720	11.81	0.004627	237.4016	51.31	25.65
700	70	17.7800	12.16	0.004645	230.7737	49.68	24.84

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement
Test Hole	TH13-01
Sample #	T10
Depth (m)	10.7 - 11.3
Sample Date	15-Nov-13
Test Date	16-Nov-13
Technician	Hachem Ahmed

Tube Extraction

Recovery (mm) 250

Bottom - 5.1 m

Bottom	- 5.1 m			4.6 m - Top
PP Tv	Moisture Visual	Qu Y _{Bulk}		Visual
	110 mm	200 mm	200 mm	90 mm

Visual Classif	fication		Moisture Co	ntent	
Material	CLAY		Tare ID		Z56
Composition	silty		Mass tare (g)	_	8.4
trace silt inclusion	on < 10mm diameter		Mass wet + ta	re (g)	364.8
trace gravel			Mass dry + tar	re (g)	239.2
			Moisture %	_	54.4%
			Unit Weight		
			Bulk Weight (g	g)	1110.60
Color	dark grey			_	
Moisture	moist		Length (mm)	1	152.43
Consistency	firm			2	152.51
Plasticity	high plastic		;	3	152.56
Structure	lamination (<1mm) silt infilled			4	152.57
Gradation	-		Average Leng	th (m) _	0.153
Torvane			Diam. (mm)	1	71.95
Reading		0.35		2	72.20
Vane Size (s,m,	,l)	m		3	72.59
Undrained She	ar Strength (kPa)	34.3		4	72.43
			Average Diam	eter (m)	0.072
Pocket Penet	trometer				
Reading	1	0.70	Volume (m ³)	_	6.26E-04
	2	0.75	Bulk Unit Weig	ght (kN/m ³)	17.4
	3	0.80	Bulk Unit Weig	ght (pcf)	110.8
	Average	0.75	Dry Unit Weig	ht (kN/m ³)	11.3
Undrained She	ar Strength (kPa)	36.8	Dry Unit Weig	ht (pcf)	71.7

Project No. Client	0022 011 00 Dillon Consulting Ltd.				
Project	Happyland Park Culvert Replacement				
Test Hole	TH13-01				
Sample #	T10				
Depth (m)	10.7 - 11.3	Unconfined Strength			
Sample Date	15-Nov-13		kPa	ksf	
Test Date	16-Nov-13	Max q _u	94.6	2.0	
Technician	Hachem Ahmed	Max S _u	47.3	1.0	
Specimen E	Data				
Description	CLAY - silty, trace of silt inclusion < 10mm, trace of (<1mm) silt infilled	gravel, dark grey, moist, fir	m, high plastic, lar	nination	

Length	152.5	(mm)	Moisture %	54%	
Diameter	72.3	(mm)	Bulk Unit Wt.	17.4	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.3	(kN/m ³)
Initial Area	0.00410	(m ²)	Liquid Limit	-	. ,
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Penetrometer			
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength		
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	34.3	0.72	0.70	34.3	0.72	
Vane Size			0.75	36.8	0.77	
m			0.80	39.2	0.82	
			0.75	36.8	0.77	

Failure Geometry

Sketch:

Photo:

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004105	0.0	0.00	0.00
10	3	0.2540	0.17	0.004111	9.8	2.38	1.19
20	9	0.5080	0.33	0.004118	29.4	7.15	3.57
30	17	0.7620	0.50	0.004125	55.7	13.49	6.75
40	31	1.0160	0.67	0.004132	102.2	24.74	12.37
50	44	1.2700	0.83	0.004139	145.1	35.05	17.52
60	58	1.5240	1.00	0.004146	191.2	46.12	23.06
70	70	1.7780	1.17	0.004153	230.8	55.57	27.78
80	80	2.0320	1.33	0.004160	263.8	63.41	31.70
90	89	2.2860	1.50	0.004167	293.4	70.42	35.21
100	97	2.5400	1.67	0.004174	319.8	76.62	38.31
110	102	2.7940	1.83	0.004181	336.4	80.46	40.23
120	106	3.0480	2.00	0.004188	349.9	83.54	41.77
130	111	3.3020	2.16	0.004195	366.8	87.42	43.71
140	114	3.5560	2.33	0.004203	376.9	89.67	44.84
150	116	3.8100	2.50	0.004210	383.6	91.11	45.56
160	118	4.0640	2.66	0.004217	390.3	92.56	46.28
170	120	4.3180	2.83	0.004224	397.0	93.99	47.00
180	121	4.5720	3.00	0.004231	400.4	94.63	47.32
190	121	4.8260	3.16	0.004239	400.4	94.47	47.23
200	121	5.0800	3.33	0.004246	400.4	94.31	47.15
210	121	5.3340	3.50	0.004253	400.4	94.14	47.07
220	120	5.5880	3.66	0.004261	397.0	93.19	46.59
230	118	5.8420	3.83	0.004268	390.3	91.45	45.73

Project No.0022 011 00ClientDillon Consulting Ltd.ProjectHappyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	114	6.0960	3.9969	0.004276	376.9	88.14	44.07
250	109	6.3500	4.16	0.004283	360.0	84.05	42.03
260	102	6.6040	4.33	0.004290	336.4	78.41	39.21
270	95	6.8580	4.50	0.004298	313.2	72.87	36.44
280	89	7.1120	4.66	0.004305	293.4	68.16	34.08
290	82	7.3660	4.83	0.004313	270.4	62.69	31.34
300	76	7.6200	5.00	0.004321	250.6	58.00	29.00

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement
Test Hole	TH13-02
Sample #	T19
Depth (m)	3.0 - 3.7
Sample Date	15-Nov-13
Test Date	16-Nov-13
Technician	Hachem Ahmed

Tube Extraction

580 Recovery (mm)

Bottom - 5.1 m

Bottom -	5.1 m	,	4.6 m - Top
PP Tv	Moisture Visual	Qu Y _{Bulk}	
	140 mm	160 mm	280 mm

Visual Classification **Moisture Content** Material CLAY Tare ID Z100 Composition Mass tare (g) silty 8.3 trace silt inclusion < 5mm diameter Mass wet + tare (g) 380.5 trace precipitation (sulphates <5%) Mass dry + tare (g) 259.5 **Moisture %** 48.2% trace oxidation Unit Weight Bulk Weight (g) 1085.10 Color brown Moisture moist Length (mm) 1 151.49 Consistency stiff 2 151.58 Plasticity high plastic 3 151.61 Structure lamination (<1mm) 4 151.50 Gradation Average Length (m) 0.152 -Torvane Diam. (mm) 1 71.83 Reading 0.70 2 71.74 Vane Size (s,m,l) 3 72.17 m Undrained Shear Strength (kPa) 68.7 4 72.68 Average Diameter (m) 0.072 Pocket Penetrometer 1.80 6.19E-04 Reading Volume (m³) 1 2 1.85 17.2 Bulk Unit Weight (kN/m³) 3 1.80 Bulk Unit Weight (pcf) 109.5 Average 1.82 Dry Unit Weight (kN/m³) 11.6 Undrained Shear Strength (kPa) 89.1 Dry Unit Weight (pcf) 73.9

0022 011 00

Project No.

Client Project	Dillon Consulting Ltd. Happyland Park Culvert Replacement			
Test Hole	TH13-02			
Sample #	T19			
Depth (m)	3.0 - 3.7	Unconfined	Strength	
Sample Date	15-Nov-13		kPa	ksf
Test Date	16-Nov-13	Max q _u	114.7	2.4
Technician	Hachem Ahmed	Max S _u	57.3	1.2

Specimen Data

Description CLAY - silty, trace of silt inclusion < 5mm diameter, trace of precipitation (sulphates <5%), trace of oxidation, brown, moist, stiff, high plastic, lamination (<1mm)

Length	151.5	(mm)	Moisture %	48%	
Diameter	72.1	(mm)	Bulk Unit Wt.	17.2	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	11.6	(kN/m^3)
Initial Area	0.00408	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Penetrometer			
Reading	Undrained SI	near Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.70	68.7	1.43	1.80	88.3	1.84	
Vane Size			1.85	90.7	1.90	
m			1.80	88.3	1.84	
			1.82	89.1	1.86	

Failure Geometry

Sketch:

Photo:

Unconfined Compressive Strength ASTM D2166

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004083	0.0	0.00	0.00
10	7	0.2540	0.17	0.004090	22.9	5.60	2.80
20	10	0.5080	0.34	0.004097	32.7	7.98	3.99
30	19	0.7620	0.50	0.004104	62.2	15.16	7.58
40	34	1.0160	0.67	0.004111	112.1	27.27	13.63
50	46	1.2700	0.84	0.004118	151.7	36.84	18.42
60	59	1.5240	1.01	0.004125	194.5	47.16	23.58
70	72	1.7780	1.17	0.004132	237.4	57.46	28.73
80	83	2.0320	1.34	0.004139	273.7	66.12	33.06
90	91	2.2860	1.51	0.004146	300.0	72.37	36.18
100	99	2.5400	1.68	0.004153	326.4	78.60	39.30
110	105	2.7940	1.84	0.004160	346.6	83.31	41.65
120	110	3.0480	2.01	0.004167	363.4	87.20	43.60
130	115	3.3020	2.18	0.004174	380.2	91.09	45.54
140	120	3.5560	2.35	0.004182	397.0	94.95	47.48
150	124	3.8100	2.51	0.004189	410.5	98.01	49.00
160	127	4.0640	2.68	0.004196	420.6	100.25	50.12
170	130	4.3180	2.85	0.004203	430.7	102.48	51.24
180	132	4.5720	3.02	0.004210	437.5	103.90	51.95
190	135	4.8260	3.18	0.004218	447.6	106.12	53.06
200	137	5.0800	3.35	0.004225	454.3	107.53	53.76
210	139	5.3340	3.52	0.004232	461.1	108.94	54.47
220	141	5.5880	3.69	0.004240	467.8	110.33	55.17
230	142	5.8420	3.85	0.004247	471.2	110.94	55.47

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	143	6.0960	4.0226	0.004255	474.5	111.54	55.77
250	144	6.3500	4.19	0.004262	477.9	112.12	56.06
260	145	6.6040	4.36	0.004269	481.3	112.72	56.36
270	146	6.8580	4.53	0.004277	484.6	113.31	56.66
280	147	7.1120	4.69	0.004284	488.0	113.89	56.95
290	148	7.3660	4.86	0.004292	491.4	114.48	57.24
300	148	7.6200	5.03	0.004300	491.4	114.28	57.14
310	148	7.8740	5.20	0.004307	491.4	114.08	57.04
320	149	8.1280	5.36	0.004315	494.7	114.66	57.33
330	149	8.3820	5.53	0.004322	494.7	114.46	57.23
340	149	8.6360	5.70	0.004330	494.7	114.25	57.13
350	149	8.8900	5.87	0.004338	494.7	114.05	57.02
360	149	9.1440	6.03	0.004346	494.7	113.85	56.92
370	149	9.3980	6.20	0.004353	494.7	113.64	56.82
380	150	9.6520	6.37	0.004361	498.1	114.21	57.10
390	150	9.9060	6.54	0.004369	498.1	114.00	57.00
400	150	10.1600	6.70	0.004377	498.1	113.80	56.90
410	151	10.4140	6.87	0.004385	501.4	114.36	57.18
420	151	10.6680	7.04	0.004393	501.4	114.16	57.08
430	151	10.9220	7.21	0.004401	501.4	113.95	56.98
440	151	11.1760	7.37	0.004409	501.4	113.75	56.87
450	151	11.4300	7.54	0.004416	501.4	113.54	56.77
460	151	11.6840	7.71	0.004425	501.4	113.33	56.67
470	151	11.9380	7.88	0.004433	501.4	113.13	56.56
480	151	12.1920	8.05	0.004441	501.4	112.92	56.46
490	150	12.4460	8.21	0.004449	498.1	111.96	55.98
500	150	12.7000	8.38	0.004457	498.1	111.75	55.88
510	149	12.9540	8.55	0.004465	494.7	110.80	55.40
520	148	13.2080	8.72	0.004473	491.4	109.84	54.92
530	147	13.4620	8.88	0.004481	488.0	108.89	54.44
540	145	13.7160	9.05	0.004490	481.3	107.19	53.59
550	144	13.9700	9.22	0.004498	477.9	106.24	53.12
560	142	14.2240	9.39	0.004506	471.2	104.55	52.28
570	140	14.4780	9.55	0.004515	464.4	102.86	51.43
580	138	14.7320	9.72	0.004523	457.7	101.19	50.59
590	136	14.9860	9.89	0.004531	451.0	99.52	49.76
600	133	15.2400	10.06	0.004540	440.8	97.10	48.55
620	127	15.7480	10.39	0.004557	420.6	92.30	46.15
640	123	16.2560	10.73	0.004574	407.1	89.01	44.51
660	118	16.7640	11.06	0.004591	390.3314	85.02	42.51
680	114	17.2720	11.40	0.004609	376.8533	81.77	40.89
700	110	17.7800	11.73	0.004626	363.3752	78.55	39.27

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement
Test Hole	TH13-02
Sample #	T21
Depth (m)	4 6 - 5 2
Sample Date	15-Nov-13
Test Date	16-Nov-13
Technician	Hachem Ahmed

Tube Extraction

400 Recovery (mm)

Gradation

Bottom - 5.1 m			4.6 m - Top
Visual Moisture		PP Tv	Y _{Bulk}
150 mm		150 mm 100 mm	
Visual Class	ification	Moisture Conter	t
Material	CLAY	Tare ID	P31
Composition	silty	Mass tare (g)	8.3
trace precipitati	on (sulphates <5%)	Mass wet + tare (g)	446.5
trace gravel		Mass dry + tare (g)	315.3
trace organics		Moisture %	42.7%
trace oxidation			
		Unit Weight	
		Bulk Weight (g)	165.70
Color	brown		
Moisture	moist	Length (mm) 1	23.88
Consistency	stiff	2	23.50
Plasticity	high plastic	3	22.84
Structure	lamination <1mm silt infilled	4	23.78

Torvane Reading 0.75 Vane Size (s,m,l) m Undrained Shear Strength (kPa) 73.6

-

Pocket Penetrometer					
Reading	1	2.10			
	2	1.80			
	3	1.90			
	Average	1.93			
Undrained Shear Strength (kPa)		94.8			

Onic Weight	
Bulk Weight (g)	165.70
Length (mm) 1	23.88
2	23.50
3	22.84
4	23.78
Average Length (m)	0.024
Diam. (mm) 1	70.92
2	72.83
3	73.36
4	70.91
Average Diameter (m)	0.072
Volume (m ³)	9.57E-05
Bulk Unit Weight (kN/m ³)	17.0
Bulk Unit Weight (pcf)	108.1
Dry Unit Weight (kN/m ³)	11.9
Dry Unit Weight (pcf)	75.7

Project No. Client Project	0022 011 00 Dillon Consulting Ltd. Happyland Park Culvert Replacement
Test Hole	TH13-01
Sample # Depth (m)	120
Sample Date	15-Nov-13
Test Date	16-Nov-13 Hachem Ahmed
recimician	

Tube Extraction

Recovery (mm) 660

Bottom - 5.1 m

Botton	n - 5.1 m		4.6 m - Top
PP Tv	Visual Moisture	Qu Y _{Bulk}	
	130 mm	190 mm	340 mm

Visual Classification

Visual Classification		Moisture Content		
Material	CLAY		Tare ID	N53
Composition	silty		Mass tare (g)	8.4
trace silt inclusi	ons <10mm diameter		Mass wet + tare (g)	392.5
trace gravel			Mass dry + tare (g)	247
			Moisture %	61.0%
			Unit Weight	
			Bulk Weight (g)	1076.90
Color	dark grey			
Moisture	moist		Length (mm) 1	150.49
Consistency	firm		2	150.29
Plasticity	high plastic		3	149.76
Structure	-		4	149.69
Gradation	-		Average Length (m)	0.150
Torvane			Diam. (mm) 1	72.10
Reading		0.38	2	71.82
Vane Size (s,m	,l)	m	3	71.39
Undrained She	ar Strength (kPa)	37.3	4	71.93
			Average Diameter (m)	0.072
Pocket Pene	trometer			
Reading	1	0.75	Volume (m ³)	6.08E-04
	2	0.80	Bulk Unit Weight (kN/m ³)	17.4
	3	0.80	Bulk Unit Weight (pcf)	110.6
	Average	0.78	Dry Unit Weight (kN/m ³)	10.8
Undrained She	ar Strength (kPa)	38.4	Dry Unit Weight (pcf)	68.7

Project No.	0022 011 00			
Client	Dillon Consulting Ltd.			
Project	Happyland Park Culvert Replacement			
Test Hole	TH13-01			
Sample #	T26			
Depth (m)	12.2 - 12.8	Unconfined	Strength	
Sample Date	15-Nov-13		kPa	ksf
Test Date	16-Nov-13	Max q _u	87.5	1.8
Technician	Hachem Ahmed	Max S _u	43.7	0.9

Specimen Data

Description CLAY - silty, trace of silt inclusions <10mm diameter, trace of gravel, dark grey, moist, firm, high plastic

Length	150.1	(mm)	Moisture %	61%	
Diameter	71.8	(mm)	Bulk Unit Wt.	17.4	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	10.8	(kN/m ³)
Initial Area	0.00405	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Pocket Pene	Pocket Penetrometer			
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength			
tsf	kPa	ksf	tsf	kPa	ksf		
0.38	37.3	0.78	0.75	36.8	0.77		
Vane Size			0.80	39.2	0.82		
m			0.80	39.2	0.82		
			0.78	38.4	0.80		

Photo:

Failure Geometry

Sketch:

60°

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Unconfined Compressive Strength ASTM D2166

Project No.	0022 011 00
Client	Dillon Consulting Ltd.
Project	Happyland Park Culvert Replacement

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004050	0.0	0.00	0.00
10	5	0.2540	0.17	0.004057	16.3	4.03	2.01
20	10	0.5080	0.34	0.004064	32.7	8.05	4.02
30	15	0.7620	0.51	0.004071	49.1	12.06	6.03
40	22	1.0160	0.68	0.004078	72.1	17.67	8.84
50	30	1.2700	0.85	0.004085	98.9	24.22	12.11
60	38	1.5240	1.02	0.004092	125.3	30.63	15.31
70	47	1.7780	1.18	0.004099	155.0	37.81	18.91
80	56	2.0320	1.35	0.004106	184.6	44.97	22.49
90	65	2.2860	1.52	0.004113	214.3	52.11	26.06
100	72	2.5400	1.69	0.004120	237.4	57.62	28.81
110	78	2.7940	1.86	0.004127	257.2	62.31	31.16
120	85	3.0480	2.03	0.004134	280.2	67.79	33.89
130	90	3.3020	2.20	0.004141	296.7	71.66	35.83
140	95	3.5560	2.37	0.004148	313.2	75.50	37.75
150	100	3.8100	2.54	0.004156	329.7	79.34	39.67
160	103	4.0640	2.71	0.004163	339.8	81.63	40.81
170	106	4.3180	2.88	0.004170	349.9	83.91	41.95
180	108	4.5720	3.05	0.004177	356.7	85.38	42.69
190	110	4.8260	3.22	0.004185	363.4	86.84	43.42
200	111	5.0800	3.39	0.004192	366.8	87.49	43.75
210	110	5.3340	3.55	0.004199	363.4	86.53	43.27
220	105	5.5880	3.72	0.004207	346.6	82.38	41.19
230	98	5.8420	3.89	0.004214	323.1	76.68	38.34

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.0022 011 00ClientDillon Consulting Ltd.ProjectHappyland Park Culvert Replacement

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	94	6.0960	4.0624	0.004222	309.9	73.41	36.71
250	88	6.3500	4.23	0.004229	290.2	68.61	34.31
260	84	6.6040	4.40	0.004236	276.9	65.37	32.69
270	81	6.8580	4.57	0.004244	267.1	62.93	31.46
280	78	7.1120	4.74	0.004252	257.2	60.48	30.24
290	75	7.3660	4.91	0.004259	247.3	58.06	29.03
300	73	7.6200	5.08	0.004267	240.7	56.41	28.21