

85000638

North End Water Pollution Control Centre

ر Sludge Digestion Expansion Geotechnical Report

Caver

Underwood McLellan Ltd.

Consulting Engineers and Planners

Sludge Digestion Expansion Geotechnical Report

PROPERTY OF THE Waterworks, Waste & Disposal Department MAIN OFFICE LIBRARY SEP 2 8 1985

Underwood McLellan Ltd.

1479 Buffalo Place Winnipeg, Manitoba R3T 1L7 Telephone (204) 284-0580

Our File: 41 06 0265 213 04 02 June 20, 1984

The City of Winnipeg Waterworks, Waste and Disposal Department 1500 Plessis Road Box 178, Transcona P.O. Winnipeg, Manitoba R2C 2Z9

ATTENTION: MR. TOM PEARSON, P. ENG.

Dear Sir:

RE: GEOTECHNICAL INVESTIGATION 1985 DIGESTERS AND FUTURE EXPANSION WORKS NORTH END WATER POLLUTION CONTROL CENTRE

Enclosed is our report of the geotechnical investigation at the North End Water Pollution Control Centre.

In summary, it is recommended that the proposed digesters be founded on end bearing driven precast concrete piles. Practical refusal of such piles is anticipated within the glacial till at approximately 22.0 metres below existing ground surface. This recommendation is based on the nature of subsurface soil conditions found in the area as well as the consideration of consistency between existing and proposed foundation systems. Geotechnical design parameters are also given for general foundation types which may be applicable to other future structures.

In regards to general site development, a shallow continuous layer of saturated silt was encountered within the upper 4.0 metres. Seepage and sloughing from this layer can be expected during the excavation for any subsurface works thus requiring special precautions or, alternatively, total removal and replacement with more suitable materials.

The results obtained in this exploration program agree closely with previous investigations performed elsewhere about the site and with published geological information.

....2 Mr. Tom Pearson, P. Eng. June 20, 1984

If you have any questions or require clarification of any portion of this report, please contact us at your convenience.

Yours truly,

UNDERWOOD MCLELLAN LTD.

ren

R. Hood, P. Eng. Vice-President and Manager Manitoba and Northwestern Ontario

L. D. Keil, P. Eng. Project Manager

KMS/aek

TABLE OF CONTENTS

۰

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	3
3.0	FIELD INVESTIGATION 3.1 Drilling 3.2 Piezometer Installations	4 4 5
4.0	LABORATORY TESTING	6
5.0	SUBSURFACE CONDITIONS 5.1 Soil Stratigraphy 5.2 Auger Refusal 5.3 Groundwater Conditions	7 7 9 10
6.0	DISCUSSION 6.1 Shallow Foundations 6.2 Deep Foundations 6.3 General Site Development	11 11 12 14
7.0	CONCLUSIONS AND RECOMMENDATIONS 7.1 Conclusions 7.2 Recommendations	15 15 16
8.0	REFERENCES	19

APPENDIX A

General Statement - Normal Variability of Subsurface Conditions

Explanation of Field and Laboratory Test Data

Test Hole Logs

APPENDIX B

Drawing No. 1 - Test Hole Location Plan

Drawing No. 2 - Composite Geotechnical Summary

Sludge Digestion Expansion Geotechnical Report

1.0 INTRODUCTION

The following report summarizes the results of our field exploration, laboratory testing and geotechnical analyses at the North End Water Pollution Control Center. The study area is located adjacent to (west of) the existing sludge digester tanks No.'s 9 and 11, and is the site of a planned extension of the sludge digestion facilities in 1985 as well as future expansion works after 1985.

The terms of reference for this study were outlined in a letter proposal dated April 19, 1984 to Mr. Tom Pearson, P. Eng., of The City of Winnipeg, Waterworks, Waste and Disposal Department. The program included the following field activities, laboratory testing, and office analyses:

- Subsurface drilling and sampling program.
- Laboratory testing of soils.
- Assessment of alternative foundation systems and general site development considerations.
- Report preparation summarizing our field activities, conclusions and recommendations.

The field program consisted of drilling sixteen boreholes between April 26, 1984 and May 4, 1984 at the locations shown on Drawing No. 1. The holes were advanced to auger refusal within glacial till or on probable limestone bedrock.

Several foundation alternatives for the proposed sludge digester tanks have been outlined in this report. They include both shallow and deep foundations. Problems anticipated with general site development are also addressed. Conclusions and recommendations given in this report are based on the information collected during our field investigation. Subsurface conditions in the proximity of and between boreholes have been assumed but not verified.

•

.

2.0 SITE DESCRIPTION

A general site plan showing the study area and test hole locations is presented on Drawing No. 1. In general, the area is elevated and relatively flat, with ditches along the south and east perimeter of the site. Test holes 1, 7, and 8 are located on slightly less elevated land in the eastern portion of the study area. The site appears to have been originally low lying and possibly swampy. Approximately 2.0 to 3.0 metres of clay fill overlies the site.

3.0 FIELD INVESTIGATION

The field investigation consisted of drilling, soil sampling, and standpipe piezometer installations. Field activities were performed between April 26, 1984 and May 4, 1984. Sixteen test holes were strategically located to reflect possible future site development.

3.1 Drilling

Sixteen test holes were drilled within the perimeter of the study area. All holes were visually logged to determine soil types, thicknesses of various deposits and groundwater conditions. Undisturbed (Shelby tube) and disturbed (bulk) soil samples were secured for laboratory testing. Field soil strength tests were performed on undisturbed samples. The holes were advanced to auger refusal at depths ranging from 20.1 to 23.8 metres below ground surface.

Drilling operations were performed by Subterranean (Wpg.) Ltd. using a truck mounted power auger rig equipped with a 450 mm auger. In some cases the holes were allowed to remain open for periods of up to 1.5 hours in order to identify and record groundwater seepage and sloughing conditions. The holes were then backfilled with native material. General site supervision and borehole logging were provided by Mr. K. Skaftfeld, E.I.T. of Underwood McLellan Ltd.

Undisturbed soil samples were obtained from Shelby tubes taken at regular intervals in holes 8, 10 and 13. Undrained shear strengths were estimated in the field using pocket penetrometer and pocket torvane tests on each Shelby tube sample. Representative disturbed (bulk) samples were secured at regular intervals in all test holes with pocket penetrometer tests performed on auger cuttings from various depths. All holes were advanced to auger refusal. Bedrock coring operations were not performed in any of the holes.

3.2 <u>Piezometer Installations</u>

A standpipe piezometer was installed in hole 16 and is seated in the upper till layer at 20.4 metres below ground surface. A second standpipe was installed adjacent to hole 16 in the brown clay deposit at 7.6 metres below ground surface. The piezometers were subsequently monitored on May 22, 1984.

4.0 LABORATORY TESTING

Laboratory tests were performed on undisturbed samples and included detailed visual soil classifications, Atterberg Limits and moisture content determinations. Undrained shear strength characteristics of the soil were determined from pocket penetrometer, lab vane and unconfined compressive shear strength tests.

Moisture content determinations were performed on all disturbed samples to establish moisture content profiles throughout the soil stratigraphy. All laboratory test results are shown in the composite geotechnical summary chart on Drawing No. 2 and on the individual logs of Appendix A.

5.0 SUBSURFACE CONDITIONS

The following sections identify stratigraphic and groundwater conditions found at the time of our investigation. Individual test hole logs are given in Appendix A.

5.1 Soil Stratigraphy

A general stratigraphic sequence of soil types as determined from our field investigation is approximated as follows:

- 0 2.5 m: Topsoil (150 mm typical) underlain by clay fill material of medium density.
- 4 7 m: Brown clay (CH), stiff.
- 7 18 m: Grey clay (CH), stiff to firm, soft near clay-till contact.
- 18 22 m: Glacial till, seepage and sloughing generally within the upper 1.0 m, dense to very dense at auger refusal.
- A more detailed description of each soil type is given below:

Topsoil

A layer of topsoil ranging from 75 to 300 mm thick covers the entire test area. Thicker layers consist of black clayey soil with traces of organics while thinner sections are mainly fibrous. The entire area is covered with grass. The main component of the fill material is clay with traces of broken brick, stone, gravel, wood, and silt. An organic rich (black) layer, 150 to 500 mm thick, was encountered at approximately 1.8 m depth in test holes 4, 5, 6, and 12. The fill material is of medium density and varies from moist to dry.

Silt (ML)

A layer of saturated silt ranging from 0.7 m to 2.2 m in thickness was found within approximately 4.0 m of the ground surface in all the test holes. The silt is tan colored and often layered with fine sand. Extensive seepage and sloughing emanated upon exposure of the silt layer. It was necessary to sleeve all sixteen test holes to a depth of approximately 4.5 metres to control sloughing for the drilling and sampling operations.

Brown Clay (CH)

The brown clay is stiff, highly plastic, moderate to high compressible, and contains small pockets of sulphates and tan colored silt. This brown clay is typical of the Winnipeg region and is known to be expansive - exhibiting often large volume changes in response to changing moisture contents and stress levels.

Undrained shear strengths of the clay were identified from pocket penetrometer, pocket torvane, lab vane, and unconfined compressive shear strength tests. An envelope of undisturbed shear strengths from sample testing is shown on Drawing No. 2. Shear strengths were mainly confined to the stiff range and were typically in excess of 60 kPa. Representative Atterberg Limit test results of 108% and 32% for the liquid and plastic limits respectively, indicate a highly plastic clay (CH). A soil density of 1.72 g/cc (107.2 pcf) was established from an undisturbed soil sample.

Grey Clay (CH)

The brown clay is underlain by an approximate 11.0 m thick stratum of grey silty clay. The clay is stiff near the upper brown clay and becomes firm with depth. This stratum is similar to the overlying brown clay in that it is expansive, exhibiting volume changes with changes in moisture content or stress level. Occasional silt and fine sand pockets are typically encountered, with the till inclusions becoming prevalent as the clay till transition is approached. An envelope representing the range of undrained shear strengths is shown on Drawing No.2. Undrained shear strengths were typically in excess of 40 kPa. The transition zone with the till is generally very wet and soft with shear strengths in the clay in the order of 30 kPa.

The grey clay is high plastic as confirmed from liquid and plastic limits of 65% and 27% respectively. A soil density of 1.79 g/cc (111.3 pcf) was established from undisturbed soil samples.

<u>Glacial Till</u>

The till layer is generally found at approximately 18.0 m depth. The main soil component is silt. A saturated layer approximately 1.0 m thick overlies a dense to very dense material. Boulders and cobbles were frequently encountered within the entire stratum. Moisture contents vary from 10 to 13% near the upper clay contact to 7 to 9% in the vicinity of probable bedrock.

5.2 Auger Refusal

Probable bedrock as interpreted from auger refusal was encountered in holes 2, 4, 5, 6, 7, 12, and 14 at depths ranging from approximately 22.0 to 24.0 m below existing ground surface. Several large pieces of limestone recovered from holes 5, 6 and 7 suggested that the auger tip had penetrated probable bedrock. Powdered limestone was found on the auger tip in holes, 2, 4, 12 and 14. The remaining holes (1, 3, 8, 9, 10, 11, 13, 15, and 16) terminated upon either large boulders or very dense till as interpreted from auger resistance and visual observation of the auger tip.

5.3 Groundwater Conditions

Seepage and sloughing within the silt layer were observed during drilling operations. This perched water level is dependent on seasonal variations of climate. Open water observed in ditches on the south and east flanks of the site appear to be connected with this groundwater level. Standpipe piezometer readings taken on May 22, 1984 established the water level at hole 16 to be 1.36 m below the ground surface (elev. 230.81 m).

The static groundwater level within the brown clay unit is typically in the order of three metres below natural prairie elevation.

Groundwater was invariably encountered upon drilling into the upper portion of the glacial till where a good hydraulic connection between the till and underlying Upper Carbonate Aquifer usually exists. A groundwater level of 8.11 metres below ground surface (elev. 224.06 m) was recorded on May 22, 1984 in a standpipe installation located in the till. This level is consistent with potentiometric levels in this area as documented from groundwater mapping of the Winnipeg area (Ref. Baracos et al, 1983). This level would be expected to vary seasonably, depending mainly on local industrial demands.

6.0 DISCUSSION

Site development for 1985 will include the construction of two digesters and associated gallery facilities. It is understood that the digesters will be 35 metre diameter tanks, located in part below prairie grade. The following sections address alternate foundation types considered in our assessment of a suitable foundation system mainly for the proposed digesters. Geotechnical design parameters are also given for general foundation types which may be applicable to future structures such as a sludge dewatering facility and WAS thickening facility.

6.1 Shallow Foundations

Fill material and the underlying layer of saturated silt are located above the brown clay stratum and neither material is considered a competent bearing surface. In consideration of spread footings or raft foundations for the proposed structures located on the brown clay below the fill and silt, we would recommend an allowable bearing capacity of 120 kPa (2500 psf). Corresponding settlements will be commensurate with the net foundation loads imparted on the underlying clay subsoils. In the absence of site specific consolidation data, compressive indices of 0.6 and 0.8 for the brown and grey clays respectively can be used in estimating settlements.

Should the shallow foundations be designed to bear on the underlying clay material, design allowances for hydrostatic uplift pressures would be necessary.

Given the swelling and shrinkage characteristics of Winnipeg clays in general, as well as potential hydrostatic uplift situations for empty and partially filled digester tanks, some movement of the foundations would be anticipated. The existing digesters adjacent to those proposed in 1985 are supported on end bearing driven precast concrete piles. The existing and proposed digesters will be structurally integrated. As such, a shallow foundation system is not endorsed as tank performance, ie. movements, may unduly cause structural distress on the existing digester works.

6.2 Deep Foundations

Deep foundations, consisting of friction (in clay) or end bearing (in till or on bedrock) piling systems could be considered at this site. In regards to friction type piles, steel, concrete or timber structural members could be considered. Friction piles derive their load carrying capacity from adhesion between the pile and adjoining soil. Adhesion values for timber, steel and concrete friction piles applicable to this site are given as follows:

Depth (metres)*	Adhesion (KPa)							
in native clays	Timber	<u>Steel</u>	Concrete					
			driven	<u>cast-in-place</u>				
0 - 3 m	0	0	0	0				
3 - 6 m <u>+</u>	14	9	14	16				
6 - 15 m <u>+</u>	12	9	12	14				

*from prairie grade

Of the three structural pile members indicated, cast-in-place concrete piles have probably been used the most extensively in the Winnipeg area.

However, cast-in-place concrete friction piles embedded in the clay would require sleeving for auger hole formation to seal off the saturated silt layer. This will be necessary if the silt stratum is not removed during excavation for subsurface works. Considering the heavy foundation loads anticipated for the digester tanks, a friction type pile system would not be practical. The existing digesters are supported on end bearing precast concrete piles and as such it is not considered good practice to mix foundation types. In addition, the existing and proposed digesters will be structurally integrated and relative foundation movements may cause inordinate structural distress.

Friction type piles may be applicable to future expansion works. Compacto or Franki piles are not recommended as soil displacements associated with the installation may severely damage existing structures.

End bearing piles, either driven or cast-in-place into the till or bedrock could also be used at this site. Cast-in-place systems could either be straight shaft or mechanically belled. However, for straight shaft piles sleeving of the upper saturated silts and till layer would be necessary. Belled caissons bearing within the till deposit are not considered applicable at this site. Mechanical formation of the bell in the glacial till would be very difficult as seepage and sloughing conditions would prevail.

Hexagonal precast concrete piles, driven to practical refusal in the till, have been extensively used in the Winnipeg area. Applicable design loads of various pile sizes are given as follows:

<u>Nominal Size (mm) (across flats)</u>	<u>Design Capacity (KN)</u>
300	445 (50 ton)
350	625 (70 ton)
400	800 (90 ton)

À

13

We would anticipate that practical refusal during pile driving would be achieved within the glacial till at approximately the same depth as auger refusal experienced during our site investigation ie) approximately 22.0 m below existing ground surface. Less than 12 mm of settlement could be expected for precast piles end bearing on the glacial till.

Precast concrete driven piles eliminate the need for sleeving open bore holes and would provide a foundation system consistent with adjacent construction works.

6.3 General Site Development

In regards to site development a shallow continuous layer of saturated silt was encountered within the upper 4.0 metres. Seepage and sloughing from this layer can be expected during the excavation for any subsurface works thus requiring special precautions, or alternatively, total removal and replacement with more suitable materials. Excavations, into the silt will have to be adequately sidesloped if left unsupported. Alternatively, a temporary shoring system could be considered. Other comments relating to general site development follow:

- The digesters should be designed assuming full, ie. at ground surface, hydrostatic uplift pressure. Subsurface drainage systems should be considered where facilities are not structurally designed to resist uplift pressures. A weeping tile system around the perimeter of any subsurface works should be included to control seepage into below grade areas.
- Walls located below ground surface should be designed using an at-rest earth pressure coefficient of 0.6.
- Drainage should slope down and away from all sides of the structures at a minimum of 2% for paved areas and 3% for unpaved areas.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the results of our field investigation and subsequent analyses.

7.1 Conclusions

- 1) The soil stratigraphy in the test area generally consists of 2.5 metres of dry to moist clayey fill of medium density overlying a layer of saturated silt varying in thickness from 0.7 to 2.2 metres. The underlying clays range from stiff to firm and are highly plastic and expansive. A layer of glacial till 4.0 m <u>+</u> thick was encountered at approximately 18.0 metres. The upper 0.5 to 1.0 m of the till is saturated and the upper clay contact is very soft and wet.
- 2) All test holes were advanced to auger refusal upon probable bedrock, boulders, or very dense till. Practical refusal of end bearing driven precast concrete piles would be anticipated within the glacial till at approximately the same depth as auger refusal found during our site investigation ie) approximately 22.0 metres below existing ground surface.
- A perched water table exists in the saturated silt layer as confirmed by standpipe piezometer readings. The upper portion of the glacial till is also water bearing.
- 4) In regards to general site development, seepage and sloughing from the saturated silt layer can be expected during the excavation for any subsurface works. This will require special precautions or, alternatively, total removal and replacement with more suitable materials. Excavations in this layer will have to be adequately sidesloped or a temporary shoring system considered.

7.2 Recommendations

- As mentioned throughout this report, we recommend that a pile foundation system consistent with earlier construction works be adopted. Since the existing digester tanks are founded on end bearing driven precast concrete piles, we recommend that a similar system be employed.
- 2) Alternative foundation systems were addressed in the report, however, some are not recommended for digester expansion because of the problems associated with the water bearing soils found within the study area. They may, however, be applicable for future expansion works where light to moderate foundation loads are anticipated.
- 3) In regards to precast hexagonal concrete piles driven to practical refusal in the till the following recommendations are given:
 - (a) Traditional design loads be used, namely:

Nominal Size (mm) (across flats)	Design Capacity (KN)
300	445 (50 ton)
350	625 (70 ton)
400	800 (90 ton)

Load capacities higher than these traditional values are not recommended due to the thick glacial till layer and the existence of boulder size particles within this layer.

(b) A minimum 150 mm (6") void space should be maintained under pile caps, grade beams and structural floor slabs.

- (c) To prevent subsoil disturbance, piles within 10 diameters (minimum) of existing foundations should be prebored to a depth compatible to 3.0 metres below the underside of the pile caps of the existing digesters east of the site. The diameter of the prebore should be 50 mm larger than the nominal diameter of the pile.
- (d) Concrete works in direct contact with adjacent subsoils should consist of sulphate resistant cement.
- (e) Spacing of individual piles within groups should not be less than three pile diameters centre to centre.
- 4) The digesters should be designed assuming full, ie. at ground surface, hydrostatic uplift pressure. Subsurface drainage systems should be considered where facilities are not structurally designed to resist uplift pressures. A weeping tile system around the perimeter of any subsurface works should be included to control seepage into below grade areas.
- Walls located below ground surface should be designed using an at-rest earth pressure coefficient of 0.6.
- 6) Drainage should slope down and away from all sides of the structures at a minimum of 2% for paved areas and 3% for unpaved areas.
- 7) Site supervision by a qualified engineer or technician is necessary during pile driving operations. For piles believed to be hung up on boulders in the till the load carrying capacities must be accordingly reduced and additional piles possibly driven.

The recommendations provided have been based on the findings in 16 test holes at selected locations over the site. Should any conditions other than those noted in this report be found during future stages of site development, we should be notified in order that our recommendations can be re-evaluated.

Respectfully Submitted,

D. Kingerski

D. Kingerski, P. Eng. Project Engineer Earth Scien<u>cerstrisi</u>o

K. M. Skaftfeld, E.I.T. Earth Sciences Division

PROPERTY OF THE Waterworks, Waste & Disposal Department MAIN OFFICE RESOURCE CENTRE

8.0 <u>REFERENCES</u>

Baracos, Shields, Kjartanson, <u>Geological Engineering Maps and</u> <u>Report for Urban Development of Winnipeg</u>, Department of Geological Engineering, University of Manitoba, Winnipeg, Manitoba, 1983. APPENDIX A

.

•

,

APPENDIX

EXPLANATION OF FIELD & LABORATORY

TEST DATA

The field and laboratory test results as shown for a particular test boring by the Test Hole Log Data Sheet are briefly described below:

NATURAL MOISTURE CONDITIONS & ATTERBERG LIMITS

The relation between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits should be compared to the Natural Moisture Content of the subsurface soil as well as plotted on the Plasticity Chart.

SOIL PROFILE & DESCRIPTION

Each soil strata is classified and described noting any special conditions. The unified classification system is used, and the soil profile refers to the existing ground elevation. When available the ground elevation is shown.

The soil symbols used are briefly shown below but are indicated in more detail in the Soil Classification Chart.

TESTS ON SOIL SAMPLES

Laboratory and field tests are identified by the following symbols:

- qu unconfined compressive strength usually expressed in tons per square foot. This value is used in determining the allowable bearing capacity of the soil.
- Indicates the density or consistency of the in-situ soil.
- C consolidation test. These test results are separately enclosed and provide information on the consolidation or settlement properties of the soil strata.
- T_v undrained shear strength using a Torvane.
- pp undrained shear strength derived from pocket penetrometer
 testing.
- L_V undrained shear strength using a lab vane.

UNDERWOOD MCLELLAN LTD. EARTH SCIENCES DIVISION GENERAL STATEMENT NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations represented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general ground water levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions different from those encountered in the exploratory borings and excavations are observed or encountered during construction or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

- M.A. grain size analysis. These test results are separately enclosed and indicate the gradation properties of the material tested.
- SO₄ water soluble sulphate content is conducted primarily to determine whether sulphate resistant cement is required for the foundation structure.
- N standard penetration field test. This test is conducted in the field to determine the in-situ consistency of a soil strata. The "N" value recorded is the number of blows from a 140 lb. hammer dropped 30 inches (free fall) which are required to drive a 2" 0.D. Raymond type sampler 12 inches into the soil.

The resistance and unconfined compressive strength of a cohesive soil can be related to its consistency as follows:

<u>N - BLOWS/Ft.</u>	<u>0</u> U - T/Ft. ²	CONSISTENCY
2	0.25	very soft
2-4	0.25-0.50	soft
4-8	0.50-1.00	medium or fi rm
8-15	1.00-2.00	stiff
15-30	2.00-4.00	very stiff
30	4.00	hard
		_

The resistance of a non-cohesive soil (sand) can be related to its consistency as follows:

SAMPLE TYPE

- A:
- B:
- Split Spoon Shelby Tube Piston Sampler Core Barrel C:
- D:
- Auger E:
- **F**: Wash
- G: Bulk Sample
- H: Block Sample

CLASSIFICATION CODE

Clay	< 0.005 mm
Silt	0.005 mm - #200 Sieve
Sand	#200 - #4 Sieve
Gravel	#4 Sieve - 3 inch
Cobbles	3 - 12 inch
Boulders	>12 inch

.

.

GRADATION DESCRIPTIVE TERMS

And	40 - 50%	
with	30 - 40%	
some	20 - 30%	
little	10 - 20%	
trace	0 - 10%	

TABLE 1 Unified soil classification (including identification and description)

Laboratery classificarian crianta	.oN mart) : molio)	rallari sa bəñi ç sininp sio	and a second Attender Jimits before Above 'A' the second second attender Jimits before Above 'A' the second second second attender Above 'A' the second seco	1741 400 1745 400 1745 40 1745 40 1755 40 1755 40 1755 40 1755 40 1755 40 1755 40 1755	aning of grine aning of i	20100000000000000000000000000000000000	A line or P! test that A line or P! test that A	C C C Atterberg limits shows bendiritier c A line with // greater requiring wa		Β υη ζη γαυφ	60 EComparing soils at equal light	xabrri i		20		0 10 20 30 40 50 60 70 80 90 100	Plasticity chart Plasticity chart for laboratory classification of the graned soils
Information required for describing solis	Give typical arres: indicate approximate approximate approximate procentates of and and gravel; matimus percentates of and and gravel; matimus and other peruvati accrete arres are drawn and arres are drawn arrested and arrested and arrested									fine sand; numerous verseal rood holes; firm and dry in place; locus; (ML)							
Typical normex	-larg	Poorly graded grawls, grawl- and mixtures, little or no fines	Süty gravels, poorly graded gravel-sand-sült mistures	Clayey gravels, poorly graded	Well graded unds, gravelly and, little or no fines	Poorly graded sands, grawilly sands, little or no fines	Silty sands, poorly graded sand-súlt mixtures	Clayer wads, poorly graded wand-clay mixtures			Loorganic allu and very fue sands, rock four, ulty or clayer foe sands with slight plasticity	Inorganic clays of low to medium plasticity. gravely clays, sandy clays, suity clays, kan clays	Organic silts and organic tilt- clays of low plasticity	Iborgane with metacous or decomaceous fine sandy or with soils, elastic situ	Inorganic clays of bigh plasticity, fat clays	Organe clays of medium to high plastocity	Pest and other bighly organic solu
Group symbolic	à cu	ð	NG	U U	54	5,0	SM	sc			W	τc	70	нн	СК	но	ž
8	euberantial sta particle	uize or a range of intermediate vizes	entification)	ation pro-	uites and sub- all intermediate	uize or a rage of intermediate tizes	cation pro-	ation pro-	Va. 40	Tong hue so (conditionery new plastic (limit)	Node	Medium	Stirbi	Slight to medium	High	Slight to medium	our, odour, Ly by Ebrous
u uing fractions	Wide stage is grig des cad substautui smomte of sil starmediate puricie aires	Predominantly one size or a range uzza with some intermediate su mussing	on-plastic fines (for identification procedures see ML below)	astic fines (for identification ordures, see C.L. below)	in grain tite ounts of all u	y one size or some interme	Non-plantic fiber (for identification pro- cedures, see ML below)	(for identify CL below)	and allow	Dular and y (reaction to shaking)	Quict to thore	None to very slow	Slow	Slore to bode	Nope	Noce to very	sadiy identifed by colour, odour, spongy feel and frequently by fibrous tatiure
Fuld identification proceeders (Escluding particles idented build fractions estimated weights)	Wide many in amount of	Predominant uza vita russing	None-plastic procedures	Plastic fines ordunas, see	Wide mage in train substal amounts of perticle sizes	Predominantly one tures with some mission	Non-planic A cedures, so	Noo-plattic floot (for identification acturat, see AL below) Plattic floot (for identification addures, see CL below) at as forction and/or the Ma Al		Dry moneth (reaching character- tinta)	Nome Lo Light	Medium to bigh	Slight to medium	Slight to medium	High to very bigh	Medium to bigh	Readily identified by spongy feel and freq texture
		(1111) CI+#1	01 01 1 1 1 1 1 1 1 1 1 1 1 1 1	·•• ••/ •₩	1000116 1000116 1001100, 100 1001100, 100 1001100 1001100 1001100	Ma smallert particle visible Sands Marcina is modified of contri fraction is modified for section is modified of contri fract appreciable (finite or appreciable (finite or appreciable (finite or appreciable (finite or appreciable (finite or appreciable (finite or appreciable (finite or appreciable)		Identification procedures on fraction analler than No. 40			###\$!		0(12101 1 pini puo 1	11	Hydy orga nic wils	

(from A.A.Wagner, 4th Int. Conf. SMFE, London 1957, Vol 1, pp125 - 134)

Underwood McLella 1479 Buffolo PI. Winnipeg, Monitobo R3T IL7 Telephone (204) 284-0580 0 20 40 60 80% 0 20 40 60 80% MOISTURE CONTENT O LIQUID LIMIT O PLASTIC LIMIT O	DEPTH (meires)	JOB No. 0265-213-04-02 DRILLING DATE APRIL 26, 1984 DRILLED BY SUBTERRANEAN (WPG.) LTD. SURFACE ELEVATION 230.98 m CO-ORDINATES	E T
	20 21 22 23 24 25	End of borehole at 19.5 m on probable boulders (auger refusal). <u>NOTES:</u> - Extensive seepage and sloughing in silt layer during drilling opera- tions. - Further seepage and sloughing appears to be from upper till layer	20 - 21 - 22 - 23 - 24 - 25 -

		PROJECT N.E.W.P.C.C.					TEST	
Underwood McLellan Lte	d.	CLIENT CITY OF WINNIPE	G					
1479 Bultato PL		JOB No. 0265-213-04-02					BORIN	1G
Winnipeg, Maniloba R3T IL7							No	
Telephone (204) 284-0580	i)	DRILLING DATE APRIL 26					2)
	up	DRILLED BY SUBTERRANEAN	(WPG.) LT	D.			
0 20 40 60 807 MOISTURE CONTENTΟ LIQUID LIMIT	PROFILE 02 CS	RFACE ELEVATION 231.89 m	9. N	SIVE H (KPa)	201	MISC.1	TESTS	DEPTH (metres)
MOISTURE CONTENT O E		-ORDINATES	MPLE	COMPRESSIVE STRENGTH (KPo	STANDARD PENETRATION (BLOWS/0.3 m)	E Rema	RKS	TH (a
PLASTIC LIMIT	Soit	SOIL DESCRIPTION	SAN SAN SAN	CON STR	STA PEN (BLO			DEP
\mathbf{P}^{++}	4		G-18	•				
								19 -
		LL						
$\left[+ + + + + + + + + + + + + + + + + + +$		- silty	G -19					
		- upper 0.9 m saturated - becoming dense to very						
20		dense below 18.9 m	G-20					20 -
		- 300 m Ø boulders at	0-20					
		18.3 and 20.1 m						
	Δ							
								21 -
┠┽┽╂┥┥╋┾┾╆┾┿┿┥╴┨								
	4		G-21					Į
┟┽┿┽┿┿┿┿┿┿┥╷╻	1							
		d of borehole at 21.9 m						22-
		probable limestone		1				
┠┽┽┽┽┽┽┽┽┿┿┿┥╴┃	De	edrock (auger refusal).						
23								23-
┠┽┽┽┽┽┿┽┽╁┼┿┥╴║					1			
┠┽┼┼┽┽┼┼┽┽┿┿┥╴┃								
24	NC	DTES:						24 -
┝┽┼╅╁╅┽┽┽┽┥╹╹╹		- Upper 4.5 m of borehole			1			[
┠┽┽┼┿┽┼┼┼┼┼┼┨		sleeved to eliminate	[1	1			
		seepage and sloughing	1	l				
25		from silt layer.						25
┠┽┼┽┼┼┼┼┼┼┽┥╹╹┃		- Extensive seepage and			1	[
		sloughing from upper 0.9 m of till matrix.	1	1	1]		
$ \begin{bmatrix} + + + + + + + + + + + + + + + + + + $								
┠┼┼┼┼┼┼┼┼┥╴┃								
			· ۱		1			1
]]	1			
┠┽┼┽┼┼┼┼┼┼┤┨								
				l				
0 20 40 60 80%	<u>l</u>		1	L	1	L		L

Underwood McLellai 1479 Buffolo Pl. Winnipeg, Monitoba R3T IL7 Telephone (204) 284-0580	٢	0	PROJECT N.E.W.P.C.C. CLIENT CITY OF WINNIPE JOB No. 0265-213-04-02 DRILLING DATE APRIL 26. DRILLED BY SUBTERRANEAN	1984		D.		TEST BORII No	NG
0 20 40 60 80%	DEPTH (meires) SOIL PROFILE	co	ORDINATES	SAMPLE NO. E TYPE	COMPRESSIVE STRENGTH (KPa	STANDARD PENETRATION (BLOWS/0.3 m)	MISC. E Rema		DEPTH (metres)
	19		AY/TILL TRANSITION - soft - very wet LL - silty - upper 0.8 m saturated		•				19 -
	20		 becoming dense to very dense below 19.3 m 						20 -
	21			G-37					21 -
	22	or	nd of borehole at 21.9 m n probable limestone edrock (auger refusal).						22-
	23								23-
	24		DTES: Hole sloughed to 20.5 m 2 - 3 minutes after hole left open.						24 -
	25		After 15 minutes water in borehole had risen to 17 m depth. Upper 4.5 m of hole sleeved.						25 -

Underwood McLellan Ltd. 1479 Bulfolo Pl. Winnipeg, Manitaba R3T 1L7	PROJECT N.E.W.P.C.C. CLIENT CITY OF WINNIPE JOB No 0265-213-04-02	G		-	TES BOR No	
Telephone (204) 284-0580	DRILLING DATE APRIL 30, DRILLED BY SUBTERRAN		PG.)	LTD.	— e	5
0 20 40 60 80%	SURFACE ELEVATION 231.89 m	Ň	ESSIVE TH (KPa)	ATION 0.5 =)	MISC. TESTS	DEPTH (metree)
	SEE SITE PLAN SOIL DESCRIPTION	SAMPLE E TYPE	OMPRI	STAND! PENETR	REMARKS	E DT H
	TOPSOIL (100 mm) - black - fiberous <u>FILL</u> - clay - trace of gravel and stone - dry - medium density - organic rich layer from 1.2 - 1.4 m depth <u>SILT (ML)</u> - tan - saturated - seepage and sloughing upon exposure	с-48				2
5 5 6	<u>CLAY</u> (CH) - brown - stiff - trace of silt pockets - trace of sulphates	G-49			pp = 71.7	5
7 7 8	<u>CLAY</u> (CH) - grey - stiff					e
		G-50			pp = 47.9	

				_										PROJE	СТ	N.E.W.	P.C.C.					TEST	
U	'n	de	V	vo	00	11	Mo	cLo	ella	in l	_1	d.		CLIENT	<u> </u>	CITY O	F WINNIPE	G					
14	79	B	uft	o i a	F) .								JOB N	0.	0265-2	13-04-02					BORII	NG
									IL7	1	he	•										No	
''	e let	000	16	(2)	04.) 2	84	-0:	580			Ĩ	D	DRILLI			PRIL 30,					6	
			-		_							up 	1	DRILLE	ED E	Y SUBT	ERRANEAN	(WPG		D.			_
) 	2	0	4	•	6	0	80		DEPTH (metres)		PROFILE	SU			TION	91.89 m	NO.	COMPRESSIVE Strength (KPa	STANDARD PENETRATION (SLOWS/0.3 m)	MISC.	TESTS	DEPTH (metres)
		TUF D L				EN'	TT		-0 -0	HI (_		ORDINA	TES			SAMPLE 5 TYPE	APRES RENGT	NDA!	REM	ARKS	тн (л
PL	AS	TIC		MI	T				- 0	0EF		SOIL		S OI	L DE	SCRIPTIC	N	SAI SAI	COI STF	ST/			DEF
			Ą																				
┠╌┽─		И					$\left \right $			-								G54					
┠┼─	f					┝━┥				-19										1	1		<u>1</u> 9 -
\square													т т	LL									
┣-╂	<u> i</u>			<u> </u>			\vdash	┝╌┥		-								1					
	┢┼	H					\square	┝─┦	-†-	1		4		- silt	-	.6 m sat	urated	1					20 -
	Ħ						\square			20				- becc	oming	g dense	to very	1					ľ°.
┣-┽	$\mid \mid$	$\left - \right $					┝╌┥	$\left - \right $		-		¶				low 18.		1					1
┝╌┽╼	┢┼╴	H								1		4											
										21													21
┣-┽									_	$\mathbf{I}^{}$													
┠╌┼╌	$\left \cdot \right $	H					H	$\left \right $															
										1									i		•		
	لم									22		14			•			G-55			_		22-
┝╌┼╌╸							$\left \right $			-													
												1											
┣-┽																							
<u> </u>				-						23													23.
									T	1													
┝╌┼╌		\square						\vdash		-							23.4 m on						
	┝					-	$\left \cdot \right $	┝╼┥		1.				cobable auger re			bedrock	1		1	1		
										24				uger fo	51036	ai).							24
┝-╂	<u> </u>									4													
┝─┼─							┝╌┥	┝╋		-								1					
										25								1					25
H		П					\square		1]~	'			res:							1		
┝╌┼─	┝	┝─┤					┞┤	┝╼┥	+	-			-	Upper (4.5 1	m sleev	ed.				1		
													-			1 at 16		1					
\square	L	\square					\square	Ц	1	1						hours (1 18.3 m		1					
┞╾╉╼┙		$\left - \right $				\vdash		┝╌╉		-				left o			and	·					
													_		-		imestone	1					
\square							\square										ger tip	1					
-+		$\left - \right $					┞┤			-				at 22.	9 m.			1					
LT-	\vdash				<u></u>		┠┨	╘─┨		1			-	Extens: slough	ive s ing :	seepage from up	and per 0.6 m		ļ				
				Ļ	Ĺ	Ľ	П			1_				of til	1 ma	trix.				<u> </u>			
0)	2(ר כ	4	0	6	0	80)%				_										

Underwood McLella 1479 Bulfolo PI Winnipeg, Manitoba R3T IL7 Telephone (204) 284-0580 0 20 40 60 802 MOISTURE CONTENT LIQUID LIMIT PLASTIC LIMIT		PROJECT N.E.W.P.C.C. CLIENT CITY OF WINNIPE JOB NO 0265-213-04-02 DRILLING DATE MAY 1, 1 DRILLED BY SUBTERRANEAN URFACE ELEVATION 231.22 m O-ORDINATES SOIL DESCRIPTION	.984	SSIVE TH (KPa)	STANDARD C PENETRATION (ILLOWS/03=)	MISC. 1 E REMA	Ē
	20 20 21 21 22 23 <u>N</u> - 24	<pre>ILL - silty - upper 1.2 m wet - becoming dense to very dense below 18.9 m - occasional cobbles nd of hole at 20.9 m on robable limestone bedrock auger refusal). OTES: Upper 4.5 m sleeved. Seepage and sloughing was not observed during or 15 minutes after drilling. 100 mm pieces of limestone recovered from auger tip at 20.9 m.</pre>	G-63 G-64				19 20 21 22 23 24 25

					_		_		<u></u>			PROJECT								TES	T
Un	nde	erv	vo	00		M	cL	eli	lar	1 Ll	ld.	CLIENT	CITY OF		EG					BORI	
1479						_	_		_			JOB No.	0265-213	-04-02						_	
Wini Tele										te	~~				<u> </u>					No	
1414	rpno	ar E	(2)			.04	- Q	201	0	<u>U</u>	ùľa	DRILLING		1. 19						╴╴┣	5
						_						DRILLED	BY SUBTE	RRANEAN			TD.				
+ +	+2	•	4	<u>م</u>	6	0	80	23		DEPTH (metres)	PROFILE		VATION _ 231.	<u>15 m</u>	0, M	COMPRESSIVE STRENGTH (KPo	STANDARD PENETRATION (BLOWS/0.5 m)	M	ISC.	TESTS	DEPTH (metres)
MOIS					EN	T				TH (n		CO-ORDINATE	5		SAMPLE E TYPE	COMPRESSIVE STRENGTH (KP	INDAF			E. Arks	TH (a
	STI(C L	IMI 	₹		t		- 4	2	DEP	SOIL	SOIL	DESCRIPTION		SAI	C OI					100
		┢			p										B-4	•				59.8	
	+	┢									\searrow							v		50.2	
		\uparrow		\neg						10	\sim							Lv	=	61.0	10
				7						10											ľ
+		 			ļ				_												
╉╌╉╌		╄		/		$\left\{ -\right\}$	\vdash		_		K)										
		\vdash		<u> </u>		\vdash		-+	-						B-5					36.0	
++-	+-	+							\neg	11	$\left \right\rangle$				<u><u> </u></u>		 	1 .		50.2	11
											\sim							Lv	=	41.4	
_		\vdash						-	_			CLAY (CH)									
	+	┨──		+-				\dashv		12		- grey									1:
++-	+	+		+-					-		\sim	- becomi	ng firm with					PP	-	43.1	
++-	+-										${ \setminus}$	9	of fine san	d and	B-6	103.0	<u>'</u>			59.8	
													nclusions of till inc	lucione				Lv	=	57.4	
╉┥┥								_		13			sing with de		1						1:
	+	╋		-+		-		+			\frown	2110100		-r							
┽┽	+	╉──						+	-												
11	1-																				
]									14							_		_	33.4	1
+		ļ						_		T.4	\frown										
╉╌┨╌	+	╂		4	2	\square			-		\wedge				B-7			1		42.0	
+-+-	+	┢	\vdash	+			\vdash	+	┥		K I				1]		μ.	-	74.0	
				Ť											1	l		1			1
II									ŀ	15	\frown					I	_				1
╅╌╁╴									_		ert						1			36.0	
╉╌╂╌		┢		\vdash		$\left - \right $	\square	-						•	B-8					38.2	
++	+-	╉──	\vdash	+		H	⊢┦	+	\neg								1	1 ^L v	=	41.4	Ι.
				1						16	$\left \right\rangle$							1			1
											\wedge										
+	+				4			_			$ { } { } { } { } { } { } { } { } { } { $				1	I					
┥╉		+	\square		Н	\vdash	$\left - \right $	-	_		ĹÌ				 		1	PP	=	36.0	1
┽╉╴	+-	┦─	\vdash	\square	2	P			-	17					B-9		1			25.2	
					Ľ						$ \land$				[1	1	1 ^v			
	T		\mathbb{Z}								て	07 147 /m=	MD 4310 TOT 017		1	I	1				
┥┥	┶	Ł										1	TRANSITION		1	1					
	p	-					\square			18	2	- wet - soft			0.0			4			1
-++-	-#	+	'		-	H					4	- 5010			G-66	1	+	-			

×

.

			PROJECT N.E.W.P.C.C.				TES	
Underwood McLella	n Lí	ld.	CLIENT CITY OF WINNIP	EG				
1479 Buffalo Pl.			JOB No. 0265-213-04-02					RING
Winnipeg, Manitoba R3T IL7 Telephone (204) 284-0580	the	2					No	
Telephone (204) 284-0380		Ĩ,						R
	-	no T	DRILLED BY SUBTERRANEAN	(WPG		D.		
0 20 40 60 80%	DEPTH (metree)	PROFILE	SURFACE ELEVATION 231.15 m	₽	COMPRESSIVE STRENGTH (KPo	UN CE	MISC. TEST	u DEPTH (metres)
MOISTURE CONTENT-O	TH (a		CO-ORDINATES	SAMPLE E TYPE	APRES	STANDARD PENETRATION (BLOWS/0.5 m)	E REMARKS	тн (а
PLASTIC LIMIT	130.	SOIL	SOIL DESCRIPTION	SAI SAI	ST CO	PEN		DEF
0				G-67				
┊┽┽╫┽┽┼┼┼┼┼┼		A						
	19		TILL		ļ	ļ	1	19 -
		+	- silty	G-68	4			
╶┽┽╫╌┽╌┽╌┽╶┽╶┽			 upper 0.9 m wet becoming dense to 	G-69				
	20		very dense below 18.6 m		1			20 -
	20				<u> </u>	 		
╻┽┽╣┼┼┼┽┽┼┼┾┿┥				G-70	1	 		
		4						
	21							21 -
┠┽┽╫┥┥┥				G-7				
$\mathbf{P} + \mathbf{A} + $								
			End of borehole at 21.6 m					
$\begin{bmatrix} -++++++++++++++++++++++++++++++++++++$	22		on probable boulders					22-
· · · · · · · · · · · · · · · · · · · 			(auger refusal).					
╹┽┽┽┽┽┽┽┽┿┿								
· ····································	23		NOTES:			1		23 -
			- Upper 4.5 m sleeved.					
┥┽┼┼┼┼┼┼┼┼			- No seepage or sloughing					
	24		was evident from upper					24 -
	£4		till layer during drilling.					24-
╶┽┽┼┽┽┽┽┽┽┿┿┥			- Extensive sloughing and					
┠┽┼┼┽┽┽┽┽┽╇┥			seepage from silt layer					
	25		after sleeve removed.		I			25.
┎┽┧┾╅┽╋┽╋┥					l			
┣┽╋┼╋╋╋╋								
┠┼┼┼┽┽┽┽┽┽┽┽								
					1			
┡┽┽┼┼┼┽┽┽┤╎┼╅┥						1		
]		
	L					<u> </u>	L	

.

0 20 40 60 80% MOISTURE CONTENT 0 Image: Solic description Image: Solic desc	61 DEPTH (metres)
19 TILL - silty - upper 0.6 m saturated - becoming dense to very dense below 18.6 m - large boulder at 18.9 m End of borehole at 20.1 m on large boulder (auger drifting	19
End of borehole at 20.1 m on large boulder (auger drifting	20
21 to side).	21
22 NOTES: - Upper 4.5 m sleeved. - Extensive seepage and sloughing from upper 0.6 m of till matrix.	22
	23
	24
	23

Underwood McLellar 1479 Buffolo Pl. Winnipeg, Manitoba R3T IL7 Telephone (204) 284-0580	1 2 2 2	id.	PROJECT N.E.W.P. CLIENT CITY OF JOB NO. 0265-213 DRILLING DATE MAY DRILLED BY SUBTER	WINNIPEG -04-02 X 3, 1984	PG.)	LTI).		TEST BORIN No	
0 20 40 60 802 MOISTURE CONTENT	DEPTH (metres)	. PROFILE	RFACE ELEVATION 23		C TYPE	STRENGTH (KPa)	STANDARD PENETRATION (alows/0.3 m)	MISC. 1 E Rema		DEPTH (metres)
PLASTIC LIMIT	DEP	SQL	SOIL DESCRIPTION	SAN	5	STR	STA PEN I DLO			а Ш
	19	4	LL - silty - upper 1.2 m satura		-82 ·					19
	20	a 5 4	 becoming dense to dense below 19.5 m occasional cobblem 300 mm boulder at 	very n s 21.3 m —	-83					20
	21	•		G·	-85					21
	22		d of borehole at 21 probable boulders fusal).							22
	23		<u>TES</u> : Upper 4.5 m sleeved Extensive seepage a							23
	24		sloughing from uppe of till matrix.					÷		24
	25									25
					·					

			PROJECT N.E.W.P.C.C.					TEST	
Underwood McLellar	n Ltd		CLIENT CITY OF WINNIPE	G					
1479 Bullaio Pi			JOB No. 0265-213-04-02					BORIN	NG
Winnipeg, Monitobe R3T IL7	the							No	
Telephone (204) 284-0580	Um	$\mathbf{\hat{o}}$	DRILLING DATE MAY 5, 19	84					1
	gorb		DRILLED BY SUBTERRANEAN	(WPG.	.) LT	D.			
0 20 40 60 80%	() I	SUI	RFACE ELEVATION 232.22 m	NO.	IVE (KPo)	Zī	MISC.		ires)
MOISTURE CONTENT-O	DEPTH (metres)	L	ORDINATES		RESS	NDARD IETRATION 043/03 =)	3		DEPTH (metres)
	DEPT		SOIL DESCRIPTION	SAMPLE E TYPE	COMPRESSIVE STRENGTH (KP	STANDARD PENETRATIO	REMA	RKS	DEPTI
		CI	AY/TILL TRANSITION						
++++//+++++			- soft						1
┽┼┽┟┩┽┼┼┼┼┽┥	19		- very wet						<u>1</u> 9
┼┼╋┼┽┽┞┼┼┼┽┥									
<u>┥┼╆┟┍┽</u> ╋┥	ľ	<u> </u>							
		1	- silty						1
┽┽┽┼┼┼┼┼┼┥	20		- upper 0.6 m saturated - becoming dense to very						20
╶┼╶┼╌┽╌┽╌┽╌┽╌┽╶╉╶┫		· .	dense below 19.2 m						
┼┼┼┼┼┽┥┥	11	<u> </u>							<u> </u>
┥┽┼┼┼┼┼┼┥┫┥			nd of borehole at 20.4 m n probable boulders (auger						
	21		efusal).						21
╶┼┊┥╏╹┥┨╹┥╹		N	DTES:						
╶┽┼┽┽┽╋╋┼╇╇╇┫									
	22		Upper 4.5 m sleeved.						22
	~	-	300 mm Ø boulder recovered						
			from auger tip at 19.5 m.						
╶┤╁┥╏┽┥┥╿┥╹		-	Extensive seepage and		Ì				
╶┤╶┤╶┤╶┤╶┧╶┥╶┥╶┥			sloughing from upper						
┥╎┧╎╎╎┥┥┥┥╿┥	23		0.6 m of till matrix.						23
					ļ				
╶┼┽┽╂╋┽┨┨									1
╶┼┼┼┼┟┽┠┨				l	I	1			
╸╡┊╡┋╡╡╶┨╶┫╶┫╺┥ ┫	24								24
				l					
			,						
╶┤┼┼┽┽┽┇┇┇┥	25			l					25
┽┼┼┼┽┽╉╊╉╀┼┾┿┫									
<u>╷╷╷╷╷╷╷╷╷╷</u>				1	l				
				l					
++++++++++++++++++++++++++++++++++++				l			l		
┼┼┼┽┽┽┽┽┽┽┿┥				ŀ			ľ		
┼┼┼┼┼┼┽┽┽┽				l					
<u>╶╴╴╴</u> ╴╴╴╴╴╴				l	1		ļ		
				l					1
┼┼┼┽┽┼╁╅┨		I			ł		l		
0 20 40 60 80%					L	.i			

			PROJECT N.E.W.P.C.C.					TEST	
Underwood McLella	n Li	td.		3				BORING	
1479 Buffalo PL			JOB No. 0265-213-04-02						'
Winnipeg, Monitobo R3T IL7 Telephone (204) 284-0580	h	~						No	
TANK TRAN TRAN TRAN AADA	ų.	Ŭ,	DRILLING DATE MAY 3.					172	
0 20 40 60 80%		~~	DRILLED BY SUBTERRANEAN ((WPG.		D.			
0 20 40 60 80%	1	LE LE	SURFACE ELEVATION 232.05 m	Ň.	I (KP	. 37	MISC	TESTS	5
MOISTURE CONTENT-O	Ē	PROFILE	CO-ORDINATES		RESS	RAT 103	3		Ē
	DEPTH (metres)	SOILF	SOIL DESCRIPTION	SAMPLE E TYPE	COMPRESSIVE STRENGTH (KPd)	STANDARD PENETRATION (BLOWS/03m)	REMA	ARKS	DEPTH (metres)
	1	6			•				
									
	19	4		G-10	2			ր	⁹ 1
			- silty						
╶┼┼╫┼┼┽┽┽┼┼┾┾╼	4	8	- upper 0.9 m saturated						
┽┽╢┼┽┽┼┼┼┼┼┼			 becoming dense to very dense below 18.9 					h	0
	20	\ ↑	m					۴	~
┽╀╉╫┽┽┽╃┼╫╆╸		F							ł
	1			<u>G-10</u>	P	<u> </u>			
	21	11						2	21
┽╁╉┥╋┽┼╃┼╇┿╸					[
┽╄╂┝╉┽┟┽╂┟╄╸	1	d	1		1				
	1			G-10	<u> </u>	1			
	22	14	· ·	<u>~</u>	ľ			ļ	22
┼┼┼┼┽┽┽┽┽┼	-	ŀ	1 1						
<u>┤┠╂╉╉</u> ╉╋╋	1	4			1				
┽┼┽┽┽┽┽┽┾┿╇╼	23		End of borehole at 22.9 m						23
┽┼┽┼┼┽╂┼╆╆┾╸	1		on probable limestone		l				
	1		bedrock (auger refusal).			1			
┽┼┽╃┽┽┽┽┽┿┿╸	4		NOTES			1	•.		
┽╁╉╁╋╋╋╋	24		NOTES:			1	1		24 -
	1		~ Upper 4.5 m sleeved.		1	1			
┽┼┽╎┽┼┼┼┼┼			- Extensive seepage and		l	1			
┽┽┽┽┼┼┼┼╃┿╸			sloughing from upper 0.9 m of till matrix.						<u></u>
	25		U UI LILL MALIIA.			1		ľ	25
						1	[1	
┼┽╅╀╂╃╉╉╄┿	4								
╡╏╡┧┦┤┧┠┨╎┿	1		1			1			
	1		1						
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	4					1			
┽┽┽┽┼┽┽┽┽┽┿	4		1			1			
<u>╶┨╶┨╶┨╶┨</u> ╶┫╌┫╴┫╌┫╼	1								
]					1			
╶┼┼┽┽┼┽┽┽┽┽┽	4				!			Į	
0 20 40 60 80%	1	L		L	I		L	L	

PROJECT N.E.W.P.C.C.		TEST
Underwood McLellan Ltd. CLIENT CITY OF WINNIPEG		
1479 Buffalo PL JOB No. 0265-213-04-02		BORING
Winnipeg, Manitoba R3T IL7		No
Telephone (204) 284-0580 UILD DRILLING DATE MAY 3, 1984		<u> </u>
DRILLED BY SUBTERRANEAN (WPG.) LTD)	
0 20 40 60 80% Image: Structure content 0 Image: Structure content 0 Image: Structure content 0 Image: Structure content 0 Image: Structure content Image: Structure content 0 Image: Structure content 0 Image: Structure content Image: Structure content Image: Structure content Image: Structure content Image: Structure content		AISC. TESTS E REMARKS
MOISTURE CONTENT O CO-ORDINATES UN	STANDARD PENETRATION (BLOWS/0.3 m)	E E REMARKS
PLASTIC LIMIT A B S SOIL DESCRIPTION	PEN STA	0
┠┽┽╫╫┽┽┽┼┼┼┼┿┥║╠╡║		
		19.
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		L L
- silty - occasional cobble		
- upper 1.0 m saturated		
- becoming dense to very G-10		20 -
dense below 19.0 m		
- difficult drilling at 20.0 m due to presence		, 1
of boulders.		
		21
┠ ┥┥┥┥┥╷╷╷╷┥┥ ┫╏ <u>╏</u> ║		
End of borehole at 21.6 m		22.
22 on probable boulders (auger		22.
refusal).		
$\begin{bmatrix} + + + + + + + + + + + + + + + + + + +$		
23		23
┡┽┼┽┿┿┽┼┼┼┼┿┪┃┃		
┠┽┼┼┽┿┽┽┽┾┿┥╏╏		
24 NOTES -		24
NOIES.		1 -7
- Upper 4.5 m sleeved.		
- Extensive seepage and sloughing from upper		
25 1.0 m of till matrix.		25
$\begin{bmatrix} ++++++++++++++++++++++++++++++++++++$		
$\begin{bmatrix} + + + + + + + + + + + + + + + + + + +$		
┠┽╁┼┼┽┥┽┽┼┾┿┥┃┃		
┠┽┿┿┽┽┽┽┽┽┽┩╹╹╹		
┠┽╄┽┼┿┽┼┿┥┨╏		
		<u>_</u>

·

Underwood McLellan Ltd. 1479 Buffolo Pl. Winnipeg, Monitobo R3T IL7 Telephone (204) 284-0580 PROJECT N.E.W.P.C.C. CLIENT CITY OF WINNIPEG JOB No. 0265-213-04-02 DRILLING DATE MAY 4, 1984 DRILLED BY SUBTERRANEAN (WPG.) LTD.							TEST BORING No 14	
0 20 40 60 80%	DEPTH (metree) SOIL PROFILE	SURFACE ELEVATION 232.02 m CO-ORDINATES SEE SITE PLAN SOIL DESCRIPTION	SAMPLE NO. E TYPE	COMPRESSIVE STRENGTH (KPa)	STANDARD PENETRATION (BLOWS/0.3 m)	MISC. TESTS E REMARKS	DEPTH (metres)	
	1 2	<pre>FILL - clay - medium density - dry to 1.5 m - moist from 1.5 to 2.4 m - 500 mm Ø granite boulder at 150 mm depth</pre>					i - 2 -	
	3	<pre>SILT (ML) - tan - saturated - layered with fine sand - seepage and sloughing upon exposure</pre>	<u>G-10</u>	3			3	
	5	CLAY (CH) - brown - stiff - trace of silt pockets - trace of 15 mm Ø stone	G-10			pp = 59.8	5 3 6	
	7 8	<u>CLAY</u> (CH) - grey - stiff - trace of silt pockets					7	
0 20 40 60 80 %	9		G-11(pp = 47.	9 9	

Underwood McLeilan Ltd. PROJECT N.E.W.P.C.C. 1479 Buffala Pl. CLIENT CITY OF WINNIPEG Winnipeg, Manitoba R3T IL7 JOB No. 0265-213-04-02 Telephone (204) 284-0580 DRILLING DATE MAY 4, 1984								TEST BORING No	
DRILLED BY SUBTERRANEAN (WPG.) LTD.									
0 20 40 60 80Z MOISTURE CONTENT-O LIQUID LIMIT	DEPTH (metres)	IL PROFILE	SURFACE ELEVATION 232.02 m CO-ORDINATES	SAMPLE NO.	COMPRESSIVE STRENGTH (KPa	STANDARD PENETRATION (slows/0.3 m)	MISC. 1 E Rema	_	DEPTH (metres)
	OE	Sol	SOIL DESCRIPTION	S S	0 S E	ST.			DE
	19 20 21 22	A	<u>TILL</u> - silty - upper 0.6 m saturated - becoming dense to very dense below 18.9 m.		•			:	19 20 21 22
	23 -		End of borehole at 23.0 m on probable limestone bedrock (auger refusal). <u>NOTES</u> :				,		23
	25		 Upper 4.5 m sleeved. Extensive seepage and sloughing from upper 0.6 m of till matrix. 		· ·				25
0 20 40 60 80%						_			

Underwood McLellan Ltd. PROJECT N.E.W.P.C.C. 1479 Buffolo Pl. CLIENT CITY OF WINNIPEG Winnipeg, Monitobo R3T IL7 JOB NO. 0265-213-04-02 Telephone (204) 284-0580 DRILLING DATE MAY 4, 1984 DRILLED BY SUBTERDAMEAN (URC.) ITD								NG
	TOLD	DRILLED BY SUBTERRANEAN			D.			
0 20 40 60 80%	PROFILE	SURFACE ELEVATION 231.83 m	9 2	SIVE H (KPo)	STANDARD PENETRATION (slows/0.3 m)	MISC.T	ESTS	DEPTH (metres)
	SOIL P	SOIL DESCRIPTION	SAMPLE 5 TYPE	COMPR	STAND PENETI IOLOWS	REMA	RKS	DEPTH
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TILL - silty - boulder at 17.7 m - upper 0.8 m saturated - becoming dense to very dense below 18.5 m	<u>G-11</u> <u>G-12</u>	1				19 20
21		End of borehole at 20.4 m or very dense till (auger refusal).	1					21
22		•						22
23		<u>NOTES</u> : - Upper 4.5 m sleeved.						23
24		- Seepage and sloughing from upper 0.8 m of till matrix.						24
25								25
				•				

	PROJECT N.E.W.P.C.C.				TES	 T
Underwood McLellan Ltd. CLIENT CITY OF WINNIPEG						
1479 Buffaio Pi. JOB No. 0265-213-04-02						NG
Winnipeg, Manitobo R3T IL7 the						
Telephone (204) 284-0580 DRILLING DATE MAY 4, 1984						6
DRILLED BY SUBTERRANEAN (WPG.) LTD.						$\underline{\mathbf{O}}$
20 40 60 807 2	222 17 -		шġ			12
	URFACE ELEVATION 232.17 m	9 2	>	e Se	MISC. TESTS	
	D-ORDINATES	MPLE	COMPRESSIVE STRENGTH (KP	STANDARD PENETRATIO	ε	DEPTH (metree)
		l₹ E	N D N D	LOF.	REMARKS	1 d
	SOIL DESCRIPTION	N S	3 2	543		Ĭ
<u>-++/</u> {-+++++++++++++++++++++++++++++++++		———	·			
	T T T	<u>G-12</u>	7	L		19
	ILL					٣
	- silty	G-12				1
• • • • • • • • • • • • • • • • • • • 	- boulders at 18.8 and					
· ┤ · ┤ · ┤ · ┤ · ┤ · ┤ · ┤ · ┥ · ┨ _ ┃ ┩║	20.7 m					20
20	 upper 0.5 m saturated becoming dense to very 					۴
	dense below 18.9 m				- Standpipe	
╶┼┽┽┽┽┼┼┾┾┿┫╴║┿║				1	Tip Elev.	
						2
				1		
	nd of borehole at 21.3 m on robable boulders (auger					
	efusal).					2
						ſ
	0000					
┈┽┉┽┈┼╶╉╶╃╼╡┈┩┈┫ ┃ ┃ [╼]	OTES:					
	Upper 4.5 m sleeved.				l	
23	Extensive seepage and					2
	sloughing from upper					
╶┼┽┿┽┽┼┼┼┽┿┥┃┃	0.5 m of till matrix.			1		
	two standpipes installed	1				2
	with tip elevations at 7.6 m (Clay) and 20.4 m					ľ
─ ┼┽┼┽┼┼┼┼┿┥ ┃┃┃	(Till).					
╶┼┼┼┼┼┼┼┥┃┃		1				
	۰ ۲			1		
25			l			ľ
╶┽┽┼┽┽┼╉┽┿┥╸┃╻║		1		1		
╶ ┼┽┼╎╎┥┥┥ ┦┃┃					l	
			ľ			
		.				
╶┼┼┼┼┼┼┼┥┃┃┃						
· 		1	I			1
			I			
			I	1		
╶┽┽┼┽┽╁╁┼┽┫ ┃ ┃			l			
20 40 60 80%			I		1	L

APPENDIX B

PROPERTY OF THE Waterworks, Waste & Disposal Department MAIN OFFICE RESOURCE CENTRE

NOTES

TEST HOLES No. I TO 3 DRILLED 26/4/84 TEST HOLES No. 4 TO 6 DRILLED 30/4/84 TEST HOLES No. 7 TO 9 DRILLED 1/5/84 TEST HOLES No. 10 TO 13 DRILLED 3/5/84 TEST HOLES No. 14 TO 16 DRILLED 4/5/84

STANDPIPE PIEZOMETERS INSTALLED 4/5/84

GROUND ELEVATION AT TEST HOLE LOCATION *

** STANDPIPE PIEZOMETER LOCATION

LEGEND

AUGER HOLE TO REFUSAL

WORKS & OPERATIONS DIVISION WATERWORKS, WASTE & DISPOSAL DEPARTMENT

NORTH END WATER POLLUTION CONTROL CENTRE SLUDGE DIGESTION EXPANSION

TEST HOLE LOCATION

PLAN

Underwood McLellan Ltd. Consulting Engineers and Planners

	W, W WL MOISTURE CONTENT (%) 0 10 20 30 40 50 60 70 80 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 BULK DENSITY (g/cc)	UNDISTURBED SAMPLE TESTS	LEGEND. + BULK DENSITY O MOISTURE CONTENT : W natural WL liquid limit WL plastic limit + TORVANE SHEAR STRENGTH
$\left(\begin{array}{c} 223\\ 223\\ 223\\ 229\\ 229\\ 229\\ 229\\ 229\\$		Image: construction of the output of the	 △ LAB VANE SHEAR STRENGTH □ SHEAR STRENGTH FROM POCKET PENETROMETER •••* •** SHEAR STRENGTH FROM UNCONFINED COMPRESSION TEST & % STRAIN AT FAILURE ○ TOPSOIL ○ FILL ○ FILL ○ BROWN CLAY ○ GREY CLAY ○ GREY CLAY ○ TILL ○ AND R, REFUSAL WITHIN GLACIAL TILL R, REFUSAL UPON PROBABLE LIMESTONE BEDROCK NOTES NOTES 1 HOLES ITO 3 DRILLED 26/04/84, HOLES 4 TO G DRILLED 26/04/84, HOLES 4 TO G DRILLED 26/04/84, HOLES 1 TO 3 DRILLED 26/04/84, HOLES 1 TO 15 DRILED 26/04/05/84

	NCE OF MAN		nderwood McLellan Ltd. Consulting Engineers and Planners	THE CITY	NORTH END WATER POLLU SLUDGE DIGEST	
	D. E. KINGERSKI	Group DESIGNED BY: K.S.	DRAWN BY	WINNIPEG	COMPOSITE GEOTEC	HNICAL SUMMARY
	The Or Key and	D.K.	DATE June 15/84	DIVISION	RELEASED FOR CONSTRUCTION	DATE:
·		APPROVED BY	C. C. ZOLLAN		AS SHOWN	02