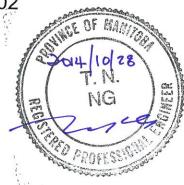


SEWPCC Upgrading/Expansion Project: Geotechnical Investigation Report

Prepared for City of Winnipeg

December 15, 2014 Project Number: 474248 A-0102-C-SUR-A-0-01



SEWPCC Upgrading/Expansion/Civil/Geotech Geotechnical Investigation Report FINAL – Rev 3

KGS Group 13-0338-002 October 2014

Prepared By

Tony Ng, M. Sc., P. Eng. Senior Geotechnical Engineer

Approved By Rob Kenyon, Ph.D., P. Eng. Manager, Geotechnical Services

KGS Group Winnipeg, Manitoba

TABLE OF CONTENTS

PAGE

1.0	INTRODUCTION	
1.1	FINAL REPORT REV.1 – ADDITIONAL INFORMATION	. 2
1.2	FINAL REPORT REV.2	
1.3	FINAL REPORT REV.3	. 3
2.0	BACKGROUND	4
2.1	GENERAL	
2.2	GEOTECHNICAL REVIEW	
3.0	FIELD INVESTIGATION PROGRAM	6
3.1	TEST HOLE DRILLING AND SAMPLING PROGRAM	. 6
3.2	INSTRUMENTATION	
3.3	LABORATORY TESTING	
4.0	SITE STRATIGRAPHY AND GROUNDWATER CONDITIONS	8
4.1	SITE STRATIGRAPHY	
	4.1.1 Topsoil and Fills	
	4.1.2 Silty Clay	
	4.1.3 Silt Till (Glacial Till)	
	4.1.4 Sand and Gravel Layers4.1.5 Limestone Bedrock	
4.2		
5.0	FOUNDATION CONSIDERATIONS	
5.1	LIMITED STATES DESIGN	
5.2	DRIVEN PRESTRESSED PRECAST CONCRETE PILES	
5.3	DRIVEN STEEL PILES	14
5.4	ADDITIONAL RECOMMENDATIONS FOR DRIVEN PILES	
5.5	CAST-IN-PLACE CONCRETE CAISSONS	
5.6	CAST-IN-PLACE CONCRETE FRICTION PILES	
5.7	RECOMMENDED FOUNDATION TYPE QUALITY CONTROL AND QUALITY ASSURANCE PROGRAM	
5.8 5.9	EXCAVATIONS AND TEMPORARY SHORING	
5.10		
5.11		
5.12		
6.0	CONCLUSIONS	21
7.0	RECOMMENDATIONS	22
8.0	STATEMENT OF LIMITATIONS	25
8.1	THIRD PARTY USE OF REPORT	25
8.2	GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATIONS	
9.0	REFERENCE	26

TABLES FIGURES APPENDICES

P:\Projects\2013\13-0338-002\Doc.Control\Issued\SOURCE\Docs\RPT-GeotechnicalReport\Final-Rev02\474248-04-04-03-01-15-Geotechnical_Invest_Rpt_Rev02_Final_2014-10-22.docx

LIST OF TABLES

1. Piezometric Monitoring Results

LIST OF FIGURES

- 1. General Site Plan
- 2. Layout Plan

LIST OF APPENDICES

- A. Soil Logs, CPTU Results, Core Photos and Lab Testing Results
- B. Pile Load Capacity Verification PDA Test Results
- C. Vibration Monitoring for the SEWPCC Test Pile Installation Phase 1 Vibration Monitoring Program

1.0 INTRODUCTION

CH2MHill in association with KGS Group and SNC-Lavalin was retained by City of Winnipeg to upgrade the South End Water Pollution Control Centre (SEWPCC) Upgrading/Expansion Project. A geotechnical site investigation program was defined in the SEWPCC Technical Memorandum 7A (TM7A) Project Definition. The purpose of the geotechnical site investigation was to determine subsurface soil, bedrock and groundwater conditions at the site in order to provide geotechnical recommendations for the foundations design of the proposed new expansion structures and related works.

Based upon the TM7A, KGS Group has completed the geotechnical site investigation for the SEWPCC Upgrading/Expansion Project. The main components of the geotechnical investigation consisted of:

- 1. Review of all pertinent background information including previous reports/studies, Manitoba Water Stewardship's GWDrill database, aerial photos and site photos with respect to the SEWPCC Upgrading/Expansion Project.
- 2. A geotechnical field investigation consisting of pushing five (5) Cone Penetration Testing with pore pressure response (CPTU) holes, drilling ten (10) test holes with two (2) test holes completed to power auger refusal in till and three (3) of them extended approximately two (2) to three (3) meters into bedrock underneath the till.
- 3. A groundwater level monitoring program was established for monitoring the groundwater conditions within the overburden soils, till, sand and gravel layers and bedrock with a total installation of eight (8) Casagrande Standpipes (5 in the glacial till/sand and gravel layers, and 3 in the bedrock) and six (6) pneumatic piezometers within the overburden soils.
- 4. A diagnostic laboratory testing program on selected soil samples.
- 5. A comprehensive review and analysis based upon all the findings obtained from the field investigation and groundwater monitoring for the foundation assessment.
- 6. A detailed report outlining the field and laboratory results, alternate foundation options, and geotechnical recommendations for the proposed new expansion structures and their related works of the SEWPCC Upgrading/Expansion Project.

1.1 FINAL REPORT REV.1 – ADDITIONAL INFORMATION

PDA Test Results

In addition to the TM7A, a dynamic load testing on seven (7) pre-cast pre-stressed concrete test piles using the Pile Driving Analyzer (PDA) system was conducted on January 30, 2014. A letter report including the results of the PDA pile load testing was submitted on February 24, 2014 and also included in Appendix B.

The results of the PDA tests on the 406 mm hexagonal pre-cast pre-stressed concrete piles showed the piles can be driven to achieve a total mobilized resistance ranging from 2,100 kN to 2,650 kN. It is therefore, the design of the piles should be based on unfactored unit resistance for pre-cast pre-stressed concrete piles of 2,100 kN with an applicable geotechnical resistance factor, Φ , of 0.5. Based on the PDA pile load testing results, the Driven Pre-Stressed Pre-Cast Concrete Pile Capacity Table in Section 5.2 has been adjusted accordingly.

KGS Group recommends full time on-site pile inspection and PDA tests on 5% to 10% representative production piles should be performed during pile driving operation installation as part of the quality control and quality assurance program that was addressed in Section 5.8.

Phase I Vibration Monitoring Results

During the installation of the seven (7) pre-cast pre-stressed concrete test piles, KGS Group conducted the phase I vibration monitoring program on January 29, 2014. The purpose of this vibration monitoring program is to provide data on vibration attenuation for use in the future during construction and pile installation. The results of the phase 1 vibration monitoring program are included in Appendix C.

Based on the vibration monitoring results, it is unlikely that vibration-induced structural or aesthetic damage would occur to adjacent structures during pile installation. However, KGS Group recommends Phase II vibration monitoring program should be conducted throughout the pile driving operation as part of the quality control and quality assurance program that was addressed in Section 5.8.

1.2 FINAL REPORT REV.2

Table on Pages 13 and 22 has been changed as below:

DRIVEN PRE-STRESSED PRE-CAST CONCRETE PILE CAPACITY (AFTER PDA PILE LOADING TESTING)

Pile Diameter	Factored Serviceability Limit State (SLS) Pile Loading Capacity*	Factored Ultimate Limit State (ULS) Pile Loading Capacity*	Final Set (Blows per 25 mm)**		
300 mm	555 kN	650 kN	5		
350 mm	780 kN	900 kN	8		
400 mm	1050 kN	1200 kN	12		

* A Geotechnical Resistance Factor (Φ) of 0.5 is applied.

** If higher energies or other types of hammers are used, they should be evaluated to ensure that piles are not overstressed and suitable refusal criteria to be determined.

Note that the ultimate pile capacity (ULS) value for the 400 mm diameter precast concrete pile was conservatively estimated to be 2,400 kN which was based the PDA test results, the CPT test results and KGS experience. A geotechnical factor of 0.5 was applied to achieve a factored ULS of 1,200 kN.

1.3 FINAL REPORT REV.3

The final report is reissued with the following documents in the Appendices were signed and sealed.

- Appendix B: Pile Load Capacity Verification PDA Test Results
- Appendix C: Vibration Monitoring for the SEWPCC Test Pile Installation Phase 1 Vibration Monitoring Program.

2.0 BACKGROUND

2.1 GENERAL

The SEWPCC Upgrading/Expansion project will meet the growing needs of the City of Winnipeg and address increased environmental performance standards requirements. This is the first major project of the Winnipeg Sewage Treatment upgrading program and is part of an overall plan to deliver quality performance and value in the provision of wastewater infrastructure to Winnipeg.

Figures 01 and 02 illustrated the general site plan and layout plan (existing structures, proposed new and proposed future structures) of the SEWPCC Upgrading/Expansion project. Major proposed new structures include:

- 1. Grit and Screenings Handling and Truck Loading areas,
- 2. Grit Expansion and Gallery areas,
- 3. High Rate Clarification of Wet Weather Flow,
- 4. Two (2) 45.7 m diameter Secondary Clarifiers Units,
- 5. UV Expansion Building,
- 6. Three (3) Bioreactors Units and associated Structures,
- 7. Odour Treatment Building, and
- 8. By-pass Pipes.

At this stage, the foundation assessment for the proposed future structures (see Figure 02) is out of the scope of work of the TM7A Project Definition and therefore is not included in this report. No major changes in final site grading are anticipated for this expansion.

2.2 GEOTECHNICAL REVIEW

Geotechnical review as conducted for the SEWPCC Upgrading/Expansion Project included:

- 1. Geohydrology of the metropolitan Winnipeg Area as Related to Groundwater Supply and Construction, by Frank Render, Canadian Geotechnical Journal, Volume 7, 1970.
- 2. Report on Subsoil Investigation Proposed South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. March 8, 1971.
- 3. Report on Installation of Test Caissons at South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. March 24, 1971.

- 4. Test Holes Drilled at Outfall Stage Associated with South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. April 14, 1971.
- 5. Report on Solution to Problems in Connection with Control of Groundwater & Excavation at the South End Water Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. September 28, 1971.
- 6. Report on Excavation & Groundwater Control for Pump Well Excavation of the South End Water Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. November 1, 1971.
- 7. Groundwater Resources in South St. Vital and Northern R.M. of Ritchot, Province of Manitoba Department of Mines, Resources, and Environmental Management, Water Resources Division, 1975.
- 8. Geological Engineering Report for Urban Development of Winnipeg, Department of Geological Engineering, The University of Manitoba, February 1983.
- 9. Geotechnical Engineering Report South End Water Pollution Control Centre, Dyregrov and Burgess, April 15, 1988 (Soil logs 1 to 12 only).
- 10. Geotechnical Report Proposed Disinfection Building South End Water Pollution Control Centre, City of Winnipeg, Dyregrov Consultants, February 1998 (Soil logs 1 to 3 only).
- 11. Geotechnical Report South End Water Pollution Control Centre, Proposed Expansion, Dyregrov Consultants, February 2008.

The above existing geotechnical information is not included in this document, but is available upon request. However, all the test hole locations within the property of SEWPCC are shown on Figures 01 and 02.

3.0 FIELD INVESTIGATION PROGRAM

3.1 TEST HOLE DRILLING AND SAMPLING PROGRAM

A drilling and sampling program consisting of conventional drilling and Cone Penetration testing with pore pressure response (CPTU) was completed between November 18 and 27, 2013 for the SEWPCC Upgrading/Expansion project. Drilling services were provided by Paddock Drilling Ltd. of Brandon, Manitoba, with continuous KGS Group supervision. Locations of the test holes and the CPTU holes are shown on Figures 01 and 02. Prior to the drilling operation, a Job Safety Analysis (JSA) was prepared and submitted to the City of Winnipeg for review and approval. On-site utilities clearance was conducted.

A total of ten (10) test holes and five (5) CPTU holes were conducted. All CPTU holes were pushed and tested to refusal between depths of 15.9 m \pm (El. 216.0 m, CPT13-07) and 18.3 m \pm (El 214.4 m, CPT13-05). Five (5) test holes were advanced to power auger refusal in till to depths between 17.4 m \pm (El. 214.5 m, TH13-13) and 23.5 m \pm (El. 208.5 m, TH13-14) and three (3) of the five test holes (TH13-02, TH13-03 and TH 13-13) were extended 2.0 m \pm to 2.7 m \pm into bedrock underneath the till between depths of 22.0 m \pm (El. 209.9 m, TH13-13) and 22.9 m \pm (El. 209.9 m, TH13-03). Five (5) 12.2 m deep test holes (TH13-08 through TH13-12) were drilled along the proposed by-pass pipe vicinity areas. The CPTU holes and the test holes were advanced using a truck mounted B-59 drill rig and Acker SS drill rig with 125 mm diameter solid stem continuous flight augers. The bedrock was cored with an HQ (63 mm diameter) sized core barrel.

Representative soil samples were obtained in all test holes at 1.5 m (5 ft) intervals, or at any change in soil strata. Soil samples were collected directly off the auger flights and visually classified in the field following the Unified Soil Classification System (USCS). Clay samples were tested with a field Torvane to evaluate consistency and estimate the undrained shear strength. Standard Penetration Tests (SPT's) were performed in the till to determine its relative in-situ density. Upon completion of the drilling, each test hole was examined for indications of sloughing and seepage.

All power auger refusal test holes were backfilled with bentonite grout in the overburden soil layer. The bedrock-cored test holes were backfilled with grout seal through the bedrock, till and up into the overburden. The shallow test hole were backfilled with bentonite chips at the top and bottom of the hole, and auger cuttings in the middle.

Detailed summary soil logs incorporating all field observations plus instrumentation installation details and the CPTU logs are provided in Appendix A.

3.2 INSTRUMENTATION

A total installation of eight (8) Casagrande Standpipe piezometers (5 in the glacial till/sand and gravel layers, and 3 in the bedrock) were installed to obtain direct groundwater measurements. In addition, six (6) pneumatic piezometers were installed within the overburden clays. These piezometers were used for groundwater monitoring within the overburden soils, till, sand and gravel layers, and bedrock of the SEWPCC Upgrading/Expansion project site prior to and during the construction period. Details of the piezometer installations are provided on the test hole logs in Appendix A.

3.3 LABORATORY TESTING

A diagnostic laboratory testing program was performed on representative soil samples to determine the engineering properties of the subsurface soils relative to the assessment. Diagnostic testing included forty one (41) moisture content, five (5) Atterberg Limits, and six (6) grain size analyses. The results of the testing are shown on the test hole logs and included in Appendix A.

4.0 SITE STRATIGRAPHY AND GROUNDWATER CONDITIONS

4.1 SITE STRATIGRAPHY

In general, the stratigraphy at the site consisted of various thicknesses of fill and topsoil, underlain by lacustrine clay, glacial till, layers of sand and gravel, and limestone bedrock.

4.1.1 Topsoil and Fills

Topsoil and fills were encountered up to a depth of 1.5 m \pm (TH13-02). The topsoil consisted mainly of black organic clays. The fills were silty clays which were brown in colour, moist, stiff in consistency, intermediate to high plasticity, with a trace of coarse grained sand and gravel. The depth of fill ranged from 0.4 m \pm (TH13-09) to 1.5 m \pm (TH13-02).

4.1.2 Silty Clay

Silty clay was encountered underneath the fill materials to Elevations between 216.2 m \pm (TH13-13) and 219.1 m \pm (TH13-03) or to depths of 13.7 m (TH13-03) and 15.7 m (TH13-13) below ground surface. The silty clay was of high plasticity, was brown to grey in colour, moist, stiff to firm in relative consistency to depths of 6 m \pm to 8 m \pm , then becoming softer with depth, and contained trace amounts of silt nodules and till inclusions. The undrained shear strength of the silty clay, determined from the field Torvane on disturbed auger cutting samples, ranged from 90 kPa near top of the layer to 20 kPa near the till contact.

The Moisture content ranged from 41.5% to 63.1%, with an average of 51.0%. Atterberg Limit testing of five (5) samples indicated a liquid limit of 81% to 99% and a plasticity index of 54% to 66% with the materials being classified as CH, Fat Clay. Note that, in general, the Winnipeg lacustrine clays are considered highly expansive in nature, which means there is a significant potential to swell or shrink under changing groundwater conditions. The clay is also soft and compressible below the 8 m depth.

In the upper zone of the silty clay soil profile, in eight (8) of the ten (10) drilled test holes, contained a silt layer of variable thicknesses up to 0.5 m \pm (TH13-11), beginning at depths

between 0.4 m \pm and 2.4 m \pm below grade. Various thicknesses of silt layers were also identified from the CPTU results up to a depth of 2.5 m \pm (CPTU13-04, CPTU13-05 and CPTU13-06) below surface.

4.1.3 Silt Till (Glacial Till)

Till was encountered below the silty clay at Elevations between 216.2 m \pm (TH13-13) and 219.1 m \pm (TH13-03). The till was light grey in colour, moist to wet, and compact to very dense in relative density based upon Standard Penetration Tests (SPT) in the till. The till matrix was dominated by silt with some fine to coarse grained gravel, some coarse to fine grained sand, a trace of clay and occasional cobbles and boulders. Power auger refusal was encountered in the dense till between Elevations of 213.5 m \pm and 214.5 m \pm . The Moisture content ranged from 7.7% to 20.3%, with an average of 14.6%. Grain size analyses of select samples consisted of 0.4% to 14.1% gravel sized particles, 24.6% to 45.8% sand sized particles and 42.3% to 72.5% silt and clay sized particles. Uncorrected SPT blow counts (N) ranged from 11 to 23 at the clay-till interface and increased with depth to N values ranged from 34 to 38. The results of the SPT testing are included in the soil logs in Appendix A.

4.1.4 Sand and Gravel Layers

Layers of sand and gravel were encountered underlying the glacier till between Elevations 212.0 $m\pm$ (TH13-14) and 214.5 $m\pm$ (TH13-03 and TH13-13). The sand and gravel were brown in colour, fine to coarse grained, moist to wet, and compact. Power auger refusal was encountered at the interface of the till with the sand and gravel layers in TH13-02, TH13-03 and TH13-13 (between El. 213.5 $m\pm$ and 214.5 $m\pm$) and in the sand and gravel layers in TH13-14 and TH13-15 (between El. 208.4 $m\pm$ and 209.4 $m\pm$).

4.1.5 Limestone Bedrock

The sand and gravel layers was underlain by limestone bedrock with the top of the bedrock surface ranging from 19.5 m \pm (TH13-02) to 20.9 m \pm (TH13-032) below ground or at approximately Elevations 212.0 m \pm (TH13-02, TH13-03 and TH13-13). In general, the bedrock encountered in this upper zone was highly fractured. Tightly spaced horizontal and vertical

fractures were observed throughout the bedrock deposit, which is typical of bedrock conditions in Winnipeg and the surrounding area. Localized clay infilling was observed at some joint locations. Rock Quality Designation (RQD) values generally ranged from 0% to 60% resulting in a description of the bedrock quality as Very Poor to fair as summarized in the table below. Detailed Geological Fracture Logs were included in the test hole logs and the rock core photos were included in Appendix A.

TH 1	3-02	TH 13	3-03	TH 13-13			
Depth RQD		Depth RQD		Depth	RQD		
19.1 – 19.8 m	35	18.6 – 19.8 m	0	17.4 – 18.3 m	0		
(62.5' – 65.0')	(62.5' – 65.0') Poor		(61.0' – 65.0') Very Poor		Very Poor		
19.8 – 21.3 m 37		19.8 – 21.3 m	13	18.3 – 19.8 m	0		
(65.0' – 70.0')	Poor	(65.0' – 70.0')	Very Poor	(60.0' – 65.0')	Very Poor		
21.3 – 22.3 m	0	21.3 – 22.9 m	60	19.8 – 21.3 m	45		
(70.0' – 73.0')	(70.0' – 73.0') Very Poor		Fair	(65.0' – 70.0')	Poor		
				21.3 – 21.9 m	37-38		
				(70.0' – 72.0')	Poor		

Based on our previous experience in having completed numerous coring investigations as well as design and construction inspection of deep foundations in Winnipeg, the limestone bedrock conditions can be highly variable over a given project site. The upper bedrock surface can be karstic and solutioned with crevasses and depressions in the bedrock surface, fractures which are infilled with shattered rock, rubble, and soil which can occur locally and unpredictably within the deposit. Zones of highly fractured and soft rock as well as voids and solution deeper cavities within the bedrock are also not uncommon.

4.2 GROUNDWATER CONDITIONS

Groundwater readings were taken on December 5, 2013, approximately two (2) weeks after completion of the geotechnical field investigation, and again on January 13, 2014. The piezometric monitoring results are summarized in Table 1. Groundwater levels in the silty clays ranged from Elevations of 225.0 m \pm (TH13-13) to 227.3 m \pm (TH13-13). Measured piezometric levels in the till and the sand and gravel layers were at Elevations of 223.3 m \pm (TH13-14) to 225.0 m \pm (TH13-02). Piezometric levels in the limestone bedrock ranged from Elevations of 224.7 m \pm (TH13-03). Groundwater elevations vary seasonally and annually such that actual levels at the site may differ from those identified in this report.

Review of bedrock hydrographs from the Provincial Groundwater Monitoring Wells in Winnipeg areas show that there has been a trend toward higher groundwater levels since 1970. Typical potentiometric groundwater surface of the aquifer in the SEWPCC site has varied between approximately El. 222.5 m \pm to El. 225.5 m \pm , or 8 m \pm to 10 m \pm below ground surface, depending on the seasons, consistent with our groundwater level monitoring results. However, based on available long-term Provincial monitoring data, seasonal peaks in groundwater piezometric pressures in the region may be as high as El. 226.5 m \pm to El. 227.5 m \pm , such as during spring flood conditions.

5.0 FOUNDATION CONSIDERATIONS

Geotechnical site investigations have been conducted previously in 1970, 1971, 1988 and 2007 for the initial design and construction, as well as for the 1988 and 2007 expansions, with over 50 test holes and two test caissons drilled within the property of the SEWPCC site. Most of the test holes were drilled to till with a high percentage of them terminated at power auger refusal in till. Some were drilled into the bedrock in the vicinity of the existing wet well and pump house locations.

The 2008 Dyregrov Geotechnical Report for the SEWPCC expansion stated that "the geotechnical conditions are best suited to use of hexagonal, pre-stressed, precast concrete piles that are driven to practical refusal in the underlying glacial till. These have been the type of pile which has been used to support the majority of the structures for the existing plant. The variable condition of the glacial till deposit and potential problems related to water seepage and bell instability are factors that render the site unsuitable for widespread use of high capacity cast-in-place concrete caissons and this type of foundation is not recommended."

It is our understanding that all the proposed heavily loaded new structures for the SEWPCC Upgrading/Expansion project would be supported by driven end bearing piles to practical refusal in the underlying glacial till. The driven piles could be either precast concrete piles or steel H piles. At this stage, for the proposed heavy loading structures, other foundation types such as end bearing cast-in-place caissons and rock socketed caissons are not considered due to the poor upper bedrock conditions and the previously well documented possible groundwater blowout conditions during construction.

5.1 LIMITED STATES DESIGN

Effective October 1, 2012, the City of Winnipeg requires that all foundation design be done in accordance with Limit States Design (LSD) as prescribed in the Manitoba Building Code (MBC) 2011 Edition. The foundation considerations as described in this report follow the LSD guidelines.

Limit States Design requires consideration of two main loading states which are the Ultimate Limit States and the Serviceability Limit States. The Ultimate Limit States (ULS) are primarily concerned with collapse mechanisms of the structure and safety, while the Serviceability Limit States (SLS) present conditions or mechanisms that restrict or constrain the intended use, function or occupancy of the structure under expected service or working loads. Settlements are typically the constraint. For pile foundation design, each loading state prescribes Geotechnical Resistance Factors (Φ) that are based upon the method used to evaluate pile capacity during construction to obtain the Factored Serviceability Limit State (SLS) and Factored Ultimate Limit State (ULS) pile capacity values. A Geotechnical Resistance Factor (Φ) of 0.5 is applied after the PDA pile loading testing.

5.2 DRIVEN PRESTRESSED PRECAST CONCRETE PILES

Hexagonal, pre-stressed, pre-cast concrete end bearing piles are used extensively in Winnipeg and may be assigned with the following factored Ultimate Limit state (ULS) and Serviceability Limit State (SLS) pile loading capacities when driven to practical refusal on the underlying till or bedrock with diesel hammers having a rated energy per blow of not less than 40,000 Joules to final set as follows:

Pile Diameter	Factored Serviceability Limit State (SLS) Pile Loading Capacity*	Factored Ultimate Limit State (ULS) Pile Loading Capacity*	Final Set (Blows per 25 mm)**		
300 mm	555 kN	650 kN	5		
350 mm	780 kN	900 kN	8		
400 mm	1050 kN	1200 kN	12		

DRIVEN PRE-STRESSED PRE-CAST CONCRETE PILE CAPACITY (AFTER PDA PILE LOADING TESTING)

* A Geotechnical Resistance Factor (Φ) of 0.5 is applied.

** If higher energies or other types of hammers are used, they should be evaluated to ensure that piles are not overstressed and suitable refusal criteria to be determined.

Piles can typically be cast in lengths ranging from 10 to 18 m. Pre-boring of a slightly oversized pilot hole typically 50 mm greater than the pile size to approximately 3.0 to 4.0 m below grade at all driven pile locations is considered standard construction practice in Winnipeg to allow for setting up of the piles, and to reduce ground vibration and potential ground heave in large pile groups. If significant squeezing or sloughing of the bore hole occurs during pre-boring then the pre-boring depth may be altered accordingly. To minimize potential rebound or pile heave during driving, the spacing between adjacent piles should be a minimum of three (3) pile diameters from centre to centre. Careful attention will be required during driving, especially as the pile tip approaches bedrock/refusal, to avoid breaking the pile.

It should be assumed by the designer that the tensile strength of these piles is minimal and they have little capacity to the resist bending. The age of the precast pile concrete should be specified to be at least seven days old prior to driving.

5.3 DRIVEN STEEL PILES

Driven steel piles may be used where high load carrying capacity is required or in areas close to the existing building to minimize possible damages by ground vibration causing by driven precast piles, but they are not generally used locally for light and medium loads. Steel H piles driven to practical refusal on the underlying till or bedrock may be assigned a factored ULS capacity of 100 MPa and a factored SLS capacity of 80 MPa, multiplied by the cross sectional area of the steel. Driving shoes should be used for all driven steel piles. It is cautioned that steel H piles typically drive through the till into the bedrock and it can be difficult to determine when adequate resistance (usually skin friction and end bearing) has been achieved. Dynamic pile analysis and PDA testing is required to optimize the actual design of this type of pile.

Full time inspection by experienced geotechnical personal during driving of either precast concrete or steel piles is recommended. A minimum 200 mm void form should be used below all grade beams and pile caps to protect against potential uplift from swelling clay and potential frost heave below perimeter grade beams.

5.4 ADDITIONAL RECOMMENDATIONS FOR DRIVEN PILES

A geotechnical resistance Factor (Φ) of 0.4 was applied to the above noted factored ULS and SLS values based upon the laboratory and in-situ test results. However, analyses with the dynamic and static pile loading testing results can increase the geotechnical resistance factor (Φ) from 0.4 to 0.5 or 0.6 respectively. As the results, the factored ULS and SLS pile capacity values can be increased by 25% (with Φ = 0.5) when PDA testing is completed or by 50% (with Φ = 0.6) if static pile load tests are performed when the tests show positive results. This could reduce the foundation cost by reducing the number of structure piles.

As per the '2008 design' (IFAS BNR Option), over 2,300 structure piles were required for the SEWPCC Upgrading/Expansion project. The cost of the structure piles is estimated to be about \$4,000 per pile in 2013 (supply and install). If the dynamic and static pile loading testing results show positive results and the pile capacity values could be increased by 25%, this may result in a reduction of 15% to 20% of the required piles with a saving of 1.5 to 1.6 million dollars of the piling cost for the foundations.

KGS Group therefore recommends conducting Pile Driving Analyzer (PDA) testing and/or static pile load tests to confirm the loading capacity of the driven piles and to allow for the use of higher resistance factors in design. Preferably, these tests should be conducted at the preliminary stage of the foundation design, right after the geotechnical field investigation program. Results of the tests will be used to confirm and to finalize the foundation design for the proposed new structures. If either PDA testing or static load testing is undertaken, they should be completed under the supervision of an experienced geotechnical engineer and KGS Group should review the results of any testing and pile capacities.

KGS Group recommends conducting the pile load testing in two (2) stages. Stage I pile loading test will be to conduct PDA testing followed by CAPWAP analysis for six (6) piles driven on site prior to the preliminary foundation design to confirm the ULS values and to allow for a geotechnical resistance factor of Φ = 0.5 to be applied to the foundation design. If the PDA testing results suggest positive results for the ultimate pile capacity, KGS Group would recommend the Stage II pile loading test with one (1) to three (3) static pile load tests completed to allow a higher geotechnical resistance factor of Φ = 0.6 to be applied to the foundation design.

Seven (7) Pile Driving Analyzer (PDA) tests had been conducted at the locations of the new proposed structures including the clarifier (2 PDA tests), the bioreactors (2 PDA tests), and high rate clarification (3 PDA tests) on January 30, 2014. The preliminary results indicated that the total pile capacity of the 400 mm diameter precast concrete piles ranged from 2,100 kN to 2,650 kN. Driving stresses were well within acceptable limits. The final PDA test results are included in Appendix B.

Downdrag is not a design issue unless fill is being placed but we understand no major changes to site grading are anticipated at this time.

5.5 CAST-IN-PLACE CONCRETE CAISSONS

As mentioned before, at this stage, other foundation types for heavy loaded structures such as end bearing cast-in-place caissons and rock socketed caissons are not recommended due to the poor upper bedrock conditions and the possible groundwater blowout conditions during construction.

5.6 CAST-IN-PLACE CONCRETE FRICTION PILES

Lightly loaded structures can be supported on cast-in-place concrete friction piles which can be designed on the basis of skin friction values with a factored ULS capacity of 20 kPa and a factored SLS capacity of 16 kPa. The top three (3) meters of shaft support should not be accounted for due to potential soil shrinkage around the pile. A minimum pile diameter of 600 mm should be specified. Temporary casings should be used if caving and seepage conditions occur during pile boring and installation. A mixture of skin friction piles and end bearing piles is not recommended, nor groups of skin friction piles.

Foundations which might be subject to freezing conditions should be protected from frost heave effects. The use of flat lying rigid insulation, such as Styrofoam HI, is recommended to prevent frost penetration into the soil around the piles. Alternatively, the pile lengths should be a minimum of eight (8) meters and should contain full length reinforcement regardless of design loads.

5.7 RECOMMENDED FOUNDATION TYPE

Detailed loading requirements of the proposed new structures as mentioned in Section 2.1 were not provided to KGS Group prior to the preparation of this report. However, each of the above foundation types will be suitable to support the proposed new structures with the optimum being a function of the required foundation capacity. Potential settlements with all of the pile types considered in this report are anticipated to be within generally acceptable limits for structures.

Where pre-stressed, precast concrete piles form the foundations, it will be preferable to resist lateral loads with battered piles. In addition, it is recommended that all concrete piles utilize CSA Type HS sulphate resistant cement. Verical steel piles can be designed to resist lateral loads but local practice is generally to batter these piles as well.

5.8 QUALITY CONTROL AND QUALITY ASSURANCE PROGRAM

KGS Group recommends the following quality control and quality assurance (QC/QA) programs for the SEWPCC Upgrading/Expansion project. These programs should be implemented during pile driving for the foundation construction. The QC/QA programs will consist of:

- 1. On-site pile inspection during the pile driving operation as recommended in Section 5.3. This QC/QA program will provide the pile driving records of all the piles and produce progress reports for the pile driving operation during construction.
- 2. In additional to the PDA pile load testing mentioned in Section 5.4, PDA testing should be conducted for the pile installation during foundation construction on a minimum 3% of the driven piles to confirm the loading capacity. The PDA testing will also measure/confirm the rated driving energy of the pile hammers, detect any possible broken pile conditions, and allow for establishment of appropriate refusal criteria.
- 3. Vibration monitoring for the existing structures during pile driving is recommended. The vibration monitoring will consist of two (2) phases. Phase I is to develop the tolerance criteria and attenuation curves that will be used to identify any areas of concern during the pile driving operation. Phase II is an ongoing vibration monitoring program throughout construction. KGS Group maintains all equipment and expertise in house. Phase I vibration monitoring can be conducted during the Pile Driving Analysis (PDA) Testing as mentioned in Section 5.4.

5.9 EXCAVATIONS AND TEMPORARY SHORING

Deep excavations will be required for the majority of the proposed new major structures of the SEWPCC Upgrading/Expansion project. Where structures are located in the open areas, it may be possible to used sloped excavations. Structures adjacent to the existing buildings will require a temporary shoring system. Because excavations and temporary shoring will impact on the construction activities and schedules, KGS Group recommends that the successful contractor be required to submit an excavation and temporary shoring plan which should be prepared by a Manitoba registered Professional Engineer who is skilled in these designs. Design and approval should be followed by regular onsite inspections for stability.

It is our understanding that some of the proposed new major structures of the SEWPCC Upgrading/Expansion project require excavation and construction of project components at invert elevations to approximately El. 225.0 m. Given that the documented typical groundwater piezometric pressures in the bedrock are reported to range from El. 222.5 m \pm to El. 225.5 m \pm , the groundwater monitoring results of piezometer levels ranged from El. 223.3 m \pm to 224.7 m \pm in the till and the sand and gravel layers, and given a proposed deep construction invert elevation of El. 225.0 m \pm , there may not be any specific groundwater depressurization requirements associated with the project. However, the excavation and temporary shoring plan should recognize the potential for possible bottom heave of the deeper excavations due to the hydrostatic groundwater pressures within the underlying glacier till, sand and gravel layers and bedrock. The established groundwater monitoring program will be continued to provide groundwater readings for the design of excavation and temporary shoring during construction.

The design of the excavation and temporary shoring should review the soil stratigraphy and piezometric conditions which might prevail at the time of construction. The presence of the silt deposit within the upper portion of the overburden should be considered as sloughing and seepage of exposed excavation faces should be expected during periods of heavy rainfall. Particular attention should be paid to the temporary shoring system adjacent to the existing major structures and facilities. For the preliminary design purposes, the temporary shoring system can be designed on the basis of the active and passive lateral earth pressure coefficients of $K_a = 0.6$ and $K_p = 2.5$ respectively. Ground movement behind the temporary shoring system will occur and largely be unavoidable. The amount that will occur cannot be

predicted with much accuracy mainly because the ground movement is a function of excavation procedures and workmanship.

5.10 LATERAL EARTH PRESSURE FOR FINAL BACKFILL

Backfill around the proposed new structure walls and any retaining walls should be a clean granular pitrun material with less than 5% fines (passing the #200 sieve). The granular backfill should be compacted uniformly in maximum 150 mm lifts to a density of at least 98% Standard Proctor Maximum Dry Density (SPMDD). The top meter of the backfill should consist of well compacted high plasticity clay to reduce surface runoff infiltration. In addition, the base of the walls should be provided with a filter protected drainage system to prevent hydrostatic pressures build up against walls. Where drainage is not provided, the hydrostatic pressures against wall should be assumed with a groundwater level to be at the surface.

For design purpose, the following lateral earth pressure coefficients are recommended for earth resistance pressures of the retaining structure design.

LATERAL EARTH PRESSURE COEFFICIENTS Well Graded Compacted Granular (Φ = 35°)							
Active Earth Pressure Coefficient 0.27							
Passive Earth Pressure Coefficient	3.69						
At 'Rest' Earth Pressure Coefficient	0.42						

Surface live loads should be included if a significant loading is applied within a distance equal to the height of the wall. The lateral earth pressure due to the surface live load should be equal to 50 percent of the vertical pressure due to the surface live load.

5.11 FLOOR SLAB

The proposed new structures may contain floors which may consist of either a slab-on-grade or structural slab construction. The following design is recommended for a slab-on-grade floor:

• Sub-excavate (if required) to the subgrade design elevation and perform proof roll compaction to expose any soft spots. If any soft spots are encountered the in-situ soil

should be sub-excavated a minimum 600 mm depth and replaced with compacted granular subbase.

- A minimum 150 mm thick layer of granular base and 300 mm thick layer of subbase should be placed immediately below the slab. All granular should be placed in a maximum 150 mm thick lifts and compacted to 98% Standard Proctor Maximum Dry Density (SPMDD). Granular base and subbase materials should be in accordance with standard City of Winnipeg specifications.
- Depending on the elevations of the foundations, provisions for groundwater control in the vicinity of the foundations may need to be included. The system should include a perimeter and under-floor weeping tile system around the perimeter of the foundations and under the foundations floor leading to a facility sump pit.
- Some movements, potential cracking, and/or differential settlement of the concrete slab is likely to occur with grade supported slabs due to the expansive (swelling and shrinking) nature of the underlying clay.

For structurally supported floor slabs, the slabs should be separated from the underlying subgrade soils by a minimum 200 mm void space (void form) to minimize potential heave due to possible swelling of the underlying clay soils.

5.12 PAVEMENT CONSIDERATIONS

The following is recommended for the construction of pavement at the site:

- Sub-excavate the surfacial soils to the subgrade design elevation and perform proofroll compaction of the granular fill or silty clay subgrade. Areas that exhibit unsuitable deflection (organic matter and concrete waste) or if unsuitable soils such as silt and soft clays are encountered; they should be sub-excavated an additional 600 mm and replaced with compacted granular subbase.
- For lightly loaded areas a minimum thickness of 300 mm of granular subbase and 150 mm of granular base is recommended with a minimum of 75 mm asphalt pavement.
- For heavily loaded areas a minimum thickness of 450 mm granular subbase and 150 mm granular base is recommended with a minimum of 100 mm asphalt pavement. Granular base and subbase should be placed in maximum 150 mm thick lifts and compacted to 98% SPMDD.
- A light weight non-woven geotextile should be placed as separator on the top of the sub-grade soil prior to placing sub-base and base courses.
- The final ground elevation around the perimeter of the building should be sloped away at a minimum 2% grade, to protect against surface water ponding.

6.0 CONCLUSIONS

- 1. In general, the stratigraphy at the site consisted of various thicknesses of fill and topsoil overlaying lacustrine clay, glacial till, sand and gravel layers and limestone bedrock.
- 2. Groundwater levels in the silty clays ranged at Elevations of 225.0 m± (TH13-13) to 227.1 m± (TH13-15). Measured piezometric levels in the till and the sand and gravel layers were at Elevations of 223.3 m± (TH13-14) to 224.7 m± (TH13-02). Piezometric levels in the limestone bedrock ranged from Elevations of 223.9 m± (TH13-13) to 224.6 m± (TH13-03). The established groundwater monitoring program will be continued to provide groundwater readings for the design of excavation and temporary shoring during construction.
- 3. It is our understanding that some of the proposed new major structures of the SEWPCC Upgrading/Expansion project require excavation and construction of project components at invert elevations to approximately El. 225.0 m. Given that the documented typical groundwater piezometric pressures in the bedrock are reported to range from El. 222.5 m± to El. 225.5 m±, given that the groundwater monitoring results of piezometer levels ranged from El. 223.3 m± to 224.7 m± in the till and the sand and gravel layers, and given a proposed deep construction invert elevation of El. 225.0 m±, there may not be any specific groundwater depressurization requirements associated with the project.
- 4. All the proposed heavy loading new structures for the SEWPCC Upgrading/Expansion project could be supported by driven end bearing piles to practical refusal in the underlying glacial till or bedrock. The driven piles could be either precast concrete piles or steel H piles. At this stage, for the proposed heavy loading structures, other foundation types such as end bearing cast-in-place caissons and rock socketed caissons are not considered due to the poor upper portion/zone bedrock conditions and the possible groundwater blowout conditions during construction.

7.0 **RECOMMENDATIONS**

- 1. Depending on the elevations of the foundations and the season during construction, utilizing a de-watering system to control the possible high groundwater conditions may be required during the excavation for the major structures.
- 2. Should temporary shoring or bracing of excavations be necessary, then the in-situ silty clay may be assigned active and passive lateral earth pressure coefficients of $K_a = 0.6$ and $K_p = 2.5$. The excavation and temporary shoring plan should assess the potential for base heave of the temporary excavation.
- 3. The proposed major new structures for the SEWPCC Upgrading/Expansion project should be supported by foundations end bearing on the underlying till, sand and gravel layers or limestone bedrock. Suitable foundation types for consideration include driven precast concrete piles and driven steel piles. Lightly loaded structures could be supported on cast-in-place concrete friction piles. The optimum foundation type is a function of the required load carrying capacity.
- 4. Based on the PDA test results, the pre-stressed pre-cast concrete piles may be assigned load capacities as listed below:

Pile Diameter	Factored Serviceability Limit State (SLS) Pile Loading Capacity*	Factored Ultimate Limit State (ULS) Pile Loading Capacity*	Final Set (Blows per 25 mm)**		
300 mm	555 kN	650 kN	5		
350 mm	780 kN	900 kN	8		
400 mm	1050 kN	1200 kN	12		

DRIVEN PRE-STRESSED PRE-CAST CONCRETE PILE CAPACITY (AFTER PDA PILE LOADING TESTING)

* A Geotechnical Resistance Factor (Φ) of 0.5 is applied.

** If higher energies or other types of hammers are used, they should be evaluated to ensure that piles are not overstressed and suitable refusal criteria to be determined.

5. Driven steel piles may be assigned a factored ULS capacity of 100 MPa and a factored SLS capacity of 80 MPa, multiplied by the cross sectional area of the steel, when driven to practical refusal on the underlying till or bedrock. Driving shoes should be used for all driven steel piles.

- 6. Lightly loaded structures can be supported on cast-in-place concrete friction piles which can be designed on the basis of skin friction values with a factored ULS capacity of 20 kPa and a factored SLS capacity of 16 kPa. The top three (3) meters of shaft support should not be accounted for due to potential soil shrinkage around the pile. A minimum pile diameter of 600 mm should be specified. Temporary casings should be used if caving and seepage conditions occur during pile boring and installation. However, a mixture of skin friction piles and end bearing piles, and groups of skin friction piles are not recommended.
- 7. End bearing cast-in-place caissons and rock socketed caissons are not recommended due to the poor upper portion/zone bedrock conditions and the potential groundwater blowout conditions during construction.
- 8. Lateral loads of either precast concrete or steel piles should be resisted with battered piles.
- 9. Two stages of pile load testing is recommended to allow for increased geotechnical resistance factors to be applied to pile design. Stage I pile loading test will conduct PDA testing followed by CAPWAP analysis for six (6) piles driven on site prior to the preliminary foundation design to confirm the ULS values and to allow for a geotechnical resistance factor of $\Phi = 0.5$ to be applied to the final foundation design. If the PDA testing results suggest positive results of the ultimate pile capacity, Stage II pile loading test should be conducted with three (3) static pile load tests to allow a higher geotechnical resistance factor of $\Phi = 0.6$ to be applied to the foundation design.
- 10. Quality control and quality assurance (QC/QA) programs as mentioned in Section 5.8 are recommended. In addition full time inspection by experienced geotechnical personnel should be performed throughout construction of foundations.
- 11. Provisions for groundwater control in the vicinity of the foundations may need to be included.
- 12. All concrete in contact with soil should utilize sulphate resistance cement (CSA Type 50).
- 13. Pavement design for lightly loaded traffic areas a minimum thickness of 300 mm of granular subbase and 150 mm of granular A-base includes with minimum 75 mm asphalt. For heavily loaded traffic areas a minimum thickness of 450 mm of granular subbase and 150 mm of granular A-base includes with minimum 100 mm asphalt. If unsuitable subgrade materials such as silt or soft slay is encountered they should be excavation

with additional 600 mm and replaced with compacted granular fill. Alternatively, the use of a geotextile fabric below the granular subbase as separator may be considered.

14. All temporary excavations and shoring should be designed by the contractor's professional engineer to meet all Manitoba Workplace Health and Safety requirements for safety.

8.0 STATEMENT OF LIMITATIONS

8.1 THIRD PARTY USE OF REPORT

This report has been prepared for the SEWPCC Upgrading/Expansion project to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions undertaken based on this report.

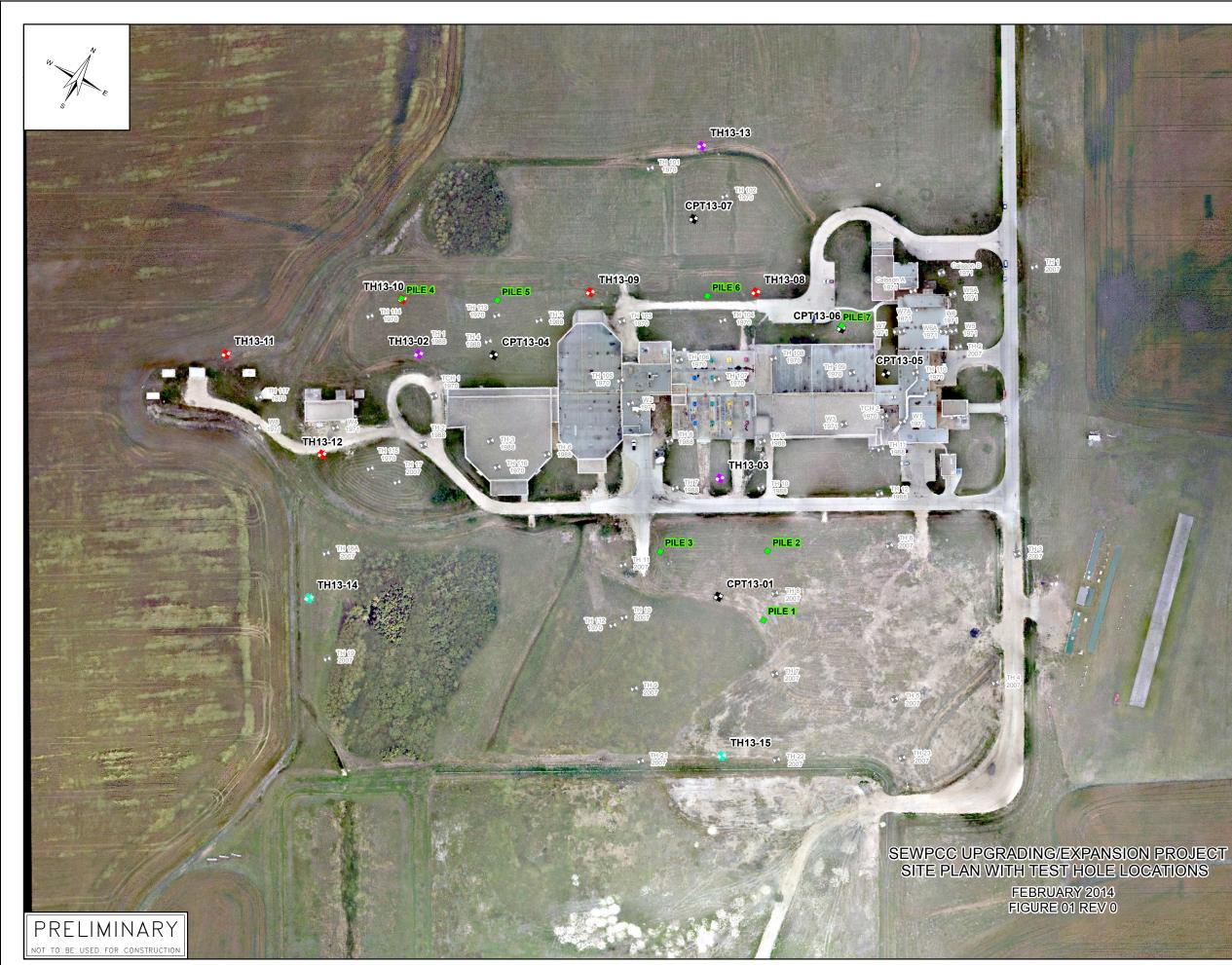
8.2 GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATIONS

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of the field investigations and laboratory testing, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at this site. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendation can be reviewed and modified if necessary.

9.0 REFERENCE

- 1. Geohydrology of the metropolitan Winnipeg Area as Related to Groundwater Supply and Construction, by Frank Render, Canadian Geotechnical Journal, Volume 7, 1970.
- Report on Subsoil Investigation Proposed South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. March 8, 1971.
- Report on Installation of Test Caissons at South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. March 24, 1971.
- 4. Test Holes Drilled at Outfall Stage Associated with South End Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. April 14, 1971.
- Report on Solution to Problems in Connection with Control of Groundwater & Excavation at the South End Water Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. September 28, 1971.
- Report on Excavation & Groundwater Control for Pump Well Excavation of the South End Water Pollution Control Centre, Winnipeg, Manitoba, by Ripley, Klohn & Leonoff International Ltd. November 1, 1971.
- Groundwater Resources in South St. Vital and Northern R.M. of Ritchot, Province of Manitoba Department of Mines, Resources, and Environmental Management, Water Resources Division, 1975.
- 8. Geological Engineering Report for Urban Development of Winnipeg, Department of Geological Engineering, The University of Manitoba, February 1983.
- 9. Geotechnical Engineering Report South End Water Pollution Control Centre, Dyregrov and Burgess, April 15, 1988 (Soil logs 1 to 12 only).
- 10. Geotechnical Report Proposed Disinfection Building South End Water Pollution Control Centre, City of Winnipeg, Dyregrov Consultants, February 1998 (Soil logs 1 to 3 only).
- 11. Geotechnical Report South End Water Pollution Control Centre, Proposed Expansion, Dyregrov Consultants, February 2008.
- Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society 2006.

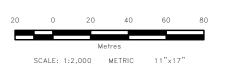
TABLES


TABLE 1 PIEZOMETRIC MONITORING RESULTS

Test Hole:		TH1	3-02	TH1	3-03		TH1:	3-13		TH13-14			TH13-15		
Ground Elevation (m):		232.46	232.46	232.84	232.84	231.85	231.85	231.85	231.85	231.85	231.85	231.85	232.546	232.546	232.546
Piezometer No.:		STP	STP	STP	STP	STP	STP	PN35525	PN35528	STP	PN35529	PN35527	STP	PN35526	PN35530
Top of Pipe Elevation (m):		233.43	233.43	233.81	233.81	232.76	232.76			232.70			233.356		
Tip Elevation (m):		215.70	210.82	212.42	209.98	214.93	209.90	218.13	224.23	210.36	223.93	219.66	212.736	219.746	224.626
Monitoring Zone:		Till	Bedrock	Sand & Gravel	Bedrock	Till	Bedrock	Silty Clay	Silty Clay	Sand & Gravel	Silty Clay	Silty Clay	Sand & Gravel	Silty Clay	Silty Clay
Date	River Level (m)		Piezometric Elevation (m)												
5-Dec-13	-	224.66	224.22	224.61	224.57	223.96	223.93	225.59	227.05	223.27	225.40	225.21	224.12	224.95	226.74
13-Jan-14	-	225.02	224.34	224.71	224.70	224.13	224.14	225.87	227.26	224.37	226.04	225.49	224.46	225.80	227.16
5-Mar-14	-	225.03	224.25	224.61	224.60	224.05	224.05	225.52	226.98	224.25	226.04	225.35	224.34	226.08	227.44
															1

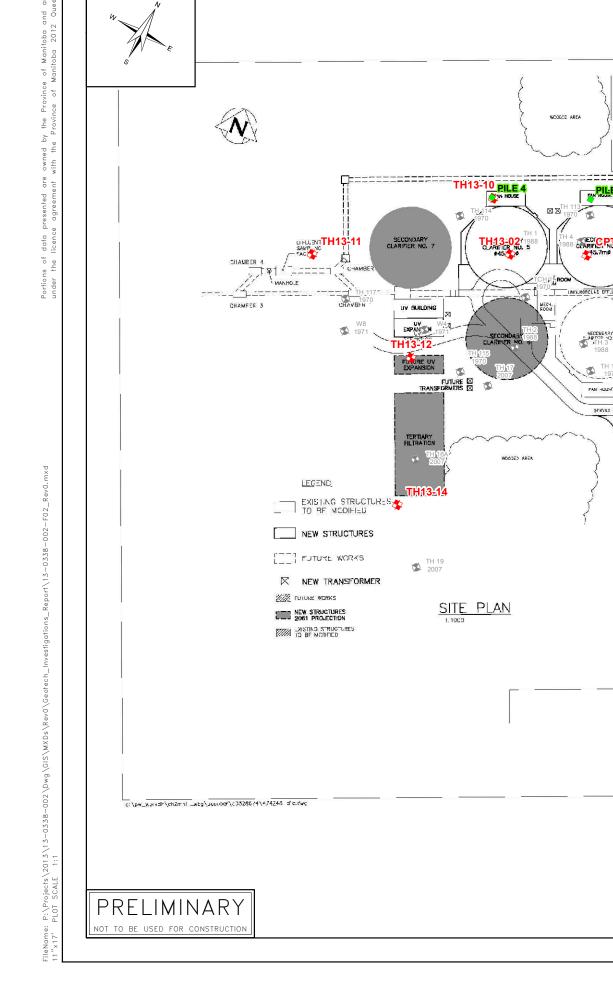
*Table 1_Final Report Rev 1

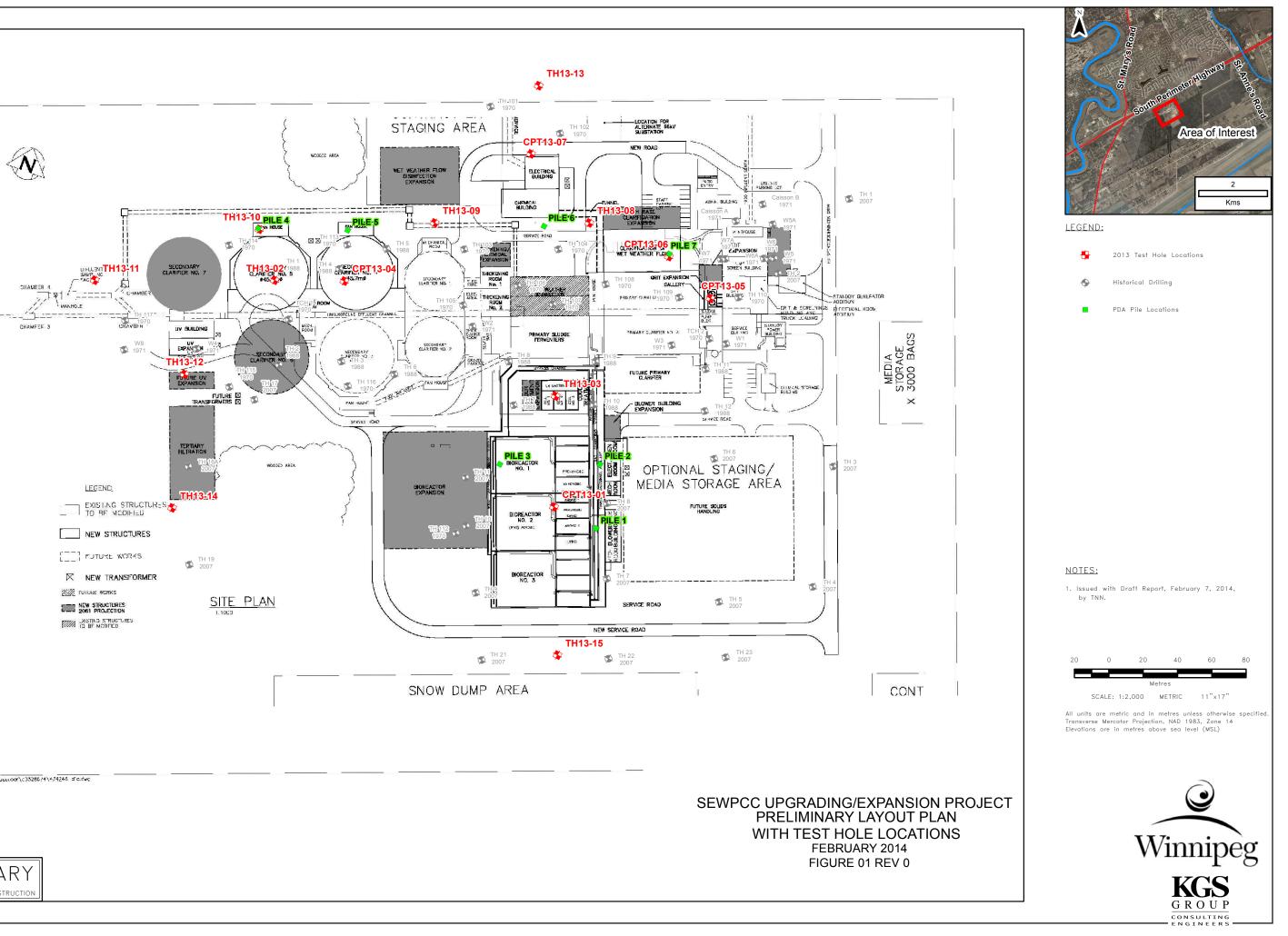
FIGURES


LEGEND:

2013 Drilling

Hole Type Test Holes Test Holes into Bedrock with Standpipes <u>ج</u> CPT Test Holes to Refusal with Standpipes Historical Drilling 4 PDA Pile Locations


NOTES:


- 1. Imagery from Chartis, August 2013.
- 2. Issued with Final Report, February 7, 2014. by TNN.

All units are metric and in metres unless otherwise specified Transverse Mercator Projection, NAD 1983, Zone 14 Elevations are in metres above sea level (MSL)

APPENDICES

APPENDIX A

SOIL LOGS, CPTU RESULTS, CORE PHOTOS AND LAB TESTING RESULTS

K	GS OUP)	SUMMARY LOG REFERENCE NO.			DLE N H13		2	SHE	ET 1 of	f 3
CLIE PRO	ENT JECT		HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT					JOB NO. GROUND ELEV. TOP OF PVC ELE	232.)338-002 .46 m	1
SITE		South E	and Water Pollution Control Centre					WATER ELEV.		1 12012	
	ATION	105						DATE DRILLED UTM (m)	N 5	21/2013 517,463	
	HOD	125 mm	ø Solid Stem Auger and HQ Core Barrel, B-59 Drill Rig							36,767 ET PEN (ki	Pa) *
ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △	Cu TORV	ANE (kPa)	
	(m) (ft	;)	ORGANIC CLAY - Black, frozen, rootlets, trace coarse grained sand,			SA	2 <u> <u> </u> </u>	20 40 60	20	% 40 60 8	80
232.3 - - 232	-		trace fine grained gravel. SILTY CLAY FILL - Brown, moist, crumbly, low plasticity, trace fine						· · · · · · · · · · · · · · · · · · ·		
			grained gravel.								
						₹] \$1				++++++ 	
- 2 20 .19 _			SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules.								
	2					₹] \$2	2			<u> </u>	
- 230						-			· · · · · · · · ·	· · · · · · · · · ·	
			- Increased silt content between 2.74 and 2.82 m.			₹] \$3	3				
	3		- Greyish brown, firm below 2.82 m.			₽					<u>- </u>
- 229											
	4					म्ब				·· ·· ·· ·· ↓♣<u></u>	
- 228						<u>₹</u>] \$4					
220		5									
	5					4					
දු - 227						<u>₹</u> 35					
WPCC.	6										· · · · · ·
BS/SDO - 226	2										
BEONLO											
SIGN	7					₽ } \$	6			•1:••:•	
BD/200-		5				21					
3-0338	8-		- Grey below 7.92 m.							1111 1111	· I · · I · · · · · · · · · · · · · · ·
1/2102/2											
DIECTS						₽ ₽ 87	7			1 <u>−1</u> −1 −1 − †● −1 −1 −	
P:/PRC	9_ 3	• //// /							· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
GEOTECHNICAL-SOIL LOG P:PROJECTS/2013/13-0338-002/DESIGN/GEOILOGS/SEWPCC.GPU			- Soft below 9.45 m.								
SAM	PLE TYI	PE 🚹	Auger Grab Split Spoon Core Barrel		<u> </u>		1				
CON	TRACTO	DR	INSPECTOR Ling Ltd. C. FRIESEN			PPRC Г. NG			DATE 2/6/14		

GROUP Description and cLassification Initiality Image: Section and the body Description and classification Image: Section and the body Section and the bod																	
SUMMARY LOG TH13-02 SHEET 2 Image: Summary Log TH13-02 SHEET 2 Image: Summary Log TH13-02 SHEET 2 Image: Summary Log Strate 3 Strate 3 Image: Summary Log Strate 3 Strate 3 Strate 3 Image: Summary Log Strate 3 Strate 3 Strate 3 Image: Strate 3 Strate 3 Strate 3 Strate 3 Image: Strate 3 Strate 3 Strate 3 Strate 3 Image: Strat																	
SUMMARY LOG TH13-02 SHEET 2 Image: Comparison of the second sec																	
ELI	(m)	(ft)	0		1		SAMP							20		60	
SUMMARY LOG TH13-02 SHEET 2 of Image: Summary Log Image: Summary																	
222							RT										
		35							••••••							· · · · · ·	
									••••••••								
221																	
	12						सः	59	••••••••		4	<u> </u>		<u>11.</u> 11.	· · · · - · · ·	•	
220		-40					ςΤ										:! ·· ··
220																	
	13 -			- Trace silt nodules (~15-20 mm ∂) below 13.11 m			E.	10									
219							¥	10		 :	- ;	i	::i. i-	∛:∎: ⊣			iii I-1
		45															
218.4 _	14											1		1 · · ·			 ::
218											-						• • • •
	15						Į	11	•••••••								
SUMMARY LOG TH13-02 SHEET 2 of Image: Second state of the second state of																	
217				-Grain Size Distribution: Gravel (10.3%), Sand (29.1%), Silt (48.3%) and Clay (12.3%) at 15.24 m.		15.7	· 🏻	12 100									
	16 —					16.2						· · · · · · · · · · · · · · · · · · ·					
216						16.5	;		•••••••								
-		55	•	- Trace coarse grained gravel below 16.76 m		16.8		10									
	17						R	13		 						-	
215									· · · · · ·		<u> </u>	 	¦ 	:: : -			
		-60															
214				- 75 mm Ø gravel at 18.29 m.		18.6	₽₹₹	14									
213.4	19 —					19 1											
_			"ٿ "ٿ م			10.1	s	15 72									
22239 _				coarse grained gravel, trace cobbles, some yellow oxidation, limestone	ſ			77 יי		 	- -	-					
	20 -	65		LIMESTONE BEDROCK - Tan and light brown, massive, sugary		Í						1					
212			$\langle \rangle \rangle$	by drill action).		Í			· · · · · · · · · · · · · · · · · · ·		-			- .			
			\mathbb{X}	- Moderately competant limestone with jointing at 75 to 80 degrees to		20 0		88		L] ::
	21			- Chalky infill on joint faces at 19.99 and 20.09 m.								<u>1</u>	· · · · · · · · · · · · · · · · · · ·			- 1 - -	. • • • • • • •
211		70		20.35 and 21.49 m.													 ***
				below 21.49 m.	12235			33				<u> </u>					

(L)		(0												KET		(kPa) Pa)
TION	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	ТҮРЕ	۶۲ %	SPT blow	s/Ó	.15 r		1	20	40	60	80
ELEVATION (m)		GRA		PIEZ	DEP	SAMPLE TYPE NUMBER	COVE	DYN/ (N) b					PL			
	(m) (ft)	×////		2800 2		SA NU	ଖ RE(20) 4	0	60		20	40	60	80
210.2 _			END OF TEST HOLE AT 22.25 m.		22.3											
210			Notes:							 						
	23 - 75		 Water level noted at 17.53 m below grade after drilling to 19.05 m. Installed Casagrande standpipe in the bedrock at a depth of 21.64 m 										- 		
209			and a Casagrande standpipe in the till at a depth of 16.76 m. Both standpipes have a stick-up of 0.97 m.					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			 			. : . : _ :
			3. Backfilled test hole with sloughed rock from 22.25 to 21.64 m, silica sand from 21.64 to 20.93 m, bentonite chips from 20.93 to 19.10 m, slough from 19.10 to 18.59 m, bentonite chips from 18.59 to 16.76 m,													
	24		silica sand from 16.76 to 16.15 m, bentonite chips from 16.15 to 15.70 m and a bentonite grout mixture from 15.70 m to grade.					· · · · · · · · · · · · · · · · · · ·							· · · ·	
208											 				 : : : : : : : :	
	25								 							· ! · · ! ++ · · ·
207											1				1	.1::1
	26 - 85															· · · .
206																
	27														 · · · · · · · .	
205	90									 						
	28															· · · · · · · · · · · · · · · · · · ·
204											 		: :: : :: - -		 	
	29 - 95															
	23														 ··· ·· 	.]] ·] · ·] .]]
203																
	30												· · · · · ·		· · · · · · · ·	<u> </u>
202	100									 					 	· · · · · · · · · · · · · · ·
	31 —															
201] 				 	
															ii.: 11.:	
	32 <u>-</u> 105												· · · · · ·			· · · · · · ·
200										: : :	1				 	
	33 -															
199																

K GR	GS		SUMMARY LOG	REFERENCE NO.		но TI		NO. 3-0 ,	3	SH	EET 1	of 3
CLIE PRO			HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSIO	N PROJECT					JOB NO. GROUND ELEV. TOP OF PVC ELE	23	-0338-0 2.84 m	02
SITE LOC	E ATION	South E	ind Water Pollution Control Ce	ntre					WATER ELEV. DATE DRILLED		/21/201	
DRIL MET	LING HOD	125 mm	ø Solid Stem Auger and HQ C	ore Barrel, B-59 Drill Rig					UTM (m)	Е	5,517,48 636,943	
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND (CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60		KET PEN VANE (kf 40 60 MC % 40 60	80 LL ∎
232.7 -			ORGANIC CLAY - Black, frozen, crumbly sand, trace fine grained gravel. SILTY CLAY - Brown, moist, stiff, interm silt nodules.]			<u></u>					
^{231.6} _	1		<u>SILT</u> - Tan, moist, firm, low plasticity. <u>SILTY CLAY</u> - Brown, moist, stiff, high p trace gypsum nodules.	lasticity, trace silt nodules,			₽°					
- 231	2-1		- Firm below 2.44 m.				₽°	33				
- 230	3-10 											
- 229	4					-	ষঃ	64				
- 228						-	₽°	35				
CC.GPJ	6 					<u>-</u>	R					
	7		- Stiff below 6.40 m.			-	₽°	6				
13/13-0338-002/ 1 522			- Firm below 7.62 m.									
:\PROJECTS\201	9		- Grey, no gypsum below 8.38 m.			-	₽°	57				
AL-501LL0G P:			- Trace fine grained gravel below 9.45 m									
SAM CON	PLE TYP	R	Auger Grab Split Spoor INSPECTOR Ling Ltd. C. FRIES				PPR	OVE		DATE 2/6/14		

GR		JE				Γ								KET P		
ELEVATION (m)	2	5	HICS		ГÖ	E T	ΥPE	%,	SPT (blows	N) 5/0.15 i	n 🔺			4 0	(kPa	a) 80
EVAT	DEDTU		GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY	DYNA (N) ble	MIC C			20 4 PL	M		L
Е	(m)	(ft)	Ū				SAMI	RECOVEF	20		60		20	%	60	80
		1 1					<u>}</u>	58						. ◆		
	-	- 35					Ł				i					
222	11 -	-														
	-	-									1					
221		-					₫:	S9	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·			Ē) 	
	12	-40		- Soft below 12.19 m.												: :
	-	-											∳ 111 :: :			
220	13	-		- No gravel below 12.80 m.									: :	+++		
	-	-					₽	510			1		↓↓. ↓	-11 -11 -11		
219.1 _ 219	-	- 45		SILT TILL - Light grey, moist, loose, fine to coarse grained sand, trace												· · · ·
	14	-		fine grained gravel.												 ::
	-	-		-Grain Size Distribution: Gravel (2.9%), Sand (24.6%), Silt (50.3%) and Clay (22.2%) at 14.33 m.			₹]°	511								
218	15 —	-										· · · · · · · · · · · · · · · · · · ·	. <u> </u> . .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
	-	—-50 					S	¹² 100	▲ 4 ▲ 3 ▲ 4							
217	-	-					H								: : : 	:: ···
	16	-														
		- 55											- - -			
216	17	- 55									1					
	-	-					₽ } }	513		 			1 - 1 - 1 1 -	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
215		-					Ł									 ::
214.5 _	18 — - -	60		SAND - Brown, moist compact, fine grained.			यः	514								
		-		-Grain Size Distribution: Gravel (2.1%), Sand (31.6%), Silt (55.0%) and Clay (11.3%) at 18.29 m.				515 ₃₃	▲ 11 ▲ 13							
22349 _	19 —	_	°0°,	- Auger refusal at 18.44 m. Switched over to HQ coring. SAND & GRAVEL - Brown, moist, compact, fine to coarse grained sand		•	4 4	R1 11	▲ 10							
	-	-		(washed away), fine to coarse grained gravel, limestone and granite pieces.		19.4 19.7				 			- -			
213	20	- 65	\circ \circ \circ \circ \circ \circ \circ \circ \circ	- 25 mm Ø gravel in split spoon.							1			:: . :: :.	
	20	-	$\sim 0^{\circ} \sim 0^{\circ}$			20.1										
		_	° ° ° °			20.5		R2 38					11.			
2 <u>9</u> 220 _	21 —	-		LIMESTONE BEDROCK - Tan to light brown with a yellow hue locally, fairly massive, most joints are at 75 degrees to core axis.												
		—70		- Broken core zone, 1-3 cm pieces of limestone, probably broken by drill												
		- FYPE	///// [<u>}</u>]	action on closely spaced fractures at top of drill run, partial recovery Auger Grab Split Spoon Core Barrel												

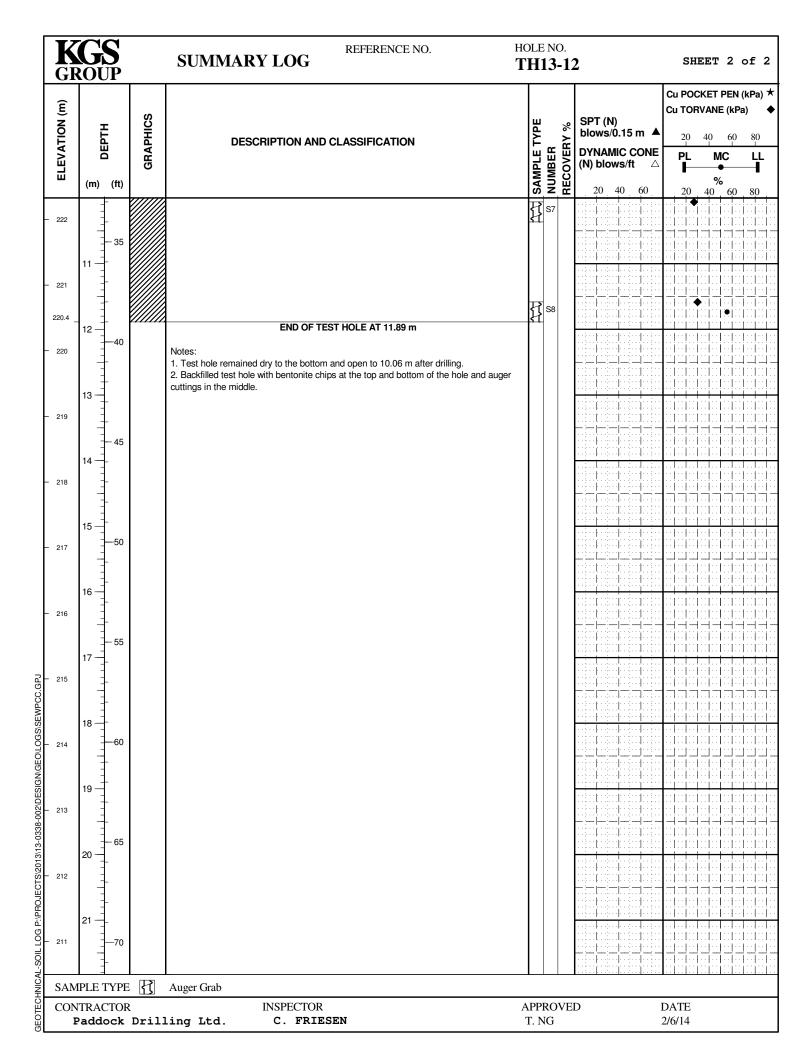
K	GS ROUP		REFERENCE NO.			DLE NO. H13-0)3	SHEET 3 of	f
		cs		OG	(E)	PE %	SPT (N)	Cu POCKET PEN (kl Cu TORVANE (kPa)	
ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	blows/0.15 m A DYNAMIC CONE (N) blows/ft		80 LL
_	(m) (ft)					SA NU RE	20 40 60	% 20 40 60 8	80
010.0	22		between 21.34 and 21.51 m. - Open joint, irregularily shaped joint face, probable location of core barrel drop and lost water return, joint appears open but not altered or oxidized at 22.12 m.		22.1 22.6 22.9				-+ - - -
² 290° _	23 — 		END OF TEST HOLE AT 22.86 m.		22.9			························	
209	24		 Notes: 1. Installed Casagrande standpipe in the bedrock at a depth of 22.86 m and a Casagrande standpipe in the sand & gravel at a depth of 20.42 m. Both standpipes have a stick-up of 0.97 m. 2. Backfilled test hole with silica sand from 22.86 to 22.10 m, bentonite chips from 22.10 to 20.47 m, silica sand from 20.47 to 19.66 m, bentonite 						
208			chips from 19.66 to 19.35 m and a bentonite grout mixture from 19.35 m to grade. 3. The driller noted that the core barrel dropped and he lost circulation						
	25		around 22.25 m.						
207	26 – ¹ 26 – ⁸⁵								
206									
	27 — 90								. . .
205	- - - 28 - -								
204	29 - 95								
203									
	30 — - - - - - - - - - - - 100								
202	31 –								
201									
	32								
200	33 -								
									:1 •1 •1
CON	TRACTOR		Auger Grab Split Spoon Core Barrel INSPECTOR INSPECTOR Ling Ltd. C. FRIESEN			APPROVE T. NG	ED	DATE 2/6/14	

CLIE PRO	JECT	CH2M SEWP	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT			JOB NO. GROUND ELEV. TOP OF PVC ELE	23	3-0338-00 32.56 m	2
DRIL	EATION LLING HOD		End Water Pollution Control Centre			WATER ELEV. DATE DRILLED UTM (m)	Ν	1/26/2013 5,517,580 636,912	
ELEVATION (m)	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NIIMBER	RECOVERY %	SPT (N)		CKET PEN (RVANE (kPa 40 60 MC	
EL	(m) (fi	-		SAMF		20 40 60	20	% 40 60	80
232 231.8 _			SILTY CLAY FILL - Brown, frozen to 0.15 m then moist, stiff, intermediate to high plasticity, trace coarse grained sand, trace fine grained gravel.						
231			Som, mole, sun, ingri plastoky, irace sit noudles.	₽ ₽ ₽ 	1				
230.3 _ 230.1 _ 230	2		<u>SILT</u> - Tan, moist, firm, low plasticity. <u>SILTY CLAY</u> - Brown, moist, stiff, high plasticity, trace silt nodules.	S2	2				
229	3 1 			₹ T S	3				
228		5							
227 226	6 	0	- Firm below 6.10 m.	₽ ₽	1				
225	7			₽ ₽ St	5				
224	8		- Grey between 8.23 and 8.84 m.						
223	9			₽ ₽	5				
			- Grey, trace medium grained sand below 9.75 m.						. <u> </u>
SAM	PLE TYI	PE 🚹 DR	Auger Grab INSPECTOR	APPRO			DATE		

000000000000000000000000000000000000		<u>ROUP</u>	cs		ų		6	SP	T (N))		Cu	POC TOR				a)
(m) (νατιο	DEPTH	APHIC	DESCRIPTION AND CLASSIFICATION	E TYP	Ë	/ERY %	blo DYI	NAM		ONE						_
$ \begin{array}{c} 222 \\ 221 \\ 221 \\ 222 \\ 223 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 224 \\ 244 $	ELE		G		SAMPL	NUMBE	RECOV	(N)					⊢	%	• 6		
21	222										 						
220 12 -40 ENO OF TEST HOLE AT 12.19 m 230 13 -45 1 13 -45 1 1 14 -45 1 1 15 -66 1 1 1 16 -66 1 1 1 1 10 -66 1 <		-		- Reduced silt nodules, no sand below 10.67 m.													
END OF TEST HOLE AT 12.19 m Notes: 1. Test hole remained dry to the bottom and open to 10.67 m after drilling. 2. Backfilled test hole with bertonite chips at the top and bottom of the hole and auger utings in the model. 219 14 15 -55 16 17 -55 17 -55 17 -55 17 -55 18 -55 -55 -55 -55 -55 -55 -55 -5	221				F									• • • • • • • • • • • • • • • • • • •			
$ \begin{array}{c} 1.1 \\ 1.2 \\ $	220.4 _ 220	-			ł						1						
$ \begin{array}{c} $				 Test hole remained dry to the bottom and open to 10.67 m after drilling. Backfilled test hole with bentonite chips at the top and bottom of the hole and auger 													
$ \begin{array}{c} 216 \\ 15 \\ -56 \\ 16 \\ -16 \\ 17 \\ -56 \\ 217 \\ 18 \\ -66 \\ 218 \\ 21$	219										-						
$ \begin{array}{c} 16 \\ -50 \\ 16 \\ -55 \\ 17 \\ -55 \\ -5$	218								н 		4					11 	
$ \begin{array}{c} 16 \\ -55 \\ 17 \\ -55 \\ 17 \\ -56 \\ 18 \\ -60 \\ 214 \\ 19 \\ -66 \\ 212 \\ 214 \\ -66 \\ -66$									к <u> </u> 	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				· · · · · · · · · · · · · · · · · · ·		41 <u> </u> 	-
$\begin{array}{c} 216 \\ 17 \\ -55 \\ 17 \\ 18 \\ 18 \\ -60 \\ 214 \\ 19 \\ -66 \\ 212 \\ 212 \\ 21 \\ 214 \\ 19 \\ -70 \end{array}$	217	16 –															-
$\begin{array}{c} 215 \\ 18 \\ -60 \\ 214 \\ 19 \\ -65 \\ 20 \\ 21 \\ 21 \\ 21 \\ 21 \\ -70 \end{array}$	216									-					 	 	
$ \begin{array}{c} 18 \\ -60 \\ -19 \\ -19 \\ -65 \\ 20 \\ -65 \\ 21 \\ -1 \\ -70 \\ \end{array} $	015															 	
$\begin{array}{c} 2^{14} \\ 19 \\ 19 \\ 19 \\ -65 \\ 20 \\ -65 \\ 21 \\ 21 \\ -70 \end{array}$	213												· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · ·	 	-
$\begin{array}{c} 213 \\ 20 \\ 1 \\ 212 \\ 21 \\ 21 \\ -70 \end{array}$	214																
	213									 							
		-											· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • •	() :: 	
	212										(
	211							· · · · · · · · · · · · · · · · · · ·			1						

202 203 204 204 204 204 205 2	METHOD Les mills of our class legal (1) class legal (1	-0338-002 2.10 m /26/2013 5,517,537
(m) (m) <th>(m) (h) (m) (h) <t< th=""><th>CKET PEN (kP RVANE (kPa)</th></t<></th>	(m) (h) (m) (h) <t< th=""><th>CKET PEN (kP RVANE (kPa)</th></t<>	CKET PEN (kP RVANE (kPa)
200 3 1	22 3 -	
281 1	221 - 10 SLT - Tan moist, firm, how plesticity, incressiti nodules. 231 - 5 SLT Y CLAY - Brown, moist, stiff, high plasticity, trace siti nodules. 230 - 10 SLT - Tan moist, stiff, high plasticity, trace siti nodules. 231 - 10 SLT Y CLAY - Brown, moist, stiff, high plasticity, trace siti nodules. 233 - 10 SLT - Tan moist, stiff, high plasticity, trace siti nodules. 234 - 10 SLT - Tan moist, stiff, high plasticity, trace siti nodules. 235 - 10 Performance siti nodules below 4.88 m. 236 - 200 -	40 60 8
201 1 -	231 1	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	230 2 5 2 5 2	
200 2	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ 2 \\ 2 \\ - \\ - \\ - \\ 2 \\ 2 \\ - \\ - \\ - \\ $	
22	200 2	
200 310 229 310 229 4	280 3	
200 310 229 310 229 4	280 3	
229 3	229 3 - 10 229 4 - 1 220 4 - 1 220 5 - 1 227 5 - 1 227 5 - 1 228 6 - 20 228 7 - 1 229 - 1 229 - 1 229 - 1 220 - 1 221 - 1 221 - 1 222 - 1 223 - 1 225 - 1 225 - 1 226 - 1 227 - 1 228 - 1 229 - 1 229 - 1 229 - 1 220	
229 3 10 228 4	220 3 - 10 228 4 - 15 227 5 - 1 - 15 228 6 - 20 228 6 - 20 228 - 7 - 15 228	
229 4	222 4	
227 5	227 5	
227 5	227 5	
227 5	227 5	
227 5	227 5	
227 5	227 5	
227 0	227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
227 226 6 - 20 225 7	227 226 6 -20 225 7 -25 224 8 - - - - - - - - - - - - -	
225 7 25 226 7 25 227 9 25 228 9 30 229 9 30 229 9 30 220 9 30 220 9 30 220 9 30 220 9 30 221 9 30 222 1 9 30 223 9 30 223 9 30 224 1 9 10 225 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	225 7	
225 7 25 226 7 25 227 9 25 228 9 30 229 9 30 229 9 30 220 9 30 220 9 30 220 9 30 220 9 30 221 9 30 222 1 9 30 223 9 30 223 9 30 224 1 9 10 225 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	225 7	
225 7 25 226 7 25 227 9 25 228 9 30 229 9 30 229 9 30 220 9 30 220 9 30 220 9 30 220 9 30 221 9 30 222 1 9 30 223 9 30 223 9 30 224 1 9 10 225 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	225 7	
225 - Grey, firm below 7.47 m.	225 Grey, firm below 7.47 m.	
225 226 25	225 Grey, firm below 7.47 m.	
225 226 25	225 Grey, firm below 7.47 m.	
224 8 25 8	224 9 - 25 9 - Grey, firm below 7.47 m.	
		• • • • • • • • • • • • • • • • • • •
SAMPLE TYPE 🔀 Auger Grab	SAMPLE TYPE 3 Auger Grab	

	GS ROUP	cs		ų	1	.0	SP	T (N))		Cu	POC TOR			
ELEVATION (m)	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION	TYP	. a	ERY %	blo DY)).15 n IIC C(40	60	80
ELEV	(m) (ft)	GR		SAMPLE TYPE		RECOVERY 9	(N)	blow	vs/ft	60		PL ∎ 20	M 40	•	LL
222								 							
				۲. ۲.	₹ S	3	·							 	. <u></u> . .
221	11							 	<u></u>						. .
															. ··· · ··· ·
2789.9	12 —			- F	ξ se	Э		<u> </u>	1	1			· · · · · · · · · · · · · · · · · · ·		
∠+9%9 _	40		END OF TEST HOLE AT 12.19 m		H				 						. . .
	13 -		Notes: 1. Test hole remained dry to the bottom and open to 9.75 m after drilling. 2. Backfilled test hole with bentonite chips at the top and bottom of the hole and auger												
219			cuttings in the middle.												
										1					
218	14														
							· · · · · · · · · · · · · · · · · · ·								
217	15							<u> </u>	<u> </u> 		· · · ·	<u>• • • </u>	· · · · · · · ·	· · · ·	• • • • • •
216	16 — 											· · · 	··· ·· 		
									-			: :: - -		-	
015	55											. :: :: 			1 - : : : -
215							· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			. . .
										1		. 		 	1
214															
															J
213	19														11.
							· · · · · · · · · · · · · · · · · · ·		-						
212	20							1							
							· · · · · · · · · · · · · · · · · · ·			1					
211	21												· · · ·		. . .
							· · · · · · · · · · · · · · · · · · ·								
GAN	PLE TYPE		Auger Grab					<u> </u>		<u> </u>		<u>::::</u>			


SITI LOC DRI	JECT	S S N	SEWPC	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT and Water Pollution Control Centre				D ELEV. PVC ELE ELEV. RILLED	2 EV. 1 E	232. 11/2 N 5,; E 63)338-0 35 m)5/201 (517,4 36,745	3 85 5
ELEVATION (m)	DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	LYPE	% Х	SPT (N) blows/0	.15 m ▲		ORV	ET PEN ANE (kl	Pa)
ELEVA		(ft)	GRAI		SAMPLE TYPE	NUMBER RECOVERY	DYNAMI (N) blow	's/ft ∆	PI		MC %	
				SILTY CLAY FILL - Brown, frozen to 0.15 m then moist, stiff, intermediate to high plasticity, trace coarse grained sand, trace fine grained gravel.	0		20 4	0 60	2	0 4	40 60	80
232												
231.4 _	1-1			SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules.	1	S1					: 	· · · · · · · · · · · · · · · · · · ·
231		- 5			R I			: : :			- :: : : : 	
230.4 _		-		CIIT Tao maint firm lauralantistu						 		
230.4 -	2			<u>SILT</u> - Tan, moist, firm, low plasticity. <u>SILTY CLAY</u> - Brown, moist, stiff, high plasticity, trace silt nodules.						[] []		
200					1	S2				<u></u>		
	3-	-10							· · · · · · · · ·	 	<u> </u> ↓. ↓.	<u>· · · · ·</u>
229												
228					म	53						
		15			\$; ; : : : : - :			- · 	
	5			- Increased silt nodules between 5.03 and 5.79 m.						 <u> </u> 	111. ++-	
227												
	6-				₿	S4				 		· · · · · · ·
226		-20								, 		······································
				- Firm below 6.40 m.						 · · · · · · · · · ·		
	7-				1	S5						
225		-25		- Grey below 7.47 m.								
	8-										. : .	
224										 +	- - 	- - - -
					ł	S6				♥	1	
202	9	-30								 		
223												
	IPLE T		 	Auger Grab							11	· I · · I · ·

	OUP	s			1	.0	SP	T (N)		Cu 1			PEN (E (kPa	(kPa) a)
ELEVATION (m)	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION	T TP		ERY %	blo DV	ws/(0.15 I	m ▲ ONE	<u> </u>		40	60	80
ELEV	 (m) (ft)	GR		SAMPLE		RECOVERY %	(N)	blov	vs/ft	60		₽L ■ 20	N 40	• 	
								1	+0 				40	60	80
222	 35			Į	5 7		· · · ; ·		-	1		• 			11
	11														
221															
220.2 _	12			{}}	[S8		· · · · ·					<u> ● </u> ::	<u></u>		<u> </u>
220			END OF TEST HOLE AT 12.19 m Notes:												
	- - 13 -		 Test hole remained dry to the bottom and open to 12.19 m after drilling. Backfilled test hole with bentonite chips at the top and bottom of the hole and auger 									11 	· · · · · · · · · · · · · · · · · · ·		11
219			cuttings in the middle.												
	45						· · · · ·	; 	-	-		 	-1-		
	14								- - -		· · · ·	11	· · [· · · · ·] · ·	· · · · · ·	
218															
	15														
217	50						· · · · · ·								
	16														
216								 	 -			:: 		 	:: ::
	55 17														
215							· · · · · · · · · · · · · ·							· · · · · · ·	
	18							<u> </u>	<u> </u>		· · · ·	··· ··	· · · · ·		·· ·· ·· ··
214	60 														 <u></u>
	 19														
213							· · · · · · · · · · · · · · · · · · ·								
								· ; 	- ; ;.	- ; ; ;		- 			 :: ::
	20											1 			
212															
	21						••••••				· · · · ·	·· ··	· · · · · · · · ·		· · · · · · · · · ·
211							· · · · · ·							 	1 1 1 1 1 1
SAM	PLE TYPE	招	Auger Grab		-										

SITE LOC DRII	JECT	SEWP South E	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT End Water Pollution Control Centre n ø Solid Stem Auger, ACKER SS Drill Rig				JOB NG GROUN TOP OF WATEF DATE D UTM (m	ND ELI = PVC R ELEN DRILLE	ELE /. ED	23 IV. 11 N E	32.29 1/25/ 5,51 636	/2013 17,41 5,675	3
ELEVATION (m)	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION		'YPE	۲ %	SPT (N blows/0) 0.15 m		Cu POC Cu TOF 20		NE (kPa	
ELEVAT		_	DESCRIPTION AND CLASSIFICATION		SAMPLE TYPE		DYNAM (N) blov	IIC CO ws/ft	NE	PL	I	MC • %	
	(m) (f	" *****	SILTY CLAY FILL - Brown, frozen to 0.15 m then moist, stiff, intermediate to hi		3	z H	20	40 6)	20	40	60	80
232 231.7			plasticity, trace coarse grained sand, trace fine grained gravel.					· · · · · · · · · · · · · · · · · · -					
_			<u>SILT</u> - Tan, damp, firm, low plasticity.		₽s	51							
231.2 _ 231			SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules.										
					₽s			-			- - -		<u> </u>
	2							inini. Tatini		<u></u>	<u>i::i:</u> 1	<u></u>	
230								 -				· · · · ·	
					₽s	33							
229	31	٥ /////										· · · · · · ·	
229													
	4									· · · · · ·		· · · · ·	
228					₽	64							
		5			Ł			- -					
	5-									· · I · · I · · ·	11. . .	· I · · · I · · ·	11. - .
227					দ	5			· · · · · ·				
				-	₽s		· · · · · · · · · · · · · · · · · · ·					: ¶ :: • • • • •	
226	-2	20											
			- Firm below 6.40 m.										
	7-									· · · · · · · · · · · · · · · · · · ·	11. 11.	· · · · · · · · · · · · · · · · · · ·	
225					₽s	66		-			. 	• • • • • • • • • •	 -
					-								
224	8		- Grey below 8.00 m.				· · · · · · · · · · · · · · · · · · ·	+ + - + - + + + + + + - + + - + - + - + - + - + - + - + - + + - + - + - + - + - + - + - + - + - + - + + - + - + - + - + - + + - +				· · · · · · ·	
					₽s	57	; ; ; ; ; ;				11. 1 <u>1</u> . 11.	- - -	11
	9-				41					· · · · · · ·	¦∷∳: 	: : 	 .
223													
SAM	I 1 IPLE TY	 PE [{]	Auger Grab										<u>1</u>

		SS			1		SF	יד (N	I)		Cu '			PEN (E (kPa)★ ♦
ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION			RECOVERY %	bi D\ (N	ows/	0.15 /IIC C	m ▲ ONE	╞	20 PL	40 M	60 IC	80 LL	
	(m) (ft)			<u></u>	5 =			20	40	60		20	40	60	80	+-
- 222	- - - - - - - - - - - - - - - - - - -			ł	₹ Sŧ	3										
- 221				म	۲.se	9										
220.1 _ - 220	12		END OF TEST HOLE AT 12.19 m	_{	} S						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	 	. <u> </u> . .	· · -1- -1- -1- -1- -1-
	- - - - - - - - - - - - - - - - - - -		Notes: 1. Test hole remained dry to the bottom and open to 10.06 m after drilling. 2. Backfilled test hole with bentonite chips at the top and bottom of the hole and auger													
- 219			cuttings in the middle.									 			:: : :: : -	
- 218	14															
	15															
217	50 															
216	16															
215																
214																
· 213	19 <u>-</u> -											 				: : : : - :
	- - - - - - - - - - - - - - - - - - -											- ++		 	↓↓ - ↓ : : ↓ : ↓ : : ↓ : ↓ : : ↓ :	
212								- -								
211	21															
SAM	PLE TYPE	Ł	Auger Grab					<u>. j</u>	<u>. </u>	<u></u>		<u>i::i</u>	<u> </u>	<u></u>	<u>1::i:</u>	<u>.i</u> :

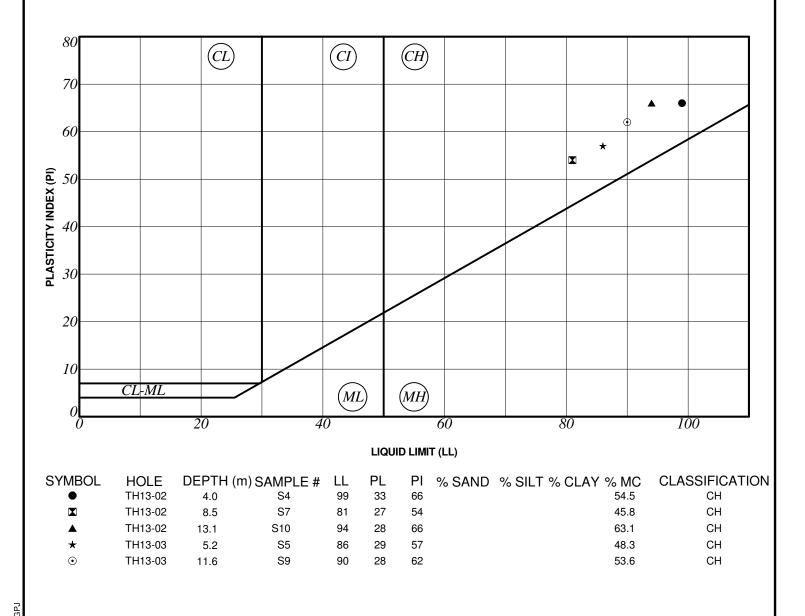
CLIENT PROJECT SITE LOCATION DRILLING METHOD	SEWPC South E	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT and Water Pollution Control Centre of Solid Stem Auger, ACKER SS Drill Rig			JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	23 EV. 11 N E	-0338-0(2.33 m /25/2013 5,517,39 636,747	3 90
ELEVATION (m)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE	NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △		CKET PEN RVANE (kP 40 60 MC %	
u (m) (ft)	SILTY CLAY FILL - Brown, frozen to 0.15 m then moist, stiff, intermediate to high	SA		20 40 60	20	40 60	80
232		plasticity, trace coarse grained sand, trace fine gravel, trace silt nodules. SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules.	{}	S1				
231			<u></u>	S2				
230			Ц. Ц					
229								
	5	- Gypsum nodules (10 mm Ø) between 4.27 and 4.42 m.	ł	S3				
227		- Firm below 4.88 m.	₹}	S4				
			य	oc.				
	5		**					
224		- Grey below 7.92 m. - Trace fine grained gravel below 8.23 m.	<u>}</u>	S6				
	0		K K					

K GR	GS)	SUMMARY LOG REFERENCE NO.			DLE I H1	NO. 3-1 .	3	SHEET 1	. of 3
	JECT	SEWPO	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT					JOB NO. GROUND ELEV. TOP OF PVC ELE	13-0338-0 231.85 m	
SITE	= ATION	South E	nd Water Pollution Control Centre					WATER ELEV. DATE DRILLED	11/20/201	13
DRII MET	LLING HOD	125 mm	ø Solid Stem Auger and HQ Core Barrel, B-59 Drill Rig					UTM (m)	N 5,517,6 E 636,84	8
ELEVATION (m)	DEPTH (m) (tu	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PE Cu TORVANE (k 20 40 6 PL MC 9 20 40 6	(Pa) ◆ 0 80 LL ■
231.6			ORGANIC CLAY - Black, frozen, rootlets. SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules.							
- 231			<u>SILTTCLAT</u> - Drown, moist, sun, nigh plasticity, trace silt nodules.			₽ ₽ ₽	51			
230.2 230.1	5 5		∖ <u>SILT</u> - Tan, moist, soft, low plasticity.			ъs	52			
- 230	2		<u>SILTY CLAY</u> - Greyish brown, moist, stiff, high plasticity, trace silt nodules. - Firm below 2.29 m.			₽₽	3			
- 229	3-1-1 					ξŢ.				
- 228	4									
- 227		5				₽s	;4			
GGD. 226			- Increased silt nodules below 5.64 m.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		₽ ₽ S	5			
S/S90 – 225			- Grey, reduced silt nodules below 6.71 m.							
38-002\DESIG		5			7.5 7.6	₽ ₽	6			
1 224 1 225 224	8 - 1									
	9					₽s	57			
IIOS - 222			- Soft below 9.75 m.							
SAM	PLE TYI		Auger Grab Split Spoon Core Barrel			DDD				
E CON	TRACT(addoc		INSPECTOR Ling Ltd. C. FRIESEN			.PPR Г. NC	OVE 3		DATE 2/6/14	

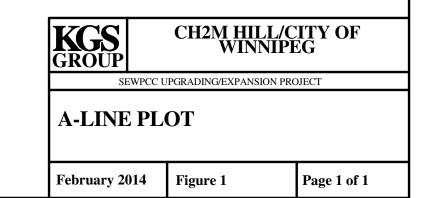
K	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE 1 H1		3	SHE	ET 2 0	f 3
ELEVATION (m)		lics		00	(E)	PE	%	SPT (N) blows/0.15 m ▲	Cu TORV	(ET PEN (k /ANE (kPa)	•
VATI	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	È щ {	ER√	DYNAMIC CONE	20 PL	40 60 MC	80 LL
ELE	(m) (ft)	ច				SAMPLE TYPE	RECOVERY	(N) blows/ft △ 20 40 60	▏┗─	%	-
									20	40 60	80
						₹ <u>₹</u> s	8		:: :: ♦ : : ==================================		
- 221	35				4				· · · · · · · · ·	· · · · · · · · · ·	
					4					· · · · · · · · · · · · · · · · · · ·	
- 220	12					₹ <u>₹</u> s	9				
	40				a a	R				· · · · · · · · · ·	
- 219	13 -				6 9						
					12.6						
010	45				13.7	₽s	10				
- 218	14				4				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
									 -] -] -]]] -	
- 217											
			- 75 mm Ø gravel at 15.09 m.		4	₽s	11				• • • •
216.2											
- 216	16		SILT TILL - Light grey, moist, loose, fine to coarse grained sand, fine grained gravel, trace coarse grained gravel.						· · · · · · · · · · · · · · · · · · ·		• • • •
			<u> </u>		16.1						
			-Grain Size Distribution: Gravel (4.0%), Sand (30.4%), Silt (45.1%) and Clay (20.5%) at 16.46 m.		16.5 16.6	₽s	12				
- 215	17 — 55		Oldy (20.076) at 10.40 m.		16.9 17.1						
214.5			- Auger refusal at 17.37 m. Switched over to HQ coring.	r			13100	▲ 25		· · · · · · · · · · · · · · · · · · ·	
		$\sim \sim \sim$	SAND & GRAVEL - Medium to coarse grained sand (washed away),					*See Note 5			
- 214	18	°0°,	fine to coarse grained gravel, trace cobbles, limestone and granite pieces.			F	48		······································	· · · · · · · · · · · · · · · · · · ·	• • • •
	60	$^{\circ}$									
- 213		$\sim \sim $								· · · · · · · · · ·	
	19	°°°,				F	¹² 30				
		。 。 。			19.5					- - - - - - - - -	
212.0 212 -	65		LIMESTONE BEDROCK - Light tan to light brown, moderately								
	20		fractured, joint spacing is highly variable.								
			- Bedrock is broken along closely spaced joints and is partially washed away between 20.42 to 20.57 m.			F	13 100				
- 211	21		away Jolwoon 20.42 10 20.37 III.		21.0					· [· ·] · ·] · ·] · ·] ·	
			- Vertical fracture between 21.08 and 21.64 m.								· • • • •
					21.6	F	90				
SAN	I I IPLE TYPE		Auger Grab Split Spoon Core Barrel		1			<u>∎</u>	<u></u>	<u></u>	<u></u>
	ITRACTOR	2	INSPECTOR			APPR			DATE		
I	Paddock	Drill	ing Ltd. C. FRIESEN			T. NO	J		2/6/14		

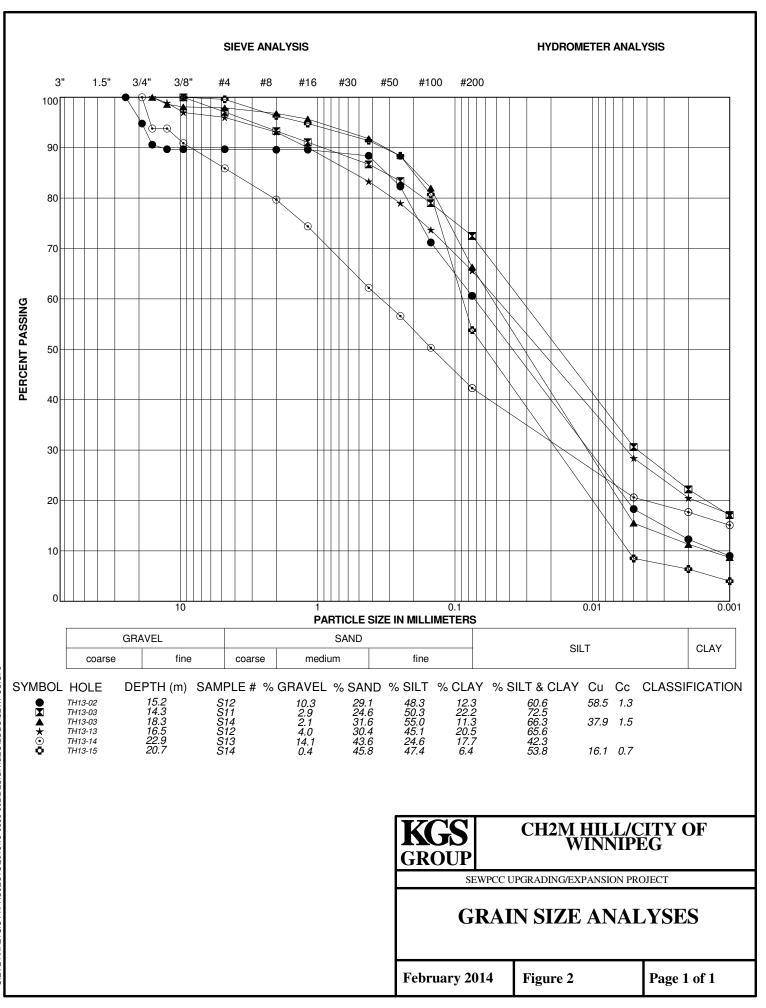
CBAPHICS CBAPHICS	END OF TEST HOLE AT 21.95 m. Notes:	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △	20 PL	40 60	80
	END OF TEST HOLE AT 21.95 m. Notes:			15 Z X			MC	
	END OF TEST HOLE AT 21.95 m. Notes:			SAI NU	20 40 60	20	% 40 60	80
75 	1. Water level noted at 9.14 m below grade after drilling to 17.37 m.		- 21.9					
-	 Installed Casagrande standpipe in the bedrock at a depth of 21.95 m and a Casagrande standpipe in the till at a depth of 16.92 m. Both standpipes have a stick-up of 0.91 m. Installed pneumatic piezometer (35528) at a depth of 7.62 m and pneumatic piezometer (35525) at a depth of 13.72 m. 							
	4. Backfilled test hole with silica sand from 21.95 to 21.03 m, bentonite chips from 21.03 to 19.51 m, slough from 19.51 to 17.07 m, silica sand from 17.07 to 16.46 m, bentonite chips from 16.46 to 16.10 m and a bentonite grout mixture from 16.10 m to grade.							· · · · · · · · · · · · · · · · · · ·
	5. SPT bouncing on possible boulder/cobble 75 mm into first set.							
- - -		90 95 105 105 105 105 105 105 105 105 105 10	995 995 105 105 105 105 105 105 105 10	90 95 95 105 105 105 105 105 105 105 105 105 10	-90 -95 -100 -100 -105 -105 -105 -105 -105 -10	- 90 - 90 - 95 - 100 - 105 - 1	90 90 90 100 100 100 105 105 105 105 10	

K GR	GS OUP		SUMMARY LOG REFERENCE NO.			DLE N H13		1	SHI	CET 1	of 3
_	JECT	SEWPO	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT					JOB NO. GROUND ELEV. TOP OF PVC ELE	231	0338-00 l.85 m	12
DRII	ATION		of Water Pollution Control Centre					WATER ELEV. DATE DRILLED UTM (m)	N	27/2013 5,517,31 536,778	
ELEVATION (m)	DEPTH (m) (tt)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60		KET PEN VANE (kPa 40 60 MC % 40 60	
- 231	1 1 1 1 5		SILTY CLAY - Brown, frozen to 0.15 m then moist, stiff, high plasticity.		1.5	₹ 1 51					
- 230.0 229.9 = 229.9 =	2		<u>SILT</u> - Tan, moist, firm, low plasticity. <u>SILTY CLAY</u> - Brown, moist, stiff, high plasticity, trace silt nodules. - Firm between 3.05 and 4.57 m.			₹] S2					
- 228 - 227	4					₹] s3					
25. 226 226 200 200 200 200 200 200	5		- Firm below 6.40 m.			₹ <u>₹</u> 54					
225 - 225 - 224	7			PN	7.8 7.9	₹] \$5					
225 225 225 225 225 224 223 SAM CON P	8 		- Grey below 7.92 m.			₹ <u></u> 56					
SAM CON	PLE TYPE TRACTOF addock	2	Auger Grab Split Spoon INSPECTOR Ling Ltd. C. FRIESEN			PPRC Г. NG)VEI		DATE 2/6/14		


K GR	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE H1	NO. 3-1 4	4				SHE	ET	2 0	of 3
		lics		-06	(m)	PE	%	SPT (blows	N)	m 🔺	Cu '	TOR\	/ANE	(kPa	
ELEVATION (m)	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE		DYNA (N) blo	MIC C	ONE		20 PL	40 M		80 LL
	(m) (ft)					SAI		20	40	60		20	40 40	60	80
- 221						₹ <u>₹</u>	57								
- 220	12				12.0	₹ <u>₹</u>	S8								
- 2 2 89 _			SILT TILL - Light grey, damp, dense, fine to coarse grained sand, trace		12.2	ζŢ.									
- 218			fine to coarse grained gravel. - Hard drilling below 13.56 m.			KT.	59 510 61	▲ 6	21	- 1 58					
217.4 _			SILTY CLAY TILL - Grey, moist, compact, high plasticity, trace fine to										· · · - · ·		
- 217 - 216	15		coarse grained sand, trace fine to coarse grained gravel.			₹₹ ₽	511								
- 215															
- 214 - 213 - 212 - 212 - - 211 SAM CON F	1860					₽s	\$12					↓			
- 213	19 														
_ 212.0 _ 212 -	20		SAND & GRAVEL - Brown, moist to wet, fine to coarse grained sand, fine grained gravel, trace coarse grained sand, trace cobbles Very little sample stayed on augers.		19.8										
- 211	21				21.2 21.5										
SAM	IPLE TYPE	Autorite Autorite	Auger Grab Split Spoon	-* 0.0 A/A			1	• • • • • • • •	p. 4.4.4						
CON	TRACTOR		INSPECTOR ing Ltd. C. FRIESEN			APPR T. N	ROVE G	D	_		DAT 2/6/1		_	_	_

N GR	CU ROUF		SUMMARY LOG REFERENCE NO.				NO. 3-1 4	4	SHE	EET 3 (of
ELEVATION (m)				DG	(m)	щ	~	SPT (N)	Cu TOR	KET PEN (VANE (kPa	
ATIO	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	₽ .	°, R√,°	blows/0.15 m	20	40 60	80
Ē	ä	GR⊿		PIE	DEP	PLE PLE		DYNAMIC CON (N) blows/ft		MC	
Ξ	(m) (f	t)				SAM	NUMBER RECOVERY %	20 40 60	20	% 40 60	80
	22	°0°,									
		° 0									
		° ° °									
209	23 - 7	5 . 0 0	-Grain Size Distribution: Gravel (14.1%), Sand (43.6%), Silt (24.6%) and Clay (17.7%) at 22.86 m.			择。	13		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • •
208.4 _		00			23.5	77 77 77 77				· · I · · I · · I · · I · · I	::
208			AUGER REFUSAL AT 23.47 m.						······································	· · · · · · · · · ·	· ·
200	24		Notes: 1. Water level noted at 5.49 m below grade after drilling.								
	_+*	0	 Test hole sloughed in to 21.49 m. Installed Casagrande standpipe at a depth of 21.49 m with a stick-up of 								
207			0.85 m. 4. Installed pneumatic piezometer (35529) at a depth of 7.92 m and								
	25 —		pneumatic piezometer (35527) at a depth of 12.19 m. 5. Backfilled test hole with a bentonite grout mixture from 19.81 to 1.52 m								+
			and bentonite chips from 1.52 m to grade.								1:::i 1:i
206		5									• • • • • • •
	26	-								····	
205											i::¦ ···
	27										
	9	0									
204	28										
203	29 9	5								<u></u>	i∷i —+
									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	1 1 1
202	30 —								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		00									
201	31 —								<u> </u>	<u></u>	<u> </u>
200											
200	32	05								· · · · · · · · · · · · · · · · · · ·	
199										· · I · · I · · I · · I · · I · · I · · I · · I · · I · · I · · I · · I · · I · · I	1l l
	33									· · · · · · · · · · · · · · ·	
		10								· · I · · I · · I · · I · · I	1 <u> </u>
SAM	IPLE TY		Auger Grab Split Spoon	·		•		• <u>•••••</u>			<u></u>
CON	TRACTO		INSPECTOR		A	APPR	OVE	D	DATE		


PROJECT SITE LOCATION	SEWPO South E	HILL/CITY OF WINNIPEG CC UPGRADING/EXPANSION PROJECT								
ELEVATION (m) DEPTH	125 mm	a of Solid Stem Auger, ACKER SS Drill Rig					JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	23. EV. 11. N	-0338-00 2.55 m /27/2013 5,517,35 637,016	5 50
	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBEB	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60		KET PEN VANE (kP 40 60 MC % 40 60	
232.1		SAND & GRAVEL - Brown, frozen to 0.3 m then damp, compact, well graded, fine to coarse grained sand, fine grained gravel, trace coarse grained gravel. SILTY CLAY - Black, moist, stiff, high plasticity. - Brown below 1.07 m.			¥ S1					
- 231 - 5 230.7 5 230.6 - 2		<u>SILT</u> - Tan, moist, firm, low plasticity. <u>SILTY CLAY</u> - Brown, moist, stiff, high plasticity, trace silt nodules.			₹Ţ					
					₹ <u>₹</u> \$3	8				
					₹] 54	Ļ				
					₹ <u>₹</u> \$5	5				
- ²²⁵ - ⁻ - ²⁵ - ⁻ 8 -		- Firm below 7.01 m. - Stiff between 7.77 and 8.99 m.	PN -	7.8 7.9	₹ <u></u> 56					
		- Grey between 8.08 and 8.53 m. - Grey below 9.14 m.			₹ <u>₹</u> \$7	r				
227 6 227 6 226 7 - 226 7 - 225 8 - - 225 - 26 - - 20 - - 20 - - 20 - - - 20 - - - - - - - - - - - - -	DR	Auger Grab INSPECTOR Ling Ltd. C. FRIESEN			PPRC T. NG			DATE 2/6/14		


K		S		REFERENCE NO.			DLE N H1.		5				SHI	EET	2	of
ELEVATION (m)			s		g	(L)	щ	%	SPT	(N)		Cu '		KET VANI		
ATIC	DEPTH	ī	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	<u>ال</u>				15 m 4 C CONE	. —	20	40	60	80
LEV		נ	GR		¤	DE	SAMPLE TYPE	RECOVERY	(N) b	lows	s/ft \triangle		יר 	-		
ш	(m)	(ft)					SAN	REC	20	40	60		20	% 40	60	80
		_					₽s	8	· · · · · · · · · · · · · · · · · · ·							
222		- 35				•										
	 11	-														
		-		- Soft below 11.28 m.												
221		-				•										
	12	-					₽s	9	···;···	<u></u>		· · · · · · ·	· 🔶 j • j • • j	<u></u>	<u> · · · ·</u>	<u>i</u> 11
000		40 -														
220		-			PN								: : : • • •		 ··· ··	1111
	13	-					₽ } }	0								+-+
19 <i>0</i> -		-					R						. I :: I H H		:: :: 	1::1 H H
		- 45		<u>SILT TILL</u> - Light grey, moist, compact, fine to coarse grained sand, trace fine to coarse grained gravel.		•								· · · · 		
		_														
218		_				0										
	15 —	-					₽s₁ }	1					. • <u> • • </u>	· · · · · ·		1001
		50														
217		-													 : : : :	1::1
	16	-											+++	<u> </u>		<u> </u>
		_							· · · · · · · · · · · · · · · · · · ·							
216 215.8 _		- 55		SAND & GRAVEL - Brown, moist to wet, loose, fine to medium grained	-166 16	16.8	₽	2								
	17	-	\circ \circ \circ \circ	sand, trace coarse grained sand, trace fine grained gravel, trace silt.		16.8			· · · · · · · · · · · · · · · · · · ·							+ · · · · · · · · · · · · · · · · · · ·
215		-	。 。 。		2009 2009 2009	2022	रा.								 	¦∷¦
		-	° ° °		2005 2005 2005	8		3								
	18	60				1667										11
214		-			2500 2500 2500											
	19 —	-	°°°,		0000	000								· · · ·		11
		-	$\sim \sim \sim$			19.5							. : : : : :			1::1 ::1
213		-	\circ \circ \circ \circ			3 19.5 3 19.8									- ::: ::	- ∷
	20	- 65 -	°°°	- Hard drilling below 19.8 m.												
a		-	。 。 。			200			· · · · · · · · · · · · · · · · · · ·						• • • • • • • •	
212		-		-Grain Size Distribution: Gravel (0.4%), Sand (45.8%), Silt (47.4%) and		20202	य स	4								
	21	-		Clay (6.4%) at 20.73 m.		2011-20	₽ ₽		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · ·		
211		—70	° ° °			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				· . :		. . -		· · · · · · · · · · · · · · · · · · ·	 	
		-			20305	19 7 9			· · · · · · · · · · · · · · · · · · ·					<u></u>		
	IPLE T			Auger Grab			חחם					דאם	TE			
				INSPECTOR Ling Ltd. C. FRIESEN			APPRO T. NC		J			DAT 2/6/1				

K GF) P		SUMMARY LOG			DLE NO. H13-1	5	SHE	ET 3 of
ELEVATION (m)			cs		g	(m)	Щ %	SPT (N)	Cu TORV	ET PEN (kPa ANE (kPa)
LTI0	DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	TVP %	blows/0.15 m 🔺	20 7	0 60 80
EVA			GRA		DIEZ	ЭЕР.		DYNAMIC CONE		MC L
Ц	(m)	(ft)	Ū				SAMPLE TYPE NUMBER RECOVERY %	20 40 60	•	♥ ■ ₩ 10 60 80
	22		°0°~							
			,° 0 ,							
210										
209.4	23 -	- 75	。 0 0			23.2			···	· · · · · · · · · ·
	1 1		·····	AUGER REFUSAL AT 23.16 m.						11111
209				Notes: 1. Water level noted at 9.14 m below grade after drilling.						
	24 —			2. Test hole sloughed in to 16.76 m.						<u> </u>
		-80		3. Installed Casagrande standpipe at a depth of 19.81 m with a stick-up of 0.81 m.						!!!!! ·· ·· ·· ··
208				4. Installed pneumatic piezometer (35530) at a depth of 7.92 m and pneumatic piezometer (35526) at a depth of 12.80 m.						
	25 —			5. Backfilled test hole with a bentonite grout mixture from 16.76 m to grade.						
207										
	26 -	- 85							· · · · · · · · · ·	
										· · · · · · · · · ·
206										
	27 -									<u> · · · · · · · · </u>
		90								
205										
	28 -									
204										┥ <u>╺</u> ┥ <u></u> ╺┥ <u></u> ┥ ╷╷╷╷╷╷╷╷╷
	29 -	- 95								
									· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·
203										
	30 —								· · · · · · · · · · · · · · ·	· · · · · · · · · ·
		100								
202		-100								
	31 —									
										1III ··· ·· ·· ··
201										
	32	- 105								
	‡									
200										
	33 —								··········	· · · · · · · · · · · · · · · · · · · ·
199 SAM	IPLE T	110 YPE	Ł	Auger Grab						
	TRAC			INSPECTOR		A	APPROVE	ED	DATE	
				ling Ltd. C. FRIESEN			T. NG		2/6/14	

Notes: ML - Low Plasticity Silt MH - High Plasticity Silt CL-ML - Silty Clay CL - Low Plasticity Clay CI - Intermediate Plasticity Clay CH - High Plasticity Clay LL - Liquid Limit PL - Plastic Limit PI - Plastic Limit PI - Plasticity Index MC - Moisture Content NP - Non-Plastic

SIEVE ANALYSIS P:/PROJECTS/2013/13-0338-002/DESIGN/GEO/LOGS/SEWPCC.GPJ

TH13-13 57'3" to 72'0"

TH13-02 62'6" to 73'0"

TH13-03 61'0" to 75'0"

Stantec Consulting Ltd. 199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999 Fax: (204) 488-6947

January 14, 2013

KGS Group Inc. 3rd Floor-865 Waverley Street Winnipeg, MB R3T 5P4

Attention: Caleb Friesen

Caleb,

Re: South End Water Pollution Control Centre - Soils Test Report

Soils sample were submitted to our laboratory on January 6, 2014. The following tests were conducted on selected soil samples:

- Water content (ASTM D2216)
- Particle size analysis (ASTM D422)
- Liquid limit (multi-point), plastic limit, and plasticity index (ASTM D4318)

The test results are summarized in the attached tables and particle size analysis reports.

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

erman El.

German Leal, B.Sc., P.Eng. Project Manager, Geotechnical Engineering

Testhole ID	Sample No.	Gravel (%) 75 to 4.75 mm	Sand (%)			Silt (%)	Clay (%)			
			Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	<0.075 to 0.002 mm	<0.002 mm	Liquid Limit	Plastic Limit	Plasticity Index
TH13-02	S4	-	-	-	-	-	-	99	33	66
TH13-02	S7	-	-	-	-	-	-	81	27	54
TH13-02	S10	-	-	-	-	-	-	94	28	66
TH13-02	S12	10.3	0.1	1.2	27.8	48.3	12.3	-	-	-
TH13-03	S5	-	-	-	-	-	-	86	29	57
TH13-03	S9	-	-	-	-	-	-	90	28	62
TH13-03	S11	2.9	3.8	6.6	14.2	50.3	22.2	-	-	-
TH13-03	S14	2.1	1.1	5.0	25.5	55.0	11.3	-	-	-
TH13-13	S12	4.0	2.9	9.8	17.7	45.1	20.5	-	-	-
TH13-14	S13	14.1	6.2	17.5	19.9	24.6	17.7	-	-	-
TH13-15	S14	0.4	3.3	4.9	37.6	47.4	6.4	-	-	-

TABLE 1 - PARTICLE SIZE AND ATTERBERG LIMITS TEST DATA

Notes:

1. A high speed stirring device was used for 1 minute to disperse the test samples for particle size analysis

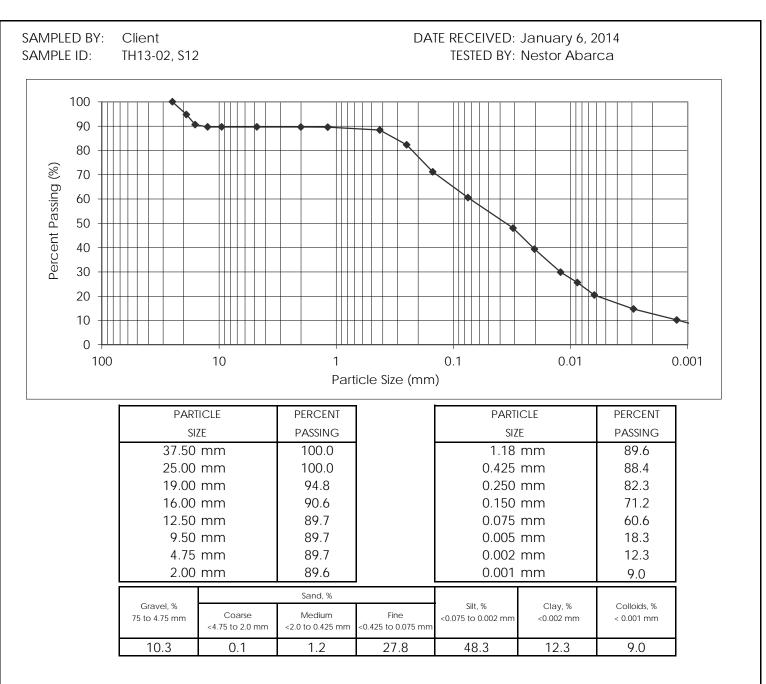
2. Atterberg limits conducted in accordance with ASTM D4318 Method A (multi-point liquid limit)

3. The soil samples were air-dried during sample preparation for Atterberg limits and particle size analysis

Testhole ID	Sample No.	Moisture Content (%)	Testhole ID	Sample No.	Moisture Content (%)
TH13-02	S4	54.5	TH13-11	S4	49.8
TH13-02	S6	48.9	TH13-11	S6	51.2
TH13-02	S7	45.8	TH13-11	S8	56.8
TH13-02	S8	53.9	TH13-12	S4	45.1
TH13-02	S9	55.5	TH13-12	S6	44.9
TH13-02	S10	63.1	TH13-12	S8	55.6
TH13-02	S12	12.4	TH13-13	S4	52.1
TH13-02	S14	13.7	TH13-13	S7	51.9
TH13-03	S2	20.9	TH13-13	S10	55.7
TH13-03	S5	48.3	TH13-13	S12	14.4
TH13-03	S7	42.5	TH13-14	S4	50.3
TH13-03	S9	53.6	TH13-14	S7	58.5
TH13-03	S11	17.1	TH13-14	S10	7.7
TH13-08	S3	52.4	TH13-14	S12	20.3
TH13-08	S5	42.5	TH13-15	S4	48.5
TH13-08	S7	47.8	TH13-15	S7	41.5
TH13-09	S4	56.9	TH13-15	S10	49.0
TH13-09	S6	45.8	TH13-15	S12	16.9
TH13-09	S8	48.2	TH13-15	S14	18.1
TH13-10	S4	47.5			
TH13-10	S6	52.1			
TH13-10	S8	61.1			

TABLE 2 - WATER CONTENT TEST DATA

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4

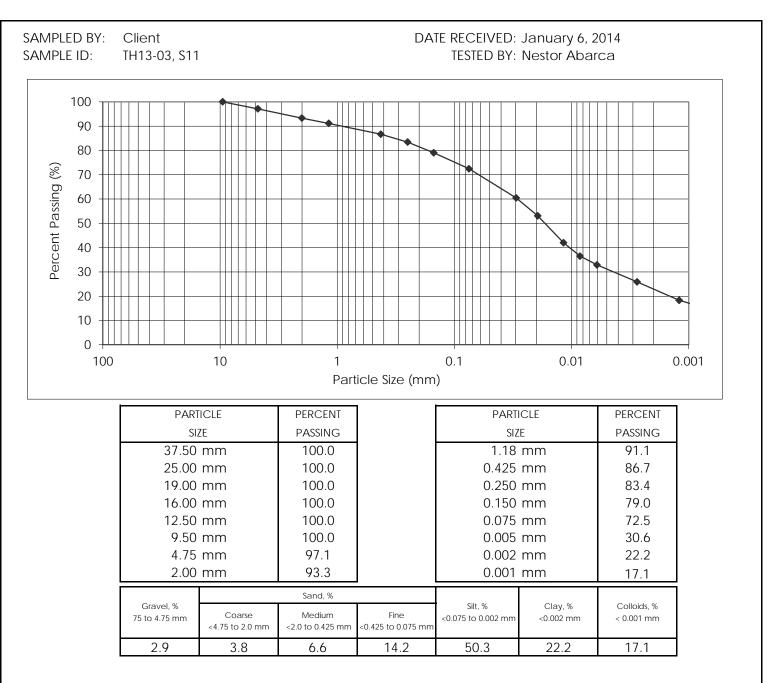
Attention:

Caleb Friesen

PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014

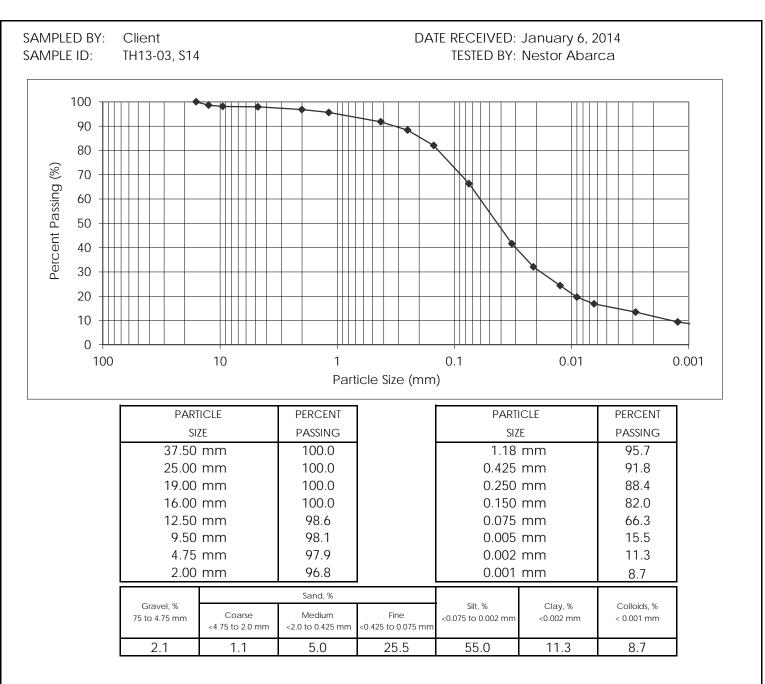

REVIEWED BY: German E. Leal, B.Sc., P. Eng.

PARTICLE SIZE ANALYSIS ASTM D422

KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014

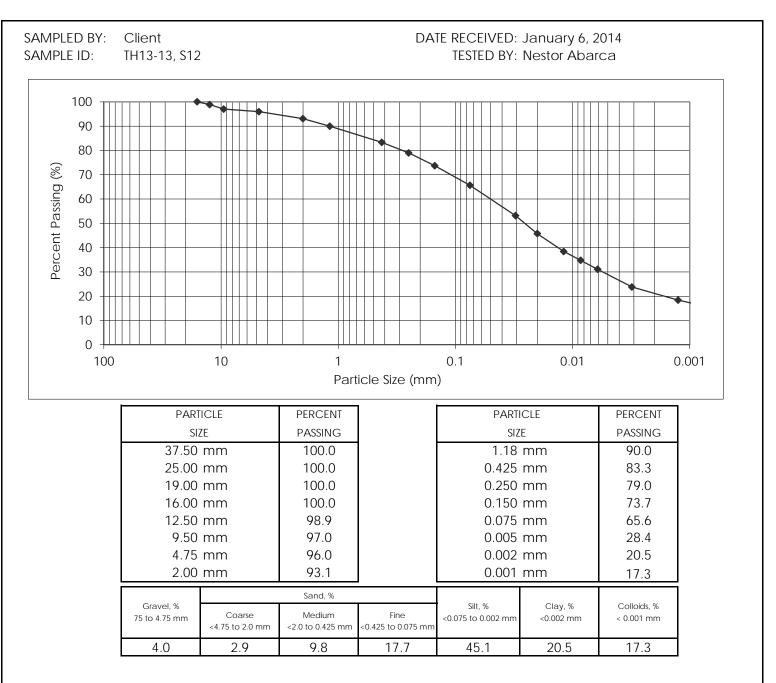

REVIEWED BY: German E. Leal, B.Sc., P. Eng.

Attention: Caleb Friesen

KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014


REVIEWED BY: German E. Leal, B.Sc., P. Eng.

Attention: Caleb Friesen

KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014


REVIEWED BY: German E. Leal, B.Sc., P. Eng.

Attention: Caleb Friesen

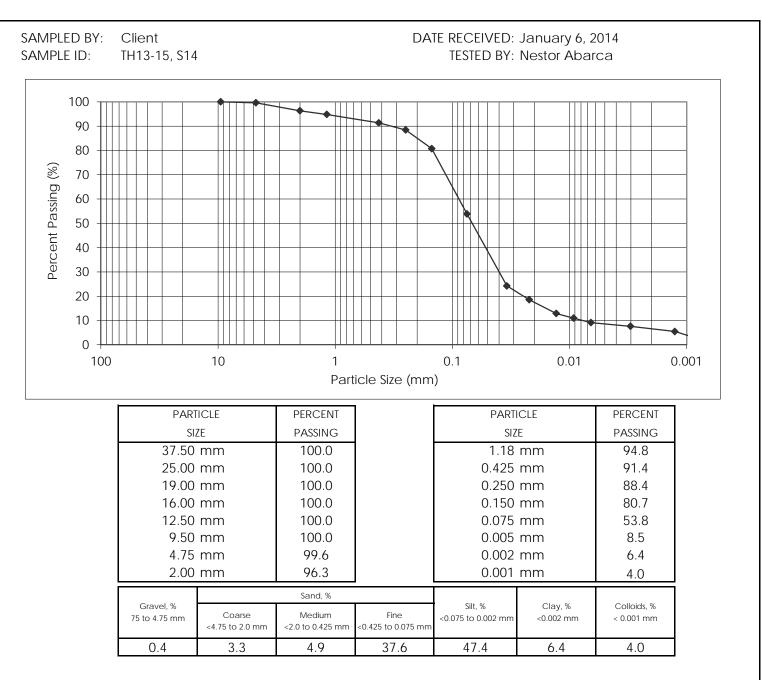
KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014

REVIEWED BY: German E. Leal, B.Sc., P. Eng.

Attention: Caleb Friesen


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4

Attention:

Caleb Friesen

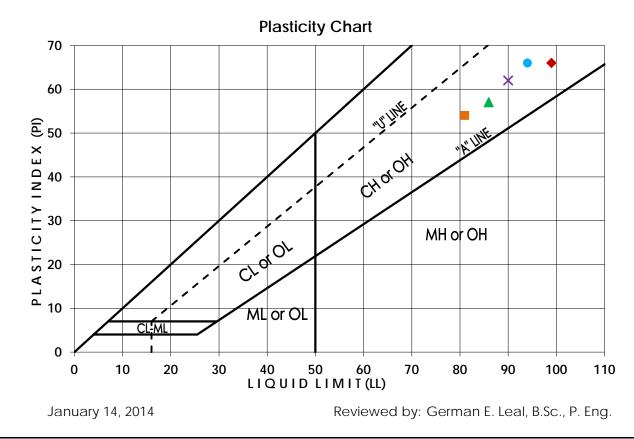
PROJECT: South End Water Pollution Control Centre (13-0338-002)

PROJECT NO.: 123301317

January 14, 2014

REVIEWED BY: German E. Leal, B.Sc., P. Eng.

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS ASTM 4318


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4

PROJECT: South End Water Pollution Control Center (13-0338-002)

Attention: Caleb Friesen

PROJECT NO.: 123301317

Symbol	Testhole No.	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	USCS
•	TH13-02	S4	99	33	66	СН
	TH13-02	S7	81	27	54	СН
•	TH13-02	S10	94	28	66	СН
	TH13-03	S5	86	29	57	СН
,	TH13-03	S9	90	28	62	СН

199 Henlow Bay, Winnipeg, Manitoba R3Y 1G4 Phone (204) 488-6999 Fax (204) 488-6947 Email info@nationaltestlabs.com

APPENDIX B

PILE LOAD CAPACITY VERIFICATION – PDA TEST RESULTS

3rd Floor 865 Waverley Street Winnipeg, Manitoba R3T 5P4 204.896.1209 fax: 204.896.0754 www.kgsgroup.com Kontzamanis Graumann Smith MacMillan Inc.

October 24, 2014

File No. 13-0338-002

CH2M Hill 1301 Kenaston Boulevard Winnipeg, Manitoba R3P 2P2

ATTENTION: Mr. Barry Williamson Senior Project Manager

RE: SEWPCC Upgrading/Expansion Project 682-2012 Civil/Geotechnical Work South-East Water Pollution Control Centre, Winnipeg, MB Pile Load Capacity Verification – PDA Test Results

Dear Mr. Williamson:

Subterranean (Manitoba) Limited retained the services of AATech Scientific Inc (ASI). to complete dynamic load testing on a number of test piles using the Pile Driving Analyzer (PDA) system. The pile load tests were performed to verify that the piles have the required factored serviceability limit state (SLS) capacity of approximately 800 kN or an unfactored SLS of 2000 kN as provided in the KGS Group final report "SEWPCC Upgrading/Expansion/Civil/Geotech Geotechnical Investigation" dated February 2014. The hammer energy and the driving stresses on the piles were also monitored during the load tests to confirm that stresses on the piles are within acceptable limits.

This letter report contains KGS Group's review of the PDA reports prepared by ASI and provides recommendations for pile design.

1.0 DESCRIPTION OF TEST PILES

Dynamic pile load tests were performed on seven piles (Pile 1 through Pile 7) on January 30, 2014 located as shown on the attached plan. All the piles were each 406 mm hexagonal pre-cast pre-stressed concrete piles. The piles were tested at restrike, 24 hours after the end of driving, with a Junttan HHK5A hydraulic hammer with a rated energy of 59 kJ. During the testing of Pile 3 a tensile reflection was observed, which usually indicates pile damage or a loose splice, resulting in a low penetration resistance. Hence, the PDA data for the Pile 3 was discarded and not included in this review.

2.0 DYNAMIC LOAD TESTS

The report prepared by AATech Scientific Inc. containing details of the dynamic load testing programs, analyses and interpretation of test results are provided in Appendix A. The driving log records for the test piles are included in Appendix B.

CAPWAP analyses were performed for representative hammer blow records from the test data obtained during the restrike of the tested piles. Results obtained from the CAPWAP analyses for the piles were used to verify the applicable CASE Method estimate and to determine soil parameters and resistance distribution for evaluating the test results. Results of the CAPWAP analyses, complete output data and values of selected PDA data (transferred energy, hammer drop height, driving stresses, penetration resistance etc.) for selected hammer blow records are all presented in Appendix A. Estimated pile load capacities obtained from analyses are summarized on Table 1.

Driving stresses were below 20 MPa throughout the testing, which is within the acceptable limits for 35 MPa pre-cast concrete piles.

TABLE 1
ESTIMATED CAPACITIES FOR 406 MM PRE-CAST PRE-STRESSED CONCRETE PILES

			Time	CASE	Сог	nputed Resist	ance
Pile ID	Embedment (m)	Testing Condition	After Drivin g (Days)	Method Estimated Capacity (kN)	Estimated Capacity (kN)	Shaft Resistance (kN)	Toe Resistance (kN)
1	18.30	Restrike	1	1,968	2,093	1,078	1,016
2	21.00	Restrike	1	2,404	2,411	1,095	1,316
3	21.60 (17.40)	Restrike	1	511			
4	16.80	Restrike	1	2,120	2,229	1,097	1,132
5	18.00	Restrike	1	2,211	2,245	1,001	1,244
6	17.10	Restrike	1	2,163	2,260	1,080	1,180
7	2.00	Restrike	1	2,625	2,643	1,150	1,493

3.0 PILE DRIVING ANALYSIS

ASI performed preliminary pile driving analysis using Wave Equation Analysis (WEAP) approach to estimate the termination blow count that would be needed to achieve the required ultimate load capacity for the piles. The details and results of the WEAP analysis are provided in Appendix A. The analysis indicated that an end-of-drive (EOD) resistance of 2,000 kN can be achieved at about 20 blows per 25 mm or practical refusal.

Based on the analysis and agreement between the results from the CASE Method and WEAP approach, a resistance of 2,000 kN can be used for the capacity of the pre-cast concrete piles and the geotechnical resistance factor, Φ , can be increased from 0.4 to 0.5.

4.0 CONCLUSIONS

The results of the PDA tests on the 406 mm hexagonal pre-cast pre-stressed concrete piles showed that the piles can be driven to achieve a total mobilized resistance ranging from 2,100 kN to 2,650 kN. For the driving energy applied to the piles.

The test results confirmed that resistances were derived from both the toe and shaft of the pile.

The driving stresses as measured during the testing program were well within the acceptable limits.

5.0 **RECOMMENDATIONS**

The design of the piles should be based on unfactored unit resistance for pre-cast pre-stressed concrete piles of 2,100 kN with an applicable geotechnical resistance factor, Φ , of 0.5.

PDA tests should be performed on 5 to 10% representative production piles to verify the integrity and load capacities of the piles as part of the quality assurance and quality control program.

6.0 STATEMENT OF LIMITATIONS AND CONDITIONS

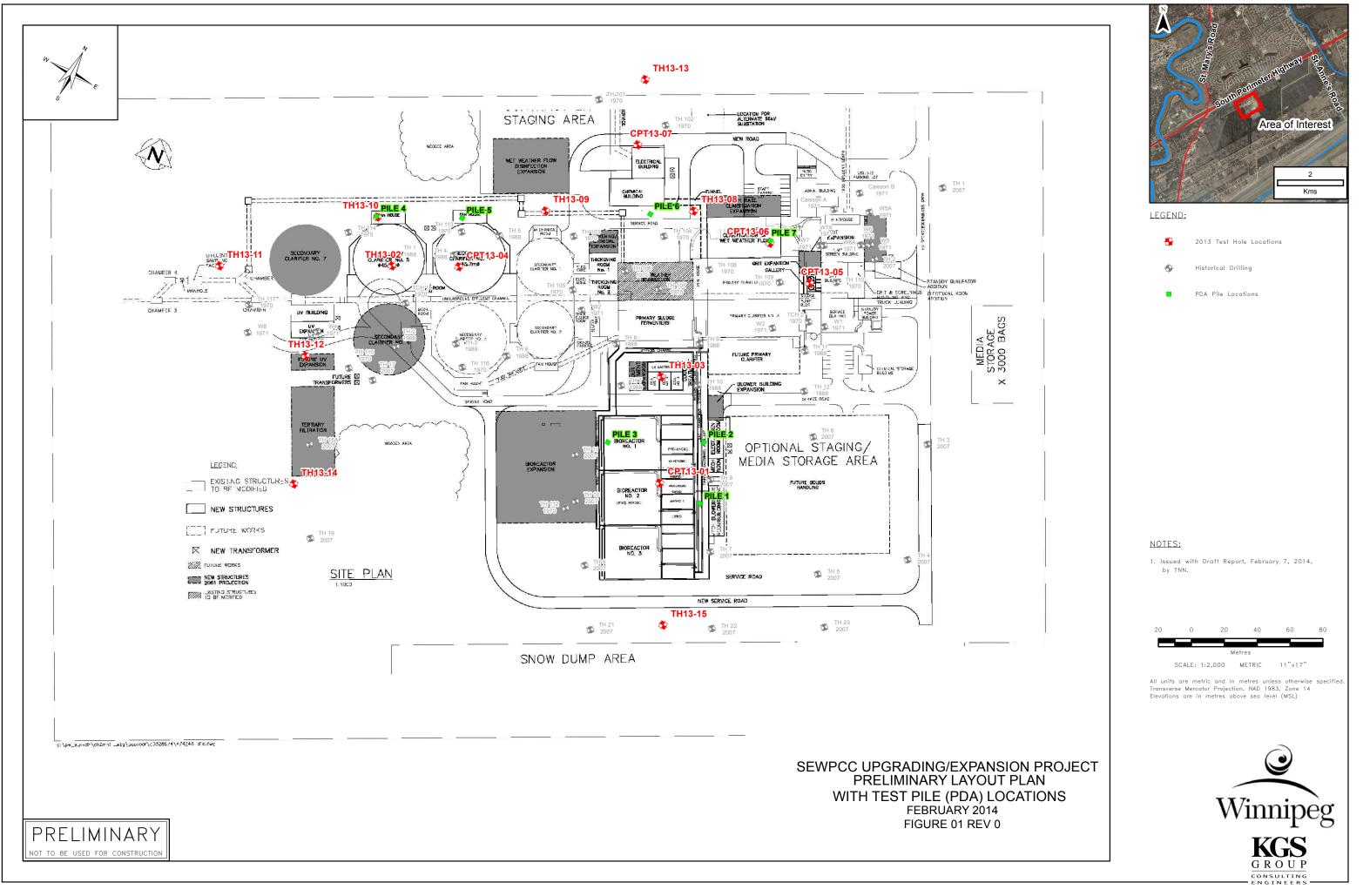
6.1 THIRD PARTY USE OF REPORT

This report has been prepared for Ch₂MHill and City of Winnipeg to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions undertaken based on this report.

6.2 GEOTECHNICAL ENGINEERING STATEMENT OF LIMITATIONS

The conclusions and recommendations contained in this report were prepared in accordance with generally accepted professional engineering principles and practice. The conclusions and recommendations are based on the from the PDA tests and analyses that was made available to KGS Group by Subterranean (Manitoba) Ltd, combined with information on soil and groundwater conditions described in existing soils report and those encountered at and within the depth of the test holes drilled by KGS at this site. If conditions encountered during construction appear to be different from those shown on the existing soil report or test holes drilled by KGS or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and modified if necessary.

Mr. Williamson Page 4


7.0 CLOSURE

We trust that this report letter is sufficient for your present needs. Please do not hesitate to contact the undersigned at your convenience if you have any question.

Prepared By: Approved By: David Anderson, M.S. Rob Kenyon, Ph. D., P.Eng. Geotechnical Engineer Manager, Geotechnical Engineering Services DEA/mlb Enclosure

Cc. Roy Houston – KGS Group Tony Ng – KGS Group SITE PLAN FIGURES

APPENDICES

APPENDIX A

PDA TEST RESULTS

Ottawa (Head Office) 589 Rideau St., Unit 212 Ottawa, ON - K1N 6A1 Tel: 613.789.6333 Fax: 613.789.5333

Toll Free: 1.877.789.6333 Email: info@aatechscientific.com Web: www.aatechscientific.com Calgary 100, 111 - 5 Avenue SW Suite 312 Calgary, AB - T2P 3Y6 Tel: 403.261.0023 Fax: 403.261.0024

New York 26000 U.S RT 11, Suite 194 Evans Mills, NY 13637 Tel: 315.703.9677 Fax: 315.703.9668

South-East Water Pollution Control Center Winnipeg, Manitoba

Dynamic testing of piles

Report 1

Project No. 9821401

Prepared for

Subterranean (Manitoba) Ltd 6 St Paul Blvd West St Paul, MB R2P 2W5

February 4, 2014

Leaders in Geotechnical & Foundation Engineering

Ottawa (Head Office) 589 Rideau St., Unit 212 Ottawa, ON - K1N 6A1 Tel: 613.789.6333 Fax: 613.789.5333

Toll Free: 1.877.789.6333 Email: info@aatechscientific.com Web: www.aatechscientific.com Calgary 100, 111 - 5 Avenue SW Suite 312 Calgary, AB - T2P 3Y6 Tel: 403.261.0023 Fax: 403.261.0024

New York 26000 U.S RT 11, Suite 194 Evans Mills, NY 13637 Tel: 315.703.9677 Fax: 315.703.9668

South-East Water Pollution Control Center Winnipeg, Manitoba

Dynamic testing of piles

Report 1

Project No. 9821401

Prepared for

Subterranean (Manitoba) Ltd 6 St Paul Blvd West St Paul, MB R2P 2W5

February 4, 2014

Fred Agharazi, M. Eng, P. Eng.

Prepared by:

a

Ion Bejancu, B.A.Sc.

Table of contents

<u>Topic</u>	<u>Page No.</u>
INTRODUCTION	2
TEST RESULTS	2
CONCLUSION AND RECOMMENDATIONS	3

Appendices

Appendix 1: CAPWAP Analysis Results

South-East Water Pollution Control Center Winnipeg, Manitoba

Report 1

INTRODUCTION

AATech Scientific Inc. (ASI) was retained by Subterranean (Manitoba) Ltd. to perform dynamic PDA testing on driven piles at South East Water Pollution Control Center construction site in Winnipeg, Manitoba. This report presents the factual results of the PDA testing performed during one site visit, on January 30, 2014. Seven piles in total were tested at restrike, twenty-four hours after the end of driving during this visit. The tested piles are precast hexagonal 406 mm width concrete piles. A Junttan HHK5A hydraulic hammer, rated energy of 59 kJ, was used to drive and test the piles at this site. As reported to us on site, the hammer was operated at variable energy setting during PDA testing. The required capacity, as reported to us on site, is 2,000 kN.

The PDA testing and the interpretation provided in this report are in accordance with ASTM Standard D4945-00.

TEST RESULTS

A total of seven piles were tested during this site visit. It is our understanding that the required capacity for the piles at this location is 2,000 kN.

A total of six CAPWAP analyses were performed on a representative hammer blow record from the PDA data. CAPWAP analyses are performed mainly to verify the applicable CASE Method estimates, and to determine soil parameters and resistance distribution for evaluating the test results. The mobilized static resistance computed by CAPWAP showed an agreement with CASE Method Estimate (CMES) RMX with j-factor (CASE damping factor) of 0.8 (RX8). Results of the CAPWAP analyses are summarized in Table 1, and the complete outputs are enclosed in Appendix 1 at the end of this report. Values of RX8 as

well as other PDA data (transferred energy, driving stresses, penetration resistance...) for selected hammer blow records are also presented in Table 1.

All tested piles showed a penetration resistance in excess of 20 blows per 25 mm (refusal), with the exception of Pile 3, which showed a tensile reflection at approximate depth of 17.5 m (about 4 m above the pile toe). A tensile reflection is usually an indication of pile damage or a loose splice. This pile showed a low penetration resistance (about 3 blows per 25 mm and a low capacity of about 500 kN, as indicated by PDA data.

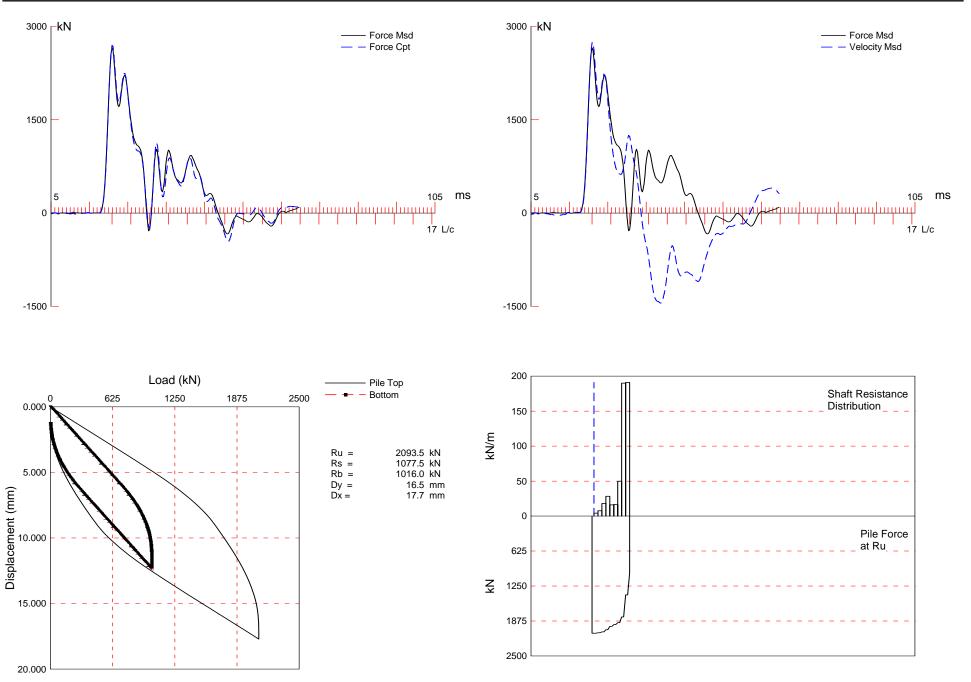
Based on the test results the tested piles, except Pile 3, showed a total mobilized resistance ranging from 2,100 kN through 2,650 kN, which is in excess of the required capacity of 2,000 kN. It should be noted that the pile resistance measured at or beyond practical refusal (20 blows per 25 mm) is in fact the resistance mobilized by the hammer impact and may not necessarily represent the full capacity of the pile.

Driving stresses were below 20 MPa throughout the testing, which is within the acceptable limits for 35 MPa precast concrete piles.

CONCLUSION AND RECOMMENDATIONS

Driving stresses were maintained within acceptable limits throughout the testing.

All tested piles, except Pile 3, showed a mobilized resistance in excess of the required capacity. Additional resistance may be expected with time.


Pile 3 showed a tensile reflection (damage indication) at approximate depth of 17.5 m (about 4 m above the pile toe).

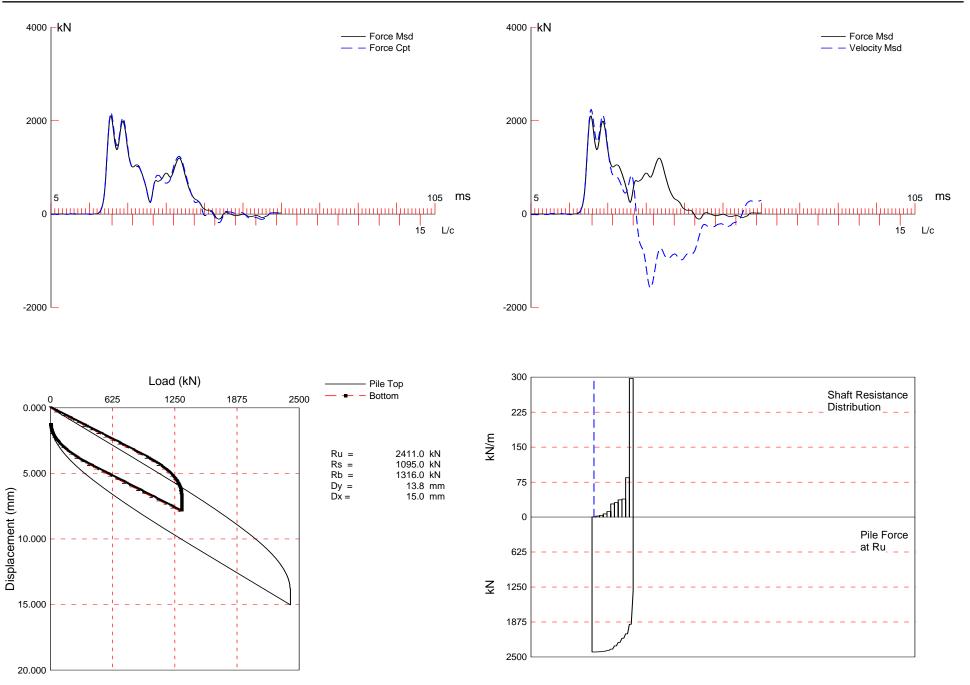
These test results are representative of site conditions at the time of testing (water level, existing ground level around the location of the test piles), and apply only to production piles in the same site location, and showing similar behavior to that of the tested piles. Any changes in site conditions and/or pile behavior during driving should be reported to the engineer for further evaluation.

Table 1: PDA Data and CAPWAP Summary Table

Pile	Pile type	Pile Inclination	Hammer	Date	Date	Test	Blow	Embed.	ЕМХ	EMX Ratio	FMX	CSX	CSB	TSX	PRES	Case Method Est.	Computed	Resistance (kN)	Smith dan	mping (s/m)	Quake	e (mm)
No.	& size (mm)	(Vertical/Battered)	Туре	Driven	Tested	(E / R)	No.	(m)	(kN-m)	(%)	(kN)	(Mpa)	(Mpa)	(Mpa)	(BI./25mm)	RX8 (kN)	Total	Shaft	Тое	Shaft	Toe	Shaft	Тое
1	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	ER	25	18.30	19.3	33	2,697	18.9	15.6	3.9	20	1,968	2,093	1,078	1,016	0.3	0.2	4.0	8.6
2	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	R	4	21.00	14.3	24	2,141	15.0	19.2	2.4	20	2,404	2,411	1,095	1,316	0.4	0.2	4.0	5.0
3	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	ER	21	21.60 (17.40)	12.2	21	1,931	13.5	10.0	4.0	3	511*							
4	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	R	3	16.80	13.3	23	2,020	14.1	16.3	2.8	25	2,120	2,229	1,097	1,132	0.3	0.3	4.0	6.2
5	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	R	3	18.00	12.5	21	1,924	13.5	19.3	3.0	25	2,211	2,245	1,001	1,244	0.4	0.4	4.9	5.1
6	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	R	4	17.10	10.4	18	1,815	12.7	16.4	2.6	25	2,163	2,260	1,080	1,180	0.3	0.2	4.0	4.9
7	Hex 406	v	HHK 5A	Jan 29, 2014	Jan 30, 2014	ER	23	21.00	10.7	18	2,058	14.4	18.6	3.6	60	2,625	2,643	1,150	1,493	0.4	0.4	3.3	2.9
Embed. EMX EMX Ratio FMX	Length below adjacent grad Maximum energy transferred Ratio of transferred energy to Maximum force measured	d to the pile head			R ER	End of driving Restrike End of Restrike Penetration resistand	e (Blows per	25 mm)		CSB TSX	Maximum comp Computed comp Tensile stress RMX / RSP CA	pressive str	ess near th	e pile toe		*	Pile showing significa	t dalmage					

Appendix 1 CAPWAP Analysis Results

SEWPCC; Pile: 1 ER; Blow: 25 AATech Scientific Inc


CAPWAP SUMMARY RESULTS											
Total CAPW	AP Capacity	·: 2093	.5; along	Shaft	1077.5; at	Toe 1016.	0 kN				
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith			
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping			
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor			
	m	m	kN	kN	kN	kN/m	kPa	s/m			
				2093.5							
1	3.1	1.8	8.8	2084.7	8.8	4.90	3.49	0.300			
2	5.2	3.9	15.9	2068.8	24.7	7.71	5.48	0.300			
3	7.2	5.9	37.3	2031.5	62.0	18.08	12.85	0.300			
4	9.3	8.0	58.6	1972.9	120.6	28.40	20.20	0.300			
5	11.3	10.0	33.2	1939.7	153.8	16.09	11.44	0.300			
6	13.4	12.1	34.6	1905.1	188.4	16.77	11.92	0.300			
7	15.5	14.2	102.9	1802.2	291.3	49.88	35.46	0.300			
8	17.5	16.2	392.1	1410.1	683.4	190.05	135.13	0.300			
9	19.6	18.3	394.1	1016.0	1077.5	191.02	135.82	0.300			
Avg. Sha	aft		119.7			58.88	41.86	0.300			
Тое	9		1016.0				7117.24	0.200			
Soil Model	Parameters	/Extensi	.ons			Shaft 1	loe				
Quake		(m	m)			4.000 8.6	500				
Case Dampi	ng Factor	•					L29				
- Unloading	-	(%	of loadir	ng quake)		90	82				
Reloading	Level		of Ru)			100 1	L00				
Unloading	Level	(%	of Ru)			30					
Soil Plug	Weight	(k	N)			0.	. 20				
Soil Suppo	rt Dashpot					0.800 0.0	000				
Soil Suppo	rt Weight	(k	N)			14.51 0	.00				
CADWAD mat	ch quality	=	4.76	(141	we lin Mato	(h); RSA =	0				
Observed:		=	1.250 mm	-	w count		0 0 b/m				
Computed:		=	1.511 mm	-	ow count		2 b/m				
max. Top C	omp. Stress	=	18.9 ME	Pa (1	r= 21.4 ms	, max= 1.00	L x Top)				
max. Comp.	Stress	=	18.9 ME	Pa (2	Z= 2.1 m,						
max. Tens.	Stress	=	-4.11 ME	Pa (2	Z= 5.2 m,	T= 50.5 m	s)				
max. Energ	Y (EMX)	=	19.66 kJ	r; ma	x. Measure	d Top Displ	. (DMX)=12.	26 mm			

SEWPCC; Pile: 1 ER; Blow: 25 AATech Scientific Inc

				REMA TABLE	EXTI			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
mm	m/s	kJ	MPa	MPa	kN	kN	m	
12.173	1.7	19.66	-3.57	18.9	-510.3	2700.0	1.0	1
12.096	1.7	19.63	-3.79	18.9	-540.6	2702.1	2.1	2
11.981	1.7	19.59	-3.94	18.9	-561.8	2701.8	3.1	3
11.822	1.7	19.39	-4.06	18.9	-579.5	2693.6	4.1	4
11.622	1.7	19.27	-4.11	18.9	-586.9	2694.5	5.2	5
11.386	1.7	18.88	-3.92	18.8	-559.2	2684.9	6.2	6
11.119	1.7	18.66	-3.61	18.9	-515.1	2692.6	7.2	7
10.904	1.7	18.04	-3.08	18.7	-440.2	2670.9	8.3	8
10.752	1.7	17.97	-2.59	18.8	-369.6	2680.8	9.3	9
10.600	1.7	17.19	-2.19	18.4	-313.1	2633.5	10.3	10
10.430	1.8	17.10	-2.24	18.5	-320.4	2647.8	11.3	11
10.238	1.9	16.59	-2.28	18.4	-325.8	2632.2	12.4	12
10.028	1.8	16.45	-2.43	18.6	-346.5	2653.6	13.4	13
9.802	1.7	15.89	-2.42	18.3	-345.3	2609.3	14.4	14
9.564	1.7	15.71	-2.43	17.9	-346.2	2560.6	15.5	15
9.331	1.9	14.45	-2.03	16.0	-289.5	2288.8	16.5	16
9.090	2.1	14.27	-1.88	15.2	-269.0	2164.1	17.5	17
8.887	2.2	10.43	-1.00	11.3	-142.7	1616.7	18.6	18
8.670	2.2	7.01	-1.31	11.1	-187.5	1580.4	19.6	19
21.7 ms)	(T =			18.9			2.1	Absolute
50.5 ms)	(T =		-4.11				5.2	

	CASE METHOD												
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
RP	2007.4	1659.5	1311.5	963.5	615.5	267.5	0.0	0.0	0.0	0.0			
RX	2513.7	2342.6	2188.6	2092.2	2027.8	1983.4	1955.6	1945.3	1937.9	1930.7			
RU	2007.4	1659.5	1311.5	963.5	615.5	267.5	0.0	0.0	0.0	0.0			
RAU = Current	RAU = 1916.3 (kN); RA2 = 2083.7 (kN) Current CAPWAP Ru = 2093.5 (kN); Corresponding $J(RP)$ = 0.00; $J(RX)$ = 0.30												
v	VMX TVP VT1*Z FT1 FMX DMX DFN SET EMX QUS												
m	/s ma	s ki	N ki	N	kN	mm	mm	mm	kJ	kN			
1.	77 21.1	5 2790.	2 2697.	1 269	7.1 12	.263	1.249	1.250	19.7	2915.9			

	PILE PROFI	LLE AND PILE MOD	EL		
Depth	Area	E-Modulus	Spec. Weig	ght	Perim.
m	Cm ²	MPa	kN/1	n ³	m
0.00	1427.52	50000.0	24.0	000	1.406
19.60	1427.52	50000.0	24.0	000	1.406
Toe Area	0.143	m²			
Top Segment Length	1.03 m, Top Imped	lance 1579.11 k	N/m/s		
Pile Damping 2.0 %,	Time Incr 0.258 m	ns, Wave Speed	4000.0 m/s,	2L/c 9.8 ms	8

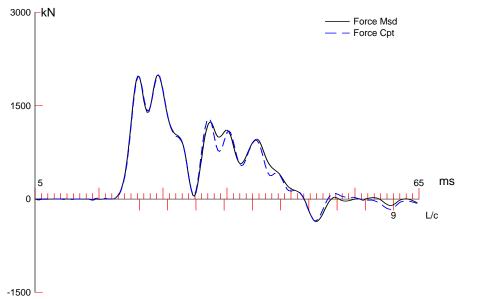
SEWPCC; Pile: 2 R; Blow: 4 AATech Scientific Inc

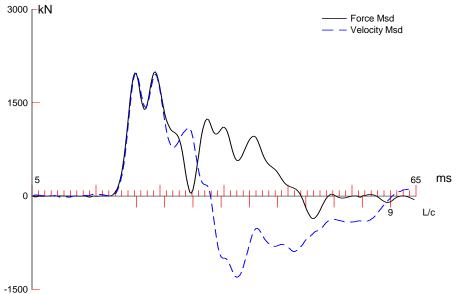
			CAPWA	P SUMMAR	Y RESULTS			
Total CAPWA	AP Capacity	: 2411.0	; along	Shaft	1095.0; at	Toe 1316.	0 kN	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smit
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Dampin
No.	Gages	Grade			Ru	(Depth)	(Area)	Facto
	m	m	kN	kN	kN	kN/m	kPa	s/1
				2411.0				
1	2.0	0.8	1.1	2409.9	1.1	1.34	0.96	0.40
2	4.0	2.8	4.4	2405.5	5.5	2.18	1.55	0.40
3	6.1	4.9	7.7	2397.8	13.2	3.82	2.71	0.40
4	8.1	6.9	13.8	2384.0	27.0	6.84	4.86	0.40
5	10.1	8.9	24.2	2359.8	51.2	11.99	8.53	0.40
6	12.1	10.9	57.3	2302.5	108.5	28.39	20.19	0.40
7	14.1	12.9	62.8	2239.7	171.3	31.12	22.12	0.40
8	16.1	14.9	74.9	2164.8	246.2	37.11	26.39	0.40
9	18.2	17.0	78.2	2086.6	324.4	38.75	27.55	0.40
10	20.2	19.0	170.7	1915.9	495.1	84.58	60.14	0.40
11	22.2	21.0	599.9	1316.0	1095.0	297.25	211.35	0.40
Avg. Sha:	ft		99.5			52.14	37.07	0.40
Тое		1	316.0				9218.79	0.20
Soil Model	Parameters	/Extension	5			Shaft T	oe	
Quake		(mm)				4.001 5.1	29	
Case Dampin	ng Factor					0.277 0.1	67	
Unloading Q)uake	(% of	loadir	g quake)		110	30	
Reloading I	Level	(% of	E Ru)			100 1	00	
Unloading I	Level	(% of	E Ru)			25		
Resistance	Gap (inclu	ded in Toe	Quake)	(mm)		0.2	29	
Soil Plug W	Weight	(kN)				0.	02	
CAPWAP matc	h quality	=	4.35	(W	ave Up Mato	(h); RSA = ()	
Observed: f	inal set	= 1	L.250 mm	ı; bl	ow count	= 800) b/m	
Computed: f	inal set	= (0.658 mm	ı; bl	ow count	= 1521	b/m	
max. Top Co	mp. Stress	=	15.2 ME	a ('	r= 21.2 ms	, max= 1.099	x Top)	
max. Comp.	Stress	=	16.7 ME	'a (Z= 20.2 m,	T= 28.9 ms	;)	
max. Tens.	Stress	= -	-2.45 ME	a (Z= 10.1 m,	T= 47.2 ms	;)	
max. Energy	/ (EMX)	= 1	L4.38 kJ	r; m.	ax. Measure	d Top Displ.	(DMX) = 10.2	24 mm

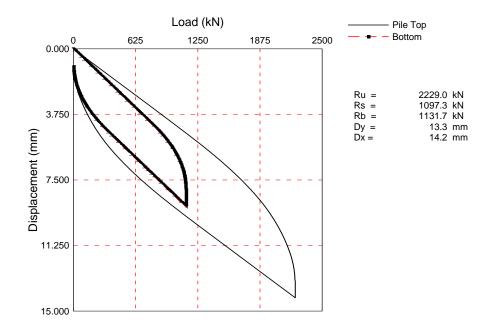
SEWPCC; Pile: 2 R; Blow: 4 AATech Scientific Inc

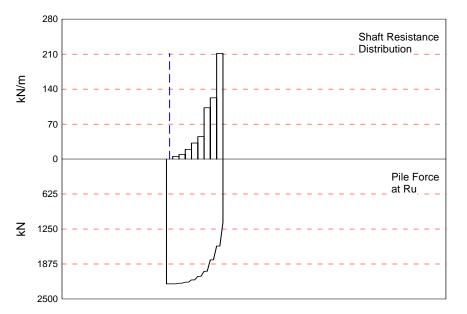
				EMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
n	m/s	kJ	MPa	MPa	kN	kN	m	
9.86	1.4	14.38	-1.80	15.2	-257.0	2173.0	1.0	1
9.68	1.4	14.27	-2.19	15.2	-312.1	2173.9	2.0	2
9.49	1.4	14.14	-2.39	15.2	-340.8	2173.1	3.0	3
9.32	1.4	14.05	-2.44	15.2	-348.7	2174.0	4.0	4
9.17	1.4	13.93	-2.34	15.2	-334.2	2170.7	5.0	5
9.02	1.4	13.85	-2.26	15.2	-322.3	2174.0	6.1	6
8.84	1.4	13.67	-2.23	15.2	-318.0	2171.6	7.1	7
8.64	1.4	13.54	-2.34	15.3	-334.0	2177.6	8.1	8
8.43	1.4	13.25	-2.42	15.2	-345.7	2172.5	9.1	9
8.19	1.3	13.08	-2.45	15.3	-349.6	2182.6	10.1	10
7.97	1.3	12.69	-2.19	15.2	-313.0	2173.6	11.1	11
7.76	1.3	12.55	-1.91	15.3	-272.4	2187.3	12.1	12
7.54	1.4	11.91	-1.76	15.0	-251.3	2144.3	13.1	13
7.31	1.5	11.73	-1.73	15.1	-247.1	2155.6	14.1	14
7.07	1.5	11.03	-1.63	14.8	-233.1	2114.9	15.1	15
6.81	1.4	10.82	-1.68	14.9	-239.9	2121.1	16.1	16
6.56	1.3	10.07	-1.60	15.2	-228.7	2171.2	17.2	17
6.32	1.3	9.87	-1.77	16.7	-253.1	2377.6	18.2	18
6.08	1.4	9.18	-1.71	16.7	-244.5	2380.3	19.2	19
5.82	1.6	8.96	-1.80	16.7	-256.3	2388.0	20.2	20
5.56	1.6	7.75	-1.43	14.8	-203.9	2117.5	21.2	21
5.27	1.6	4.78	-1.53	15.0	-218.6	2146.3	22.2	22
28.9 ms	(T =			16.7			20.2	solute
47.2 ms	(т =		-2.45				10.1	

				CA	SE METHOI	b				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	2015.9	1795.7	1575.6	1355.4	1135.2	915.1	694.9	474.7	254.6	34.4
RX	2915.6	2810.6	2705.6	2616.7	2540.8	2477.9	2436.0	2400.2	2380.0	2375.3
RU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RAU =	2296.5 (k	N); RA2	= 229	6.5 (kN)						


Current CAPWAP Ru = 2411.0 (kN); Corresponding J(RP)= 0.00; J(RX) = 0.67


VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
m/s	ms	kN	kN	kN	mm	mm	mm	kJ	kN
1.42	21.15	2193.8	2023.8	2105.0	10.236	-0.065	1.250	14.4	2513.4


	PILE PROFI	LE AND PILE MODI	EL	
Depth	Area	E-Modulus	Spec. Weight	Perim.
m	Cm ²	MPa	kN/m ³	m
0.00	1427.52	50000.0	24.000	1.406
22.20	1427.52	50000.0	24.000	1.406
Toe Area	0.143	m²		
Top Segment Length	1.01 m, Top Impeda	ance 1579.11 ki	N/m/s	


SEWPCC; Pile: 2 R; Blow: 4 AATech Scientific Inc Test: 18-Jan-2014 19:20: CAPWAP(R) 2006-2 OP: DF

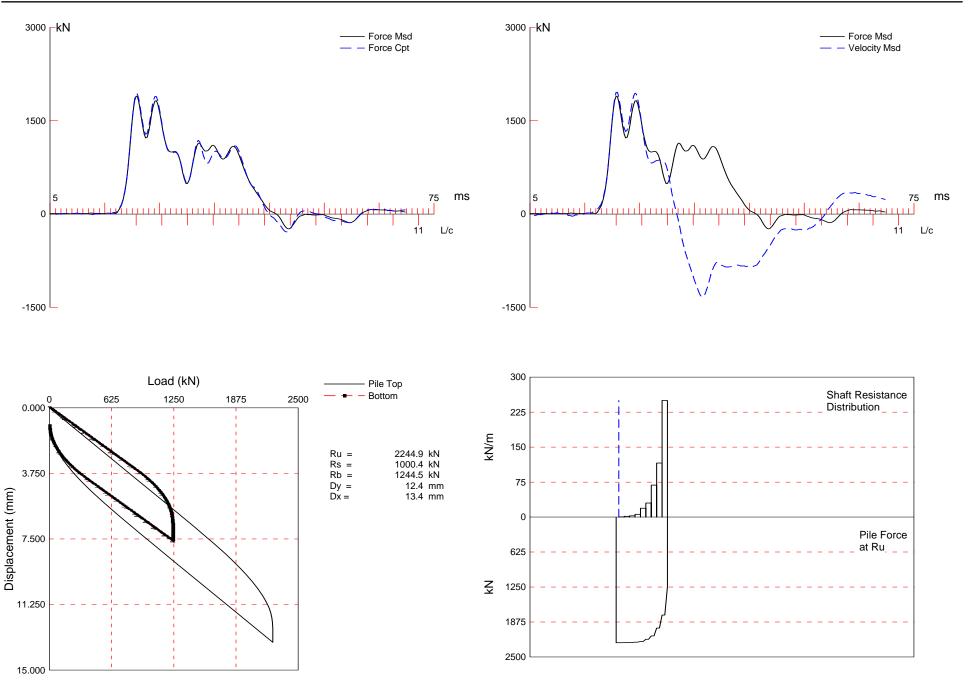
Pile Damping 2.0 %, Time Incr 0.243 ms, Wave Speed 4150.0 m/s, 2L/c 10.7 ms

SEWPCC; Pile: 4 R; Blow: 3 AATech Scientific Inc

			CAPWA	P SUMMARY	RESULTS			
Total CAPW	WAP Capacity	7: 2229	.0; along	Shaft 1	097.3; at	Toe 1131.	7 kN	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor
	m	m	kN	kN	kN	kN/m	kPa	s/m
				2229.0				
1	4.0	2.8	10.9	2218.1	10.9	3.89	2.77	0.250
2	6.0	4.8	18.8	2199.3	29.7	9.40	6.68	0.250
3	8.0	6.8	39.2	2160.1	68.9	19.60	13.94	0.250
4	10.0	8.8	64.3	2095.8	133.2	32.15	22.86	0.250
5	12.0	10.8	90.0	2005.8	223.2	45.00	32.00	0.250
6	14.0	12.8	205.5	1800.3	428.7	102.75	73.06	0.250
7	16.0	14.8	245.4	1554.9	674.1	122.70	87.24	0.250
8	18.0	16.8	423.2	1131.7	1097.3	211.60	150.45	0.250
Avg. Sha	aft		137.2			65.32	46.44	0.250
То	e		1131.7				7927.73	0.300
Soil Model	l Parameters	s/Extensi	ons		5	Shaft T	oe	
Quake		(m	m)			4.002 6.2	00	
Quake Case Dampi	ing Factor	(m	m)			4.002 6.2 0.174 0.2		
-	-	(m	m)				15	
Case Dampi	/pe		m) of loadir	ng quake)		0.174 0.2 Smi	15	
Case Dampi Damping Ty	zpe Quake	(%		ng quake)		0.174 0.2 Smi 50 1	15 th	
Case Dampi Damping Ty Unloading	/pe Quake Level	(%	of loadir	ng quake)		0.174 0.2 Smi 50 1	15 th 10	
Case Dampi Damping Ty Unloading Reloading	pe Quake Level Level	(% (% (%	of loadir of Ru)	ug quake)		0.174 0.2 Smi 50 1 100 1	15 th 10 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug	pe Quake Level Level	(% (% (%	of loadir of Ru) of Ru)	ng quake)	,	0.174 0.2 Smi 50 1 100 1 28	15 th 10 00 80	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug	ype Quake Level Level Weight ort Dashpot	(% (% (k	of loadir of Ru) of Ru)	ng quake)		0.174 0.2 Smi 50 1 100 1 28 0.	15 th 10 00 80 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo Soil Suppo	ype Quake Level Level Weight ort Dashpot	(% (% (k	of loadir of Ru) of Ru) N)			0.174 0.2 Smi 50 1 100 1 28 0. 1.000 0.0	15 th 10 00 80 00 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo Soil Suppo	ype Quake Level Weight Ort Dashpot ort Weight	(% (% (k	of loadir of Ru) of Ru) N) N)	(Wa		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 th 10 00 80 00 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo Soil Suppo	ype Quake Level Weight ort Dashpot ort Weight cch quality final set	(% (% (k (k	of loadir of Ru) of Ru) N) N) 4.53	(Wan n; blow	re Up Matcl	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 th 10 00 80 00 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo CAPWAP mat Observed: Computed:	ype Quake Level Weight ort Dashpot ort Weight cch quality final set	(% (% (k (k = =	of loadir of Ru) of Ru) N) 4.53 1.000 mm	(Wav l; blow	7e Up Match v count v count	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 th 10 00 80 00 00 00	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo CAPWAP mat Observed: Computed:	ype Quake Level Level Weight ort Dashpot ort Weight cch quality final set final set Comp. Stress	(% (% (k (k = =	of loadir of Ru) of Ru) N) 4.53 1.000 mm 0.100 mm	(Wa 1; blov 1; blov 2a (T:	re Up Matcl v count v count = 24.8 ms	0.174 0.2 Smi 50 1 100 1 28 0. 1.000 0.0 14.06 0. h) ; RSA = 0 = 1000 = 9999 , max= 1.078	15 th 10 00 80 00 00 b/m b/m x Top)	
Case Dampi Damping Ty Unloading Reloading Unloading Soil Plug Soil Suppo CAPWAP mat Observed: Computed: max. Top C	ype Quake Level Level weight ort Dashpot ort Weight cch quality final set final set Comp. Stress Stress	(% (% (k (k = = =	of loadir of Ru) of Ru) N) 4.53 1.000 mm 0.100 mm 14.1 MH	(Wat 1; blou 1; blou 2a (T: 2a (Z:	re Up Match v count v count = 24.8 ms = 14.0 m,	0.174 0.2 Smi 50 1 100 1 28 0. 1.000 0.0 14.06 0. h) ; RSA = 0 = 1000 = 9999 , max= 1.078 T= 28.4 ms	15 th 10 00 80 00 00 b/m b/m x Top))	

SEWPCC; Pile: 4 R; Blow: 3 AATech Scientific Inc

				REMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
mm	m/s	kJ	MPa	MPa	kN	kN	m	
9.657	1.3	13.03	-2.48	14.1	-354.4	2007.8	1.0	1
9.481	1.2	12.92	-2.30	14.2	-328.7	2023.2	2.0	2
9.276	1.2	12.79	-2.08	14.3	-297.6	2044.8	3.0	3
9.055	1.2	12.63	-1.88	14.5	-268.9	2067.3	4.0	4
8.859	1.2	12.41	-1.76	14.5	-250.9	2066.9	5.0	5
8.697	1.2	12.33	-1.82	14.4	-259.5	2059.2	6.0	6
8.539	1.2	12.09	-1.87	13.9	-266.3	1986.6	7.0	7
8.370	1.3	11.99	-1.91	13.9	-272.2	1988.5	8.0	8
8.193	1.4	11.57	-1.89	13.9	-269.8	1979.6	9.0	9
7.994	1.5	11.44	-1.90	14.0	-270.9	1999.8	10.0	10
7.780	1.6	10.81	-1.73	13.7	-247.2	1962.5	11.0	11
7.543	1.5	10.62	-1.77	13.7	-252.2	1951.5	12.0	12
7.302	1.4	9.80	-1.64	13.7	-233.8	1950.7	13.0	13
7.052	1.3	9.60	-1.68	15.2	-239.4	2165.2	14.0	14
6.834	1.5	8.16	-1.22	14.4	-174.6	2048.7	15.0	15
6.612	1.6	8.00	-1.24	14.4	-177.2	2059.3	16.0	16
6.409	1.6	6.47	-0.78	11.9	-111.7	1704.1	17.0	17
6.185	1.6	4.41	-0.79	11.8	-112.4	1678.3	18.0	18
28.4 ms)	(T =			15.2			14.0	Absolute
49.0 ms)	(т =		-2.48				1.0	


				CASE ME	THOD				
J =	0.0	0.1	0.2	0.3 (0.4 0.	5 0.6	0.7	0.8	0.9
RP	1470.8	1216.9	963.1 7	09.3 45	5.4 201.	6 0.0	0.0	0.0	0.0
RX	2575.8	2435.6 2	2300.5 21	99.0 2149	9.8 2130.	9 2121.9	2113.8	2113.8	2113.8
RU	1470.8	1216.9	963.1 7	09.3 45	5.4 201.	6 0.0	0.0	0.0	0.0
RAU =	2113.8 (k	N); RA2 =	2175.9	(kN)					
Current	CAPWAP Ru	= 2229.0	(kN); Cor	responding	J(RP) = 0.	.00; J(RX)	= 0.27		
v	MX TV	P VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
m	/s ma	s kN	kN	kN	mm	mm	mm	kJ	kN
1.	27 21.5	7 2007.7	2001.5	2019.6	9.887	0.930	1.000	13.2	2424.0

PILE	PROFILE	AND	PILE	MODEL
	THOTADD	1 11 12		1102011

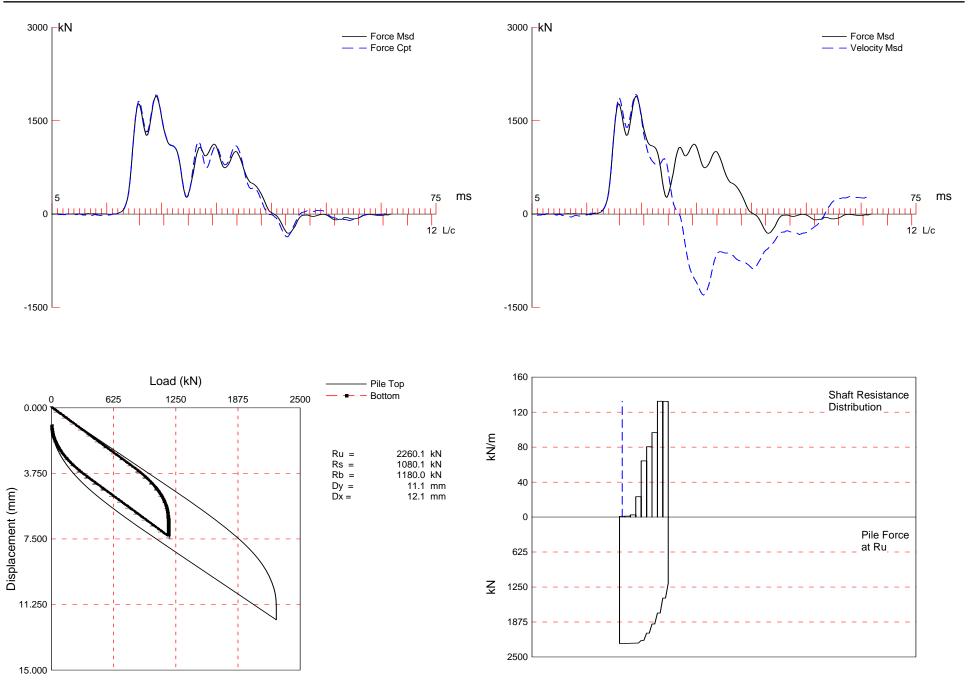
	Depth	Area	E-Modulus	Spec. Weight	Perim.
	m	Cm ²	MPa	kN/m ³	m
	0.00	1427.52	50000.0	24.000	1.406
	18.00	1427.52	50000.0	24.000	1.406
Toe Area		0.143	m ²		

Top Segment Length 1.00 m, Top Impedance 1579.11 kN/m/s

Pile Damping 2.0 %, Time Incr 0.245 ms, Wave Speed 4080.0 m/s, 2L/c 8.8 ms

SEWPCC; Pile: 5 Restrike; Blow: 3 AATech Scientific Inc

			CAPWA	P SUMMAR	Y RESULTS				
Total CAPWZ	AP Capacity	: 2244.9	; along	Shaft	1000.4; at	Тое	1244.5	kN	
Soil	Dist.	Depth	Ru	Force	Sum	ı	Unit	Unit	t Smith
Sgmnt	Below	Below		in Pile	of	Re	esist.	Resist	. Damping
No.	Gages	Grade			Ru	ı (I	Depth)	(Area)) Factor
	m	m	kN	kN	kN	T	kN/m	kPa	a s/m
				2244.9					
1	3.0	1.8	1.1	2243.8	1.1	_	0.60	0.43	3 0.380
2	5.1	3.9	3.3	2240.5	4.4	Ł	1.63	1.10	6 0.380
3	7.1	5.9	5.5	2235.0	9.9)	2.72	1.93	3 0.380
4	9.1	7.9	12.2	2222.8	22.1	_	6.04	4.29	9 0.380
5	11.1	9.9	38.5	2184.3	60.6	5	19.05	13.54	4 0.380
6	13.1	11.9	61.1	2123.2	121.7	,	30.23	21.50	0.380
7	15.2	14.0	138.8	1984.4	260.5	5	68.68	48.83	3 0.380
8	17.2	16.0	234.4	1750.0	494.9) 1	L15.98	82.40	6 0.380
9	19.2	18.0	505.5	1244.5	1000.4	4 2	250.12	177.84	4 0.380
Avg. Sha	ft		111.2				55.58	39.52	2 0.380
Тое		1	244.5					8717.92	2 0.350
Soil Model	Parameters	/Extensior	ıs			Shaft	То	e	
Quake		(mm)				4.900	5.10	0	
Case Dampir	ng Factor					0.241	0.27	6	
Unloading Q	Quake	(% 0	f loadir	ng quake)		33	11	0	
Reloading I	Level	(% 0	f Ru)			100	10	0	
Unloading I	Level	(% 0	f Ru)			41			
Soil Plug V	Weight	(kN)					0.3	0	
CAPWAP mate	h quality	=	3.53	(W	ave Up Mato	ch) ;	RSA = 0		
Observed: f	Einal set	=	1.000 mm	n; bl	ow count	=	1000	b/m	
Computed: f	final set	=	1.083 mm	n; bl	ow count	=	923	b/m	
max. Top Co	omp. Stress	=	13.5 ME	Pa ('	T= 21.2 ms	s, max	= 1.217	x Top)	
max. Comp.	Stress	=	16.5 ME	Pa (Z= 15.2 m,	, т=	28.6 ms)		
max. Tens.	Stress	=	-2.10 ME	Pa (Z= 4.0 m,	, т=	47.6 ms)		
max. Energy	Z (EMX)	=	12.92 kJ	r; m	ax. Measure	ed Top	Displ.	(DMX) = 9	9.73 mm


SEWPCC; Pile: 5 Restrike; Blow: 3 AATech Scientific Inc

				REMA TABLE	EXTH			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
mm	m/s	kJ	MPa	MPa	kN	kN	m	
9.409	1.2	12.92	-2.09	13.5	-298.9	1932.9	1.0	1
9.237	1.2	12.82	-2.08	13.5	-296.9	1932.9	2.0	2
9.057	1.2	12.72	-2.07	13.5	-295.8	1931.9	3.0	3
8.865	1.2	12.59	-2.10	13.5	-299.4	1927.0	4.0	4
8.658	1.2	12.45	-2.09	13.6	-298.9	1937.9	5.1	5
8.439	1.2	12.27	-2.08	13.6	-296.5	1940.4	6.1	6
8.225	1.2	12.13	-2.02	13.6	-288.2	1939.5	7.1	7
8.016	1.2	11.94	-1.99	13.5	-284.5	1928.3	8.1	8
7.798	1.2	11.79	-2.02	13.6	-288.8	1938.6	9.1	9
7.566	1.3	11.53	-2.01	13.6	-286.9	1940.0	10.1	10
7.315	1.3	11.33	-2.03	13.7	-289.7	1953.5	11.1	11
7.054	1.2	10.83	-1.90	13.5	-271.3	1932.3	12.1	12
6.775	1.2	10.59	-1.86	14.7	-265.7	2094.0	13.1	13
6.501	1.2	9.96	-1.73	15.5	-247.5	2216.7	14.1	14
6.230	1.2	9.73	-1.89	16.5	-270.5	2352.7	15.2	15
5.979	1.3	8.76	-1.56	15.7	-223.3	2247.4	16.2	16
5.714	1.3	8.55	-1.71	15.7	-244.4	2235.0	17.2	17
5.467	1.3	7.23	-1.03	13.5	-147.3	1922.3	18.2	18
5.202	1.3	5.15	-1.22	13.9	-173.5	1988.4	19.2	19
28.6 ms)	(T =			16.5			15.2	Absolute
47.6 ms)	(T =		-2.10				4.0	

				CAS	SE METHOI	b				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	1866.7	1662.3	1457.9	1253.6	1049.2	844.8	640.5	436.1	231.8	27.4
RX	2781.7	2681.3	2581.0	2482.9	2403.8	2336.7	2276.9	2241.3	2211.4	2200.6
RU	1866.7	1662.3	1457.9	1253.6	1049.2	844.8	640.5	436.1	231.8	27.4
RAU =	2154.2 (k)	N); RA2	= 222	3.1 (kN)						
Current	CAPWAP Ru	= 2244.9	9 (kN); (Correspoi	nding J(H	2P)= 0.00	; J(RX)	= 0.69		
v	MX TVI	P VT1*	Z E	7T1	FMX	DMX	DFN	SET	EMX	QUS

V 1-121	1 . 1	VII 2		1 1111	D1121	DIN	DEI	130121	200
m/s	ms	kN	kN	kN	mm	mm	mm	kJ	kN
1.26	20.95	1986.7	1923.6	1923.6	9.733	0.998	1.000	13.1	2433.7

Depth	Area	E-Modulus	Spec. Weight	Perim.
m	Cm ²	MPa	kN/m ³	m
0.00	1427.52	50000.0	24.000	1.406
19.20	1427.52	50000.0	24.000	1.406
Toe Area	0.143	m²		
Top Segment Length	1.01 m, Top Impe	dance 1579.11 k	N/m/s	
Pile Damping 2.0 %	, Time Incr 0.246	ms, Wave Speed	4100.0 m/s, 2L/c	9.4 ms

SEWPCC; Pile: 6 R; Blow: 4 AATech Scientific Inc

				CAPWAP SUM	MARY RESU	LTS			
Total CA	PWAP Capa	city:	2260.1;	along Shaft	1080.1	l; at Toe	1180.0	kN	
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping	
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor	
	m	m	kN	kN	kN	kN/m	kPa	s/m	mm
				2260.1					
1	2.0	0.9	1.8	2258.3	1.8	1.95	1.39	0.270	4.200
2	4.0	2.9	2.3	2256.0	4.1	1.14	0.81	0.270	4.201
3	6.1	5.0	5.3	2250.7	9.4	2.62	1.86	0.270	4.201
4	8.1	7.0	47.2	2203.5	56.6	23.34	16.60	0.270	4.201
5	10.1	9.0	130.1	2073.4	186.7	64.34	45.74	0.270	4.201
6	12.1	11.0	162.7	1910.7	349.4	80.46	57.21	0.270	4.201
7	14.2	13.1	195.3	1715.4	544.7	96.58	68.67	0.270	4.201
8	16.2	15.1	267.9	1447.5	812.6	132.48	94.19	0.270	4.034
9	18.2	17.1	267.5	1180.0	1080.1	132.28	94.05	0.270	3.704
Avg. Shaft			120.0			63.16	44.91	0.270	4.037
то	Тое		1180.0				8266.08	0.210	4.907
Soil Model Parameters/Extensions					Shaft Toe				
Case Dam	ping Fact	or				0.176	0.150		
Unloading Quake			(% of	loading qua	ke)	44	109	1	
Reloading Level			(% of	Ru)		100	100		
Unloading Level			(% of Ru)			27			
Resistance Gap (included in Toe Quake) (mm)							0.007		
Soil Plug Weight			(kN)				0.25		
CAPWAP m	atch qual	ity	= 4	= 4.87 (Wave Up Match); R			RSA = 0		
Observed	: final s	set	= 1.000 mm;		blow count = 1000 b/m				
Computed: final set			= 0.	197 mm;	blow cou	nt =	5069 k	o/m	
max. Top	Comp. St	ress	= 1	3.5 MPa	5 MPa (T= 24.4 ms, max= 1.057 x Top)				
max. Comp. Stress				.4.3 MPa	(Z= 14.2 m, T= 28.1 ms)				
max. Tens. Stress			= -2	.59 MPa	(Z = 4.0 m, T = 46.9 ms)				
max. Ene	rgy (EMX)	1	= 11	.39 kJ;	max. Me	asured Top	Displ. (DMX)= 8.51	mm

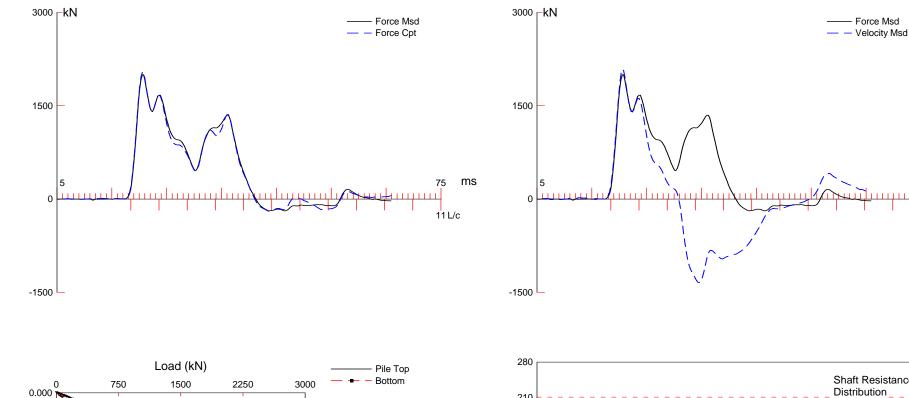
SEWPCC; Pile: 6 R; Blow: 4 AATech Scientific Inc

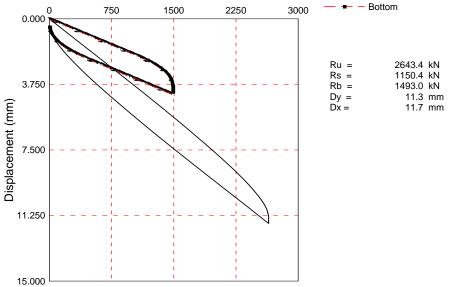
				REMA TABLE	EXTR			
max.	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ.	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
mm	m/s	kJ	MPa	MPa	kN	kN	m	
8.328	1.1	11.39	-2.50	13.5	-356.3	1926.7	1.0	1
8.193	1.1	11.33	-2.47	13.6	-353.1	1939.6	2.0	2
8.042	1.1	11.23	-2.47	13.7	-352.2	1957.3	3.0	3
7.873	1.1	11.14	-2.59	13.9	-369.8	1981.0	4.0	4
7.688	1.1	11.00	-2.59	14.0	-369.1	2004.8	5.1	5
7.504	1.1	10.89	-2.46	14.2	-351.7	2028.6	6.1	6
7.339	1.1	10.76	-2.21	14.2	-316.1	2027.1	7.1	7
7.164	1.1	10.66	-2.13	14.0	-303.4	1996.0	8.1	8
6.980	1.2	10.24	-2.06	12.9	-293.5	1841.8	9.1	9
6.779	1.3	10.11	-2.06	13.0	-294.6	1852.0	10.1	10
6.576	1.3	9.18	-1.82	12.6	-259.6	1793.0	11.1	11
6.349	1.3	9.01	-1.87	12.7	-266.8	1813.2	12.1	12
6.134	1.2	7.96	-1.58	13.0	-225.3	1858.2	13.1	13
5.902	1.1	7.79	-1.58	14.3	-225.6	2036.5	14.2	14
5.694	1.2	6.69	-1.17	13.2	-167.4	1890.4	15.2	15
5.475	1.3	6.53	-1.17	13.2	-166.7	1883.0	16.2	16
5.283	1.4	5.22	-0.60	10.5	-86.4	1504.9	17.2	17
5.074	1.4	4.21	-0.77	10.9	-109.4	1549.9	18.2	18
28.1 ms)	(T =			14.3			14.2	Absolute
46.9 ms)	(T =		-2.59				4.0	

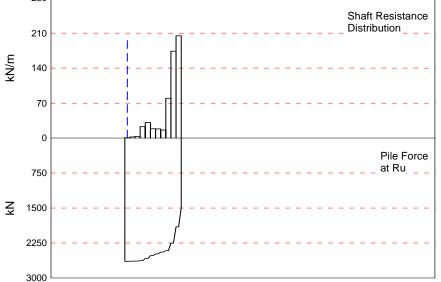
				CASE ME	THOD				
J =	0.0	0.1	0.2	0.3	0.4 0.	5 0.6	0.7	0.8	0.9
RP	1848.9	1661.6 1	L474.3 12	287.0 109	9.7 912.	4 725.1	537.8	350.5	163.2
RX	2441.7	2299.1 2	2156.9 20	060.3 206	0.3 2060.	3 2060.3	2060.3	2060.3	2060.3
RU	1848.9	1661.6 1	L474.3 12	287.0 109	9.7 912.	4 725.1	537.8	350.5	163.2
RAU =	2025.8 (k	N); RA2 =	2011.4	(kN)					
Current	CAPWAP Ru	= 2260.1	(kN); Cor	responding	J(RP)= 0.	.00; J(RX)	= 0.13		
v	MX TVI	P VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
m	l/s ma	s kN	kN	kN	mm	mm	mm	kJ	kN
1.	18 21.2	L 1908.7	1813.3	1919.3	8.514	0.998	1.000	11.5	2421.7

PILE	PROFILE	AND	PILE	MODEL

	Depth	Area	E-Modu	lus	Spec.	Weight	Perim.
	m	Cm ²		MPa		kN/m ³	m
	0.00	1427.52	5500	0.0		24.000	1.406
	18.20	1427.52	5500	0.0		24.000	1.406
Toe Area		0.143	m²				


Top Segment Length 1.01 m, Top Impedance 1656.18 kN/m/s


Pile Damping 2.0 %, Time Incr 0.247 ms, Wave Speed 4100.0 m/s, 2L/c 8.9 ms


75 ms

11 L/c

11111

SEWPCC; Pile: 7 ER; Blow: 23 AATech Scientific Inc

	CAPWAP SUMMARY RESULTS									
Total CA	PWAP Capa	city:	2643.4;	along Shaft	1150.4	4; at Toe	1493.0	kN		
Soil	Dist.	Depth	Ru	Force	Sum	Unit	Unit	Smith	Quake	
Sgmnt	Below	Below		in Pile	of	Resist.	Resist.	Damping		
No.	Gages	Grade			Ru	(Depth)	(Area)	Factor		
	m	m	kN	kN	kN	kN/m	kPa	s/m	mm	
				2643.4						
1	2.0	0.9	1.6	2641.8	1.6	1.76	1.25	0.400	3.500	
2	4.0	2.9	4.9	2636.9	6.5	2.44	1.73	0.400	3.501	
3	6.0	4.9	6.7	2630.2	13.2	3.33	2.37	0.400	3.501	
4	8.0	6.9	46.1	2584.1	59.3	22.95	16.31	0.400	3.501	
5	10.0	8.9	62.9	2521.2	122.2	31.31	22.26	0.400	3.501	
6	12.1	11.0	37.7	2483.5	159.9	18.76	13.34	0.400	3.501	
7	14.1	13.0	36.9	2446.6	196.8	18.37	13.06	0.400	3.501	
8	16.1	15.0	32.7	2413.9	229.5	16.28	11.57	0.400	3.501	
9	18.1	17.0	160.2	2253.7	389.7	79.74	56.70	0.400	3.501	
10	20.1	19.0	349.3	1904.4	739.0	173.86	123.62	0.400	3.501	
11	22.1	21.0	411.4	1493.0	1150.4	204.77	145.60	0.400	3.033	
Avg. Sh	aft		104.6			54.78	38.95	0.400	3.334	
Тс	be		1493.0				10458.70	0.390	2.981	
Soil Mode	el Parame	ters/Ex	tensions			Shaft	Тое	•		
Case Dam	ping Fact	or				0.286	0.362	2		
Unloading	g Quake		(% of	loading qua	ke)	40	98	3		
Reloading	g Level		(% of	Ru)		100	100)		
Unloading	g Level		(% of	Ru)		30				
Resistan	ce Gap (i	ncluded	in Toe Ç	uake) (mm)			0.001	-		
Soil Plug	g Weight		(kN)				0.39)		
CAPWAP ma	atch qual	ity	= 3	.60	(Wave Up	Match) ;	RSA = 0			
Observed	: final s	et	= 0.	417 mm;	blow cou	int =	2400 ł	o/m		
Computed	: final s	et	= 0.	100 mm;	blow cou	int =	9999 l	o/m		
max. Top	Comp. St	ress	= 1	4.3 MPa	(T= 21	.0 ms, max	= 1.169 >	(Top)		
max. Com	p. Stress	1	= 1	6.7 MPa	(Z= 18	.1 m, T=	28.5 ms)			
max. Ten:	s. Stress	:	= -2	.80 MPa	(Z= 8	.0 m, T=	45.1 ms)			
max. Ener	rgy (EMX)		= 10	.77 kJ;	max. Me	asured Top	Displ. ((DMX)= 7.53	mm	

SEWPCC; Pile: 7 ER; Blow: 23 AATech Scientific Inc

				REMA TABLE	EXTR			
max	max.	max.	max.	max.	min.	max.	Dist.	Pile
Displ	Veloc.	Trnsfd.	Tens.	Comp.	Force	Force	Below	Sgmnt
		Energy	Stress	Stress			Gages	No.
m	m/s	kJ	MPa	MPa	kN	kN	m	
7.53	1.3	10.77	-1.58	14.3	-226.0	2038.9	1.0	1
7.44	1.3	10.74	-1.72	14.3	-244.9	2038.7	2.0	2
7.34	1.3	10.69	-1.92	14.3	-274.3	2040.6	3.0	3
7.22	1.3	10.65	-2.19	14.3	-312.9	2041.4	4.0	4
7.10	1.3	10.55	-2.42	14.3	-346.1	2040.4	5.0	5
6.95	1.3	10.48	-2.64	14.4	-376.2	2051.2	6.0	6
6.78	1.2	10.33	-2.74	14.4	-391.5	2057.3	7.0	7
6.59	1.2	10.21	-2.80	14.5	-400.3	2070.7	8.0	8
6.39	1.2	9.76	-2.71	14.3	-386.7	2039.5	9.0	9
6.19	1.2	9.61	-2.68	14.4	-382.0	2051.7	10.0	10
5.98	1.2	9.07	-2.39	14.0	-340.8	2000.6	11.0	11
5.77	1.2	8.92	-2.23	14.1	-318.7	2008.0	12.1	12
5.54	1.2	8.53	-1.92	13.9	-274.8	1982.8	13.1	13
5.30	1.2	8.33	-2.11	14.0	-301.1	1997.5	14.1	14
5.04	1.2	7.90	-2.19	13.9	-312.4	1983.9	15.1	15
4.75	1.2	7.63	-2.42	14.5	-344.8	2066.9	16.1	16
4.45	1.2	7.18	-2.54	15.6	-363.1	2232.2	17.1	17
4.15	1.2	6.86	-2.79	16.7	-398.3	2384.0	18.1	18
3.87	1.2	6.03	-2.60	16.1	-370.9	2303.5	19.1	19
3.58	1.2	5.74	-2.79	16.4	-398.6	2336.1	20.1	20
3.32	1.2	4.57	-1.97	13.9	-281.8	1983.4	21.1	21
3.05	1.1	3.64	-2.01	14.1	-287.3	2013.3	22.1	22
28.5 ms	(T =			16.7			18.1	osolute
45.1 ms	(т =		-2.80				8.0	

				CAS	SE METHOI	b				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	2737.2	2593.2	2449.2	2305.2	2161.3	2017.3	1873.3	1729.3	1585.3	1441.4
RX	2929.7	2889.3	2848.9	2808.5	2768.1	2727.7	2687.3	2646.9	2606.5	2566.7
RU	2761.3	2619.7	2478.1	2336.6	2195.0	2053.4	1911.9	1770.3	1628.7	1487.1
RAU =	2155.2 (k	N); RA2	= 2542	2.7 (kN)						

Current CAPWAP Ru = 2643.4 (kN); Corresponding J(RP)= 0.07; J(RX) = 0.71

VMX	TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS
m/s	ms	kN	kN	kN	mm	mm	mm	kJ	kN
1.32	18.69	2118.6	2058.4	2058.4	7.532	0.416	0.417	10.8	2712.5

	PILE PROFILE AND PILE MODEL										
Depth	Area	E-Modulus	Spec. Weight	Perim.							
m	Cm ²	MPa	kN/m ³	m							
0.00	1427.52	52000.0	24.000	1.406							
22.10	1427.52	52000.0	24.000	1.406							
Toe Area	0.143	m ²									
Top Segment Length	1.00 m. Top Impe	dance 1610.38 ki	N/m/s								

SEWPCC; Pile: 7 ER; Blow: 23 AATech Scientific Inc Test: 18-Jan-2014 16:04: CAPWAP(R) 2006-2 OP: DF

Pile Damping 2.0 %, Time Incr 0.234 ms, Wave Speed 4300.0 m/s, 2L/c 10.3 ms

APPENDIX B

DRIVING LOG RECORD FOR TEST PILES

ь III					_	2 mm					1
DRIVEN PILE INSPECTION REPORT C. Friesch Jan, 29, 2014	MK Custion Riock Pre-list HEX gronal		Remarks			Performed par and Pile dropped by uso-2 per set. Drove pile to the grand lavel. New start-up is uoustry. Redrawer and					
Inspector: Driving Date: Rig / Hammer:	Pile Cushion: Pile Type		noitsvəl∃ qiT	121. hrs	*******	2 NOSORE	12 SIL	's sne	1 soliter	X . S. C. L	
Driv Rig /	Pile	ι	Cut-off Elevation	1		1	((<u> </u>	1	
			Existing Grade Elevation	X X X X	135.75	1 4 2 1 2 5 2 4 M	× 25555 ×	* 43 :56 2 A	1 water to	x 4:582 -	ľ
			Depth Driven	45.6	11. Jr.	12 ysn	7. Br	18. 8 m	8.0m	ll Sm	
2			Pile Stick-up	white	3,0m	2.HSm	meir~	m0.9~	~6.gm	q. Im g. Mm	
			Prebore Depth	giln	g, lm	d'(m	9,1m	9.1m	q.lm	q.lm	
	1	Re-Strike	Penetration	and the second							
	e .		ດ A Penetration ພ	M	16	R	1	18	11	2	
	maximur	Sets	Penetration	SI	<i>M</i>	M	10	19	/8	18	
	enetration,	Final 3 Sets	S Penetration	13	61	×	16	bl	61	19	
म	(blows per 25 mm penetration, maximum. 3 consecutive sets)		Specified: Blows/set	12	[]	[2	21	21	N	2]	
testing	(blows p 3 conse		Pile Plumbness (verticality)	3 million 1.2m	Bur on bizy NE	1,2m NE	North	30 1 2m	Tamon 1.2.1	15nd ariza	Piles.
entre anean PDA	400	22	Pile Batter	verti 'al							all pil
South End Water Pollution Control Centre CONTRACTOR - Subterranean Project No.: /3-0358のご Project: SEW PCC PDE Structure:	350 8	21	ə <mark>si2</mark> əli9	400	400	Coh	ta	00/1	ant	00h	· for
Intion Cont OR - Sub 13-0358 5EWPCC	300	-	hile Length	24m	242	rif Z	ren fi Zi	24m	24m	24 m	from 1
I Water Pol NTTRACT Project No.: Project: Structure:	e (mm) eria:		tast#	9.27	K'27	52	141	EN	2.2	1.14	hammer from
End We CONT	Pile Size (mm) Set Criteria:		Date Cast	HEITE	HIM	HULLAN	Briths.	Mr Kho	HI-LAR	Hrl hr	
South			Pile No.	ļ	2	3	4	5	9	5	D roffed
Ø				5517426 144 637000	5517460 144 636984	£2512435	5517486 144 636749	ofscuss	1557758 1725723	144 62953	1

Propped hammer from 1' for all piles. Por tested all piles on Jon. 30/14

sufer t'al

APPENDIX C

VIBRATION MONITORING FOR THE SEWPCC TEST PILE INSTALLATION – PHASE 1 VIBRATION MONITORING PROGRAM

MEMORANDUM

TO: Tony Ng, P.Eng. & Roy Houston, P.Eng.

FROM: David Suderman, EIT & Ken Dyck, EIT

DATE: October 24, 2014

PROJECT NO: 13-0338-002

RE: Vibration Monitoring for the SEWPCC Test Pile Installation

1.0 GENERAL

KGS Group retained Subterranean to provide test piling services at the South End Water Pollution Control Centre (SEWPCC) in Winnipeg. During the driving of the 7 pre-cast concrete test piles, KGS Group conducted the Phase 1 vibration monitoring program. The purpose of this vibration program is to provide data on vibration attenuation for use in the future planned expansion at the SEWPCC. This memorandum outlines the monitoring program and summarizes the data collected.

Three portable seismograph units were installed at varied distances away from each test pile during driving. The monitoring units installed were the "Minimate Plus" and the "Blastmate II" models produced by Instantel, which have a range of measurement of peak particle velocities (PPVs) up to 254 mm/s. External transducers (geophones) are attached to each unit to measure vibrations across a broad range of frequencies (2 to 400 Hz) in three axes (transverse, vertical, and longitudinal).

2.0 BACKGROUND INFORMATION

Peak particle velocity (PPV) is the calculated vector sum of the vibrations occurring along the three axes simultaneously, and are the best measure of the magnitude of soil movement.

The generally accepted tolerance level of ground vibrations to avoid damage to adjacent structures is 25 mm/s PPV. A more stringent limit of 12 mm/s is often set when construction activity is occurring adjacent to historical structures, and is the standard used by Parks Canada for application around sensitive structures. Cosmetic damage including cracking of plaster may occur at approximately 12.7 mm/s, while drywall is less sensitive and can withstand a PPV of 19 mm/s or greater without any negative effects.

For this construction site, PPV below 12 mm/s are not of concern. Construction practices and methodologies should be reviewed in the event that PPV within the range of 12-25 mm/s are recorded, and to allow changes to be made to avoid PPV exceeding 25 mm/s.

3.0 SITE: SOUTH END WATER POLLUTION CONTROL CENTRE (SEWPCC)

Vibration Monitoring was conducted on January 29, 2014 by Mr. Ken Dyck and Mr. David Suderman of KGS Group. 24m long precast concrete test piles were being driven in order to conduct a pile dynamic analysis (PDA) used for piling design at the site. The piles were driven using a crane-mounted hydraulic hammer.

Three monitors were set up at varying distances from the source during each pile operation in order to measure attenuation with distance. Each monitor was set to record maximum PPVs at 5 second intervals. The external transducers were installed along the ground surface underneath a 20kg sandbag to maintain firm contact. Photos 1 and 2 in the attached appendix show the typical setup and positioning of the vibration monitors.

Distance measurements were made with a standard tape measure and then confirmed by a KGS survey at the pile locations.

Results

Table 1 summarizes the maximum PPV observed during the monitoring program for each pile and monitor location. Monitor and test pile locations are displayed in Figure 1.

SEWFCC SITE VIBRATION RESULTS											
Test Pile Number	Monitor	Distance From Pile [m]	Maximum PPV Experienced [mm/s]								
	P1M1	36.3	1.45								
1	P1M2	41.2	1.28								
	P1M3	60.0	0.40								
	P2M2	7.3	6.75								
2	P2M1	29.6	1.62								
	P2M3	58.7	1.46								
	P3M3	7.2	9.24								
3	P3M1	30.0	1.80								
	P3M2	66.6	1.18								
	P4M3	8.5	4.67								
4	P4M2	24.5	1.39								
	P4M1	50.3	0.75								
	P5M1	3.0	8.10								
5	P5M2	28.5	2.73								
	P5M3	44.3	1.24								
	P6M2	5.1	7.76								
6	P6M3	30.0	1.75								
	P6M1	N/A*	N/A*								
	P7M1	4.0	4.47								
7	P7M3	21.2	3.81								
	P7M2	73.5	0.97								

TABLE 1 SEWPCC SITE VIBRATION RESULTS

* Note - Monitor 1 was not in use for the driving of pile #6.

As exhibited in the table above, the ground surface vibration magnitudes decrease with distance for each pile operation. The vibrations observed follow an exponential/logarithmic scale, as shown in Figure 2. This implies that the vibration increases at an increasing rate as the monitors were moved closer to the vibration source.

4.0 IMPLICATIONS OF MONITORING & RECOMMENDATIONS

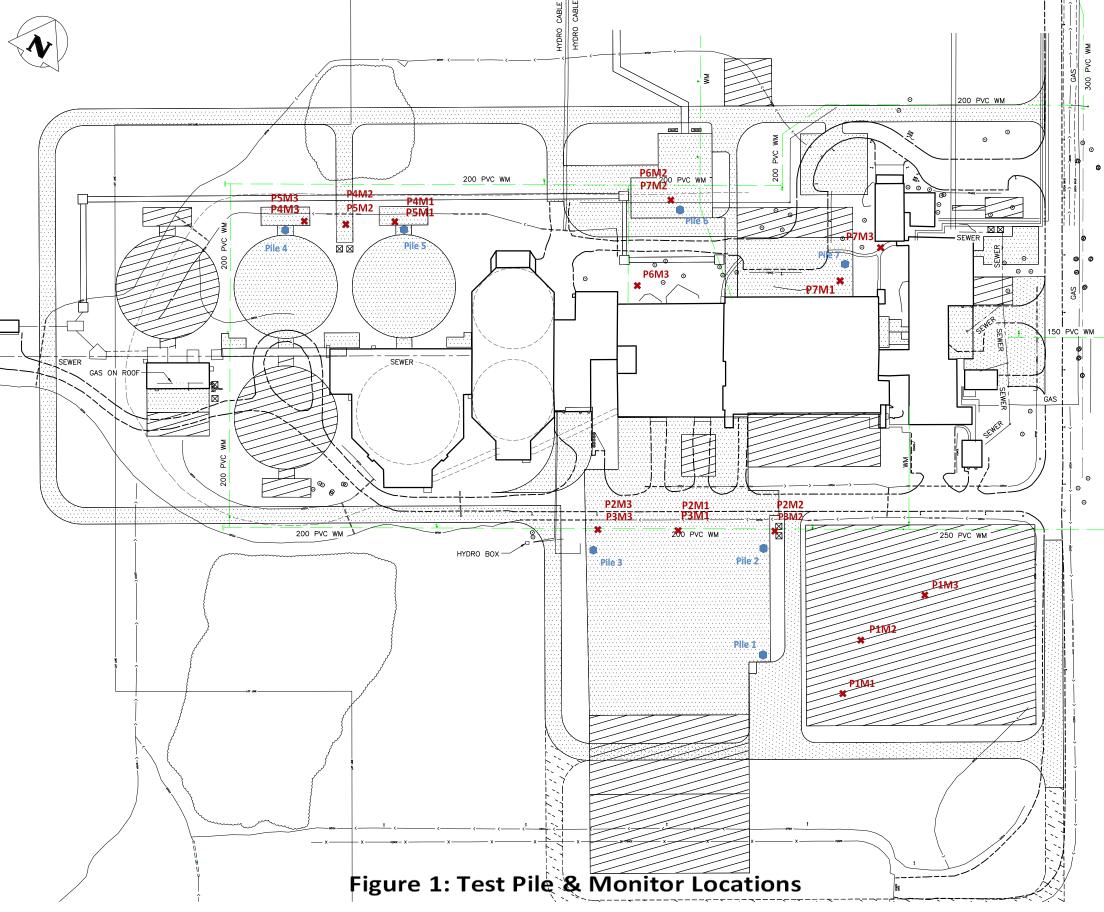
This report is intended to provide a guide to probable "order-of-magnitude" ground vibration that may occur at the SEWPCC site during pile installation. Based on these results, it is unlikely that vibration-induced structural or aesthetic damage will occur to adjacent structures during pile installation. KGS Group recommends that existing structures should be monitored throughout piling operations to ensure that vibrations remain below established tolerance levels. Specifically, structures founded on deep foundations adjacent to new piling should be monitored for vibration that can be transmitted through the underlying till.

Prepared By:

David Suderman, EIT Structural Designer

DS/kp Attachment

Ken Dyck, EIT Structural Designer



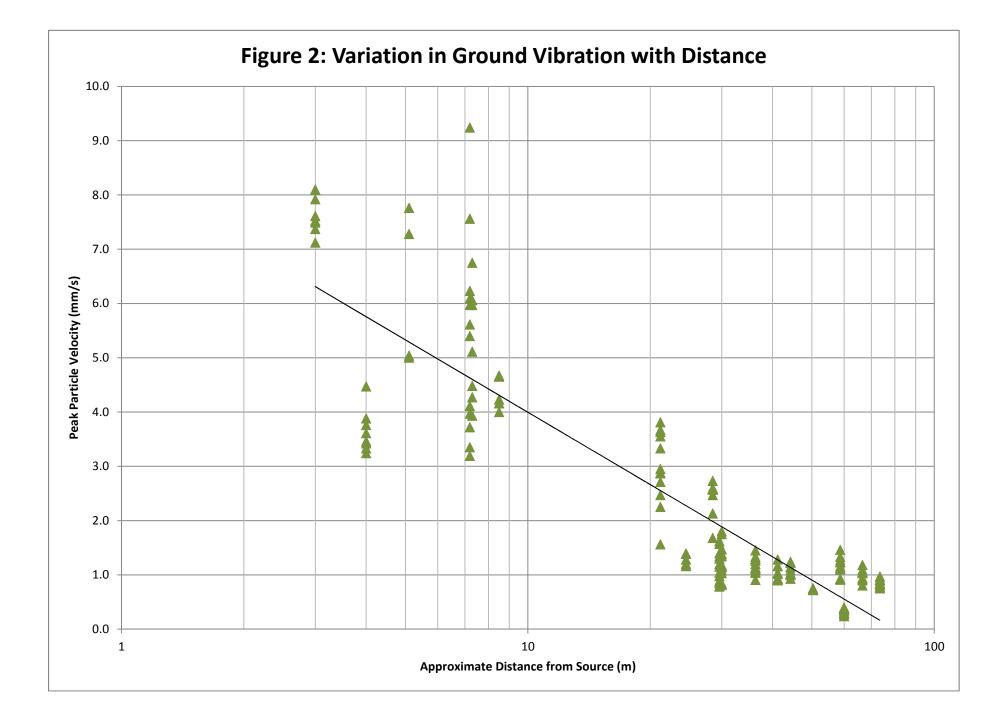

Photo 1 – The Setup of Monitor M2

Photo 2 – Pile #1, Showing Monitor M1

