APPENDIX 'A'

GEOTECHNICAL/TEST CAISSON/BEDROCK REPORTS

Environment

City of Winnipeg

Waverley Street Underpass Upgrade Preliminary Design Geotechnical Report - Draft

Prepared by:

AECOM			
99 Commerce Drive		204 477 5381	tel
Winnipeg, MB, Canada	R3P 0Y7	204 284 2040	fax
www.aecom.com			

Project Number: 60321148 (400.300.9)

Date: January, 2015

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada Ltd. ("Consultant") for the benefit of the client ("Client") in accordance with the agreement between Consultant and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents Consultant's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to Consultant which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

Consultant shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. Consultant accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

Consultant agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but Consultant makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by Consultant represent Consultant's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since Consultant has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, Consultant, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by Consultant and Client; (2) as required by law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

Consultant accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of Consultant to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

January 12, 2015

City of Winnipeg c/o Mr. Mike Lau, Ph.D, P.Eng. Partner Dillon Consulting Limited 1558 Willson Place Winnipeg, Manitoba R3Y 1W3

Dear Mr. Lau:

Project No: 60321148 (403.19)

Regarding: Waverley Street Underpass Upgrade – Preliminary Design Geotechnical Report

AECOM Canada Ltd. (AECOM) is pleased to submit our report for the above noted project.

Should you have any questions or require any additional information, please contact Faris Khalil at (204) 477-5381, directly

Sincerely, **AECOM Canada Ltd.**

Ron Typliski, P.Eng. Vice-President, Environment Canada West Region

FK:cm

Waverley Street Underpass Upgrade Preliminary Design Geotechnical Report

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
3	1	Dillon Consulting Limited
and the second		

Revision Log

Revision # Revised By		Date	Issue / Revision Description		
0	SI	January 12, 2015	Draft Report		
		and a second second			

AECOM Signatures

Report Prepared By:

Report Prepared By:

Saba Ibrahim, M.Sc., P. Eng. Geotechnical Engineer

1/2/ 4

Mustafa Alkiki, E.I.T. Geotechnical Engineer-In-Training

Report Reviewed By:

Faris Khalil, M.Sc., P. Eng. Manager, Geotechnical Engineering

Table of Contents

Statement of Qualifications and Limitations Letter of Transmittal Distribution List

			page
1.		duction	
2.	Geot	technical Investigation	2
	2.1	Field Work	
	2.2	Subsurface Conditions	
	2.3	Soil Corrosivity	
	2.4	Seasonal Frost Penetration	
	2.5	Groundwater Conditions	7
3.	Four	ndations	11
	3.1	Underpass Structure Foundations	
		3.1.1 Driven Pre-Cast Pre-Stressed Concrete (PPC) Piles	11
		3.1.2 Driven Steel Piles	
		3.1.3 Cast-in-Place Belled Caissons	
		3.1.4 Cast-in-Place Rock Socketed Caissons	
		3.1.5 Foundation Alternatives Assessment	
	3.2	Retaining Walls Foundations	15
		3.2.1 Shallow Foundations	
		3.2.2 Cast-in-Place Friction Piles	
		3.2.3 Driven Pre-cast Pre-Stressed Concrete Piles	
		3.2.4 Driven Steel H Piles	
	3.3	Lift Station Foundations	19
		3.3.1 Raft Foundation	
		3.3.2 Driven PPC Piles	
		3.3.3 Driven Steel H Piles	
4.	Tem	porary Excavations and Shoring	21
	4.1	Unsupported Excavations	
	4.2	Supported Excavations	
	4.3	Ground Movement	
	4.4	Base Heave	
	4.5	Piping	
	4.6	Base Instability	
5.	Pern	nanent Excavations	26
	5.1	Base Heave	
	5.2	Heave	
	5.3	Slope Stability	
6.	Buo	yancy and Uplift	28
7.	Reta	ining Walls	
	7.1	Wall Alternatives	

11.	Key Recommendations and Future Works			
10.	Rail	way Detour		
9.	Road	d Subgrade	35	
	8.4	Ground Subsidence		
	8.3	Face Stability		
	8.2	Atkins System		
	8.1	Akkerman System		
8.	Tren	chless Pipe Installation		
	7.4	External Stability		
	7.3	Tieback Anchors		
	7.2	Lateral Loads		

List of Figures

Figure 2 – Rock Cores from TH 14-02, 14-03 and 14-04. 6 Figure 3 – Groundwater Monitoring Results 9 Figure 4 – Aquifer Groundwater Monitoring Results - Provincial Wells. 10 Figure 5 – Limit State Bearing Resistance for Raft Foundations (Lift Station). 20 Figure 6 –Lateral Earth Pressure for Temporary Shoring 22 Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 – Deadman Anchorage Location 30
Figure 4 – Aquifer Groundwater Monitoring Results - Provincial Wells. 10 Figure 5 – Limit State Bearing Resistance for Raft Foundations (Lift Station). 20 Figure 6 –Lateral Earth Pressure for Temporary Shoring 22 Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 –Deadman Anchorage Location 30
Figure 5 – Limit State Bearing Resistance for Raft Foundations (Lift Station) 20 Figure 6 –Lateral Earth Pressure for Temporary Shoring 22 Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 –Deadman Anchorage Location 30
Figure 5 – Limit State Bearing Resistance for Raft Foundations (Lift Station) 20 Figure 6 –Lateral Earth Pressure for Temporary Shoring 22 Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 –Deadman Anchorage Location 30
Figure 6 –Lateral Earth Pressure for Temporary Shoring 22 Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 –Deadman Anchorage Location 30
Figure 7 – Ground Settlement Estimate adjacent to Excavations 23 Figure 8 – Calculated Factor of Safety against Base Heave 24 Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 – Deadman Anchorage Location 30
Figure 9 – Calculated Factor of Safety against Piping 25 Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall 30 Figure 11 – Deadman Anchorage Location 30
Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall
Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall
Figure 11 – Deadman Anchorage Location 30
Figure 12 – Concept of Face Stability
Figure 13 – Surface and Subsurface Settlement Trough
Figure 14 – Estimated Induced Surface and Subsurface Subsidence
Figure 15 – Atterberg Limits Results

List of Tables

Table 1 – Summary of Sulphate Content, Resistivity and pH Tests	7
Table 2 – Summary of GWL Monitoring Results	
Table 3 – Allowable Capacity for Driven PPC Piles	
Table 4 – Limit State Bearing Resistance for Cast-in-Place Friction piles	
Table 5 – Limit State Bearing Resistance for Driven PPC Piles	
Table 6 – Limit State Bearing Resistance for Driven Steel H Piles	
Table 7 – Strength Parameters for Stability Assessment	
Table 8 – Estimated Surface and Subsurface Settlement Trough Parameters	
Table 9 – Laboratory Test Results and AASHTO Classification – Road Subgrade	

Appendices

Appendix A

- General Arrangement Figures
- Test Hole Location Plan
- Schematics Soil Stratigraphy

Appendix B Test Hole Logs

Appendix C Laboratory Test Results Appendix D Analysis of Pile Axial Capacity

Appendix E Slope Stability Figures

1. Introduction

The City of Winnipeg (The City) retained Dillon Consulting Limited (Dillon) and AECOM Canada Limited (AECOM) to provide preliminary design services for the proposed Waverley Street Underpass Upgrade. The proposed Waverley Street Underpass will replace the existing at-grade crossing of Waverley Street and CN Rivers Subdivision located between Taylor Avenue and Sterling Lyon Parkway. Along with the underpass construction, geometric and capacity improvements will be introduced at Taylor Avenue, Taylor Avenue and Waverley Street intersection and Wilkes Avenue/Hurst Way and Waverly Street intersection. The project will also include Active Transportation components and construction of retaining walls and new lift station and associated sewer line. Railway and road detours will be required during the construction period to facilitate the construction activities. General arrangement plan view and typical sections are illustrated on the conceptual project drawings in Appendix A. The key objectives of the project are to provide improvements in traffic operations, road safety and mobility.

This report documents the 2014 geotechnical investigation, discusses the geotechnical considerations, identifies design alternatives and provides related geotechnical recommendations in support of the preliminary design phase. Further geotechnical/hydro-geological investigation, full scale pile installation testing and comprehensive geotechnical engineering effort and hydro-geological studies will be required to supplement the assessment provided in this report and support the detailed design and construction phases.

The report is structured as follows:

- 1. Introduction
- 2. Geotechnical Investigation
 - Description of the completed field work and subsurface and groundwater conditions.
- Des3. Foundations
 - Discussion of foundation alternatives for the underpass structure, lift station and retaining walls.
- 4. Temporary Excavations and Shoring
 - Discussion of available excavation support alternatives and geotechnical concerns associated with temporary excavations.
- 5. Permanent Excavations
 - Discussion of geotechnical concerns associated with permanent excavations including slope stability assessment.
- 6. Buoyancy and Uplift
 - Brief discussion of buoyancy concerns for buried structures.
- 7. Retaining Walls
 - Discussion of available wall alternatives and lateral loads.
- 8. Trenchless Pipe Installation
 - Description of locally available installation techniques and related concerns.
- 9. Road Subgrade
 - Subgrade characterization and preparation discussion.
- 10. Railway Detour
 - Discussion of railway grade design and construction.
- 11. Recommendations and Future Work
 - Summarize key recommendations and future work required.

The underpass structure foundation recommendations were prepared following the guidance of AREMA 2012. Limit State Design in accordance with the principles of AASHTO 2014 and CAN/CSA 2006 was adopted in preparing the recommendations for the lift station and retaining walls.

2. Geotechnical Investigation

2.1 Field Work

To accommodate the design development, the evolution of design options and to maintain project schedule it was necessary to undertake a staged approach to complete the field work. The field work was completed in three phases (I, II and III) as follows:

Phase I

Phase I drilling was completed during the period from July 09 to 15, 2014 and consisted of one intermediate test hole (TH14-01) and three deep test holes (TH14-02 to 14-04). The intermediate test hole was located at the southeast corner of Taylor Avenue/Waverley Street intersection in the vicinity of a proposed retaining wall close to the boundary of Piaza De Nardi property. The deep test holes were located at both ends of the proposed underpass structure. The drilling was completed using a track mounted rig operated by Maple Leaf Drilling equipped with 125 mm diameter solid stem augers and HQ wireline for rock coring. The intermediate test hole (TH14-01) was terminated after auger refusal into glacial till at 13.2 m below existing grade. The deep test holes were advanced more than 6 m into bedrock to depths range from 24.4 m to 25.7 m below existing grade.

Phase II

Phase II drilling was completed during the period from October 23 to 26, 2014 and consisted of twenty three shallow test holes (TH14-05 to 14-27) and one intermediate test hole (TH14-28). The shallow test holes were located along the proposed railway and road detours and along the proposed road improvement /widening. The intermediate test hole was located at the southwest corner of CN track/Waverley Street crossing at one of the two locations being considered for the proposed lift station. The drilling was completed using a truck mounted rig operated by Maple Leaf Drilling equipped with 125 mm diameter solid stem augers. The shallow test holes were advanced to depths range from 2.5 to 4 m below existing grade. The intermediate test hole (TH14-28) was terminated after auger refusal into glacial till at 13.9 m below existing grade.

Phase III

Phase III drilling was completed during the period from December 01 to 02, 2014 and consisted of one intermediate test hole (TH14-29) and three shallow test holes (TH14-30 to 14-32). The intermediate test hole was located at the northwest corner of CN track/Waverley Street crossing at one of the two locations being considered for the proposed lift station. The shallow test holes were located at the northeast corner of CN track/Waverley Street crossing along the proposed railway detour where soft dig using hydrovac excavation was required to protect shallow underground utilities. The drilling was completed using a track mounted rig operated by Maple Leaf Drilling equipped with 125 mm diameter solid stem augers. The intermediate test hole (TH14-29) was terminated after auger refusal into glacial till at 15.8 m below existing grade.

During the course of the investigation, Standard Penetration Test (SPT) was completed at regular intervals in the till. Disturbed and relatively undisturbed soil samples and rock cores were collected for further visual classification and testing. Five standpipe piezometers were installed within the project area to monitor the groundwater conditions. These included two standpipe piezometers (SP14-02 and 14-04) installed in the bedrock unit, two standpipe

piezometers (SP14-01 and 14-28) installed in the clay unit and one standpipe piezometer (SP14-29) installed in the till unit. Laboratory testing were completed on selected samples and included moisture content, unit weight, gradation, Atterberg limits, undrained shear strength, consolidation test and uniaxial compressive strength for rock cores.

Drilling supervision was provided by AECOM personnel, who visually classified and logged soils, retrieved samples for laboratory testing, and supervised in-situ soil testing and standpipe piezometers installation. The approximate location of the test holes are shown on the Test Hole Location Plan in Appendix A. Test hole logs have been prepared for each test hole to record the description and the relative position of the soil strata, location of samples obtained, seepage and sloughing conditions, field and laboratory test results, and other pertinent information. The test hole logs are attached in Appendix B. The laboratory test results are recorded on the test hole logs and are attached in Appendix C.

2.2 Subsurface Conditions

In descending order the soil profile consists of:

- Fill;
- Glacio-Lacustrine Clay;
- Glacial Till; and
- Limestone Bedrock.

Each of these units is described below. Schematics of soil stratigraphy based on conditions encountered during the investigation are presented on Schematic 01 and 02 in Appendix A. Soil properties from field and laboratory test results are presented on Figure 01.

Fill

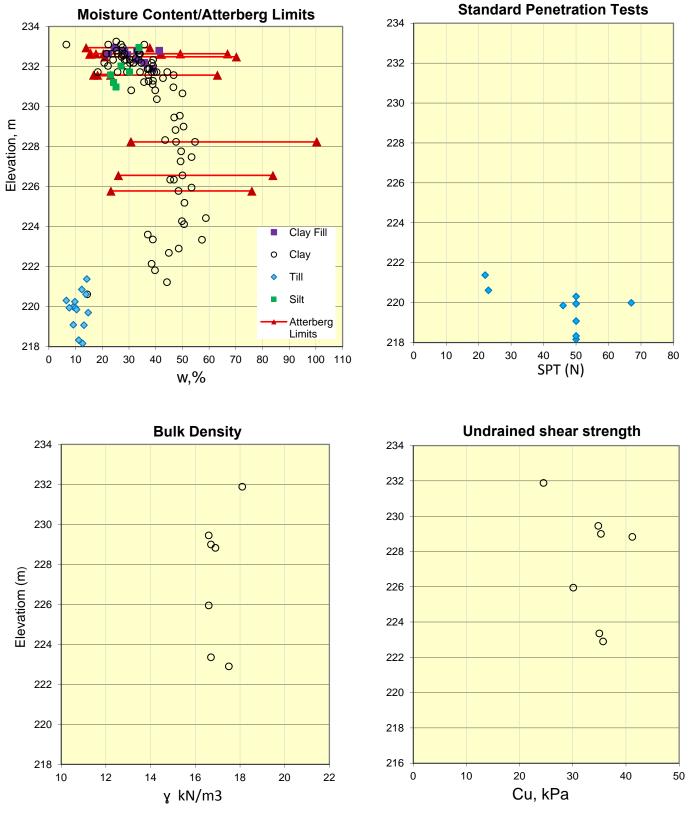
Fill was encountered at the ground surface or beneath a thin layer of topsoil in most of the test holes and extended up to 1.5 m below ground surface. Two distinctive zones of fill were observed: an upper granular fill and lower clay fill.

The granular fill was 0.2 to 1.1 m thick, mainly encountered in test holes drilled along existing roads and railway track. The granular fill predominantly consisted of sand and gravel sizes, and contained variable amounts of silt, some clay and trace organic. Cobbles and concrete debris was observed within the granular fill. The fill was light grey to light brown and dry to moist. Moisture contents measured on two samples from the granular fill were 6 and 20 percent.

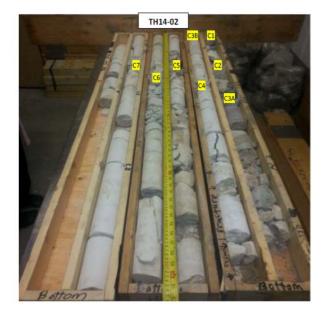
The clay fill, where encountered, was 0.2 to 1.5 m thick and contained variable amounts of silt, sand, organics, some to trace amounts of gravel and trace oxidation. The clay fill was dark grey to dark brown, moist, firm and was visually classified as of high to intermediate plasticity. Measured moisture contents range from 22 to 41 percent.

Glacio-Lacustrine Clay

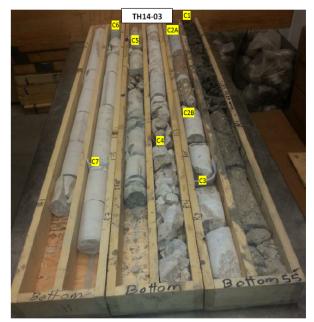
In all test holes advanced past the fill zone, the fill was underlain by 10 to 11 m thick galcio-lacustrine silty clay. Generally, the clay was brown changing to grey with increasing depth, firm to stiff becoming soft with increasing depth, moist and of high plasticity. Silt layer(s) about 1.0 m thick, firm to very soft and moist was observed in the upper portion of the clay unit or beneath the fill.

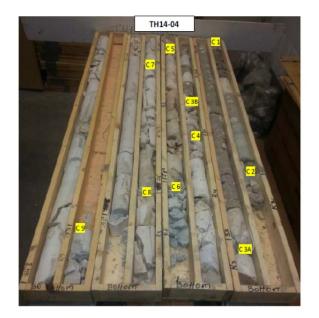

Moisture contents ranged from 21 to 59 percent. The average bulk unit weight of the clay was 17 kN/m³. Undrained shear strength values measured from unconfined compression test were 30 to 41 kPa.

Glacial Till (Silt)


In all test holes advanced past the clay, the clay was underlain by glacial till that typically contains variable amounts of clay, sand and gravel in silt matrix. Boulders and cobbles are known to be present within the till unit and were encountered during the drilling. Where the drilling advanced below the till unit, the thickness of the till layer varies from 4.8 to 5.2 m. The till was light grey, soft/loose in the upper zone but became dense to very dense with increasing depth. Coring was necessary to advance the drilling through very dense and boulders/cobbles dominated lower zone of the till. The till was moist to wet, and of low plasticity. Measured moisture contents range from 6 to 15 percent.

Limestone Bedrock


The drilling of TH14-02, 14-03 and 14-04 were advanced past the till into the underlaying limestone bedrock, which forms an artesian aquifer. The bedrock formation is a Paleozoic Carbonate rock formation known as the Upper Carbonate Aquifer. The depth to bedrock surface was about 18 m below existing grade or approximately at elevation 215.5 m. A layer of hard clay (shale) infill was encountered within the bedrock at elevation 211.9 and 212.6 m in TH14-03 and 14-04, respectively. The clay infill zone was 0.3 m thick at 3.6 m below bedrock surface in TH14-03 while in TH14-04 it was 0.8 m thick at 2.6 m below bedrock surface. The top 5 m of the bedrock formation was observed as highly decomposed and based on the calculated RQD values for the recovered rock cores, the rock quality was very poor to fair. Low RQD values were calculated over the entire length of rock cores (i.e., 7.8 m) recovered from TH14-04 indicating very poor to poor rock quality. Uniaxial compressive strength tests completed on three samples of rock cores recovered from TH11-02, 14-03 and 14-04 indicate compressive strength of 114, 121 and 194 MPa, respectively. Photographs of the recovered rock cores are presented on Figure 02.



Rock Core (Run)	Material	Run Depth below	RQD (%)
		Ground level (m)	
C1	TILL	15.4-16.7	NA
C2	TILL	16.7-17	NA
C3a	TILL	17-17.9	NA
C3b	LIMESTONE	17.9-18.4	65
C4	LIMESTONE	18.4-19.8	25
C5	LIMESTONE	19.8-21.3	43
C6	LIMESTONE	21.3-22.9	29
C7	LIMESTONE	22.9-24.4	93

Rock Core (Run)			RQD (%)
		Ground level (m)	
C1	TILL	14.3-16.8	NA
C2A	TILL	16.8-18	NA
C2B	LIMESTONE	18-18.3	88
C3	LIMESTONE	18.3-19.8	16
C4	LIMESTONE	19.8-20.4	0
C5	LIMESTONE	20.4-21.8	19
C6	LIMESTONE	21.8-22.8	76
C7	LIMESTONE	22.8-24.4	80

Rock Core (Run)	Material	Run Depth below Ground level (m)	RQD (%)
C1	TILL	13.9-15.2	NA
C2	TILL	15.2-16.8	NA
C3a	TILL	16.8-18	NA
C3B	LIMESTONE	18-18.3	0
C4	LIMESTONE	18.3-19.1	23
C5	LIMESTONE	19.1-20.6	22
C6	LIMESTONE	20.6-21.7	0
C7	LIMESTONE	21.7-22.6	23
C8	LIMESTONE	22.6-24.2	60
C9	LIMESTONE	24.2-25.8	26

Figure 2 – Rock Cores from TH 14-02, 14-03 and 14-04

2.3 Soil Corrosivity

Winnipeg soils are known to contain high contents of sulphates, which can be corrosive when in contact with concrete or cast-iron structures. Table 1 presents a summary of sulphate content, resistivity and pH tests for clay samples. The results indicate high to extremely corrosive condition and at least one test result indicate moderate sulphate attack potential.

All concrete in contact with the soil should be made in accordance with CSA Standard A23.1 and A23.2, sulphate resistant cement is recommended to be used in all concrete structures in contact with the soil.

Soil Unit	Sample Depth (m)	Test hole	Sulphate Content in Soil Sample %	Potential for Sulphate Attack	Resistivity (ohm cm)	рН	Corrosivity Rating
Clay	1.2	TH14-01	0.0187	Negligible	2970	7.93	Highly corrosive
Clay	10	TH14-01	0.1160	Moderate	890	7.99	Extremely corrosive
Clay	3.8	TH14-02	0.0369	Negligible	2870	7.84	Highly corrosive
Clay	6.8	TH14-02	0.1020	Moderate	1430	7.99	Highly corrosive
Clay	2.4	TH14-04	0.0089	Negligible	2340	7.86	Highly corrosive

Table 1 – Summary of Sulphate Content, Resistivity and pH Tests

2.4 Seasonal Frost Penetration

The mean freezing index in the Winnipeg area is estimated at 1900 °C-days, accordingly the seasonal frost penetration depth is approximately 2.4 m. Factors such as snow cover, vegetation at surface, soil type, and groundwater conditions can all significantly impact the depth of frost penetration.

2.5 Groundwater Conditions

Monitoring results of the groundwater level (GWL) from the five standpipe piezometers installed at the site are presented in Table 2 and on Figure 3. Groundwater levels will vary seasonally and from year to year or due to construction activities.

Based on the available short term monitoring results, a GWL between elevation 225 and 225.8 m was recorded in the bedrock piezometers installed in TH14-02 and 14-04. The till is considered to be hydraulically connected to the bedrock aquifer, only two monitoring events recorded for the till piezometer installed in TH14-29, the monitoring will be continued to record additional readings. Monitoring of the clay piezometers installed in TH14-01 and 14-28 recorded a maximum GWL of 226.8 m (i.e., about 6 m below existing grade). This readings need to be confirmed as stabilized GWL in the clay may not have been reached, the monitoring will be continued to record additional readings.

Monitoring results of two Provincial wells for bedrock aquifer GWL over the period from 2005 to 2014 are presented on Figure 4. The short term monitoring results from AECOM installation are in good agreement with the data from well G05oc053 and are close to upper bound data from well G05oc008.

Standpipe ID	Soil Unit	Ground Surface Elevation (m)	Monitoring Date	GWL Elevation (m)	
			12-Aug-14	225.10	
			3-Sep-14	224.90	
			19-Sep-14	255.55	
			17-Oct-14	226.43	
SP14-01	Clay	232.5	6-Nov-14	226.55	
			20-Nov-14	226.53	
			6-Dec-14	226.40	
			18-Dec-14	226.40	
			6-Nov-14	226.30	
SP14-28	Class	000.0	20-Nov-14	226.58	
5P14-28	Clay	233.6	6-Dec-14	226.60	
			18-Dec-14	226.67	
	Bedrock		12-Aug-14	225.20	
		Bedrock 233.4	3-Sep-14	225.07	
			19-Sep-14	225.5	
SP14-02			17-Oct-14	225.78	
5P14-02			6-Nov-14	225.65	
			20-Nov-14	225.59	
			6-Dec-14	224.90	
			18-Dec-14	225.40	
				12-Aug-14	225.20
SP14-04			3-Sep-14	225.08	
			19-Sep-14	225.55	
	Destruct	000.0	17-Oct-14	225.50	
	Bedrock	drock 233.2	6-Nov-14	225.40	
			20-Nov-14	225.36	
			6-Dec-14	225.23	
			18-Dec-14	225.27	
0.044.00		000.4	6-Dec-14	225.27	
SP14-29	Glacial Till	233.4	18-Dec-14	225.61	

Table 2 – Summary of GWL Monitoring Results

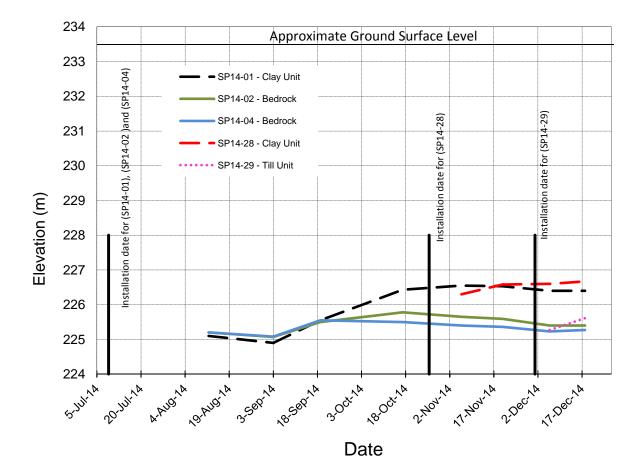
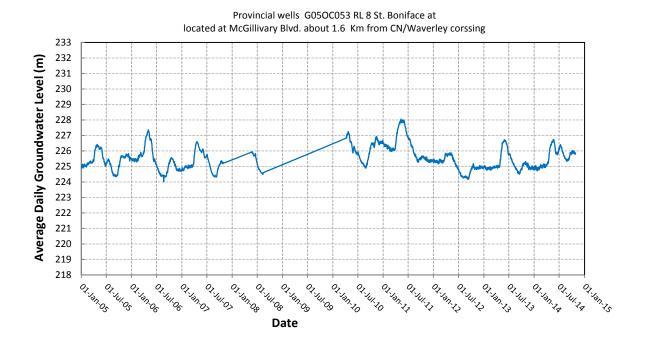



Figure 3 – Groundwater Monitoring Results

Provincial well G05OC008 RL 25 St. Boniface Located at Taylor Ave. about 0.35 km form CN/Waverley crossing

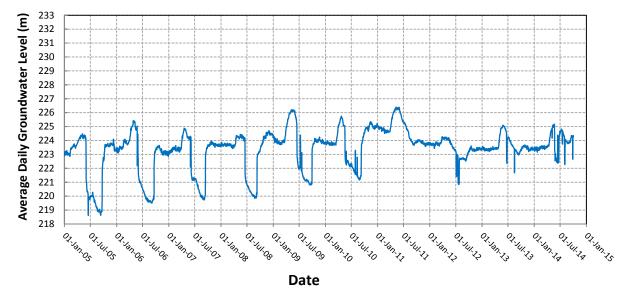


Figure 4 – Aquifer Groundwater Monitoring Results - Provincial Wells

3. Foundations

3.1 Underpass Structure Foundations

Shallow foundations are not considered suitable to support heavy loaded structures. Deep foundations bearing on competent very dense till or bedrock will be required to support these structures. Available deep foundation alternatives include:

- Driven Pre-cast Pre-stressed Concrete Piles;
- Driven Steel Piles;
- Cast-in-Place Belled Caissons; and
- Cast-in-Place Rock Socketed Caissons.

AREMA Manual 2012 is referenced as the design code for the Underpass Structure.

3.1.1 Driven Pre-Cast Pre-Stressed Concrete (PPC) Piles

Driven PPC piles can be designed to support the heavy loads of the proposed underpass structure, however our experience with CN indicate that PPC piles are not a preferred foundation system for railway structures support. If used, PPC piles should be driven to practical refusal into very dense glacial till or on the underlying bedrock. Provided that a well maintained hammer with a rated energy of at least 40 kJ per blow is utilized, the piles may be assigned the conventional capacities shown in Table 3. These traditional pile capacities are based on a series of studies and load tests and have been successfully used in the Winnipeg area for several decades.

Pile Size (mm)	Maximum Allowable Capacity (kN)	Final Refusal (blows/25 mm)	
300	450	5	
350	625	8	
400	800	12	

Table 3 – Allowable Capacity for Driven PPC Piles

Final refusal for driven PPC piles shall be taken as three consecutive sets of the refusal criteria as defined in the Table 3. PPC piles driven to practical refusal will develop the majority of their capacity from toe resistance, and therefore, no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as the sum of the capacity for the number of piles in the group.

Pre-construction Wave Equation analysis and dynamic monitoring using Pile Driving Analyzer (PDA) during construction should be utilized to assess the suitability of the pile driving equipment, verify the set criteria, evaluate the mobilized capacity and protect against pile damage.

Further design and construction recommendations for driven PPC piles are summarized below:

- 1. The weight of the embedded portion of the pile may be neglected in the design;
- 2. The above allowable capacities pertain to soil resistance only, the pile cross sections must be designed to withstand the design loads, handling stresses and the driving forces during installation;
- 3. Pile spacing should not be less than 3 pile diameters, measured center to center;

- 4. Pre-boring can be used to enhance pile alignment and to reduce the effects of pile heave during driving of adjacent piles;
- 5. All piles should be driven continuously to the required refusal criteria, once driving is initiated;
- 6. All piles located within 5 pile diameters of another pile location should be monitored for heave during pile installation. Where pile heave is observed, the piles should be re-driven to the refusal criteria outlined above;
- 7. Any piles that are damaged, excessively out of alignment or refuse prematurely may need to be replaced, pending a review by the structural designer to assess pile load carrying capacity and any consequences of expected settlement on performance;
- 8. Where a steel follower is required to install piles below the ground surface, the refusal criteria should be increased by up to 50 percent, or as determined from PDA monitoring, to account for additional energy losses through the use of the follower;
- 9. The driving of all piles should be documented by experienced geotechnical personnel to confirm and record acceptable piling installation.

3.1.2 Driven Steel Piles

Driven steel H piles are commonly used to support heavily loaded structures. Steel piles can be designed on the basis of the structural capacity of the pile section provided the piles are driven to practical refusal into/onto bedrock. As per AREMA Manual 2011, the structural capacity of the pile can be determined from the steel sectional area and the maximum allowable stresses of 86 MPa (12,600 psi). All H-pile section shall conform to the current ASTM Designation A36. Practical refusal can be defined as 10 to 15 blows/25 mm pile penetration using a well maintained hammer with rated energy of not less than 50 kJ. The actual refusal criteria and load capacity for specific steel section and pile driving system should be established based on pre-construction Wave Equation analysis and PDA testing.

Steel piles driven to practical refusal will develop the majority of their capacity from toe resistance, and therefore, no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as sum of the capacity of the number of piles in the group.

The following additional recommendations regarding steel piles are provided:

- The pile cross sections must be designed to withstand the design loads, handling stresses and driving forces during installation;
- The minimum depth of a steel H-section shall be 200 mm (8 inches). The minimum thickness of metal in the flange or web shall be 9.5 mm (3/8 inch). The flange width shall be not less than 85 percent of the depth of the section;
- Piles should be fitted with an appropriate toe or shoe to protect the pile tip during installation;
- Piles should be protected against corrosion using additional steel thickness;
- Pile spacing should be a minimum of 3 pile diameters measured centre to centre; and
- All piles driven within 5 pile diameters of one another should be monitored for heave and where observed, the piles should be re-driven to the specified refusal criteria.

3.1.3 Cast-in-Place Belled Caissons

Typically in the Winnipeg area, the till is considered loose to medium dense when the moisture content is greater than 10 percent. When the moisture contents are between 7 and 9 percent, the till is considered dense, and when

the moisture content is between 4 and 6 percent, the till is usually very dense. Cast-in-place belled caissons has been designed on the basis of an allowable end bearing pressure of about 700 kPa provided they are founded in very dense till. The caissons might be mechanically or manually belled but the caisson bottom must be hand cleaned so that no loosened or disturbed soils are left in the base of the bore. Safety concerns related to man entry into the boring (e.g., high level of gas) may preclude undertaking the cleaning and inspection and should be considered if this alternative is contemplated.

Caisson's installation difficulties with respect to groundwater seepage, bell stability of roofs of the bells or caving and bore advance through boulder/cobble zone should be carefully evaluated; these types of construction challenges are common in the Winnipeg area and should be anticipated in this project. The foundation contractor must expect to encounter boulders within the glacial till and at elevations above the required founding level. Chopping of boulders may be necessary to advance the borings into till. The minimum shaft diameter should be 760 mm to permit the entry of personnel for base cleaning and inspection. Temporary steel sleeves must be used to permit the safe entry of personnel. The maximum bell/shaft diameter ratio should be in the order of 2.7. All caisson bases should be inspected by experienced geotechnical personnel to verify that the base conditions are consistent with the design parameters.

On the basis of in-situ testing, pile load testing, and analytical studies that have been undertaken at other locations in Winnipeg for caissons in comparable glacial silt till, the caisson settlements can be expected to be less than 20 mm for bell diameters that are commonly employed.

This foundation alternative is expected to present challenges and it may not be feasible for this project. If this design alternative is contemplated, a test caisson(s) is highly recommended to verify design assumptions, examine the feasibility of construction and assist in the selection of adequate equipment and proper construction practices.

3.1.4 Cast-in-Place Rock Socketed Caissons

Drilled caissons socketed into sound bedrock can be designed to support the proposed heavy structures. Local practice is to design the drilled shafts based on values of maximum allowable end bearing and/or shaft adhesion of 3.0 and 1.0 MPa, respectively, provided that downhole inspection and assessment of the rock competency are undertaken. The assessment of the rock competency consists of small diameter proof drilling to 2 m below the socket base to detect the presence of voids or clay/silt layers of any significance and determine if deeper socket boring is required. In the event that the socket cannot be visually inspected, inspection of the recovered rock core and/or downhole video monitoring can confirm the competency of the bedrock. In this situation, caissons founded in sound bedrock should be designed on the basis of a reduced allowable shaft adhesion of 0.60 MPa with no contribution from end bearing. Safety concerns related to man entry into the boring (e.g., high level of gas) may preclude undertaking the visual inspection.

To our knowledge, settlements of rock socketed caissons have never been measured in the Winnipeg area. However, it is anticipated that the settlements would be less than 20 mm.

Based on the finding of the three test holes advanced into the bedrock (TH14-02 to 14-04), the top 5 m of the bedrock is dominated by very poor to poor quality rock. A layer of clay infill 0.3 to 0.8 m thick was encountered within the bedrock between elevation 211.7 and 212.6 m. The thickness of the fractured and heavily jointed bedrock is variable and could be in excess of 5 m and the clay infill may vary in thickness and could be encountered at different elevations. Socket length, at least at the location of these test holes, should be expected to be developed below elevation 211.0 m and measures to maintain socket wall stability and groundwater control should be anticipated.

Inspection of the recovered rock cores by qualified and experienced geotechnical personnel and downhole video inspection will be required to aid in assessing the competency of the bedrock and determining if longer socket

lengths are required. The depth to sound bedrock should be expected to vary across the site and it should be recognized that the presence of the heavily fractured rock and infill material above the socket length may require that a permanent steel casing be left in the ground so that the integrity of the shaft is maintained. In this regard, the basis for measurement and payment for the rock socket installation should be established in the contract preparation stage to recognize that the bedrock conditions at some rock socket locations may require unanticipated extra effort and materials for their completion.

The socket length should be a minimum of three socket diameter within competent bedrock. The minimum shaft diameter of the rock socket should not be less than 760 mm and the maximum diameter should be selected to suit the locally available coring equipment. The rock sockets should not be spaced closer than 3 socket diameters, centre to centre. Tremie placement of concrete is likely to be required.

Should this type of foundation is contemplated, a test caisson(s) is highly recommended to verify design assumption, examine the feasibility of construction and assist in the selection of adequate equipment and proper construction practices.

3.1.5 Foundation Alternatives Assessment

Four deep foundation alternatives are identified to support the proposed underpass structure including:

- Driven precast prestressed concrete piles;
- Driven steel H piles;
- Belled caissons; and
- Rock socketed caissons.

Numerous structures in the Winnipeg area are supported on foundation systems consisting of one or a combination of the above types. The factors governing the design and performance of these pile types are well understood by the engineering community and the construction industry. Local contractors are familiar with related construction practices and the necessary equipment for installation is available.

Driven steel H piles can be driven to practical refusal into/onto bedrock surface and designed on the basis of steel section structural capacity. Pile axial capacity up to 1200 kN can be mobilized for common pile sections. These piles offer easy splicing and can be made in variable lengths. Larger sections can be selected if greater design loads are desired. Adequate driving equipment, good installation experience and reliable testing methods are locally available. Pile caps are anticipated to be of reasonable size. Also, steel H piles are the preferred pile type by CN Rail.

Driven PPC piles are common in the Winnipeg area but are limited in manufactured length and the design capacity ranges between 400 to 800 kN. Pile cap size is expected to be larger than the size required using steel piles to support similar load. Precast piles do not lend themselves to certain structural applications such as integral abutment design. Driven PPC piles are not preferred by CN Rail.

Belled caissons bearing on competent till can be designed to mobilize loads comparable to steel H piles. However pile cap size would be significantly larger to support a similar load. Based on the findings of the deep test holes drilled at the vicinity of the proposed underpass, the encountered till is not anticipated to mobilize bearing capacity that would make this pile type cost effective. The installation requires base cleaning and downhole inspection. Construction difficulties related to groundwater control, roof stability and boulder removal are not uncommon and may impact project cost and schedule or require design review. We are not aware if such pile foundation had been used recently to support CN Rail structures.

Rock socketed caissons bearing in competent bedrock can be designed to support significant design load. The rock condition encountered at the proposed underpass structure indicated the top 5 m of the bedrock is generally dominated by poor quality and extensively jointed/broken rock mass. Accordingly, rock socketed caissons need to develop their capacity based on adhesion mobilized below this weak zone. Rock socketed caissons lend themselves for top down construction being currently contemplated for the proposed underpass structure and it has been successfully used in Kenaston underpass.

Based on the available information and above discussion, it seems that driven steel H piles are the preferred foundation system to support the abutments of the proposed underpass structures while rock socketed caissons seems suitable to support the intermediate piers. Further investigation and assessment should be undertaken to confirm subsurface conditions and review the suitability of the selected foundation type(s).

3.2 Retaining Walls Foundations

Loads from retaining walls could range from light to heavy depends on the type and dimensions of the walls. Foundation requirements could be governed by lateral resistance and/or construction aspects rather than axial resistance. Heavy loads from retaining wall can be supported using deep foundation elements including driven PPC and steel piles. The ease of installing battered driven piles to resist lateral forces makes these piles preferable for wall foundation. Lightly loaded walls could be supported on shallow foundation or cast-in place friction piles.

AASHTO LRFD Bridge Design Specification 2014 and CAN/CSA Canadian Highway Bridge Design Code 2006 are referenced as the design code for the retaining walls.

3.2.1 Shallow Foundations

Shallow footings can be used to support and transfer light loads to the underlying soil at a pressure consistent with the loading requirements and the bearing capacity of the soil. The footings should bear on native clay below the frost penetration depth. The nominal and factored bearing resistance at ultimate limit state (ULS) for a range of footing dimensions bearing at 2.4 m below ground has been evaluated. A nominal bearing resistance of 225 kPa and a resistance factor of 0.5 should be used to derive the factored bearing resistance at ULS. The bearing capacity of a footing is highly influenced by the load inclination, an inclined load H/V = 0.1 would result in reduction of the bearing resistance to 90 percent of the value above (i.e., 225×0.90). As part of the deign development, structure specific assessment and further analysis should be completed to verify and confirm these preliminary recommendations. Different configurations of spread footings may result in a potential for load superposition and overstressing of the bearing capacity may be required. Total and differential settlement magnitude and rate under spread footings can be estimated using a one dimensional consolidation theory, Footings load, configuration and subsoil compressibility characteristics are necessary input in settlement analysis and will need to be conducted as part of the detailed design phase.

Shallow footings should be located below the frost penetration depth which is estimated at 2.4 m below ground surface. This depth can be reduced if thermal insulation is used to protect against frost penetration provided the footing is bearing on competent soil. The potential for movement caused by volumetric changes of the high plasticity clay due to changes in moisture content should be reviewed for its impact on future performance.

Nominal unit resistance to sliding at ULS conditions can be calculated as the sum of normal sliding resistance and passive sliding resistance. A resistance factor of 0.85 should be applied to the nominal normal sliding resistance which can be taken as the smaller of:

- Clay undrained shear strength = 30 kPa; or
- Provided the footing is supported on at least 150 mm compacted granular, one half the normal stress at the footing/clay interface.

If passive sliding resistance accounted for in the design it should be carefully evaluated for the possibility of future removal of the soil from the front of the wall and the associated displacement to mobilize the maximum passive soil resistance.

Soil within the depth of frost penetration can freeze to the foundation developing an uplift force. An adfreeze bond of 65 kPa can be used to estimate the uplift forces. These forces can be resisted by the sustained vertical loads on the footing. A frost non-susceptible material or bond breaker/thermal insulation between the footing and the adjacent soil can be used to protect against adfreeze bond development.

Footings should not be placed on uncontrolled fill, organic or other deleterious soils. The bearing stratum should be cleaned to remove all disturbed or otherwise affected soil and protected from frost, desiccation and the ingress of free water.

3.2.2 Cast-in-Place Friction Piles

Cast-in-place concrete friction piles can be used to support lightly loaded structures. The nominal and factored unit friction resistance are summarized in Table 4. The frictional resistance for the top 2 m along the pile shaft should be ignored from the design calculations to accommodate for moisture change and freeze/thaw effects. The piles should not extend into the soft clay above the till layer to protect against seepage and instability of the bore hole. In this regard, friction piles should not extend deeper than elevation 223.0, this elevation can be reviewed once further investigation is completed as part of the detailed design. The bearing resistance at service limit state (SLS) presented in Table 4 is associated with a settlement of 5-10 mm excluding elastic shortening of the pile.

	_	ULS Co			
Nominal Unit skin	AASHT	O LRFD	CAN/CS	A-S6-06	SLS Condition
Friction (kPa)	Resistance Factor	Factored Bearing Resistance (kPa)	Resistance Factor	Factored Bearing Resistance (kPa)	Bearing Resistance (kPa)
20	0.45	9	0.4	8	Equal to ULS

Table 4 – Limit State Bearing Resistance for Cast-in-Place Friction piles

Additional design and construction recommendations are provided below:

- 1. Pile diameter should not be less than 0.45 m.
- 2. Piles should be adequately reinforced to resist possible tension from clay swelling or frost heave.
- 3. Pile spacing should be a minimum of 3 pile diameters measured centre to centre.
- 4. Temporary casing to facilitate cleaning, inspection and protect against seepage and sloughing during construction should be available on site.
- 5. All piles must be taken to completion once they have been initiated.

3.2.3 Driven Pre-cast Pre-Stressed Concrete Piles

Static analysis was carried out using DRIVEN 1.2 software to estimate the axial capacity for driven PPC piles. In estimating the pile capacities, the design SPT (N) value profile presented on Figure 1 and results from laboratory tests were used to estimate the angle of internal friction for glacial till. In determining pile capacity, no contribution was considered from the clay layer. Detailed results of the analysis and the nominal resistance versus pile penetration are attached in Appendix D. Regardless of the geotechnical capacity, the load applied to the pile should not exceed the structural capacity of the pile section. Estimated nominal bearing resistance at ULS for piles driven at least 2 m into dense/very dense till are summarized and presented in Table 5. The factored bearing resistance at ULS will depend on the level of construction control adopted at site during pile installation to verify that piles are installed to mobilize the desired nominal bearing resistance. In this regard, a resistance factor was determined for two conditions:

- Using PDA testing and dynamic monitoring on at least 2 percent of the piles number to determine the driving criteria. The associated resistance factor = 0.65.
- Using FHWA modified Gates dynamic pile formula to determine the driving criteria. The associated resistance factor = 0.40.

The bearing resistance at SLS, associated with a settlement of 5 -10 mm excluding elastic shortening of the pile, is also provided in Table 5. PPC piles driven into dense/very dense will develop the majority of their capacity from toe resistance, and therefore no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as sum of the capacity of the number of piles in the group.

A pile driving analyzer (PDA) test program is recommended to confirm pile capacity and verify safe installation of the piles. The PDA testing services can be provided by AECOM upon request.

Nominal Bearing Resistance, (kN)				ULS Cond	lition		Driving Criteria		
Pile Size			Тое	AASHTO LRFD 2014		CAN/CSA-S6-06		SLS Condition Bearing Resist.	Basis and Field Control
	Total	Shaft		Resist. Factor	Factored Bearing Resist. (kN)	Resist. Factor	Factored Bearing Resist. (kN)	(kN)	
	1005			0.65	887	0.5	683		PDA Test
HEX 300 mm	HEX 300 mm 1365 239	239 1127	0.40	546	0.4	546	350	Modified Gates Formula	
HEX 350 mm	1885	346	1539	0.65	1225	0.5	943	450	PDA Test
HEX 350 Mill	1000	340	1009	0.40	745	0.4	745		Modified Gates Formula
HEX 400 mm 2456	56 452 200	2004 -	0.65	1596	0.5	1228	550	PDA Test	
			0.40	982	0.4	982		Modified Gates Formula	

Table 5 – Limit State Bearing Resistance for Driven PPC Piles

Further design and construction recommendations for driven PPC piles are summarized below:

- The weight of the embedded portion of the pile may be neglected in the design;
- The above allowable capacities pertain to soil resistance only, the pile cross sections must be designed to withstand the design loads, handling stresses and the driving forces during installation;
- Pile spacing should not be less than 3 pile diameters, measured center to center;
- Pre-boring can be used to enhance pile alignment and to reduce the effects of pile heave during driving of adjacent piles;
- All piles should be driven continuously to the required driving criteria, once driving is initiated;
- All piles located within 5 pile diameters of another pile location should be monitored for heave during pile installation. Where pile heave is observed, the piles should be re-driven to the refusal criteria outlined above;
- Any piles that are damaged, excessively out of alignment or refuse prematurely may need to be replaced, pending a review by the structural designer to assess pile load carrying capacity and any consequences of expected settlement on performance;
- Where a steel follower is required to install piles below the ground surface, the driving criteria should be adjusted by up to 50 percent, or as determined from PDA monitoring, to account for additional energy losses through the use of the follower;
- The driving of all piles should be documented by experienced geotechnical personnel to confirm and record acceptable piling installation

3.2.4 Driven Steel H Piles

Static analysis was carried out using DRIVEN 1.2 software to estimate the axial capacity for driven steel H piles. Similar to Section 3.2.3, the design SPT (N) value profile presented on Figure 1 and results from laboratory tests were used to estimate the angle of internal friction for glacial till. In determining pile capacity, no contribution was considered from the clay layer. Detailed results of the analysis and the nominal resistance versus pile penetration are attached in Appendix D. Regardless of the geotechnical capacity, the load applied to the pile should not exceed the structural capacity of the pile section. Estimated nominal bearing resistance at ULS for piles driven at least 3 m into dense/very dense till are summarized and presented in Table 6. The factored bearing resistance at ULS will depend on the level of construction control adopted at site during pile installation to verify that piles are installed to mobilize the desired nominal bearing resistance. In this regard, a resistance factor was determined for two conditions:

- Using PDA testing and dynamic monitoring on at least 2 percent of the piles number to determine the driving criteria. The associated resistance factor = 0.65.
- Using FHWA modified Gates dynamic pile formula to determine the driving criteria. The associated resistance factor = 0.40.

The bearing resistance at service limit state (SLS), associated with a settlement of 5 -10 mm excluding elastic shortening of the pile, is also provided in Table 6. Steel H piles driven into dense/very dense will develop the majority of their capacity from toe resistance, and therefore no reduction in pile capacity is necessary for reasons related to group action. The design capacity of a pile group can be taken as the sum of pile capacities in the group.

A pile driving analyzer (PDA) test program is recommended to confirm pile capacity and verify safe installation of the piles. The PDA testing services can be provided by AECOM upon request.

Table 6 – Limit State Bearing Resistance for Driven Steel H Piles

	Nominal Bearing Resistance, (kN)		ULS Condition						
Pile Size	Total		Тое	AASHTO LRFD 2014		CAN/CSA-S6-06		SLS Condition	Driving Criteria Basis
		Shaft		Resist. Factor	Factored Bearing Resist. (kN)	Resist. Factor	Factored Bearing Resist. (kN)	Bearing Resist. (kN)	
H 310 x110 2238 38	388 1850	0.65	1455	0.5	1119	560	PDA Test		
	2230	2230 388	1850	0.40	895	0.4	895	300	Modified Gates Formula

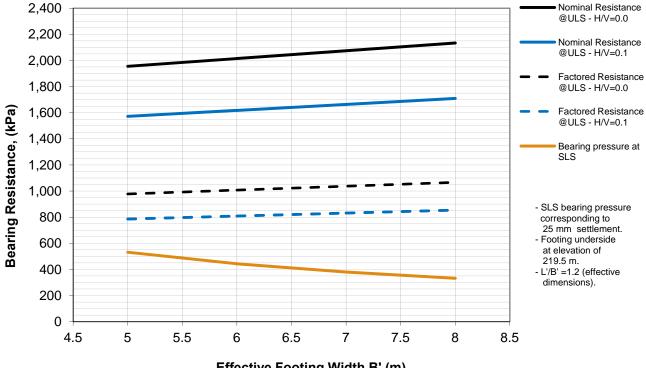
The following additional recommendations regarding steel piles are provided:

- The pile cross sections must be designed to withstand the design loads, handling stresses and driving forces during installation;
- Piles should be fitted with an appropriate toe or shoe to protect the pile tip during installation;
- Piles should be protected against corrosion using additional steel thickness;
- Pile spacing should be a minimum of 3 pile diameters measured centre to centre; and
- All piles driven within 5 pile diameters of one another should be monitored for heave and where observed, the piles should be re-driven to the specified refusal criteria.

3.3 Lift Station Foundations

The lift station structure will be configured into two main parts: deep and shallow. It is important to support these two parts on common competent soil stratum and protect against differential movement. The deep part can be supported on raft foundation bearing on the dense/very dense till. The loads from the shallow part should be transferred through piles bearing into the till layer at elevation of the raft or deeper. Driven steel H-piles or PPC piles can be designed to support the shallow part of the structure. The sequence of the pile installation, excavation and raft construction should be carefully assessed to protect against any adverse impact.

Limit state design in accordance to the principles of AASHTO 2014 and CAN/CSA 2006 are referenced as the design code for the lift station.


3.3.1 Raft Foundation

Raft foundation can be designed to provide suitable support to the deep part of the lift station. Foundations placed at depths where the structural load equals the weight of the excavated soil usually have adequate bearing capacity and only recompression settlement.

The elevation of the underside of the proposed pump station, as determined by the civil designer, is about 219.5 m. Preliminary recommendations for the bearing resistance at both ULS and SLS are provided on Figure 5. SLS bearing resistance has been calculated corresponding to settlement of 25 mm. Once the raft dimensions and exerted loading are finalized, the foundation response should be evaluated as part of the detailed design stage. If the pressure from the structure is in excess of the in-situ, the anticipated settlement should be estimated. If the structure loading is less than the in-situ overburden pressure then an upward displacement/ rebound at the foundation level is expected to be a result of the stress relief due to excavation unloading. The rebound movement is expected to be restrained by the weight of the structure and the side friction along the walls/backfill interface. Theoretically, the rebound will continue to a point where the stress at the foundation level is equal to the in-situ overburden pressure before the excavation. In this regard, the base of the structure should also be designed to resist an upward pressure equal to the in-situ overburden pressure.

A preliminary estimate of the modulus of subgrade reaction for the undisturbed till at elevation of 219.5 is 10 MN/m³.

A foundation preparation should include removal of all loose/disturbed soil and placement of at least 100 mm lean concrete (mud slab) after inspection by qualified geotechnical engineer. Raft should not bear on uncontrolled /undocumented fill. Dewatering system will be required to control groundwater and allow construction in the dry. Care should be taken during excavation so that the final bearing surface is not disturbed or subjected to freezing, water inundation or excessive drying. Once the bearing surface has been suitably prepared, it should be evaluated by gualified geotechnical personnel to verify the suitability of the bearing soils, confirm that the soils are uniform, not affected by frost or disturbance and to confirm that the soils encountered are consistent with the conditions noted in this report. As soon as possible, a 100 mm thick lean concrete (mud slab) should be placed and followed by the reinforcing steel and concrete.

Effective Footing Width B' (m)

Figure 5 – Limit State Bearing Resistance for Raft Foundations (Lift Station)

3.3.2 Driven PPC Piles

The upper portion of the pumping station can be supported on driven PPC piles. The discussion and recommendations provided in Section 3.2.3 are applicable.

3.3.3 Driven Steel H Piles

The upper portion of the pumping station can be supported on driven steel H piles. The discussion and recommendations provided in Section 3.2.4 are applicable.

4. Temporary Excavations and Shoring

Temporary excavations range from 3 to about 13 m deep will be required to facilitate the construction of the proposed work (i.e., lift station, abutments and retaining wall foundations). These excavations will be in close proximity to CN tracks and existing utilities and infrastructures along Waverley Street.

Temporary works are the responsibilities of the Contractor and all necessary measures should be undertaken to protect against adverse impact or undermining the foundation or stability of existing infrastructure. All excavations must comply with Manitoba's Workplace Safety and Health Act and Regulations.

This section discusses geotechnical concerns including shoring and lateral forces, anticipated ground movement around excavations, and base stability.

Additional stability analysis and excavation plan development, related to the stability of the temporary railway detour and temporary road detour during the construction period should to be investigated as part of the detailed design stage.

4.1 Unsupported Excavations

Open cut excavations could be used where the available space allows, however the maximum open cut height should not exceed 6 m. The location and height of the cut slopes may be further dictated by other considerations such as access, proximity to existing infrastructure, anticipated construction approach and staging. A design objective FS of 1.30 against slope instability is considered acceptable design practice for short term temporary work (i.e., not exceeding two months period). The Contractor shall provide stability assessment prepared by professional engineer demonstrating the proposed excavations satisfy the design objective. Railway and construction surcharges should be accounted for in the stability model where applicable. The stability model shall adopt soil strength parameters and groundwater conditions representative of the Winnipeg area and acceptable to the project geotechnical engineer.

4.2 Supported Excavations

In addition to open cut excavations, supported and partially supported excavations will be necessary for the proposed construction. Cantilever and braced shoring can be used to support the excavations. A partially supported excavation utilizes a combination of cut slopes and shoring. The design is expected to include a soldier pile system and sheet piling. Recommendations for design earth pressures are provided in Figure 6. The shoring should be designed to resist lateral earth pressure and lateral forces from live load surcharges including railway loading and anticipated construction activities. Lateral pressure from railway loading should be determined as per the latest CN Guidelines and AREMA Manual using Cooper E90 loading.

The active pressure should be extended to the base of the wall system (i.e., the bottom of the piles). The wall must be embedded deeply enough to provide adequate resistance for the portion of the wall below the excavation. Passive resistance below the excavation level should include a factor of safety of 1.5. Passive resistance from the soil located in the upper 0.5 m below the excavation level should be ignored.

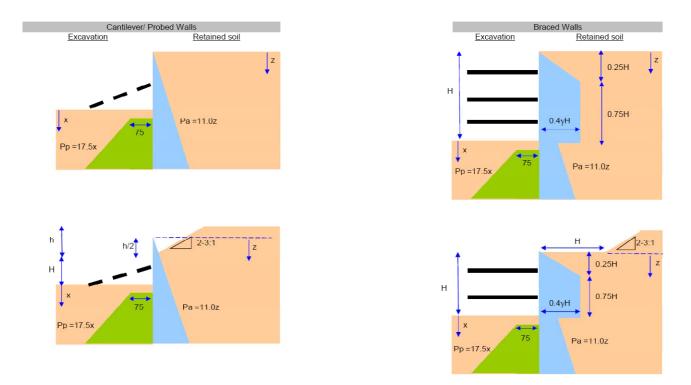


Figure 6 –Lateral Earth Pressure for Temporary Shoring

4.3 Ground Movement

Excavation support systems are usually designed to keep movements around the perimeter of the excavation within acceptable limits. Avoidance of ground movements entirely is not possible. The amount of movement that will occur cannot be accurately predicted mainly because the movements are more a function of excavation procedures and workmanship than they are of theoretical considerations. Settlements of the ground surface adjacent to braced excavation can be estimated using the chart developed by Clough and O'Rourke (1990) as shown in Figure 7. It is recommended that the boundary between Zone III and IV be used to estimate vertical ground movements at the site. It should be recognized that the predicted ground movements are associated with standard soldier piles and lagging or sheet piles with cross bracing or tie back anchors, assuming they are installed with a normal quality of workmanship. Good contact between the lagging and retained soil should be maintained throughout the construction period. Free draining sand should be used to fill the voids behind the lagging or sheet piles.

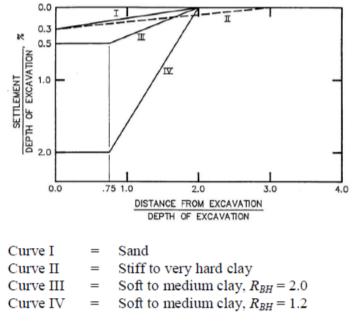


Figure 7 – Ground Settlement Estimate adjacent to Excavations

4.4 Base Heave

When impervious layer is underlain by pervious layer subject to artesian condition, the potential for base heave should be evaluated. The upward pressure exerted by the artesian groundwater on the underside of the impervious layer should be controlled so not to exceed the downward overburden pressure at the interface between the two layers and protect against development of critical condition. The factor of safety (FS) against base heave is expressed as the ratio of the total stress at the base of the impervious layer to the groundwater pressure acting on the base of the impervious layer, with no account for any shearing resistance. A minimum FS of 1.3 is recommended against base heave for short term condition.

Temporary excavations for the abutments, the retaining walls and the lift station are considered in base heave assessment. Where the excavation is expected to advance into the till (i.e., lift station) the till was modelled as impervious soil and the artesian pressure to act on bedrock/till interface. The results are presented on Figure 8. The range of the Aquifer GWL observed during the monitoring period from June to December 2014 and the historical peak GWL from the nearby Provincial wells are shown on Figure 8. The results indicate the following:

- Temporary excavations up to elevation 224.5 m would attain acceptable short term FS under the GWL range observed in the aquifer during the monitoring period (i.e., GWL < 225.8 m);
- Groundwater control and aquifer depressurization will be required for temporary excavations deeper than
 elevation 224.5 m or for shallower excavations if GWL higher than observed is encountered in the aquifer
 during the excavation period;

- Temporary excavations for abutments and retaining walls are anticipated to be shallower than elevation 225 m and therefore aquifer depressurization will likely not be required;
- Temporary excavations for the lift station is anticipated to be advanced into till up to elevation 219 m. Groundwater control, aquifer depressurization and construction dewatering to facilitate construction will be required to lower the GWL to at least 0.5 m below the excavation bottom. Other concerns such as piping may call for additional GWL control (i.e., more than 0.5 m below excavation level);
- GWL monitoring is necessary during construction; and
- Base heave potential and protection measures increases with increasing excavation depth.

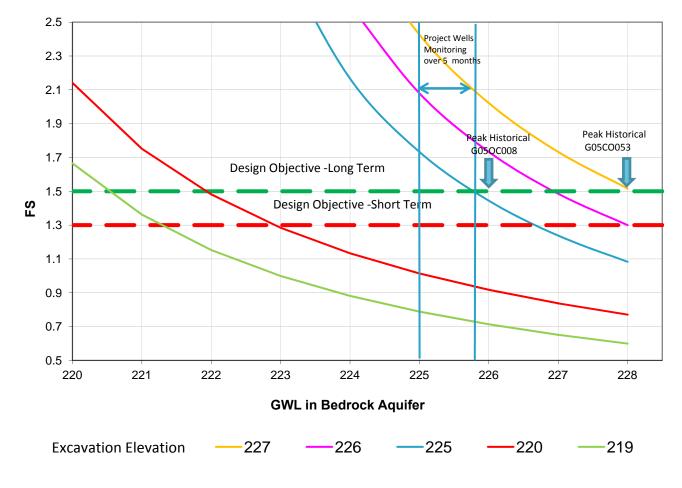


Figure 8 – Calculated Factor of Safety against Base Heave

4.5 Piping

The silt till or part of could behave similar to a cohesionless soil and the potential for piping under artesian condition may arise. Piping is the phenomenon where upward seepage through soil introduces the condition at which the exit hydraulic gradient approaches the critical hydraulic gradient. The critical hydraulic gradient is the gradient that would reduce effective stress to zero and its average value for most soil is equal to 1. The FS against piping is the ratio between critical and exit hydraulic gradient.

Assuming water will not be allowed to accumulate in the excavation and the hydraulic gradient across the till is equal to the exit gradient, a preliminary assessment has been completed to estimate the FS against piping. The results are presented on Figure 9. Based on this preliminary assessment aquifer depressurization to 1 m below excavation elevation is recommended to attain design objective FS of 1.5.

Hydrogeological assessment, instrumentation installation and further review and evaluation as part of the detailed design stage will be required to determine and confirm measures necessary to protect against piping.

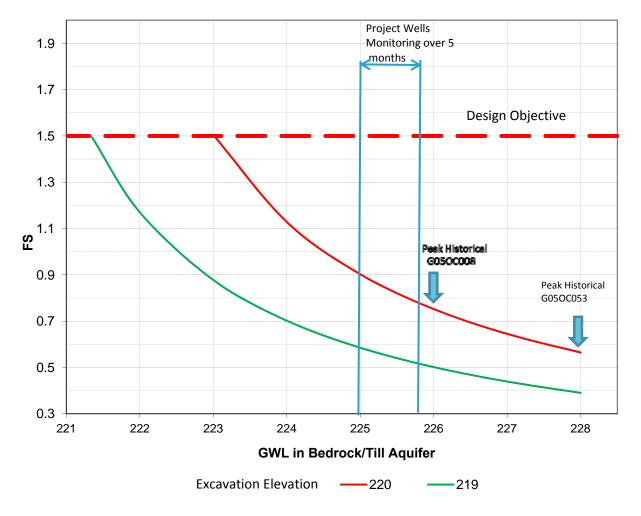


Figure 9 – Calculated Factor of Safety against Piping

4.6 Base Instability

Base instability is a concern for excavations in soft to firm clays. It is analogous to a bearing capacity failure, the difference being that stresses in the ground are relieved instead of increased. Two types of analysis are available for calculating the FS against base instability: the Terzaghi method and the Bjerrum & Eide method. The Terzaghi method is applicable for shallow and wide excavations, whereas the Bejrrum method is suitable for deep and narrow excavations.

The Bjerrum & Eide method has been used to complete an analysis for the FS against base instability for the lift station, retaining wall and abutment excavations. A live load surcharge due to railway loading and construction equipment was considered in this assessment. The analysis considered a range of excavation lengths, widths and depths. The analysis results indicate that the calculated FS against base instability for the scenarios considered in the analysis was greater than 1.50 which satisfy the design objective.

5. Permanent Excavations

The depressed road section of the proposed Waverley underpass will be a permanent excavation with cut slopes as deep as 7 m below the existing grade. The following sections discuss the geotechnical concerns related to permanent excavations including base heave, swell and rebound and slope stability.

5.1 Base Heave

As previously discussed in Section 4.4, base heave potential for the permanent excavations was also evaluated. A design objective FS of 1.5 is commonly adopted for long term condition. The deepest road section will be at about elevation 225.5 m. Figure 8 indicates that excavations at elevation 225.5 or shallower will attain FS satisfying or exceeding the design objective for the observed range of aquifer GWL. In the event the aquifer GWL exceeded this range a lower FS will be experienced however it will be higher than 1.3 and it is considered to be acceptable over short duration.

5.2 Heave

Heave in excavations is comprised of elastic rebound and swelling due to removal of overburden or change in moisture. Elastic rebound will take place immediately while swelling is time dependent, more swelling will be realized the longer the period the excavation is open. An estimate of the anticipated rebound and swell can be provided once additional investigation completed and the profile design is finalized as part of the detailed design phase. Recompression of the elastic rebound will take place immediately after construction while recompression of swell, if any, is time dependent. Once recompression has occurred settlement will start to take place due to imposed loading, if it is in excess of in-situ effective stress.

The swell can be reduced if staged and sequenced construction approaches are utilized. An optimum time lag between stages and phases of construction can be used to protect against differential heave/recompression. Further assessment should be provided as part of the detailed design stage.

5.3 Slope Stability

An adequate FS against slope instabilities must be achieved for the proposed cut slopes along Waverley Street. In this regard, a design objective FS of 1.5 for long term and 1.3 for short term end of construction has been selected. These objectives are consistent with acceptable design practice and commonly selected in the Winnipeg area.

A preliminary stability analysis was completed to investigate feasibility of cut slope design and determine if additional design measures are required to attain design objective FS. Long term condition was analyzed for selected configurations of cut slopes and head slopes. Short term condition was not considered in this preliminary assessment, it should be carefully evaluated in the detailed design phase as part of the design development.

The soil strength parameters used in the analysis are summarized in Table 7. These parameters were selected based on available geotechnical information and related experience from similar projects. The parameters are within the range of locally accepted values for Winnipeg clay and till. The assumed groundwater and piezometric conditions modelled in the analyses were based on short term GWL monitoring of site specific installation and our knowledge of local conditions.

		Effective	Stress Analysis				
Material	Unit Weight (γ),	Cohesion (C`)	Friction Angle (Φ`)	Groundwater Level			
	kN/m ³	kPa	degree	m			
Fill							
Clay	17	5	16	1 – 3 below grade			
Till	20	10	28	226			
Bedrock		Impenetrable					

Table 7 – Strength Parameters for Stability Assessment

The initial results of the preliminary stability assessment are illustrated on Stability Figures 01 and 02 in Appendix E. The results indicate the following:

- Cut slopes not exceeding 6 m deep can be designed at configuration consists of two slopes and intermediate bench. The upper and lower slopes should be at 4H:1V inclination or flatter. The intermediate bench should be 4.5 m wide at level between 40 50 percent of the total slope height measured from the toe of the cut slope.
- Cut slopes between 6 and 7 m deep can be designed at configuration consists of two slopes and intermediate bench. The upper slope should not be steeper than 5H:1V inclination and the lower slope should be at 4H:1V inclination or flatter. The intermediate bench should be 4.5 m wide at level between 40 50 percent of the total slope height measured from the toe of the cut slope.
- Subdrains system about 1m deep below the intermediate bench and 0.5m below road subgrade were modeled to control groundwater and should be incorporated in the design.

The 4.5 m wide intermediate bench will be used as Active Transportation Path (ATP). Stability improvement can be attained by optimizing the level/ position of this bench. Crest offloading by permanent subcut or replacement of insitu soil with light weight fill could also be considered to attain stability improvement. A design optimization should be completed as part of the detailed design stage.

6. Buoyancy and Uplift

Structures located below groundwater level should either be designed to resist buoyant forces from hydrostatic pressures or have an integrated pressure relief system. It is prudent to investigate buoyancy effect for the completed structures and for conditions during construction assuming credible scenarios for groundwater condition. In this regard, an input from a hydrogeologist may be required. Structures resisting the buoyant uplift forces will require restraining devices or uplift resistance measures. Forces that can be considered in providing the uplift resistance include: the dead weight of the structure and the weight of the soil above. The footing can also be extended symmetrically beyond the walls of the structures at least 1.0 m so that the weight of the soil above the footing can be accounted for in buoyancy resistance. A design objective of 1.5 and 1.3 should be adopted against the buoyant uplift forces for long term and short term conditions, respectively. It is recommended to assess resistance to buoyancy assuming design groundwater level at elevation 230.0 m. The bulk soil unit weight should be used above the design groundwater level and buoyant soil unit weight should be used below the design groundwater level.

The potential to account for side friction along the structure and values at soil/wall and soil/soil interface should be determined based on the nature and method of placement and compaction of the backfill material. Further recommendations can be provided in conjunction with detailed design phase.

7. Retaining Walls

The proposed project includes construction retaining walls at the southeast corner of Waverley Street/Taylor Avenue and at the abutments of the proposed underpass structure. Design considerations for walls supporting cuts and fills are presented in the following sections.

All retaining walls should be designed to support earth lateral pressure, hydrostatic pressure, if applicable, and lateral forces from live load surcharge including railway traffic as per AREMA Manual and CN guidelines and other potential use of the site. Retaining walls should include a suitable drainage system to protect against buildup of hydrostatic pressures behind the wall. Wall drainage typically consists of a layer of free-draining sand/gravel mixture in conjunction with a perforated drainage pipe connected to a suitable discharge point. Geo-composites products can be used behind the walls to facilitate drainage. Retaining walls may also be equipped with weep holes to protect against buildup of hydrostatic pressure. A provision for drainage should be provided to protect against the development of hydrostatic water pressure behind sheet pile and secant pile walls, if used. Wall movement depends on design factors, including type of wall being used; stiff wall is more stable than flexible wall by providing more restriction against lateral movement, however high cost may be associated with a rigid retaining wall system.

7.1 Wall Alternatives

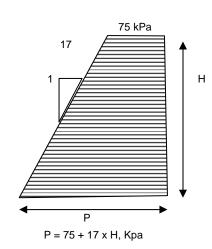
Reinforced concrete retaining walls are the common type locally used in the Winnipeg area. Other wall types including MSE walls, sheet pile and secant pile walls were used on limited basis. Soldier pile walls are mostly used for temporary work to provide excavations support.

The availability of construction space and the proximity to and potential impact on existing buildings/installations are among the governing factors that define the wall types. Traditional gravity type walls (i.e., reinforced concrete and MSE wall) are constructed in bottom-up fashion and require considerable space behind the wall. Temporary shoring is often necessary in conjunction with the construction of a gravity wall for cut applications in urban environment. In sites of limited space or when the new cut wall is in close proximity to existing buildings, gravity type walls may not be feasible and embedded type walls are considered more viable alternatives. Embedded walls include sheet pile

walls or secant pile walls with/without tie backs. These walls are constructed in top-down fashion and are installed prior to excavation in front of the wall. The construction of embedded walls lends itself for stage construction and can be designed efficiently to reduce temporary shoring requirements.

Based on the developed design concepts, an embedded wall could be considered at the southeast corner of Waverley Street/Taylor Avenue intersection to protect/retain the existing PIAZZA DE NARDI monument. The available space, construction sequence and the potential for interaction and impact with the existing monument foundations should be reviewed as part of the detailed design stage.

7.2 Lateral Loads


Lateral earth pressures transferred to abutments or to retaining walls will be a function of the backfill/retained material, the method of placing and compacting the backfill, and the amount of horizontal deflection allowed by the abutment or the wall after the backfill is placed. It is recommended that abutments and walls be backfilled with a free draining granular material containing a maximum of 5 percent fines (maximum of 5 percent finer than #200 sieve). Cohesive soils are not recommended for backfill behind retaining structures. For free draining coarse granular soils, an active earth pressure coefficient (K_a) of 0.30 can be used in the design of walls that allowed to translate or deflect horizontally by at least 0.2 percent of the retained height. For retaining structures, which are not free to translate, an at-rest earth pressure coefficient (K_o) of 0.5 should be used. Compaction of backfill within about 1.5 m of the wall should be conducted using a light hand operated vibrating plate compactor. Over-compaction of the backfill may result in earth pressures that are considerably higher than those predicted in design. Backfilling procedures should be reviewed during construction to verify that they are consistent with the design assumptions.

Embedded walls retain predominantly natural ground. The in-situ (at-rest) earth pressure of clay deposit depends on the geological stress history. Over-consolidated clay, as the case for the approximate top 5 m of Winnipeg clay, exhibits an at-rest earth pressure coefficient greater than unity. Wall installation may modify (increase/decrease) the horizontal earth pressure close to the wall from the in-situ values. Walls of driven piles may increase the lateral stresses, bored piles may result in reduction. The lateral pressure distributions on the retained side should be extended to the base of the wall system (i.e., the bottom of the piles). The wall must be embedded deeply enough to provide adequate kick out resistance for the portion of the wall below the excavation.

In addition to earth lateral pressure, the walls should be designed to resist lateral loads from other applicable surcharges including railway and construction loading, traffic loads, and loads that may arise from interference with foundation of existing building.

The nominal passive resistance in front of permanent walls can be assumed as shown on Figure 10. Passive resistance should only be accounted for from soils 2.0 m below the final grade in front of the wall. Resistance factor of 0.50 should be used to determine the factored passive resistance. The associated displacement to mobilize the maximum passive soil resistance should be evaluated against tolerable wall movement.

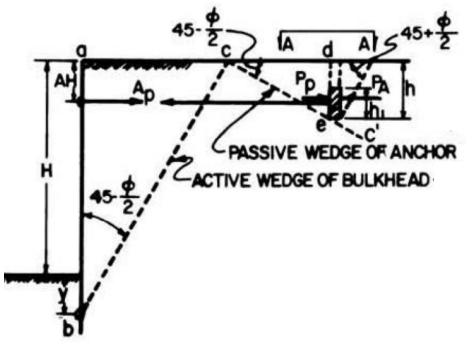

Further assessment will be required to assess the soil design parameters and impact of tie-back installation, if required, on design loads as part of detailed design phase.

Figure 10 – Nominal Passive Earth Resistance in front of Retaining Wall

7.3 Tieback Anchors

Tieback anchors embedded in the native or compacted fill soils behind the wall can provide outward movement control of the wall. Shallow tieback can be designed to mobilize resistance from passive resistance in front of deadman block/wall. The deadman should be located outside the active wedge in the area defined by a line starting at the ground surface perpendicular to the active wedge boundary under sufficient soil cover as illustrated on Figure 11.

7.4 External Stability

Walls final configuration should be designed to satisfy design objectives related to bearing capacity, sliding, overturning and overall stability. The external stability review can be completed as part of the detailed design stage.

8. Trenchless Pipe Installation

There are two methods of pipe jacking practiced locally. One utilizes the Akkerman system while the other is a variation of the Atkins coring system. Both methods follow a similar construction approach and result in similar ground response. A brief description for each method is provided herein:

8.1 Akkerman System

The Akkerman installation method requires a jacking shaft from which the pipe installation starts and a receiving shaft at the end of the pipe length to retrieve the Tunnel Boring Machine (TBM) which would be used to excavate underground along the pipe alignment. The TBM has a rotating cutterhead that rotates and excavates the soil which comes inside the cutting head. The spoil is transferred to the rear of the shield through conveyers which dump it into muck carts or conveys it out of the tunnel or the pipe being installed. Thrust power of hydraulic jacks is utilized to force the TBM and the following string of pipes forward. The hydraulic pressures overcome face resistance and friction forces on the exposed surfaces of the shield and installed pipes.

Drive lengths up to 120 m have been successfully achieved in Winnipeg area using this method. However, since the method requires personnel working inside the pipe, the method is limited to man entry size boring. Even though it is theoretically possible for a person to enter a 900 mm diameter bore, it is practically difficult for the person to work in it. Locally, 1050 mm diameter pipes are the minimum size installed using this method.

8.2 Atkins System

The Atkins jacking method is a variation of Atkins traditional coring method. This method requires a shaft on both ends of the pipe length to be installed. Three steel rods are driven through from shaft to shaft along the center of the proposed pipe alignment (one at the centre and one on each side). A push-pull earth coring knife is attached to the center rod and front cutting and a shielding rim is attached to the two outer rods. The first pipe section is placed so that it abuts to the front cutting and shielding rim securely. A pulling and holding rim connected to the outer rods and secured against the back of the pipe section is used to advance the pipe forward. The rods are pulled, or jacked, towards the opposite shaft to move the whole assembly through the soil. The spoil removed from the coring knife as necessary by pushing the knife forward. Once a pipe section is installed, additional section is added and the installation process continued. Drive length between shafts is limited to 30 to 35 m. Pipe diameter up to 1600 mm was installed locally using the Atkins system.

8.3 Face Stability

The Face Stability Index illustrated in Figure 12, frequently referred to as the overload factor (OF), is the ratio of the difference between the vertical pressure at tunnel axis and the pressure applied to the tunnel face, and the undrained shear strength. In cohesive soils, the tunnel face is considered stable when the index is less than six. While the limiting value of OF=6 represents a threshold of serious problems, a value of OF=5 represents a practical limit below which tunnelling may be carried out without unusual difficulties.

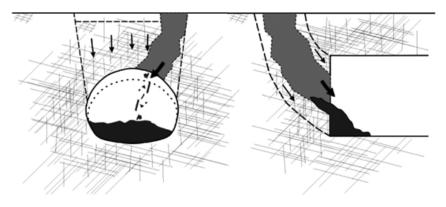
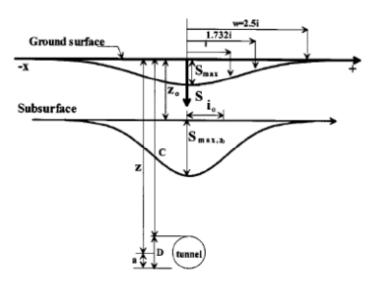


Figure 12 – Concept of Face Stability

A preliminary assessment for face stability was completed assuming a range of typical values for undrained shear strength and bulk unit weight and assuming pipe inverts 4 to 7 m below ground, the estimated OF is between 2.5 and 5 which suggests that tunnel face stability is satisfactory. However, difficulties in face stability should be expected if localized soft clay zones or wet silt layer /seams are encountered along the tunnel/pipe alignment.

Caution should be exercised to monitor the face and minimize the time period associated with the tunnelling operations. A contractual requirement for continuous jacking operations under the railway tracks or other sensitive structures and visual observation of the cuttings to confirm that no silt zone has been encountered will allow remedial action to be undertaken in the unlikely event of experiencing face instabilities.

8.4 Ground Subsidence


Like other tunnelling methods, pipe jacking will result in a change in the state of stress in the ground with the corresponding displacements. Ground subsidence can be caused by several factors such as ground loss at the tunnel face, behind the tail of the shield and through the tunnel support or linings. Based on having a stable tunnelling face, the only significant contribution to ground loss is the closure of the over-cut. The over-cut is the annular space between the tunnel boring walls and the installed pipe.

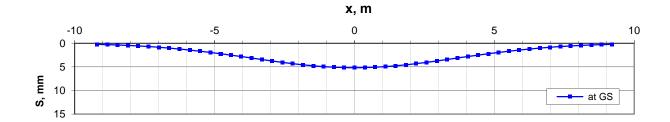
Some degree of ground surface subsidence can be expected from tunneling although in many instances its effects, from a practical perspective are negligible. Empirical methods of predicting settlement due to tunnelling induced ground movements have been used extensively and successfully over the years. Most methods derived for estimating surface or subsurface subsidence are empirical in nature and based on field observations in the UK although the same computational methods have been successfully applied locally. The most common method is estimating the value of (i), a parameter used to define the distance from the tunnel centre line to the point of inflexion of the settlement trough of a normal probability curve as shown in Figure 13. The distribution of the settlements or settlement trough approximates a normal probability distribution function described as:

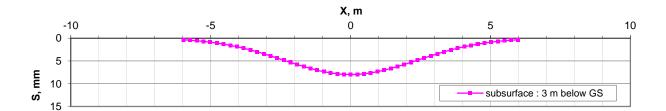
$$S_x = S_{max} \exp \left[-x^2/2i^2\right]$$
Equation 1

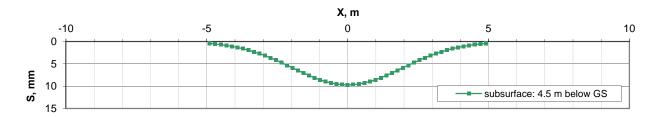
where

 S_x = surface settlement at a transverse distance (*x*) from the tunnel centre line S_{max} = maximum settlement at *x* = 0 *i* = location of maximum settlement gradient or point of inflexion.

Figure 13 –Surface and Subsurface Settlement Trough


Based on Equation 1, the estimated i parameter, width of settlement trough and maximum settlement at ground surface and selected subsurface depths are presented in Table 8. In estimating these values, the volume of settlement trough, per unit length, was considered equal to the ground loss from the closure of 13mm over-cut between the excavated tunnel bore and the outer pipe wall. The over-cut size used in the above estimation is consistent with the local construction practice. As shown in Table 8 subsurface settlement troughs are narrower with larger settlement as compared to surface settlement.


Depth (m)	i parameter (m)	Total Trough Width (approx. 5 i) (m)	Max. Settlement (mm)
Ground surface	3.68	19	5*
3.0 m below ground surface	2.34	12	8*
4.0 m below ground surface	1.96	10	10*
5.0 m below ground surface	1.53	8	12*


Table 8 – Estimated Surface and Subsurface Settlement Trough Parameters

* Estimates are for 1.2 m diameter pipe installed at 6.5 m below ground surface using trenchless techniques

To put these maximum anticipated values in perspective they are presented graphically using an exaggerated vertical scale on Figure 14. The maximum estimated subsidence at ground surface is in the order of 5 mm and it diminishes to zero across the width of the settlement trough which is estimated to be about 19 meters. The estimated extent and amount of the ground subsidence is not expected to be of concern and unlikely to impose adverse impact on existing infrastructures or utilities. However, each utility owner should be contacted to define and confirm acceptable surface/subsurface displacement and acceptable mitigation measures if required. Continuous monitoring during construction is recommended to monitor actual ground subsidence and protect against development of unanticipated conditions.

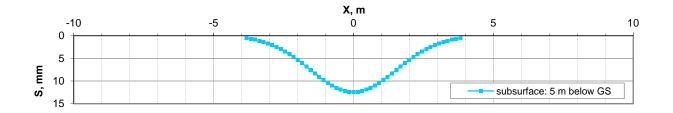


Figure 14 – Estimated Induced Surface and Subsurface Subsidence

9. Road Subgrade

The in situ and fill materials encountered at ground surface or underneath the thin layer of top soil along the proposed widening /improvement are expected to perform satisfactorily as roadway subgrade when compacted, confined and protected against erosion. The surficial clays underlying the topsoil layer is generally firm to stiff and should provide a suitable subgrade for roadway construction.

The Atterberg limit results for selective soil samples within 1 m depth below the proposed road work are presented graphically on Figure 15. Using the AASHTO M-145-91 classification, the soil may be classified as A-7-6 of high plastic clay and A-6 of intermediate plastic. Both A-6 and A-7-6 clay usually have high volume change between wet and dry states. When moisture content is properly controlled, they compact quite readily with a sheep foot roller. They have high dry strength but lose much of this strength upon absorbing water. These types of soil will compress when wet and shrink and swell with changes in moisture content. When placed in the shoulders adjacent to the pavement, they tend to shrink away from the pavement edge upon drying and thereby provide access for surface water to the underside of the pavement. Silt and/or silt predominate soil was identified at shallow depths in TH14-18, and TH14-21 to TH 14-27 along the proposed roadway works. Silt could be classified under AASHTO M-145-91 as A-4 or A-5 and is considered unsuitable material for road construction. It frequently has an affinity for water and can liquefy and lose stability unless properly drained. Silt does not drain readily and may absorb water by capillary action and it is frost susceptible. Also, silt predominate soils are often difficult to compact properly and will required high moisture control and confinement to attain acceptable compaction. All silt should be removed for a depth not less than half the frost penetration depth below the road surface. AASHTO classification for the tested soil samples are presented in Table 9.

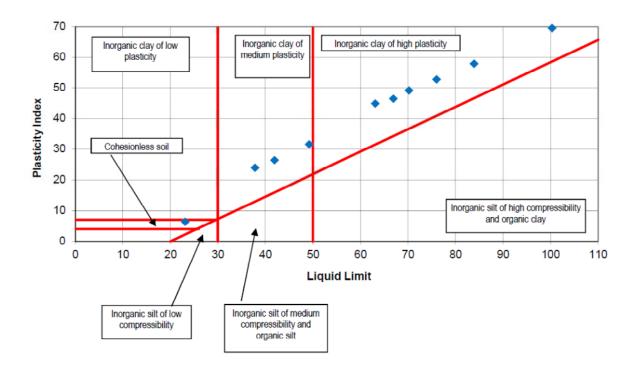


Figure 15 – Atterberg Limits Results

Test hole No.	Location	Depth (m)	Liquid Limit	Plasticity index	Group classification	Group Index
TH14-07	South east shoofly	0.75	49.2	31.6	A-7-6	29
TH14-16	Taylor Av./west	0.75	66.9	46.5	A-7-6	50
TH14-17	Taylor Av./west	1.0	70.2	49.2	A-7-6	54
TH14-18	Road detour	Approximately 1.0 below proposed detour	23.2	6.5	A-4	4
TH14-21	Hurst Way	0.75	41.9	26.4	A-7-6	25
TH14-25	Taylor Av./east	0.75	37.8	23.9	A-6	22
TH14-28	Underpass	7.1	83.9	57.9	A-7-6	68

Table 9 – Laboratory Test Results and AASHTO Classification – Road Subgrade

The subgrade surface should be scarified to a minimum depth of 150 mm and compacted to a minimum of 95 % of Standard Proctor maximum dry density (SPMDD). Silt rich soil, random fill, topsoil or organic should be treated as unsuitable subgrade and should be excavated and replaced with compacted suitable fill. In cases where the depth of excavation exceeds 750 mm below subgrade surface, the unsuitable material may be bridged with geotextile and granular fill. This approach is considered sufficient for bridging since removal of this material for the entire layer thickness will not be practical in some cases (i.e. the base of the silt layer is deep and excavation depths well in excess of 750 mm would be otherwise required). A woven geotextile should be placed between the native soil and the granular fill to provide separation and reinforcement. The geotextile should meet or exceed the following physical properties:

- Grab Tensile Strength of 1,400 Newtons (N);
- Puncture Strength of 530 N;
- Trapezoidal tear of 500 N; and
- Mullen Burst Value of 3,500 kPa.

The granular fill should consist of a 100 to 150 mm down crushed material and/or a 50 mm down crushed material. The 100 to 150 mm down material is suitable when fill depths greater than about 300 mm are required. A 150 mm thick layer (minimum) of the 50 mm down crushed fill should be provided between the 100 to 150 mm granular fill material and the granular base material for the pavement. The crushed granular fill should be compacted in uniform layers followed by proof rolling to attain compaction and verify that no soft or weak areas exist. If significant deformation (squeezing and bulking) of the subgrade occurs, compaction should be halted and an investigation undertaken to determine the cause of the deformation. For example, a wet silt layer at a shallow depth below the subgrade may require over-excavation or bridging. The subgrade should be proof rolled with a loaded tandem truck, or approved equivalent, having a gross vehicle weight of at least 20 tonnes to identify any soft areas before the granular base and pavement layers are placed. Each successive pass of the equipment used for proof rolling should be offset by not greater than one tire width to provide adequate coverage. The rolling pattern should be completed in a systematic fashion and the results recorded. Best results are generally obtained using ground speeds ranging from 4 to 8 km/h.

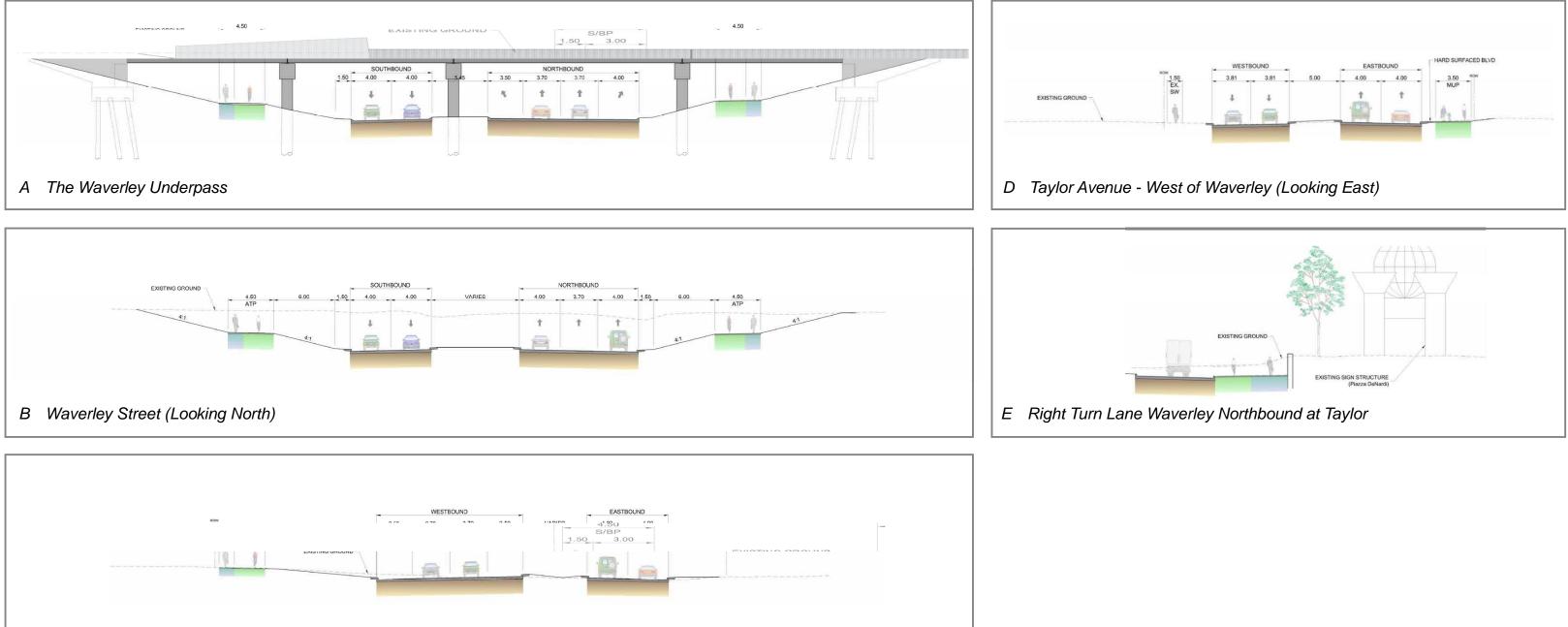
Areas identified as being weak or soft during proof rolling should be stabilized by additional re-working and compaction or removal and replacement with suitable material. Any softened or weak areas should be bladed aside and the underlying material scarified and re-compacted. The excavated material, if suitable, should then be bladed back and compacted to a minimum of 95 percent of SPMDD. Cuts across the roadway alignment should be sloped at a maximum (i.e. no steeper than) of 5H:1V to minimize the potential for differential movement beneath the pavement. Once filled to subgrade elevation, proof rolling of these areas should be completed.

10. Railway Detour

Subgrade characterization and preparation discussion provide in Section 9 is applicable to subgrade along the proposed railway detour. Railway grade could be constructed using clay or granular fill. It is understood that the proposed detour grade will be about 1 m above existing grade (top of ballast to toe of fill). For fill not exceeding 1 m in heights a 2H:1V side slopes can be used for fill placed in layers not exceeding 200 mm in loose thickness and compacted to 95 percent of SPMDD.

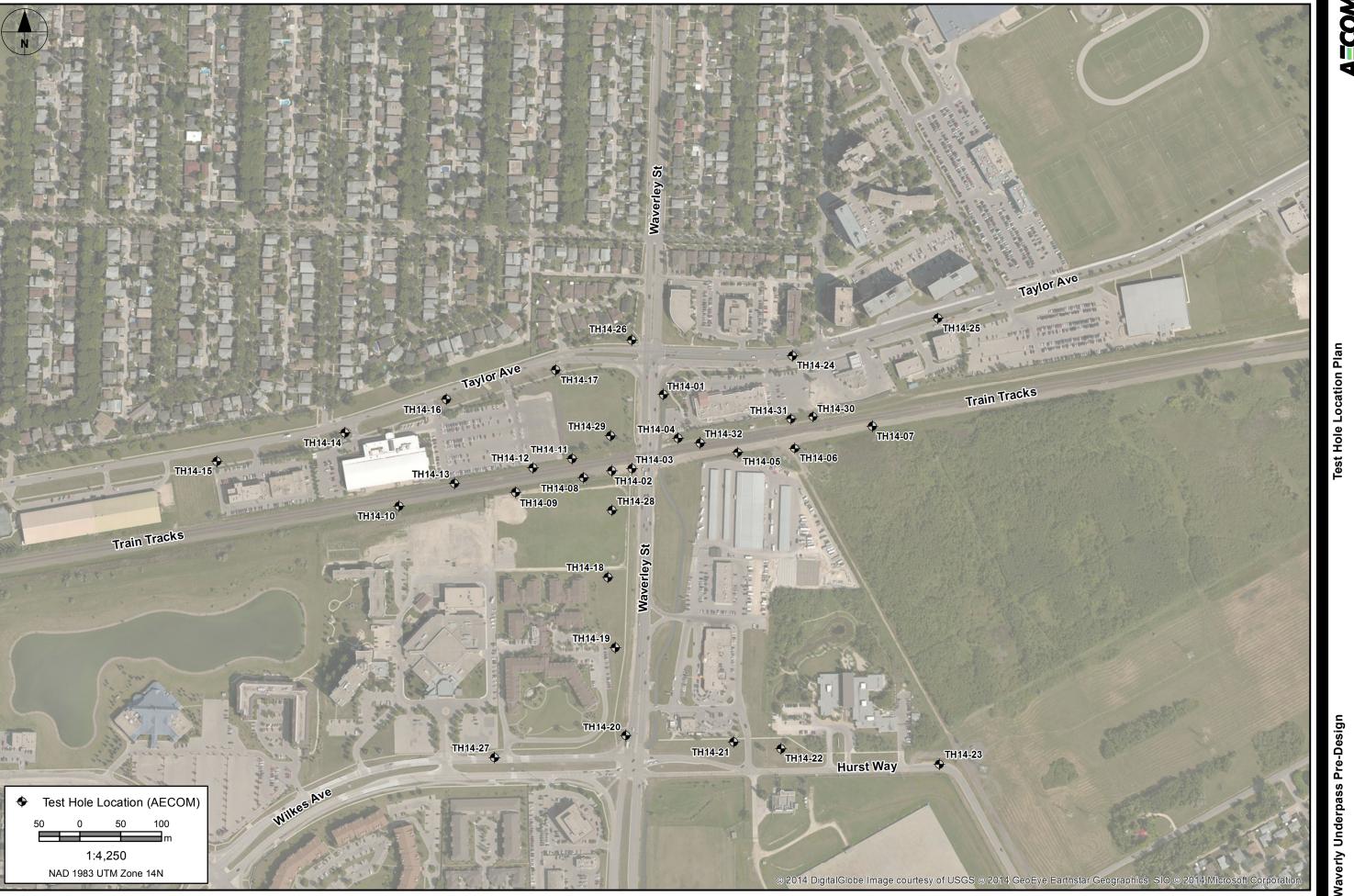
11. Key Recommendations and Future Works

- Geotechnical Investigation: Additional test hole drilling particularly at the exact locations of the structure support units should be completed during the detailed design phase.
- Geotechnical Investigation: Additional test hole drilling along the proposed pipe route to identify soil units through which the proposed pipe will be installed.
- Hydro-geological Exploration: Assessment of existing groundwater users and potential impact form construction activities should be completed as part of the detailed design phase. This assessment may include well installation and pump test.
- Groundwater Monitoring: Continue groundwater monitoring to verify and confirm related design assumptions.
- Overpass Structure Foundation: Steel H piles are recommended at the abutments and rock socketed caissons are recommended at the intermediate piers. Test caisson installation is recommended.
- Retaining Wall Foundation: It is recommended to support gravity retaining wall on deep foundation system.
- Lift Station Foundation: It is recommended to support the deep portion of the lift station on raft foundation and support the shallow portion on driven piles bearing into the till at the level of the raft or deeper.
- Temporary Excavations: Complete hydro-geological assessment as Aquifer depressurization and groundwater control will be required to facilitate the construction of the lift station.
- Slope Stability: Slope configuration of two slopes and intermediate bench will be required to attain the design objective factor of safety. The cut slopes will be 4H:1V for excavation shallower than 6 m and a combination of 4H:1V and 5H:1V for excavation between 6 and 7 m.
- Buoyancy and Uplift: The structural design for all buried structures under groundwater should consider the buoyant forces. A design groundwater elevation of 230 m is recommended.
- Trenchless Pipe Installation: Trenchless installation is feasible, settlement monitoring is recommended during construction at railway crossing and other sensitive installation.
- Geotechnical and Hydro-geological assessment will be required during the detailed design to confirm and supplement the finding of the preliminary design phase.

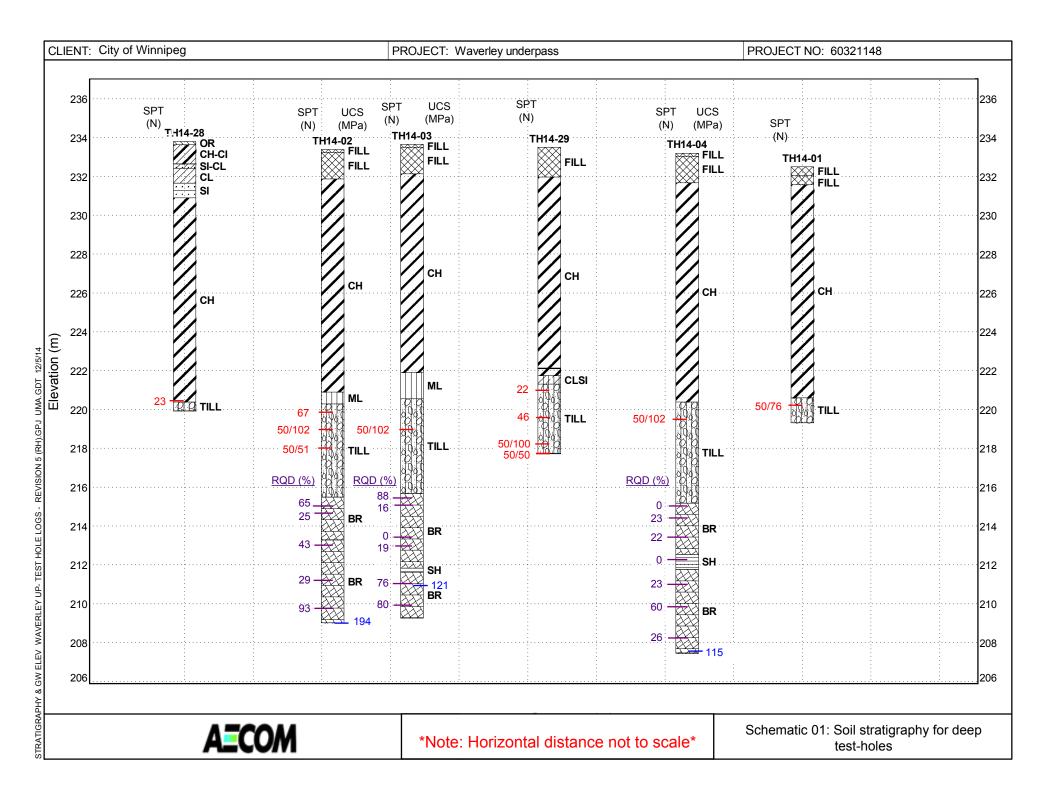

Appendix A

- General Arrangement Figures
- Test Hole Location Plan
- Schematics Soil Stratigraphy

Draft Concept - Overall Plan



Draft Concept - Cross Sections


C Hurst Avenue - East of Waverley (Looking East)

A=COM Drawing: 01

Dillon Consulting Limited Project No.: 60321148

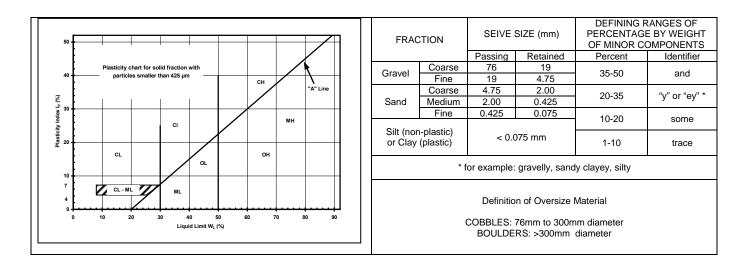
AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.


Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

					UMA	USCS		Laborator	y Classification Crite	eria
		Descripti	on		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	Well graded sandy gravel or no f	s, with little	2 2 2 2 2 - 2 - 2	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravel or no f	s, with little		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-
OILS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and
COARSE GRAINED SOILS		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
ARSE GR		CLEAN SANDS	Well grade gravelly sand or no f	ls, with little	0.0. 4941	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$
CO/	SANDS (More than 50% of	(Little or no fines)	Poorly grad gravelly sand or no f	ls, with little	000	SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})^{2}}{D_{10} x D_{60}}$
	coarse fraction of sand size)	DIRTY SANDS	Silty sa sand-silt r			SM	> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)	Clayey s sand-clay			SC	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML				
	negligible organic content)	W _L >50	Inorganic si plasti			МН				
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL				
FINE GRAINED SOILS	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clay clays of n plasti	nedium		СІ			Classification is Based upon Plasticity Chart	
FINE (content)	W _L >50	Inorganic cla plasticity, t		\mathbb{Z}	СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL				
	(Below 'A' line)	W _L >50	Organic cla plasti		11	ОН				
н	IIGHLY ORGA	INIC SOILS	Peat and ot organic			Pt		on Post fication Limit		r odour, and often s texture
		Asphalt			Till					
		Concrete			Bedrock fferentiated)				AE	COM
X	\bigotimes	Fill			Bedrock mestone)					

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 - 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N – BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

			erley Underpass		C	CLIE	NT: C	ity of	Winnipeg]			STHOLE NO: TH14-	
			<i>I</i> : 14U, 5523653 m N, 630	934 m E									OJECT NO.: 603211	
CONT	RAC	TOR:	Maple Leaf Drilling Ltd.						mm SSA				EVATION (m): 232.50	0
SAMP	LE T	YPE	GRAB	SHELBY TUBE	×		LIT SPC	DON	В			RECOVER	CORE	
BACK	FILL	TYPE	BENTONITE	GRAVEL	\prod	SLC	DUGH		G	ROUT	CU	TTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SI 0 : 16 1	Plastic MC	r ₩ Cone ◇ Pen Test) ♦ mm) 0 80 10 Wt ■) 9 20 2 Liquid	□ Lab Van 0 △ Pocket Pe	e + ≪ e □ en. △ e €	COMMENTS	i
0			GRAVEL (FILL) - some sand, s - light grey, moist	some limestones					20 40 6	0 80 10	0 50 100	150 200		+
			well graded,							<u>.</u>	· · · · · · · · · · · · · · · · · · ·			2
	\bigotimes		CLAY (FILL) - trace to some si organic, trace oxidation	lt, trace rootless, trace		G1			÷••••		· · · · · · · · · · · · · · · · · · ·			4
	X		\sim - black, soft to firm, moist		7									
1		1	CLAY - silty, trace sand			G2								
			 light brown, firm, moist high plasticity 			02								
		41										· · · · · · · · · · · · · · · · · · ·		
		41	- some to trace silt, silt inclusio	ns < 6 mm in dia mottled					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
2		1	grey and brown below 2 m			G3			•					
														
		41								· · · · · · · · · · · · · · · · · · ·				
3		11	- trace oxidation		h	-				· · · · · · · · · · · · · · · · · · ·				
		11				T4								
		1												
									·····		······			
4		41	- dark brown below 4 m						· · · · · · · · · · · · · · · · · · ·					
		41				G5				11	00.3			
		11				05					· · · · · · · · · · · · · · · · · · ·			
		1	- soft to firm below 4.5 m						· · · · · · · · · · · · · · · · · · ·					
5														
		41				G6								
		11							· · · · · · · · · · · · · · · · · · ·					
		11							·····					
6			- grey						· · · · · · · · · · · · · · · · · · ·					
	\square	t	- some silt below 6 m		Ш	1								
		┨┃	- soft, silt inclusion (12 mm in c	lia.) below 6.4 m		T7				 				
		1	- trace gravel below 6.7 m		Ш	-			· · · · · · · · · · · · · · · · · · ·					
7						G8			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	\square	∦ ∎				000								
		11				G9			······					
		1	- silt inclusion (20 mm in dia.),	trace gravel (angular 25										'
8		1	mm in dia)						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
-						G10								
		4	- very soft below 8.3 m							 				
		11							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				'
9		1							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
					Η	-								
						T11					Δ·X+			
10		(:E)	- moist to wet below 9.7 m			1			·····	· · · · · · [· · · · · · · · · · · · ·				
		<u></u>				-		LO	GGED BY:	Saba Ibra	ahim	COMPLE	TION DEPTH: 13.18 m	1
			AECOM						/IEWED B			COMPLE	TION DATE: 7/9/14	
								PR	<u> DJECT EN</u>	GINEER:	Faris Khalil		Page	; 1

			erley Underpass		C	LIEN	NT: C	ity of	Win	nipeg						STHOLE NO: TH14-(
			1: 14U, 5523653 m N, 630	934 m E												ROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.				IOD:							1		EVATION (m): 232.50)
SAMP			GRAB		_	-	IT SPC	DON		BU]NO RE			
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ	SLC	UGH			GR		1				SAND	Т
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 : 16 1	¥ ♦ Dyn PT (Sta (Blo 20 4	ws/300m 0 60 (al Unit W (kN/m ³) 3 19	< n Test) ♦ m) 80 100	0	+ Tor × C □ Lab △ Pock ● Field	HEAR ST rvane + rvane 2 vvane 2 vane 2 d Vane 3 d Vane 3 rea vane 3 vane 4 vane 4 v	2	COMMENTS	Ĩ
						0.10				0 60	-1 ₈₀ 100) <u>(</u>	50 ·	100 1	50 200	0	
10			- silty below 10.4 m			G12						· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	2
11						G13				•						· · · · · · · · · · · · · · · · · · ·	2
12			Glacial Till (SILT) - some clay, - light grey, very dense, moist t			G14								• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
	0000		- low plasticity	- 9		S15	50/ 76mm	•••••				•		· · · · · · · · · · · · · · · · · · ·		SPT Blows: (34, 50/76) 100% Recovery	2
13	0.0 101		END OF TEST HOLE AT 13.2 NOTES:	m in Glacial Till (SILT)	_				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · ·	
14			1. Power Auger Refusal at 13.2 2. Seepage was observed at 4 3. No sloughing was observed 4. Installed 25 mm diameter stat (SP14-01) to 11 m below groun casagrande tip and flush moun 5. Test hole backfilled with ben sand up to 9.5 m below ground	m upon drilling completion. upon drilling completion. Indpipe piezometer ad surface with 0.3 m t at ground surafce. tonite up to 11 m, silica surface, plugged with													2
15			bentonite to 0.3 m below groun auger cutting to ground surface 6. Groundwater monitoring: - Aug. 12, 2014 at Elv. 225.1 m - Sep. 03, 2014 at Elv. 224.9 m - Sep. 19, 2014 at Elv. 225.6 m - Oct. 17, 2014 at Elv. 226.6 m - Nov. 06, 2014 at Elv. 226.6 m - Nov. 20, 2014 at Elv. 226.4 m													· · · · ·	2
17			- Dec. 18, 2014 at Elv. 226.4 m													· · ·	2
18																· · ·	2
																· · ·	
19																· · ·	
20														. <u>.</u>			
											aba Ibra					ETION DEPTH: 13.18 m	
			AECOM								Zeyad S NEER:		7	C	OMPL	ETION DATE: 7/9/14 Page	

			Underpass		C	LIEN	NT: C	ity of	Winnipe	g					HOLE NO: TH14-	
			U, 5523559 m N, 630	870 m E											JECT NO.: 603211	
			le Leaf Drilling Ltd.						nm SSA		oring		7		/ATION (m): 233.4	0
	PLE TYPE		GRAB			_	IT SPO	ON		BULK		-	NO REC			
BACK	FILL TYP	°E	BENTONITE	GRAVEL	[[]]	∐slc	UGH	1		GROUT		Z	CUTTIN	GS	SAND	
DEPTH (m)	SOIL SYMBOL SLOTTED		SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17 P	Total Uni (kN/m	er ¥ Cone ◇ Pen Test) 0mm) 60 80 t Wt ■ ³) 19 20 Liquid	◆ 100 21	+ Tor X Q □ Lab △ Pock � Field (k	HEAR STRE vane + U/2 × Vane □ et Pen. △ I Vane © Pa) 00 150	:NGTH) 200	COMMENTS	
0		- CL/ - bla - inte	AVEL (FILL) AY (FILL)- trace silt ck, soft to firm, moist ermediate plasticity ces of gravel, boulders, cc	ncrete from 0.6 to 1.5 m												2
2		- bro	Y - trace silt, trace oxidatic wn, firm to stiff, moist h plasticity	n		G16										
3			n below 2.4 m inclusions (<6 mm in dia)	below 3.1 m		G17			Ţ							:
5						T18			I		· · · · · · · · · · · · · · · · · · ·	∆*		· · · · · · · · · · · · · · · · · · ·		
6		are	u mottlad braum, acti to fir	m ailtinglusion (z10 mm)		G19			•		· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·		
7		below	y mottled brown, soft to fir w 6.0 m y, soft below 7 m	יוז, אונ ווומשאטוז (< וע mm)		G20					· · · · · · · · · · · · · · · · · · ·					
8	Z					T21			1							
9		- trac	ce gravel below 9 m			G22					· · · · · · · · · · · · · · · · · · ·					
10			A=0014						GED BY:						10N DEPTH: 24.38 m	1
			AECOM						IEWED B				CC	MPLET	ION DATE: 7/11/14 Page	

			rley Underpass		C	LIEN	IT: Ci	ity of	Winni	beg						TESTHOLE NO: TH14-(
			l: 14U, 5523559 m N, 630	b/∪m ⊨												PROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.		<u> </u>		IOD:	<u>125 i</u>	mm SS	<u>A/ H</u>	<u>IQ Co</u>	ring	Г	200		ELEVATION (m): 233.40)
			GRAB				IT SPO	ON		BU			-	_	RECO\		
BACK	FILL T	YPE	BENTONITE	GRAVEL		SLO	UGH			GR			12		TINGS		
DEPTH (m)	SOIL SYMBOL	PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	 ◇ Dynan ◇ Dynan ◇ T (Stand (Blows, 20 40 ▲ Total (kt) 7 18 	cker hic Col ard Pe /300m 60 Unit W V/m ³) 19	K ne Test) m) 80_1 /t∎ 20 Liquid	•	× □La ∆Po €Fi	SHEAR orvane QU/2 × ab Vane cket Per eld Vane (kPa) 100	+ : 	COMMENTS	
10			- silt inclusion (<30 mm in dia.)	below 10.3 m		G23						· · · · · · · · · · · · · · · · · · ·					22
-11			- some silt from 11.2 to 11.5 m - silty, light brown, soft , wet, lo	w plasticity below 11.5 m		T24 G25 G26			÷							· · · · · · · · · · · · · · · · · · ·	22
-13			SILT -some gravel - light grey, very dense, moist t - low plasticity Glacial Till (SILT)- some sand,			G27										· · · · · · · · · · · · · ·	2
-14			 - light grey, compact, moist to v - low plasticity 	-	X	S28	67				•	· · · · · · · · · · · · · · · · · · ·				SPT Blows: (32, 43, 24) 61 % Recovery	2
			 ligth brown, some gravel belo trace gypsum 	w 14.4 m	X	S29	50/ 102mm				····>	>				SPT Blows: (35, 50/102) 89 % Recovery	2
-15	00000000000000000000000000000000000000		- some gravel, some cobbles b	elow 15.5 m	\times	S30	50/ 51mm				>	>					2
-16						C1											2
-17	000000000000000000000000000000000000000		- sandy below 16.7 m			C2						· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••	C2 RQD: 0% C2 Recovery: 100%	2
-18			LIMESTONE - fine grained, no	ofoliation		C3A								· · · · · · · · · · · · · · · · · · ·		C3A RQD: 0% C3A Recovery: 67%	
-19			 creamish white R3 - medium strong close to moderately closed sp planar fractures, no evidence of water flow (cla - fossiliferous 	-		СЗВ										C3B RQD: 65% C3B Recovery: 100%	2
20			- vuggy			C4										C4 RQD: 25% C4 Recovery: 90%	2
				1				LOC	GGED E	3Y: S	Saba Ib	rahim			COM	PLETION DEPTH: 24.38 m	
			AECOM					RE	/IEWED	BY:	Zeyad	d Shuk	uri –		COM	PLETION DATE: 7/11/14	_

			erley Underpass	070 E	(CLIEI	NT: C	ity of \	Ninni	peg						STHOLE NO: TH14-	
			1: 14U, 5523559 m N, 630	0/UME												OJECT NO.: 603211	
			Maple Leaf Drilling Ltd.	<u>т</u>	<u> </u>	METH	HOD:	125 m			Q Corii	ng				EVATION (m): 233.40	0
SAMP			GRAB			_	.IT SPC	ON	_	BULK					COVE		
BACK	FILL	TYPE	BENTONITE	GRAVEL		∐SLC	DUGH			GRO	UT	1		UTTI	NGS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	 ♦ SP1 0 20 16 17 	* Be > Dynan (Stand (Blows (Blows 40 Total (ki 18 astic	Unit Wt I V/m ³) 19 MC Li	♦ Test) ♦ 80 100		NED SHE + Torva × QU/ □ Lab Va △ Pocket ● Field V (kPa 0 100	ne + 2 × ane □ Pen. △ ane • a)		COMMENTS	
20			- altered yellow and red below	20 m													
21			extremely close to moderatel planar fractures - evidence of water flow (class	y closed spaced, smooth		C5										C5 RQD: 43% C5 Recovery: 98%	2
			 laminated below 21.2 m close spaced to moderately or planner fractures, no evidence of water flow (classical content) 			-						· · · · · · · · ·					2
22						C6						· · · · · · · · · · · · · · · · · · ·				C6 RQD: 29% C6 Recovery: 75 %	2
23			- R5- very strong			C7						· · · · · · · · · · · · · · · · · · ·				C7 RQD: 93% C7 Recovery: 100 %,	
24			END OF TEST HOLE AT 24.4 Notes: 1. Power Auger Refusal at 15.			-						· · · · · · · · · · · · · · · · · · ·				qu = 194.4 MPa	:
25			 HQ coring below 15.4 m. Seepage observed at 3.0 m Installed 25 mm diameter st. (SP14-02) to 23.5 m below grc casagrande tip and flush mour 5.Test hole backfilled with silic ground surface. bentonite up t 	upon drilling completion. andpipe piezometer bund surface with 0.3 m tt at ground surface. a sand up to 22 m below													
26			auger cutting to ground surface 6. Prominent sub-vertical fractuaxis), closed to gapped, smoot water flow (class 3) between 1 7. Groundwater monitoring:	e. ure (180 degrees to core th undulating, evidence of 7.9 to 18.4 m.													2
27			- Aug. 12, 2014 at Elv. 225.29 - Sep. 03, 2014 at Elv. 225.0 n - Sep. 19, 2014 at Elv. 225.5 n - Oct. 17, 2014 at Elv. 225.8 m - Nov. 06, 2014 at Elv. 225.7 n - Nov. 20, 2014 at Elv. 225.6 n	1. 1. 1													2
28			- Dec. 06, 2014 at Elv. 225.4 m - Dec. 18, 2014 at Elv. 225.4 m							· · · · · · · · · · · · · · · · · · ·	••••						
29												· · · · · · · · · · · · · · · · · · ·					
30										· · · · · · · · · · · · · · · · · · ·							
	1							LOG	GED E	3Y: Sa	ba Ibra	him		C	OMPL	ETION DEPTH: 24.38 m	<u>ו</u>
			AECOM								Zeyad S					ETION DATE: 7/11/14	

		Waverley Underpass		С	LIEN	IT: Ci	ity o	f Winnipeg				STHOLE NO: TH14-	
		: UTM: 14U, 5523562 m N, 6308	895 m E									DJECT NO.: 603211	
		TOR: Maple Leaf Drilling Ltd.						mm SSA/ HQ C	Corin	Ig		VATION (m): 233.66	6
SAMP	LE T	GRAB GRAB	SHELBY TUBE		SPL	IT SPO	ON	BULK			RECOVER	CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	IPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦S 0	Total Unit Wt (kN/m ³) (kN/m ³) 17 18 19 20 Plastic MC Liquid	it) ♦ 100 21	UNDRAINED SHEAR S + Torvane - × QU/2 × □ Lab Vane △ Pocket Pen � Field Vane (kPa) 50 100	+ 	COMMENTS	
0		-GRAVEL (FILL)		7				20 40 00 80					
1		 CLAY (FILL)-trace silt black, soft to firm, moist intermediate plasticity pieces of gravel, boulders, concrete to 	from 0.6 to 1.5 m				· · · · · · · · · · · · · · · · · · ·		· · · · · · ·				2
2		CLAY - some silt, trace oxidation - dark brown, firm to stiff, moist - intermediate to high plasticity - silt inclusion (<12 mm in dia.) - brown mottled grey below 2.1 m			G31		· · · · · · · · · · · · · · · · · · ·						2
3					T32		· · · · · · · · · · · · · · · · · · ·						
ļ		 brown, high plasticity, firm below 3.7 dark brown below 4.6 m 	m				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
5		- firm , trace gypsum below 5.2 m			G33		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·				:
,		- soft to firm, dark brown, trace gravel	below 7 m		T34				· · · · · · ·				
3		- grey, soft, silt inclusion (6-30 mm in c	lia.) below 7.6 m		G36			•					:
)													
10					T37		10	GGED BY: Saba	lbrah	nim	COMPI F	TION DEPTH: 24.38 m	
		AECOM						VIEWED BY: Zey				TION DATE: 7/14/14	

		Waverley Underpass		С	LIEN	IT: C	ity of	Winnipeg				TESTHOLE NO: TH14-0	
		: UTM: 14U, 5523562 m N,										PROJECT NO.: 603211	
		TOR: Maple Leaf Drilling Ltd						mm SSA/ H		ng		ELEVATION (m): 233.66	ô
SAMP	νLΕ Τ`	YPE GRAB	SHELBY TUBE		JSPL	IT SPO	1	BU			NO RECO		
DEPTH (m)	SOIL SYMBOL	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1		é ne ◇ n Test) ♦ m) 80 100	→ Field \	ane + /2 × /ane □ : Pen. △ /ane � a)	COMMENTS	
-11		- silt pocket , trace gravel below 1	0 m		G38							····	2
10		- very soft, moist to wet, light grey SILT - clayey, trace gravel - light brown, soft, moist to wet	mottled gery below 11.3 m		G39		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	2
-12		- intermediate to low plasticity			T40		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	2
-13	000000000000000000000000000000000000000	Glacial Till (SILT)- some sand, so - light grey, very dense, moist - low plasticity	me gravel, some clay		G41 S42	50/ 102mm						 SPT Blows: (48, 50/102) 100 % Recovery	2
15	000000000000000000000000000000000000000				-							· · · · · · · · · · · · · · · · · · ·	
16	00000000000				C1		· · · · · · · · · · · · · · · · · · ·					C1 RQD: 0% C1 Recovery: 63 %	2
17	00000000000000000000000000000000000000	 ligth brown, gravelly below 16.3 boulders form 16.9 to 17.5 m 	m		-							· · · · · · · · · ·	2
18	X000000 X000000	IMESTONE for second			C2A		 					C2A RQD: 0% C2A Recovery: 74 %	2
		LIMESTONE - fine grained - cremish white and grey - no foliation, vuggy - R3- medium strong - very closed to moderately space closed to gapped	ed, rough undulating fractures,		C2B							C2B RQD: 88% C2B Recovery: 95 %	2
19		- no evidence of water flow (class	s 2)		C3							C3 RQD: 16 % C3 Recovery: 88%	2
20											·····		
		A = 200						GGED BY: S				PLETION DEPTH: 24.38 m	
		AECO	M					/IEWED BY:	Zeyad S NEER:	Shukri	COM	PLETION DATE: 7/14/14 Page	

		Waverley Underpass	С	LIEN	IT: C	ity of Winnipeg TESTHOLE NO: TH14-03	
		: UTM: 14U, 5523562 m N, 630895 m E			0.5	PROJECT NO.: 60321148	8
	PLE T	TOR: Maple Leaf Drilling Ltd. YPE GRAB SHELBY TUBE			<u>OD:</u> T SPO	125 mm SSA/ HQ Coring ELEVATION (m): 233.66 NON ■BULK	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH * Becker ** + Torvane + > Dynamic Cone ◊ × QU/2 × • SPT (Standard Pen Test) □ Lab Vane □ 0 20 40 60 80 100 △ Pocket Pen. △ ■ Total Unit Wt ● Field Vane ● 16 17 18 19 20 21 (kPa)	
20				C4		C4 RQD: 0%	
-21		- recovered as coarse, sub angular to sub rounded light grey gravel between 20.3 to 21.9 m		C5		C4 Recovery: 100%	2 [.] 2 [.]
-22		SHALE - very fine grained - blue, green - no foliation - R1- very weak		C6		C6 RQD: 76%	Z
23		- extremely close spaced, rough undulating fractures LIMESTONE - white - fine grained - no foliation - R3- medium strong				C6 Recovery: 100 %	2
24		 - R3- medium strong - close to moderately spaced, smooth fractures, closed, no evidence of water flow (class 2) - laminated below 22 m - R5- very strong 		C7		C7 RQD: 80% C7 Recovery: 100 % qu =120.9 MPa	2
25		END OF TEST HOLE AT 24.4 m IN BEDROCK Notes: 1. Power Auger Refusal at 14.3 m in Glacial TILL. 2. HQ coring below 14.3 m. 3. No sloughing was observed upon drilling completion.					2
26		 No seepage was observed upon drilling completion. Test hole backfilled with bentonite up to 3 m below ground level and with auger cutting to the ground surafce. 					2
27							2
28							2
29							2
30							2
						LOGGED BY: Saba Ibrahim COMPLETION DEPTH: 24.38 m	
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 7/14/14 PROJECT ENGINEER: Faris Khalil Page 3	2 ~

			erley Underpass		C	LIEI	NT: C	ity of	Winr	nipeg					TEST	HOLE NO: TH14-	04
			M: 14U, 5523599 m N, 6309	952 m E												JECT NO.: 603211	
			Maple Leaf Drilling Ltd.								HQ Cori	ng				ATION (m): 233.2	0
SAMF	PLE T	YPE	GRAB	SHELBY TUBE	-	_	IT SPC	ON		BU			<u> </u>		OVERY		
BACK	FILL	TYPE	BENTONITE	GRAVEL		SLC	DUGH			GR	OUT			UTTING	GS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SI 0 : 16 1	¥ I	vs/300m 0 60 al Unit V kN/m ³)	K ne ◇ en Test) ♦ nm) 80 100		NED SHE/ + Torva × QU/ □ Lab Va △ Pocket ♥ Field V (kPa	ine + 2 × ane ⊡ Pen. ∆ ane ⊕	NGTH	COMMENTS	i
										0 ⁰ 60		5	0 100	150	200		
0 1			-GRAVEL (FILL) - CLAY (FILL)-trace silt - black, soft to firm, moist - intermediate plasticity - pieces of gravel, boulders, con	ncrete from 0.6 to 1.5 m						· · · · · · · · · · · · · · · · · · ·							2
2			CLAY - trace oxidation - brown, firm, moist - high plasticity					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
3			 soft to firm between 2.4 to 3 m brown mottled light brown, silt below 3 m 			G43				••••••					· · · · · · · · · · · · · · · · · · ·		
1			- dark brown, silt inclusion (<10	mm in dia.) below 4.5 m		G44									· · · · · · · · · · · · · · · · · · ·		
5																	
5			- grey mottled brown below 6 m			G46		· · · · · · · · · · · · · · · · · · ·		•					· · · · · · · · · · · · · · · · · · ·		
,			- soft below 7.3 m			G47		· · · · · · · · · · · · · · · · · · ·		•							
}		Ţ	- silt pocket at 8.3 m			T48									· · · · · · · · · · · · · · · · · · ·		
)			- trace gravel below 8.8 m - some silt to silty, light grey to g	grey below 9.1 m		G49									· · · · · · · · · · · · · · · · · · ·		
10								1		BV 0	Saba Ibra	him	·····			ION DEPTH: 25.73 m	
			AECOM								Zeyad					ION DEPTH: 25.73 m ION DATE: 7/15/14	I
											INEER:		nalil	1.		Page	1

LOCATION: UTM 14U, 5523599 m. N. 630952 m.E. CONTRACTOR: Maple Lard Dilling U. SAMPLE TYPE GROUP LATPYE GROUP			verley Unde			C	LIEN	IT: C	ity of	Winnipe	g						HOLE NO: TH14-	
SAME TYPE GRAB Delay TUBE SPLT PROM Data DOE BACKFUL TYPE BENTONTE CRAVEL SLOUCH CUTINGS SAME BACKFUL TYPE SOIL DESCRIPTION High group of the state of the st					952 M E													
BACKFLL TYPE GRAVEL GRAVEL DESCRIPTION GRAVEL CLASS SALE COMMENTS				-		<u> </u>		IOD:	<u>125 r</u>	nm SSA	<u>V HQ</u>	Corin	g					0
Set of							-		ON	-		_		<u> </u>				
90 00 <td< td=""><td>ACKFI</td><td></td><td>E 📕</td><td>BENTONITE</td><td>GRAVEL</td><td>Щ</td><td> SLO</td><td>UGH</td><td>1</td><td></td><td></td><td></td><td></td><td>لفسفا</td><td></td><td></td><td>SAND</td><td></td></td<>	ACKFI		E 📕	BENTONITE	GRAVEL	Щ	SLO	UGH	1					لفسفا			SAND	
10 -grey below 10.6 m -11 -sily, sit indusion (<40 mm in dia.) below 11.3 m	DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER		SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17 F	 ★ Beck ◆ Dynamic T (Standard (Blows/30) 0 40 Total Ur (kN/n) 7 18 Mastic MC 	er ₩ Cone ≎ d Pen Te 00mm) 60 8 nit Wt ∎ n ³) 19 20	est) ♦ 0 100 0 21		⊢ Torvan X QU/2] Lab Var Pocket P Field Var	e + × ne □ en. △	IGTH	COMMENTS	
11 - sily, silt inclusion (<40 mm in dia.) below 11.3 m	0						G50		2	0 40 •	60 8	0 100	50	100	150	200		+
11 - sily, silt inclusion (<40 mm in dia.) below 11.3 m	° /									Ĩ								2
11 - sity, sit inclusion (<40 mm in dia.) below 11.3 m																		
 - sity, sit inclusion (40 mm in dia.) below 11.3 m - light grey to grey, some to trace gravel, low to intermediate passicity below 12.1 m - light grey, very dense, moist - low plasticity - loose, wel from 13.1 to 13.6 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - radiu and the source comparison of the source c			- grey belo	ow 10.6 m		Ш	1				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
12 lipht gray to gray, some to trace gravel, low to intermediate plasticity below 12.1 m 13 Glacial TII (SLT)- some to trace gravel, trace sand, trace day 13 -lipht gray, vary dense, moist low plasticity -low plasticity 14 - some sand, some boulders ,some cobbles below 14 m 15 - some sand, some boulders ,some cobbles below 14 m 16 C1 17 C2 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m - 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some gravel, wellow staining - not foldion - some sand, some dower, row wellow staining - not foldion - some sand, some dower, row wellow staining - not foldion - some sand, some wellow (class 3),	1						T51											
12 lipht gray to gray, some to trace gravel, low to intermediate plasticity below 12.1 m 13 Glacial TII (SLT)- some to trace gravel, trace sand, trace day 13 -lipht gray, vary dense, moist low plasticity -low plasticity 14 - some sand, some boulders ,some cobbles below 14 m 15 - some sand, some boulders ,some cobbles below 14 m 16 C1 17 C2 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some cobbles below 14 m - 18 - lipht gray, wellow staining - not foldion - some sand, some boulders , some gravel, wellow staining - not foldion - some sand, some dower, row wellow staining - not foldion - some sand, some dower, row wellow staining - not foldion - some sand, some wellow (class 3),			., ., .			Ш												2
 - light grey to grey, some to trace gravel, low to informediate plasticity below 12.1 m Clacial Thi (SiLT)- some to trace gravel, trace sand, trace clay - log space, wery danse, moist - log space, wery danse, moist - low space to mode the space sector of the space sector sector sector sector sector s			- silty, silt i	Inclusion (<40 mm in	dia.) below 11.3 m										••••			
 - light grey to grey, some to trace gravel, low to informediate plasticity below 12.1 m Clacial TII (SILT)- some to frace gravel, trace sand, trace day - low gravely, evy dense, moist - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - cobsteme same sand some cobbles below 14 m -																		
 - light grey to grey, some to trace gravel, low to informediate plasticity below 12.1 m Clacial TII (SILT)- some to frace gravel, trace sand, trace day - low gravely, evy dense, moist - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - cobsteme same sand some cobbles below 14 m -	2																	
13 Intermediate plasticity below 12.1 m 13 Glacial Till (SILT)- some to trace gravel, trace sand, trace clay 14 - light grav, vay dense, moist 14 - some sand, some boulders, some cobbles below 14 m 15 - some sand, some boulders, some cobbles below 14 m 16 C1 17 C2 18 - LIMESTONE - fine grained 19 - light grav, yelow staining 19 - light grav, yelow staining 19 - order to mate flow (class 3), red staining, contract of mate flow			light grou	to grove some to tra	a gravel low to													
 13 Clacal III (SL1) - some to trace gravel, trace sand, trace day - low plasticity - low plasticity - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - cobe 1 moderably closed, rough undulating fractures, closed to qapped, clean to filled with oparse cremented gravel, evidened to paped, clean to filled with oparse cremented gravel, evidened to filled with oparse cremented gravel, evidence of water filled with opa			intermedia	ate plasticity below 12	2.1 m									<u>.</u> <u>.</u>				
 13 Clacal III (SL1) - some to trace gravel, trace sand, trace day - low plasticity - low plasticity - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - cobe 1 moderably closed, rough undulating fractures, closed to qapped, clean to filled with oparse cremented gravel, evidened to paped, clean to filled with oparse cremented gravel, evidened to filled with oparse cremented gravel, evidence of water filled with opa													•••••	····	····			
 Ight grey, very dense, moist Joy plasticity Joose, well from 13.1 to 13.6 m some sand, some boulders, some cobbles below 14 m some sand, some boulders, some cobbles below 14 m some sand, some boulders, some cobbles below 14 m c1 c1 c2 c2 c2 c2 c2 c2 c2 c2 c3A RCD: 0% C3A Recovery: 95 % c3B C3B c3B C3B c4 c4 c5 c5 c5 c5 RCD: 21.6% 	2			I (SILT)- some to trac	e gravel, trace sand, trace		G52				••••••••	· · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••••				
 - low plasticityi - loose, wet from 13.1 to 13.6 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m - c1 C1 C2 C2 C2 C2 C2 C2 C3A ROD: 0% C3A RECovery: 95 % C3A Recovery: 95 % C3A Recovery: 57% C3A Recovery: 57% C3A Recovery: 75% - no foliation - Ramedium strong - closed to moderable yoldsed, rough undulating fractures, closed to papped, clean to filed with coarse camented gravel, evidence of water flow flow flow coarse camented gravel, evidence of water flow flow flow flow flow flow flow flow	J 0.			verv dense moist									•••••		•••••			
 - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - some sand, some boulders , some cobbles below 14 m - cobset bounds and a cobble bound and	0		- low plast	icity														
 some sand, some boulders ,some cobbles below 14 m some sand, some boulders ,some cobbles below 14 m some sand, some boulders ,some cobbles below 14 m cl <lic> cl cl cl c</lic>			- loose, we	et from 13.1 to 13.6 n	1			50/										
 - some sand, some boulders, some cobbles below 14 m - some sand, some boulders, some cobbles below 14 m C1 C1 C1 C2 C3 C4 C5 	jo C						S53	50/ 152mm				>>		· · · · · · · · · · · · · · · · · · ·				
15 C1 C1 C1 C1 Reduring the convertion of the convert of the convertion of the convertion of the convertion of the conv	4	90	- some sa	nd, some boulders ,s	ome cobbles below 14 m									•••••	••••	10	0 % Recovery	
15 C1 Recovery: 78 % 16 C2 17 C2 RCD: 0% 17 C3A 18 C3A 18 C3A 18 C3A 19 C3B recovery: 57% 19 C3B recovery: 75% 20 C5 20 C5 ROD: 21.6%				-,,-														
15 Image: Constraint of the second secon	.0 .0						C1				••••••					C1	RQD: 0%	
16 C2 C2 RQD: 0% C2 Recovery: 95 % 17 C3A C3A RQD: 0% C2 Recovery: 95 % 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A 18 C3B RCD: 0 % C3B Recovery: 57% 19 c3B - closed to moderately closed, rough undulating fractures, closed to moderately closed,	0.] 															C1	Recovery: 78 %	
17 C2 Recovery: 95 % 17 C3A 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A 18 C3B 19 C3B recovery: 75% 20 C4 RCD: 20% 20 C5	5																	
17 C2 Recovery: 95 % 17 C3A 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A 18 C3B 19 C3B recovery: 75% 20 C4 RCD: 20% 20 C5	0. 0.						-											
 17 18 18 19 20 20 20 21 22 22 23 24 25 25 26 27 28 28 29 20 20 20 21 21 22 21 22 21 22 21 22 21 22 21 21 21 22 21 21 22 21 21 22 21 22 22 23 24 25 25 26 27 27 28 29 20 21 21 22 21 22 23 24 25 25 25 25 25 26 27 27 28 29 20 21 20 21 21 21 22 21 22 23 24 25 25 25 26 27 27 28 29 20 21 21 22 21 22 22 23 24 25 26 27 27 28 29 29 20 21 21 21 22 22 22 23 24 25 <	0.0																	
17 C2 Recovery: 95 % 17 C3A 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A 18 C3B 19 C3B recovery: 75% 20 C4 RCD: 20% 20 C5																		
17 C3A 18 LIMESTONE - fine grained - ight grey, yellow staining - no foliation - R3- medium strong - closed to moderately closed, rough undulating fractures, closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C3A 20 C5 C5	6						C2											
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A C3A C3A RQD: 0% C3A Recovery: 57% 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C3B C3B 19 closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 20 C5 C5 C5 RQD: 21.6%																C2	Recovery: 95 %	
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A C3A C3A RQD: 0% C3A Recovery: 57% 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C3B C3B RQD: 0 % C3B Recovery: 75% 19 - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 20 C5 C5 C5 RQD: 21.6%	of(
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A C3A C3A RQD: 0% C3A Recovery: 57% 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C3B C3B RQD: 0 % C3B Recovery: 75% 19 - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 20 C5 C5 C5 RQD: 21.6%	o									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3A C3A C3A RQD: 0% C3A Recovery: 57% 18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C3B C3B RQD: 0 % C3B Recovery: 75% 19 - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 20 C5 C5 C5 RQD: 21.6%	7	9.50																
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C4 C3B C4 C4 C4 C4 C4 Recovery: 86% C4 Recovery: 86% C4 Recovery: 86% C4 C5 C5 C5 C5 C5	j j	<u>ģ</u>																
18 LIMESTONE - fine grained - light grey, yellow staining - no foliation C3B C4 C4 C4 C4 C4 C4 C4 C4 C4 Recovery: 86% C4 Recovery: 86% C4 Recovery: 86% C4 C5	. Ų (a) (Ø.					C3A					 						
LIMES IONE - fine grained C3B C3B C3B RQD: 0 % - light grey, yellow staining - no foliation - R3- medium strong - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 Recovery: 86% 20 C5 C5 C5 C5 C5 C5	.C													· · · · · · · ·			11000vory. 01 /0	
LIMES IONE - tine grained C3B C3B C3B RQD: 0 % - light grey, yellow staining - no foliation C3B Recovery: 75% - no foliation - R3- medium strong - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 20 C5 C5 C5 C5	0. 24 8	Q.D				_	-				••••••••	 	•••••	•••••				
 - no foliation - R3- medium strong - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m 20 		XX					C3B											
19 - closed to moderately closed, rough undulating fractures, closed to gapped, clean to filled with coarse cemented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 C4 C4 C4 Recovery: 86% 20 C5 C5 C5 C5 C5 C5 C5	Ŕ	<u>کې</u>	- no foliation	on														
19 closed to gapped, clean to filled with coarse comented gravel, evidence of water flow (class 3), red staining, oxidized between 19 to 20.6 m C4 Recovery: 86% 20 C5 C5 RQD: 21.6%	Ŕ	XX	- R3- med	ium strong	ough undulating fractures		C4							· · · · · · · · · · · · · · · · · · ·		C4	RQD: 23%	
20 C5 C5 C5 RQD: 21.6%	, K	<u>کې</u>	closed to g	gapped, clean to filled	with coarse cemented		.											
20 C5 C5 RQD: 21.6%	" 🕅	XX	gravel, evi	dence of water flow (class 3), red staining,	┝	-											
	X	XX	UNIVIZEU D	5000001 13 to 20.0 III								:						1
	Ŕ											 	· · · · · · · · · · · · · · · · · · ·	· · · · ·				
		X					C5									05	ROD: 21.6%	
	u X						00	<u> </u>	1.00	GED BY	Saha	a Ihrat	nim		CON			_ل ۱
AECOM REVIEWED BY: Zeyad Shukri COMPLETION DATE: 7/15/14			Δ	=COM					<u> </u>									·

			rley Underpass I: 14U, 5523599 m N, 630	052 m E	(CLIE	NT: C	ity of	Winnipe	g					ESTHOLE NO: TH14-	
				902 III E			10-	105			• ·				ROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.				HOD:	<u>125 r</u>	nm SSA		Corin	g			LEVATION (m): 233.2	0
-			GRAB		ĸ		IT SPC	JON		BULK						
BACK	FILL	IYPE	BENTONITE	GRAVEL			UGH		,,	GROU	1		Спс		SAND	-
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPI F TYPF	SAMPLE #	SPT (N)	◆ SF 0 2 16 1; F	Total Uni (kN/m 7 18 1 Plastic MC	er ₩ Cone ≎ Pen Te 0mm) 60 8 it Wt ∎ i) 19 2 Liqu	> est) ♦ 80 100		D SHEAR S Torvane - X QU/2 X Lab Vane I Pocket Pen Field Vane (kPa) 100	+ □ . △	COMMENTS	
20										·····	· · · · · · · ·				C5 Recovery: 71 %	2
-21			SHALE - blue / green - fine grained - no foliation - R1- very weak - close spacing LIMESTONE - fine grained - creamish white and grey			C6									C6 RQD: 0% C6 Recovery: 56 %	2
22			 - creating while and grey - no foliation - R3- medium strong - moderately closed too widely features, clean, no evidence of - gapped fractures(180 degree undulating, clean between 21 	water flow (class 2) s to core axis), rough	_	C7									C7 RQD: 23% C7 Recovery: 81 %	2
23 24			- gapped fractures(180 degree undulating , clean between 23	s to core axis), rough to 23.5 m		C8									C8 RQD: 60% C7 Recovery: 100 %	2
25			- gapped fractures(180 degree undulating , clean between 24 - R5- very strong			 C9									C9 RQD: 26% C7 Recovery: 100 % qu= 114.9 MPa	
26			END OF TEST HOLE AT 25.7 NOTES: 1. Power Auger Refusal at 13. 2. HQ coring below 13.8 m. 3. Seepage observed at 3.0 m 4. Installed 25 mm diameter st	3 m in Glacial TILL. upon drilling completion. andpipe piezometer												2
27			(SP14-04) to 23.5 m below gro casagrande tip and flush mour 5. Test hole backfilled with silic ground surface, bentonite up to auger cutting to ground surface 6. Groundwater monitoring: - Aug. 12, 2014 at Elv. 225.2 n - Sep. 03, 2014 at Elv. 225.0 n	t at ground surface. a sand up to 23.6 m below o 1 m and plugged with a.	,											2
28			 Sep. 19, 2014 at Elv. 225.6 n Sep. 19, 2014 at Elv. 225.6 n Oct. 17, 2014 at Elv. 225.5 n Nov. 06, 2014 at Elv. 225.4 n Nov. 20, 2014 at Elv. 225.4 n Dec. 06, 2014 at Elv. 225.2 n Dec. 18, 2014 at Elv. 225.2 n 	L L L												2
29 30																
	1							LOC	GED BY:	Saba	a Ibrah	nim		COMPI	LETION DEPTH: 25.73 m	<u>ו</u>
			AECOM						IEWED B						LETION DATE: 7/15/14	

		Waverley Underpass : UTM: 14U, 5523582 m N, 6	31025 m F	С	LIEN	IT: C	ity of	Winr	nipeg							ROJECT NO.:		
		TOR: Maple Leaf Drilling Ltd.		N	IFTH	IOD:	125	mm S	222							ELEVATION (m)		+0
SAMP			SHELBY TUBE			IT SPC			BI	ULK								
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	 ◇ Dyna ◇ Dyna ○ T (Star (Blow 20 4) ■ Tota (1) (1)	Becker amic C ndard F ws/300 0 6 al Unit kN/m ³)	× Pen Te mm) 0 8 Wt∎ 20 Liquia	st) ✦ 0 100 0 21		+ To × (□ La △ Poo ♥ Fie	SHEAR S orvane + QU/2 × b Vane [ket Pen. ld Vane (kPa) 100	- 	COMME	NTS	
-1		CLAY (FILL) - silty, some sand - brown to dark brown, firm, moist - intermediate to high plasticity - black below 0.9 m CLAY - trace silt, trace oxidation - dark brown, firm, moist - high plasticity - silty, brown mottled light brown, s - some silt, stiff to firm below 1.7 m			G54 G55 G56				<u> </u>							Gravel: 0.0%, s 12.9%, Silt: 23. 63.7%		
-3		END OF TEST HOLE AT 3.05 m If NOTES: 1. Hole open to 1.4 m immediately 2. Seepage was observed at 1.2 m 3. Test hole backfilled with auger of completion.	following drilling. and from 2.4 m to 2.7 m.		G57							· · · · · · · · · · · · · · · · · · ·						
4	1				<u> </u>	1		GGED								PLETION DEPTH:		<u> </u>
		AECOA	N				RE	/IEWE	ED BY	/: Ze	yad S	Shukri			COM	PLETION DATE:	10/23/14	

		Waverley Underpass : UTM: 14U, 5523587 m N, 631095 m E	C	LIEN	IT: Ci	ity of	Win	nipeç]						STHOLE NO: TH14-0 OJECT NO.: 6032114	
		TOR: Maple Leaf Drilling Ltd.	Ν	1ETH	IOD:	125	mm S	SSA							EVATION (m):	10
SAMP	LE T	YPE GRAB SHELBY TUBE			IT SPO			В	ULK				NOR	ECOVER		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦S 0 16	◇ Dyn PT (Sta (Blo 20 4 ■ To 7 1; Plastic	Becke amic C ndard ws/300 0 6 tal Unit (kN/m 8 1 MC	r ₩ Cone < Pen Te 0mm) 60 8 Wt ■ 9 2 Liqu	> est) ♦ 30 100		+ To × C □ Lat △ Pocl ● Fiel (HEAR ST rvane + QU/2 × v Vane □ ket Pen. 4 d Vane 4 kPa) 100 1	1	COMMENTS	DEPTH
0		SAND and GRAVEL (FILL) - light brown, dry to moist					20 4									-
		CLAY (FILL)- silty - light grey to grey, firm, moist - high plasticity		G58									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
-		CLAY- some silt - brown, firm to stiff, moist - high plasticity														-
15 - - -		- silt pocket, soft to firm, trace oxidation below 1.5 m		G59			•			- - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
1.GPJ UMA WINN.GDT 1/12				G60								· · · · · · · · · · · · · · · · · · ·				2
S - WITH LAB DATA -REVISION		- silty, soft below 2.4 m		G61			•									-
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15		END OF TEST HOLE AT 3.05 m IN CLAY. NOTES: 1. Hole open to 2.9 m immediately following drilling. 2. No seepage was observed upon drilling completion. 3. Water level measured at 1.8 m below ground surface immediately following drilling. 4. Test hole backfilled with auger cuttings upon drilling completion.										-				3
		AECOM				RE		ED B'	Y: Ze	eyad S	him Shukri Faris k				ETION DEPTH: 3.05 m ETION DATE: 10/23/14 Page	1 of 1

		Waverley U : UTM: 14U.	nderpass , 5523614 m N, 6	531190 m E	C	LIEN	IT: C	ity of	Winr	nipeg]						<u>STHOLE NO: TH14-0</u> OJECT NO.: 6032114	
			Leaf Drilling Ltd		N		IOD:	125	mm S	20							EVATION (m):	10
SAMP		-	GRAB	SHELBY TUBE			IT SPO			В	ULK				NOR	ECOVE		
DEPTH (m)	SOIL SYMBOL		SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	⇔ Dyna PT (Star (Blow 20 4 ∎ Tot	Becker amic C ndard I vs/300 0 6 al Unit kN/m ³ 5 19 MC	r ₩ Cone Pen Te Imm) 0 8 Wt ■) 2 Liqui	est) ♦ 9 <u>0 100</u> 0 21		+ Tor ×Q □ Lab △ Pock ❤ Field (k	rvane + 2U/2 × Vane ⊑ cet Pen d Vane € (Pa)] △	COMMENTS	- HOLI
0		CLAY (FILL) -	d grey-black, firm, m		_							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
			ILT- organic, silty, sc	and sound							· · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
		- black, firm, n - intermediate SILT - clayey	noist plasticity	nno sanu		G62			•			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		Gravel: 0.0%, Sand: 19.6%, Silt: 36.1%, Clay: 44.2%, AASHTO classification (A-7-6)	
1		 light grey, fir low plasticity CLAY - some grey, firm, m high plasticit 	/ silt oist,		л 	G63								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		- trace silt incl 1.5 m	usions (< 6 mm in di	a.), brown, firm to stiff below										<pre></pre>		· · · · · · · · · · · · · · · · · · ·		
2						G64				• • •						· · · · · · · · · · · · · · · · · · ·		
						G65												
												· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
3		END OF TES	T HOLE AT 3.05 m I	N CLAY.								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		 Hole open f No sloughir Seepage w surface. Test hole b 	as observed at 0.9	ly following drilling. on drilling completion. m and 1.5 m below ground cuttings upon drilling														
		completion.									· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
4								LO	GGED	BY:	Saba	a Ibra	him			COMPL	ETION DEPTH: 3.05 m	
			A <u>=</u> CO/	Μ									Shukri				ETION DATE: 10/23/14	

			Underpass U, 5523551 m N, 6	630836 m E	C	LIEN	IT: C	ity of	Winr	nipeg]						<u>STHOLE NO: TH14-0</u> ROJECT NO.: 6032114	
			le Leaf Drilling Ltd		N	IETH	IOD:	125	mm S	354							EVATION (m):	+0
SAMF			GRAB	SHELBY TUBE			IT SPO			В	ULK				NOR	ECOVE		
DEPTH (m)	SOIL SYMBOL		SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	◇ Dyn PT (Star (Blov 20 4 ■ Tot (7 18 Plastic	Becker amic C ndard I ws/300 0 6 al Unit (kN/m ³	r ¥ Cone ≎ Pen Te Omm) 60 8 t Wt ∎ 9 2 Liqu	> est) ♦ 30 100		+ Tor ×Q □ Lab △ Pock ❤ Field (k	rvane + 2U/2 × Vane ⊑ cet Pen d Vane € (Pa)] △	COMMENTS	
0		- grey, mois CLAY - silty - light grey, - low to inte	,	plasticity below 1.5 m		G66							· · · · · · · · · · · · · · · · · · ·				Gravel: 0.0%, Sand: 23.4%, Silt: 27.5%, Clay: 49.1%	
-2			2 m to 2.2 m ation below 2 m on (<12 mm in dia.) be	low 2.1 m		G68 G69				•								
3		NOTES: 1. Hole ope 2. No sloug 3. Seepage 4. Water lev	observed at 2.4 durin vel measured at 2.9 m backfilled with auger	ly following drilling. on drilling completion. g drilling. immediately following drilling.				· · · · · · · · · · · · · · · · · · ·										
4									GGED	DV.	Cab		 him	•	. <u>.</u>		ETION DEPTH: 3.05 m	
			AECO/															

		Waverley Underpass	200750	С	LIEN	NT: C	ity of	Win	nipeç]							THOLE NO: TH1	
		: UTM: 14U, 5523533 m N, 6															JECT NO.: 6032	1148
	I RAC PLE TY	TOR: Maple Leaf Drilling Ltd. YPE GRAB				<u>IOD:</u> IT SPO			SSA ⊟B								VATION (m):	
DEPTH (m)	SOIL SYMBOL	SOIL DESC		SAMPLE TYPE	SAMPLE #	(N) LAS	♦ SI 0 : 16 1	PENETI	RATIO Becke amic C ndard ws/300 0 6 tal Unit (kN/m 8 1 KC	N TEST r * Cone < Pen Te Omm) 50 to twt 9 2 Liqu	> est) ◆ 80 100	0	AINED S + To × (□ Lai △ Poc � Fie	NO P SHEAR S orvane - QU/2 × b Vane ket Pen ld Vane kPa)	STREN + 	-	COMMENTS	
0		CLAY (FILL) - silty, some organic						20 4	0 6	50 •	BO 100	0	50 :	100	150	200		
		- black and light grey, firm, moist			G70													
I		- some sand below 0.9 m			G71													
		CLAY - brown mottled grey, firm to stiff, r - high plasticity - silty, soft from 1.7 m to 1.9 m	noist		G72								· · · · · · · · · · · · · · · · · · ·					
2		- trace oxidation below 2.13 m - silt inclusion (< 6 mm in dia.) fron	n 2.1 m 2.3 m															
3		END OF TEST HOLE AT 3.05 m I NOTES: 1. No sloughing was observedupo	on drilling completion.		G73													
		 Seepage was observed at 1.2 n Test hole backfilled with auger of completion. 	n and 1.52 m during drilling. cuttings upon drilling					· · · · · · · · · · · · · · · · · · ·										
4										Cat					<u> </u>			
		A <u></u> CO/	-				LO	GGED	B۲:		a Ibra eyad (ar IIIT)			COIV	/IPLE	FION DEPTH: 3.05	m 14

		Waverley Underpass I: UTM: 14U, 5523516 m N, 6	630610 m F	С	LIEN	NT: C	ity o	Winnipeg				<u>STHOLE NO: TH14-1</u> ROJECT NO.: 6032114	
		TOR: Maple Leaf Drilling Ltd		N			125	mm SSA				EVATION (m):	+0
SAMP						IT SPC			(RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ S 0	Plastic MC Li		♣ Field Var (kPa)	e + ≺ e □ en. △	COMMENTS	LEGIO
-1		CLAY (FILL) - silty - black to light grey, firm, moist - low to intermediate plasticity			G74							· · · · · · · · · · · · · · · · · · ·	
		CLAY - organic, silty to some silt, - black, soft to firm, moist to wet, - low plasticity - grey, firm below 1.4 m	some sand		G75			•				Gravel: 0.0%, Sand: . 14.1%, Silt: 33.5%, Clay: 52.4%	
		SILT - some clay - brown, soft, moist to wet - low plasticity CLAY- some to trace silt			G76								
-2		- grey mottled brown, firm to stiff, i - high plasticity - silt inclusions (<6 mm in dia.) be											
-3		END OF TEST HOLE AT 3.05 m I NOTES: 1. Hole open to 3.05 m immediate 2. Sloughing was observed at 1.8 3. Seepage was observed at 1.1 r 4. Test hole backfilled with auger completion.	ely following drilling. m. m and below 1.5 m.		G77			•					
4		AECO	M					GGED BY: Sa VIEWED BY: 2				ETION DEPTH: 3.05 m ETION DATE: 10/23/14	

		Waverley Underpass I: UTM: 14U, 5523574 m l	N. 630822 m F	C	LIEN	NT: C	ity of	Winnipeg]				ESTHOLE NO: TH14- ROJECT NO.: 603211	
		TOR: Maple Leaf Drilling		N		יח∩ו	125	mm SSA					_EVATION (m):	40
SAMP						IT SPO			ULK			RECOVE		
DEPTH (m)	SOIL SYMBOL		SCRIPTION	SAMPLE TYPE		SPT (N)	♦S 0	PENETRATIO	N TESTS r ¥ Cone ◇ Pen Tes)mm) 50 80 t Wt ■) 9 20 Liquid	st) ♦ 0 100 21	+ □ △ F	 STRENGTI + < D n. A	COMMENTS	
0		TOPSOIL SAND and GRAVEL (FILL) - light brown, moist to wet CLAY (FILL) - organic, sandy	, trace wood		G78			•				 		
1		- black, firm, moist to wet SILT - some clay - light grey, soft, moist - low plasticity CLAY - trace silt			G79 G80			•				 		
2		- brown mottled grey, firm to s - high plasticity - trace silt inclusions (< 12 mn			G81					· · · · · · · · · · · · · · · · · · ·				
3		END OF TEST HOLE AT 3.05 NOTES: 1. Hole open to 3.05 m immed 2. No sloughing was observed 3. Seepage was observed at ' 4. Test hole backfilled with au completion.	liately following drilling. I upon drilling completion. I.1 m.									 		
4		AECO) M					GGED BY: VIEWED B					LETION DEPTH: 3.05 m LETION DATE: 10/23/14	

		Waverley Underpass	C	CLIEN	IT: C	ity of	Winr	nipeg]					TES	STHOLE NO: TH14-1	12
		I: UTM: 14U, 5523563 m N, 630774 m E													OJECT NO .: 6032114	48
		TOR: Maple Leaf Drilling Ltd. YPE GRAB SHELBY TUBE			I <mark>OD:</mark> IT SPO											
DEPTH (m)	PLE T SOIT SAMBOL	YPE GRAB SOIL DESCRIPTION	SAMPLE TYPE		(N) TAS	◆ SI 0 16 1	PENETF	Becke amic C ndard ws/30C 0 6 al Unit (kN/m ³ 3 1 MC	N TEST r ★ Cone ≎ Pen Te Dmm) 50 & t Wt ∎) 9 2 Liqu	> est) ♦ <u>80 100</u> 0 21		INED SH + Ton ∠ QI □ Lab △ Pocke ● Field (kł	NO RE(IEAR STR Vane + J/2 × Vane □ et Pen. △ Vane ♥ Pa)	ENGTH		DEPTH
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15		GRAVEL (FILL) - light brown, moist CLAY (FILL) - some gravel, trace to some silt, trace oxidation - grey, firm, moist CLAY - organic, some silt, trace gravel, trace oxidation - black, firm, moist, - pieces of wood from 0.9 m to 1.2 m SILT - light brown, soft, moist, - low plasticity CLAY - trace to some silt - brown mottled grey, soft to stiff, moist, - high plasticity - silt pocket from 1.8 m to 2 m - trace oxidation below 2.5 m - silty, soft to firm below 2.75 m END OF TEST HOLE AT 3.05 m IN CLAY.		G82 G83 G84 G85								0 1	<u>q0</u> 15	0 200		
TEST HOLE WAVERLEY UP - PHASE II - TEST		NOTES: 1. Hole open to 1.74 m immediately following drilling. 2. No seepage was observed upon drilling completion. 3. Test hole backfilled with auger cuttings upon completion.					GGED	BY:	Saba	a Ibra				DMPLE	ETION DEPTH: 3.05 m	
3 OF		AECOM				RE	/IEWE	ED B'	Y: Ze	eyad S	Shukri				ETION DATE: 10/23/14	
Ĭ						PR	JEC	TEN	GINE	ER: I	Faris K	halil			Page	1 of 1

	: Waverley Underpass	С	LIEN	IT: C	ity of	[:] Win	nipeg)				TES	STHOLE NO: TH14-1	3
	N: UTM: 14U, 5523544 m N, 630678 m E												OJECT NO.: 6032114	18
SAMPLE	TOR: Maple Leaf Drilling Ltd.			OD: T SPO			SSA ⊟B	IIK				ELE ECOVEF		
DEPTH (m) Solt SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆S 0 16 ^	PENET	RATIO Becke amic (N TEST r * Cone < Pen To Omm) 50 t t Wt 9 2 Liqu	> est) ♦ 30 100	INED SH + Tor × Q □ Lab △ Pock ● Fielc (k	IEAR STI vane + U/2 × Vane □ et Pen. ∠ I Vane € Pa)	RENGTH	COMMENTS	DEPTH
0	TOPSOIL													
	SAND and GRAVEL (FILL) - light brown, moist								· · · · · · · · · · · · · · · · · · ·					-
- - 1	CLAY (FILL) - silty, trace organics - black to brown, firm, moist, - intermediate to low plasticity		G86			•	- -		- - - - - - - - - - - - - - - - - - -			· · · · · · · · · · · · · · · · · · ·		- - 1-
MINN.GDT 1/12/15	CLAY - trace silt - brown to dark brown, firm to stiff, moist, - high plasticity		G87 G88											-
A-REVISION 1.GPJ UMA	- silty, soft to firm, trace oxidation from 2 m to 2.3 m - silt inclusion (< 6 mm in dia.) below 2.3 m													2
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN GDT 1/12/15	END OF TEST HOLE AT 3.05 m IN CLAY. NOTES: 1. Hole open to 2.90 m immediately after drilling. 2. No seepage observed upon drilling completion. 3. Test hole backfilled with auger cuttings upon drilling completion.		G89								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		3-
4	AECOM				RE	VIEW	ED B'	Y: Ze				OMPLE	TION DEPTH: 3.05 m TION DATE: 10/23/14 Page	1 of 1

		Waverley Underpass I: UTM: 14U, 5523606 m N, 630544 m E	С	LIEN	NT: C	ity o	f Win	nipe	g						STHOLE NO: TH14-1 OJECT NO.: 6032114	
CON	TRAC	TOR: Maple Leaf Drilling Ltd.			IOD:		mm						-	ELE	EVATION (m):	
SAM	PLE T	YPE GRAB SHELBY TUBE		SPL	IT SPC	ON			BULK			-	NO REO		RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	0	◇ Dyr PT (Sta (Blc 20 ■ Tc 17 1 Plastic	Becke andard ows/30 40 tal Uni (kN/m 8	r ¥ Cone < Pen T Dmm) 50 t Wt ∎ 3) 9 2 Liqu	> est) ♦ 80 100		+ Tor ×Q □ Lab △ Pocke ● Field (k	IEAR STRI vane + U/2 × Vane □ et Pen. △ I Vane � Pa) 00 15		COMMENTS	DEPTH
0		TOPSOIL					20	+0			, 		<u> </u>	0 200		
-		CLAY (FILL) - some silt, trace sand, trace gravel, trace oxidation - light grey and black, moist - intermediate plasticity		G90			•									-
-		CLAY - trace silt, trace gypsum - brown, firm to stiff, moist, - high plasticity		G91			· · ·		· · · ·							-
- - 1				G92					· · · · · · · · · · · · · · · · · · ·							1-
-				G93				· · · · · ·	· · · · ·							
T 1/12/15		- trace silt inclusion < 12 mm in dia. below 1.5 m		G94			•	•	· · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
		- silty, light brown, low plasticity from 1.8 m to 2 m		G95			· · · · ·		· · · ·							2-
ISION 1.GPJ				G96			· · · · · ·									
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15		END OF TEST HOLE AT 2.44 m IN CLAY. NOTES: 1. Hole open to 2.3 m immediately after drilling.					· · · · · · ·						1			-
E LOGS - WITH		 No seepage was observed upon drilling completion. Test hole backfilled with auger cuttings upon completion. 					· · · · · · · · ·									-
3 							· · · · · ·		· · · · · · · · · · · · · · · · · · ·							3 -
Y UP - PHASE						 	· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
							· · · · · · ·		· · · · · · · · · · · · · · · · · · ·							-
OH L							÷	<u>.</u>	÷	; ;			· · · · · · · · · · · · · · · · · · ·			-
F TES		A=COM								a Ibra					TION DEPTH: 2.44 m	
000		AECOM									Shukri Faris ł		CC	OMPLE	ETION DATE: 10/24/14 Page	1 of 1
Ц Ц						1 rk	OJEC	, I ⊑I\		ER.	raiis r	vidili			rage	

		Waverley Underpass I: UTM: 14U, 5523571 m N, 63	30387 m E	C	LIEN	IT: C	ity o	^f Winr	nipeg]					THOLE NO: TH14-1 JECT NO.: 6032114	
		TOR: Maple Leaf Drilling Ltd.		N	1FTH	IOD:	125	mm S	SSA			 			/ATION (m):	40
SAMP			SHELBY TUBE			IT SPO			В	ULK		 \square	NO RE	COVERY		
DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦S 0	 ◇ Dyna PT (Star (Blov 20 4 20 4 Tot (17 18 Plastic 	Becker amic C ndard I ws/300 0 6 al Unit kN/m ³	r ₩ Cone Pen Te Imm) 0 8 Wt) 9 2(Liqui	st) ♦ 0 100	+ Tor X Q □ Lab △ Pocku ❤ Field (k	IEAR STR vane + U/2 X Vane ⊡ et Pen. ∆ Vane © Pa) 00 18		COMMENTS	
0		TOPSOIL CLAY (FILL) - some silt, trace grav - black and grey, soft to firm, moist, - intermediate to high plasticity CLAY - trace silt - grey, firm, moist,	el		G97						· · · · · · · ·					
1		- high plasticity			G98 G99											
		- silty, low plasticity, trace oxidation	n from 1.5 m to 1.7 m		G100 G101											
2					G102 G103											
		END OF TEST HOLE AT 2.44 m IN NOTES: 1. Hole open to 2.3 m immediately 2. No seepage was observed upon 3. Test hole backfilled with auger c	following drilling. drilling completion.													
3																
4										- - - - - - - - - - - - - -		 - - - - - - - - - - - - - -				
		AECOM	A					gged Viewe							TION DEPTH: 2.44 m TION DATE: 10/24/14	
		ALUN	71									halil			Page	1 .

		Waverley Underpass		CL	IEN	T: Ci	ty of	Winr	nipeg							STHOLE NO: TH14-1	
		: UTM: 14U, 5523647 m N, 630	668 m E			• -										OJECT NO.: 6032114	48
	IRAC PLE TY	TOR: Maple Leaf Drilling Ltd. YPE GRAB	SHELBY TUBE			<u>OD:</u> T SPO			SA BI	ши						EVATION (m):	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR		Ц	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	PENETF ≫ Dyna PT (Star (Blov 0 4) ■ Tot	RATION Becker amic C ndard F ws/300 0 6 al Unit kN/m ³) 3 19 MC	TESTS * one ◇ Pen Tes mm) 0 80 Wt ■ 0 20 Liquic	st) ♦ 0 100 1 21	,	NED SH + Torv ∠QL □ Lab ' △ Pocke ♥ Field (kF	IEAR STI vane + U/2 × Vane □ t Pen. ∠ Vane € Pa)	RENGTH	COMMENTS	
0		TOPSOIL															
		CLAY - silty, trace sand - brown, firm, moist, - high plasticity		G	6104			•						· · · · · · · · · · · · · · · · · · ·			
·1					6105			10		-4				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Gravel: 0.0%, Sand: 5.5%, Silt: 29.0%, Clay: 65.5% , AASHTO classification (A-7-6)	
					6106 6107												
		- light brown, soft below 1.5 m		G	9108 9108			•						· · · · · · · · · · · · · · · · · · ·			
2					G109												
		END OF TEST HOLE AT 2.44 m IN C NOTES: 1. Hole open to 2.4 m immediately fol 2. No seepage was observed upon dr 3. Test hole backfilled with auger cutti	lowing drilling. illina completion.		-					· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
3														<pre></pre>			
4							LO	GED	BY:	Saba	Ibrah	nim	· · · · · · · · · · · · · · · · · · ·	C	OMPL	ETION DEPTH: 2.44 m	
		AECOM					RE\	/IEWE	ED BY	: Ze	yad S					ETION DATE: 10/24/14 Page	

		Waverley U : UTM: 14U	nderpass , 5523683 m N, 6	30802 m E	C	LIEN	IT: C	ity of	f Winr	nipeg]						<u>STHOLE NO: TH14-1</u> OJECT NO.: 6032114	
			Leaf Drilling Ltd		N	1FTH	IOD:	125	mm S	SA							EVATION (m):	10
SAMPL			GRAB	SHELBY TUBE			IT SPO			В	ULK			$\overline{\nabla}$	NORE	ECOVE		
DEPTH (m)	SOIL SYMBOL		SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0 : 16 1	◇ Dyna PT (Star (Blov 20 4) ■ Tot (17 18 Plastic	Becker amic C ndard I ws/300 0 6 al Unit kN/m ³	r ₩ Cone Pen Te Imm) 0 8 Wt ■) 20 Liqui	est) ♦ 0 100		+ Tor ×Q □ Lab △ Pock ❤ Field (k	tvane + U/2 × Vane ⊡ et Pen. ∠ Vane € Pa)	2	COMMENTS	
0		- black to grev	to high plasticity race sand stiff, moist	avel, trace silt		G111 G112 G113 G114			•	· · · · · · · · · · · · · · · · · · ·							Gravel: 0.0%, Sand: 5.1%, Silt: 24.4%, Clay: 70.5%, AASHTO classification (A-7-6)	
2		- brown, trac	l brown from 1.5 m to e oxidation from 1.8 r ey below 2.2 m			G115 G116 G117				·····							· · · · · · · · · · · · · · · · · · ·	
3		NOTES: 1. Hole open 2. No seepag	T HOLE AT 2.44 m I to 2.4 m immediatel e was observed upo ackfilled with auger of							· · · · · · · · · · · · · · · · · · ·								
4			A <u>=</u> CO/						GGED				him Shukri				ETION DEPTH: 2.44 m ETION DATE: 10/24/14	

		Waverley Underpass		C	LIEN	IT: C	ity of	Winn	ipeg							STHOLE NO: TH14-1	
		: UTM: 14U, 5523429 m N, 630	1866 m E													OJECT NO.: 6032114	18
		TOR: Maple Leaf Drilling Ltd.				OD:											
SAMF	PLET	YPE GRAB	SHELBY TUBE		SPL	T SPO		-	В						COVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	♦ Dyna PT (Star (Blow 0 40 Tota (1)	Becker amic C ndard F vs/300 b 6 al Unit kN/m ³) 19 MC	Cone Cone Pen Te mm) 0 8 Wt D Liqui	est) ♦ 0 100 0 21		+ Tor ×Q □ Lab △ Pocko ♥ Field (k	vane + U/2 × Vane □ et Pen. ∠ I Vane € Pa)	2	COMMENTS	
0		TOPSOIL											· · · · · ·				
-1		CLAY (FILL) - some gravel, some silt - grey, firm to stiff, moist, - low to intermediate plasticity	, trace sand		G118 G119 G120							· · · · · · · · · · · · · · · · · · ·					
-2		SILT - clayey, some sand - light brown, soft, moist, - low plasticity			G121 G122		· · · · · · · · ·	•				· · · · · · · · · · · · · · · · · · ·				Gravel: 0.0%, Sand: 17.0%, Silt: 60.9%, Clay: 22.1%, AASHTO Classification (A-4)	
-3		CLAY- trace to some silt - grey mottled brown, firm, moist to w - high to intermediate plasticity SILT - clayey, some sand - light brown, soft, moist, - low plasticity CLAY- trace silt - grey mottled brown, firm to stiff, moi			G123 G124 G125			•				· · · · · · · · · · · · · · · · · · ·					
-4		 high plasticity silty below 3.8 m END OF TEST HOLE AT 3.96 m IN C NOTES: Hole open to 2.1 m upon drilling cc Seepage and sloughing were obse Test hole backfilled with auger cutt 	ompletion. erved below 3 m.		G126							· · · · · · · · · · · · · · · · · · ·					
5		completion.															
							<u> </u>	GED								ETION DEPTH: 3.96 m	
		AECOM					RE\	IEWE	D B۱		yad S ER: F			C	OMPL	ETION DATE: 10/24/14	

		-	[,] Underpass IU, 5523343 m N, 6	30875 m E	C	LIEN	IT: Ci	ity of	Winn	ipeg]						THOLE NO: TH14-' DJECT NO.: 603211	
			ole Leaf Drilling Ltd		N	1FTH	IOD.	125	mm S	SA							VATION (m):	40
SAMP			GRAB	SHELBY TUBE			IT SPO			В	ULK			$\overline{}$	NOR	ECOVER		
DEPTH (m)	SOIL SYMBOL		SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0 : 16 1	 ◇ Dyna PT (Stan (Blow 20 40 ■ Tota (I 17 18 Plastic 	Becker Imic C Idard I Is/300 6 1 Unit KN/m ³	r ₩ Cone Pen Te Imm) 0 8 Wt ■) 9 2(Liqui	st) ♦ 0 100		+ Tor ×Q □ Lab △ Pock ❤ Field (k	rvane + 2U/2 × 2 Vane ⊡ aet Pen. 4 d Vane € (Pa)	△	COMMENTS	
0		TOPSOIL CLAY (FIL - black, firr - high plas	L) - trace gravel, trace : n to stiff, moist, ticity	silt, trace sand		G127 G128				· · · · · · · · · · · · · · · · · · ·								
1		CLAY - tra - brown, fi - high plas	rm, moist,			G129 G130			•									
		- grey mott - silty to so	led brown, silt inclusion me silt, low to intermed	< 6 mm in dia. below 1.5 m iate plasticity from 1.5m to 1.7m		G131				·····				N N				
2						G132 G133				•••••								
3			EST HOLE AT 3.0 m IN	CLAY.		G134												
		2. No seep	en to 2.7 m immediatel vage was observed upo e backfilled with auger	y following drilling. n drilling completion. cutting upon drilling completion.											· · · · · · · · · · · · · · · · · · ·			
4			AECO	M					GGED				him Shukri				TION DEPTH: 3.05 m TION DATE: 10/24/14	

		Waverley Underpass	N C20000 F	C	LIEN	NT: C	ity of	Winr	nipeg							STHOLE NO: TH14-2	
		: UTM: 14U, 5523235 m l			4		407										48
	RAC PLE TY	TOR: Maple Leaf Drilling YPE GRAB	Lta.			<u>IOD:</u> IT SPO			SA B						ELE ECOVER		
DEPTH (m)	SOIL SYMBOL		SCRIPTION	SAMPLE TYPE		SPT (N)	♦ SI 0 16 1	PENETF	RATION Becker amic C ndard I ws/3000 0 6 al Unit (kN/m ³ 3 19	I TEST cone > Pen Te mm) 0 8 Wt ■) 20	est) ♦ 0 100		INED SH + Tor × QI □ Lab △ Pocke		RENGTH	COMMENTS	- H L
0		TOPSOIL		+			1	Plastic		Liqui	d 0 100	5			50 200		+
		CLAY - some silt - grey, soft to firm, moist, - intermediate to high plasticity	1		G135	5		•						· · · · · · · · · · · · · · · · · · ·			
		- trace silt below 0.5m			G136	5											
l					G137	,		•						· · · · · · · · · · · · · · · · · · ·			
		house tooo sill inclusion of	amp in dia, halau: 4 5m		G138	3	· · · · ·							u · · · · · · · · · · · · · · · · · · ·			
		 brown, trace silt inclusion < 6 silty, light brown below 1.7 m 			G139 G140									· · · · · · · · · · · · · · · · · · ·			
2					G140		 										
		END OF TEST HOLE AT 2.44 NOTES: 1. Hole open to 2.4 m immed 2. No seepage was observed 3. Test hole backfilled with au	ately following drilling.											· · · · · · · · ·			
3														· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
							 							· · · · · · · · · · · · · · · · · · ·			
														y · · · · · · · · · · · · · · · · · · ·			
4										0-1				<u>.</u>			
		AECO	M					gged Viewe								TION DEPTH: 2.44 m TION DATE: 10/24/14	

		Waverley Unde I: UTM: 14U, 55		31020 m E	C	LIEN	IT: C	ity of	Winr	nipeg							STHOLE NO: TH14-2 OJECT NO.: 6032114	
		TOR: Maple Le			N	1FTH	IOD:	125	mm S	SA							EVATION (m):	+0
SAMP			GRAB	SHELBY TUBE			IT SPO			В	ULK			\square	NO RE			
DEPTH (m)	SOIL SYMBOL	S	OIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	 ◇ Dyna ○ T (Star (Blow 20 4) ■ Tota (1) (1)<th>Becker amic C ndard I vs/300 0 6 al Unit kN/m 19</th><th>₩ Cone Pen Te mm) 0 8 Wt ■ 0 20 Liquin</th><th>est) ♦ 0 100</th><th></th><th>+ Tor X Q □ Lab △ Pocke ❤ Field (k</th><th>vane + U/2 X Vane □ et Pen. 2 I Vane € Pa)</th><th><u>^</u></th><th>COMMENTS</th><th>- IFCLC</th>	Becker amic C ndard I vs/300 0 6 al Unit kN/m 19	₩ Cone Pen Te mm) 0 8 Wt ■ 0 20 Liquin	est) ♦ 0 100		+ Tor X Q □ Lab △ Pocke ❤ Field (k	vane + U/2 X Vane □ et Pen. 2 I Vane € Pa)	<u>^</u>	COMMENTS	- IFCLC
0		TOPSOIL CLAY (FILL) - soi - black, firm to stit - intermediate to l CLAY and SILT -	f, moist high plasticity some sand	iic		G142									· · · · · · · · · · · · · · · · · · ·			
1		- light brown, soft - intermediate pla	to firm, moist, sticity			G143 G144		· · · · · •	•	•••••							Gravel: 0.0%, Sand: 13.3%, Silt: 42.8%, Clay: 43.9%, AASHTO Classification (A-7-6)	
		CLAY - trace silt - brown, moist - high plasticity - trace silt inclusio	on < 12 mm in dia.	, trace gravel below 1.7m		G145 G146			•	•••••					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
2						G147 G148												
3		END OF TEST H 1. Hole open to 2 2. No seepage w 3. Test hole back	2.4 m immediately as observed upon	CLAY. following drilling. drilling completion. tting upon drilling completion.											· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
4									GGED								ETION DEPTH: 2.44 m	
		Α	ΞΟΟΛ	1					/IEWE				Shukri Faris K		C	COMPL	ETION DATE: 10/24/14 Page	4

		Waverley Underpass : UTM: 14U, 5523219 m N	. 631078 m F	C	LIEN	IT: C	ity of	f Win	nipeg]						STHOLE NO: TH14-2 OJECT NO.: 6032114	
		TOR: Maple Leaf Drilling Lt		N	1FTH	OD:	125	mm §	SSA							EVATION (m):	10
SAMP			SHELBY TUBE			T SPO			В	ULK			Z]NO RE	ECOVE		
DEPTH (m)	SOIL SYMBOL		CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SI 0 :: 16 1	◇ Dyr PT (Sta (Blo 20 4	Becke amic C indard ws/300 0 6 tal Unit (kN/m ³ 8 1 MC	r ₩ Cone Pen Te Imm) 0 8 Wt ■) 2 Liqui	est) ♦ 9 <u>0 100</u> 0 21		+ Tor ×Q □ Lab △ Pock ❤ Field (k	rvane + 2U/2 × Vane ⊡ cet Pen. 4 d Vane € cPa)	Δ	COMMENTS	- ITOLO
0		TOPSOIL CLAY (FILL)- some silt, trace gr - black to brown, firm to stiff, mo - high plasticity CLAY - silty, trace sand	avel, trace oxidation ist,		G149			•	2 2 3 4 4 5 5 5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
		- brown, firm, moist, - intermediate plasticity - silt pocket between 0.3 m and	1.2 m		G150			•							· · · · · · · · · · · · · · · · · · ·	Gravel: 0.0%, Sand: 1.4%, Silt: 33.1%, Clay: 65.5%	
1					G151		 								· · · · · · · · · · · · · · · · · · ·		
		- silt inclusion < 12 mm in dia. bu			G152		 	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		 . .<				
		SILT - some clay to clayey - light brown, soft to firm, moist, - low plasticity			G153			•	· · · · · · · · · · · · · · · · · · ·				<pre></pre>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		
2		- very soft below 2.1 m			G154 G155										•		
		END OF TEST HOLE AT 2.44 n NOTES: 1. Hole open to 2.4 m immediat 2. No seepage was observed up 3. Test hole backfilled with auge	ely following drilling.						. .								
3																	
													- - - - - - - - - - - - - -		· · · · · · · · · · · · · · · · · · ·		
4							LO	GGED) BY:	Saba	a Ibra	him	- - - - - - - - - - - - - - - - - - -			ETION DEPTH: 2.44 m	
		A <u>=</u> CO	Μ									Shukri				ETION DATE: 10/24/14	

PRO	JECT:	Waverley Underpass	С	LIEN	IT: C	ity c	f Win	nipeg]					TE	STHOLE NO: TH14-2	23
		: UTM: 14U, 5523200 m N, 631272 m E													OJECT NO.: 6032114	48
	ITRAC PLE T	TOR: Maple Leaf Drilling Ltd. YPE GRAB IIISHELBY TUBE			<u>OD:</u> T SPC		mm S	SSA ⊟B						ELI RECOVER		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)		PENETI	RATION Becke amic C ndard ws/30C 0 6 tal Unit (kN/m ³ 8 1	N TEST r ★ Cone < Pen T 0mm) 60 50 Wt ■ 9 2 Liqu	> est) ♦ 80 10	<u>0</u>	AINED S + To × (□ La △ Poo ♥ Fie		STRENGTH + □ . △	COMMENTS	DEPTH
0		TOPSOIL	1				20 4				<u> </u>			150 200		
-		CLAY - trace silt - grey, firm, moist, - high plasticity		G156 G157		• • • •	•									-
-		- trace gravel, dark grey from 0.7 m to 0.9 m		G158								· · · · · · ·	· · · · · · · · · · · · · · · · · · ·			-
- 1 - -		SILT- clayey - light brown, soft, moist - low plasticity		G159			•									
1.GPJ UMA WINN.GDT 1/12/15		CLAY - trace silt - brown mottled grey, firm, moist, - high plasticity - silt pocket below 1.75 m - silt inclusion < 12 mm in dia. below 1.8 m		G160 G161		• • • •	•									2-
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15		END OF TEST HOLE AT 2.44 m IN CLAY. NOTES: 1. Hole open to 2.4 m immediately following drilling. 2. No seepage was observed upon drilling completion. 3. Test hole backfilled with auger cutting upon drilling completion.		G162		· · · · · · · · · · · · · · · · · · ·										3-
		ΑΞϹΟΜ				RE	gged View Ojec	ED B'	Y:Z	eyad	ahim Shukri	•			ETION DEPTH: 2.44 m ETION DATE: 10/24/14 Page	1 of 1

PROJECT: Waverley Underpass CLIENT: City of Winnipeg TESTHOLE NO: TH44 LOCATION: UTM: 14U, 5523700 m N, 631992 m E PROJECT NO:: 603211 CONTRACTOR: Maple Leaf Dnilling Ltd. METHOD:: 125 mm SSA ELEVATION (m): SAMPLE TYPE GRAB ISHELBY TUBE PROJECT NO:: 603211 Giff Solid DESCRIPTION Istel by TUBE Istel by TUBE COMMENTS Image: Solid DESCRIPTION Image: Solid DESCRIPTI																		
					N		IUD.	125	mm 9	AZZ								10
											ULK				NOR			
DEPTH (m)	SOIL SYMBOL		SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦S 0	*	Becke amic C ndard ws/300 0 6 tal Unit (kN/m ³ 8 1! MC	₩ Cone Pen Te 0 8 0 8 Wt 1 0 20 Liquit 1	est) ♦ 0 100 0 21		+ Tor × C □ Lab △ Pock ● Field (H	rvane + QU/2 × Vane ⊑ ket Pen. A d Vane € (Pa)	۱ ۵	COMMENTS	
0		CLAY (FILL) - black to gre - intermediat CLAY and S - brown, firm - intermediat - intermediat - cLAY - sithy - brown to lig	y, moist e plasticity ILT - trace sand to stiff, moist, e plasticity	dation		G164 G165 G166			•									
		NOTES: 1. Hole open 2. Seepage	to 2.4 m immediatel was observed below	y following drilling. 2.3 m upon drilling completion.									· · · · · · · · · · · · · · · · · · ·					
CLAY - silty to some silt, trace oxidation - brown to light brown, soft to firm, moist, - high plasticity G167 G168 G169 G169																		

PROJ	ECT:	Waverley Underpass	С	LIEN	IT: C	ity of	Winr	nipeg]					TE	STHOLE NO: TH14-2	25
		: UTM: 14U, 5523746 m N, 631270 m E													OJECT NO .: 6032114	48
		TOR: Maple Leaf Drilling Ltd. YPE ■GRAB ⅢSHELBY TUBE			OD:								7.000		EVATION (m):	
DEPTH (m)		YPE GRAB SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	(N) LdS	♦ S 0	PENETF	Becker amic C ndard I ws/300 0 6 al Unit (kN/m ³ 3 19 MC	N TEST r ★ Cone ≎ Pen Te Dmm) 60 & Wt ∎) 9 2 Liqu	est) ♦ 30 100		+ Tc + Tc ∠(□ La △ Poc ♥ Fie	SHEAR S orvane + QU/2 × b Vane [ket Pen. Id Vane (kPa)		COMMENTS	DEPTH
0		TOPSOIL					20 4		<u>.</u>		· · · · ·			150 200		
-		CLAY (FILL) - some silt, trace sand - black to dark grey, firm, moist, - intermediate to high plasticity		G170			•					· · · · · · · · · · · · · · · · · · ·				-
-		SILT - clayey, trace sand - light brown, moist, - intermediate plasticity		G171		····+	•-1								Gravel: 0.0%, Sand: 8.1%, Silt: 60.0%, Clay: 31.9%, AASHTO	
1 - -		- brown from 0.9 m to 1.5 m - silt pocket, silt inclusion < 6 mm in dia. below 1.2 m		G172			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·					Classification (A-6)	1-
15 		CLAY - trace silt		G173			•	••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
VINN.GDT 1/12		 brown, firm to stiff, moist, intermediate to high plasticity trace oxidation at 1.7 m 		G174			· · · · · · · · · · · · · · · · · · ·		<pre></pre>	· · · · · ·			· · · · · · · · · · · · · · · · · · ·			
10N 1.GPJ UMA				G175			· · · · · · · · · · · · · · · · · · ·									2 -
E LOGS - WITH LAB DATA -REVIS		END OF TEST HOLE AT 2.44 m IN CLAY. NOTES: 1. Hole open to 2.4 m immediately following drilling. 2. No seepage was observed upon drilling completion. 3. Test hole backfilled with auger cutting upon drilling completion.		G176												-
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15 6																3 -
		A=COM					GGED								ETION DEPTH: 2.44 m	
000		AECOM									Shukri Faris k			COMPL	ETION DATE: 10/26/14 Page	1 of 1

		y Underpass 4U, 5523720 m N, 6	30895 m E	C	LIEN	IT: C	ity of	Winn	ipeg	<u> </u>					THOLE NO: TH14-2 DJECT NO.: 603211	
		ple Leaf Drilling Ltd.		N	IETH	IUD.	125	mm S	SA						VATION (m):	
SAMPLE		GRAB	SHELBY TUBE			IT SPO			BI	ULK		\square	NO RE	ECOVER'		
DEPTH (m) SOIL SYMBOL		SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ Si 0 : 16 1	 ◇ Dyna PT (Stan (Blow 20 40 ■ Tota (k 7 18 Plastic 	ecker mic C dard F s/300 s/300 6 1 Unit (N/m ³)	★ one Pen Te mm) 0 8 Wt ■ 0 20 Liquid	st) ♦ 0 100 0 21	+ Tor ×Q □ Lab △ Pock ❤ Field (k	, HEAR STI Vane + U/2 × Vane □ et Pen, 2 I Vane ₽ Pa) 00 1	2	COMMENTS	
	- dark to li - high plas CLAY - tra	L) - some silt, trace sanc ght grey, firm, moist, sticity ace silt n to stiff, moist,			G177 G178			•								
		ttled brown below 1.5 m			G179 G180 G181				••••							
3	NOTES: 1. Hole o 2. No see	TEST HOLE AT 2.44 m IN pen to 2.4 m immediately page was observed upon le backfilled with auger c	following drilling.		G182		· · · · · · · · · · · · · · · · · · ·									
4		AECOA	•					<u>3GED</u> /IEWE							TION DEPTH: 2.44 m TION DATE: 10/26/14	

		Waverley Underpass I: UTM: 14U, 5523208 m N, 630727 m E	C	LIEN	IT: C	ity of	Win	nipeç)						STHOLE NO: TH14-2 OJECT NO.: 6032114	
		TOR: Maple Leaf Drilling Ltd.	N	<u>IETH</u>	IOD:	1 <u>2</u> 5	nm S	SSA							EVATION (m):	
SAM	PLE T	YPE GRAB SHELBY TUBE			IT SPO			В	ULK					RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	◇ Dyn PT (Sta (Blov 20 4 ■ Tot 7 18 Plastic	Becke amic C ndard ws/300 0 6 tal Unit (kN/m ³ 8 1	r ¥ Cone < Pen To Dmm) 50 8 t Wt ∎ 9 2 Liqu	> est) ♦ 30 100	-	+ Tc × C □ Lai △ Pocl ⊕ Fiel (orvane QU/2 × o Vane [ket Pen. ld Vane kPa)	_ . △ €	COMMENTS	DEPTH
0 - -		GRAVEL and SAND (FILL) - some clay, some silt - light brown, dry to moist										50	100	150 200		
-				G183			No a se a se 		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				-
-		CLAY - silty, trace sand - grey, firm, moist, - high plasticity		G184			•		· · · · · · · ·	· · · · ·		· · · · · · ·	· · · ·		(G184): Gravel: 0.0%,	-
1 - -				G185					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Sand: 6.8%, Silt: 27.7%, Clay: 65.5%	1
2/15								- - - - - - - - - - - - - - - - - - -	· · · · · · · · · · · · · · · · · · ·				· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
WINN.GDT 1/1		- light brown, trace oxidation from 1.8 m to 2 m		G186			• • • • • • • • • • • • • • • • • • •		· · · · · · ·	· · · · · ·		•	· · · · · · · · · · · · · · · · · · ·			
		- grey mottled brown below 2 m		G187			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			2
B DATA -REVIS		END OF TEST HOLE AT 2.44 m IN CLAY. NOTES:														- - -
DGS - WITH LA		 Hole open to 2.4 m immediately following drilling. No seepage was observed upon drilling completion. Test hole backfilled with auger cutting upon drilling completion 	n.				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·			-
							- - - - - - - - - - - - - - - - - - -	· · · · · · ·	· · · · · ·	· · · · ·		· · · · ·	· · · ·			3-
JP - PHASE II -									· · · · · · · · · · · · · · · · · · ·							-
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15							<pre></pre>		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 .
00 OF TEST		AECOM				RE\		ED B'	Y: Ze	eyad S	him Shukri Faris K	(halil			ETION DEPTH: 2.44 m ETION DATE: 10/26/14 Page	1 of 1

			erley Underpass	971 m F	CL	IEN	1: C	ity of	Winnipe	eg						STHOLE NO: TH14-2	
			M: 14U, 5523511 m N, 630				• -									OJECT NO.: 6032114	
			Maple Leaf Drilling Ltd.						mm SSA		,					EVATION (m): 233.80)
-	PLE T		GRAB		· · · · ·		T SPO	ON		BULK							
BACK	(FILL]	IYPE	BENTONITE	GRAVEL		SLOU	JGH			GRO	JT		Cl			SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	Plastic MC	ker ¥ cone d Pen 00mm) 60 nit Wt n ³) 19 Lic	♦ Test) ♦ 80 100	۲ ۵ ۲	ED SHEAI + Torvan × QU/2 Lab Var Pocket P Field Va (kPa) 100	ne + × ne □ Pen. △ ine €	ENGTH	COMMENTS	Ĩ
0			TOPSOIL CLAY - trace gravel, trace silt														
1			- grey, firm, moist - high plasticity - some silt, intermediate plastic - trace sand, dark grey, soft to	ity from 0.4 m to 0.6 m irm below 0.6 m		6188 6189			•						· · · · · · · ·		2
	Ĩ		SILT - clayey, sandy - light brown, soft, moist - low plasticity CLAY - silty	,	G ∫	6190		• • • • •	•						· · · · · · · ·		
2			- grey,firm to soft, moist - intemediate plasticity SILT - sandy, clayey		ז ד 	191		 							· · · · · · · ·		2
3			 light brown, soft, wet to moist low plasticity CLAY - silty 			6192		· · · · · · · · · · · · · · · · · · ·	•	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•••••	· · · · · · · ·	(Gravel: 0.0%, Sand: 24.1%, Silt: 55.3%, Clay: 20.6%	
J			 brown mottled grey, firm, mois high plasticity trace silt inclusion (< 6 mm in 			6193		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · ·		
5						-194						*			· · · · · · · · ·		
5						6195		· · · · · · · · · · · · · · · · · · ·							· · · · · · · · ·		
			- grey mottled brown, trace oxid	dation from 6.1 m to 7.6 m				· · · · · · · · · · · · · · · · · · ·							· · · · · · · ·		
7			- grey, soft to firm from 7 m to 8	.2 m		6196		· · · · · · · · · · · · · · · · · · ·	+•						· · · · · · · · · · · · · · · · · · ·	Gravel: 0.0%, Sand: 0.0%, Silt: 20.7%, Clay: 79.3%, AASHTO Classification (A-7-6)	2
3					T	197						*	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·		2
)			- trace silt inclusion (< 6 mm in - soft to firm below 9.14 m	dia.) from 9.1 m to 10.7 m					-	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		
10						5198			GGED BY		hallhre	him	· · · · · · · · · · · · · · · · · · ·			ETION DEPTH: 13.87 m	
			AECOM						/IEWED I					_		ETION DEPTH: 13.87 m ETION DATE: 10/26/14	

- H			erley Underpass		С	LIEN	IT: C	ity of W	nnipeg					TES	STHOLE NO: TH14-2	28
- F			<i>I</i> : 14U, 5523511 m N, 6308	871 m E											OJECT NO .: 6032114	
- H	SAMP		Maple Leaf Drilling Ltd.	SHELBY TUBE			OD: T SPO	125 mn	<u>1 SSA</u> ■BU				NO REC		EVATION (m): 233.80 RY)
- H	BACK		BENTONITE	GRAVEL					GR			~				
_	DEPTH (m)	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SPT (i 0 20	ETRATION 1 # Becker # ynamic Co Standard Pe Standard	TESTS K nne ⇔ nn Test) ♦ m) 80 100 /t ■ 20 2' Liquid	<u>D</u>	JNED SHE + Torva × QU □ Lab V △ Pocket ♥ Field \ (kP	ane + /2 × /ane □ : Pen. △ /ane		COMMENTS	ELEVATION
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA -REVISION 1.GPJ UMA WINN.GDT 1/12/15	-11 -11 -12 -13 -14 -15 -16 -17 -18 -19		- some sand, some gravel from Glacial Till (SILT) - some grave trace clay - light grey, very dense, moist, - low plasticity END OF TEST HOLE AT 13.87 2. Seepage was observed from 3. Sloughing was observed from 3. Slou	I, some sand, some to M IN Glacial Till (SILT). T m in Glacial Till (SILT). T m in Glacial Till . silt layer below 2.1 m. m silt layer below 2.1 m. andpipe piezometer nd surface with 0.3 m t up to 0.3 m below ground igh up to 11 m and silica surface and plugged with		G199 T200 T201 S202 G203	23								SPT Blow Count: (10,10,13) 75 %Recovery	222 222 221 221 220 219 219 218 217 216 215
F TEST	- 20		A=COM						ED BY: S			<u>`</u>			ETION DEPTH: 13.87 m	
0 90			AECOM						NED BY:			halil		MPLE	ETION DATE: 10/26/14 Page	2 of 2
ᆚᄂ								1.1.000							i ago	

			erley Underpass		С	LIEN	IT: C	ity of	^r Winnipeg	<u>j</u>					THOLE NO: TH14-2	
			1: 14U, 5523602 m N, 630	869 m E											JECT NO.: 603211	
			Maple Leaf Drilling Ltd.						mm SSA						VATION (m): 233.42	2
SAMP			GRAB			-	IT SPO	ON				-				
BACK	FILL	TYPE	BENTONITE	GRAVEL]slo	UGH	-		ROUT		-			SAND	-
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆S 0 16	PENETRATIOI	r ¥ Cone ◇ Pen Te Omm) 50 8 t Wt ■ 9 20 Liquit	st) ✦ 0 100 0 21	× □ L △ Po	Forvane +		COMMENTS	Ĩ
0			CLAY (FILL) - silty, sandy, trac - black, moist when thawed, fro	e gravel ozen to 0.76 m												
1			- firm below 0.76 m			G204			•							2
			- wet at 1.4 m													2
2			CLAY - some silt - brown mottled grey, moist, fir - high plasticity	m		T205			-			**				
0						G206			•							2
)			- silty, trace silt inclusions (< 6	mm in dia.) below 3.1 m		G207		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
ļ								· · · · · · ·								
ō						T208 G209										
6			- soft below 6.1 m			G210										
7																
			- grey below 7 m													2
}		Ţ				T211 G212		· · · · · · · · · · · · · · · · · · ·								
)						G212										
10																
				I					GGED BY:		afa A	lkiki			TION DEPTH: 15.79 m	1
			AECOM						VIEWED B					UMPLE	TION DATE: 12/1/14 Page	-

			erley Underpass		(CLIEN	IT: C	ity of	Winnipe	g					STHOLE NO: TH14-2	
			<i>I</i> : 14U, 5523602 m N, 630	869 M F											OJECT NO.: 603211	
			Maple Leaf Drilling Ltd.						mm SSA						EVATION (m): 233.42	2
			GRAB		-	_	IT SPO	ON		BULK			NO RE			
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ	SLO	UGH			GROUT			CUTTI		SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	Plastic MC	er ¥ Cone ◇ J Pen Test) 00mm) 60 80 iit Wt ∎ 1) 19 20 Liquid) ♦	JNDRAINED SHE + Torv × QL □ Lab \ △ Pocke ◆ Field ` (kF 50 10	ane + I/2 × /ane □ t Pen. △ Vane ● Pa)		COMMENTS	
10	\square								· · · · · · · · · · · · · · · · · · ·							
-11						 T214		· · · · · · · · · · · · · · · · · · ·				∠>₩				22
						G215			•			· · · · · · · · · · · · · · · · · · ·				2
12	Í		SILT - some clay to clayey - grey, soft, moist to wet								· · · · · · ·				· · ·	
	00000		Glacial Till (SILT) - some clay, - light grey, compact, wet, - low plasticity	some sand, trace gravel	X	S216	22				· · · · · ·				SPT Blow Count: (3,8,14) Recovery 94%	2
13	00000					G217					· · · · · · ·					
14	00000		- light brown, dense below 13.	7 m		S218	46				· · · · · ·				SPT Blow Count:	2
	00000					G219					· · · · · ·				(15,24,22) Recovery 72%	2
15	0.000					7	50/	· · · · · · · · · · · · · · · · · · ·			· · · · · · ·					
	000		- very dense below 15.3 m		X	S220	50/ 102mm 50/	.● 				••••••			SPT Blow Count: (13,50/102) Recovery	2
16			END OF TEST HOLE AT 15.7 NOTES: 1. Power auger refusal at 15.7	9 m in Glacial Till.	_>	S221	50/ 102mm	1 			». 				100% SPT Blow Count: (50/102) Recovery 100%	
17			 No sloughing was observed Seepage was observed at 1 level. Installed 25 mm diameter st (SP14-29) to 15.7 m below gro 	.4 to1.5 m below ground andpipe piezometer							· · · · · · ·					2
			casagrande tip and flush mour 5. Test hole backfilled with sili ground surface, bentonite up to silica sand to ground surface.	nt at ground surafce. ca sand up to 14 m below				· · · · · · · · · · · · · · · · · · ·			· · · · · · ·				- - - -	2
18			6. Groundwater monitoring: - Dec. 06, 2014 at Elv. 225.2 n - Dec. 18, 2014 at Elv. 225.6 n	1. 1.				 			· · · · · · ·					
19								 			· · · · · · ·					
IJ								· · · · · · · · · · · · · · · · · · ·								
20									· · · · · · · · · · · · · · · · · · ·							
				I			•		GGED BY		a All	kiki	C	OMPL	ETION DEPTH: 15.79 m	1
			AECOM					RE'	/IEWED E				C	OMPL	ETION DATE: 12/1/14	

		Waverley Underpass		С	LIEN	IT: C	ity o	f Winnipeg			STHOLE NO: TH14-3	
		I: UTM: 14U, 5523626 m N, 63	1117 m E								ROJECT NO .: 6032114	48
		TOR: Maple Leaf Drilling Ltd.						mm SSA			EVATION (m):	
SAMP	'LE T	YPE GRAB	SHELBY TUBE		JSPLI ∣	IT SPO	ON	BULK		RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESCI	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	0	PENETRATION TESTS	□ Lab Vane □ △ Pocket Per ④ Field Vane 1 (kPa)	+ : ::	COMMENTS	
0		SAND (FILL) - some gravel, trace co - brown, moist, frozen	bble									
		CLAY AND SILT, some sand, trace - brown, firm, moist,	sulphates					· · · · · · · · · · · · · · · · · · ·			Gravel: 0.0%, Sand :	
		- low plasticity			G226						16.8%, Silt: 37.4 %, Clay: 45.9%	
I								· · · · · · · · · · · · · · · · · · ·			Oldy. 40.3 /0	
								· · · · · · · · · · · · · · · · · · ·				
								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·			
,												
					000-			· · · · · · · · · · · · · · · · · · ·				
					G227			· · · · · · · · · · · · · · · · · · ·				
								· · · · · · · · · · · · · · · · · · ·				
								······		· · · · · · · · · · · · · · · · · · ·		
3												
					G228							
					6228							
								· · · · · · · · · · · · · · · · · · ·				
1								······································				
					0.000			· · · · · · · · · · · · · · · · · · ·				
		END OF TEST HOLE AT 4.6 m IN C	LAY AND SILT.		G229			· · · · · · · · · · · · · · · · · · ·				
		NOTES: 1. No sloughing was observed upon						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
5		2 Seepage observed at 3.7 m						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••••		
,		3. Test hole backfilled with auger cu sealed with bentonite at surface.	ango ana sinca sana, ana					· · · · · · · · · · · · · · · · · · ·				
								· · · · · · · · · · · · · · · · · · ·				
								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
6											ETION DEPTH: 4.57 m	
		AECON	1					GGED BY: Aaron Ka VIEWED BY:	iuzi liak		ETION DEPTH: 4.57 m ETION DATE: 12/2/14	
			•					OJECT ENGINEER:	Faris Khalil		Page	1 c

G G			Waverley Underpass		CL	IEN	T: Ci	ty of	Winnipe	g					THOLE NO: TH14-3	
SAMPLE TYPE GRAB Implementation Solution Solution Cone Implementation Solution Solut				31090 m E												48
Image: Solid DESCRIPTION Image: Solid DE																
United SOIL DESCRIPTION Image: Soil and the second of the	SAMF	ίLE Τ΄ Γ	YPE GRAB			SPLI	I SPO						*		 r LECORE	
0 SAND (FLU), grevely, some oobbie, trace organics 1 CLAY - dhy has sand - homon, firm most, - high plastody 2 CLAY - dhy has sand - homon, firm most, - high plastody 3 SLT - dayey 1 SLT - dayey - brown, very soft, moist to wet, - intermediate plastody 4 SLT - dayey 5 Store THET HOLE AT 4.8 m IN SILT. No bloghing was observed upon dilling completion. 2. Store The bloght of the store of the	DEPTH (m)	SOIL SYMBOL	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SI 0 : 16 1	 ★ Beck ◆ Dynamic PT (Standard (Blows/30 20 40 ■ Total Ur (kN/n 7 18 Plastic MC 	er ¥ Cone ◇ d Pen Te 00mm) 60 8 iit Wt ■ 1 ³) 19 20 Liquid	st) ✦ 0 100 0 21 d	2	+ Tor × Q □ Lab △ Pocke ● Field (k	vane + U/2 X Vane □ et Pen. △ I Vane � Pa)	COMMENTS	
1 CLAY - sily, tace sand - brown, fmr, mist, - high plasticity 2 6223 3 G224 4 SILT - clayey - brown, very soft, moist to vet, - intermediate plasticity 6 6	0			le, trace organics												
3 SILT - dayey 3 SILT - dayey - intermediate plasticity - 4 - BND OF TEST HOLE AT 4.6 m IN SILT. NOTES: - 1. No sloughing was observed upon drilling completion. 2. Seepage was observed at 3.7 m. 3. Test hole backfilled with cuttings and slice sand, and sealed with bentonite at surface. 4 IOGGED BV. Aaron Kelurniak	1		- brown, firm, moist,			3222										
SILT - clayey - brown, very soft, moist to wet; - intermediate plasticity END OF TEST HOLE AT 4.6 m IN SILT. NOTES: 1. No sloughing was observed upon drilling completion. 2. Seepage was observed 1.7 m. 3. Test hole backfilled with outlings and silica sand, and sealed with bentonite at surface. DOCED BY: Aaron Katurniak COMPLETION DEPTH: 4.57 m	2					G223		· · · · · · · · · · · · · · · · · · ·	•							
G225 END OF TEST HOLE AT 4.6 m IN SILT. NOTES: 1. No sloughing was observed upon drilling completion. 2. Seepage was observed at 3.7 m. 3. Test hole backfilled with cuttings and silica sand, and sealed with bentonite at surface. DGGED BY: Aaron Kaluzniak	3		 brown, very soft, moist to wet, 			5224										
NOTES: 1. No sloughing was observed upon drilling completion. 2. Seepage was observed at 3.7 m. 3. Test hole backfilled with cuttings and silica sand, and sealed with bentonite at surface. LOGGED BY: Aaron Kaluzniak COMPLETION DEPTH: 4.57 m	ł					G225		· · · · · · · · · · · · · · · · · · ·								
LOGGED BY: Aaron Kaluzniak COMPLETION DEPTH: 4.57 m	ō		NOTES: 1. No sloughing was observed upo 2. Seepage was observed at 3.7 m 3. Test hole backfilled with cuttings	n drilling completion.								-		1		
AECOM REVIEWED BY: COMPLETION DATE: 12/2/14	6		ΑΞΟΟΛ								n Kalı	ızniak				

		Waverley Underpass		С	LIEN	NT: C	ity o	Winr	nipeg						THOLE NO: TH14-3	
		: UTM: 14U, 5523594 m N, 6309	979 m E												DJECT NO.: 603211	48
		FOR: Maple Leaf Drilling Ltd.				IOD:							1		VATION (m):	
SAMP		(PE GRAB	SHELBY TUBE		SPL	IT SPO	ON		BUL	K			-	COVER	Y CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCR	IPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦S 0	₩ I ♦ Dyna PT (Stail (Blov 20 4 ■ Tot (17 18 Plastic	ATION T Becker * amic Cor ndard Per ws/300mr 0 60 al Unit W kN/m ³) 3 19 MC 0 60	é n Test) ◀ m) 80 1/ t∎ 20 5	• 00 21	+ Tor × Q □ Lab △ Pock ♥ Field (k	HEAR STR vane + U/2 × Vane □ et Pen. △ Vane � Vane ♥ :Pa)	s	COMMENTS	
0		SAND (FILL) - gravelly, trace cobble, t	race organics					20 4						200		
		- brown, nozen										· · · · · · · · · · · · · · · · · · ·				
	\bigotimes	CLAY (FILL) - some gravel - grey, moist, frozen														
									····			· · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
1																
												: 				
												· · · · · · ·				
	\bigotimes															
2		aphble (200 mm in dia angular) at 2														
	₩¥,	- cobble (200 mm in dia., angular) at 2 CLAY - silty, trace sand lenses			0000					••••		: 				
		 brown to grey, moist, firm 			G230							· · · · · · ·				
		- high plasticity - trace sulphates														
									····							
2												· · · · · · ·				
)																
					G231			·····	•	••••		• • • • • • • •				
										••••						
									· · · · · · · · · · · · · · · · · · ·	••••						
											• • • • • • • • •					
ł									••••••	••••						
					G232	2										
		END OF TEST HOLE AT 4.6 m IN CLA NOTES:	ΑY.				ļ									
		1. Seepage was observed at 2.0 m.														
5		 Sloughing was observed at 2.0 m. Test hole backfilled with cuttings and 	d silica sand, and sealed													
		with bentonite at surface.						: 				: : :	; ;			
									· · · · · · · ·							
												· · · · · · ·				
								÷								
6							<u></u>	<u>.</u>		····			<u>.</u>			
										aron K	aluznial	<			TION DEPTH: 4.57 m	
		AECOM							ED BY:		Faris I	(heli'	C	OMPLE	TION DATE: 12/2/14 Page	1

Appendix C Laboratory Test Results

Unit 6 - 854 Marion Street Winnipeg, Manitoba R2J 0K4 eng-tech@mts.net www.eng-tech.ca

ROCK CORE

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7

File No.: 14-027-01 Ref. No.: 14-27-1-10

Attention: Saba Ibrahim

Project: WAVERLY UNDERPASS; PROJECT # 60321148

Contractor:-Page:1 of 1Date Cored:July 10, 14 and 15Date Received:Nov 10/14Cored By:ClientReceived By:ENG-TECH

Core		5		Average	Compressive	Date Tested	
No.	Location	Cored (mm)	Tested (mm)	Diameter (mm)	Strength (MPa)	(m/d/y)	
1	TH 14-02; sample No. R7, 24.0 – 24.3m.	254	113	63.0	194.4	Nov 13/14	
2	TH 14-03; sample No. C6, 22.48 – 22.80m.	331	116	60.8	120.9	Nov 13/14	
3	TH 14-04; sample No. R9, 25.4 – 25.6m.	244	118	60.9	114.9	Nov 13/14	

_ METHOD ASTM D 2938

MOISTURE CONDITIONED

x_OTHER (As received)

METHOD OTHER

DRY CONDITIONED

Comments: The unconfined strength was determined in accordance with ASTM D2938-95 procedure with the cores in the as received moisture content. Core # 3 contained a vertical crack from the top to the bottom of specimen (as received).

Email: saba.ibrahim@aecom.com

ENG-TECH Consulting Limited

per Danny Holfeld, Principal Ph: (204) 233-1694 Fx: (204) 235-1579

AECOM Canada Ltd. ATTN: SABA IBRAHIM 99 Commerce Drive Winnipeg MB R3P 0Y7 Date Received:17-SEP-14Report Date:26-SEP-14 08:06 (MT)Version:FINAL

Client Phone: 204-928-8461

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1519224 NOT SUBMITTED 60321148

Judy Dalmaijer Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🐊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details	/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1519224-1	G2 G2-DEPTH 4' (TH14-01)							
Sampled By:	CLIENT on 17-SEP-14							
Matrix:	soil							
	ous Parameters							
% Moisture		24.2		0.10	%	19-SEP-14	20-SEP-14	R2953394
Sulphate		0.0187		0.0020	%	23-SEP-14	24-SEP-14	R2959632
Resistivity		2970		100	ohm cm	20-SEP-14	20-SEP-14	R2953569
рН		7.93		0.10	pH units	23-SEP-14	23-SEP-14	R2955764
L1519224-2	G12 G12-DEPTH 33' (TH14-01)							
Sampled By:	CLIENT on 17-SEP-14							
Matrix:	soil							
Miscellaneo	ous Parameters							
% Moisture		38.2		0.10	%	19-SEP-14	20-SEP-14	R2953394
Sulphate		0.116		0.0020	%	23-SEP-14	24-SEP-14	R2959632
Resistivity		890		100	ohm cm	20-SEP-14	20-SEP-14	R2953569
рН		7.99		0.10	pH units	23-SEP-14	23-SEP-14	R2955764
L1519224-3	G17 G17-DEPTH 12.5 (TH-02)							
Sampled By:	CLIENT on 17-SEP-14							
Matrix:	soil							
	ous Parameters							
% Moisture		35.4		0.10	%	20-SEP-14	21-SEP-14	R2954088
Sulphate		0.0369		0.0020	%	23-SEP-14	24-SEP-14	R2959632
Resistivity		2870		100	ohm cm	20-SEP-14	20-SEP-14	R2953569
рН		7.84		0.10	pH units	23-SEP-14	23-SEP-14	R2955764
L1519224-4	G20 G20-DEPTH 22.5 (TH14-02)							
Sampled By:	CLIENT on 17-SEP-14							
Matrix:	soil							
Miscellaneo % Moisture	ous Parameters				0/	00.055.44		D0054000
		34.5		0.10	%	20-SEP-14 23-SEP-14	21-SEP-14 24-SEP-14	R2954088
Sulphate		0.102 1430		0.0020 100	ohm cm	23-SEP-14 20-SEP-14	24-SEP-14 20-SEP-14	R2959632
Resistivity pH		7.99		0.10	pH units	20-SEP-14 23-SEP-14	20-SEP-14 23-SEP-14	R2953569 R2955764
-		7.99		0.10		23-3EF-14	23-3EF-14	R2900704
L1519224-5	G43 G43-DEPTH 8' (TH14-04)							
Sampled By:	CLIENT on 17-SEP-14							
Matrix: Miscellaneo	soil ous Parameters							
% Moisture		29.0		0.10	%	20-SEP-14	21-SEP-14	R2954088
Sulphate		0.0089		0.0020	%	23-SEP-14	24-SEP-14	R2959632
Resistivity		2340		100	ohm cm	20-SEP-14	20-SEP-14	R2953569
pH		7.86		0.10	pH units	23-SEP-14	23-SEP-14	R2955764
<u> </u>				-				

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**	
MOISTURE-WT	Soil	% Moisture	Gravimetric: Oven Dried	
PH-WT	Soil	рН	MOEE E3137A	
Soil samples are mixed	d in the deionize	ed water and the supernatant is anal	yzed directly by the pH meter.	
RESISTIVITY-WT	Soil	Resistivity	MOEE E3137A	
Resistivity on a soil is a 2:1 extraction of DI water to soil. Sample is tumbled for 30 min. Conductivity of the extraction is taken and the inverse is calculated for resistivity.				
SO4-WT	Soil	Sulphate	EPA 300.0	

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

				1 4 5 4 0 0 0		• D	055 44	_	
			Workorder:	L151922	4	Report Date: 26	-SEP-14	Pa	ge 1 of 2
Client:	99 Comm	Canada Ltd. erce Drive MB_R3P 0Y7							
Contact:	SABA IBF	RAHIM							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT		Soil							
Batch R	2953394								
WG1955193-2 % Moisture	LCS			99.4		%		70-130	20-SEP-14
WG1955193-1 % Moisture	МВ			<0.10		%		0.1	20-SEP-14
Batch R	2954088								
WG1955579-2 % Moisture	LCS			100.2		%		70-130	21-SEP-14
WG1955579-1 % Moisture	МВ			<0.10		%		0.1	21-SEP-14
PH-WT		Soil							
Batch R	2955764								
WG1956416-1 рН	DUP		L1519224-1 7.93	7.90	J	pH units	0.03	0.3	23-SEP-14
WG1957107-1 рН	LCS			7.00		pH units		6.9-7.1	23-SEP-14
WG1957107-2 рН	LCS			7.02		pH units		6.9-7.1	23-SEP-14
RESISTIVITY-WT		Soil							
Batch R	2953569								
WG1955539-2 Resistivity	DUP		L1519224-5 2340	2700		ohm cm	15	25	20-SEP-14
SO4-WT		Soil							
Batch R	2959632								
WG1957297-3 Sulphate	DUP		L1519224-1 187	187		mg/kg	0.1	30	24-SEP-14
WG1957297-2 Sulphate	LCS			101.2		%		70-130	24-SEP-14
WG1957297-1 Sulphate	MB			<20		mg/kg		20	24-SEP-14

Quality Control Report

Workorder: L1519224

Report Date: 26-SEP-14

Legend:

_		
	Limit	ALS Control Limit (Data Quality Objectives)
	DUP	Duplicate
	RPD	Relative Percent Difference
	N/A	Not Available
	LCS	Laboratory Control Sample
	SRM	Standard Reference Material
	MS	Matrix Spike
	MSD	Matrix Spike Duplicate
	ADE	Average Desorption Efficiency
	MB	Method Blank
	IRM	Internal Reference Material
	CRM	Certified Reference Material
	CCV	Continuing Calibration Verification
	CVS	Calibration Verification Standard
	LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
CC		
Subject	Waverly Underpass	
From	Faris Khalil	
Date	December 8, 2014	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Two (2) Moisture Content tests.
- Two (2) Atterberg Limits (3 points) tests.
- Two (2) Grain Size Distribution (hydrometer method) tests.

If you have any questions, please contact the undersigned.

Sincerely,

Faris Khalil, M.Sc., PMP, P.Eng. Manager, Geotechnical Engineering

Att.

AECOM Canada Ltd. Winnipeg Geotechnical Laboratory 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7 Phone: 204 477 5381 Fax: 20

Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	
Client:	Dillon Consulting	Field Technician:	Slbrahim	
Sample Location:	Varies	Sample Date:	Varies	
Sample Depth:	Varies	Lab Technician:	EManimbao	
Sample Number:	Varies	Date Tested:	November 27, 2014	

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH14-17	G113	0.91 - 1.07 m	28.0				
TH14-28	G196	7.01 - 7.16 m	50.0				
				-			
							-
	+						
			1				
	+		<u>+</u>				

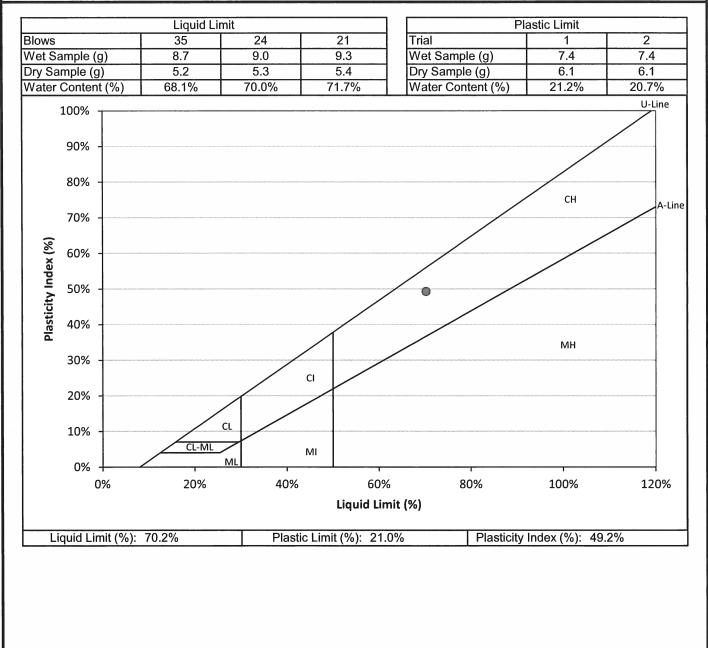

AECOM Canada Ltd. Winnipeg Geotechnical Laboratory 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7 Phone: 204 477 5381 Fax:

Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	TH14-28	Sample Date:	November 1, 2014
Sample Depth:	7.01 m	Lab Technician:	EManimbao
Sample Number:	G196	Date Tested:	December 3, 2014

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils


AECOM Canada Ltd. Winnipeg Geotechnical Laboratory 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7 Phone: 204 477 5381 Fax:

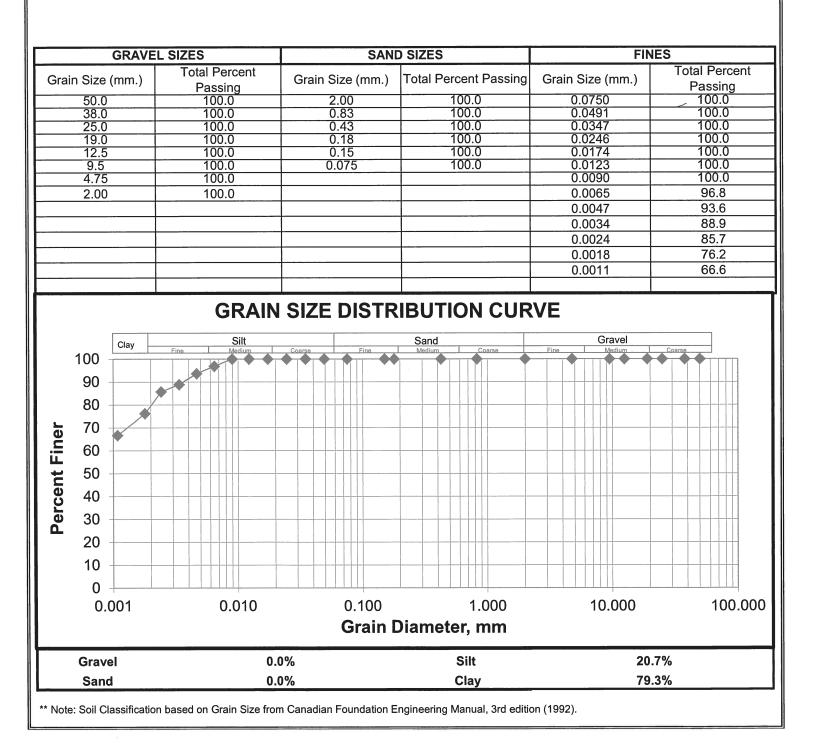
Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	SIbrahim
Sample Location:	TH14-17	Sample Date:	November 1, 2014
Sample Depth:	0.91 m	Lab Technician:	EManimbao
Sample Number:	G113	Date Tested:	December 3, 2014

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

GRAIN SIZE DISTRIBUTION (ASTM D422-63)


MATERIALS LABORATORY AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpas	s Phase II
1-Dec-14	
MLotecki	

Hole No.:	14-28
Sample No.:	G196
Depth:	7.01 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (SIbrahim)

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60321148		
Dillon Consult	ing	
Waverley Und	erpass Phase II	
1-Dec-14		
MLotecki		

Hole No.:	14-17
Sample No.:	G113
Depth:	0.91 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		SAN	SAND SIZES FINES		
Grain Size (mm.)	Total Percent	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent
, ,	Passing		-		Passing
50.0	100.0	2.00	100.0	0.0750	97.0
38.0	100.0	0.83	99.8	0.0510	93.6
25.0	100.0	0.43	99.4	0.0363	92.1
19.0	100.0	0.18	99.2	0.0261	88.9
12.5	<u> </u>	0.15 0.075	98.6 97.0	0.0186 0.0133	87.3 85.7
9.5 4.75	100.0	0.075	97.0	0.0098	84.1
2.00	100.0			0.0070	80.9
				0.0050	77.8
				0.0036	76.2
				0.0026	73.0
				0.0018	69.8
				0.0011	65.1
				0.0011	
Clay	Silt		Sand	Gravel	
100 Ciay	Fine Medium	Coarse Fine	Medium Coarse	Fine Medium	Coarse
100					
90					
00					
80					
₩ 70					
60					
± 50					
Ē ³⁰					
9 40					
a 30					
20					
10					
0					
			1 225	10.000	100 00
0.001	0.010	0.100	1.000	10.000	100.00
		Grain [Diameter, mm		
Gravel	0.	0%	Silt	24.4	4%
	_	.1%	Clay	70.5	

Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	Varies	Sample Date:	Varies
Sample Depth:	Varies	Lab Technician:	MLotecki
Sample Number:	Varies	Date Tested:	December 4, 2014

Group Index (ASTM D3282-09)

Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes

Location	Sample	Depth (m)	% Passing No. 200	Liquid Limit	Plasticity Index	Group Classification
TH14-28	G196	7.01 - 7.16 m	100.0	83.9	57.9	A-7-6(68)
TH14-17	G113	0.91 - 1.07 m	97.0	70.2	49.2	A-7-6(54)
· · · · · · · · · · · · ·					10.2	/// 0(04)
				· · · · · · · · · · · · · · · · · · ·		
			-			

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
сс		
Subject	Waverly Underpass	
From	Faris Khalil	
Date	December 16, 2014	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Eighteen (18) Moisture Content tests.
- One (1) Atterberg Limits (3 points) test.
- One (1) Grain Size Distribution (hydrometer method) test.
- Two (2) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength, on Shelby tube samples.
- One (1) Oedometer Consolidation test.

If you have any questions, please contact the undersigned.

Sincerely,

Faris Khalil, M.Sc., PMP, P.Eng. Manager, Geotechnical Engineering

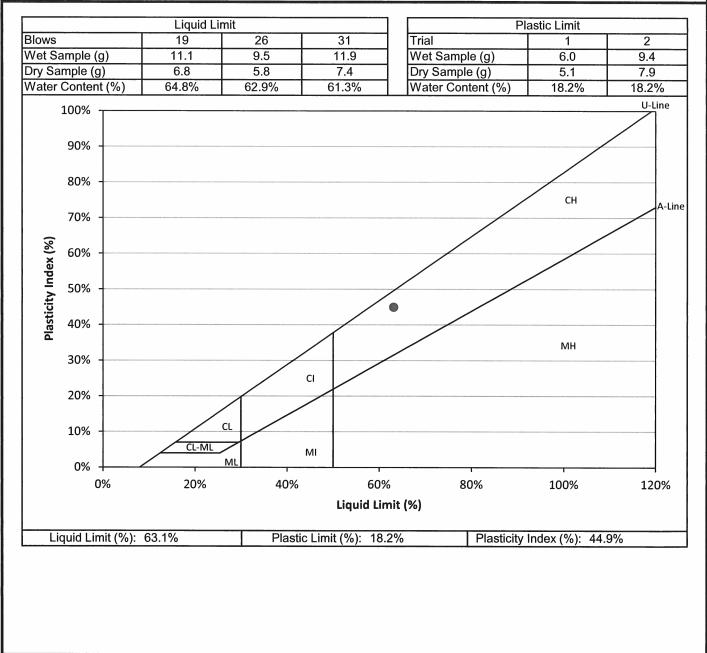
Att.

Fax: 204 284 2040

Project Name:	Waverly Underpass Phase III	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting Ltd.	Field Technician:	AKaluzniak
Sample Location:	Varies	Sample Date:	Varies
Sample Depth:	Varies	Lab Technician:	EManimbao
Sample Number:	Varies	Date Tested:	December 4, 2014

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass


Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH14-30	G226	0.76 - 0.91 m	43.3		<u> </u>		
_	G228	3.35 - 3.51 m	47.2				
TH14-31	G223	1.83 - 1.98 m	31.4		1		
_	G224	2.74 - 2.90 m	33.6				1
TH14-32	G230	2.13 - 2.29 m	42.6				
-	G231	3.35 - 3.51 m	48.5				
TH14-29	G204	0.84 - 0.99 m	29.3		1 1		
-	G206	2.29 - 2.44 m	39.0				
-	G209	5.33 - 5.49 m	47.6				
-	G210	6.10 - 6.25 m	53.4				
-	G212	8.38 - 8.53 m	50.7				
-	G213	9.14 - 9.30 m	58.8				
-	G215	11.43 - 11.58 m	38.4				
-	S216	12.19 - 12.34 m	14.2			· · · <u></u>	
-	G217	12.95 - 13.11 m	13.8				
-	S218	13.72 - 13.87 m	10.3				
-	G219	14.48 - 14.63 m	9.1				
-	S220	15.24 - 15.39 m	11.1				
							1
I.							

Fax: 204 284 2040

Project Name:	Waverly Underpass Phase III	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	AKaluzniak
Sample Location:	TH14-31	Sample Date:	November 1, 2014
Sample Depth:	1.83 m	Lab Technician:	MLotecki
Sample Number:	G223	Date Tested:	November 26, 2014

Atterberg Limits

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By: 60321148 Dillon Consulting Waverley Underpass Phase III 9-Dec-14 MLotecki Hole No.:TH14-30Sample No.:G226Depth:0.76 mDate Sampled:2-Dec-14Sampled By:AECOM (AKaluzniak)

GRAVEL SIZES		SAN	D SIZES	FIN	
Grain Size (mm.)	Total Percent	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent
	Passing		-	, ,	Passing
50.0	100.0	2.00	100.0	0.0750	89.4
38.0	100.0	0.83	97.8	0.0544	80.9
25.0	100.0	0.43	95.4	0.0394	76.2
19.0	100.0	0.18	93.6	0.0284	71.4
12.5	100.0	0.15	92.6	0.0204	68.2
9.5	100.0	0.075	89.4	0.0147	63.5
4.75	100.0			0.0109	60.3
2.00	100.0			0.0078	55.5
				0.0056	52.3
				0.0040	50.8
				0.0028	49.2
				0.0020	46.0
				0.0012	42.8
				0.0012	42.0
Clay	Silt		Sand	Gravel	
	Fine Medium	Coarse Fine	Medium Coarse	Fine Medium	Coarse
90					
80					
00					
א 70			+ + + + + + + + + + -		
20 Percent Finer 20 Percent Finer 20 Percent Finer					
5 0					
3 40					
o 30					
20					
10					
10					
10			4 000	40.000	
10	0.010	0.100	1.000	10.000	100.00
10	0.010		1.000 Diameter, mm	10.000	100.00
10	0.010	Grain [10.000	

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

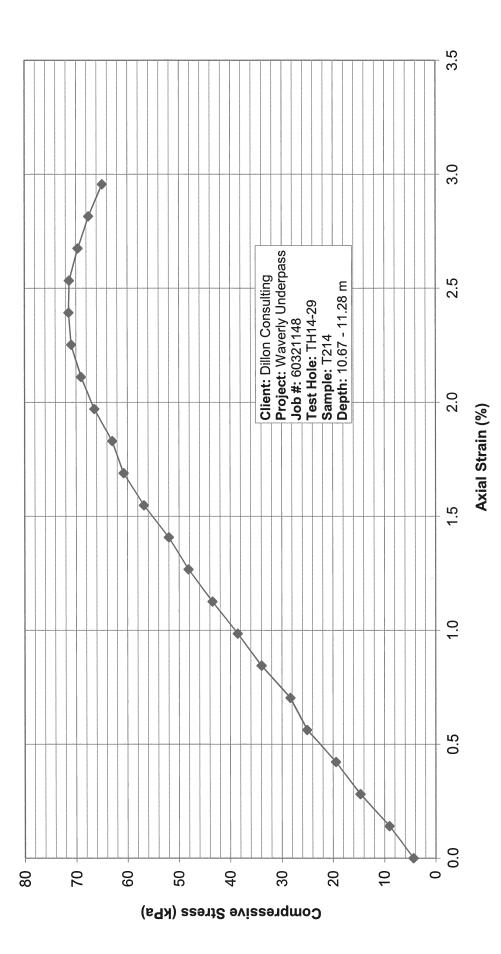
TEST HOLE NO.:	TH14-29
SAMPLE NO.:	T214
SAMPLE DEPTH:	10.67 - 11.28 m
DATE TESTED:	9-Dec-14
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.40
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	39.2
Undrained Shear Strength (ksf)	0.82
POCKET PENETROMETER	
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	71.4
Unconfined compressive strength (ksf)	1.5
Undrained Shear Strength (kPa)	35.7
Undrained Shear Strength (ksf)	0.746
MOISTURE CONTENT	
Tare Number	AB01
Wt. Sample wet + tare (g)	415.2
Wt. Sample dry + tare (g)	282.2
Wt. Tare (g)	8.7
Moisture Content %	48.6
BULK DENSITY	
B	1110.8
Sample Wt. (g) Diameter 1 (cm)	<u>1119.8</u> 7.23
Diameter 7 (cm)	7.22
	= ~~
Avg. Diameter 3 (cm)	7.23
Length 1 (cm)	15.35
Length 2 (cm)	15.36
Length 3 (cm)	15.30
Avg. Length (cm)	15.34
Volume (cm ³)	629.1
Moisture content (%)	48.6
Bulk Density (g/cm ³)	1.780
Bulk Density (kN/m ³)	17.5
Bulk Density (kt/m) Bulk Density (pcf)	111.1
Dry Density (kN/m ³)	11.75

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

	Dillon Consulting
PROJECT:	Waverly Underpass
	60247924

TEST HOLE NO .:	TH14-29
SAMPLE NO.:	T214
SAMPLE DEPTH:	10.67 - 11.28 m
SAMPLE DATE:	February, 2014
TEST DATE:	9-Dec-14


SOIL DESCRIPTION:								
CLAY; silty, trace silt inclusions, tra	e stones, grey, moist, firm,							
int high plasticity,								
MOISTURE CONTENT:	48.6							

SAMPLE DIAM.(Do):	72.27	(mm)	INITIAL AREA, Ao:	4101.7	(mm²)
SAMPLE LENGTH, (Lo):	153.37	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.12	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL		TOTAL					
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPI	COMPRESSIVE STRESS, O	
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0004	0.00	6.36	4.03	0.63	0.091	4.4
0.02	0.0009	0.14	6.37	8.34	1.31	0.189	9.0
0.03	0.0015	0.28	6.38	13.59	2.13	0.307	14.7
0.03	0.0019	0.42	6.38	17.99	2.82	0.406	19.4
0.04	0.0025	0.56	6.39	23.24	3.63	0.523	25.1
0.05	0.0028	0.70	6.40	26.33	4.11	0.592	28.4
0.06	0.0034	0.84	6.41	31.58	4.92	0.709	34.0
0.07	0.0038	0.99	6.42	35.89	5.59	0.805	38.5
0.08	0.0043	1.13	6.43	40.57	6.31	0.909	43.5
0.09	0.0048	1.27	6.44	44.98	6.98	1.006	48.2
0.09	0.0052	1.41	6.45	48.63	7.54	1.086	52.0
0.10	0.0057	1.55	6.46	53.22	8.24	1.187	56.8
0.11	0.0061	1.69	6.47	56.97	8.81	1.269	60.7
0.12	0.0063	1.83	6.48	59.12	9.13	1.315	62.9
0.13	0.0067	1.97	6.49	62.50	9.64	1.388	66.4
0.13	0.0069	2.11	6.49	65.03	10.01	1.442	69.0
0.14	0.0009	2.11	6.50	66.90	10.01	1.442	70.9
0.14	0.0071	2.25	6.51	67.46	10.29	1.491	70.9
0.15	0.0072	2.59	6.52	67.46	10.36	1.491	71.4
0.16	0.0072	2.53	6.53	65.96	10.34	1.489	69.6
0.17	0.0068	2.82	6.54	64.09	9.80	1.434	67.5
0.18	0.0066	2.96	6.55	61.65	9.41	1.355	64.9
CONFINED COMPRESS		71.41	L/De	1	NOTES:		
(based on maximu		1.491	kPa ksf kPa	-	NOTES:		
ONDIVANCED SHI		00.71	ni a				

FAILURE SKETCH

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

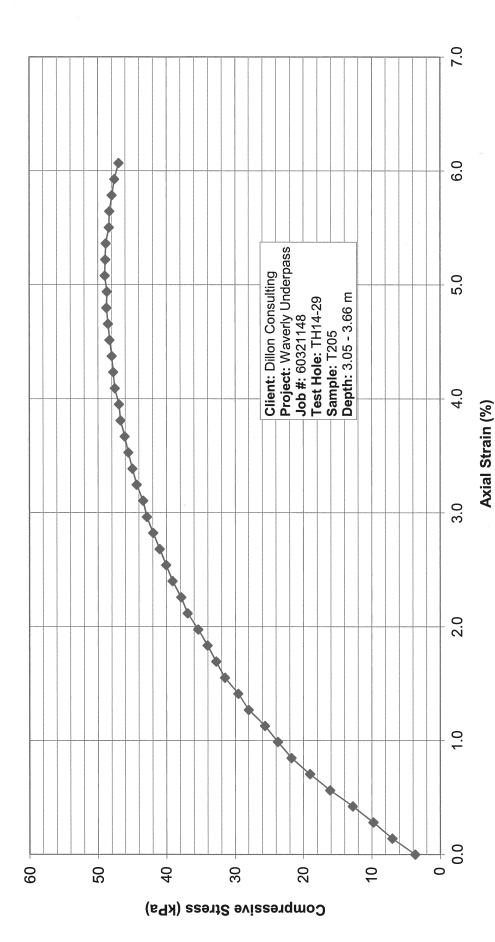
TEST HOLE NO.:	TH14-29
SAMPLE NO.:	T205
SAMPLE DEPTH:	3.05 - 3.66 m
DATE TESTED:	9-Dec-14
	0-000-14
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.30
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	29.4
Undrained Shear Strength (ksf)	0.61
POCKET PENETROMETER	
Reading - Ou (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.75
Undrained Shear Strength (kPa)	35.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	49.0
Unconfined compressive strength (ksf)	1.0
Undrained Shear Strength (kPa)	24.5
Undrained Shear Strength (ksf)	0.512
MOISTURE CONTENT	
Tare Number	AB19
Wt. Sample wet + tare (g)	411.2
Wt. Sample dry + tare (g)	301.2
Wt. Tare (g)	8.6
Moisture Content %	37.6
BULK DENSITY	
Sample Wt. (g)	1156
Diameter 1 (cm)	7.20
Diameter 2 (cm)	7.22
Diameter 3 (cm)	7.22
Avg. Diameter (cm)	7.21
Length 1 (cm)	15.30
Length 2 (cm)	15.32
Length 3 (cm)	15.28
Avg. Length (cm)	15.30
Volume (cm ³)	625.2
Moisture content (%)	37.6
Bulk Density (g/cm ³)	1.849
Bulk Density (kN/m ³)	18.1
Bulk Density (pcf)	115.4
Dry Density (kN/m ³)	13.18

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

Dillon Consulting
Waverly Underpass
60247924

TEST HOLE NO .:	TH14-29
SAMPLE NO.:	T205
SAMPLE DEPTH:	3.05 - 3.66 m
SAMPLE DATE:	February, 2014
TEST DATE:	9-Dec-14


SOIL DESCRIPTION:								
CLAY; silty, trace sand, brown, mois	t, soft, crumbly, high plasticity							
MOISTURE CONTENT:	37.6							

SAMPLE DIAM.(Do):	72.13	(mm)	INITIAL AREA, Ao:	4086.6	(mm²)
SAMPLE LENGTH, (Lo):	153.00	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:	2.12	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.85	(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL		TOTAL			1	<i>(</i>			
AXIAL PROVING COMPRESSION RING		AXIAL AVERAGE STRAIN, E1 CROSS-SECTIONAL AREA, A		APPLIED AXIAL LOAD, P	COMPR	COMPRESSIVE STRESS, σ_c			
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)		
0.01	0.0004	0.00	6.33	3.37	0.53	0.077	3.7		
0.02	0.0007	0.14	6.34	6.47	1.02	0.147	7.0		
0.03	0.0010	0.28	6.35	9.00	1.42	0.204	9.8		
0.03	0.0013	0.42	6.36	11.81	1.86	0.267	12.8		
0.04	0.0016	0.56	6.37	14.90	2.34	0.337	16.1		
0.05	0.0019	0.71	6.38	17.62	2.76	0.398	19.0		
0.06	0.0022	0.85	6.39	20.15	3.15	0.454	21.7		
0.07	0.0024	0.99	6.40	22.02	3.44	0.496	23.7		
0.08	0.0025	1.13	6.41	23.80	3.71	0.535	25.6		
0.09	0.0028	1.27	6.42	26.05	4.06	0.585	28.0		
0.09	0.0029	1.41	6.42	27.55	4.29	0.617	29.6		
0.10	0.0020	1.55	6.43	29.42	4.57	0.658	31.5		
0.10	0.0033	1.69	6.44	30.64	4.76	0.685	31.5		
0.12	0.0034	1.83	6.45	31.86	4.70	0.711	34.0		
0.12	0.0035	1.98	6.46	33.17	5.13	0.739	34.0		
0.14	0.0037	2.12	6.47	34.67	5.36	0.771	36.9		
0.14	0.0038	2.26	6.48	35.61	5.49	0.791	37.9		
0.15	0.0039	2.40	6.49	36.82	5.67	0.817	39.1		
0.16	0.0040	2.54	6.50	37.76	5.81	0.837	40.1		
0.17	0.0041	2.68	6.51	38.70	5.95	0.856	41.0		
0.18	0.0042	2.82	6.52	39.64	6.08	0.876	41.9		
0.19	0.0043	2.96	6.53	40.57	6.22	0.895	42.9		
0.20	0.0044	3.10	6.54	41.13	6.29	0.906	43.4		
0.20	0.0045	3.25	6.55	42.07	6.43	0.925	44.3		
0.21	0.0046	3.39	6.56	42.73	6.52	0.938	44.9		
0.22	0.0046	3.53	6.57	43.38	6.61	0.951	45.6		
0.23	0.0047	3.67	6.58	43.95	6.68	0.962	46.1		
0.24	0.0048	3.81	6.59	44.60	6.77	0.975	46.7		
0.25	0.0048	3.95	6.59	44.88	6.81	0.980	46.9		
0.26	0.0049	4.09	6.60	45.54	6.90	0.993	47.5		
0.26	0.0049	4.23	6.61	45.82	6.93	0.998	47.8		
0.27	0.0049	4.37	6.62	46.10	6.96	1.002	48.0		
0.28	0.0050	4.52	6.63	46.48	7.01	1.009	48.3		
0.29	0.0050	4.66	6.64	46.76	7.04	1.013	48.5		
0.30	0.0050	4.80	6.65	47.04	7.07	1.018	48.7		
0.31	0.0050	4.94	6.66	47.04	7.06	1.017	48.7		
0.31	0.0051	5.08	6.67	47.41	7.10	1.023	49.0		
0.32	0.0051	5.22	6.68	47.41	7.09	1.022	48.9		
0.33	0.0051	5.36	6.69	47.41	7.08	1.022	48.8		
0.34	0.0050	5.50	6.70	47.04	7.00	1.020	48.4		
0.34	0.0050	5.64	6.71	47.04	7.02	1.009	48.3		
0.36	0.0050	5.79	6.72	46.76		1.009	48.3		
0.36	0.0050	5.93	6.73	46.48	6.95 6.90	0.994	47.9		
0.37									
0.37	0.0049	6.07	6.74	45.91	6.81	0.980	46.9		
		1							
		I							
ONFINED COMPRESS			kPa		NOTES:				
(based on maximu		1.023	ksf						
UNDRAINED SH	EAR STRENGTH, S	24.49	kPa						
(based on maximu		0.512	ksf						

FAILURE SKETCH

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

A=COM

Consolidation Test

MATERIALS LABORATORY

AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 284-0580 fax (204) 475-3646

						tel (204) 284-0580	Tax (204) 475-3646		
Client:	Dillon Consulting	btlr			Hole No.		TH14-28		
	Waverley Under				the second se		T197		
Project:		pass Phase II			Sample No.				
Job No:	60321148				Depth:		7.62 - 8.23 m		
Date :	November 28 to	December 12, 2	2014		Sample Description:				
Box Size	70.0	mm φ			Height	20	mm		
							•		
Moisture Content	Intial	Final			Density	Intial	Final	T1	
Tare Number	Inual	Final	4			231.6	227.5	-	
Wt. Wet Soil & Tare (g)	353.4	237.5	1		Wt. Sh. Box & Soil (g) Wt. Sh. Box (g)	102.5	102.5		
Wt. Dry Soil & Tare (g)	233.3	192.6			Wt. Soil Specimen (g)	129.1	125		
Wt. Water (g)	120.1	44.9			Height of Spec. (mm)	20.0	17.7	1 1	
Wt. Tare (g)	8.3	112.6			Volume (mm ³)	76967	67984	1 1	
% Moisture	53.4	56.1	1		Bulk Density (kN/m ³)	16.77	18.39	1 1	
Hs (mm)	8.1	7.7	1		Dry Density (kN/m3)	10.94	11.78	1 1	
Brown down of the second statements				-			•		
Machine #	1				Ring #				
e (void Ratio)	1.47		-		Spec. Gravity (assumed	2.7		-	
								-	
Load	0.209	ka							
Luau	0.203	ĸġ	-						
				Free Swell					
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation	
rine -	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)	
11/28/2014 14:00	0	1674	0	0.00	0.00	1.469	0.53	- (76)	
11/28/2014 14:53	53	1718	7.28	0.11	0.56	1.483	0.53	_	
11/28/2014 15:15	75	1752	8.66	0.20	0.99	1.493	0.53	-	
11/28/2014 16:40	160	1817	12.65	0.36	1.82	1.514	0.53	-	
11/29/2014 16:15	1575	1901	39.69	0.58	2.88	1.540	0.53	· ·	
11/30/2014 14:40	2920	1911	54.04	0.60	3.01	1.543	0.53	-	
12/1/2014 8:30	3990	1914	63.17	0.61	3.05	1.544	0.53		
12/1/2014 11:15	4155	1915	64.46	0.61	3.06	1.544	0.53	-	
								J	
المعط	0.000	l e m	0	100					
Load	0.909	кд	2	LBS					
Load0.909 kg2 LBS									
				solidation Loa	d 1				
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation	
	(min)	Reading	Sq. Root Elapsed Time (min)	Deflection Disp. (mm)	Normal Strain %	(mm)	kPa	(%)	
Time 12/2/2014 9:30	(min) 0	Reading 1915	Sq. Root Elapsed Time (min) 0	Deflection Disp. (mm) 0.00	Normal Strain % 0.00	(mm) 1.514	kPa 25.48	(%) 0.00	
	(min) 0 0.25	Reading 1915 1880	Sq. Root Elapsed Time (min) 0 0.50	Deflection Disp. (mm) 0.00 -0.09	Normal Strain % 0.00 -0.44	(mm) 1.514 1.503	kPa 25.48 25.48	(%) 0.00 0.44	
	(min) 0 0.25 0.5	Reading 1915 1880 1877	Sq. Root Elapsed Time (min) 0 0.50 0.71	Deflection Disp. (mm) 0.00 -0.09 -0.10	Normal Strain % 0.00 -0.44 -0.48	(mm) 1.514 1.503 1.502	kPa 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48	
	(min) 0.25 0.5 1	Reading 1915 1880 1877 1873	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11	Normal Strain % 0.00 -0.44 -0.48 -0.53	(mm) 1.514 1.503 1.502 1.501	kPa 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53	
	(min) 0.25 0.5 1 2	Reading 1915 1880 1877 1873 1867	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61	(mm) 1.514 1.503 1.502 1.501 1.499	kPa 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61	
	(min) 0.25 0.5 1 2 4	Reading 1915 1880 1877 1873 1867 1861	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69	(mm) 1.514 1.503 1.502 1.501 1.499 1.497	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69	
	(min) 0.25 0.5 1 2	Reading 1915 1880 1877 1873 1867	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61	(mm) 1.514 1.503 1.502 1.501 1.499	kPa 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61	
	(min) 0.25 0.5 1 2 4 8 15 30	Reading 1915 1880 1877 1873 1867 1861 1853	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79	
	(min) 0 0.25 0.5 1 2 4 8 15 30 60	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75	Deflection Disp. (mm) -0.00 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89	
	(min) 0.25 0.5 1 2 4 4 8 15 30 60 60 120	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1833 1827	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.21 -0.22	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.79 -0.89 -0.99 -1.04 -1.12	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.494 1.492 1.489 1.488 1.486	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12	
	(min) 0 0.25 0.5 1 1 2 4 8 5 30 60 120 240	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49	Deflection Disp. (mm) -0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.21 -0.23	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.79 -0.89 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17	
	(min) 0 0.25 0.5 1 2 4 8 8 5 30 60 120 240 240 480	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1833 1845 1833 1827 1823 1823 1820	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91	Deflection Disp. (mm) -0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21	
	(min) 0 0.25 0.5 1 1 2 4 8 5 30 60 120 240	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49	Deflection Disp. (mm) -0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.21 -0.23	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.79 -0.89 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17	
	(min) 0 0.25 0.5 1 2 4 8 8 5 30 60 120 240 240 480	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1833 1845 1833 1827 1823 1823 1820	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91	Deflection Disp. (mm) -0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440	Reading 1915 1880 1877 1867 1861 1853 1845 1833 1845 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21	
	(min) 0 0.25 0.5 1 2 4 8 8 5 30 60 120 240 240 480	Reading 1915 1880 1877 1867 1861 1853 1845 1833 1845 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95	Deflection Disp. (mm) -0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440	Reading 1915 1880 1877 1867 1861 1853 1845 1833 1845 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.23 -0.24 -0.25 LBS	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1440	Reading 1915 1880 1877 1873 1867 1853 1845 1837 1828 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.21 -0.23 -0.23 -0.23 -0.24 -0.25 LBS solidation Loa Deflection Disp.	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2 Normal	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 Void Ratio	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 8 5 30 60 120 240 480 1440 1440	Reading 1915 1880 1877 1873 1867 1853 1845 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min)	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 LBS Deflection Disp. (mm)	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2 Normal Strain %	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.485 1.485 1.484 1.483 Void Ratio (mm)	kPa 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.21 1.24	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0	Reading 1915 1880 1877 1873 1867 1853 1853 1845 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 LBS Deflection Disp. (mm) 0.00	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483	kPa 25.48	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 Consolidation (%) 1.24	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 120 240 480 1440 1440	Reading 1915 1880 1877 1873 1867 1853 1845 1837 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 USOLIDIDIDISP. (mm) 0.00 -0.04	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2 Normal Strain %	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478	kPa 25.48 25.096 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 Consolidation (%) 1.24 1.45	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823 1820 1817	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.21 -0.23 -0.23 -0.23 -0.23 -0.24 -0.25 LBS usolidation Loa Deflection Disp. (mm) 0.00 -0.04 -0.05	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.477	kPa 25.48 25.96 25.96 25.96 25.96 25.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 Consolidation (%) 1.24 1.45	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 5 30 60 120 240 240 480 1440 140 140 140 140 140 140 140 0 25 0.5 1	Reading 1915 1880 1877 1873 1867 1853 1845 1833 1827 1823 1820 1817 kg Normal Dial Reading 1817 1801 1798 1795	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 LBS Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.488 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.477 1.476	kPa 25.48 25.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.21 1.24 Consolidation (%) 1.24 1.49 1.52	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 1 2 1 2 4 2 4 0 5 5 1 2 4 0 5 5 5 5 5 5 5 5 5 5 1 2 5 5 5 5 5 5 5 5	Reading 1915 1880 1877 1873 1867 1853 1845 1833 1827 1823 1820 1817 1817 1817 1801 1798 1795 1791	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 ISOlidation Loa Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.494 1.492 1.488 1.486 1.485 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.475	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 (%) 1.24 1.45 1.49 1.52 1.57	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440	Reading 1915 1880 1877 1873 1867 1853 1845 1837 1833 1827 1823 1820 1817 801 1817 1801 1798 1795 1791 1785	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 USOLIDATION LOA Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.28 -0.33 -0.41	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.477 1.475 1.473	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 (%) 1.24 1.45 1.49 1.52 1.57 1.65	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 120 240 480 1440 1440 1440 1440	Reading 1915 1880 1877 1873 1867 1867 1853 1845 1837 1833 1827 1823 1820 1817 Kg Normal Dial Reading 1817 1798 1795 1791 1785 1778	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 LBS Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.50	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.477 1.476 1.473 1.471	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.21 1.24 .24 .45 1.49 1.52 1.57 1.65 1.74	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1455 15 15 15 10 10 10 10 10 10 10 10 10 10	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1833 1827 1823 1820 1817 8817 1801 1798 1795 1791 1785 1776 1766	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.69 -0.99 -1.04 -1.21 -1.24 -1.21 -1.24 -1.25 -0.69 -0.99 -1.04 -1.24 -1.24 -1.24 -1.24 -1.24 -1.24 -1.25 -0.20 -0.28 -0.33 -0.41 -0.28 -0.33 -0.41 -0.28 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.55 -0.55	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.488 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.477 1.476 1.473 1.471 1.467	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 1.04 1.12 1.17 1.21 1.24 Consolidation (%) 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 8 15 30 6 15 15 15 10 10 10 10 10 10 10 10 10 10	Reading 1915 1880 1877 1873 1867 1863 1853 1845 1837 1833 1827 1823 1820 1817 Reading Reading 1817 1801 1798 1795 1771 1778 1766 1754	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 ISOlidation Loa Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13 -0.16	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.55 -0.65 -0.65 -0.80	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.494 1.492 1.488 1.486 1.485 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.477 1.476 1.475 1.471 1.467 1.463	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 (%) 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04	
12/2/2014 9:30 Load	(min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 4 8 15 30 60 120 240 480 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 1455 15 15 15 10 10 10 10 10 10 10 10 10 10	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1833 1827 1823 1820 1817 8817 1801 1798 1795 1791 1785 1776 1766	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.69 -0.99 -1.04 -1.21 -1.24 -1.21 -1.24 -1.25 -0.69 -0.99 -1.04 -1.24 -1.24 -1.24 -1.24 -1.24 -1.24 -1.25 -0.20 -0.28 -0.33 -0.41 -0.28 -0.33 -0.41 -0.28 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.55 -0.55	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.488 1.488 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.478 1.477 1.476 1.473 1.471 1.467	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 1.45 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04 2.18	
12/2/2014 9:30 Load	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1420 1440 1420 1440 1420 1440 1420 1440 1440 1420 1420 1440 1420 1440 1420 1420 1440 1420 1440 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1220 1240 1440 1220 1240 1240 1440 1220 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 125 12 120 120 120 120 120 120 120	Reading 1915 1880 1877 1873 1867 1853 1845 1837 1833 1827 1823 1820 1817 801 1817 1801 1798 1795 1791 1785 1766 1754 1743	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 5.48 7.75	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 -0.25 -0.25 -0.25 -0.06 -0.07 -0.08 -0.07 -0.08 -0.13 -0.19	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.50 -0.65 -0.80 -0.94	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.489 1.488 1.486 1.485 1.484 1.483 1.483 1.483 1.483 1.483 1.477 1.475 1.475 1.475 1.475 1.471 1.463 1.460	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 <td>(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 (%) 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04</td>	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 (%) 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04	
12/2/2014 9:30 Load	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 125 0.5 1 1 2 4 4 8 1440 125 0.5 1 1 2 4 4 8 14 14 120 125 0.5 12 120 120 125 0.5 12 120 120 120 120 120 120 120	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823 1820 1817 1820 1817 1801 1798 1795 1791 1785 1778 1766 1754 1743 1729 1725	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.095 15.49 21.91	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 ISOlidation Loa Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13 -0.16 -0.19 -0.21 -0.22 -0.23	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.55 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.80 -0.94 -1.12 -1.12 -1.17	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.488 1.486 1.485 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.477 1.476 1.475 1.475 1.471 1.467 1.455 1.454	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 <td>(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 </td>	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 	
12/2/2014 9:30 Load	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 1420 1440 1420 1440 1420 1440 1420 1440 1440 1420 1420 1440 1420 1440 1420 1420 1440 1420 1440 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1420 1220 1240 1440 1220 1240 1240 1440 1220 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 125 12 120 120 120 120 120 120 120	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1833 1827 1823 1820 1817 1801 1795 1791 1785 1766 1743 1735 1729	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 4 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 1.00 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 1.00 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 5.48 7.75 1.00 5.48 7.75 1.00 5.49 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 5.48 7.75 1.00 5.49 1.00 1.41 2.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 5.49 1.00 5.49 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 5.48 7.75 1.00 5.49 1.00 1.00 1.41 2.00 1.00 1.41 2.00 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 5.49 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.095 15.49 1.49 1.41 2.00 2.83 3.87 5.48 7.75 1.095 15.49 15.49	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.11 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13 -0.19 -0.21 -0.22	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.488 1.488 1.486 1.485 1.484 1.483 1.483 1.483 1.478 1.477 1.476 1.475 1.471 1.467 1.467 1.465	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 <td>(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 1.04 1.12 1.17 1.21 1.24 1.24 1.24 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04 2.18 2.29 2.36</td>	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 1.04 1.12 1.17 1.21 1.24 1.24 1.24 1.24 1.45 1.49 1.52 1.57 1.65 1.74 1.89 2.04 2.18 2.29 2.36	
12/2/2014 9:30	(min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 Elapsed Time (min) 0 0.25 0.5 1 2 4 8 15 30 60 120 240 480 1440 125 0.5 1 1 2 4 4 8 1440 125 0.5 1 1 2 4 4 8 14 14 120 125 0.5 12 120 120 125 0.5 12 120 120 120 120 120 120 120	Reading 1915 1880 1877 1873 1867 1861 1853 1845 1837 1833 1827 1823 1820 1817 1820 1817 1801 1798 1795 1791 1785 1778 1766 1754 1743 1729 1725	Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 10.95 15.49 21.91 37.95 Con Sq. Root Elapsed Time (min) 0 0.50 0.71 1.00 1.41 2.00 2.83 3.87 5.48 7.75 1.095 15.49 21.91	Deflection Disp. (mm) 0.00 -0.09 -0.10 -0.12 -0.14 -0.16 -0.18 -0.20 -0.21 -0.22 -0.23 -0.24 -0.25 ISOlidation Loa Deflection Disp. (mm) 0.00 -0.04 -0.05 -0.06 -0.07 -0.08 -0.10 -0.13 -0.16 -0.19 -0.21 -0.22 -0.23	Normal Strain % 0.00 -0.44 -0.48 -0.53 -0.61 -0.69 -0.79 -0.89 -0.99 -1.04 -1.12 -1.17 -1.21 -1.24 d 2 Normal Strain % 0.00 -0.20 -0.24 -0.28 -0.33 -0.41 -0.55 -0.65 -0.65 -0.65 -0.65 -0.65 -0.65 -0.80 -0.94 -1.12 -1.12 -1.17	(mm) 1.514 1.503 1.502 1.501 1.499 1.497 1.494 1.492 1.488 1.486 1.485 1.486 1.485 1.484 1.483 Void Ratio (mm) 1.483 1.477 1.476 1.475 1.475 1.471 1.467 1.455 1.454	kPa 25.48 25.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 50.96 <td>(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 </td>	(%) 0.00 0.44 0.48 0.53 0.61 0.69 0.79 0.89 0.99 1.04 1.12 1.17 1.21 1.24 	

Load _____ 3.636 kg _____ 8 LBS

	Consolidation Load 3										
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation			
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)			
12/4/2014 8:00	0	1721	0	0.00	0.00	1.453	101.92	2.46			
	0.25	1700	0.50	-0.05	-0.27	1.446	101.92	2.73			
	0.5	1687	0.71	-0.09	-0.43	1.442	101.92	2.90			
	1	1684	1.00	-0.09	-0.47	1.441	101.92	2.93			
	2	1677	1.41	-0.11	-0.56	1.439	101.92	3.02			
	4	1663	2.00	-0.15	-0.74	1.435	101.92	3.20			
	8	1648	2.83	-0.19	-0.93	1.430	101.92	3.39			
	15	1634	3.87	-0.22	-1.10	1.426	101.92	3.57			
	30	1617	5.48	-0.26	-1.32	1.420	101.92	3.78			
	60	1600	7.75	-0.31	-1.54	1.415	101.92	4.00			
	120	1590	10.95	-0.33	-1.66	1.412	101.92	4.13			
	240	1580	15.49	-0.36	-1.79	1.409	101.92	4.25			
	480	1576	21.91	-0.37	-1.84	1.407	101.92	4.31			
	1440	1569	37.95	-0.39	-1.93	1.405	101.92	4.39			

Load

7.273 kg

16 LBS

			Con	solidation Load	14			
Time	Elapsed Time (min)	Normal Dial Reading	Sq. Root Elapsed Time (min)	Deflection Disp. (mm)	Normal Strain %	Void Ratio (mm)	Pressure kPa	Consolidation (%)
12/5/2014 8:00	0	1469	0	0.00	0.00	1.405	203.85	4.39
	0.25	1410	0.50	-0.15	-0.75	1.387	203.85	5.14
	0.5	1406	0.71	-0.16	-0.80	1.385	203.85	5.19
	1	1399	1.00	-0.18	-0.89	1.383	203.85	5.28
	2	1390	1.41	-0.20	-1.00	1.380	203.85	5.40
	4	1376	2.00	-0.24	-1.18	1.376	203.85	5.58
	8	1355	2.83	-0.29	-1.45	1.370	203.85	5.84
	15	1324	3.87	-0.37	-1.84	1.360	203.85	6.24
	30	1295	5.48	-0.44	-2.21	1.351	203.85	6.60
	60	1269	7.75	-0.51	-2.54	1.343	203.85	6.93
	120	1258	10.95	-0.54	-2.68	1.339	203.85	7.07
	240	1244	15.49	-0.57	-2.86	1.335	203.85	7.25
	480	1237	21.91	-0.59	-2.95	1.333	203.85	7.34
	1440	1228	37.95	-0.61	-3.06	1.330	203.85	7.45
				r				

Load

15.909 kg

35 LBS

			Cor	solidation Load	d 5			
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)
12/8/2014 8:00	0	1228	0	0.00	0.00	1.330	445.92	7.45
	0.25	1183	0.50	-0.11	-0.57	1.316	445.92	8.03
	0.5	1171	0.71	-0.14	-0.72	1.312	445.92	8.18
	1	1156	1.00	-0.18	-0.91	1.307	445.92	8.37
	2	1136	1.41	-0.23	-1.17	1.301	445.92	8.62
	4	1107	2.00	-0.31	-1.54	1.292	445.92	8.99
	8	1070	2.83	-0.40	-2.01	1.280	445.92	9.46
	15	1021	3.87	-0.53	-2.63	1.265	445.92	10.08
	30	960	5.48	-0.68	-3.40	1.246	445.92	10.86
	60	884	7.75	-0.87	-4.37	1.222	445.92	11.82
	120	832	10.95	-1.01	-5.03	1.206	445.92	12.48
	240	793	15.49	-1.10	-5.52	1.193	445.92	12.98
	480	757	21.91	-1.20	-5.98	1.182	445.92	13.44
	1440	720	37.95	-1.29	-6.45	1.170	445.92	13.91

Load

31.818 kg

70 LBS

Consolidation Load 6										
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation		
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)		
12/9/2014 8:00	0	3198	0	0.00	0.00	1.170	891.84	13.91		
	0.25	3150	0.50	-0.12	-0.61	1.155	891.84	14.52		
	0.5	3140	0.71	-0.15	-0.74	1.152	891.84	14.64		
	1	3126	1.00	-0.18	-0.91	1.148	891.84	14.82		
	2	3106	1.41	-0.23	-1.17	1.142	891.84	15.07		
	4	3075	2.00	-0.31	-1.56	1.132	891.84	15.47		
	8	3028	2.83	-0.43	-2.16	1.117	891.84	16.07		
	15	2973	3.87	-0.57	-2.86	1.100	891.84	16.76		
	30	2885	5.48	-0.80	-3.98	1.072	891.84	17.88		
	60	2760	7.75	-1.11	-5.56	1.033	891.84	19.47		
	120	2638	10.95	-1.42	-7.11	0.995	891.84	21.02		
	240	2544	15.49	-1.66	-8.31	0.965	891.84	22.21		
	480	2475	21.91	-1.84	-9.18	0.944	891.84	23.09		
	1440	2466	37.95	-1.86	-9.30	- 0.941	891.84	23.20		

Unload

7.273 kg

16 LBS

Consolidation Unload 1										
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation		
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)		
12/10/2014 8:00	0	2466	0	0.00	0.00	0.941	203.85	-		
	0.25	2471	0.50	0.01	0.06	0.942	203.85	-		
	0.5	2479	0.71	0.03	0.17	0.945	203.85	-		
	1	2489	1.00	0.06	0.29	0.948	203.85	-		
	2	2504	1.41	0.10	0.48	0.953	203.85	-		
	4	2524	2.00	0.15	0.74	0.959	203.85	-		
	8	2550	2.83	0.21	1.07	0.967	203.85	-		
	15	2587	3.87	0.31	1.54	0.979	203.85	-		
	30	2635	5.48	0.43	2.15	0.994	203.85	-		
	60	2687	7.75	0.56	2.81	1.010	203.85	-		
	120	2732	10.95	0.68	3.38	1.024	203.85	-		
	240	2753	15.49	0.73	3.64	1.031	203.85	-		
	480	2763	21.91	0.75	3.77	1.034	203.85	-		
	1440	2770	37.95	0.77	3.86	1.036	203.85	-		

Unload

1.818 kg 4 LBS

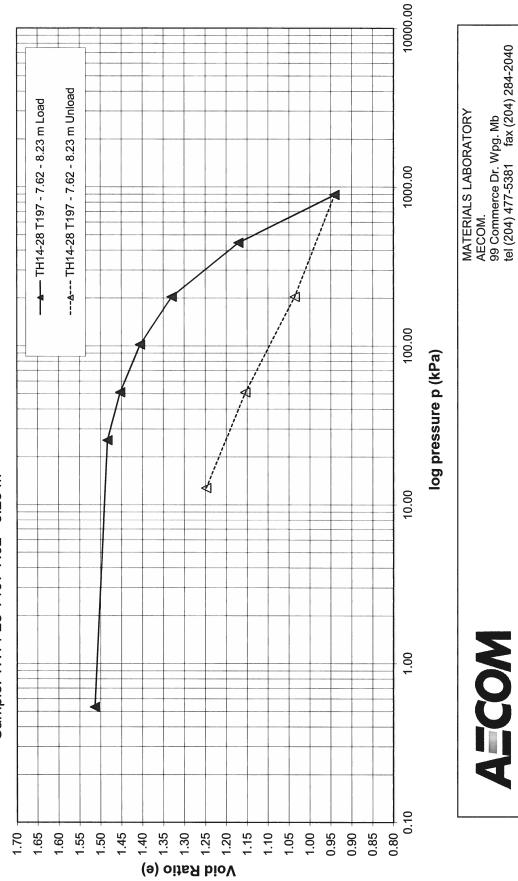
Consolidation Unload 2										
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation		
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)		
12/11/2014 8:00	0	2770	0	0.00	0.00	1.036	50.96	-		
	0.25	2790	0.50	0.05	0.25	1.042	50.96	-		
	0.5	2795	0.71	0.06	0.32	1.044	50.96	-		
	1	2800	1.00	0.08	0.38	1.046	50.96	-		
	2	2808	1.41	0.10	0.48	1.048	50.96	-		
	4	2820	2.00	0.13	0.64	1.052	50.96	-		
	8	2839	2.83	0.18	0.88	1.058	50.96	-		
	15	2861	3.87	0.23	1.16	1.065	50.96	-		
	30	2900	5.48	0.33	1.65	1.077	50.96	-		
	60	2954	7.75	0.47	2.34	1.094	50.96	-		
	120	3002	10.95	0.59	2.95	1.109	50.96			
	240	3070	15.49	0.76	3.81	1.130	50.96	-		
	480	3108	21.91	0.86	4.29	1.142	50.96	-		
	1440	3147	37.95	0.96	4.79	1.154	50.96	-		

Unload

0.455 kg 1 LBS

Consolidation Unload 2										
Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation		
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)		
12/12/2014 8:00	0	3147	0	0.00	0.00	1.154	12.74	-		
	0.25	3158	0.50	0.03	0.14	1.158	12.74	-		
	0.5	3160	0.71	0.03	0.17	1.158	12.74	-		
	1	3163	1.00	0.04	0.20	1.159	12.74			
	2	3168	1.41	0.05	0.27	1.161	12.74	-		
	4	3175	2.00	0.07	0.36	1.163	12.74	-		
	8	3185	2.83	0.10	0.48	1.166	12.74	-		
	15	3198	3.87	0.13	0.65	1.170	12.74	-		
	30	3217	5.48	0.18	0.89	1.176	12.74	- *		
	60	3248	7.75	0.26	1.28	1.186	12.74	-		
	120	3291	10.95	0.37	1.83	1.200	12.74	-		
	240	3340	15.49	0.49	2.45	1.215	12.74	-		
	480	3398	21.91	0.64	3.19	1.233	12.74	-		
	1440	3446	37.95	0.76	3.80	1.248	12.74	-		

Unload


kg LBS

Time	Elapsed Time	Normal Dial	Sq. Root Elapsed	Deflection Disp.	Normal	Void Ratio	Pressure	Consolidation
	(min)	Reading	Time (min)	(mm)	Strain %	(mm)	kPa	(%)
	Contraction of the							
								_
		and the second second						
		and the second s						
	and the second	and we don't all						
						_		

Consolidation Results - Void Ratio (e) versus log pressure p

Client: Dillon Consulting Ltd. Project: Waverley Underpass Phase II Sample: TH14-28 T197 7.62 - 8.23 m

Project No: 60321148 Date: November 28 to December 12, 2014

Deflection (mm) versus Normal Stress (σ)

40 Project No: 60321148 Date: November 28 to December 12, 2014 4 Ŷ 35 30 Consolidation Load 3 - 101.92 kPa - Consolidation Load 6 - 891.84 kPa 25 Square Root time (min) 20 Project: Waverley Underpass Phase II Sample: TH14-28 T197 7.62 - 8.23 m 15 Client: Dillon Consulting Ltd. 10 Consolidation Load 4 - 203.85 kPa Consolidation Load 1 - 25.48 kPa ß 0 0.00 -2.00 -2.20 -0.20 -0.40 -0.80 -1.00 -1.40 -1.60 -1.80 -0.60 -1.20 Deflection (mm)

MATERIALS LABORATORY AECOM. 99 Commerce Dr. Wpg. Mb. tel (204) 477-5381 fax (204) 284-2040

ACCOM

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
СС		
Subject	Waverly Underpass	
From	Faris Khalil	
Date	December 16, 2014	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Sixty-nine (69) Moisture Content tests.
- Five (5) Atterberg Limits (3 points) tests.
- Twelve (12) Grain Size Distribution (hydrometer method) tests.
- Two (2) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength, on Shelby tube samples.

If you have any questions, please contact the undersigned.

Sincerely,

1

Faris Khalil, M.Sc., PMP, P.Eng. Manager, Geotechnical Engineering

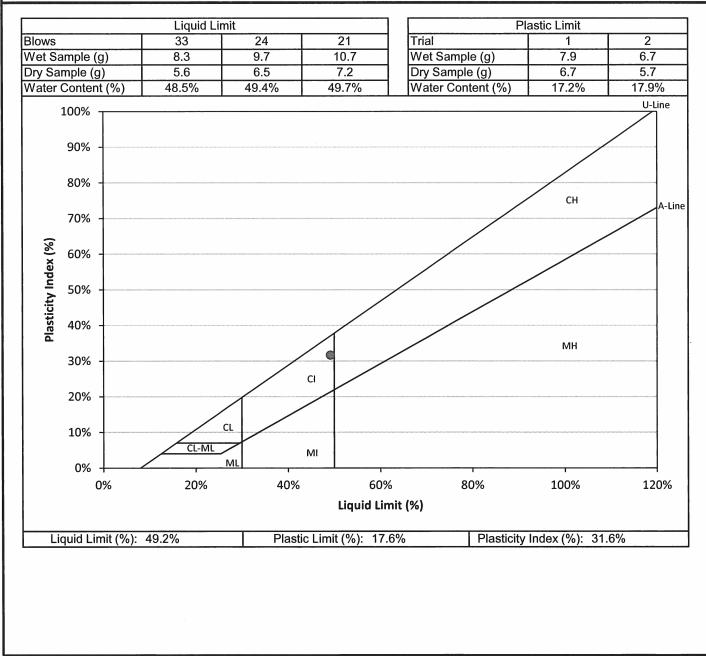
Att.

Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	SIbrahim
Sample Location:	Varies	Sample Date:	Varies
Sample Depth:	Varies	Lab Technician:	EManimbao
Sample Number:	Varies	Date Tested:	November 12, 2014

Moisture Content (ASTM D2216-10)

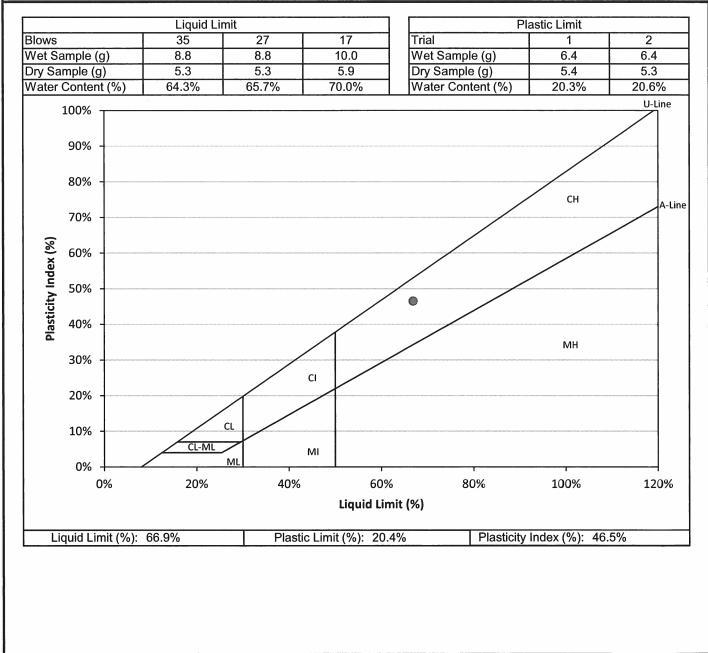
Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass


Location	Sample	Depth (m)	Moisture Content (%)		Location	Sample	Depth (m)	Moisture Content (%)
TH14-05	G54	0.61 - 0.76 m	33.0	┥┝	TH14-20	G135	0.30 - 0.46 m	22.2
-	G56	2.13 - 2.29 m	37.3	1	-	G137	0.99 - 1.14 m	33.6
TH14-06	G59	1.07 - 1.22 m	28.9	1		G138	1.52 - 1.68 m	36.9
-	G61	2.59 - 2.74 m	30.8	1	TH14-21	G143	0.76 - 0.91 m	23.6
TH14-07	G62	0.76 - 0.91 m	34.1	1	-	G145	1.37 - 1.52 m	22.1
-	G64	1.83 - 1.98 m	46.7	1	-	G146	1.68 - 1.83 m	38.5
TH14-08	G66	0.61 - 0.76 m	28.3	1	TH14-22	G149	0.15 - 0.30 m	25.2
-	G67	1.07 - 1.22 m	33.2	1 1	-	G150	0.61 - 0.76 m	27.4
	G69	2.44 - 2.59 m	46.6	1		G152	1.22 - 1.37 m	30.3
TH14-09	G70	0.61 - 0.76 m	41.3	1	-	G153	1.68 - 1.83 m	30.2
-	G72	1.68 - 1.83 m	18.3	1	TH14-23	G156	0.30 - 0.46 m	35.7
TH14-10	G75	1.07 - 1.22 m	39.0	1 1		G158	0.91 - 1.07 m	27.7
-	G77	2.74 - 2.90 m	50.0	1		G160	1.68 - 1.83 m	34.1
TH14-11	G78	0.30 - 0.46 m	20.2	1	TH14-24	G164	0.76 - 0.91 m	21.5
_	G80	1.37 - 1.52 m	27.0	1	-	G166	1.37 - 1.52 m	29.3
TH14-12	G83	1.22 - 1.37 m	20.7	1 1	-	G167	1.68 - 1.83 m	29.2
-	G85	2.29 - 2.44 m	38.8	1 1	TH14-25	G170	0.46 - 0.61 m	33.8
TH14-13	G86	0.76 - 0.91 m	22.2	1 1	-	G171	0.76 - 0.91 m	25.8
-	G88	1.83 - 1.98 m	37.2	1 1	-	G173	1.37 - 1.52 m	39.0
TH14-14	G90	0.46 - 0.61 m	24.6	1 1	TH14-26	G178	0.76 - 0.91 m	33.7
-	G92	1.07 - 1.22 m	28.3	1 1	-	G180	1.68 - 1.83 m	39.4
-	G94	1.68 - 1.83 m	44.3	1 1	TH14-27	G183	0.30 - 0.46 m	6.5
TH14-15	G98	0.61 - 0.76 m	33.3	1 [-	G184	0.91 - 1.07 m	27.2
-	G100	1.22 - 1.37 m	38.5	1 [-	G185	1.22 - 1.37 m	34.6
TH14-16	G104	0.30 - 0.46 m	27.0	1 1	TH14-28	G188	0.61 - 0.76 m	27.6
-	G105	0.76 - 0.91 m	28.3	1 1	-	G190	1.22 - 1.37 m	30.3
-	G106	1.07 - 1.22 m	24.0	1 [-	G192	2.59 - 2.74 m	25.1
-	G108	1.68 - 1.83 m	25.7	1 [-	G196	7.01 - 7.16 m	50.0
TH14-17	G112	0.61 - 0.76 m	25.2	1 [-	G198	9.45 - 9.60 m	50.6
-	G114	1.22 - 1.37 m	31.7] [-	S202	12.95 - 13.11 m	14.3
-	G115	1.52 - 1.68 m	37.1] [-	G203	13.72 - 13.87 m	14.7
TH14-18	G120	1.37 - 1.52 m	35.7] [
-	G121	1.83 - 1.98 m	23.0] [
-	G122	2.21 - 2.36 m	24.2] [
-	G124	2.90 - 3.05 m	28.9] [
TH14-19	G129	0.99 - 1.14 m	32.5] [
-	G131	1.68 - 1.83 m	40.3] [
_	G132	1.91 - 2.06 m	42.7	1 [

Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	SIbrahim
Sample Location:	TH14-07	Sample Date:	November 1, 2014
Sample Depth:	0.76 m	Lab Technician:	EManimbao
Sample Number:	G62	Date Tested:	November 26, 2014

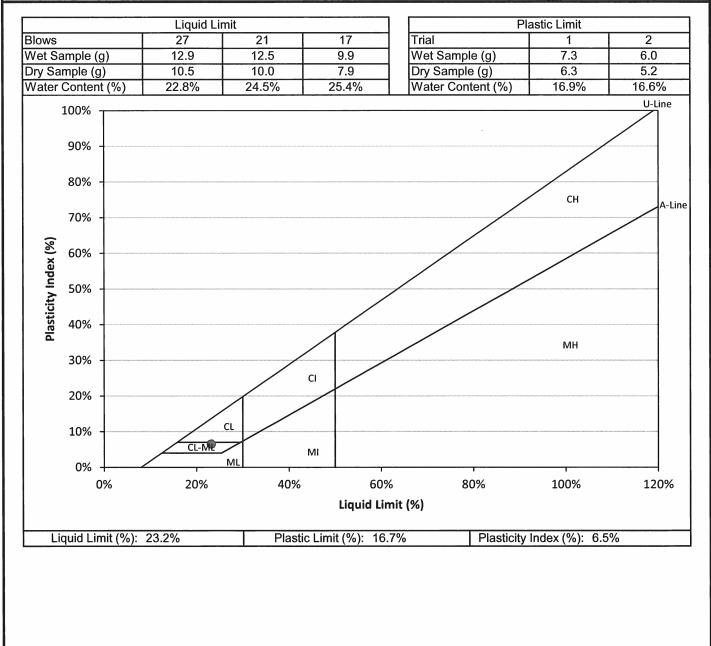
Atterberg Limits



Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	TH14-16	Sample Date:	November 1, 2014
Sample Depth:	0.76 m	Lab Technician:	EManimbao
Sample Number:	G105	Date Tested:	November 26, 2014

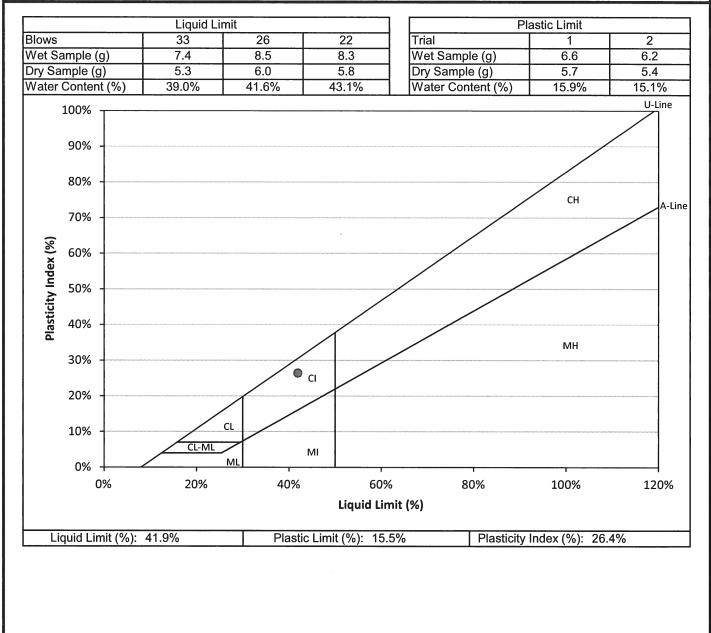
Atterberg Limits



Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	TH14-18	Sample Date:	November 1, 2014
Sample Depth:	1.83 m	Lab Technician:	EManimbao
Sample Number:	G121	Date Tested:	November 26, 2014

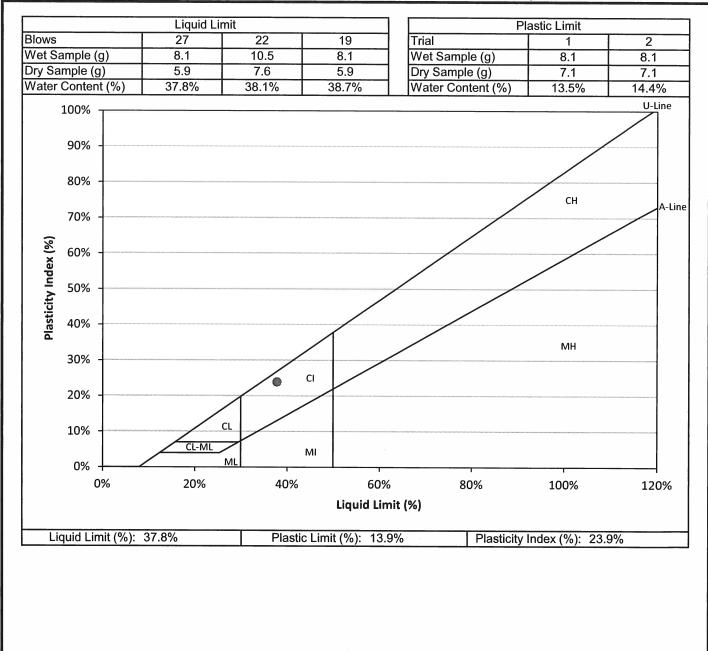
Atterberg Limits



Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	SIbrahim
Sample Location:	TH14-21	Sample Date:	November 1, 2014
Sample Depth:	0.76 m	Lab Technician:	EManimbao
Sample Number:	G143	Date Tested:	November 26, 2014

Atterberg Limits

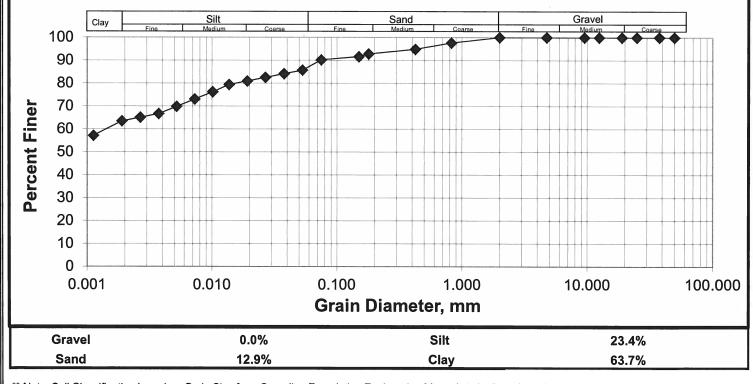


Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	TH14-25	Sample Date:	November 1, 2014
Sample Depth:	0.76 m	Lab Technician:	EManimbao
Sample Number:	G171	Date Tested:	November 26, 2014

Atterberg Limits

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

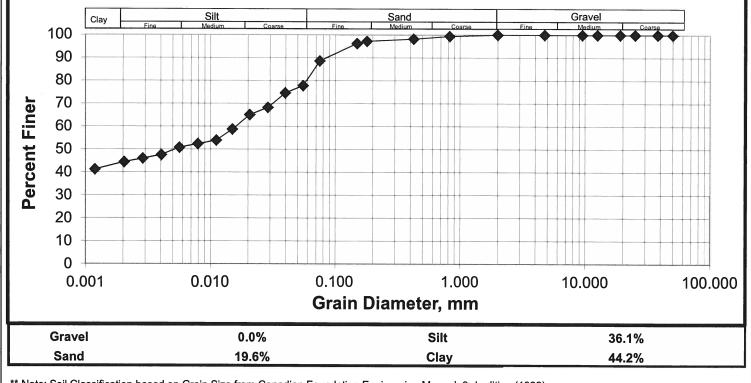

Job No.: Client: Project : Date Tested: Tested By:

60321148
Dillon Consulting
Waverley Underpass Phase II
20-Nov-14
MLotecki

Hole No.:	14-05
Sample No.:	G54
Depth:	0.61 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	90.2
38.0	100.0	0.83	97.6	0.0531	85.7
25.0	100.0	0.43	94.8	0.0379	84.1
19.0	100.0	0.18	92.8	0.0270	82.5
12.5	100.0	0.15	91.6	0.0192	80.9
9.5	100.0	0.075	90.2	0.0137	79.3
4.75	100.0			0.0102	76.2
2.00	100.0			0.0073	73.0
				0.0052	69.8
				0.0037	66.6
				0.0027	65.1
				0.0019	63.5
				0.0011	57.1
1					

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

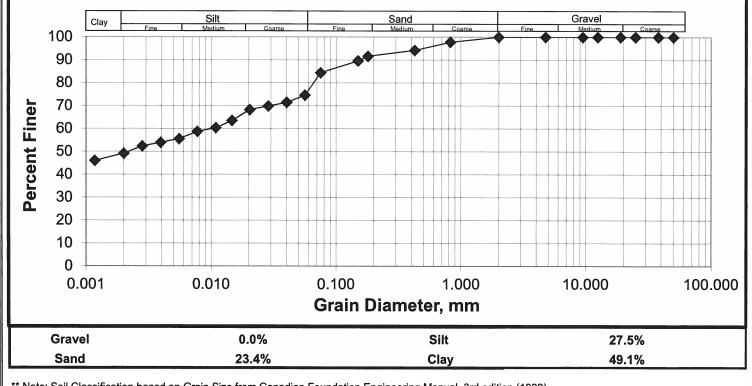

Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-07
Sample No.:	G62
Depth:	0.76 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	88.6
38.0	100.0	0.83	99.4	0.0552	77.8
25.0	100.0	0.43	98.2	0.0396	74.6
19.0	100.0	0.18	97.2	0.0288	68.2
12.5	100.0	0.15	96.2	0.0207	65.1
9.5	100.0	0.075	88.6	0.0150	58.7
4.75	100.0			0.0112	53.9
2.00	100.0			0.0079	52.3
				0.0056	50.8
				0.0040	47.6
				0.0029	46.0
				0.0020	44.4
				0.0012	41.2
		1			

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040


Job No.: Client: Project : Date Tested: Tested By:

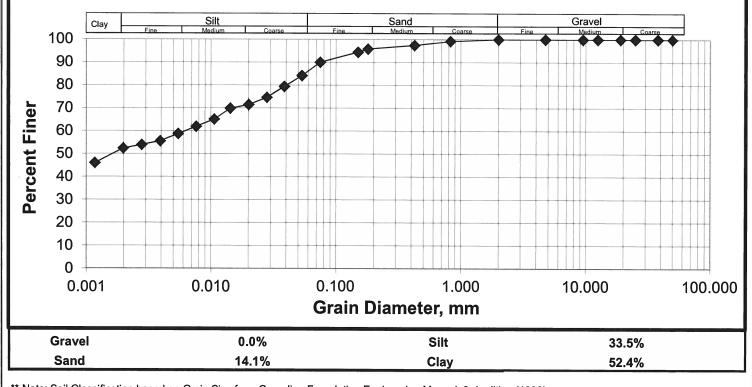
60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-08
Sample No.:	G66
Depth:	0.61 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	84.4
38.0	100.0	0.83	97.8	0.0561	74.6
25.0	100.0	0.43	94.2	0.0402	71.4
19.0	100.0	0.18	91.6	0.0286	69.8
12.5	100.0	0.15	89.6	0.0204	68.2
9.5	100.0	0.075	84.4	0.0147	63.5
4.75	100.0			0.0109	60.3
2.00	100.0			0.0077	58.7
				0.0055	55.5
				0.0039	53.9
				0.0028	52.3
				0.0020	49.2
				0.0012	46.0

MATERIALS LABORATORY AECOM

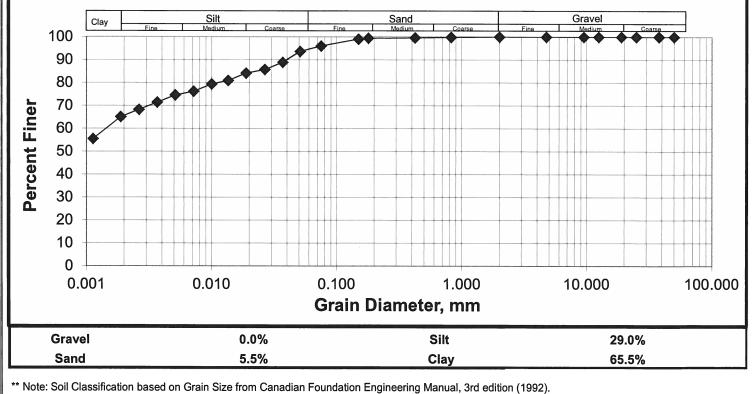
99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040


Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-10
Sample No.:	G75
Depth:	1.07 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (SIbrahim)

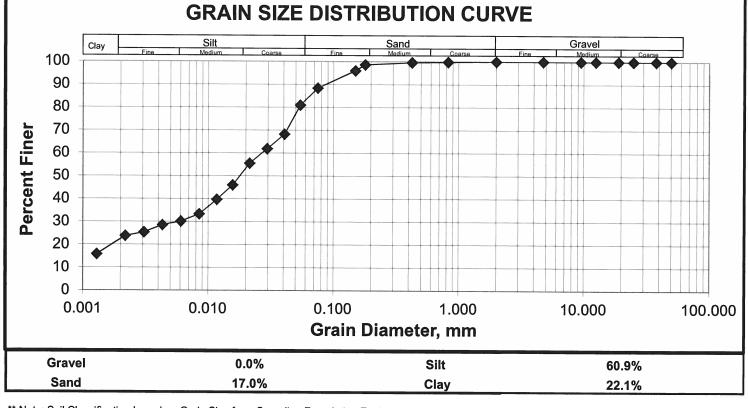
GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	90.0
38.0	100.0	0.83	99.2	0.0536	84.1
25.0	100.0	0.43	97.4	0.0388	79.3
19.0 12.5	100.0	0.18	95.8	0.0280	74.6
9.5	<u> </u>	0.15	94.4 90.0	0.0201 0.0143	<u>71.4</u> 69.8
4.75	100.0	0.010	50.0	0.0107	65.1
2.00	100.0			0.0076	61.9
				0.0055	58.7
				0.0039	55.5
				0.0028	53.9
				0.0020	52.3
				0.0012	46.0


MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-16
Sample No.:	G105
Depth:	0.76 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (SIbrahim)

GRAVE	L SIZES	SANI	D SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	96.0
38.0	100.0	0.83	99.8	0.0510	93.6
25.0	100.0	0.43	99.6	0.0370	88.9
19.0	100.0	0.18	99.4	0.0266	85.7
12.5	100.0	0.15	99.0	0.0189	84.1
9.5	100.0	0.075	96.0	0.0136	80.9
4.75	100.0			0.0100	79.3
2.00	100.0			0.0072	76.2
				0.0051	74.6
				0.0037	71.4
				0.0026	68.2
				0.0019	65.1
				0.0011	55.5
			1		


MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

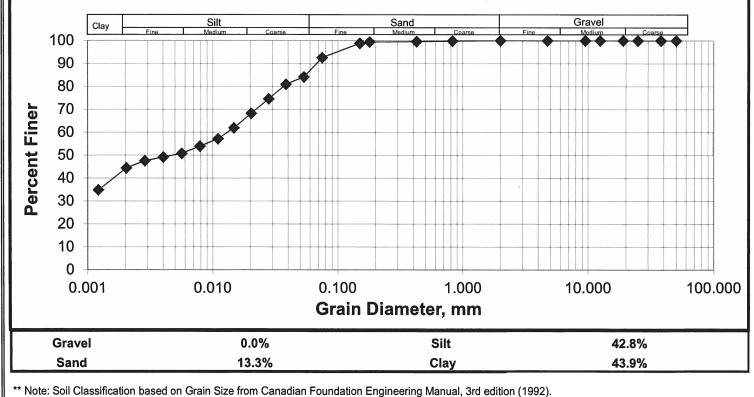
Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-18
Sample No.:	G121
Depth:	1.83 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (MLotecki)

GRAVE	GRAVEL SIZES		SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	88.4
38.0	100.0	0.83	99.8	0.0544	80.9
25.0	100.0	0.43	99.6	0.0408	68.2
19.0	100.0	0.18	98.6	0.0296	61.9
12.5	100.0	0.15	96.0	0.0215	55.5
9.5	100.0	0.075	88.4	0.0157	46.0
4.75	100.0			0.0118	39.6
2.00	100.0			0.0085	33.3
				0.0061	30.1
				0.0043	28.5
				0.0031	25.3
				0.0022	23.8
				0.0013	15.8

AECOM AE


MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

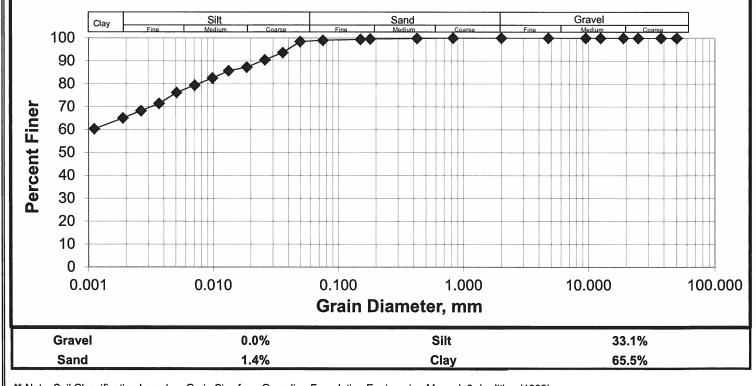
Hole No.:	14-21
Sample No.:	G143
Depth:	0.76 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVE	L SIZES	SAN) SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	92.6
38.0	100.0	0.83	99.8	0.0536	84.1
25.0	100.0	0.43	99.6	0.0385	80.9
19.0	100.0	0.18	99.4	0.0280	74.6
12.5	100.0	0.15	98.8	0.0204	68.2
9.5	100.0	0.075	92.6	0.0148	61.9
4.75	100.0			0.0110	57.1
2.00	100.0			0.0079	53.9
				0.0056	50.8
				0.0040	49.2
				0.0029	47.6
				0.0020	44.4
				0.0012	34.9

GRAIN SIZE DISTRIBUTION

(ASTM D422-63)

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040


Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-22	(š.
Sample No.:	G150	
Depth:	0.61 m	
Date Sampled:	1-Nov-14	
Sampled By:	AECOM (SIbrahim)	

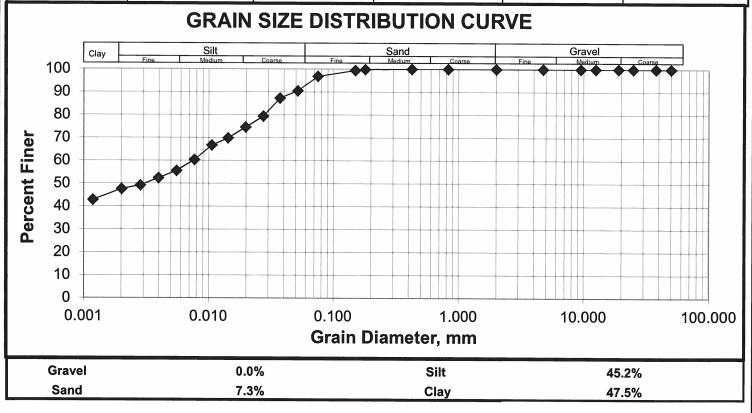
GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	99.0
38.0	100.0	0.83	100.0	0.0496	98.4
25.0	100.0	0.43	99.8	0.0360	93.6
19.0	100.0	0.18	99.6	0.0259	90.5
12.5	100.0	0.15	99.4	0.0186	87.3
9.5 4.75	100.0 100.0	0.075	99.0	0.0133 0.0099	85.7 82.5
2.00	100.0			0.0071	79.3
				0.0051	76.2
				0.0037	71.4
-				0.0026	68.2
				0.0019	65.1
				0.0011	60.3

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

 Hole No.:
 14-24

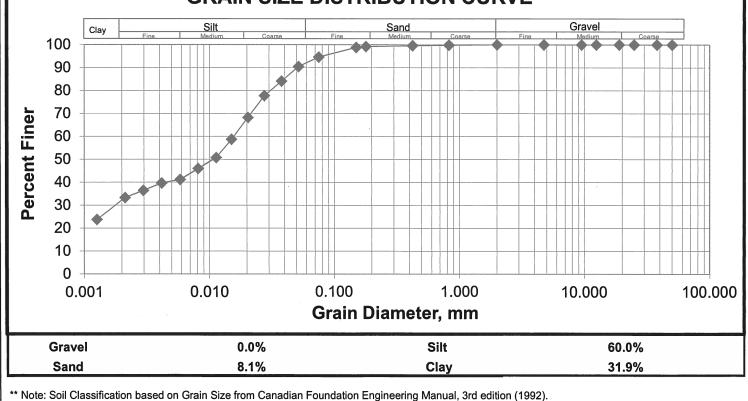

 Sample No.:
 G164

 Depth:
 0.76 m

 Date Sampled:
 1-Nov-14

 Sampled By:
 AECOM (Slbrahim)

GRAVEL SIZES		SAND SIZES		ES
Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
100.0	2.00	100.0	0.0750	96.8
		100.0	0.0518	90.5
			0.0373	87.3
			0.0274	79.3
			0.0198	74.6
	0.075	96.8	0.0143	69.8
			0.0106	66.6
100.0			0.0077	60.3
			0.0055	55.5
			0.0040	52.3
			0.0028	49.2
			0.0020	47.6
			0.0012	42.8
	Total Percent Passing	Total Percent Passing Grain Size (mm.) 100.0 2.00 100.0 0.83 100.0 0.43 100.0 0.18 100.0 0.15 100.0 0.075	Total Percent PassingGrain Size (mm.)Total Percent Passing100.02.00100.0100.00.83100.0100.00.43100.0100.00.1899.8100.00.1599.4100.00.07596.8	Total Percent Passing Grain Size (mm.) Total Percent Passing Grain Size (mm.) 100.0 2.00 100.0 0.0750 100.0 0.83 100.0 0.0518 100.0 0.43 100.0 0.0373 100.0 0.18 99.8 0.0274 100.0 0.15 99.4 0.0198 100.0 0.075 96.8 0.0143 100.0 0.075 96.8 0.0143 100.0 0.0075 96.8 0.00055 100.0 0.0028 0.0028 0.0028

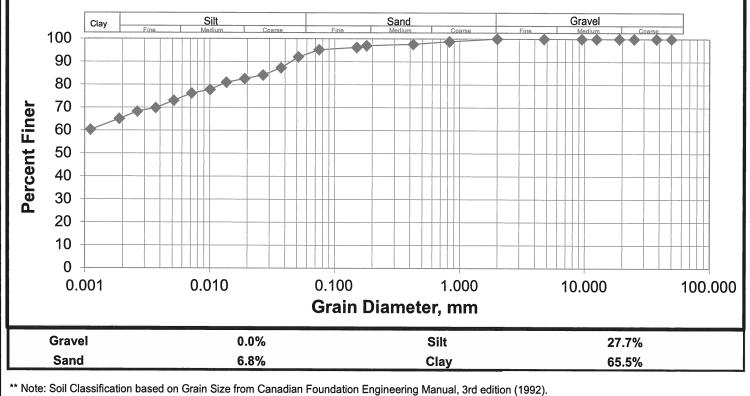

AECOM AE

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-25
Sample No.:	G171
Depth:	0.76 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

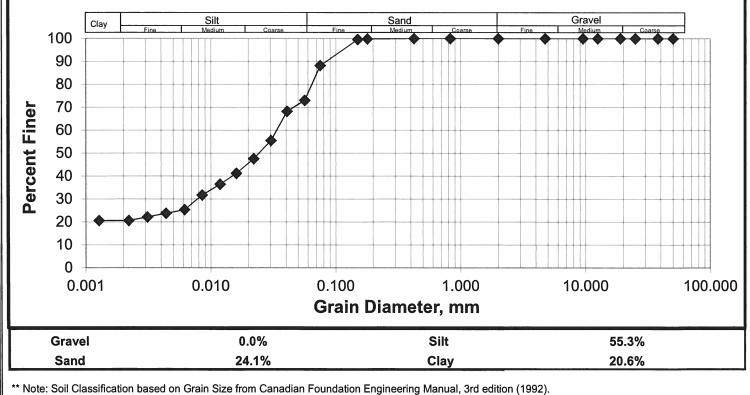
GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	94.6
38.0	100.0	0.83	99.8	0.0518	90.5
25.0	100.0	0.43	99.6	0.0379	84.1
19.0	100.0	0.18	99.2	0.0276	77.8
12.5	100.0	0.15	98.8	0.0204	68.2
9.5	100.0	0.075	94.6	0.0150	58.7
4.75	100.0			0.0113	50.8
2.00	100.0			0.0081	46.0
				0.0058	41.2
				0.0042	39.6
				0.0030	36.5
				0.0021	33.3
				0.0013	23.8
	GRAIN			VF	


MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

60321148	
Dillon Consulting	
Waverley Underpass Phase II	
20-Nov-14	
MLotecki	

Hole No.:	14-27
Sample No.:	G184
Depth:	0.91 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		RAVEL SIZES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	2.00	100.0	0.0750	95.2
38.0	100.0	0.83	98.8	0.0514	92.1
25.0	100.0	0.43	97.6	0.0373	87.3
19.0	100.0	0.18	97.0	0.0268	84.1
12.5	100.0	0.15	96.2	0.0191	82.5
9.5	100.0	0.075	95.2	0.0136	80.9
4.75	100.0			0.0101	77.8
2.00	100.0			0.0072	76.2
				0.0052	73.0
				0.0037	69.8
				0.0026	68.2
				0.0019	65.1
				0.0011	60.3


AECOM

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

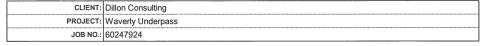
60321148
Dillon Consulting
Waverley Underpass Phase II
20-Nov-14
MLotecki

Hole No.:	14-28
Sample No.:	G192
Depth:	2.59 m
Date Sampled:	1-Nov-14
Sampled By:	AECOM (Slbrahim)

GRAVEL SIZES		SAND SIZES		FINES		
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	
50.0	100.0	2.00	100.0	0.0750	88.2	
38.0	100.0	0.83	100.0	0.0565	73.0	
25.0	100.0	0.43	100.0	0.0408	68.2	
19.0	100.0	0.18	99.8	0.0304	55.5	
12.5	100.0	0.15	99.6	0.0221	47.6	
9.5	100.0	0.075	88.2	0.0160	41.2	
4.75	100.0			0.0119	36.5	
2.00	100.0			0.0085	31.7	
				0.0062	25.3	
				0.0044	23.8	
				0.0031	22.2	
				0.0022	20.6	
				0.0013	20.6	
GRAIN SIZE DISTRIBUTION CURVE						

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

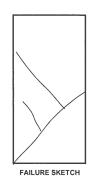
CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148


TEST HOLE NO.:	TH14-28
	T194
SAMPLE NO.:	4.57 - 5.18 m
SAMPLE DEPTH:	
DATE TESTED:	28-Nov-14
SHEAR STRENGTH TESTS	
TORVANE	0.70
Reading	0.70
Vane Size (S, M, L)	M
Undrained Shear Strength (kPa)	68.7
Undrained Shear Strength (ksf)	1.43
POCKET PENETROMETER	
Reading - Qu (tsf)	1.50
Undrained Shear Strength (kPa)	71.8
Reading - Qu (tsf)	1.75
Undrained Shear Strength (kPa)	83.8
Reading - Qu (tsf)	2.00
Undrained Shear Strength (kPa)	95.8
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	70.6
Unconfined compressive strength (ksf)	1.5
Undrained Shear Strength (kPa)	35.3
Undrained Shear Strength (ksf)	0.737
MOISTURE CONTENT	
Tare Number	SG36
Wt. Sample wet + tare (g)	358.5
Wt. Sample dry + tare (g)	241.1
Wt. Tare (g)	8.3
Moisture Content %	50.4
BULK DENSITY	
Sample Wt. (g)	1068.1
Diameter 1 (cm)	7.20
Diameter 2 (cm)	7.18
Diameter 3 (cm)	7.23
Avg. Diameter (cm)	7.20
Length 1 (cm)	15.36
Length 2 (cm)	15.35
Length 3 (cm)	15.36
Avg. Length (cm)	15.36
Volume (cm ³)	625.8
Volume (cm.) Moisture content (%)	50.4
	1.707
Bulk Density (g/cm ³)	16.7
Bulk Density (kN/m ³)	
Bulk Density (pcf)	106.6
Dry Density (kN/m ³)	11.13

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

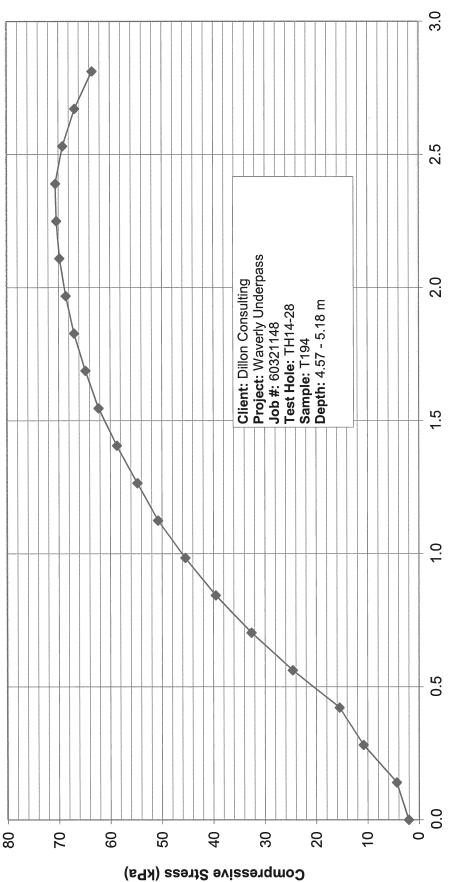
SOIL DESCRIPTION: CLAY; silty, trace silt inclusions, trace sulphate lenses, brown, moist, firm,

50.4


AECOM

int. - high plasticity,

MOISTURE CONTENT:


TEST HOLE NO .:	TH14-28
SAMPLE NO.:	T194
SAMPLE DEPTH:	4.57 - 5.18 m
SAMPLE DATE:	February, 2014
TEST DATE:	28-Nov-14

SAMPLE DIAM.(Do):		(mm)	INITIAL AREA, Ao:	4075.3	(mm²)
SAMPLE LENGTH, (Lo):	153.57	(mm)	PISTON RATE:		(inches / minute)
L / D RATIO:		(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:		(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL I	READINGS	T0711		1	1		
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPR	ESSIVE STRESS, O	c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0002	0.00	6.32	1.87	0.30	0.043	2.0
0.02	0.0004	0.14	6.33	4.03	0.64	0.092	4.4
0.03	0.0011	0.28	6.33	9.93	1.57	0.226	10.8
0.03	0.0015	0.42	6.34	14.24	2.25	0.323	15.5
0.04	0.0024	0.56	6.35	22.68	3.57	0.514	24.6
0.05	0.0032	0.70	6.36	30.08	4.73	0.681	32.6
0.06	0.0039	0.84	6.37	36.54	5.74	0.826	39.6
0.07	0.0045	0.98	6.38	42.07	6.59	0.950	45.5
0.08	0.0050	1.12	6.39	47.04	7.36	1.060	50.8
0.09	0.0054	1.27	6.40	50.79	7.94	1.143	54.7
0.09	0.0058	1.41	6.41	54.53	8.51	1.226	58.7
0.10	0.0062	1.55	6.42	57.91	9.03	1.300	62.2
0.11	0.0064	1.69	6.43	60.34	9.39	1.352	64.8
	0.0004	1.83	6.43	62.50	9.71	1.399	67.0
0.12	0.0067						
0.13	0.0068	1.97	6.44	64.09	9.95	1.432	68.6
0.14	0.0070	2.11	6.45	65.31	10.12	1.457	69.8
0.14	0.0070	2.25	6.46	65.96	10.21	1.470	70.4
0.15	0.0071	2.39	6.47	66.25	10.24	1.474	70.6
0.16	0.0069	2.53	6.48	65.03	10.03	1.445	69.2
0.17	0.0067	2.67	6.49	62.87	9.69	1.395	66.8
0.18	0.0064	2.81	6.50	59.78	9.20	1.324	63.4
	-						
					·····		
CONFINED COMPRESS	IVE STRENGTH. a:	70.58	kPa	1	NOTES:		
			ksf				
(based on maximur	EAR STRENGTH, S		kPa	-			

AZCOM AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

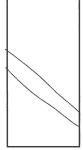
Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

TH14-28
T197
7.62 - 8.23 m
28-Nov-14
0.60
М
58.8
1.23
1.00
47.9
1.00
47.9
0.75
35.9
60.1
1.3
30.1
0.628
SG36
353.4
233.3
8.3
53.4
1001 5
1061.5
7.22
7.20
7.21
7.21 15.36
15.38
15.35
15.36
627.3
53.4
1.692
• • • • • • • • • • • • • • • • • • • •
16.6 105.7

.

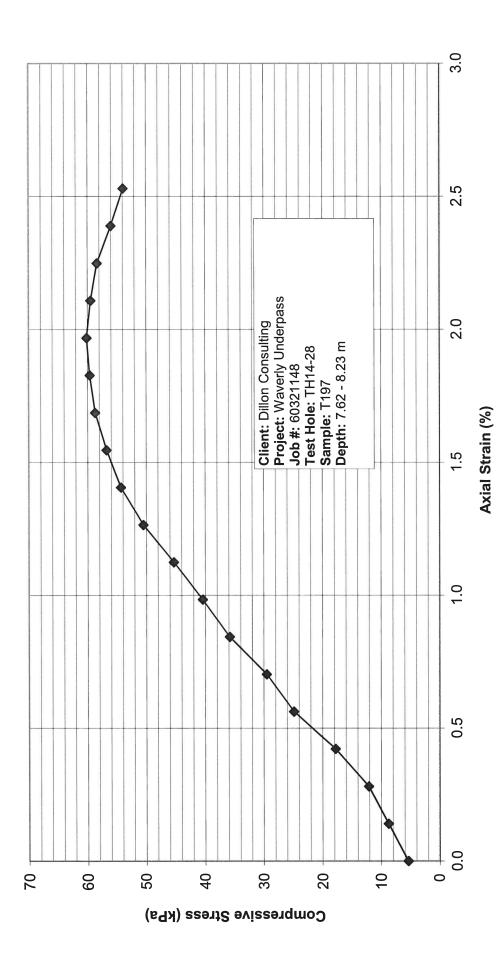

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

l		Dillon Consulting	
		Waverly Underpass	
	JOB NO.:	60247924	

TEST HOLE NO .:	TH14-28
SAMPLE NO.:	T197
SAMPLE DEPTH:	7.62 - 8.23 m
SAMPLE DATE:	February, 2014
TEST DATE:	28-Nov-14

CLAY; silty, trace silt inclusions, brow	n, moist, firm,	
int high plasticity,		
MOISTURE CONTENT:	53.4	



FAILURE SKETCH

SAMPLE DIAM.(Do):		(mm)	INITIAL AREA, Ao:	4082.8	(mm²)
SAMPLE LENGTH, (Lo):	153.63	(mm)	PISTON RATE:	0.051	(inches / minute)
L / D RATIO:		(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:		(0.5 <r<2 %="" minute)<="" td=""></r<2>

TEST DATA - DIAL	1	TOTAL					
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPRI	ESSIVE STRESS, O	lc .
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa
0.01	0.0005	0.00	6.33	4.97	0.78	0.113	5.4
0.02	0.0009	0.14	6.34	8.06	1.27	0.183	8.8
0.03	0.0012	0.28	6.35	11.15	1.76	0.253	12.1
0.03	0.0018	0.42	6.36	16.40	2.58	0.372	17.8
0.04	0.0025	0.56	6.36	22.96	3.61	0.519	24.9
0.05	0.0025	0.50	6.37	27.27	4.28	0.616	29.5
0.06	0.0035	0.84	6.38	33.17	5.20	0.748	35.8
0.07	0.0040	0.98	6.39	37.48	5.86	0.844	40.4
0.08	0.0045	1.12	6.40	42.07	6.57	0.947	45.3
0.09	0.0050	1.26	6.41	46.94	7.32	1.055	50.5
0.09	0.0054	1.41	6.42	50.60	7.88	1.135	54.4
0.10	0.0057	1.55	6.43	52.94	8.24	1.186	56.8
0.11	0.0059	1.69	6.44	54.81	8.52	1.226	58.7
0.12	0.0060	1.83	6.45	55.75	8.65	1.245	59.6
0.13	0.0060	1.97	6.46	56.31	8.72	1.256	60.1
0.14	0.0060	2.11	6.46	55.75	8.62	1.242	59.5
0.14	0.0059	2.25	6.47	54.81	8.47	1.219	58.4
0.14	0.0056	2.39	6.48	52.66	8.12	1.170	56.0
0.16	0.0054	2.53	6.49	50.79	7.82	1.126	53.9
0.10	0.0004	2.00	0.70			1.120	
·····							
		I		T			Ι
				1			1
		1		1			t
				1		1	t
		1		1			
						+	
							ļ
							l
	1	1		1	1	1	Γ
	1			1		1	1
	-				1	1	t
						1	
						1	<u> </u>
						1	<u> </u>
						+	
		<u> </u>		I			L
				า			
ONFINED COMPRESS			kPa	1	NOTES:		
(based on maximu	m q _u value)	1.256	ksf	1			
	EAR STRENGTH, S.		kPa	1			

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

A=COM

Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	
Client:	Dillon Consulting	Field Technician:	SIbrahim	
Sample Location:	Varies	Sample Date:	Varies	
Sample Depth:	Varies	Lab Technician:	MLotecki	
Sample Number:	Varies	Date Tested:	December 4, 2014	

Group Index (ASTM D3282-09)

Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes

Location	Sample	Depth (m)	% Passing No. 200	Liquid Limit	Plasticity Index	Group Classification
TH14-07	G62	0.76 - 0.91 m	88.6	49.2	31.6	A-7-6(29)
TH14-16	G105	0.76 - 0.91 m	96.0	66.9	46.5	A-7-6(50)
TH14-18	G121	1.83 - 1.98 m	88.4	23.2	6.5	A-4(4)
TH14-21	G143	0.76 - 0.91 m	92.6	41.9	26.4	A-7-6(25)
TH14-25	G171	0.76 - 0.91 m	94.6	37.8	23.9	A-6(22)
······································						
					-	
*						
						~
			1			
	1					

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
СС		
Subject	Waverly Underpass	
From	Jared Baldwin	
Date	September 22, 2014	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Twenty-six (26) Moisture Content tests.
- Two (2) Atterberg Limits (3 points) tests.
- Three (3) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength, on Shelby tube samples.
- Four (4) Waxed Shelby tube Samples.

If you have any questions, please contact the undersigned.

Sincerely,

Jared Baldwin, M.Sc., P.Eng. Geotechnical Engineer

Att.

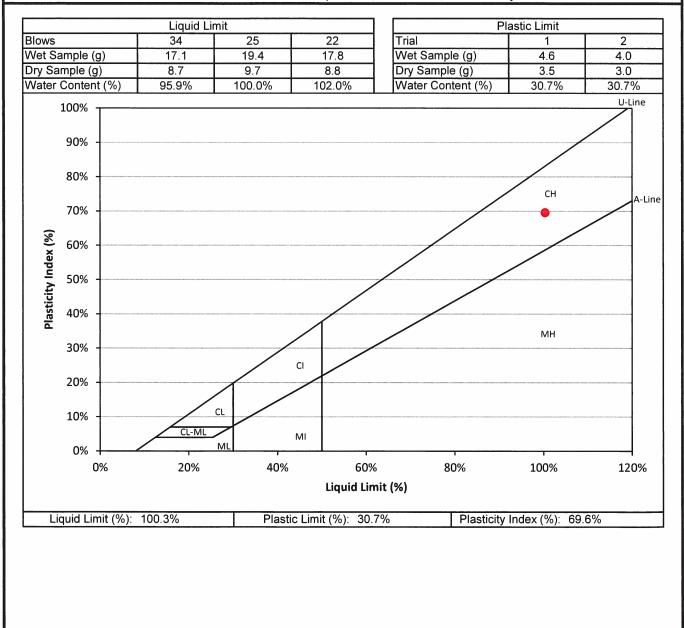
Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	
Client:	Dillon Consulting	Field Technician:	SIbrahim	
Sample Location:	Varies	Sample Date:	Varies	
Sample Depth:	Varies	Lab Technician:	CMahe	
Sample Number:	Varies	Date Tested:	August 19, 2014	

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH14-01	G1	0.61 - 0.76 m	38.8		lł		
-	G3	2.13 - 2.29 m	40.4			·	-
-	G5	4.27 - 4.42 m	54.7				
	G10	8.23 - 8.38 m					
	G10 G13		<u>49.8</u> 44.2		<u> </u>		
-	S15	11.28 - 11.43 m 12.19 - 12.34 m	6.5		┼────┼		
- TH14-02	G16	2.59 - 2.74 m	39.8		<u> </u>		
	G18 G19	5.64 - 5.79 m					
-	T21	7.62 - 8.23 m	49.5		<u> </u>		
-	G23		48.5		+		
-		10.06 - 10.21 m	57.3				
-	G25	11.58 - 11.73 m	39.7		───		
-	S28	13.41 - 13.87 m	9.1		───┼		
-	S29	14.33 - 14.78 m	13.1		├ ──── ├		
-	S30	15.24 - 15.70 m	12.6		├ ───┤		
TH14-03	G31	2.44 - 2.59 m	35.6				
-	G33	5.33 - 5.49 m	43.5				
-	G35	7.32 - 7.47 m	46.8				
-	G38	10.97 - 11.13 m	44.9				
-	G41	13.41 - 13.56 m	9.7				
-	S42	13.72 - 14.17 m	9.9				
TH14-04	G44	3.66 - 3.81 m	49.0				
-	G46	6.40 - 6.55 m	49.3				
-	G50	10.06 - 10.21 m	37.0				
-	G52	12.80 - 12.95 m	12.3				
-	S53	13.72 - 14.17 m	7.6				
-	G47	7.32 - 7.47 m	45.4				
							1
							1
						<u></u>	

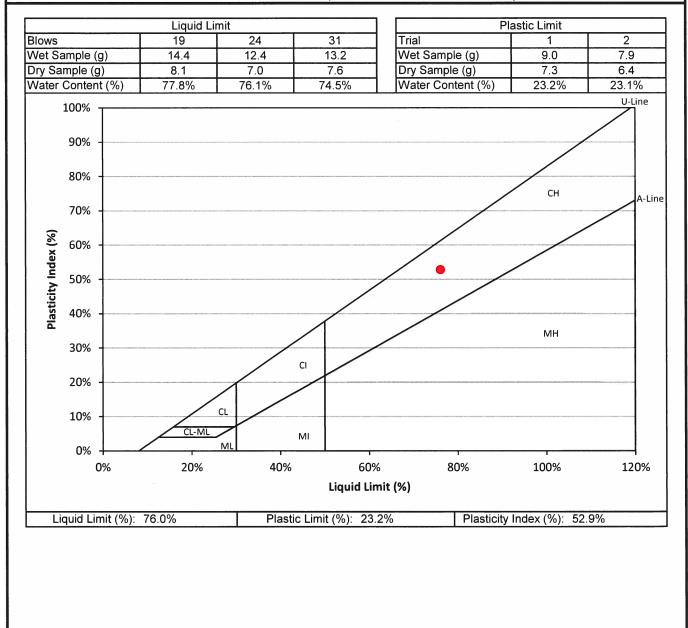


Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	14-01	Sample Date:	July 1, 2014
Sample Depth:	4.27	Lab Technician:	RDagg
Sample Number:	G5	Date Tested:	August 22, 2014

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils



Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	
Client:	Dillon Consulting	Field Technician:	Slbrahim	
Sample Location:	14-02	Sample Date:	July 1, 2014	
Sample Depth:	7.62	Lab Technician:	ML	
Sample Number:	T21	Date Tested:	September 2, 2014	

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

AECOM

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

TEST HOLE NO.:	TH14-01
SAMPLE NO.:	T4
SAMPLE DEPTH:	3.05 - 3.66 m
DATE TESTED:	2-Sep-14
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.55
Vane Size (S, M, L)	Μ
Undrained Shear Strength (kPa)	53.9
Undrained Shear Strength (ksf)	1.13
POCKET PENETROMETER	
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	69.5
Unconfined compressive strength (ksf)	1.5
Undrained Shear Strength (kPa)	34.8
Undrained Shear Strength (ksf)	0.726
MOISTURE CONTENT	
Tare Number	SG36
Wt. Sample wet + tare (g)	442.0
Wt. Sample dry + tare (g)	303.6
Wt. Tare (g)	8.3
Moisture Content %	46.9
BULK DENSITY	(22.2.4)
Sample Wt. (g)	1065.8
Diameter 1 (cm)	7.23
Diameter 2 (cm)	7.24
Diameter 3 (cm)	7.24
Avg. Diameter (cm)	7.24
Length 1 (cm)	15.34
Length 2 (cm)	<u>15.35</u> 15.36
Length 3 (cm)	
Avg. Length (cm)	15.35
Volume (cm ³)	631.4
Moisture content (%)	46.9
Bulk Density (g/cm ³)	1.688 16.6
Bulk Density (kN/m ³)	***************************************
Bulk Density (pcf)	<u>105.4</u> 11.27
Drv Densitv (kN/m ³)	11.2/

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AXIAL STRAIN RATE, R:

0.84

(0.5<R<2 % / minute)

AECOM

FAILURE SKETCH

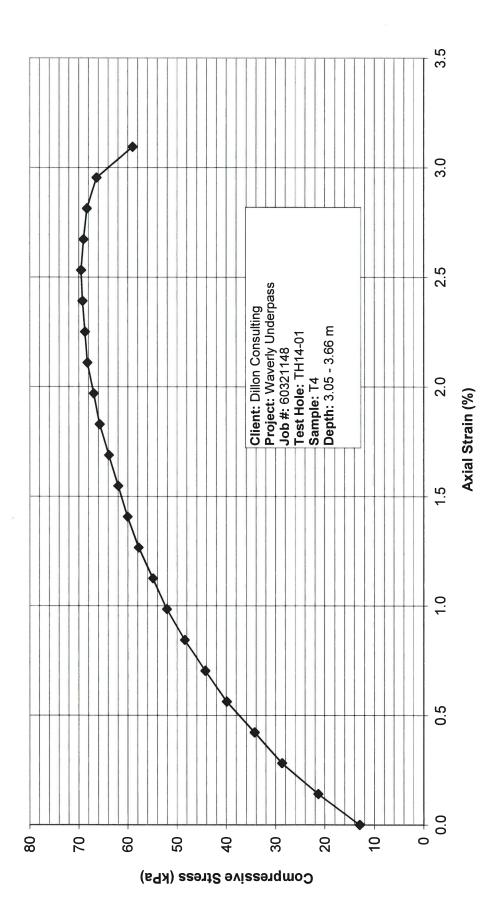
PRC	JECT:	Waverly Underpa	ass			
OC	B NO.:	60247924				
TEST HOL	E NO.:	TH14-01		SC	IL DESCRIPTION:	
SAMPL	E NO.:	T4		CLAY; silty, trace silt inclusions,	brown, moist, firm, hi	gh plasticity,
SAMPLE D	EPTH:	3.05 - 3.66 m				
SAMPLE	DATE:	February, 2014				
TEST	DATE:	2-Sep-14		MOISTURE CONTENT:	46.9	
· · · · · · · · · · · · · · · · · · ·						
SAMPLE DIA	M.(Do):	72.37	(mm)	INITIAL AREA, Ao:	4113.1	(mm²)
SAMPLE LENGT	H, (Lo):	153.50	(mm)	PISTON RATE:	0.051	(inches / minute)

CLIENT: Dillon Consulting

2.12

(2 < L/D < 2.5)

L / D RATIO:


(based on maximum q_u value)

TEST DATA - DIAL	READINGS				1		
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	СОМР	RESSIVE STRESS, σ_{i}	c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0013	0.00	6.38	11.99	1.88	0.271	13.0
0.02	0.0021	0.14	6.38	19.77	3,10	0.446	21.4
0.03	0.0028	0.28	6.39	26.61	4,16	0.599	28.7
0.03	0.0034	0.42	6.40	31.86	4.98	0.717	34.3
0.04	0.0040	0.56	6.41	37.11	5.79	0.833	39.9
0.05	0.0044	0.70	6.42	41.23	6.42	0.925	44.3
0.06	0.0048	0.84	6.43	45.16	7.02	1.012	48.4
0.07	0.0052	0.98	6.44	48.63	7.55	1.088	52.1
0.08	0.0055	1.13	6.45	51.35	7.96	1.147	54.9
0.09	0.0058	1.27	6.46	54.16	8.39	1.208	57.8
0.09	0.0060	1.41	6.47	56.31	8.71	1.254	60.0
0.10	0.0062	1.55	6.48	58.19	8.99	1.294	62.0
0.11	0.0064	1.69	6.48	60.06	9.26	1.334	63.9
0.12	0.0066	1.83	6.49	61.94	9.54	1.373	65.8
0.12	0.0067	1.03	6.50	63.15	9.71	1.398	67.0
0.13	0.0069	2.11	6.51	64.47	9.90	1.425	68.2
0.14	0.0069	2.11	6.52	65.03	9.90	1.425	68.7
0.14	0.0089	2.25	6.53	65.59	10.04	1.430	69.2
0.15	0.0070	2.59	6.54	65.96	10.04	1.452	69.5
0.17	0.0070	2.53	6.55	65.59	10.09	1.442	69.0
0.17	0.0069	2.87	6.56	65.03	9.91	1.442	68.3
0.19	0.0069	2.95	6.57	63.25	9.63	1.386	66.4
0.20	0.0060	3.09	6.58	56.31	8.56	1.233	59.0
0.20	0.0000	3.09	0.30	30.31	0.00	1.233	59.0
	1						
	1	1		1			
	1			Γ		1	
	T	I		Γ			
	1			1			****
	1			1			
	1			t			
	1			1			
	1			•	1		
	1			t	1		
	*****				1		
	+			<u> </u>			
	+			<u> </u>			
	+			+			
				-			
				+	-		
					-		
					-		
		L		L			
	NE OTOENOTI:	00.00	- 5	7	NOTEO		
CONFINED COMPRESS			kPa		NOTES:		
(based on maximu	m q _u value)	1.452	ksf				
	EAR STRENGTH, S	34.77	kPa				

ksf

0.726

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

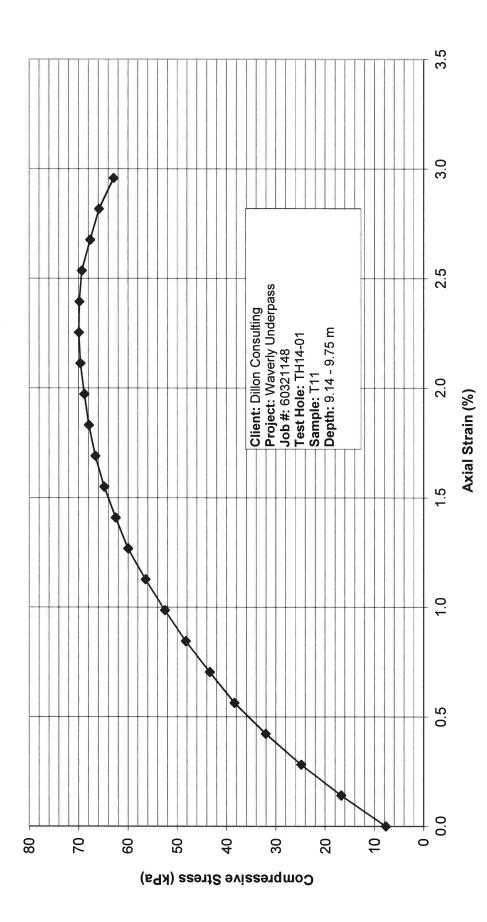
AECOM

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

TEST HOLE NO.:	TH14-01
SAMPLE NO.:	T11
SAMPLE NO.	9.14 - 9.75 m
DATE TESTED:	
DATE TESTED:	2-Sep-14
SHEAR STRENGTH TESTS	
TORVANE	
B	0.55
Reading	0.55
Vane Size (S, M, L)	M
Undrained Shear Strength (kPa)	53.9
Undrained Shear Strength (ksf)	1.13
POCKET PENETROMETER	
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	69.9
Unconfined compressive strength (ksf)	1.5
Undrained Shear Strength (kPa)	35.0
Undrained Shear Strength (ksf)	0.730
MOISTURE CONTENT	
Tare Number	SG36
Wt. Sample wet + tare (g)	372.8
Wt. Sample dry + tare (g)	270.7
Wt. Tare (g)	8.3
Moisture Content %	38.9
BULK DENSITY	
Sample Wt. (g)	1072.3
Diameter 1 (cm)	7.22
Diameter 2 (cm)	7.23
Diameter 3 (cm)	7.23
Avg. Diameter (cm)	7.23
Length 1 (cm)	15.33
Length 2 (cm)	15.34
Length 3 (cm)	15.32
Avg. Length (cm)	15.33
Volume (cm ³)	628.8
Moisture content (%)	38.9
Bulk Density (g/cm ³)	1.705
Bulk Density (kN/m ³)	16.7
Bulk Density (kiviii) Bulk Density (pcf)	106.5
Dry Density (kN/m ³)	12.04

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)


AECOM

CLIENT:	Dillon Consulting						
PROJECT:	Waverly Underpa	Vaverly Underpass					
JOB NO.:	NO.: 60247924						
TEST HOLE NO .:	TH14-01		so	IL DESCRIPTION:			
SAMPLE NO.:	T11		CLAY; trace sand, trace silt inclu	isions, trace gravel ((5mm), brown, moist, firm		
SAMPLE DEPTH:	9.14 - 9.75 m	1	high plasticity,				
SAMPLE DATE:	February, 2014	1					
TEST DATE:	2-Sep-14	1	MOISTURE CONTENT:	38.9			
SAMPLE DIAM.(Do):	72.27	(mm)	INITIAL AREA, Ao:	4101.7	(mm ²)		
SAMPLE LENGTH, (Lo):	153.30	(mm)	PISTON RATE:	0.051	(inches / minute)		
L / D RATIO:	2.12	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.85	(0.5 <r<2 %="" minute)<="" td=""></r<2>		

FAILURE SKETCH

TEST DATA - DIAL	READINGS			,			
AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPF	RESSIVE STRESS, O	c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0008	0.00	6.36	7.12	1.12	0.161	7.7
0.02	0.0017	0.14	6.37	15.46	2.43	0.350	16.7
0.03	0.0025	0.28	6.38	22.96	3.60	0.518	24.8
0.03	0.0032	0.42	6.38	29.70	4.65	0.670	32.1
0.04	0.0038	0.56	6.39	35.61	5.57	0.802	38.4
0.05	0.0043	0.70	6.40	40.29	6.29	0.906	43.4
0.06	0.0048	0.85	6.41	44.88	7.00	1.008	48.3
0.07	0.0052	0.99	6.42	48.91	7.62	1.097	52.5
0.08	0.0056	1.13	6.43	52.66	8.19	1.179	56.5
0.09	0.0060	1.27	6.44	56.03	8,70	1.253	60.0
0.09	0.0062	1.41	6.45	58.47	9.07	1.306	62.5
0.10	0.0065	1.55	6.46	60.72	9.40	1.354	64.8
0.10	0.0067	1.69	6.47	62.50	9.66	1.392	66.6
0.12	0.0068	1.83	6.48	63.81	9.85	1.392	67.9
0.12	0.0069	1.83	6.49				
0.13	0.0009			64.75	9.98	1.438	68.8
0.14	0.0070	2.11	6.49	65.59	10.10	1.454	69.6
	0.0070	2.25	6.50	65.96	10.14	1.460	69.9
0.15	0.0070	2.39	6.51	65.96	10.13	1.458	69.8
0.16	0.0070	2.54	6.52	65.59	10.06	1.448	69.3
0.17	0.0068	2.68	6.53	64.09	9.81	1.413	67.6
0.18	0.0067	2.82	6.54	62.50	9.55	1.376	65.9
0.19	0.0064	2.96	6.55	59.78	9.12	1.314	62.9
				1			
				-			
		-		-			
				+	-		
				-			
				-			
				1	1		
					1		
	1			T	1		
	1			1	1		
	1			1	1		
				*			
	-			1			
	-	-		+			
	+			+			
				+			
				+			
		-		-			
				-			
				-			
					I		
				_			1 1 1 1 1
NCONFINED COMPRESS	IVE STRENGTH, q.,:	69.93	kPa	1	NOTES:		
(based on maximu		1.460	ksf				
	EAR STRENGTH, S.			-			
			kPa ksf				
(based on maximu							

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

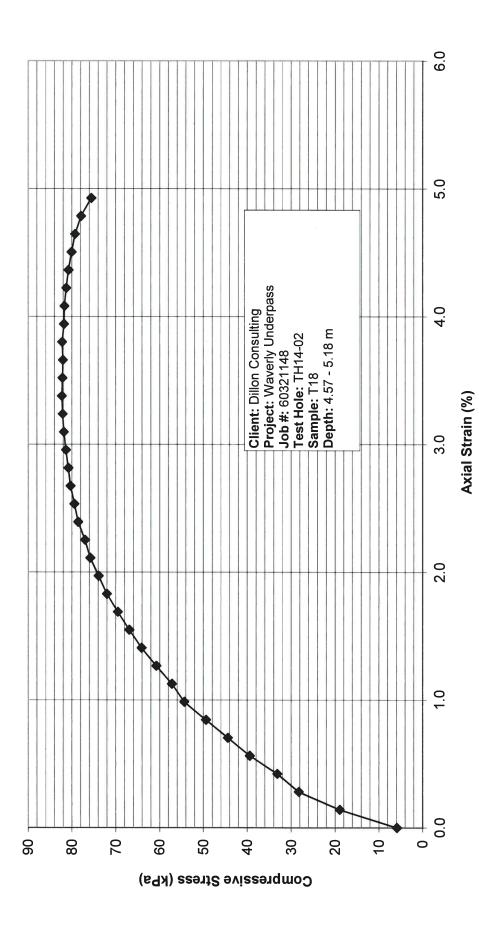
AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: Dillon Consulting PROJECT: Waverly Underpass JOB NO.: 60321148

TEST HOLE NO	TH14-02		
TEST HOLE NO.:	T18		
SAMPLE NO.: SAMPLE DEPTH:	4.57 - 5.18 m		
DATE TESTED:			
DATE TESTED:	2-Sep-14		
SHEAR STRENGTH TESTS			
TORVANE			
Reading	0.80		
Vane Size (S, M, L)	<u></u> M		
Undrained Shear Strength (kPa)	78.5		
Undrained Shear Strength (kr a)	1.64		
	1.04		
POCKET PENETROMETER			
Reading - Qu (tsf)	1.25		
Undrained Shear Strength (kPa)	59.9		
Reading - Qu (tsf)	1.25		
Undrained Shear Strength (kPa)	59.9		
Reading - Qu (tsf)	1.00		
Undrained Shear Strength (kPa)	47.9		
UNCONFINED COMPRESSIVE STRENGTH TEST			
Unconfined compressive strength (kPa)			
Unconfined compressive strength (ksf)	1.7		
Undrained Shear Strength (kPa)	41.2		
Undrained Shear Strength (ksf)	0.860		
MOISTURE CONTENT			
Tare Number	SG36		
Wt. Sample wet + tare (g)	416.1		
Wt. Sample dry + tare (g)	285.3		
Wt. Tare (g)	9.3		
Moisture Content %	47.4		
BULK DENSITY			
Sample Wt. (g)	1080.9		
Diameter 1 (cm)	7 20		
Diameter 2 (cm)	7.24 7.21		
Diameter 3 (cm)	7.21		
Avg. Diameter (cm)	7.22		
Length 1 (cm)	15.34		
Length 2 (cm)	15.33		
Length 3 (cm)	15.35		
Avg. Length (cm)	15.34		
Volume (cm ³)	627.5		
Moisture content (%)	47.4		
Bulk Density (g/cm ³)	1.723		
Bulk Density (kN/m ³)	16.9		
Bulk Density (pcf)	107.5		
Drv Density (kN/m ³)	11.46		

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM


FAILURE SKETCH

CLIENT:	Dillon Consulting					
PROJECT:	Waverly Underpa	averly Underpass				
JOB NO.:	60247924		***************************************			
TEST HOLE NO.:	TH14-02		so	IL DESCRIPTION		
SAMPLE NO.:	T18		CLAY; silty, trace silt inclusions,	brown, moist, firm,	high plasticity,	
SAMPLE DEPTH:	4.57 - 5.18 m		······································		······	
SAMPLE DATE:	February, 2014					
TEST DATE:	2-Sep-14		MOISTURE CONTENT:	47.4		
SAMPLE DIAM.(Do):	72.17	(mm)	INITIAL AREA, Ao:	4090.4	(mm ²)	
SAMPLE LENGTH, (Lo):	153.40	(mm)	PISTON RATE:	0.051	(inches / minute)	
L / D RATIO:	2.13	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>	

TEST DATA - DIAL READINGS TOTAL AVERAGE APPLIED AXIAL PROVING AXIAL CROSS-SECTIONAL AXIAL LOAD, P COMPRESSIVE STRESS, σ_c COMPRESSION RING STRAIN, E1 AREA, A (inches) 0.0006 0.0019 (inches) (inches2) (lbs) 5.43 17.43 (psi) 0.86 2.75 4.10 4.81 (%) (ksf) 0.123 (kPa) (%) 0.00 0.14 0.28 0.42 0.56 0.01 6.34 5.9 18.9 28.2 33.2 39.4 44.4 0.395 0.590 0.693 0.0028 0.0033 0.0039 0.03 6.36 6.37 26.05 30.64 36.45 41.13 45.82 50.50 53.22 56.59 59.78 62.50 0.03 6.38 6.39 6.39 5.72 0.823 0.05 0.0039 0.0044 0.0049 0.0054 0.0057 0.0060 6.44 7.17 7.89 0.70 0.928 49.4 0.99
1.13
1.27 6.40 6.41 1.136 1.195 1.269 1.339 1.398 1.452 1.504 1.544 1.583 1.608 54.4 57.2 0.08 8.30 60.8 64.1 66.9 6.42 8.81 0.09 0.0064 0.0067 0.0069 1.41 1.55 1.69 6.43 6.44 9.30 9.70 65.03 67.46 10.08 10.45 10.72 69.5 72.0 73.9 6.45 0.12 0.13 0.14 0.0072 1.83 6.46 6.47 69.34 71.21 72.43 74.02 10.72 10.99 11.17 11.40 11.52 11.65 2.11 2.25 2.39 2.53 2.67 2.81 75.8 77.0 78.6 79.5 80.3 80.8 81.4 81.9 82.1 82.3 82.2 82.1 82.2 6.48 0.0078 0.0077 0.0079 0.0080 0.0081 0.0082 0.14 0.15 0.16 0.17 6.49 1.641 1.659 1.678 1.688 1.700 1.710 1.715 1.719 1.717 1.714 1.718 74.96 75.90 76.46 77.12 77.68 6.50 6.51 6.52 0.18 0.19 0.20 0.20 11.72 11.80 11.87 2.96 3.10 3.24 3.38 3.52 6.53 6.54 6.55 0.0082 0.0083 78.05 78.33 78.33 11.91 11.94 11.92 0.21
0.22
0.23 0.0084 0.0084 0.0084 6.56 6.57 3.66 3.80 3.94 4.08 11.90 11.93 11.87 6.58 78.33 78.61 78.33 78.05 77.68 77.12 76.46 75.24 73.09 0.24 0.25 0.26 0.0084 6.59 6.60 0.0084 1.709 1.707 1.698 81.8 81.7 81.3 11.87 11.85 11.79 11.72 11.62 11.62 11.50 11.30 0.0084 0.0083 0.0083 6.61 0.26 4.22 6.62 1.687 1.673 1.656 80.8 80.1 79.3 0.28 0.0082 4.50 4.64 4.79 6.64 6.65 6.66 6.67 1.627 1.578 77.9 75.6 0.31 0.0078 4.93 10.96 NOTES:

82.31	kPa
1.719	ksf
41.15	kPa
0.860	ksf
	41.15

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

A=COM

Appendix D Analysis of Pile Axial Capacity

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\USERS\ADMINI~1\DESKTOP\WAVERL~1\NEWPPC~1\WPPC1.DVN Project Name: Waverley UP Project Date: 01/01/2015 Project Client: Dillon Computed By: SI Project Manager: FK

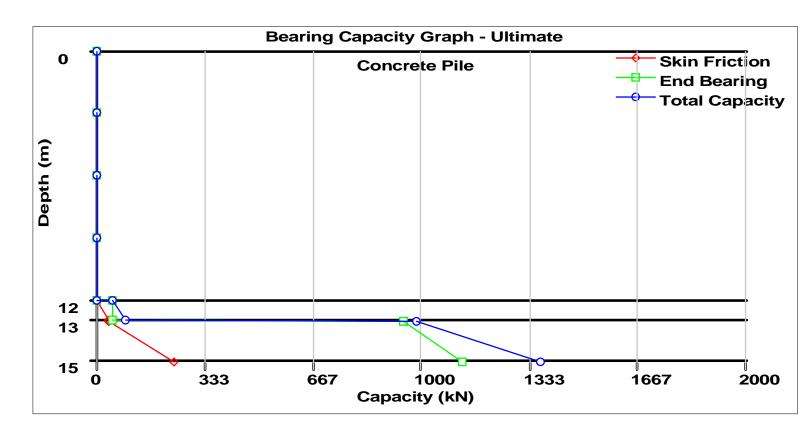
PILE INFORMATION

Pile Type: Concrete Pile Top of Pile: 0.00 m Length of Square Side: 279.00 mm

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	2.00 m
	 Driving/Restrike 	2.00 m
	- Ultimate:	2.00 m
Ultimate Considerations:	- Local Scour:	0.00 m
	- Long Term Scour:	0.00 m
	- Soft Soil:	0.00 m

ULTIMATE PROFILE


Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	12.00 m	0.00%	17.00 kN/m^3	0.05 kPa	T-79 Concrete
2	Cohesionless	1.00 m	0.00%	18.00 kN/m^3	28.0/28.0	Nordlund
3	Cohesionless	2.00 m	0.00%	21.00 kN/m^3	36.0/39.3	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.03 kPa 110.04 kPa 114.24 kPa 125.33 kPa ULTIMATE - ENI	N/A N/A N/A N/A 20.15 20.15 25.91 25.91 DBEARING	0.06 kPa 0.06 kPa 0.05 kPa 0.05 kPa 0.05 kPa N/A N/A N/A	0.00 kN 0.19 kN 0.36 kN 0.52 kN 0.67 kN 1.04 kN 38.84 kN 40.15 kN 238.64 kN
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.07 kPa 114.10 kPa 114.30 kPa 136.47 kPa	N/A N/A N/A N/A 22.80 22.80 143.28 143.28	N/A N/A N/A N/A 49.64 kN 49.64 kN 1358.13 kN 1358.13 kN	0.04 kN 0.04 kN 0.04 kN 0.04 kN 49.64 kN 49.64 kN 943.99 kN 1127.12 kN

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 m	0.00 kN	0.04 kN	0.04 kN
3.01 m	0.19 kN	0.04 kN	0.22 kN
6.01 m	0.36 kN	0.04 kN	0.40 kN
9.01 m	0.52 kN	0.04 kN	0.55 kN
11.99 m	0.67 kN	0.04 kN	0.70 kN
12.01 m	1.04 kN	49.64 kN	50.68 kN
12.99 m	38.84 kN	49.64 kN	88.48 kN
13.01 m	40.15 kN	943.99 kN	984.14 kN
14.99 m	238.64 kN	1127.12 kN	1365.76 kN

Bearing Capacity Graph for Precast-Prestressed Concrete Pile - HEX 300 mm

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\USERS\ADMINI~1\DESKTOP\WAVERL~1\NEWPPC~1\WPPC2.DVN Project Name: Waverley UP Project Date: 01/01/2015 Project Client: Dillon Computed By: SI Project Manager: FK

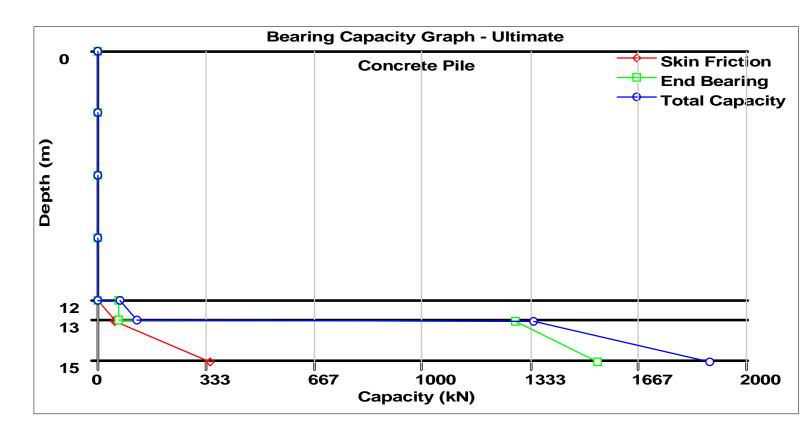
PILE INFORMATION

Pile Type: Concrete Pile Top of Pile: 0.00 m Length of Square Side: 326.00 mm

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	2.00 m
	 Driving/Restrike 	2.00 m
	- Ultimate:	2.00 m
Ultimate Considerations:	- Local Scour:	0.00 m
	- Long Term Scour:	0.00 m
	- Soft Soil:	0.00 m

ULTIMATE PROFILE


Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	12.00 m	0.00%	17.00 kN/m^3	0.05 kPa	T-79 Concrete
2	Cohesionless	1.00 m	0.00%	18.00 kN/m^3	28.0/28.0	Nordlund
3	Cohesionless	2.00 m	0.00%	21.00 kN/m^3	36.0/39.3	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.03 kPa 110.04 kPa 114.24 kPa 125.33 kPa ULTIMATE - ENI	N/A N/A N/A N/A 22.39 22.39 28.78 28.78 D BEARING	0.06 kPa 0.06 kPa 0.05 kPa 0.05 kPa 0.05 kPa N/A N/A N/A	0.00 kN 0.22 kN 0.43 kN 0.62 kN 0.79 kN 1.31 kN 54.16 kN 56.05 kN 345.75 kN
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.07 kPa 114.10 kPa 114.30 kPa 136.47 kPa	N/A N/A N/A N/A 22.80 22.80 143.28 143.28	N/A N/A N/A N/A 67.78 kN 67.78 kN 1854.24 kN 1854.24 kN	0.05 kN 0.05 kN 0.05 kN 0.05 kN 67.78 kN 67.78 kN 1288.82 kN 1538.85 kN

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 m	0.00 kN	0.05 kN	0.05 kN
3.01 m	0.22 kN	0.05 kN	0.27 kN
6.01 m	0.43 kN	0.05 kN	0.48 kN
9.01 m	0.62 kN	0.05 kN	0.67 kN
11.99 m	0.79 kN	0.05 kN	0.84 kN
12.01 m	1.31 kN	67.78 kN	69.09 kN
12.99 m	54.16 kN	67.78 kN	121.93 kN
13.01 m	56.05 kN	1288.82 kN	1344.87 kN
14.99 m	345.75 kN	1538.85 kN	1884.60 kN

Bearing Capacity Graph for Precast-Prestressed Concrete Pile - HEX 350 mm

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\USERS\ADMINI~1\DESKTOP\WAVERL~1\NEWPPC~1\WPPC3.DVN Project Name: Waverley UP Project Date: 01/01/2015 Project Client: Dillon Computed By: SI Project Manager: FK

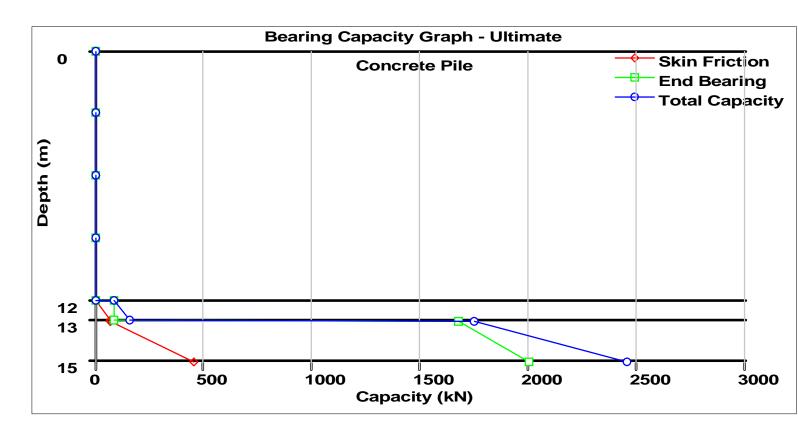
PILE INFORMATION

Pile Type: Concrete Pile Top of Pile: 0.00 m Length of Square Side: 372.00 mm

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling: - Driving/Restrike	2.00 m 2.00 m
Ultimate Considerations:	- Ultimate: - Local Scour: - Long Term Scour: - Soft Soil:	2.00 m 0.00 m 0.00 m 0.00 m

ULTIMATE PROFILE


Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	12.00 m	0.00%	17.00 kN/m^3	0.05 kPa	T-79 Concrete
2	Cohesionless	1.00 m	0.00%	18.00 kN/m^3	28.0/28.0	Nordlund
3	Cohesionless	2.00 m	0.00%	21.00 kN/m^3	36.0/39.3	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.03 kPa 110.04 kPa 114.24 kPa 125.33 kPa ULTIMATE - ENI	N/A N/A N/A N/A 24.15 24.15 31.04 31.04 DBEARING	0.06 kPa 0.06 kPa 0.06 kPa 0.05 kPa 0.05 kPa N/A N/A N/A	0.00 kN 0.25 kN 0.49 kN 0.72 kN 0.92 kN 1.59 kN 69.28 kN 71.75 kN 452.02 kN
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 14.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.07 kPa 114.10 kPa 114.30 kPa 136.47 kPa	N/A N/A N/A N/A 22.80 22.80 143.28 143.28	N/A N/A N/A N/A 88.25 kN 88.25 kN 2414.45 kN 2414.45 kN	0.06 kN 0.06 kN 0.06 kN 0.06 kN 88.25 kN 88.25 kN 1678.20 kN 2003.77 kN

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 m	0.00 kN	0.06 kN	0.06 kN
3.01 m	0.25 kN	0.06 kN	0.32 kN
6.01 m	0.49 kN	0.06 kN	0.56 kN
9.01 m	0.72 kN	0.06 kN	0.78 kN
11.99 m	0.92 kN	0.06 kN	0.98 kN
12.01 m	1.59 kN	88.25 kN	89.84 kN
12.99 m	69.28 kN	88.25 kN	157.54 kN
13.01 m	71.75 kN	1678.20 kN	1749.95 kN
14.99 m	452.02 kN	2003.77 kN	2455.79 kN

Bearing Capacity Graph for Precast-Prestressed Concrete Pile - HEX 400 mm

DRIVEN 1.2 GENERAL PROJECT INFORMATION

Filename: C:\USERS\ADMINI~1\DESKTOP\WAVERL~1\16MHPI~1\WHPILE.DVN Project Name: Waverley UP Project Date: 01/01/2015 Project Client: Dillon Computed By: SI Project Manager: FK

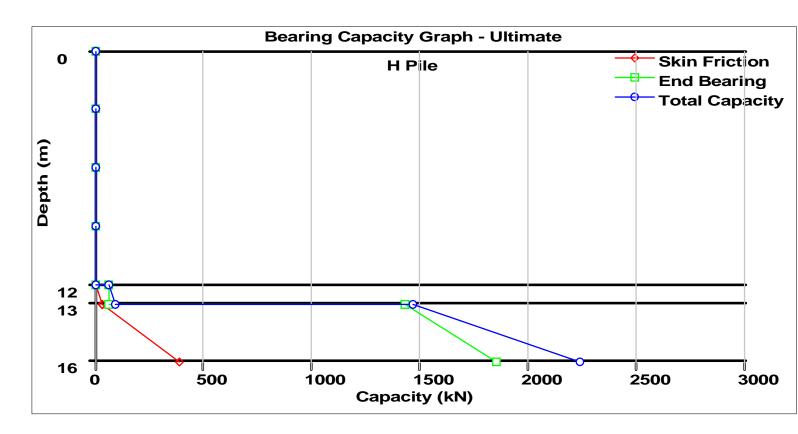
PILE INFORMATION

Pile Type: H Pile - HP310X110 Top of Pile: 0.00 m Perimeter Analysis: Box Tip Analysis: Box Area

ULTIMATE CONSIDERATIONS

Water Table Depth At Time Of:	- Drilling:	2.00 m
	 Driving/Restrike 	2.00 m
	- Ultimate:	2.00 m
Ultimate Considerations:	- Local Scour:	0.00 m
	 Long Term Scour: 	0.00 m
	- Soft Soil:	0.00 m

ULTIMATE PROFILE


Layer	Туре	Thickness	Driving Loss	Unit Weight	Strength	Ultimate Curve
1	Cohesive	12.00 m	0.00%	17.00 kN/m^3	0.05 kPa	T-79 Steel
2	Cohesionless	1.00 m	0.00%	18.00 kN/m^3	25.0/28.0	Nordlund
3	Cohesionless	3.00 m	0.00%	21.00 kN/m^3	38.0/40.3	Nordlund

ULTIMATE - SKIN FRICTION

Depth	Soil Type	Effective Stress At Midpoint	Sliding Friction Angle	Adhesion	Skin Friction
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 15.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.03 kPa 110.04 kPa 114.24 kPa 130.93 kPa ULTIMATE - END	N/A N/A N/A N/A 19.69 19.69 29.93 29.93 D BEARING	0.05 kPa 0.05 kPa 0.05 kPa 0.05 kPa 0.05 kPa N/A N/A N/A	0.00 kN 0.19 kN 0.37 kN 0.56 kN 0.74 kN 1.05 kN 32.03 kN 33.40 kN 388.86 kN
Depth	Soil Type	Effective Stress At Tip	Bearing Cap. Factor	Limiting End Bearing	End Bearing
0.01 m 3.01 m 6.01 m 9.01 m 11.99 m 12.01 m 12.99 m 13.01 m 15.99 m	Cohesive Cohesive Cohesive Cohesive Cohesionless Cohesionless Cohesionless Cohesionless	N/A N/A N/A N/A 106.07 kPa 114.10 kPa 114.30 kPa 147.67 kPa	N/A N/A N/A N/A 22.80 22.80 174.00 174.00	N/A N/A N/A N/A 60.89 kN 60.89 kN 2039.93 kN 2039.93 kN	0.04 kN 0.04 kN 0.04 kN 0.04 kN 0.04 kN 60.89 kN 60.89 kN 1431.69 kN 1849.71 kN

ULTIMATE - SUMMARY OF CAPACITIES

Depth	Skin Friction	End Bearing	Total Capacity
0.01 m	0.00 kN	0.04 kN	0.04 kN
3.01 m	0.19 kN	0.04 kN	0.23 kN
6.01 m	0.37 kN	0.04 kN	0.41 kN
9.01 m	0.56 kN	0.04 kN	0.60 kN
11.99 m	0.74 kN	0.04 kN	0.78 kN
12.01 m	1.05 kN	60.89 kN	61.94 kN
12.99 m	32.03 kN	60.89 kN	92.92 kN
13.01 m	33.40 kN	1431.69 kN	1465.09 kN
15.99 m	388.86 kN	1849.71 kN	2238.57 kN

Bearing Capacity Graph for Steel H-Pile - HP 310X110

Appendix E Slope Stability Figures

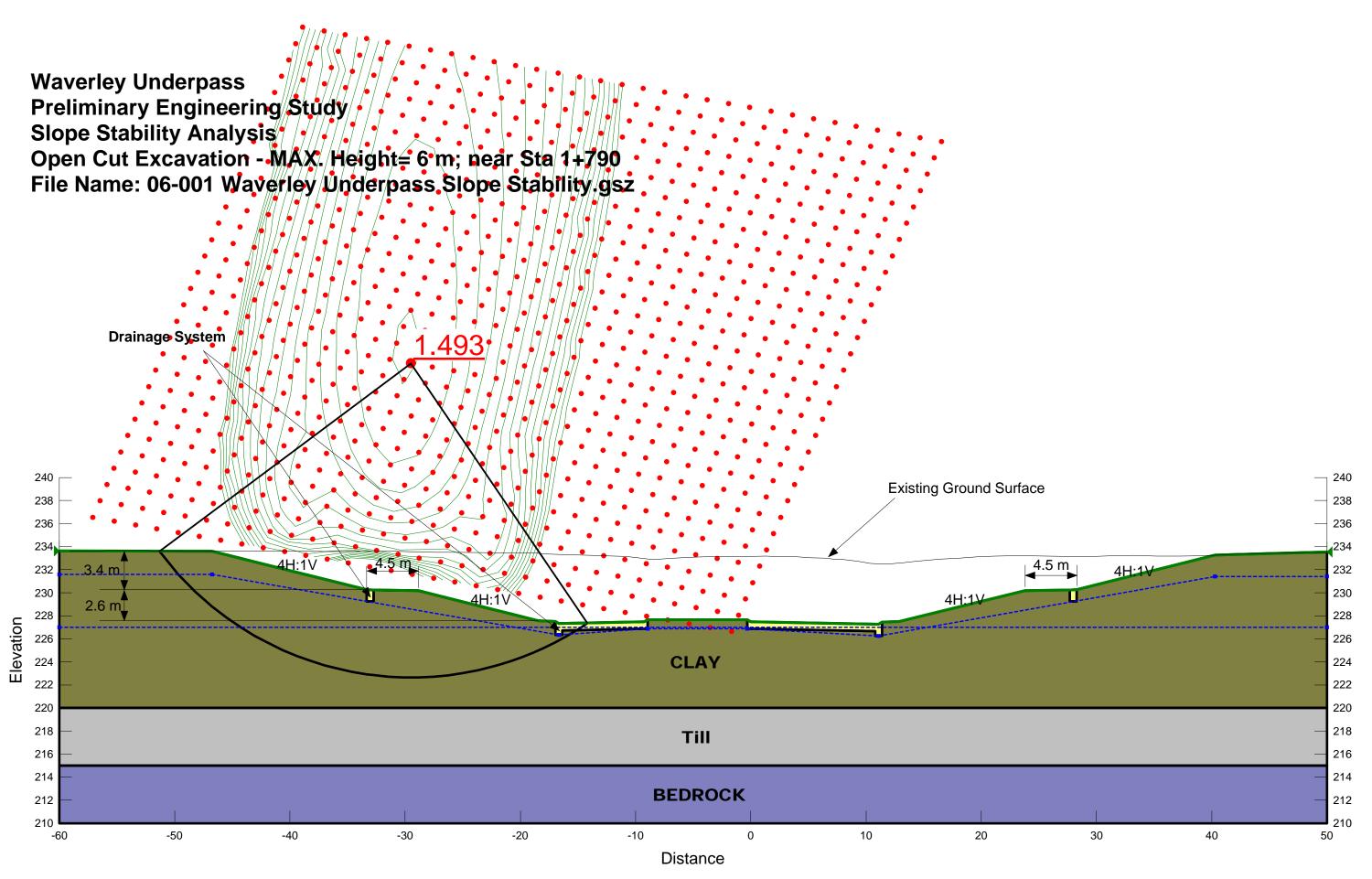


Figure 01

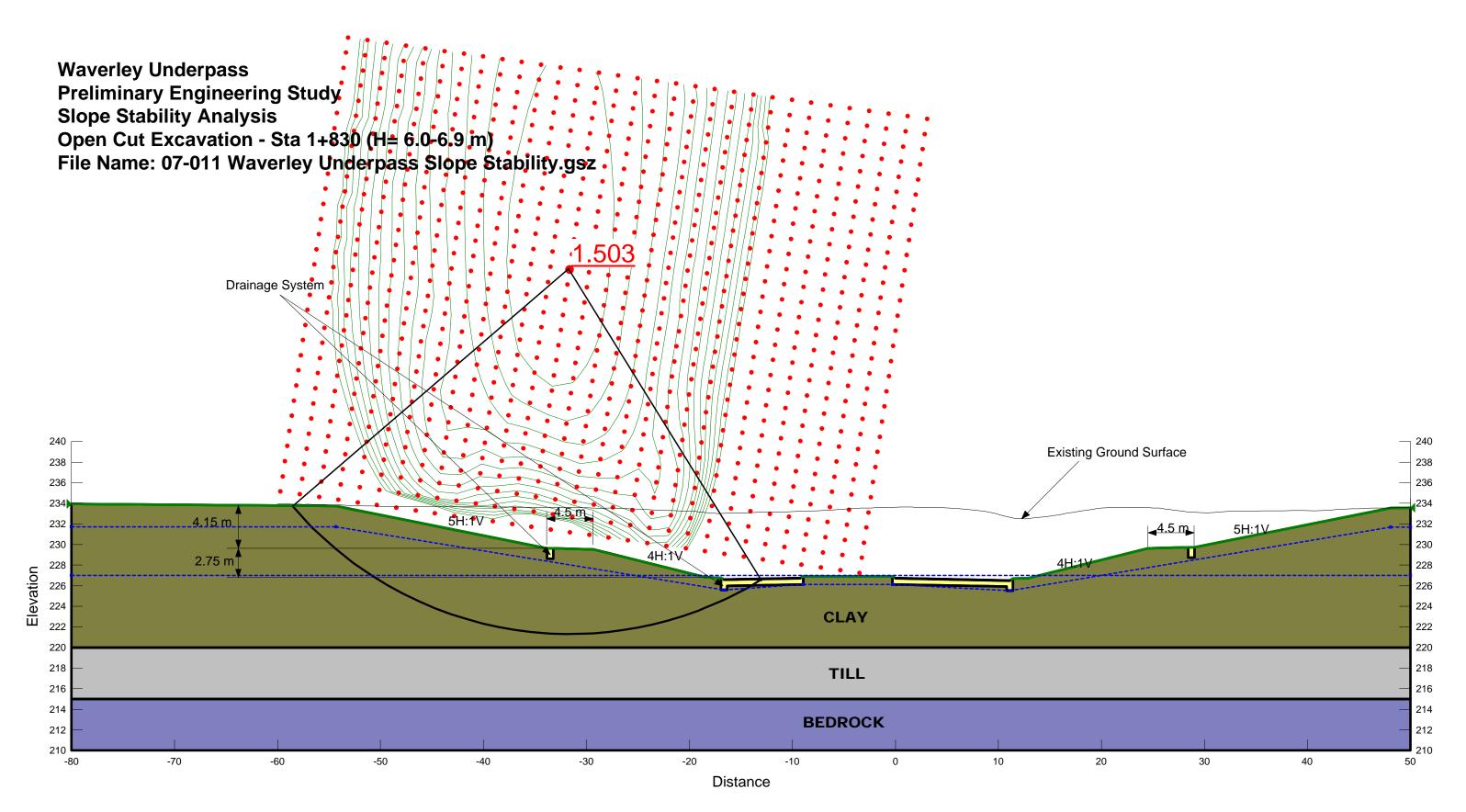


Figure 02

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Andy Nagy, P.Eng	Page 1
СС		
Subject	Summary of Test Caisson Inves	tigation – Waverley Underpass Project
From	Saba Ibrahim	
FIUIII	Saba Ibraillin	
Date	November 25, 2016	Project Number 60321148

A test caisson was advanced at a redundant pile to verify the design assumptions, examine the feasibility of construction, and assist in the selection of adequate equipment and proper construction practices. The drilling took place during the period between October 4th and October 7th, 2016. The test caisson was advanced on the south east side of Waverley Street intersection with existing CN railway, approximately 33 m south of the existing south CN track as shown on Figure 1, Appendix A. Drilling was carried out by Subterranean (Manitoba) Ltd. using a track-mounted Soilmec R-516 HD piling rig equipped with a 1200/910 mm diameter flight auger and 810 mm core barrel. Due to the size and heavy weight of the drill rig, a 0.3 m thick pad was constructed using granular rock fill to support the weight of the equipment. The test caisson was advanced through the clay overburden and till layer with augers to practical refusal into the bedrock at a depth of 17.2 m below surface. The core barrel was then employed to core into the bedrock from 17.2 m to a termination depth of 30.2 m below ground surface.

The caisson was sleeved with an outer temporary casing 4 feet (1.2 m) in diameter. The temporary safety casing extended from ground surface to a depth of 5.0 m below surface. An inner (permanent) sleeve was inserted into the test caisson to support the walls of the test hole at deeper depths. The inner (permanent) sleeve was 36 inch (0.91 m) in diameter and extended into the bedrock to a depth of 21.0 m below ground surface. The rock socket below depth of 21.0 m was advanced without the use of a sleeve (permanent) or casing to support the side walls of the hole.

The soil stratigraphy at the test caisson location consisted of a thin layer of topsoil and clay (fill) underlain by a thick lacustrine clay deposit extending to approximately 13.2 m below ground surface. The clay was soft to firm in consistency and of high plasticity. The clay was underlain by glacial till that typically contains variable amounts of clay, sand, and gravel as well as boulders and cobbles in silt matrix. Limestone bedrock was encountered at 17.2 m below ground surface. The top 4.5 m of the bedrock was highly fractured bedrock (very poor quality) and contained clay/sand infill zones and 0.8 m thick layer of fine grained shale. Limestone bedrock (poor to fair quality) was encountered at a depth between 23.8 m and 25.8 m below ground surface. Poor quality rock was encountered at depths below 25.8 and continued to the termination depth at 30.2 m below ground surface. A detailed log showing the soil stratums encountered is provided in Appendix A.

Sand layers were observed within the weathered/highly fractured rock zones at 18.7 m and between 20 to 20.8 m below ground surface. Water inflow and sand inflow in the test caisson were both observed within the weathered/highly fractured rock zones at depths ranged from 18 to 20.8 m and 18.7 to 20.8 m below ground surface, respectively.

During the course of the coring into the bedrock, and at the beginning of the rock coring, the inner (permanent) casing was inserted to a depth of 17.2 m. Subsequently, core barrel and the driving shoes of the inner (permanent) casing were both damaged within the weathered zone of the bedrock at depths between 17.2 and 23 m below ground surface. The drilling was suspended at the depth of 23 m and the static water depth was approximately at 12.0 m below ground surface (measured the next day prior to the commencement of first video inspection). Static water in the test caisson hole has been pumped out to the surface prior to conducting the first downhole video inspection. The first downhole video inspection up to 23 m below ground surface was performed to confirm that the proposed new depth of the inner (permanent) casing (21 m) is sufficient to maintain a stable hole excavation.

Subsequently, the damaged inner (permanent) casing was retrieved and replaced with new inner casing prior to proceeding with rock coring from 23 m until the termination depth at 30.2 m below ground surface. The depth of static water at the end of the rock coring was about 9.5 m below ground surface (measured three days later prior to the commencement of second video inspection). Water in the test caisson hole was pumped out again prior to conducting the second downhole video inspection. The second downhole video inspection was performed to aid in assessing the competency of the bedrock from 23 m to the termination depth at 30.2 m below ground surface.

Following the second video inspection, the test caisson hole was backfilled with concrete/bentonite mixture, from termination depth of 30.2 m up to 1.0 m below ground surface and with granular fill to ground surface.

Core barrel was utilized for coring into the bedrock and retrieving the rock cores from the bottom of the test caisson.

Caisson advancement was completed in approximately 24 hours of drilling including drilling into clay/till overburden which completed in about 2 hours and coring into bedrock which completed in about 22 hour. Additional time was required for site preparation including a granular pad placement at the caisson location, camera inspection and backfilling the caisson with concrete/bentonite mixture.

To summarize, based on observations from the test caisson drilling, the following practices are recommended for the installation of the bridge caissons:

- Permanent sleeve from ground surface into the weathered/highly fractured bedrock will be required to maintain a stable excavation.
- Video inspection of the test caisson is recommended to confirm the quality of the rock socket. However, if pumping of groundwater to inspect the socket would tend to de-stabilize the excavation due to pumping of fine sand from the fractured zones, an alternate method to confirm the quality of the socket core should be utilized. This should be combined with maintaining an extra water head inside the inner casing and probing the base of the socket

with a weighted steel probe bar after cleaning and immediately before tremie concrete placement.

- The Soilmec R-516 HD or equivalent drill rig is capable of drilling deep caissons to the required depth in an efficient time manner.
- Tremie placement of concrete will be required due to the large amount of water seepage from the bedrock aquifer.
- The depth to the bedrock (poor to fair quality bedrock) is expected to vary across the site and it should be recognized that the test holes advanced at the bridge abutment and pier locations are more representative of expected ground conditions at those locations.

Closure

The findings and recommendations of this memorandum were based on the results of field investigations, combined with an interpolation of soil and groundwater conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test hole drilled at this site and described in this memorandum, or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and adjusted, if necessary.

Soil conditions, by their nature, can be highly variable across a site. The placement of fill and prior construction activities on a site can contribute to the variability especially near surface soil conditions. A contingency should be included in the construction budget to allow for the possibility of variation in soil conditions, which may result in modification of the design and construction procedures.

We trust the information provided herein is sufficient for your purposes.

Please don't hesitate to contact me should you have any questions or concerns.

Submitted by:

ATBrahis

Saba Ibrahim, M.Sc, P.Eng. Geotechnical Engineer

Reviewed by:

Faris Alobaidy, M.Sc, P.Eng. Senior Geotechnical Engineer

Page 4 Memorandum to Andy Nagy November 22, 2016

Figure: 01 AECOM

Test Caisson Location Plan

Waverly Underpass Detailed Design

Dillon Consulting Limited Project No.: 60321148

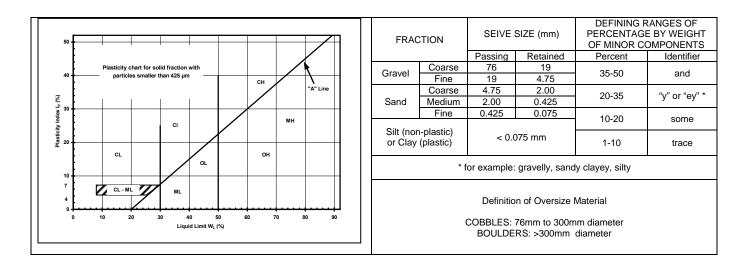
AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.


Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

					UMA	USCS		Laborator	y Classification Crite	eria
		Descripti	on		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	Well graded sandy gravel or no f	s, with little	2 2 2 2 2 - 2 - 2	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravel or no f	s, with little		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-
OILS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, silty sandy gravels			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and
COARSE GRAINED SOILS		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
ARSE GR		CLEAN SANDS	Well grade gravelly sand or no f	ls, with little	0.0. 4941	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$
CO/	SANDS (More than 50% of	(Little or no fines)	Poorly grad gravelly sand or no f	ls, with little	000	SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})^{2}}{D_{10} x D_{60}}$
	coarse fraction of sand size)	DIRTY SANDS	Silty sa sand-silt r			SM	> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)	Clayey s sand-clay			SC	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML				
	negligible organic content)	W _L >50	Inorganic si plasti			МН				
SOILS	CLAYS	W _L <30	Inorganic clays, silty clays, sandy clays of low plasticity, lean clays			CL				
FINE GRAINED SOILS	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clay clays of n plasti	nedium		СІ			Classification is Based upon Plasticity Chart	
FINE (content)	W _L >50	Inorganic cla plasticity, t		\mathbb{Z}	СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL				
	(Below 'A' line)	W _L >50	Organic cla plasti		11	ОН				
н	IIGHLY ORGA	INIC SOILS	Peat and ot organic			Pt		on Post fication Limit		r odour, and often s texture
		Asphalt			Till					
		Concrete			Bedrock fferentiated)				AE	COM
X	\bigotimes	Fill			Bedrock mestone)					

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 - 50	medium or firm
50 – 100	stiff
100 – 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N – BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

			erley Underpass - Detailed 1: 14U,5523547 m N,6309	-			NT:D N/Wav					1			TESTHOLE NO: Test Caisso PROJECT NO.: 60321148		
			Subterranean (Manitoba)				HOD:								VATION (m): 233.		
	PLET		GRAB				LIT SPC			BULK		<u>R-31</u>		RECOVER		10	
		TYPE	BENTONITE	GRAVEL		-	OUGH		·	GROL							
			DENTONTE	C. GRAVEL					ENETRAT	= ION TES cker *	STS	UNDRAI	NED SHEAR S + Torvane - × QU/2 ×	TRENGTH			
DEPTH (m)	SOIL SYMBOL	BACKFILL DETAILS	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP1 0 20 16 17	C (Standa (Blows/ 0 40 ■ Total U (kN 18 astic M	ard Pen ⁻ 300mm) 60 Jnit Wt I /m ³) 19 IC Liq	Test) ♦ 80 100 ■ 20 21	4	□ Lab Vane △ Pocket Pen � Field Vane (kPa)	. 4	COMMENTS		
0			TOP SOIL -													2	
			CLAY (FILL) - - black to dark brown, moist, s - high plasticity	oft to firm													
1	\bigotimes		CLAY - trace silt - brown, moist, firm to stiff									· · · · · · · · ·				2	
2			 high plasticity trace oxidation trace sulphate 														
3																	
4																2	
5												· · · · · · · ·					
ò																	
7																:	
8			- grey, soft below 7.7 m														
												· · · · · · · · ·					
)																	
10										V. Cal		nim			TION DEPTH: 30.18		
			AECOM								ba Ibrał ⁻ aris Al-				TION DEPTH: 30.18		
											EER: A		-			ge 1	

		verley Underpass - Detaile	-				illon Consulting Ltd.	<u> </u>	TESTHOLE NO: Test Caiss		
		M: 14U,5523547 m N,630								NO.: 603211	
		Subterranean (Manitoba	,				Track Mounted Soilmed			N (m): 233.10	0
	PLE TYPE	GRAB			_	IT SPC				CORE	
BACK	FILL TYPE	BENTONITE	GRAVEL	Ш	SLO	UGH	GROUT		NGS	SAND	
DEPTH (m)	SOIL SYMBOL BACKFILL DETAILS	SOIL DES	SCRIPTION	SAMPLE TYPE	84MPLE #	SPT (N)	PENETRATION TESTS	□ Lab Vane □ △ Pocket Pen. 4 ④ Field Vane ④ 1 (kPa)	2 CO	MMENTS	
10		4							** * * * * * * * * * * * * * * * * * * *		2
·11											2
12		- some till inclusions, very so	oft below 12.3 m								2
13		Glacial Till (SILT)- some sar gravelly, trace to some clay - light grey, very dense, mois - low plasticity									2
14 15	28-08-08-08-08-08-08-08-08-08-08-08-08-08	- some cobbles and boulders	s below 14.0 m								
16	00000000000000000000000000000000000000	- moist to dry, hard below 15	5.5 m								
17		- LIMESTONE - Non Intact									2
18		- layer of sand at 18.7 m									2
19		LIMESTONE - very fine to f	ine grained								
20		 pinkish yellow and grey undulating to planar, smoor 	th to rough fractures								
							LOGGED BY: Saba Ibra		OMPLETION D		n
	AECOM						REVIEWED BY: Faris A	N-Alobaidy C	OMPLETION D	ATE: 10/7/16 Page	

		averley Underpass - Detai						<u>Consultin</u>					TESTHOLE NO: Test Caiss		
		TM: 14U,5523547 m N,63												JECT NO.: 6032	
		R: Subterranean (Manitob								mec	<u>R-516 H</u>			VATION (m): 233	.10
	PLE TYPE				-	PLIT SPO	NOC				-				
BACK	FILL TYP	BENTONITE	GRAVEL		SL	OUGH	-		GROUT		Ľ		NGS	SAND	
DEPTH (m)	SOIL SYMBOL BACKFILL	SOIL DE	SCRIPTION	SAMPLE TYPE	SAMPIF#	SPT (N)	◆ SP 0 2 16 1	ENETRATIO	er ¥ Cone ◇ Pen Tes 0mm) 60 80 it Wt ■ 19 20 Liquid	st) ✦ 0 100 21	× □ La △ Poo � Fie	orvane + QU/2 × ab Vane □ cket Pen. ∠ eld Vane € (kPa)	2	COMMENTS	
20		- R2- weak below 20.0 m													2
		- non- intact fine grained SI LIMESTONE between 19.5	HALE and fractured												
		- sand infill between 20 to 2	20.8 m						<u>.</u>						
		SHALE													
21		- blue / green							÷… [•••••				
		fine grained R0 to R1- extremely weal	to verv weak												
			-												
		LIMESTONE - very fine to - creamish brown and white	fine grained												
22		- close to moderately close	d spacing, evidence of water									•••••••••••••••••••••••••••••••••••••••			
		flow (class 3), smooth to ro - R3- medium strong	ugh fractures.												1
23									<u>.</u>						
20															
		- laminated with fine graine	d SHALE and hard grey CLAY												
		from 23.3 to 24 m													
		• •										· · · · · · · · · · · · · · · · · · ·			
24		- fair quality rock between 2	24 to 24 85 m						÷						
									÷						
		•							·····		•••••				
25		 non-intact fine grained Si m 	HALE between 24.85 to 25.15												
		- poor to fair quality rock be	etween 25.15 to 25.75 m												
		- poor quality rock from 25.													
26		- laminated with hard grey	CLAY between 25.75 to 27.0 m	ı					÷						
									· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••			
27		•													
															2
28									÷•••••			•••••••••••••••••••••••••••••••••••••••			
20											· · · · · · · · · · · · · · · · · · ·				
													:		
29		•							·····		••••••				
30							100	עם חביי	Cohe	Ibrol	aim				2 m
		AECO/	М					GED BY: /IEWED B						TION DEPTH: 30.18 TION DATE: 10/7/16	
		ALUI	V I								Andy Nagy				ge 3

	PROJECT: Waverley Underpass - Detailed Design LOCATION: UTM: 14U,5523547 m N,630955 m E, South-East co									sulting Lto					TESTHOLE NO: Test Caisson		
										•					PROJECT NO.: 60321148		
SAMF			Subterranean (M	ianitoba) L				IOD: IT SPC			unted So		: R-516 I		EL RECOVE	EVATION (m): 233.10 RY CORE)
BACK			BENTO		GRAVEL	_	SLO				GROL						
BACK			BENTO		GRAVEL	<u>_Ш</u>	SLU									,	
DEPTH (m)	SOIL SYMBOL	BACKFILL DETAILS	SOIL	. DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	0	*	tal Unit Wt ∎ (kN/m ³) 8 19 3 MC Liqu	♦ Fest) ♦ 80 100 80 21	+ 0 •	D SHEAR - Torvane × QU/2 × Lab Vane Pocket Per Field Vane (kPa) 100	< ∋ □ n. △	COMMENTS	ELEVATION
- 30			END OF TEST CAL	SSON AT 30	0.2 m IN BEDROCK	-											203 -
-				ck encounter	d at 17.2 m below ground						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
- 31 			 0.81 m diameter Test caisson bac m below ground sur surface. 	coring below kfilled with c rface and wit	elow ground surface, 17.2 m. oncrete/bentonite up to 1.0 h granular fill to ground at depths between 18 to												202 -
- -			20.8 m.														
32			m.		ns between 18.7 to 20.8						· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·	····;·····		201 -
33			7. Static water level	l at 9.5 m bel	ow ground surface												200 -
																· · ·	200 -
34 																· · ·	199 -
																· · ·	198 -
-36																	197 -
																	196 -
38																· · · ·	195 -
39																· · ·	194 -
											· · · · · · · · · · · · · · · · · · ·						
40									1.0) BY: Sab	a Ibro				ETION DEPTH: 30.18 m	<u> </u>
5			ΔΞΟ	MO							ED BY: F			4		ETION DEPTH: 30.16 IT	1
3	AECOM							-		TENGIN		-				4 of 4	

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

Memorandum

То	Rados Eric, P. Eng.	Page 1
сс	Andy Nagy	
Subject	Summary of Bedrock Investigation in the Waverley Street Underpass Project	ne Vicinity of the Proposed CN Bridge -
From	Saba Ibrahim	
Date	November 23, 2016	Project Number 60321148 (400)

The City of Winnipeg (The City) retained Dillon Consulting Limited (Dillon) and AECOM Canada Limited (AECOM) to provide preliminary and detailed design services for the proposed Waverley Street Underpass Upgrade. The proposed Waverley Street Underpass will replace the existing atgrade CN Railway Rivers Subdivision crossing at Waverley Street with a new bridge structure.

Based on the design development during the preliminary as well as detailed design stages, driven steel H piles have been selected as the preferred foundation system to support the abutments of the proposed underpass structures while rock socketed caissons have been selected as a suitable foundation system to support the intermediate piers.

During the preliminary design stage, three deep test holes have been drilled in the close proximity of the proposed bridge. Based on the final configuration of the bridge structure, supplemental three deep test holes have been drilled during the detailed design stage in the close proximity of the bridge structure support units.

This memorandum documents the bedrock investigation and groundwater condition results obtained during preliminary and detailed design stages and provides geotechnical recommendations related to the design and construction of the proposed CN bridge foundations.

The underpass structure foundation recommendations were prepared following the guidance of AREMA 2014.

Geotechnical Investigation

1.1 Field Work

The field works for the deep test holes at the vicinity of the proposed underpass bridge structure was completed in two stages as follows:

Preliminary Design Stage

Three deep test hole (TH14-02 to 14-04) were drilled at the vicinity of the proposed underpass structure during the period from July 11 to 15, 2014 to depths of 24.4 to 25.7 m below existing grade. The test holes were located at both ends of the proposed underpass structure. The first 2.2 to 2.5 m of the test holes were advanced using hydrovac excavation to protect shallow underground utilities. The drilling was completed using a track mounted rig operated by Maple Leaf Drilling equipped with 125 mm diameter solid stem augers and HQ wireline for rock coring. The test holes were advanced more than 6 m into bedrock.

Detailed Design Stage

Drilling was completed during the period from April 13 to 19, 2016 and consisted of three test holes (TH16-01 to TH16-03). The test holes were located at both ends of the proposed bridge, in close proximity to the proposed piers and abutments. The first 2.2 to 2.5 m of the test holes were advanced by using hydrovac excavation to protect shallow underground utilities. The drilling was completed using a track mounted rig operated by Maple Leaf Drilling equipped with 125 mm diameter solid stem augers and HQ wireline for rock coring. The test holes were advanced more than 6 m into bedrock at the vicinity of the pier location and more than 3.0 m into bedrock at the vicinity of abutment location to depths of 24.5 m to 27.5 m below existing grade.

During the course of the investigation, Standard Penetration Tests (SPT) were completed at regular intervals in the clay as well as till layers. Disturbed and relatively undisturbed soil samples and rock cores were collected for further visual classification and testing.

Five standpipe piezometers were installed during preliminary design stage within the project area to monitor the groundwater conditions. These included two standpipe piezometers (SP14-02 and 14-04) installed in the bedrock unit, two standpipe piezometers (SP14-01 and 14-28) installed in the clay unit and one standpipe piezometer (SP14-29) installed in the till unit. Supplemental standpipe piezometer (SP16-04) was installed in the clay unit during the detailed design stage at the proposed CN railway/LDS pipe crossing.

Detailed logs for standpipe piezometers (SP14-01, 14-28 and 14-29) installed (within till and clay units) during preliminary design stage in intermediate test holes were documented in the AECOM report "Waverley Street Underpass-Upgrade- Preliminary Design Geotechnical Report", dated January 2015. Detailed logs for standpipe piezometers (SP-04) installed (within clay unit) at the proposed CN railway/LDS pipe crossing were documented in the AECOM Memorandum "Geotechnical Investigation and Assessment for the proposed LDS/CN Track Crossing", dated September 2016.

Laboratory testing was completed on selected samples and included moisture content, unit weight, gradation, Atterberg limits, undrained shear strength, consolidation test and uniaxial compressive strength for rock cores.

Drilling supervision was provided by AECOM personnel, who visually classified and logged soils, retrieved samples for laboratory testing, and supervised in-situ soil testing and standpipe piezometers installation. The approximate location of the test holes performed during preliminary and detailed design stages is shown on the Test Holes Location Plan (Figure 01) in Appendix A. Test hole logs have been prepared for each test hole to record the description and the relative position of the soil

strata, location of samples obtained, seepage and sloughing conditions, field and laboratory test results, and other pertinent information. The test hole logs are attached in Appendix B. The laboratory test results are recorded on the test hole logs and are attached in Appendix C.

1.2 Subsurface Conditions

In descending order the soil profile consists of:

- Asphalt/concrete
- Fill;
- Glacio-Lacustrine Clay;
- Glacial Till; and
- Limestone Bedrock.

Each of these units is described below. Schematics of soil stratigraphy for deep test holes at the vicinity of proposed bridge based on conditions encountered during the investigation are presented on Schematic 01 and 02 in Appendix A. Soil properties from field and laboratory test results are presented on Figure 01.

Asphalt/Concrete

A layer of asphalt/ concrete was encountered within the first 2 to 2.5 m below ground surface in test holes (TH16-01 and 16-02).

<u>Fill</u>

Fill was encountered at the ground surface in all test holes and extended up to 1.5 m below ground surface. Two distinctive zones of fill were observed: an upper granular fill and lower clay fill.

The granular fill was 0.1 to 0.9 m thick and predominantly consisted of sand and gravel sizes, and contained variable amounts of silt, some clay and trace organic/rootlets. Cobbles and concrete debris were observed within the granular fill. The granular fill was light brown and dry to moist.

The clay fill, where encountered, was 0.2 to 1.4 m thick and contained variable amounts of silt, sand, organics, some to trace amounts of gravel and trace oxidation. The clay fill was dark grey to dark brown, moist, soft to stiff and was visually classified as of high to intermediate plasticity.

Glacio-Lacustrine Clay

In all test holes advanced past the fill zone, the fill was underlain by 10 to 11 m thick galcio-lacustrine silty clay. Generally, the clay was brown changing to grey with increasing depth, firm to stiff and becoming soft with increasing depth, moist and of high plasticity. Silt layer of about 1.0 m thick, firm to very soft, light grey to light brown and moist was observed in the upper as well as lower part of the clay unit.

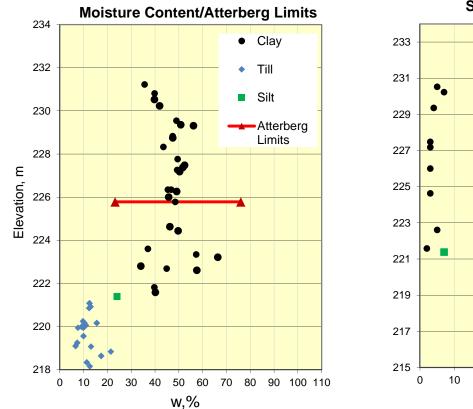
Moisture contents ranged from 34 to 66 percent. The bulk unit weight of the clay was 16.9 kN/m³ measured from one sample. Undrained shear strength measured from one unconfined compression test was 41 kPa.

Glacial Till (Silt)

In all test holes advanced past the clay, the clay was underlain by glacial till that typically contained variable amounts of clay, sand and gravel in silt matrix. Boulders and cobbles are known to be present within the till unit and were encountered during the drilling. Where the drilling advanced below the till unit, the thickness of the till layer varied from 4.8 to 8.2 m. The till was light grey, dense to very dense. Coring was necessary through very dense and boulders/cobbles in the lower zone of the till. The till was moist to wet, and of low plasticity. Measured moisture contents ranged from 7 to 21 percent.

Limestone Bedrock

The drilling was advanced past the till into the underlying limestone bedrock, which forms an artesian aquifer. The bedrock formation is a Paleozoic Carbonate rock formation known as the Upper Carbonate Aquifer. The following observations were recorded during the bedrock coring:


- Depth to bedrock surface ranged from 18 to 21 m below existing grade (Elev. 215.7 to 212.9 m).
- A layer of fine grained shale was encountered within the bedrock at depths ranged from 1.2 to 3.8 m below bedrock surface (Elev. 212.6 to 211.6) m in TH16-02, 16-03, 14-03 and 14-04. The thickness of the observed fine grained shale infill layers ranged from 0.3 to 0.8 m.
- Non intact zones and rock cores laminated with fine grained shale and hard clay were observed along the top 5.0 m of the bedrock deposit (Elev. 215.8 to 211.0 m).
- The top 5 m of the bedrock formation (Elev. 215.8 to 211.0 m) was observed as highly decomposed and based on the calculated RQD (Rock Quality Designation) values for the recovered rock cores, the rock quality was very poor to fair.

Uniaxial compressive strength tests completed on five samples of rock cores and the results are illustrated in Table 01 below. Photographs of the recovered rock cores are presented on Figures 02 and 03.

Limestone bedrock can contain zones/layers of poor fractured rock, fine grained infill, cavities, and other discontinuities that would be problematic to construction. Because these features occur unpredictably, it is not possible to fully identify their frequency or distribution during a geotechnical investigation.

Test hole	Core No.	Depth below	Compressive
		ground surface (m)	Strength (MPa)
TH16-01	C5	25.0	107
TH16-03	C10	23.5	145
TH14-02	C7	23.5	194
TH14-03	C7	23.5	121
TH14-04	C9	25.0	115

Table 01: Uniaxial compressive strength test results for rock core samples

Standard Penetration Tests

\$

\$

4

é

50

60

٠

70

80

Figure 01 – Field and Laboratory Test Results

20

30

40

SPT (N)

Figure 02a – Rock cores from (TH 16-01) – Detailed design stage

Page 7 **Memorandum** November 23, 2016

Figure 03b- Rock cores from (TH16-02) - Detailed design stage

Page 8 **Memorandum** November 23, 2016

Figure 04c – Rock cores from (TH16-03) – Detailed design stage

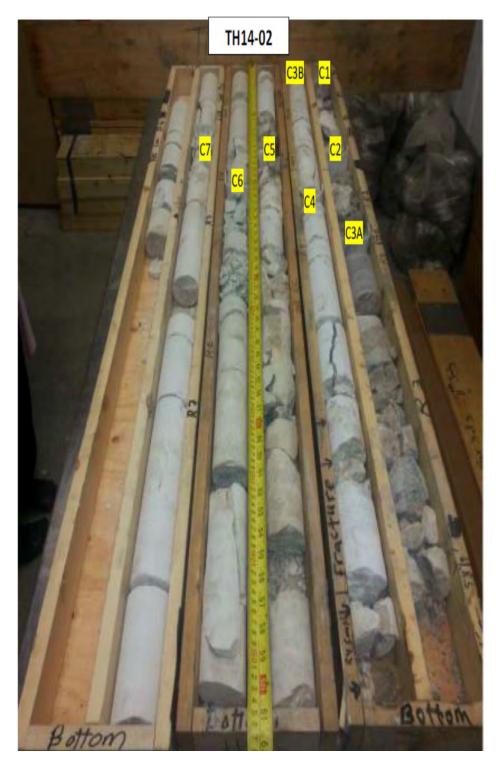
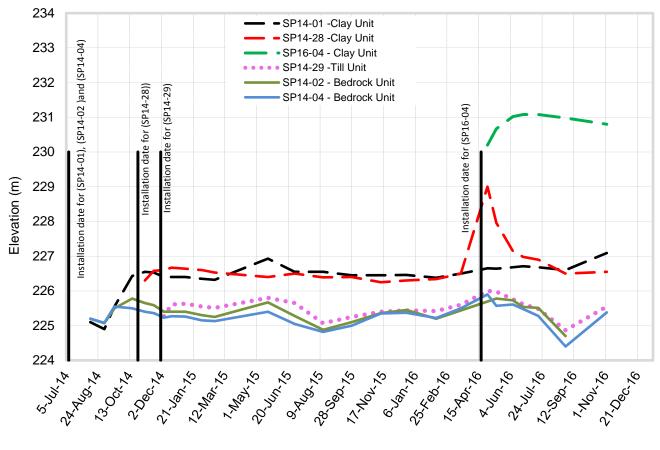


Figure 03a – Rock cores from (TH14-02) – Preliminary design stage

Figure 03b – Rock cores from (TH 14-03) – Preliminary design stage

Figure 03c – Rock cores from (TH14-04) – Preliminary design stage

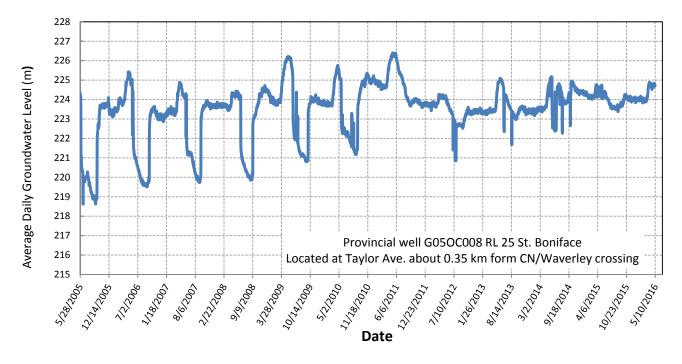
1.3 Groundwater Conditions


Monitoring results of the groundwater level (GWL) from the five standpipe piezometers installed at the site are presented in Table 02 and Figure 04. Groundwater levels will vary seasonally and from year to year or due to construction activities.

Based on the available monitoring results over 26 months, a GWL between elevation 224.4 and 225.9 m was recorded in the bedrock piezometers SP14-02 and 14-04. The till is considered to be hydraulically connected to the bedrock aquifer, monitoring results recorded for the till piezometer SP14-29 over 24 months ranged between elevation 224.9 and 226 m. Monitoring of clay piezometers SP14-01 and 14-28 over 26 months ranged between elevation 226.3 and 227.1 m, however a maximum GWL elevation of 229 m (i.e., GW about 4.6 m below existing grade) was recorded over a time window of approximately 3 months). GWL for the clay piezometer SP16-04 installed during the detailed design stage at the vicinity of the proposed CN Rail/LDS crossing was also monitored and recorded. Over 8 months of monitoring, the recorded groundwater elevations ranged between 230.2 and 231.1 m.

Monitoring results of two Provincial wells for bedrock aquifer GWL over the period from 2005 to 2016 are presented on Figure 05. The monitoring results from AECOM installation within the bedrock are in agreement with the data from well G05OC053 and are close to upper bound data from well G05OC008. Provincial wells G05OC008 and G05OC053 are located 0.35 km and 1.6 km away from CN Railway/Waverley Street crossing, respectively.

Standpipe ID :	SP14-01	SP14-02	SP14-04	SP14-28	SP14-29	SP16-04
Soil/Bedrock Unit:	Clay	Bedrock	Bedrock	Clay	Till	Clay
Ground Surface Elevation (m):	232.5	233.4	233.2	233.6	233.42	233.48
12-Aug-14	225.10	225.2	225.2			
3-Sep-14	224.90	225.07	225.08			
19-Sep-14	225.55	225.5	225.55			
17-Oct-14	226.43	225.78	225.5			
6-Nov-14	226.55	225.65	225.4	226.3		
20-Nov-14	226.53	225.59	225.36	226.58		
6-Dec-14	226.4	225.4	225.23	226.6	225.27	
18-Dec-14	226.4	225.4	225.27	226.67	225.61	
9-Jan-15	226.4	225.4	225.26	226.64	225.63	
4-Feb-15	226.35	225.3	225.15	226.6	225.55	
24-Feb-15	226.32	225.25	225.13	226.53	225.51	
19-May-15	226.93	225.67	225.4	226.4	225.8	
30-Jun-15	226.55	225.28	225.05	226.5	225.65	
14-Aug-15	226.55	224.88	224.82	226.39	225.07	
28-Sep-15	226.45	225.1	225	226.4	225.25	
13-Nov-15	226.45	225.36	225.35	226.25	225.4	
23-Dec-15	226.46	225.45	225.37	226.3	225.44	
8-Feb-16	226.38	225.2	225.22	226.34	225.42	
18-Mar-16	226.5	-	225.5	226.5	225.6	
29-Apr-16	226.65	-	225.9	229	226	230.2
13-May-16	226.64	225.78	225.57	227.96	225.98	230.67
8-Jun-16	226.68	225.73	225.61	227.15	225.76	231.02
18-July-2016	226.68	225.54	225.28	226.9	225.48	231.08
30-August-2016	226.6	224.7	224.4	226.5	224.87	230.98
3-Nov-16	227.09	-	225.38	226.55	225.55	230.8


Table 02 – Summary of GWL Monitoring Results

Date

Figure 04 – Groundwater Monitoring Results for the Piezometers Installed during Preliminary and Detailed Design Stages

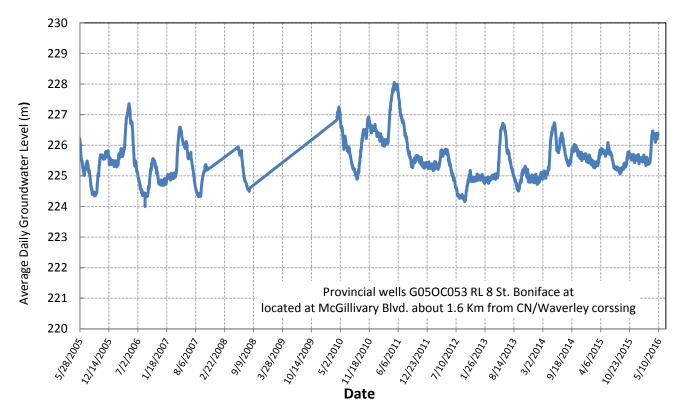


Figure 05b – Aquifer Groundwater Monitoring Results - Provincial Well G05OC053

1.4 Underpass Structure Foundations

Shallow foundations are not considered suitable to support heavily loaded structures. Deep foundations bearing on competent very dense till or bedrock will be required to support these structures. Available deep foundation alternatives include:

- Driven Pre-cast Pre-stressed Concrete Piles;
- Driven Steel Piles;
- Cast-in-Place Belled Caissons; and
- Cast-in-Place Rock Socketed Caissons.

AREMA Manual 2014 is referenced as the design code for the Underpass Structure.

Geotechnical recommendations pertaining to the design and construction of the Driven Pre-cast Prestressed Concrete Piles, Driven Steel Piles and Cast-in-Place Belled Caissons were provided in AECOM report "Waverley Street Underpass-Upgrade- Preliminary Design Geotechnical Report", dated January 2015.

1.4.1 Cast-in-Place Rock Socketed Caissons

Drilled caissons socketed into competent bedrock can be designed to support the proposed piers Local practice is to design the drilled shafts based on values of maximum allowable end bearing and/or shaft adhesion of 3.0 and 1.0 MPa, respectively, provided that downhole inspection and assessment of the rock competency are undertaken. The assessment of the rock competency consists of small diameter proof drilling to a depth of 2 m below the socket base to detect the presence of voids or clay/silt layers of any significance and determine if deeper socket boring is required. In the event that the socket cannot be visually inspected, inspection of the recovered rock core and downhole video monitoring can confirm the competency of the bedrock. In this situation, caissons founded in competent bedrock should be designed on the basis of a reduced allowable shaft adhesion with no contribution from end bearing.

Safety concerns related to man entry into the hole (e.g., high level of gas) may preclude undertaking the visual inspection.

According to our knowledge, settlements of rock socketed caissons have never been measured in the Winnipeg area. However, it is anticipated that the settlements would be less than 20 mm.

Based on the finding from the six test holes (TH14-02 to 14-04 and TH16-01 to 16-03), that have been drilled during preliminary and detailed design stages, the top 5 m of the bedrock is of poor to very poor rock quality. A layer of clay/shale infill 0.3 to 0.8 m thick was encountered within the bedrock between elevation 212.6 to 211.6 m in TH16-02, 16-03, 14-03 and 14-04. The thickness of the fractured and heavily jointed bedrock is variable and could be in excess of 5 m and the clay infill may vary in thickness and could be encountered at different elevations. Socket length, should be developed below elevation 210.0 m and measures to maintain socket wall stability and groundwater control should be anticipated and undertaken. Competent bedrock was not encountered in some of the deep test holes below elevation 210.0 as the calculated RQD for the recovered rock cores ranged from 26 to 93 indicating poor to excellent rock quality. In this situation, the proposed caissons

founded in fractured bedrock should be designed on the basis of a reduced allowable shaft adhesion of 0.45 MPa with no contribution from end bearing.

Inspection of the recovered rock cores by qualified and experienced geotechnical personnel and downhole video inspection will be required to aid in assessing the competency of the bedrock and determining if longer socket lengths are required. The depth to competent bedrock should be expected to vary across the site and it should be recognized that the presence of the heavily fractured rock and infill material above the socket length may require that a permanent steel casing be left in the ground so that the integrity of the shaft is maintained. In this regard, the basis for measurement and payment for the rock socket installation should be established in the contract preparation stage to recognize that the bedrock conditions at some rock socket locations may require unanticipated extra effort and materials for their completion.

The socket length should be a minimum of three socket diameter within competent bedrock. The minimum shaft diameter of the rock socket should not be less than 760 mm and the maximum diameter should be selected to suit the locally available coring equipment. The rock sockets should not be spaced closer than 3 socket diameters, centre to centre. Tremie placement of concrete is likely to be required.

1.5 Pile Lateral Capacity

Lateral forces acting on driven piles at the abutments locations should be resisted by using battered piles; battered piles can provide lateral resistance equal to the horizontal component of its axial load. Lateral resistance of vertical piles will depend on the pile head condition, the structural rigidity of the pile section and the soil strength.

Lateral pile response was analyzed using LPile software to determine pile top deflections and bending moments. The analysis considered a number of load increments between 50 and 150 kN (non-factored), the parameters used in the analysis are provided on Table 03.

The analysis was performed based on the foundation layout for the proposed bridge structure attached in Appendix A. The analysis assumed HP 360x132 and lateral force acting at the pile head. Two conditions were modeled, free head and fixed head condition. The pile length was assumed to be 16.5 m, (see Table 03) for abutments. The estimated lateral deflection and maximum moment at each condition are presented graphically on Figures 06 to 09.

Location	Pile Length (m)	Soil Unit	Depths (m)	LPILE Soil Type	Friction Angle (degree)	Undrained Shear Strength (kPa)	Effective Unit Weight (kN/m3)	€ ₅₀
		Native Clay	0.0-11.5	Soft clay		25	6.5 -7.0	0.02
Abutments	16.5	Silt Till	11.5-16.5	Cemented c-phi Soil	30	50	10	0.01

Table 03: Soil Parameters for LPILE Analysis

The lateral capacity of individual piles in a group is primarily affected by the spacing of the piles, measured center to center in the direction of lateral load applied. Group effects diminish at a pile spacing of 6 pile diameters or greater in the direction of applied lateral load. Depending upon the pile

spacing, it may be necessary to account for group effects along with other factors such as, group arrangement, as well as pile head fixity. Piles in a group may carry unequal lateral loads depending on their location within the group as well as the spacing between piles. This unequal distribution is caused by the overlap of shear zones and consequent reduction of soil resistance. As such, total lateral load applied to the pile cap should not assume to be distributed equally among the piles in a group.

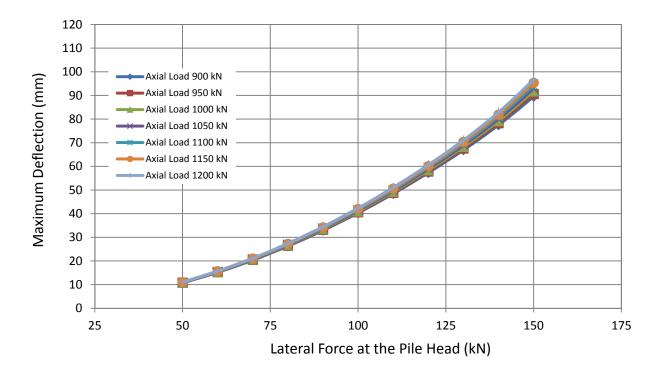
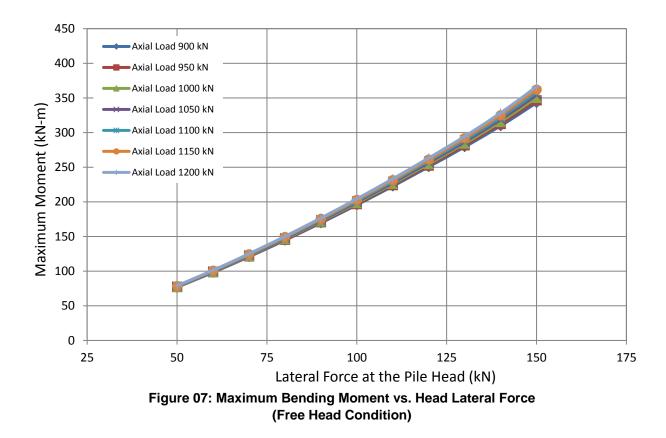



Figure 06: Maximum Lateral Deflection at Pile Head vs. Head Lateral Force (Free Head Condition)

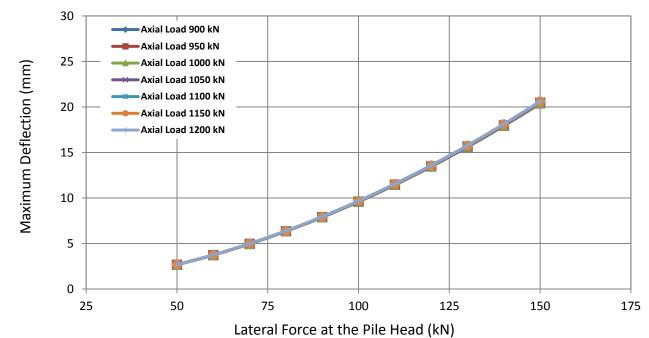
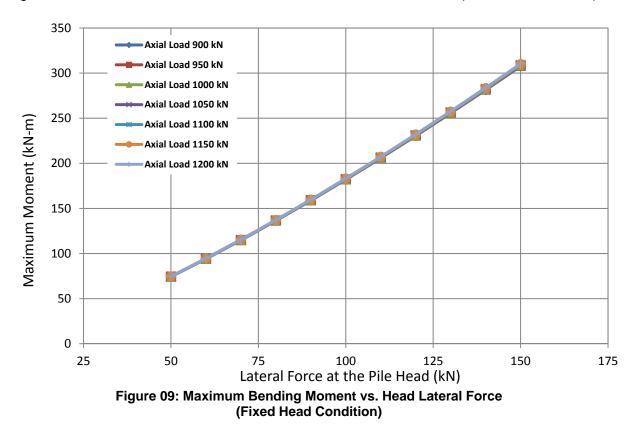



Figure 08: Maximum Lateral Deflection at Pile Head vs. Head Lateral Force (Fixed Head Condition)

Page 21 Memorandum November 23, 2016

Closure

The findings and recommendations of this memorandum were based on the results of field investigations, combined with an interpolation of soil and groundwater conditions between the test hole locations. If conditions are encountered that appear to be different from those shown by the test hole drilled at this site and described in this memorandum, or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and adjusted, if necessary.

Soil conditions, by their nature, can be highly variable across a site. The placement of fill and prior construction activities on a site can contribute to the variability especially near surface soil conditions. A contingency should be included in the construction budget to allow for the possibility of variation in soil conditions, which may result in modification of the design and construction procedures.

We trust the information provided herein is sufficient for your purposes.

Please don't hesitate to contact me should you have any questions or concerns.

Submitted by:

othra

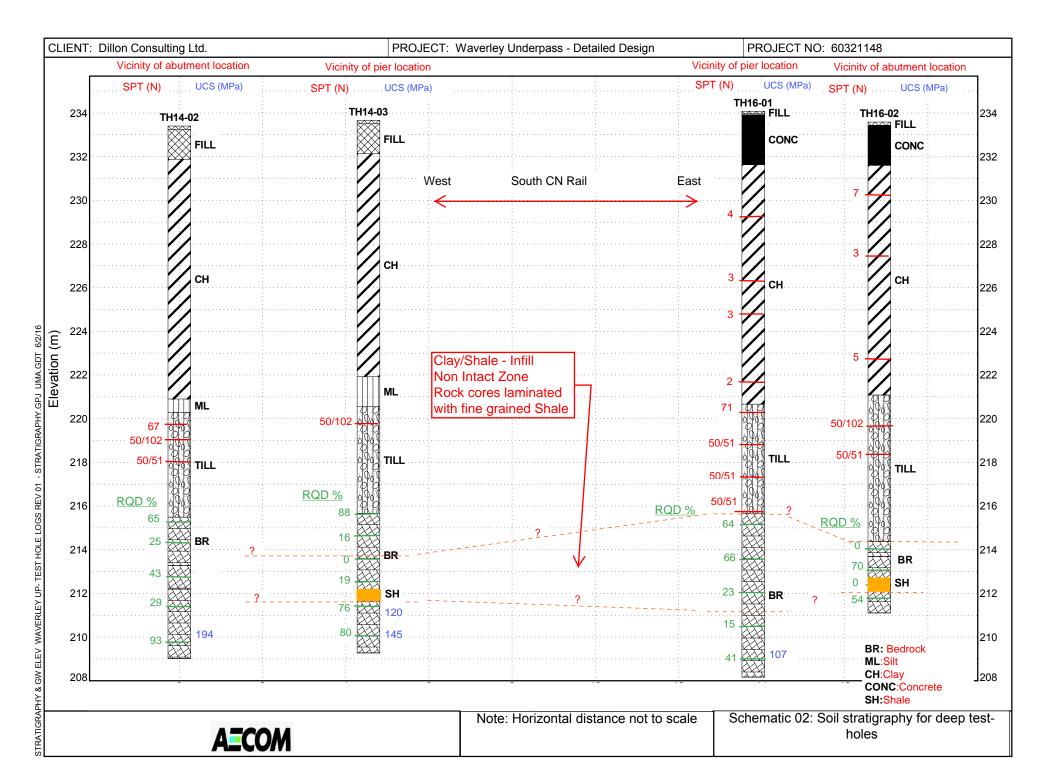
Saba Ibrahim, M.Sc, P.Eng. Geotechnical Engineer

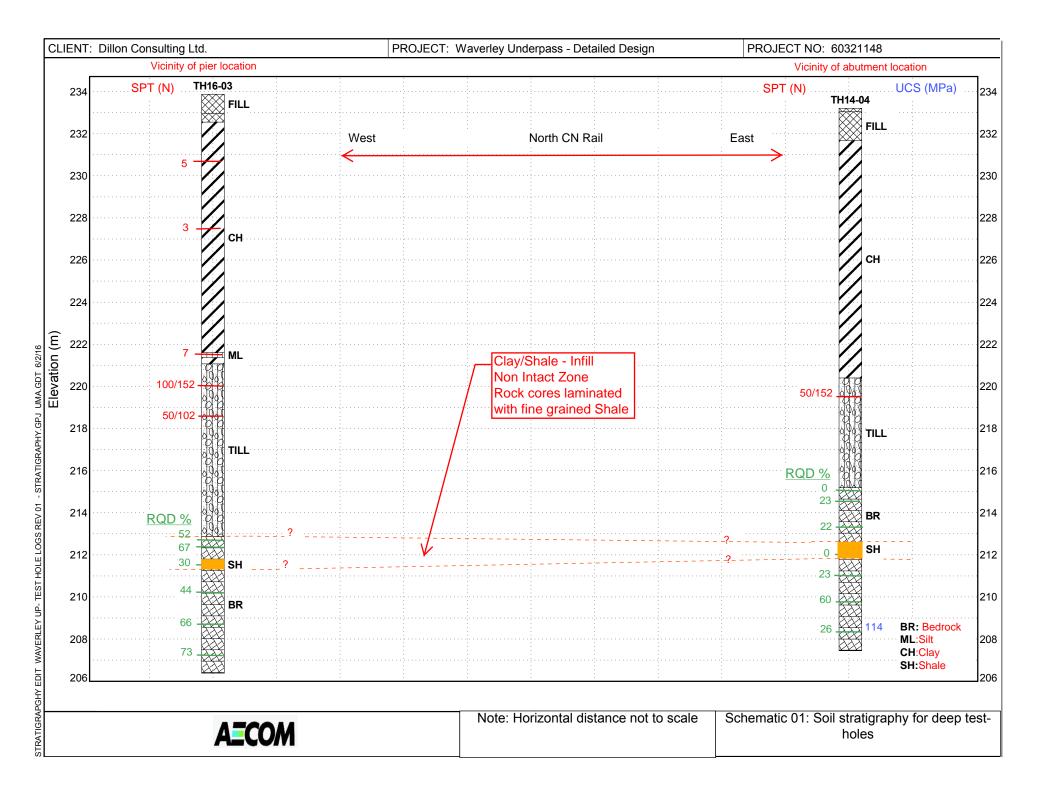
Reviewed by:

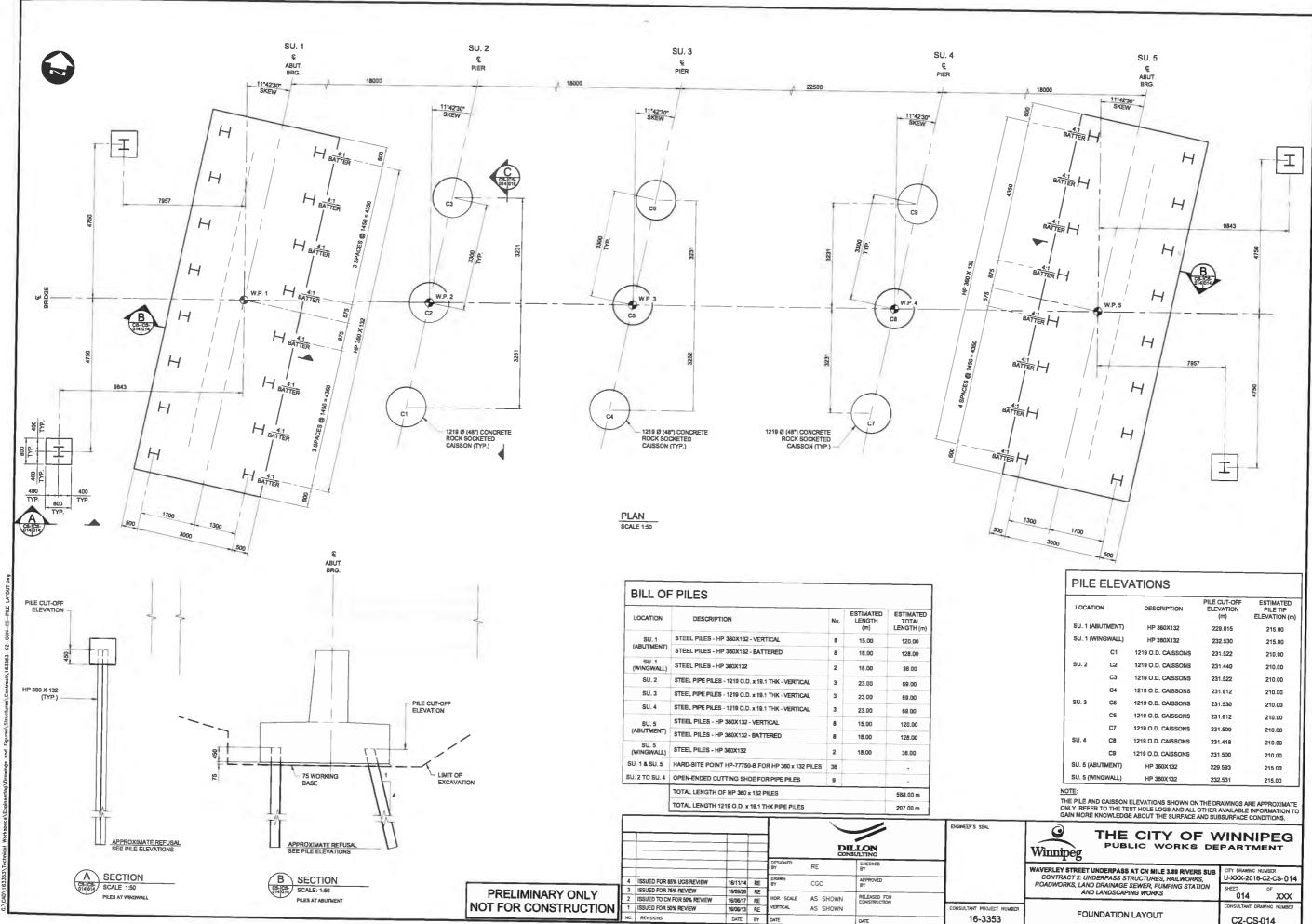
Faris Alobaidy, M.Sc, P.Eng.(AB) Senior Geotechnical Engineer

Appendix A

- Test Hole Location Plan
- Schematics Soil Stratigraphy
- Foundation Layout Figure






Figure: 01

Standpipe Piezometer ion Plan Deep Test Hole and Sta Location

Dillon Consulting Limited Project No.: 60321148

LOCATIO	NC	DESCRIPTION	PILE CUT-OFF ELEVATION (m)	ESTIMATED PILE TIP ELEVATION (m)
SU. 1 (AE	BUTMENT)	HP 360X132	229.615	215.00
SU. 1 (W	INGWALL)	HP 360X132	232.530	215.00
	C1	1219 O.D. CAISSONS	231.522	210.00
SU. 2	C2	1219 O.D. CAISSONS	231.440	210.00
	C3	1219 O.D. CAISSONS	231.522	210.00
	C4	1219 O.D. CAISSONS	231.612	210.00
SU. 3	C5	1219 O.D. CAISSONS	231.530	210.00
	C6	1219 O.D. CAISSONS	231.612	210.00
	C7	1219 O.D. CAISSONS	231.500	210.00
SU. 4	C8	1219 O.D. CAISSONS	231.418	210.00
	C9	1219 O.D. CAISSONS	231.500	210.00
SU. 5 (AB	UTMENT)	HP 360X132	229.593	215.00
SU. 5 (WI	NGWALL)	HP 360X132	232.531	215.00

PUBLIC WORKS DE	
EY STREET UNDERPASS AT CN MILE 3.89 RIVERS SUB TRACT 2: UNDERPASS STRUCTURES, RAILWORKS,	CITY DRAWING NUMBER U-XXX-2016-C2-CS-014
VORKS, LAND DRAINAGE SEWER, PUMPING STATION AND LANDSCAPING WORKS	SHEET OF XXX
	CONSULTANT DRAWING NUMBER
	C2-CS-014

ΑΞϹΟΜ

Appendix B

Test Hole Logs

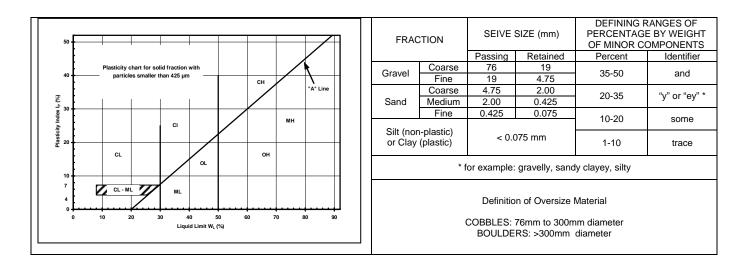
AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.


Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

					UMA	USCS		Laborator	y Classification Crite	eria
		Descripti	on		Log Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	Well graded sandy gravel or no f	s, with little	2 2 2 V	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravel or no f	s, with little		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-
OILS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and
AINED SO		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
COARSE GRAINED SOILS		CLEAN SANDS	Well grade gravelly sand or no f	ls, with little	0.0. 4941	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = \frac{D_{60}}{D_{10}}$
CO/	SANDS (More than 50% of	(Little or no fines)	Poorly grad gravelly sand or no f	ls, with little	000	SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})^{2}}{D_{10} x D_{60}}$
	coarse fraction of sand size)	DIRTY SANDS	Silty sa sand-silt r			SM	> 12		Atterberg limits below "A" line or W _P <4	
		(With some fines)	Clayey s sand-clay			SC	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML				
	negligible organic content)	W _L >50	Inorganic si plasti			МН				
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL				
FINE GRAINED SOILS	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clay clays of n plasti	nedium		CI			Classification is Based upon Plasticity Chart	
FINE 0	content)	W _L >50	Inorganic cla plasticity, t		\mathbb{Z}	СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL				
	(Below 'A' line)	W _L >50	Organic cla plasti		Ti	ОН				
н	IIGHLY ORGA	INIC SOILS	Peat and ot organic			Pt		on Post fication Limit		r odour, and often s texture
		Asphalt			Till					
		Concrete			Bedrock fferentiated)				AE	COM
X	\bigotimes	Fill			Bedrock mestone)					

When the above classification terms are used in this report or test hole logs, the designated fractions may be visually estimated and not measured.

LEGEND OF SYMBOLS

Laboratory and field tests are identified as follows:

- qu undrained shear strength (kPa) derived from unconfined compression testing.
- T_v undrained shear strength (kPa) measured using a torvane
- pp undrained shear strength (kPa) measured using a pocket penetrometer.
- L_v undrained shear strength (kPa) measured using a lab vane.
- F_v undrained shear strength (kPa) measured using a field vane.
- γ bulk unit weight (kN/m³).
- SPT Standard Penetration Test. Recorded as number of blows (N) from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 51 mm O.D. Raymond type sampler 0.30 m into the soil.
- DPPT Drive Point Pentrometer Test. Recorded as number of blows from a 63.5 kg hammer dropped 0.76 m (free fall) which is required to drive a 50 mm drive point 0.30 m into the soil.
- w moisture content (W_L, W_P)

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Su (kPa)	CONSISTENCY
<12	very soft
12 – 25	soft
25 – 50	medium or firm
50 - 100	stiff
100 – 200	very stiff
200	hard

The resistance (N) of a non-cohesive soil can be related to compactness condition as follows

N – BLOWS/0.30 m	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50	very dense

			erley Underpass	0024 m F	C	LIE	NT: C	ity of	Win	nipeg]						STHOLE NO: TH14-	
			<i>I</i> : 14U, 5523653 m N, 630	1934 M E	-			40-		.							ROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.				HOD:		mm			,		Г			EVATION (m): 232.5	0
SAMP			GRAB					ON								RECOVE		
BACK		TYPE	BENTONITE	GRAVEL	Ц	∐SL	OUGH							12			SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	*	ows/30 40 (tal Uni (kN/m 18 1 MC	er ¥ Cone Pen 0mm) 60 t Wt I 3) 9 Lic		• 10 11	+ T × □ La △ Po � Fie	forvane – QU/2 X ab Vane cket Pen eld Vane (kPa)	□ . △ �	COMMENTS	
0			GRAVEL (FILL) - some sand,	some limestones					20	40	60 :	80 10	10	50	100	150 20	0	
		22	- light grey, moist															
			- well graded, CLAY (FILL) - trace to some s	ilt, trace rootless, trace		G1			4 4	 1		· · · · · ·		••••••••	· · · · · · · · · · · · · · · · · · ·	••••••••		2
			organic, trace oxidation \neg - black, soft to firm, moist						÷									
-1		11	CLAY - silty, trace sand						÷							·		
			 light brown, firm, moist high plasticity 			G2	2				· · · · ·							
			ingli placesty						÷									4
		11	- some to trace silt, silt inclusion	ons < 6 mm in dia mottled					 									
-2		11	grey and brown below 2 m			G3	3			•								
									÷	·		· · · · · ·			· ·			
		4																
		11									· · · · ·							
-3		11	- trace oxidation		П											· · · · · · · · · · · · · · · · · · ·		
						T4	+		ŀ			•	· · 🏠	X : +				
-		41			Ш				 	· · · · · ·	· · · · · ·					•••••••		
-		11																
-4		11	- dark brown below 4 m						÷	÷	:				••••			
-						G5	5		Ŀ		<u>.</u>	• • • • • • • •						
		41	- soft to firm below 4.5 m															2
F		11									: 				· · · · · · · · · · · · · · · · · · ·			
						Ge	5											
										· · · · · ·					 			
		11							÷···	÷	÷	•		•••	•••••••••			
-6		11	- grey															
, U		┠╴┨	- some silt below 6 m		Π					·								
		4	- soft, silt inclusion (12 mm in	dia.) below 6.4 m		T7	,											2
		11	- trace gravel below 6.7 m	, -							· · · · · ·			•••				
-7			Tace graver below 0.7 III			G8	3											
-						GS												
-		11					,											2
-		11	- silt inclusion (20 mm in dia.),	trace gravel (angular 25 mm						· · · · · · ·		· · · · · ·		••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
-8			in dia)											· · · · · · · · · · · · · · · · · · ·		•		
		4	- very soft below 8.3 m			G1	0			•								
		11																
		11																
-9																		
		4			Π	1												
						T1	1		. (.				X+			-	
		1日	- moist to wet below 9.7 m		ļШ													
10		1									<u> </u>		 o bi					
			AECON	()								ba Ibr Zeyad		ri			ETION DEPTH: 13.18 r ETION DATE: 7/9/14	п
			ALCON											s Kahli		JOINI'L	Page	<u>1</u>

			erley Underpass		C	LIEN	NT: C	ity of	Winr	nipeg							STHOLE NO: TH14-0	
			1: 14U, 5523653 m N, 630	J934 m E	-			10-									ROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.				HOD:										EVATION (m): 232.50	0
SAMP			GRAB				IT SPC	JUN		BL		-		×				
BACK		TYPE	BENTONITE	GRAVEL	Т	∐ъ∟С	UGH	-		GF				<u> </u>			SAND	<u> </u>
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DES	CRIPTION	SAMPLE TYPE		SPT (N)	◆ SP 0 2 16 17	 ★ Dyn T (Sta (Blow 0 4 ■ Tot 	al Unit (kN/m ³) 3 19 MC	¥ one Pen Te mm) 0 8 Wt ■	est) ✦ 0 100 0 21 d		+ Tor ×Q □ Lab △ Pock � Field (k	vane + U/2 × Vane ⊑ et Pen. I Vane € Pa)	ر ۵	COMMENTS	
10			- silty below 10.4 m			G12								· · · · · · · · · · · · · · · · · · ·				2
·11						G13				•			· · · · · · · · · · · · · · · · · · ·				· · · ·	2
-12	P		Glacial Till (SILT) - some clay	, some sand, trace gravel		G14												
	00000		 light grey, very dense, moist low plasticity 	to wet,	\times	S15	50/ 76mm	•									SPT Blows: (34, 50/76) 100% Recovery	2
-13			END OF TEST HOLE AT 13. NOTES: 1. Power Auger Refusal at 13 2. Seepage was observed at	.2 m in Glacial TILL . 4 m upon drilling completion.													· · ·	2
14			 No sloughing was observed Installed 25 mm diameters (SP14-01) to 11 m below grou casagrande tip and flush mou Test hole backfilled with be sand up to 9.5 m below grou bentonite to 0.3 m below grou 	tandpipe piezometer Ind surface with 0.3 m nt at ground surafce. Intonite up to 11 m, silica id surface, plugged with Ind surface and finished with									· · · · · · · · · · · · · · · · · · ·					2
·15 ·16			auger cutting to ground surfac 6. Groundwater monitoring: - Aug. 12, 2014 at Elv. 225.1 - Sep. 03, 2014 at Elv. 224.9 - Sep. 19, 2014 at Elv. 225.6 - Oct. 17, 2014 at Elv. 226.6 - Nov. 06, 2014 at Elv. 226.5	xe. m. m. n. m.													· · · ·	2
-17			- Nov. 20, 2014 at Elv. 220.3 - Dec. 06, 2014 at Elv. 226.4 - Dec. 18, 2014 at Elv. 226.4	m.									· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	2
40																		2
-18													· · · · · · · · · · · · · · · · · · ·					2
19													· · · · · · · · · · · · · · · · · · ·				- - - - - - -	2
20														·····	· · · · · · · · · · · · · · · · · · ·	<u>.</u>	-	
			1=004	4						BY:							ETION DEPTH: 13.18 n	n
			AECON	1						ed by T eng						JOIMPL	ETION DATE: 7/9/14 Page	

			rley Underpass		C	LIE	NT: C	ty of Winnipeg		TESTHOLE NO: TH14	
			1: 14U, 5523559 m N, 630	870 m E						PROJECT NO.: 60321	
			Maple Leaf Drilling Ltd.					125 mm SSA/ HQ Corir		ELEVATION (m): 233.	40
SAMP			GRAB		-	_	LIT SPO				
BACKI		IYPE	BENTONITE	GRAVEL	Ш	∐SLO	DUGH	GROUT			
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	□ Lab Vane □ △ Pocket Pen. ∠ ④ Field Vane ④ 1 (kPa)	COMMENTS	
0		74	- GRAVEL (FILL) - CLAY (FILL)- trace silt		~						
-1			 black, soft to firm, moist intermediate plasticity pieces of gravel, boulders, co 	ncrete from 0.6 to 1.5 m							2
	\bigotimes		CLAY - trace silt, trace oxidation	n							
-2			- brown, firm to stiff, moist - high plasticity								
0			- firm below 2.4 m			G16	6	•••••			
3			- silt inclusions (<6 mm in dia)	below 3.1 m							:
-4						G17	7				:
5						T18		•	∆*		
6						G19		•			
-			- grey mottled brown, soft to fir below 6.0 m	m, silt inclusion (<10 mm)							:
7			- grey, soft below 7 m			G20)				
8		Ţ				T21		⊢−●−−1			
0											:
9			- trace gravel below 9 m			G22	2			· · · · · · · · · · · · · · · · · · ·	
10			and the second second					LOGGED BY: Saba Ibra	him C	COMPLETION DEPTH: 24.38	
			AECOM	1				REVIEWED BY: Zeyad		OMPLETION DEPTH: 24.38 OMPLETION DATE: 7/11/14	
								PROJECT ENGINEER:			ge 1

		verley Underpass		С	LIEN	NT: Ci	ty of Winnipeg		TESTHOLE NO: TH14-0	
		TM: 14U, 5523559 m N, 630)870 m E						PROJECT NO .: 6032114	
		: Maple Leaf Drilling Ltd.					125 mm SSA/ HQ Corin	Ig	ELEVATION (m): 233.40)
	PLE TYPE				-	IT SPO				
BACK	FILL TYP	E BENTONITE	GRAVEL		SLO	UGH	GROUT		IGS SAND	
DEPTH (m)	SOIL SYMBOL	SOIL DES	CRIPTION	SAMPLE TYPE		SPT (N)	PENETRATION TESTS	 Image: A Focker Feil. ∆ Image: A Field Vane Image: A Field		
10		- silt inclusion (<30 mm in dia.	.) below 10.3 m		G23				······	2:
-11		- some silt from 11.2 to 11.5 n - silty, light brown, soft , wet,			T24 G25 G26		•		· · · · · · · · · · · · · · · · · · ·	2:
-13	.0.0	SILT -some gravel - light grey, very dense, moist - low plasticity Glacial Till (SILT)- some sand			G27				· · · · · · · · · · · · · · · · · · ·	2
-14	80000000000000000000000000000000000000	lay - light grey, compact, moist to - low plasticity	-	X	S28	67	•		SPT Blows: (32, 43, 24) 61 % Recovery	2
		- ligth brown, some gravel bel	ow 14.4 m	X	S29	50/ 102mm	•••	••••••	SPT Blows: (35, 50/102) 89 % Recovery	2
-15		 trace gypsum some gravel, some cobbles 	helow 15.5 m	\ge	S30	50/ 51mm	•		SPT Blows: (50/51)	2
-16	0808080 00000 000000 00000	como graro, como cobbles			C1					2
-17		- sandy below 16.7 m			C2				C2 RQD: 0% C2 Recovery: 100%	2
-18		LIMESTONE - fine grained, r	no foliation		СЗА			· · · · · · · · · · · · · · · · · · ·	C3A RQD: 0% C3A Recovery: 67% C3B RQD: 65%	
-19		 R3 - medium strong close to moderately closed s planar fractures, no evidence of water flow (cl fossiliferous vuggy 			C3B C4				C3B Recovery: 100%	2
20					-					2
		AECON	4				LOGGED BY: Saba Ibra REVIEWED BY: Zeyad S		OMPLETION DEPTH: 24.38 m OMPLETION DATE: 7/11/14	1
		A_CUN					PROJECT ENGINEER:		Page	_

			erley Underpass)970 m F	C	CLIE	NT: C	City o	f Winn	ipeg					STHOLE NO: TH14-	
			1: 14U, 5523559 m N, 630 Maple Leaf Drilling Ltd.	0/U [[] E				405		<u></u>	0.0 ·				ROJECT NO.: 603211	
SAMP			GRAB				<u>HOD:</u> LIT SPO			SA/ H BUI	Q Coring]			EVATION (m): 233.4 RY CORE	.0
			BENTONITE				OUGH		-							
DACK		TYPE	BEINTUNITE	GRAVEL	Ш	<u>Ш</u> ог.			-				D SHEAR ST			
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DES	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)		 ◇ Dyna PT (Stan (Blow 20 40 ■ Tota (I 	Becker mic Cor dard Pe s/300m 60 I Unit W (N/m ³) 19 MC	é ne ◇ n Test) ✦ m) 80 100	+ ; 	Torvane + × QU/2 × Lab Vane [vocket Pen. Field Vane 6 (kPa)) A	COMMENTS	
20			- altered yellow and red below	/ 20 m												
-21			 extremely close to moderate planar fractures evidence of water flow (class 			C5	5								C5 RQD: 43% C5 Recovery: 98%	2
21			- laminated below 21.2 m - close spaced to moderately of	closed spaced, smooth		_								•		
			planar fractures, - no evidence of water flow (cl	lass 2)						· · · · · . · · · · .		· · · · · ·				
22						C6	6							· · · · · · · · · · · · · · · · · · ·	C6 RQD: 29%	
										· · · · · · · · · · · · · · · · · · ·					C6 Recovery: 75 %	:
										· · · · · · · · · · · · · · · · · · ·						
23	X									· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
										· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			- R5- very strong			C7	'			· · · · · · · · · · ·		•••••			C7 RQD: 93% C7 Recovery: 100 %,	
-24										•••••			•••••	•	qu = 194.4 MPa	
			END OF TEST HOLE AT 24.4	4 m IN BEDROCK		-										
			Notes: 1. Power Auger Refusal at 15. 2. HO coring below 15.4 m	.4 m in Glacial TILL.						· · · · · · ·						
25			 HQ coring below 15.4 m. Seepage observed at 3.0 m Installed 25 mm diameter s 	n upon drilling completion.								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			(SP14-02) to 23.5 m below gro casagrande tip and flush mou	ound surface with 0.3 m												:
			5. Test hole backfilled with silic ground surface, bentonite up t	ca sand up to 22 m below to 1.5 m and plugged with						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
26			auger cutting to ground surfact 6. Prominent sub-vertical fract	e. ture (180 degrees to core						· · · · · · · · ·						
			axis), closed to gapped, smoo water flow (class 3) between 1	th undulating, evidence of						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
07			7. Groundwater monitoring: - Aug. 12, 2014 at Elv. 225.29							· · · · · · · · · · ·						
27			- Sep. 03, 2014 at Elv. 225.0 r - Sep. 19, 2014 at Elv. 225.5 r	m.												
			- Oct. 17, 2014 at Elv. 225.8 n - Nov. 06, 2014 at Elv. 225.7 n - Nov. 20, 2014 at Elv. 225.6 n	m												:
00			- Dec. 06, 2014 at Elv. 225.61 - Dec. 06, 2014 at Elv. 225.41 - Dec. 18, 2014 at Elv. 225.41	m										1		
28			200. 10, 2017 at LIV. 223.41													
										· · · · · · · · · · · · · · · · · · ·				. <u>.</u>		:
00										· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			
29																
												į				
30										· · · · · . · · · · · .						
50	1	1	A=001								aba Ibrah				ETION DEPTH: 24.38 r	n
			AECON	1							Zeyad S NEER: F			COMPL	ETION DATE: 7/11/14 Page	

		Waverley Underpass		C	LIEN	NT: Ci	ity of	Winnipe	eg					STHOLE NO: TH14	
		UTM: 14U, 5523562 m N, 630	1895 m E											OJECT NO.: 60321	
		OR: Maple Leaf Drilling Ltd.		N		HOD:	<u>125 </u>	<u>mm SS/</u>			ng			EVATION (m): 233.6	56
SAMF	PLE TY	(PE GRAB	SHELBY TUBE		SPL	IT SPO			BULK		1		RECOVE	RY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 : 16 1	PENETRATI	ker ¥ c Cone rd Pen 800mm 60 Init Wt I m ³) 19 C Lid	e ◇ Test) ◆) 80 100		+ Torvane × QU/2 >] Lab Vane Pocket Pe Field Van (kPa)	≺ e □ •n. △	COMMENTS	
0 -1		-GRAVEL (FILL) - CLAY (FILL)-trace silt - black, soft to firm, moist - intermediate plasticity - pieces of gravel, boulders, concrete	from 0.6 to 1.5 m												:
-2		CLAY - some silt, trace oxidation - dark brown, firm to stiff, moist - intermediate to high plasticity - silt inclusion (<12 mm in dia.) - brown mottled grey below 2.1 m			G31			•							
-3		- brown, high plasticity, firm below 3.	7 m		T32										
-5		- dark brown below 4.6 m													
·6		- firm , trace gypsum below 5.2 m			G33										:
-7		- soft to firm, dark brown, trace grave	l below 7 m		T34										:
8		- grey, soft, silt inclusion (6-30 mm in	dia.) below 7.6 m		G35 G36										
9															
10					Т37				4.0	b = 10					
		AECON						GGED B VIEWED						ETION DEPTH: 24.38 ETION DATE: 7/14/14	
		ALCON						JEVED				hlil			je 1

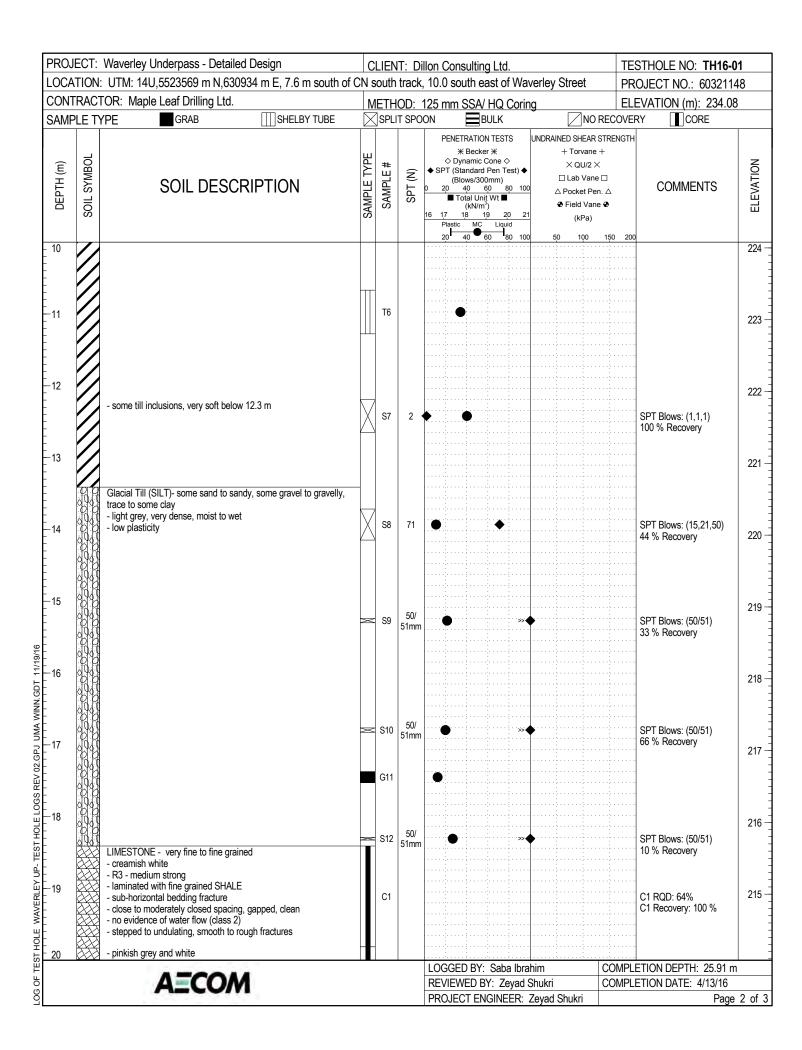
		Waverley Underpass	2005 m F	C	LIEN	IT: Ci	ity of	Winnipeg			STHOLE NO: TH14-0	
		UTM: 14U, 5523562 m N, 630	1092 M F			00	407	001/110.0			ROJECT NO.: 6032114	
	PLE TY	IOR: Maple Leaf Drilling Ltd. (PE				<u>OD:</u> T SPO		mm SSA/ HQ Corii	ng		EVATION (m): 233.66	
SAMP			SHELBY TUBE		JSPL	1 5PU	1					T
DEPTH (m)	SOIL SYMBOL	SOIL DESCF	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SI 0 16	PENETRATION TESTS	□ Lab Vane □ △ Pocket Pen. ● Field Vane 1 (kPa)	- 	COMMENTS	
10		- silt pocket , trace gravel below 10 n	1					·····				
-11					G38			•			· · ·	22
		- very soft, moist to wet, light grey me	ottled gery below 11.3 m		G39				· · · · · · · · · · · · · · · · · · ·			2
12		SILT - clayey, trace gravel - light brown, soft, moist to wet - intermediate to low plasticity			T40							
13	0.0	Glacial Till (SILT)- some sand, some	gravel, some clay		-						- - - - -	2
11	000000000000000000000000000000000000000	 light grey, very dense, moist low plasticity 		\times	G41 S42	50/ 102mm			•		SPT Blows: (48, 50/102)	2
15	20000000000000000000000000000000000000				-						100 % Recovery	2
16	000000000000000000000000000000000000000				C1						C1 RQD: 0% C1 Recovery: 63 %	2
	00000 10000000000000000000000000000000	- ligth brown, gravelly below 16.3 m										2
17	00000000000000000000000000000000000000	- boulders form 16.9 to 17.5 m			C2A						C2A RQD: 0% C2A Recovery: 74 %	2
18		LIMESTONE - fine grained - cremish white and grey - no foliation, vuggy			C2B						C2B RQD: 88% C2B Recovery: 95 %	
19		 R3- medium strong very closed to moderately spaced, it closed to gapped no evidence of water flow (class 2) 			C3						C3 RQD: 16 % C3 Recovery: 88%	2
20					-						C3 RECUVELY. 00%	2
20	rx2		57		1	I		GGED BY: Saba Ibra			ETION DEPTH: 24.38 m	
		AECON	1				RE PR	VIEWED BY: Zeyad	Shukri	COMPL	ETION DATE: 7/14/14	_

		Waverley Underpass	C	LIEN	NT: C	ity of	Winn	ipeg							STHOLE NO: TH14-(
		UTM: 14U, 5523562 m N, 630895 m E	-			· • -				• •					ROJECT NO.: 603211	
	RACT LE TY	OR: Maple Leaf Drilling Ltd. /PE GRAB			<u>IOD:</u> IT SPC	<u>125 n</u>		SA/		Corir	g		NO RE		EVATION (m): 233.66	6
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE		(N) LdS	P ◆ SP ⁻ 0 20 16 17	ENETR * E Dyna T (Star (Blow 44 Tota Tota	ATION Becker amic C ndard vs/300 0 6 al Unit kN/m ³	NTES r ¥ Cone < Pen T Imm) 0 Wt∎) 9 2			INED SI + To × C □ Lat △ Pock	HEAR STI rvane + QU/2 × Vane □ ket Pen. 4 d Vane 4 kPa)	RENGTH		
							1		Liqu 0	110 80 100		50	100 1	50 20		
20		- recovered as coarse, sub angular to sub rounded light grey gravel between 20.3 to 21.9 m		C4				· · · · · · ·							C4 RQD: 0% C4 Recovery: 100%	2
21				C5				· · · · · ·							C5 RQD: 19% C5 Recovery: 68 %	2
22		SHALE - very fine grained - blue, green - no foliation - R1- very weak - extremely close spaced, rough undulating fractures LIMESTONE		C6											C6 RQD: 76% C6 Recovery: 100 %	2
23		 white fine grained no foliation R3- medium strong close to moderately spaced, smooth fractures, closed, no evidence of water flow (class 2) laminated below 22 m 		C7											C7 RQD: 80% C7 Recovery: 100 %	2
24		- R5- very strong END OF TEST HOLE AT 24.4 m IN BEDROCK Notes:													qu =120.9 MPa	2
25		 Power Auger Refusal at 14.3 m in Glacial TILL. HQ coring below 14.3 m. No sloughing was observed upon drilling completion. No seepage was observed upon drilling completion. Test hole backfilled with bentonite up to 3 m below ground level and with auger cutting to the ground surafce. 													· · · ·	
26								· · · · · · · · · · · · · · · · · · ·							· · · ·	2
-27																2
28								· · · · · · · · · · · · · · · · · · ·								
29								· · · · · · ·							· · · ·	
30							GED	BY∙	Sah	a Ibra	him				ETION DEPTH: 24.38 m	: n
		AECOM									Shukri				ETION DATE: 7/14/14	

			erley Underpass		C	LIEN	NT: C	ity of Winnipeg		TESTHOLE NO: TH14-	
			1: 14U, 5523599 m N, 6309 Maple Leaf Drilling Ltd			4-71		405		PROJECT NO.: 603211	
SAMP			Maple Leaf Drilling Ltd.				<u>IOD:</u> .IT SPC	125 mm SSA/ HQ Corir		ELEVATION (m): 233.2 COVERY	0
BACK			BENTONITE				UGH				
DEPTH (m)		SLOTTED PIEZOMETER	SOIL DESC		SAMPLE TYPE		SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR STR + Torvane + × QU/2 × □ Lab Vane □		
DEP	Solt 8	BIEZ(-GRAVEL (FILL)		SAMP	SAN	S	■ Total Unit Wt ■ (kN/m ³) 16 17 18 19 20 2 Plastic MC Liquid 20 40 ● 60 80 100		i0 200	i
-1			- CLAY (FILL)-trace silt - black, soft to firm, moist - intermediate plasticity - pieces of gravel, boulders, co	ncrete from 0.6 to 1.5 m							2
2			CLAY - trace oxidation - brown, firm, moist - high plasticity							· · · · · · · · · · · · · · · · · · ·	
3			 soft to firm between 2.4 to 3 brown mottled light brown, sile between 2.4 			G43				· · · · · · · · · · · · · · · · · · ·	
4			below 3 m			G44		•			
5			- dark brown, silt inclusion (<10) mm in dia.) below 4.5 m		T45					:
6			- grey mottled brown below 6 n	1		G46		•		· · · · · · · · · · · · · · · · · · ·	:
0			- soft below 7.3 m			G47 T48		•		······	
8			- silt pocket at 8.3 m			G49					:
9			 trace gravel below 8.8 m some silt to silty, light grey to 	grey below 9.1 m		043					
10	7/						<u> </u>	LOGGED BY: Saba Ibra	ahim C	OMPLETION DEPTH: 25.73 r	n
			AECOM					REVIEWED BY: Zeyad		OMPLETION DATE: 7/15/14	

		verley Underpass		C	LIEN	IT: Ci	ty of	Winni	peg						ESTHOLE NO: TH14-(
		M: 14U, 5523599 m N, 6309	952 m E												ROJECT NO.: 603211	
		: Maple Leaf Drilling Ltd.				IOD:					ring		7		EVATION (m): 233.20)
		GRAB		-		IT SPO	UN	-	BUL			-	_	RECOVE		
BACKI		E BENTONITE	GRAVEL	Ш	SLO	UGH		-	GR			LZ			SAND	
DEPTH (m)	SOIL SYMBOL SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 1, F	 ◇ Dyna ◇ T (Stander (Blow) (Blow)	ecker ¥ mic Cor dard Pe s/300m 60 I Unit W :N/m ³) 19	é n Test) m) <u>80</u> /t ∎	♦ 100 21	+ Ti × □ La △ Poo ❸ Fie	orvane H QU/2 X Ib Vane [cket Pen. eld Vane (kPa)	□ . △	COMMENTS	
10					G50					••••		· · · · · · · · · · · · · · · · · · ·				2
-11		- grey below 10.6 m			T51						· · · · · · · · · · · · · · · · · · ·				· · · ·	2
12		- silty, silt inclusion (<40 mm in	dia.) below 11.3 m		-						· · · · · · · · · · · · · · · · · · ·				· · ·	
10		- light grey to grey, some to tra intermediate plasticity below 12 Glacial Till (SILT)- some to trac	2.1 m		G52		•				· · · · · · · · · · · ·					2
ıJ	00000 00000 00000000000000000000000000	clay - light grey, very dense, moist - low plasticity - loose, wet from 13.1 to 13.6 r	n	×	S53	50/									SPT Blows: (50/152)	2
14		- some sand, some boulders ,s	ome cobbles below 14 m			152mm									100 % Recovery	2
15					C1										C1 RQD: 0% C1 Recovery: 78 %	2
16					C2		· · · · · · · ·								C2 RQD: 0% C2 Recovery: 95 %	
17	00000000000000000000000000000000000000				СЗА						· · · · · · · · · · · · · · · · · · ·				C3A RQD: 0% C3A Recovery: 57%	
18		LIMESTONE - fine grained - light grey, yellow staining - no foliation			СЗВ						· · · · · · · · · · · · · · · · · · ·				C3B RQD: 0 % C3B Recovery: 75%	2
19		 R3- medium strong closed to moderately closed, closed to gapped, clean to filler gravel, evidence of water flow oxidized between 19 to 20.6 m 	d with coarse cemented		C4										C4 RQD: 23% C4 Recovery: 86%	
20					C5		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	C5 RQD: 21.6%	
		4-001						GGED							ETION DEPTH: 25.73 m	1
		AECOM						/IEWE				kri s Kahlil		COMPL	ETION DATE: 7/15/14 Page	

			erley Underpass	<u></u>	(CLIE	ENT: C	ity of Wi	nnipeg					STHOLE NO: TH14-	
			1: 14U, 5523599 m N, 630	952 m E										OJECT NO.: 603211	
			Maple Leaf Drilling Ltd.							IQ Corin				EVATION (m): 233.2	0
	۲ PLE		GRAB			_	PLIT SPC	ON	BU		-				
BACK	FILL	TYPE	BENTONITE	GRAVEL		∭SL	OUGH	1	GR	OUT	E		NGS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPI F TYPF	SAMPIF#	SPT (N)	 ⇒ D ◆ D ◆ SPT (S 0 20 ■ 1 16 17 Plastic 	ows/300m 40 60 otal Unit V (kN/m ³) 18 19	¥ ne ◇ en Test) ✦ m) <u>80</u> 100 Vt ■ 20 21 Liquid	× □ L △ Po	Forvane + QU/2 × ab Vane □ cket Pen. ∠ eld Vane € (kPa)	1	COMMENTS	
20								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			- - - - - - - - -	C5 Recovery: 71 %	2
-21			SHALE - blue / green - fine grained - no foliation - R1- very weak - close spacing			CI	6							C6 RQD: 0% C6 Recovery: 56 %	2
-22			LIMESTONE - fine grained - creamish white and grey - no foliation - R3- medium strong - moderately closed too widely features, clean, no evidence of	f water flow (class 2)		C	7							C7 RQD: 23% C7 Recovery: 81 %	2
-23			 gapped fractures(180 degree undulating , clean between 21. gapped fractures(180 degree undulating , clean between 23. 	s to core axis), rough .6 to 22.6 m s to core axis), rough		С	8							C8 RQD: 60% C7 Recovery: 100 %	2
-24			- gapped fractures(180 degree undulating , clean between 24.	s to core axis), rough .2 to 25 m										· · · · · · · · · · · · · · · · · · ·	:
-25			- R5- very strong			C	9							C9 RQD: 26% C7 Recovery: 100 % qu= 114.9 MPa	2
-26	žžč		END OF TEST HOLE AT 25.7 NOTES: 1. Power Auger Refusal at 13. 2. HQ coring below 13.8 m. 3. Seepage observed at 3.0 m 4. Installed 25 mm diameter st	8 m in Glacial TILL. upon drilling completion.											2
-27			(SP14-04) to 23.5 m below gro casagrande tip and flush mour 5. Test hole backfilled with silin ground surface, bentonite up to auger cutting to ground surface 6. Groundwater monitoring:	bund surface with 0.3 m nt at ground surface. ca sand up to 23.6 m below o 1 m and plugged with e.	,										2
-28			- Aug. 12, 2014 at Elv. 225.2 n - Sep. 03, 2014 at Elv. 225.0 n - Sep. 19, 2014 at Elv. 225.6 n - Oct. 17, 2014 at Elv. 225.5 m - Nov. 06, 2014 at Elv. 225.4 n - Nov. 20, 2014 at Elv. 225.4 n	n. n. 1. n.											2
29			- Dec. 06, 2014 at Elv. 225.2 n - Dec. 18, 2014 at Elv. 225.2 n												:
30										· · · · · . . · · · .	•••••		· · · · · · · · · · · · · · · · · · ·		
	· 1					- 1		LOGGE	DBY: S	Saba Ibral	nim			ETION DEPTH: 25.73 r	n
			AECOM					REVIE	VED BY	Zeyad S	hukri	C	OMPL	ETION DATE: 7/15/14	


			rley Underpass		С	LIEN	T: Ci	ity of	Winnipeg						STHOLE NO: TH14-2	
			l: 14U, 5523511 m N, 6308	5/1 M E			•=								OJECT NO.: 6032114	
			Maple Leaf Drilling Ltd.						mm SSA						EVATION (m): 233.80	
			GRAB				T SPO	νUΝ	B							
SACK	FILL T	YPE	BENTONITE	GRAVEL]slo	UGH			ROUT					SAND	
DEPTH (m)	SOIL SYMBOL	SLOT TED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0 16	PENETRATION	: ₩ Cone ◇ Pen Test) ◀ Imm) 0 80 10 Wt ■) 3 20 2 Liquid		+ Torvar × QU/2 □ Lab Va Pocket F • Field Va (kPa)	ne + :× ne □ Pen. △ ane ⊕	NGTH 200	COMMENTS	
0	3333															
1			CLAY - trace gravel, trace silt - grey, firm, moist - high plasticity - some silt, intermediate plastic - trace sand, dark grey, soft to f	ity from 0.4 m to 0.6 m irm below 0.6 m		G188 G189			•							2
			SILT - clayey, sandy - light brown, soft, moist - low plasticity		/m	G190			•							
2			CLAY - silty - grey,firm to soft, moist - intemediate plasticity			T191										2
			SILT - sandy, clayey - light brown, soft, wet to moist - low plasticity			G192			•						(Gravel: 0.0%, Sand:	
3			CLAY - silty - brown mottled grey, firm, mois - high plasticity - trace silt inclusion (< 6 mm in												24.1%, Silt: 55.3%, Clay: 20.6%	2
1						G193										
5						T194					*					:
6						G195										:
			- grey mottled brown, trace oxic	lation from 6.1 m to 7.6 m												
7		X	- grey, soft to firm from 7 m to 8	.2 m		G196			I	I					Gravel: 0.0%, Sand: 0.0%, Silt: 20.7%, Clay: 79.3%, AASHTO Classification (A-7-6)	
}						T197					*					:
)			- trace silt inclusion (< 6 mm in	dia.) from 9.1 m to 10.7 m												
0			- soft to firm below 9.14 m	,		G198			•							
			AECOM										-		ETION DEPTH: 13.87 m	
			AECOM						VIEWED B					IVIPL	ETION DATE: 10/26/14 Page	1

PRO	JECT:	Wave	erley Underpass		C	LIEN	IT: C	ty of Winnipeg			T	ESTHOLE NO: TH14-2	28
			1: 14U, 5523511 m N, 6308	71 m E							P	ROJECT NO.: 6032114	48
			Maple Leaf Drilling Ltd.					125 mm SSA				LEVATION (m): 233.80)
	PLE T		GRAB		-		T SPC				NO RECOV		
BAC	KFILL	TYPE	BENTONITE	GRAVEL	Ш	SLO	UGH	GROU	JT		CUTTINGS	SAND	
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	■ Total Unit Wt (kN/m ³) 16 17 18 19 Plastic MC Liq	♦ Test) ♦ 80 100 20 21	× Ql □ Lab ' △ Pocke � Field (kF	EAR STRENGT vane + J/2 × Vane □ et Pen. △ Vane � Pa) 00 150 2	COMMENTS	ELEVATION
LOG OF TEST HOLE WAVERLEY UP - PHASE II - TEST HOLE LOGS - WITH LAB DATA - REVISION 1.GPJ UMA WINN.GDT 11/122/16 11 11 10 11 11 11 11 11 11 11 11 11 12 11 11 11 11 13 11 11 11 11 10 11 12 11 11 10 11 11 11 11 11 11 11 12 11 11 11 12 11 12 11 10 11 12 11 12 11 11 12 11 12 11 12 11 10 11 12 11 12 11 12 11 10 11 12 14 14 14 11 11 12 10 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14 15 16 16			- some sand, some gravel from Glacial Till (SILT) - some gravel, clay - light grey, very dense, moist, - low plasticity END OF TEST HOLE AT 13.87 NOTES: 1. Power auger refusal at 13.87 2. Seepage was observed from 3. Sloughing was observed from 4. Installed 25 mm diameter star (SP14-28) to 11 m below ground st top soil to ground surface. 5. Test hole backfilled with sloug sand up to 0.3 m below ground st top soil to ground surface. 6. Groundwater monitoring: - Nov. 06, 2014 at Elv. 226.6 m. - Dec. 06, 2014 at Elv. 226.6 m. - Dec. 18, 2014 at Elv. 226.6 m.	some sand, some to trace m IN Glacial Till (SILT). m in Glacial Till . silt layer below 2.1 m. silt layer below 2.1 m. idpipe piezometer surface with 0.3 m up to 0.3 m below ground h up to 11 m and silica		G199 T200 T201 S202 G203	23					SPT Blow Count: (10,10,13) 75 %Recovery	223 222 221 221 220 219 218 217 218 217 216
DF TEST HOLE V			AECOM					LOGGED BY: Sat REVIEWED BY: Z				LETION DEPTH: 13.87 m LETION DATE: 10/26/14	214 – 1
LOG			ALCOM					PROJECT ENGIN					2 of 2

			erley Underpass 1: 14U, 5523602 m N, 630)869 m F	С	LIEN	IT: Ci	ity of Winnipeg		TESTHOLE NO: TH14-	
			Maple Leaf Drilling Ltd.	003 III L	R.		חחו	125 mm SSA		PROJECT NO.: 603211 ELEVATION (m): 233.4	
SAMP			GRAB				IOD: IT SPO		NO RE		۷
BACK			BENTONITE	GRAVEL	-		UGH	GROUT			
DEPTH (m)		SLOTTED	SOIL DES		SAMPLE TYPE		SPT (N)	PENETRATION TESTS	UNDRAINED SHEAR STF + Torvane + × QU/2 × □ Lab Vane □ △ Pocket Pen. 2 ♥ Field Vane ♥ (kPa)		
0			CLAY (FILL) - silty, sandy, tra - black, moist when thawed, fr	ce gravel rozen to 0.76 m							+
			- firm below 0.76 m			G204					
1			- wet at 1.4 m			G204					
2	Ĩ		- wet at 1.4 m CLAY - some silt - brown mottled grey, moist, fi - high plasticity	rm		T205			*	· · · · · · · · · · · · · · · · · · ·	
-			. ,			G206		•		· · · · · · · · · · · · · · · · · · ·	:
3			- silty, trace silt inclusions (< 6	3 mm in dia.) below 3.1 m		G207					
4											:
						-				· · · · · · · · · · · · · · · · · · ·	
5						T208 G209				· · · · · · · · · · · · · · · · · · ·	
6										· · · · · · · · · · · · · · · · · · ·	
			- soft below 6.1 m			G210		•		· · · · · · · · · · · · · · · · · · ·	:
7			- grey below 7 m							· · · · · · · · · · · · · · · · · · ·	
8		Ţ				T211				· · · · · · · · · · · · · · · · · · ·	
						G212		•		· · · · · · · · · · · · · · · · · · ·	
)						G213		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
10											
			AECON					LOGGED BY: Mustafa REVIEWED BY:		OMPLETION DEPTH: 15.79 r OMPLETION DATE: 12/1/14	<u>n</u>
			ALCON					PROJECT ENGINEER:		Page	

			erley Underpass		C	LIEN	IT: Ci	ty of Winnipeg		TESTHOLE NO: TH14-2	
			1: 14U, 5523602 m N, 630	369 m E						PROJECT NO.: 603211	
			Maple Leaf Drilling Ltd.					125 mm SSA		ELEVATION (m): 233.42	2
			GRAB				IT SPO				
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ	SLO	UGH	GROUT			
DEPTH (m)	SOIL SYMBOL	SLOTTED	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	 	COMMENTS	
10											
											2
11						T214			_2₩		
						G215		•			
-12			SILT - some clay to clayey - grey, soft, moist to wet								
	00000 00000 00000		Glacial Till (SILT) - some clay, - light grey, compact, wet, - low plasticity	some sand, trace gravel	X	S216	22	•		SPT Blow Count: (3,8,14) Recovery 94%	2
13	0000 0000 0000					G217		•			
14	00000000000000000000000000000000000000		- light brown, dense below 13.7	'n		5218	46	•		SPT Blow Count: (15,24,22) Recovery	2
15	000000					G219		•			
15			- very dense below 15.3 m		X	S220	50/ 102mm		•	SPT Blow Count:	2
		Ξ	-			S221	50/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(13,50/102) Recovery	
16			END OF TEST HOLE AT 15.79 NOTES:				102mm			SPT Blow Count: (50/102) Recovery 100%	
			1. Power auger refusal at 15.79 2. No sloughing was observed 2. Seepage was observed at 1. level.	during drilling.					· · · · · · · · · · · · · · · · · · ·		
17			3. Installed 25 mm diameter sta (SP14-29) to 15.7 m below gro casagrande tip and flush moun 5. Test hole backfilled with sili	und surface with 0.3 m t at ground surafce.						· · · · · · · · · · · · · · · · · · ·	
18			ground surface, bentonite up to silica sand to ground surface. 6. Groundwater monitoring: - Dec. 06, 2014 at Elv. 225.2 m	0.3 m and plugged with						······	
			- Dec. 18, 2014 at Elv. 225.6 m	l.						· · · · · · · · · · · · · · · · · · · ·	:
19									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
											:
20			and we have been doned					LOGGED BY: Mustafa A		MPLETION DEPTH: 15.79 n	
			AECOM					REVIEWED BY:		MPLETION DATE: 12/1/14	
			A_CON	5 C				PROJECT ENGINEER:		Page	2

		Waverley Underpass - Detailed Design				billon Consulting Ltd. TESTHOLE NO: TH16-01	
		UTM: 14U,5523569 m N,630934 m E, 7.6 m south of TOR: Maple Leaf Drilling Ltd.				· · · · · · · · · · · · · · · · · · ·	
					<u>IOD:</u> .IT SPO	125 mm SSA/ HQ Coring ELEVATION (m): 234.08 DON ■BULK NO RECOVERY CORE	
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH * Becker % + Torvane + ◆ Dynamic Cone ◇ × QU/2 × • SPT (Standard Pen Test) ◆ □ Lab Vane □ 0 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m*) △ Pocket Pen. △ ○ ○ COMMENTS 16 17 18 19 20 21 (kPa) Plastic MC Liquid 50 100 150 200	
0	XXX	SAND (FILL)- silty, gravelly I- light brown, moist	F				2
1		- CRUSHED LIMESTONE- - ASPHALT AND CONCRETE-					2
2		CLAY - trace silt - brown mottled grey, firm to stiff, moist					2
3		 high plasticity trace oxidation trace silt inclusions (<6 m in dia.) trace sulphate 					
5		- brown to brown mottled grey below 4.7 m		S1	4	SPT Blows: (1,2,2) 100 % Recovery	:
6		- firm below 6.2 m					2
7		- grey, soft below 7.7 m		G3			2
3		- grey, soir below 7.7 m	X	S4	3	SPT Blows: (2,1,2) 100 % Recovery	:
9 10		- trace till inclusions below 9.2 m	X	S5	3	• SPT Blows: (1,1,2) 100 % Recovery	2
		A=C044				LOGGED BY: Saba Ibrahim COMPLETION DEPTH: 25.91 m	
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 4/13/16 PROJECT ENGINEER: Zeyad Shukri Page	_

		Waverley Underpass - Detailed Design				illon Consulting Ltd.		TESTHOLE NO: TH16-0	
		UTM: 14U,5523569 m N,630934 m E, 7.6 m south of C						PROJECT NO.: 6032114	
		OR: Maple Leaf Drilling Ltd. /PF GRAB			<u>IOD:</u> .IT SPC	125 mm SSA/ HQ Coring		ELEVATION (m): 234.08 VERY	3
SAIVIP	LE TY	PE GRAB IIISHELBY TUBE		SPL					-
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UND ★ Becker # ◆ Dynamic Cone ◇ ◆ SPT (Standard Pen Test) ◆ (Blows/300mm) 0 40 60 80 100 ■ Total Unit Wt ■	RAINED SHEAR STRENC + Torvane + × QU/2 × □ Lab Vane □ △ Pocket Pen. △ � Field Vane � (kPa) 50 100 150		
20		 close to widely spaced, undulating, rough, close to gapped fractures 							2
-21				C2				C2 RQD: 66% C2 Recovery: 100%	2
-22		- creamish grey - laminated with fine grained dark grey SHALE - planar fractures		СЗ				C3 RQD: 23%	2
23		 very close to closed spacing, close to gapped, clean stepped to undulating, smooth to rough fractures 						C3 Recovery: 86%	
24		- R2 - weak - gapped to open, evidence of water flow (class 3)		C4				C4 RQD: 15% C4 Recovery: 100%	2
25		 creamish white R5 - very strong sub-horizontal bedding fracture close to moderately closed spacing, gapped to open , clean no evidence of water flow (class 2) undulating to planar 		C5				C5 RQD: 41% C5 Recovery: 100%,	
26		- prominent joint set between 25.4 to 25.6 m (20 to 45 degrees at core axis) END OF TEST HOLE AT 25.9 m IN BEDROCK						UCS=107.7 MPa	
20		 Notes: Power Auger Refusal at 18.3 m in Glacial TILL. HQ coring below 18.3 m. No sloughing was observed upon drilling completion. No seepage was observed upon drilling completion. 							2
27		5.Test hole backfilled with bentonite up to 1.0 m and plugged with auger cutting to ground surface.						· · · · · · · · · · · · · · · · · · ·	2
28								· · · · · · · · · · · · · ·	
29								·····	
30						LOGGED BY: Saba Ibrahim		IPLETION DEPTH: 25.91 m	<u> </u> า
		AECOM				REVIEWED BY: Zeyad Shul		IPLETION DATE: 4/13/16	

		Waverley Underpass - Detailed Design				Dillon Consulting Ltd. TESTHOLE NO: TH16-I	
		: UTM: 14U,5523572 m N,630943 m E, 6.5 m south o				· · · · · · · · · · · · · · · · · · ·	
	PLE TY	IOR: Maple Leaf Drilling Ltd. YPE GRAB SHELBY TUBE			OD:	125 mm SSA/ HQ Coring ELEVATION (m): 233.56 DON ■BULK NO RECOVERY CORE	8
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ★ + Torvane + ♦ Dynamic Cone ♦ × Out/2 ×	
0-1	~~~	SAND (FILL)- some silt to silty, gravelly - light brown, loose, moist - ASPHALT AND CONCRETE-					2
2		CLAY - trace silt, trace oxidation - grey, firm to stiff, moist - high plasticity - trace silt inclusions (<6 mm in dia.)					2
4		 trace oxidation below 3.2 m trace sulphate below 4.7 m 		S13	7	SPT Blows: (2,3,4) 55 % Recovery	
6		- trace silt inclusions (<12 mm in dia.) below 6.2 m		S15	3	◆ SPT Blows: (1,1,2) 100 % Recovery	:
7		- soft below 6.9 m					
8		- trace till inclusion below 8.6 m		T16			:
10				G17			2
		AECOM				LOGGED BY: Saba Ibrahim COMPLETION DEPTH: 22.48 n REVIEWED BY: Zeyad Shukri COMPLETION DATE: 4/14/16	n
		A_COM				PROJECT ENGINEER: Zeyad Shukri Page	1

		Waverley Underpass - Detailed Design UTM: 14U,5523572 m N,630943 m E, 6.5 m south of 0					Consul			M/~	orle	Ctra	ot		ESTHOLE NO: TH16-0	
		OTM: 140,5523572 m N,630943 m E, 6.5 m south of C OR: Maple Leaf Drilling Ltd.					5 soutr mm SS					SILE	ะเ		ROJECT NO.: 6032114 LEVATION (m): 233.58	
	PLE TY	· •			IUD: IT SPO			BU		UIII	y		NO R			,
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ S 0	PENETRA * Be Oynar PT (Stand (Blows 20 40 Total (k1 17 18	TION T ecker nic Co lard Pe /300m 60 Unit V V/m ³) 19	TESTS ₭ ne ◇ en Tes m) 80	st) ♦ 100 21		INED Sł + Toi X C □ Lab △ Pock ● Field (ł	HEAR ST rvane + QU/2 × Vane [cet Pen. d Vane (Vane (kPa)	RENGTI	COMMENTS	
10		- some till inclusions below 10.7 m	X	S18	5	•		٠							SPT Blows: (0,2,3) 100 % Recovery	22
12		- trace angular gravel, very soft to soft below 11.6 m									· · · · · · · · · · · · · · · · · · ·					2:
13		Glacial Till (SILT)- some sand, some gravel, trace to some clay - light grey, compact, moist - low plasticity		G19							· · · · · · · · · · · · · · · · · · ·					2
14		- very dense, wet below 13.8 m	\times	G20 S21	50/ 102mm										SPT Blows: (34,50/102) 39 % Recovery	2
15	00000000000000000000000000000000000000			G22		•					· · · · · · · · · · · · · · · · · · ·					2
16	00000000000000000000000000000000000000		\ge	S23 G24	50/ 51mm										SPT Blows: (75,50/51) 44 % Recovery	2
47	00000000000000000000000000000000000000	- boulders, cobbles from 16.2 to 19.2 m		C1A							· · · · · · · · ·				C1A RQD: NA C1A Recovery: 29 %	2
18	00000000000000000000000000000000000000			C1B							· · · · · · · · · · · · · · · · · · ·				C1B RQD: NA C1B Recovery: 57 %	2
18	00000000000000000000000000000000000000			C2											C2 RQD: NA C2 Recovery: 67 %	2
20		- LIMESTONE - Non-Intact		СЗ							· · · · · · · · · · · · · · · · · · ·				C3 RQD: 0.0% C3 Recovery: 60%	2
	<u> </u>	4=0044				-	GGED E								LETION DEPTH: 22.48 m	
		AECOM					VIEWED					Shuk		COMPL	LETION DATE: 4/14/16 Page	

		Waverley Underpass - Detailed Design				illon Consulting Ltd. TESTHOLE NO: TH16-	
		UTM: 14U,5523572 m N,630943 m E, 6.5 m south of UTM: Maple Leaf Drilling Ltd.					
		· · · · · · · · · · · · · · · · · · ·			I <u>OD:</u> IT SPC		υ
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH ★ Becker ¥ + Torvane + ◆ Dynamic Cone ◇ × QU/2 × (Blows/300mm) □ Lab Vane □ 0 20 40 60 80 100 ● Total Unit Wt ■ (KN/m ³) △ Pocket Pen. △ COMMENTS 16 17 18 19 20 21 (kPa) Plastic MC Liquid 20 40 60 80<100 50 100 150 200	
20		LIMESTONE - very fine to fine grained - pinkish yellow and grey - R3 - medium strong - sub-horizontal bedding fracture, close to widely spaced, closed and clean, no evidence of water flow (class 2), planar, smooth to rough fractures - non- intact zone from 21.1 to 21.3 m, R1 to R2 - very weak to		C4 C5		C4 RQD: 70% C4 Recovery: 80% C5 RQD: 0.0%	2
22		weak, greyish white - non- intact hard CLAY SHALE and fractured LIMESTONE between 21.3 to 21.6 m - creamish white and grey, R3 - medium strong - laminated with fine grained SHALE and hard dark grey CLAY - close to moderately closed spaced, closed to gapped and clean to infilled with hard clay (class 2) - rough and undulating fractures		C6		C5 Recovery: 100 % C6 RQD: 54% C6 Recovery: 95 %	2
23		END OF TEST HOLE AT 22.5 m IN BEDROCK Notes: 1. Power Auger Refusal at 16.2 m in Glacial TILL. 2. HQ coring below 16.2 m. 3. No sloughing was observed upon drilling completion. 4. No seepage was observed upon drilling completion. 5. Test hole backfilled with bentonite up to 1.0 m below ground					2
24 25		level and with auger cutting to the ground surafce.					
26							2
27							2
28							2
29							
30						LOGGED BY: Saba Ibrahim COMPLETION DEPTH: 22.48 r	2 n
		AECOM				REVIEWED BY: Zeyad Shukri COMPLETION DATE: 4/14/16	11

		Waverley Underpass - Detailed Design				Dillon Consulting Ltd. TESTHOLE NO: TH16-0	
		UTM: 14U,5523582 m N,630892 m E, 5.3 m north of COR: Maple Leaf Drilling Ltd.				•	
	PLE TY	· · · · · · · · · · · · · · · · · · ·			I <u>OD:</u> IT SPO	125 mm SSA/ HQ Coring ELEVATION (m): 233.88 00N ■BULK NO RECOVERY CORE	5
DEPTH (m)	SOIL SYMBOL		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR STRENGTH	
0		SAND (FILL)- some silt, some gravel to gravelly - light brown, loose, moist CLAY (FILL) - silty to some silt, trace to some sand - dark brown, firm, moist					2
2		- high to intermediate plasticity CLAY - trace silt - grey, firm to stiff, moist - high plasticity					2
3		- brown mottled grey, trace silt inclusions (< 12 mm in dia.) below 3.1 m		S25	5	• • SPT Blows: (1,2,3) 100 % Recovery	
5				G26			
6		- trace oxidation below 6.1 m	X	S27	3	 SPT Blows: (1,1,2) 100 % Recovery 	
7		- grey below 7.4 m					:
}		- soft below 7.7 m		G28			
9				T29			:
10		- some silt below 7.8 m					
		AECOM				LOGGED BY: Saba Ibrahim COMPLETION DEPTH: 27.48 m REVIEWED BY: Zeyad Shukri COMPLETION DATE: 4/19/16	1
						PROJECT ENGINEER: Zeyad Shukri Page	1

			<u>_N</u>				Consulting				TESTHOLE NO: TH16-03				
	OCATION: UTM: 14U,5523582 m N,630892 m E, 5.3 m north of C ONTRACTOR: Maple Leaf Drilling Ltd.						mm SSA/			•		PROJECT NO.: 60321148 ELEVATION (m): 233.88			
					IT SPO				UIII				,		
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE #	SPT (N)	0	■ Total Uni (kN/m	ter ₩ Cone ◇ d Pen Test) ◆ 00mm) 60 80 100 nit Wt ■ n ³) 19 20 21 Liquid		INDRAINED SHEAF + Torvane × QU/2 □ Lab Van △ Pocket Pe ◆ Field Var (kPa) 50 100	e + × e □ en. △	COMMENTS			
10		- trace till inclusions below 11 m		G30				•				· · · · ·	2		
12		- very soft to soft below 11.6 m - some silt inclusions below 12 m								· · · · · · · · · · · · · · · · · · ·			2		
		SILT- clayey - light brown, very soft, moist - low plasticity CLAY - trace silt, trace to some gravel		S31	7	· · · · · ·	•					SPT Blows: (2,2,5) 100 % Recovery	2		
13	0000 0000 0000 0000	- grey, soft, moist - high plasticity Glacial Till (SILT)- some gravel, some sand, trace clay - light grey, very dense, moist		G32			•								
14	0000 0000 0000	- low plasticity	\times	S33	100/ 152mm	n			>>	· · · · · · · · · · · · · · · · · · ·		SPT Blows: (100/152) 33 % Recovery	2		
15	0000 0000 0000 0000			G34									2		
16	0000 0000 0000 0000	- boulders, cobbles with till matrix below 16 m		S35	50/ 102mm	n			·»•			SPT Blows: (45,50/102) 61 % Recovery	2		
16	0000 0000 0000			C1								C1 RQD: NA C1 Recovery: 44 %			
17	0000 0000 0000			00									2		
18	0000	- reddish brown, gravelly below 18.1 m		C2								C2 RQD: NA C2 Recovery: 94 %	2		
19	0000			СЗ								C3 RQD: NA C3 Recovery: 79%			
-	0000 0000 0000			C4								C4 RQD: NA C4 Recovery: 44%			
20	040			1		10	GGED BY:	Saha	Ibrah	im	COMPI	ETION DEPTH: 27.48 m	2		
		AECOM					VIEWED B					ETION DATE: 4/19/16			

		Waverley Underpass - Detailed Design : UTM: 14U,5523582 m N,630892 m E, 5.3 m north of 0				illon Consulting Ltd. 7.9 porth wast of Wayarlay Street	TESTHOLE NO: TH16-03
		FOR: Maple Leaf Drilling Ltd.				· · · · · ·	PROJECT NO.: 60321148 ELEVATION (m): 233.88
		· •			<u>OD:</u> T SPC	125 mm SSA/ HQ Coring	RECOVERY
DEPTH (m)	SOIL SYMBOL		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS UNDRAINED SHEAR S ♦ Dynamic Cone ◊ + Torvane ♦ SPT (Standard Pen Test) ♦ (Blows/300mm) 0 20 40 60 80 100 ■ Total Unit Wt (k/Vm ³) 0 20 cell (k/Vm ³) Cocket Pen 16 17 18 19 20 21 (kPa)	STRENGTH +
20				C5			150 200 C5 RQD: NA C5 Recovery: 20%
21		- C6 RQD: NA - C6 Recovery: 100% LIMESTONE - very fine to fine grained - greyish white to creamish grey and white - R2 to R3 - weak to medium strong - laminated with fine grained SHALE - sub-horizontal bedding fractures,extermelly closed to closed spaced, close to open, clean, evidence of water flow (class 3)		C6 C7A C7B C8			C7A RQD: NA C7A Recovery: 100 % C7B RQD: 52% C7B Recovery: 100 % C8 RQD: 67% C8 Recovery: 89 %
22 23		 CLAY SHALE infilling between 22.25 to 22.5 m light grey and white, R5 - very strong 		C9			C9 RQD: 30% C9 Recovery: 100 %
24		 non intact to moderately closed spaced, close to open, clean no evidence of water flow (class 3) undulating to planar, smooth to rough fractures 		C10			C10 RQD: 44% C10 Recovery: 93 %, UCS=145.1 MPa
25		 non intact to widely closed spaced below 24.5 m prominent joint set between 24.9 to 25.2 m (10 to 25 degrees at core axis), open and clean (class 3) 		C11			C11 RQD: 66% C11 Recovery: 91 %
26		- closed to moderately spaced, close to open, clean below 26 m		C12			C12 DOD: 729/
27		END OF TEST HOLE AT 27.5 m IN BEDROCK		C12			C12 RQD: 73% C12 Recovery: 100 %
28		 NOTES: 1. Power Auger Refusal at 15.8 m in Glacial TILL. 2. HQ coring below 15.8 m. 3. Seepage observed below 9.0 m upon drilling completion. 4. No sloughing was observed upon drilling completion. 5. Test hole backfilled with bentonite up to 1 m below ground surface and plugged with auger cutting to ground surface. 					
29							
30						LOGGED BY: Saba Ibrahim	COMPLETION DEPTH: 27.48 m
		AECOM				REVIEWED BY: Zeyad Shukri	COMPLETION DATE: 4/19/16
						PROJECT ENGINEER: Zeyad Shukri	Page 3

		•	Underpass - Detailed	•				illon Consulting Ltd.	TESTHOLE NO: TH16-04		
				02 m E, vicinity of LDS/					PROJECT NO.: 60321148		
	CONTRACTOR: Maple Leaf Drilling Ltd.							125 mm SSA		ELEVATION (m): 233.3	6
				-		IT SPC					
BACKFILL TY		<u>۲</u>	BENTONITE	GRAVEL	ЦШ			GROUT			
DEPTH (m)	SOIL SYMBOL	<u>ь</u>	SOIL DESC		SAMPLE TYPE	SAMPLE #	SPT (N)	PENETRATION TESTS	□ Lab Vane □ △ Pocket Pen. △ � Field Vane � 1 (kPa)	COMMENTS	
0		SAN	ID (FILL) - some gravel, so wn, loose, moist	me silt, some clay, rootlets	Г						
1		CLA - dai	Y (FILL) - silty k grey to brown, firm to stif	f, moist		G36		•		· · · · · · · · · · · · · · · · · · ·	2
2		- dai - hig CLA	Y - silty, organics k grey to black, soft to firm h plasticity Y - some silt wn, stiff, moist	, moist	_	G37		•		· · · · · · · · · · · · · · · · · · ·	2
-		- hig	h plasticity ce silt inclusions (<12 mm i	n dia.)		G38		•		· · · · · · · · · · · · · · · · · · ·	
		- firn	n to stiff, trace oxidation be	low 3.2 m						· · · · · · · · · · · · · · · · · · ·	
		- brc	wn mottled grey, firm, trace	e sulphate below 4.6 m		G39				· · · · · · · · · · · · · · · · · · ·	
						140				· · · · · · · · · · · · · · · · · · ·	
)		Sof	't to firm below 5.9 m			T41			• ××+	· · · · · · · · · · · · · · · · · · ·	
		-	y, soft below 7.4 m			_				· · · · · · · · · · · · · · · · · · ·	
		- sof	't to very soft below 7.8 m			T42				· · · · · · · · · · · · · · · · · · ·	
						G43		•		· · · · · · · · · · · · · · · · · · ·	
10											
			AECOM					LOGGED BY: Saba Ibra		OMPLETION DEPTH: 10.67 n	n
			ATCOM					REVIEWED BY: Zeyad PROJECT ENGINEER:		OMPLETION DATE: 4/19/16 Page	. 1

PROJECT: Waverley Underpass - Detailed Design LOCATION: UTM: 14U,5523519 m N,630502 m E, vicinity of LDS/0						CLIENT: Dillon Consulting Ltd.										TESTHOLE NO: TH16-04			
				U2 m ⊨, vicinity of LDS												JECT NO.: 60321			
	CONTRACTOR: Maple Leaf Drilling Ltd.						METHOD: 125 mm SSA									VATION (m): 233.3	50		
				×	2		JUN	<u> </u>											
				GRAVEL	Щ]SLO	UGH	1		GROL	1		444	CUTTIN		SAND			
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	SOIL DESCRIPTION		SAMPLE #	SPT (N)	◆ SP 0 2 16 17	T (Standar (Blows/3 0 40 ■ Total U (kN/r 18 astic MC	ccker ¥ nic Cone ◇ ard Pen Test) ◆ /300mm) <u>60 80 100</u> Unit Wt ■ √/m ³) <u>19 20 21</u>		□ Lab Vane □ △ Pocket Pen. △ � Field Vane �			ENGTH 0 200	COMMENTS			
10			- trace till inclusions below 10.2	2 m		G44			•				100						
									· · · · · ·								2		
			END OF TEST HOLE AT 10.6	7 m in CLAV					• • • • • • • • • • • •										
11			END OF TEST HOLE AT 10.6 NOTES: 1. Groundwater was observed completion. 2. Sloughing was observed at drilling completion. 3. Installed 25 mm diameter st (SP16-04) to 6.5 m below grou casagrande tip and flush mour	at 1.5 m upon drilling 3.0 m below ground upon andpipe piezometer ind surface with 0.3 m											· · · · · · · · · · · · · · · · · · ·		2		
13			 Test hole backfilled with slou up to 6.5, silica sand up to 5.8 plugged with bentonite to 2.75 and finished with auger cutting 5. Groundwater monitoring: April 29, 2016 at Elv. 230.20 May 13, 2016 at Elv. 230.60 	m below ground surface, m below ground surface to ground surface. m m											· · · · · · · · · · · · · · · · · · ·		2		
14			- June 18, 2016 at Elv. 231.02 - June 24, 2016 at Elv. 231.08 - July 18, 2016 at Elv. 231.08 - August 30, 2016 at Elv. 230.9	m n											· · · · · · · · · · · · · · · · · · ·				
15														· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
16																	2		
17																	2		
18																			
19																	2		
20																	:		
								LOC	GED BY	: Sab	ba Ibrah	im		CC	OMPLE	TION DEPTH: 10.67	m		
			AECOM						IEWED							TION DATE: 4/19/16			

AECOM

Appendix C

Laboratory Test Results

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
СС		
Subject	Waverly Underpass	
From	Jared Baldwin	
Date	September 22, 2014	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Twenty-six (26) Moisture Content tests.
- Two (2) Atterberg Limits (3 points) tests.
- Three (3) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength, on Shelby tube samples.
- Four (4) Waxed Shelby tube Samples.

If you have any questions, please contact the undersigned.

Sincerely,

Jared Baldwin, M.Sc., P.Eng. Geotechnical Engineer

Att.

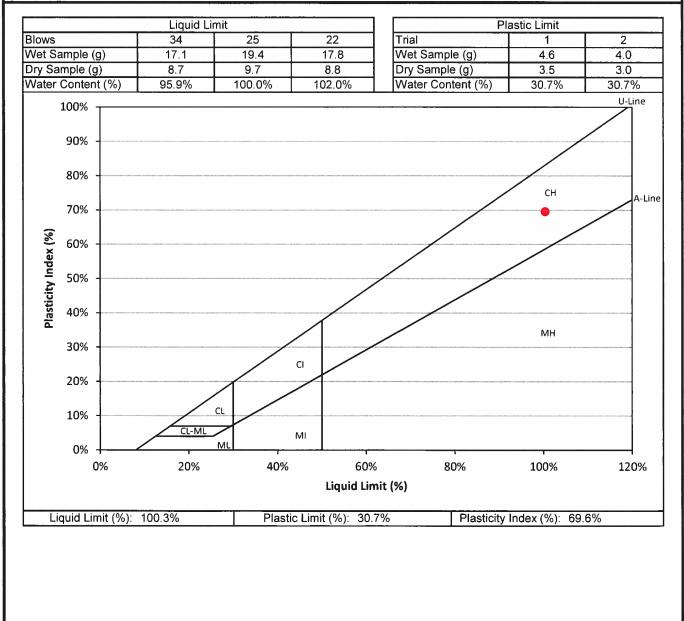
Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	SIbrahim
Sample Location:	Varies	Sample Date:	Varies
Sample Depth:	Varies	Lab Technician:	CMahe
Sample Number:	Varies	Date Tested:	August 19, 2014

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH14-01	G1	0.61 - 0.76 m	38.8		<u> </u>		
-	G3	2.13 - 2.29 m	40.4				
_	G5	4.27 - 4.42 m	54.7		1		
-	G10	8.23 - 8.38 m	49.8				
-	G13	11.28 - 11.43 m	44.2				
-	S15	12.19 - 12.34 m	6.5				
TH14-02	G16	2.59 - 2.74 m	39.8				
-	G19	5.64 - 5.79 m	49.5				
-	T21	7.62 - 8.23 m	48.5		1 1		
-	G23	10.06 - 10.21 m	57.3				
-	G25	11.58 - 11.73 m	39.7		1 1		
-	S28	13.41 - 13.87 m	9.1				1
-	S29	14.33 - 14.78 m	13.1				1
-	S30	15.24 - 15.70 m	12.6		1 1		1
TH14-03	G31	2.44 - 2.59 m	35.6				
-	G33	5.33 - 5.49 m	43.5		1		
-	G35	7.32 - 7.47 m	46.8				1
-	G38	10.97 - 11.13 m	44.9		1 1		
-	G41	13.41 - 13.56 m	9.7				
-	S42	13.72 - 14.17 m	9.9		1		
TH14-04	G44	3.66 - 3.81 m	49.0				1
_	G46	6.40 - 6.55 m	49.3		1 1		
-	G50	10.06 - 10.21 m	37.0				
-	G52	12.80 - 12.95 m	12.3				
-	S53	13.72 - 14.17 m	7.6		11		
-	G47	7.32 - 7.47 m	45.4				
					1		
					1 1		
					1		
	1				1		
		1				· · · ·	
							1
							1
					1 1		

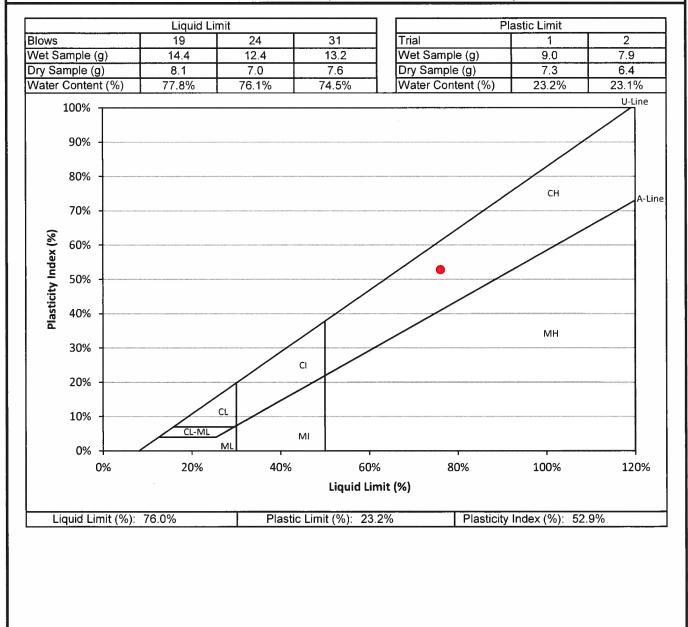


Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	14-01	Sample Date:	July 1, 2014
Sample Depth:	4.27	Lab Technician:	RDagg
Sample Number:	G5	Date Tested:	August 22, 2014

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils



Fax: 204 284 2040

Project Name:	Waverly Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	
Client:	Dillon Consulting	Field Technician:	Slbrahim	
Sample Location:	14-02	Sample Date:	July 1, 2014	
Sample Depth:	7.62	Lab Technician:	ML	
Sample Number:	T21	Date Tested:	September 2, 2014	

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

AECOM

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO.:	TH14-01
SAMPLE NO.:	T4
SAMPLE DEPTH:	3.05 - 3.66 m
DATE TESTED:	2-Sep-14
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.55
Vane Size (S, M, L)	Μ
Undrained Shear Strength (kPa)	53.9
Undrained Shear Strength (ksf)	1.13
POCKET PENETROMETER	
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	69.5
Unconfined compressive strength (ksf)	1.5
Undrained Shear Strength (kPa)	34.8
Undrained Shear Strength (ksf)	0.726
MOISTURE CONTENT	
Tare Number	SG36
Wt. Sample wet + tare (g)	442.0
Wt. Sample dry + tare (g)	303.6
Wt. Tare (g)	8.3
Moisture Content %	46.9
BULK DENSITY	(22.2.4)
Sample Wt. (g)	1065.8
Diameter 1 (cm)	7.23
Diameter 2 (cm)	7.24
Diameter 3 (cm)	7.24
Avg. Diameter (cm)	7.24
Length 1 (cm)	15.34
Length 2 (cm)	<u>15.35</u> 15.36
Length 3 (cm)	
Avg. Length (cm)	15.35
Volume (cm ³)	631.4
Moisture content (%)	46.9
Bulk Density (g/cm ³)	1.688 16.6
Bulk Density (kN/m ³)	***************************************
Bulk Density (pcf)	<u>105.4</u> 11.27
Drv Densitv (kN/m ³)	11.2/

AXIAL STRAIN RATE, R:

0.84

(0.5<R<2 % / minute)

AECOM

FAILURE SKETCH

PRC	JECT:	Waverly Underpa	ass			
OC	B NO.:	60247924				
TEST HOL	E NO.:	TH14-01		SC	IL DESCRIPTION:	
SAMPL	E NO.:	T4		CLAY; silty, trace silt inclusions,	brown, moist, firm, hi	gh plasticity,
SAMPLE D	EPTH:	3.05 - 3.66 m				
SAMPLE	DATE:	February, 2014				
TEST	DATE:	2-Sep-14		MOISTURE CONTENT:	46.9	
SAMPLE DIA	M.(Do):	72.37	(mm)	INITIAL AREA, Ao:	4113.1	(mm²)
SAMPLE LENGT	H, (Lo):	153.50	(mm)	PISTON RATE:	0.051	(inches / minute)

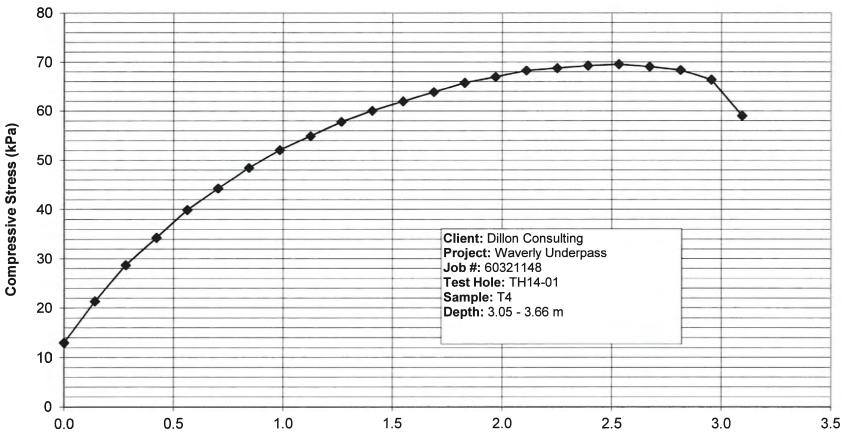
CLIENT: Dillon Consulting

2.12

(2 < L/D < 2.5)

L / D RATIO:

(based on maximum q_u value)


AXIAL COMPRESSION	PROVING	TOTAL	AVERAGE	APPLIED			
	RING	AXIAL STRAIN, E1	CROSS-SECTIONAL AREA, A	AXIAL LOAD, P	COMP	RESSIVE STRESS, σ	c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0013	0.00	6.38	11.99	1.88	0.271	13.0
0.02	0.0021	0.14	6.38	19.77	3.10	0.446	21.4
0.03	0.0028	0.28	6.39	26.61	4.16	0.599	28.7
0.03	0.0034	0.42	6.40	31.86	4.98	0.717	34.3
0.04	0.0040	0.56	6.41	37.11	5.79	0.833	39.9
0.05	0.0044	0.70	6.42	41.23	6.42	0.925	44.3
0.06	0.0048	0.84	6.43	45.16	7.02	1.012	48.4
0.07	0.0052	0.98	6.44	48.63	7.55	1.088	52.1
0.08	0.0055	1.13	6.45	51.35	7.96	1.147	54.9
0.09	0.0058	1.27	6.46	54.16	8.39	1.208	57.8
0.09	0.0060	1.41	6.47	56.31	8.71	1.254	60.0
0.10	0.0062	1.55	6.48	58.19	8.99	1.294	62.0
0.11	0.0064	1.69	6.48	60.06	9.26	1.334	63.9
0.12	0.0066	1.83	6.49	61.94	9.54	1.373	65.8
0.13	0.0067	1.97	6.50	63.15	9.71	1.398	67.0
0.14	0.0069	2.11	6.51	64.47	9.90	1.425	68.2
0.14	0.0069	2.25	6.52	65.03	9.97	1.436	68.7
0.15	0.0070	2.39	6.53	65.59	10.04	1.446	69.2
0.16	0.0070	2.53	6.54	65.96	10.09	1.452	69.5
0.17	0.0070	2.67	6.55	65.59	10.01	1.442	69.0
0.18	0.0069 0.0068	2.81 2.95	6.56 6.57	65.03 63.25	9.91 9.63	1.427	68.3 66.4
0.19	0.0068	3.09	6.58	56.31	8.56	1.233	59.0
0.20	0.0000	3.09	0.56	30.31	0,30	1.233	59.0
				+			
				+			
				+			
	1			1			
	1			1	-		
	1			1			
	İ			1			
	1			†			
	İ			1			
	1			1	1		
	Ì			1	-		•••••
	1			****			
	1						
	1			1			
	1			1			
	1			1			
	1			1			
				1	1		
	I			I	I		
				T	T	Τ	
				[1		
			[]				
				-			
CONFINED COMPRESSI	VE STRENGTH, qu:	69.53	kPa		NOTES:		
(based on maximum	n q _u value)	1.452	ksf				
UNDRAINED SHE	AR STRENGTH, Su:	34.77	kPa	1			
(based on maximum		0.726	kof				

ksf

0.726

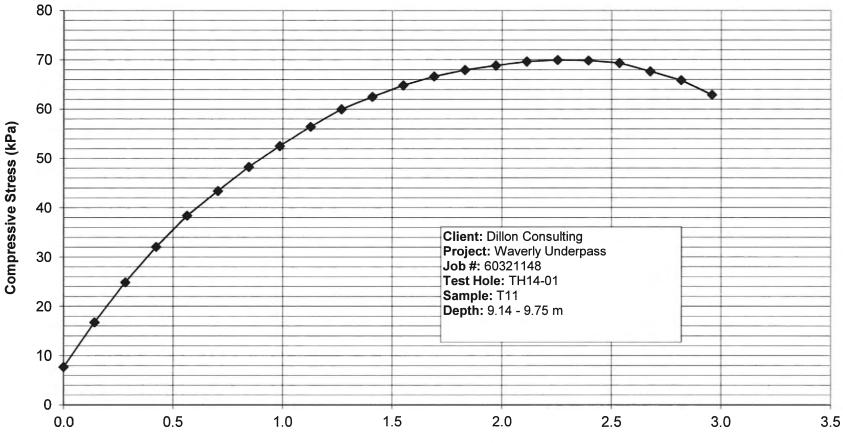
AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO.:	TH14-01			
SAMPLE NO.:	T11			
SAMPLE NO.	9.14 - 9.75 m			
DATE TESTED:				
DATE TESTED:	2-Sep-14			
SHEAR STRENGTH TESTS				
TORVANE				
B	0.55			
Reading	0.55			
Vane Size (S, M, L)	M			
Undrained Shear Strength (kPa)	53.9			
Undrained Shear Strength (ksf)	1.13			
POCKET PENETROMETER				
Reading - Qu (tsf)	0.25			
Undrained Shear Strength (kPa)	12.0			
Reading - Qu (tsf)	0.25			
Undrained Shear Strength (kPa)	12.0			
Reading - Qu (tsf)	0.25			
Undrained Shear Strength (kPa)	12.0			
UNCONFINED COMPRESSIVE STRENGTH TEST				
Unconfined compressive strength (kPa)	69.9			
Unconfined compressive strength (ksf)	1.5			
Undrained Shear Strength (kPa)	35.0			
Undrained Shear Strength (ksf)	0.730			
MOISTURE CONTENT				
Tare Number	SG36			
Wt. Sample wet + tare (g)	372.8			
Wt. Sample dry + tare (g)	270.7			
Wt. Tare (g)	8.3			
Moisture Content %	38.9			
BULK DENSITY				
Sample Wt. (g)	1072.3			
Diameter 1 (cm)	7.22			
Diameter 2 (cm)	7.23			
Diameter 3 (cm)	7.23			
Avg. Diameter (cm)	7.23			
Length 1 (cm)	15.33			
Length 2 (cm)	15.34			
Length 3 (cm)	15.32			
Avg. Length (cm)	15.33			
Volume (cm ³)	628.8			
Moisture content (%)	38.9			
Bulk Density (g/cm ³)	1.705			
Bulk Density (kN/m ³)	16.7			
Bulk Density (kiviii) Bulk Density (pcf)	106.5			
Dry Density (kN/m ³)	12.04			

AECOM


CLIENT:	Dillon Consulting		10 10 10 10 10 10				
PROJECT:	Waverly Underpa	Naverly Underpass					
JOB NO.:	60247924						
TEST HOLE NO .:	TH14-01		so	IL DESCRIPTION:			
SAMPLE NO.:	T11		CLAY; trace sand, trace silt inclu	sions, trace gravel (5mm), brown, moist, firm		
SAMPLE DEPTH:	9.14 - 9.75 m		high plasticity,				
SAMPLE DATE:	February, 2014						
TEST DATE:	2-Sep-14		MOISTURE CONTENT:	38.9			
SAMPLE DIAM.(Do):	72.27	(mm)	INITIAL AREA, Ao:	4101.7	(mm ²)		
SAMPLE LENGTH, (Lo):	153.30	(mm)	PISTON RATE:	0.051	(inches / minute)		
L / D RATIO:	2.12	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.85	(0.5 <r<2 %="" minute)<="" td=""></r<2>		

FAILURE SKETCH

	READINGS	TOTAL					
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPR	ESSIVE STRESS, σ _c	;
(inches)	(inches)	(%)	(inches2)	(ibs)	(psi)	(ksf)	(kPa)
0.01	0.0008	0.00	6.36	7.12	1.12	0.161	7.7
0.02	0.0017	0.14	6.37	15.46	2.43	0.350	16.7
0.03	0.0025	0.28	6.38	22.96	3.60	0.518	24.8
0.03	0.0032	0.42	6.38	29.70	4.65	0.670	32.1
0.04	0.0038	0.56	6.39	35.61	5.57	0.802	38.4
0.05	0.0043	0.70	6.40	40.29	6.29	0.906	43.4
0.06	0.0048	0.85	6.41	44.88	7.00	1.008	48.3
0.07	0.0052	0.99	6.42	48.91	7.62	1.097	52.5
0.08	0.0056	1.13	6.43	52.66	8.19	1.179	56.5
0.09	0.0060	1.13	6.44	56.03	8.70	1.253	60.0
0.09	0.0062	1.41	6.45	58.47	9.07	1.306	62.5
0.10	0.0065	1.55	6.46	60.72			
0.11	0.0065				9.40	1.354	64.8
	0.0067	1.69 1.83	6.47	62.50	9.66	1.392	66.6
0.12			6.48	63.81	9.85	1.419	67.9
0.13	0.0069	1.97	6.49	64.75	9.98	1.438	68.8
0.14	0.0070	2.11	6.49	65.59	10.10	1.454	69.6
0.14	0.0070	2.25	6.50	65.96	10.14	1.460	69.9
0.15	0.0070	2.39	6.51	65.96	10.13	1.458	69.8
0.16	0.0070	2.54	6.52	65.59	10.06	1.448	69.3
0.17	0.0068	2.68	6.53	64.09	9.81	1.413	67.6
0.18	0.0067	2.82	6.54	62.50	9.55	1.376	65.9
0.19	0.0064	2.96	6.55	59.78	9.12	1.314	62.9

	-						
		-					
				ļ			
				ļ			
						<u> </u>]	
				L			
	1						

					-		
	1	1					
	-	1					
						-	
		-					
				.			
	-	-					
				.			
		I					
		I		L			
						T	
	I			[1	T	
	T	I		ļ	1	1	
	*			·····	1		
	-	1			-1		
		1	······································		-1	†+	
	-						
	-		······································				
	-+			<u> </u>			
				<u> </u>	-		
				1		L	
ONFINED COMPRESS	WE STRENGTH -	69.93	kBa	า	NOTER		
			kPa	1	NOTES:		
(based on maximu			ksf				
UNDRAINED SH	EAR STRENGTH, S.	34.96	kPa				

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO	TH14-02
TEST HOLE NO.:	T18
SAMPLE NO.: SAMPLE DEPTH:	4.57 - 5.18 m
DATE TESTED:	
DATE TESTED:	2-Sep-14
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.80
Vane Size (S, M, L)	<u></u> M
Undrained Shear Strength (kPa)	78.5
Undrained Shear Strength (kra)	1.64
	1.04
POCKET PENETROMETER	
Reading - Qu (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
Reading - Qu (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	
Unconfined compressive strength (ksf)	1.7
Undrained Shear Strength (kPa)	41.2
Undrained Shear Strength (ksf)	0.860
MOISTURE CONTENT	
Tare Number	SG36
Wt. Sample wet + tare (g)	416.1
Wt. Sample dry + tare (g)	285.3
Wt. Tare (g)	9.3
Moisture Content %	47.4
BULK DENSITY	
Sample Wt. (g)	1080.9
Diameter 1 (cm)	7 20
Diameter 2 (cm)	7.24 7.21
Diameter 3 (cm)	7.21
Avg. Diameter (cm)	7.22
Length 1 (cm)	15.34
Length 2 (cm)	15.33
Length 3 (cm)	15.35
Avg. Length (cm)	15.34
Volume (cm ³)	627.5
Moisture content (%)	47.4
Bulk Density (g/cm ³)	1.723
Bulk Density (kN/m ³)	16.9
Bulk Density (pcf)	107.5
Drv Density (kN/m ³)	11.46

AECOM

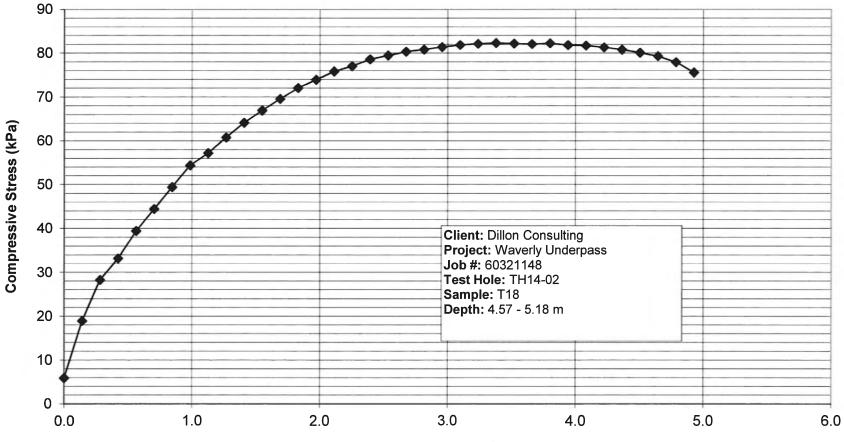
CLIENT:	Dillon Consulting	Ilon Consulting					
PROJECT:	Waverly Underpa	averly Underpass					
JOB NO.:	60247924		***************************************				
		_					
TEST HOLE NO .:	TH14-02		SOIL	DESCRIPTION	:		
SAMPLE NO .:	T18		CLAY; silty, trace silt inclusions, br	rown, moist, firm,	high plasticity,		
SAMPLE DEPTH:	4.57 - 5.18 m	1		·······			
SAMPLE DATE:	February, 2014	1					
TEST DATE:	2-Sep-14]	MOISTURE CONTENT:	47.4			
		•					
SAMPLE DIAM.(Do):	72.17	(mm)	INITIAL AREA, Ao:	4090.4	(mm ²)		
SAMPLE LENGTH, (Lo):	153.40	(mm)	PISTON RATE:	0.051	(inches / minute)		
L / D RATIO:	2.13	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	0.84	(0.5 <r<2 %="" minute)<="" td=""></r<2>		

TEST DATA - DIAL READINGS TOTAL AVERAGE APPLIED AXIAL PROVING AXIAL CROSS-SECTIONAL AXIAL LOAD, P COMPRESSIVE STRESS, σ_c COMPRESSION RING STRAIN, E1 AREA, A (inches) 0.0006 0.0019 (inches2) (psi) 0.86 2.75 4.10 4.81 (inches) (%) (lbs) (kPa) (ksf) 0.00 0.14 0.28 0.42 0.56 0.01 6.34 6.35 5.43 5.9 18.9 28.2 33.2 0.123 0.395 0.590 0.693 0.03 0.0028 6.36 6.37 26.05 30.64 36.45 41.13 45.82 50.50 53.22 56.59 59.78 62.50 0.03 0.0033 6.38 6.39 6.39 39.4 44.4 5 72 0.823 0.05 0.0039 0.0044 0.0049 0.0054 0.0057 0.0060 6.44 7.17 7.89 0.70 0.928 49.4 0.99 6.40 6.41 1.136 1.195 1.269 1.339 1.398 1.452 1.504 1.544 1.583 1.608 54.4 57.2 0.08 8.30 60.8 64.1 66.9 6.42 8.81 1.41 1.55 1.69 6.43 6.44 9.30 9.70 0.09 0.0064 0.10 0.0067 65.03 67.46 10.08 10.45 10.72 69.5 72.0 73.9 6.45 0.12 0.13 0.14 0.0072 1.83 6.46 6.47 69.34 71.21 72.43 74.02 73.9 75.8 77.0 78.6 79.5 80.3 2.11 2.25 2.39 2.53 2.67 2.81 10.72 10.99 11.17 11.40 11.52 11.65 6.48 0.14 0.15 0.16 0.17 0.0077
0.0079
0.0080 6.49 1.641 1.659 1.678 1.688 1.700 1.710 1.715 1.719 1.717 6.50 6.51 6.52 74.96 0.0081 0.18 0.19 0.20 0.20 76.46 77.12 77.68 11.72 11.80 11.87 80.8 81.4 81.9 82.1 82.3 82.2 82.1 82.1 82.2 2.96 3.10 3.24 3.38 3.52 6.53 6.54 6.55 0.0082 0.0083 78.05 78.33 78.33 11.91 11.94 11.92 0.21
0.22
0.23 0.0084
0.0084
0.0084 6.56 6.57 3.66 3.80 3.94 4.08 11.90 11.93 11.87 1.714 6.58 78.33 78.61 78.33 78.05 77.68 77.12 76.46 75.24 73.09 0.24 0.25 0.26 0.0084 6.59 6.60 0.0084 1.709 1.707 1.698 81.8 81.7 81.3 11.87 11.79 11.72 11.62 11.50 11.30 0.0084 0.0083 0.0083 6.61 0.26 4.22 6.62 1.687 1.673 1.656 80.8 80.1 79.3 0.28 4.50 4.64 4.79 6.64 6.65 0.0082 0.0082 6.66 6.67 1.627 1.578 77.9 75.6 0.31 0.0078 4.93 10.96 UNCONFINED COMPRESSIVE STRENGTH, qu: 82.31 kPa NOTES: (based on maximum q_u value) UNDRAINED SHEAR STRENGTH, S_u: 1.719 ksf

41.15

0.860

(based on maximum qu value)


kPa

ksf

FAILURE SKETCH

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

Axial Strain (%)

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Saba Ibrahim	Page 1
СС		
Subject	Dillon Consulting Ltd Wa	verly Underpass DD – Materials Testing Results
From	Zeyad Shukri	
Date	April 26, 2016	Project Number 60321148

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Fifty (50) Moisture Content tests.
- One (1) Atterberg Limits (3 points) tests.
- Four (4) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength, on Shelby tube samples.

If you have any questions, please contact the undersigned.

Sincerely,

Zeyad Shukri Al-Hayazai, M.Sc., P.Eng. Senior Geotechnical Engineer

Att.

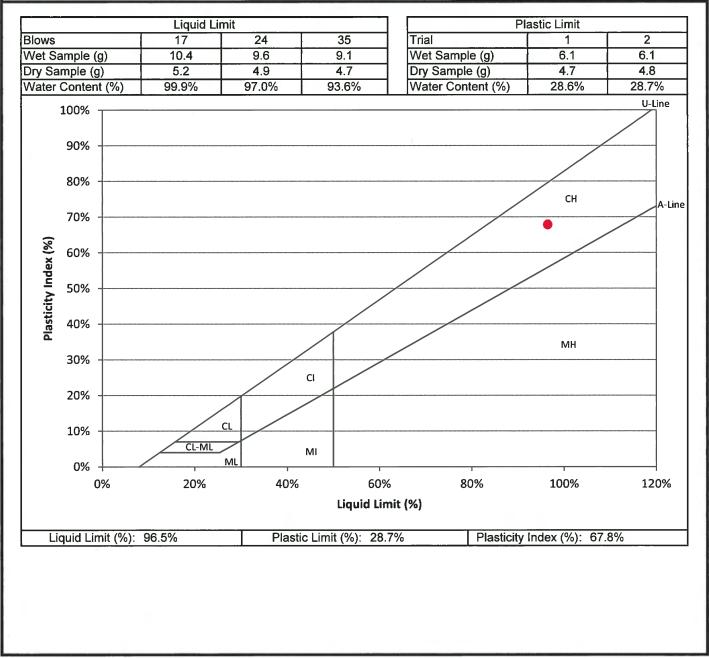
Fax: 204 284 2040

Project Name:	Waverley Underpass	Supplier:	AECOM	
Project Number:	60321148	Specification:	N/A	,
Client:	City of Winnipeg	Field Technician:	Slbrahim	
Sample Location:	Varies	Sample Date:	Varies	
Sample Depth:	Varies	Lab Technician:	EManimbao	
Sample Number:	Varies	Date Tested:	April 19, 2016	

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%)
TH16-01	S1	4.57 - 5.03 m	50.8%		G39	3.81 - 3.96 m	55.6%
	G2	5.33 - 5.49 m	47.4%		T40	4.57 - 5.18 m	55.0%
	G3	6.71 - 6.86 m	51.7%		T41	6.10 - 6.71 m	60.1%
	S4	7.62 - 8.08 m	45.7%		T42	7.62 - 8.23 m	-
	S5	9.14 - 9.60 m	46.2%		G43	8.53 - 8.69 m	51.9%
1	Т6	10.67 - 11.28 m	34.0%		G44	10.06 - 10.21 m	46.2%
	S7	12.19 - 12.65 m	40.2%	TH16-05	G45	0.30 - 0.46 m	43.3%
	S8	13.72 - 14.17 m	11.0%		G46	1.07 - 1.22 m	46.2%
	S9	15.24 - 15.70 m	21.4%	·	G47	2.29 - 2.44 m	39.0%
	S10	16.76 - 17.22 m	19.8%		G48	3.81 - 3.96 m	53.2%
	G11	17.37 - 17.53 m	12.5%		T49	4.57 - 5.18 m	-
2	S12	18.29 - 18.75 m	26.8%		T50	6.10 - 6.71 m	52.0%
TH16-02	S13	3.05 - 3.51 m	41.9%		T51	7.62 - 8.23 m	50.6%
	T14	4.57 - 5.18 m	-		G52	9.91 - 10.06 m	56.6%
	S15	6.10 - 6.55 m	50.3%		G53	11.43 - 11.58 m	39.3%
	T16	7.62 - 8.23 m	-		G54	12.80 - 12.95 m	27.4%
	G17	9.14 - 9.30 m	49.7%		G55	13.41 - 13.56 m	10.4%
	S18	10.67 - 11.13 m	57.6%				-
	G19	12.50 - 12.65 m	12.5%				-
	S20	13.41 - 13.87 m	10.3%				-
	S21	13.72 - 14.17 m	9.9%				-
	G22	14.48 - 14.63 m	6.6%				-
	S23	15.24 - 15.70 m	11.3%				-
1.20	G24	15.85 - 16.00 m	11.2%				-
TH16-03	S25	3.05 - 3.51 m	39.7%		1		-
	G26	4.57 - 4.72 m	56.2%				-
	G27	6.10 - 6.25 m	52.4%				-
	G28	7.62 - 7.77 m	49.1%				
	T29	9.14 - 9.75 m	-				-
	G30	10.67 - 10.82 m	66.4%			· · · · · · · · · · · · · · · · · · ·	-
	S31	12.19 - 12.65 m	24.1%				-
1	G32	12.95 - 13.11 m	12.9%				_
·····	S33	13.72 - 14.17 m	15.5%	· · · ·			=
	G34	14.63 - 14.78 m	7.3%				-
	S35	15.24 - 15.70 m	17.4%				-
TH16-04	G36	0.61 - 0.76 m	28.8%				-
	G37	1.37 - 1.52 m	33.0%				-
	G38	2.44 - 2.59 m	39.6%				-



Fax: 204 284 2040

Project Name:	Waverly Underpass Phase II	Supplier:	AECOM
Project Number:	60321148	Specification:	N/A
Client:	Dillon Consulting	Field Technician:	Slbrahim
Sample Location:	TH16-04	Sample Date:	Varies
Sample Depth:	6.10 - 6.71 m	Lab Technician:	MLotecki
Sample Number:	T41	Date Tested:	April 22, 2016
• · · · · · · · · · · · · · · · · · · ·			

Atterberg Limits

ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TH16-04
T40
4.57 - 5.18 m
22-Apr-16
0.75
М
73.6
1.54
1.25
59.9
1.00
47.9
1.25
59.9
79.8
1.7
39.9
0.834
X2
284.7
186.7
8.4
55.0
1054.6
7.20
7.22
7.21
7.21 15.35
15.30 15.31
15.32
625.5
625.5 55.0
55.0
55.0 1.686
55.0

AECOM

Dillon Consulting					
Waverly Underp	/averly Underpass				
60247924					
TH16-04]	SO	L DESCRIPTION	:	
T40		CLAY; silty, trace till inclusions, tr	ace sulphate inclu	usions, trace oxidation, brown, r	
4.57 - 5.18 m	1	brown, moist, firm, homogeneous	, high plasticity		
February, 2014]				
22-Apr-16		MOISTURE CONTENT:	55.0		
	-				
72.10	(mm)	INITIAL AREA, Ao:	4082.8	(mm ²)	
153.20	(mm)	PISTON RATE:	0.051	(inches / minute)	
	Waverly Underp 60247924 TH16-04 T40 4.57 - 5.18 m February, 2014 22-Apr-16 72.10	TH16-04 T40 4.57 - 5.18 m February, 2014 22-Apr-16 72.10 (mm)	Waverly Underpass 60247924 TH16-04 T40 4.57 - 5.18 m February, 2014 22-Apr-16 T2.10 (mm) INITIAL AREA, Ao:	Waverly Underpass 60247924 TH16-04 T40 4.57 - 5.18 m February, 2014 22-Apr-16 MOISTURE CONTENT: 55.0 72.10 (mm) INITIAL AREA, Ao: 4082.8	

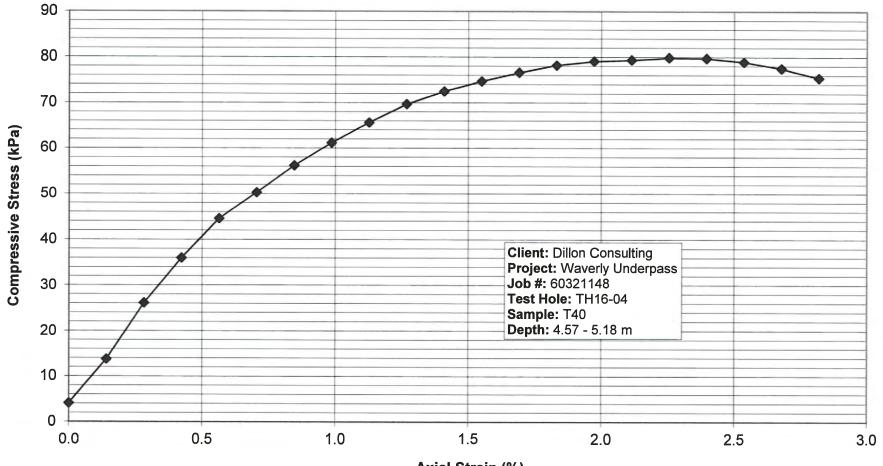
AXIAL STRAIN RATE, R:

L / D RATIO:

2.12

(2 < L/D < 2.5)

FAILURE SKETCH


(0.5<R<2 % / minute)

0.85

AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P		ESSIVE STRESS, O	
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0004	0.00	6.33	3.75	0.59	0.085	4.1
0.02	0.0014	0.14	6.34	12.65	2.00	0.287	13.8
0.03	0.0026	0.28	6.35	23.99	3.78	0.544	
0.03	0.0035	0.42	6.36	33.17	5.22		26.1
0.04	0.0044					0.752	36.0
		0.56	6.36	41.13	6.46	0.931	44.6
0.05	0.0050	0.70	6.37	46.48	7.29	1.050	50.3
0.06	0.0056	0.85	6.38	52.00	8.15	1.173	56.2
0.07	0.0061	0.99	6.39	56.69	8.87	1.277	61.2
0.08	0.0065	1.13	6.40	60.91	9.52	1.370	65.6
0.09	0.0069	1.27	6.41	64.75	10.10	1.455	69.6
0.09	0.0072	1.41	6.42	67.46	10.51	1.513	
0.10	0.0074	1.55	6.43				72.5
				69.62	10.83	1.560	74.7
0.11	0.0076	1.69	6.44	71.49	11.11	1.599	76.6
0.12	0.0078	1.83	6.45	73.09	11.34	1.633	78.2
0.13	0.0079	1.97	6.46	74.02	11.47	1.651	79.1
0.14	0.0079	2.11	6.47	74.40	11.51	1.657	79.3
0.14	0.0080	2.25	6.47	74.96	11.58	1.667	79.8
0.15	0.0080	2.40	6.48	74.96			
0.15	0.0079	2.54	6.49		11.56	1.665	79.7
				74.30	11.44	1.648	78.9
0.17	0.0078	2.68	6.50	73.09	11.24	1.619	77.5
0.18	0.0076	2.82	6.51	71.21	10.94	1.575	75.4
					-		
NFINED COMPRESSIV	E CTDENICTU -	70.00	D -		NOTES		
(based on maximum	q _u value)	1.667 k	Pa sf		NOTES:		
	AD STOCNSTUL S.	22.24 L	-				
UNDRAINED SHE	AR STRENGTH, ST	39.91 k	Pa				

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO.:	TH16-04
SAMPLE NO.:	T41
SAMPLE DEPTH:	6.10 - 6.71 m
DATE TESTED:	22-Apr-16
DATE TESTED.	
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.70
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	68.7
Undrained Shear Strength (ksf)	1.43
POCKET PENETROMETER	
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
Reading - Ou (tsf)	1.25
Undrained Shear Strength (kPa)	59.9
Reading - Qu (tst)	1.00
Undrained Shear Strength (kPa)	47.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	96.3
Unconfined compressive strength (ksf)	2.0
Undrained Shear Strength (kPa)	48.1
Undrained Shear Strength (ksf)	1.005
MOISTURE CONTENT	
Tare Number	105
Wt. Sample wet + tare (g) Wt. Sample dry + tare (g)	908.7
Wt. Sample dry + tale (g)	710.3
Wt. Tare (g) Moisture Content %	60.1
Moisture Content 78	00.1
BULK DENSITY	
Sample Wt. (g)	1058.3
Diameter 1 (cm)	7.20
Diameter 2 (cm)	7.22
Diameter 3 (cm)	7.23
Avg. Diameter (cm)	7.22
Length 1 (cm)	15.35
Length 2 (cm)	15.30
Length 3 (cm)	15.33
Avg. Length (cm)	15.33
Volume (cm ³)	626.9
Moisture content (%)	60.1
Bulk Density (g/cm ³)	1.688
Bulk Density (kN/m ³)	16.6
Bulk Density (pcf)	105.4
Dry Density (kN/m ³)	10.34

PISTON RATE:

AXIAL STRAIN RATE, R:

0.051

0.85

(inches / minute)

(0.5<R<2 % / minute)

AECOM

CLIENT:	Dillon Consulting				
PROJECT:	Waverly Underp	ass			
JOB NO.:	60247924				
TEST HOLE NO .:	TH16-04		SOIL	DESCRIPTION	:
SAMPLE NO.:	T41	1	CLAY; silty, trace till inclusions, trac	ce sand, brown,	moist, firm
SAMPLE DEPTH:	6.10 - 6.71 m	1	homogeneous, high plasticity		
SAMPLE DATE:	February, 2014	1			
TEST DATE:	22-Apr-16		MOISTURE CONTENT:	60.1	
SAMPLE DIAM.(Do):	72.17	(mm)	INITIAL AREA, Ao:	4090.4	(mm ²)

SAMPLE LENGTH, (Lo):

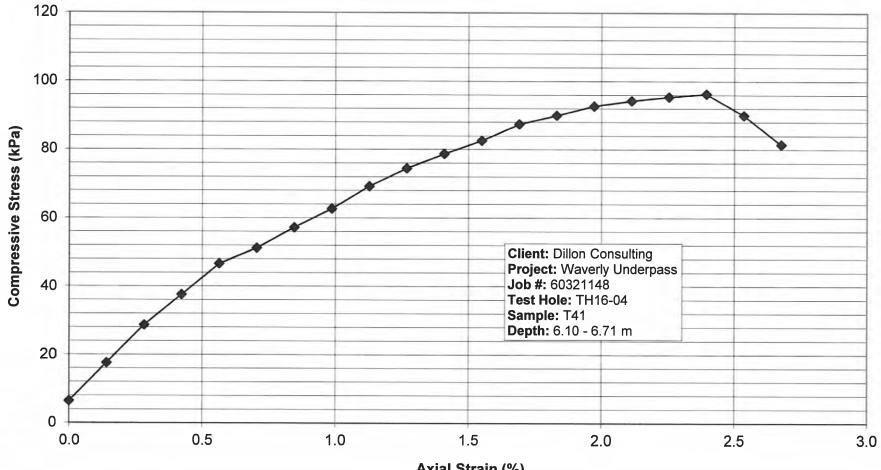

L / D RATIO:

153.27

2.12

(mm)

(2 < L/D < 2.5)



FAILURE SKETCH

AXIAL COMPRESSION	PROVING RING	TOTAL AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P		ESSIVE STRESS, O	
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0006	0.00	6.34	5.90	0.93	0.134	6.4
0.02	0.0017	0.14	6.35	16.21	2.55	0.368	17.6
0.03	0.0028	0.28	6.36	26.42	4.16	0.598	28.7
0.03	0.0037	0.42	6.37	34.67	5.45	0.784	37.5
0.04	0.0046	0.56	6.38	43.10	6.76	0.973	46.6
0.05	0.0051	0.70	6.39	47.41	7.43	1.069	51.2
0.06	0.0057	0.85	6.39	53.03	8.29	1.194	57.2
0.07	0.0062	0.99	6.40				
0.08	0.0069			58.19	9.09	1.309	62.7
0.09	0.0074	1.13	6.41	64.37	10.04	1.446	69.2
		1.27	6.42	69.34	10.80	1.555	74.4
0.09	0.0078	1.41	6.43	73.37	11.41	1.643	78.7
0.10	0.0082	1.55	6.44	77.12	11.97	1.724	82.6
0.11	0.0087	1.69	6.45	81.71	12.67	1.824	87.4
0.12	0.0090	1.83	6.46	84.24	13.04	1.878	89.9
0.13	0.0093	1.97	6.47	86.95	13.44	1.936	92.7
0.14	0.0095	2.11	6.48	88.55	13.67	1.969	94.3
0.14	0.0096	2.25	6.49	89.76	13.84	1.993	95.4
0.15	0.0097	2.39	6.50	90.70	13.96	2.011	96.3
0.16	0.0091	2.54	6.51	84.89	13.05	1.879	90.0
0.17	0.0082	2.68	6.51	76.93	11.81	1.700	81.4
	1		0.01	.0.00		1.700	01.4
						• • • • • • • • • • • • • • • • • • •	
NFINED COMPRESSI	E STRENGTH a	96.27 k	Pa	1	NOTES:		
(based on maximum	ı q _u value)	2.011 k	sf		NOTES.		
UNDRAINED SHE	AR STRENGTH, Su:	48.14 k	Pa		12 22 97 C Q 2 5 A 7 5 7 1 5		

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

Axial Strain (%)

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO.:	TH16-05
SAMPLE NO.:	
SAMPLE DEPTH:	6.10 - 6.71 m
DATE TESTED:	22-Apr-16
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.60
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	58.8
Undrained Shear Strength (ksf)	1.23
POCKET PENETROMETER	
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
Reading - Ou (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
Reading - Qu (tsf)	1.00
Undrained Shear Strength (kPa)	47.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	88.2
Unconfined compressive strength (ksf)	1.8
Undrained Shear Strength (kPa)	44.1
Undrained Shear Strength (ksf)	0.921
MOISTURE CONTENT	
Tare Number	SG6
Wt. Sample wet + tare (g)	243.7
Wt. Sample dry + tare (g)	163.2
Wt. Tare (g)	8.5
Moisture Content %	52.0
BULK DENSITY	1002.1
Sample Wt. (g)	1062.1
Diameter 1 (cm) Diameter 2 (cm)	7.20
	7.23
Diameter 3 (cm)	7.20
Avg. Diameter (cm) Length 1 (cm)	7.21 15.30
Length 2 (cm)	15.33
Length 2 (cm) Length 3 (cm)	15.35
Avg. Length 3 (cm)	15.29
Volume (cm ³)	624.9
Moisture content (%)	52.0
	1.700
Bulk Density (g/cm ³) Bulk Density (kN/m ³)	16.7
Bulk Density (kiv/iii) Bulk Density (pcf)	106.1
Dry Density (kN/m ³)	10.96
Ury Density (KN/M [*])	10.30

PISTON RATE:

AXIAL STRAIN RATE, R:

0.051

0.85

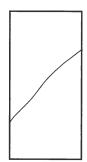
(inches / minute)

(0.5<R<2 % / minute)

AECOM

CLIENT:	Dillon Consulting				
PROJECT:	Waverly Underp	ass			
JOB NO.:	60247924				
					A.
TEST HOLE NO .:	TH16-05]	SO	L DESCRIPTION	:
SAMPLE NO.:	T50	1	CLAY; silty, trace silt inclusions, t	prown, moist, firm,	homogeneous,
SAMPLE DEPTH:	6.10 - 6.71 m	1	high plasticity	······	•••••••••••••••••••••••••••••••••••••••
SAMPLE DATE:	February, 2014	1			
TEST DATE:	22-Apr-16		MOISTURE CONTENT:	52.0	
		,			
SAMPLE DIAM.(Do):	72.10	(mm)	INITIAL AREA, Ao:	4082.8	(mm ²)

SAMPLE LENGTH, (Lo):

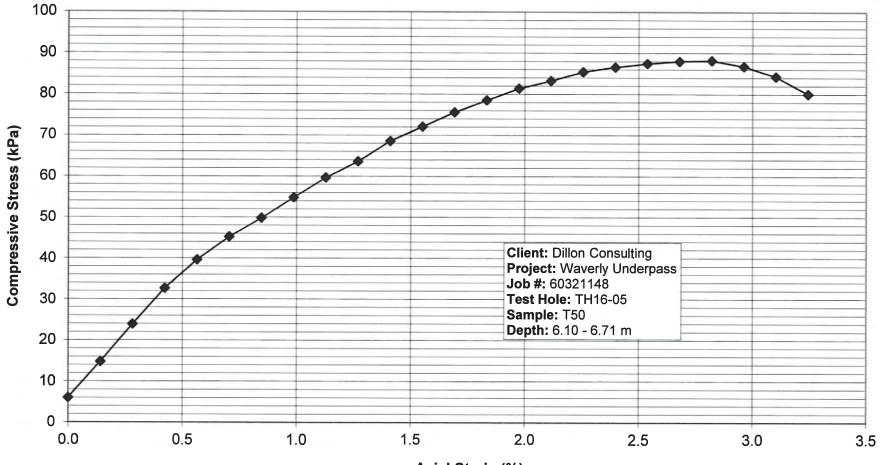

L / D RATIO:

153.07

2.12

(mm)

(2 < L/D < 2.5)



FAILURE SKETCH

TEST DATA - DIAL		TOTAL			1		
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E ₁	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPF	RESSIVE STRESS, O	J _c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0006	0.00	6.33	5.53	0.87	0.126	6.0
0.02	0.0015	0.14	6.34	13.59	2.14	0.309	14.8
0.03	0.0024	0.28	6.35	22.02	3.47	0.500	23.9
0.03	0.0032	0.42	6.36	30.08	4.73	0.682	32.6
0.04	0.0039	0.56	6.36	36.54	5.74	0.827	39.6
0.05	0.0045	0.71	6.37	41.79	6.56	0.944	45.2
0.06	0.0049	0.85	6.38	46.10	7.22	1.040	49.8
0.07	0.0054	0.99	6.39	50.79	7.95	1.144	54.8
0.08	0.0059	1.13	6.40	55.38	8.65	1.246	59.7
0.09	0.0063	1.27	6.41	59.12	9.22	1.328	63.6
0.09	0.0068	1.41	6.42	63.81	9.94	1.431	68.5
0.10	0.0072	1.55	6.43	67.18	10.45	1.505	72.1
0.11	0.0075	1.69	6.44	70.56	10.96	1.578	75.6
0.12	0.0078	1.83	6.45	73.37	11.38	1.639	78.5
0.13	0.0081	1.97	6.46	76.18	11.80	1.699	81.4
0.14	0.0083	2.12	6.47	78.05	12.07	1.738	83.2
0.14	0.0086	2.26	6.47	80.21	12.39	1.784	85.4
0.15	0.0087	2.40	6.48	81.43	12.56	1.808	86.6
0.16	0.0088	2.54	6.49	82.36	12.68	1.827	87.5
0.17	0.0089	2.68	6.50	83.02	12.77	1.838	88.0
0.18	0.0089	2.82	6.51	83.30	12.79	1.842	88.2
0.19	0.0088	2.96	6.52	82.08	12.59	1.812	86.8
0.20	0.0085	3.10	6.53	79.83	12.22	1.760	84.3
0.20	0.0081	3.24	6.54	75.90	11.60	1.671	80.0
							-
*****	L						
	L						
	,						
						-	
in weath Beach						<u> </u>	
NFINED COMPRESSIN	E STRENGTH a	88.19	kPa		NOTES		
THE THE OOM TEOON					NOTES:		
(bacad an maving							
(based on maximum	AR STRENGTH, S.:		ksf kPa				

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

Axial Strain (%)

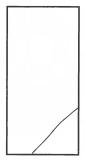
AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

TEST HOLE NO.:	TH16-05
SAMPLE NO.:	T51
SAMPLE NO.	7.62 - 8.23 m
DATE TESTED:	
DATE TESTED:	22-Apr-16
SHEAR STRENGTH TESTS	
TORVANE	
	0.40
Reading Vane Size (S, M, L)	0.40
Undrained Shear Strength (kPa)	M
	39.2
Undrained Shear Strength (ksf)	0.82
BOOKET DENETROMETER	
	0.05
Reading - Qu (tsf)	0.25
Undrained Shear Strength (kPa)	12.0
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
Reading - Qu (tsf)	0.50
Undrained Shear Strength (kPa)	23.9
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	97.5
Unconfined compressive strength (ksf)	2.0
Undrained Shear Strength (kPa)	48.8
Undrained Shear Strength (ksf)	1.018
MOISTUDE CONTENT	
MOISTURE CONTENT	122
Tare Number	J32
Wt. Sample wet + tare (g)	301.5
Wt. Sample dry + tare (g)	203.1
Wt. Tare (g)	8.5
Moisture Content %	50.6
BULK DENSITY	4400.0
Sample Wt. (g)	1103.8
Diameter 1 (cm)	7.22
Diameter 2 (cm)	7.20
Diameter 3 (cm)	7.22
Avg. Diameter (cm)	7.21
Length 1 (cm)	15.30
Length 2 (cm)	15.33
Length 3 (cm)	15.33
Avg. Length (cm)	15.32
Volume (cm ³)	626.1
	50.6
Moisture content (%)	
Moisture content (%) Bulk Density (g/cm ³)	1.763
Moisture content (%) Bulk Density (g/cm ³) Bulk Density (kN/m ³)	1.763 17.3
Moisture content (%) Bulk Density (g/cm ³)	1.763

AECOM

BBO JECT.	Mound Indom	~~~			
PROJECT:	Waverly Underp	ass			
JOB NO.:	60247924				
		1			
TEST HOLE NO.:	TH16-05		SOIL	DESCRIPTION	1:
SAMPLE NO .:	T51		CLAY; silty, trace till inclusions, tra	ce sand, trace g	ravel, brown/grey, moist,
SAMPLE DEPTH:	7.62 - 8.23 m		firm, homogeneous, high plasticity		
SAMPLE DATE:	February, 2014				
TEST DATE:	22-Apr-16]	MOISTURE CONTENT:	50.6	
	72.13	(mm)	INITIAL AREA, Ao:	4086.6	(mm ²)
SAMPLE DIAM.(Do):					

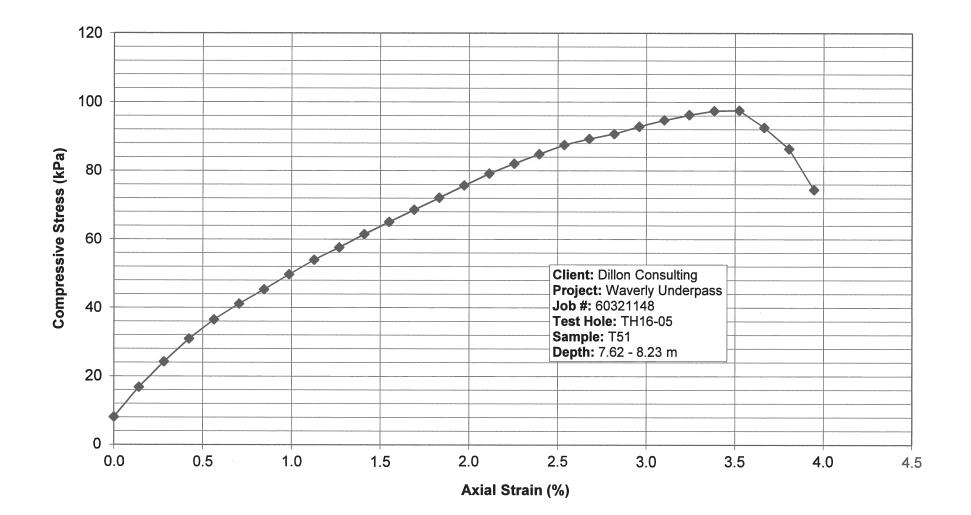
AXIAL STRAIN RATE, R:


0.85

(0.5<R<2 % / minute)

L / D RATIO:

2.12


(2 < L/D < 2.5)

FAILURE SKETCH

	1	TOTAL					
AXIAL COMPRESSION	PROVING RING	AXIAL STRAIN, E1	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	COMPR	ESSIVE STRESS, C	ic.
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa
0.01	0.0008	0.00	6.33	7.40	1.17	0.168	8.1
0.02	0.0017	0.14	6.34	15.46	2.44	0.351	16.8
0.03	0.0024	0.28	6.35	22.30	3.51	0.506	24.2
0.03	0.0030	0.42	6.36	28.48	4.48	0.645	30.9
0.04	0.0036	0.56	6.37	33.73	5.30	0.763	36.5
0.05	0.0041	0.70	6.38	38.04	5.96	0.859	41.1
0.06	0.0045	0.85	6.39	41.98	6.57	0.946	45.3
0.07	0.0049	0.99	6.40	46.10	7.21	1.038	49.7
0.08	0.0054	1.13	6.41	50.13	7.82	1.127	45.7 54.0
0.09	0.0057	1.27	6.42	53.60	8.35	1.203	57.6
0.09	0.0061	1.41	6.42	57.25	8.91	1.283	61.4
0.10	0.0065	1.55	6.43	60.72	9,44	1.359	65.1
0.11	0.0068	1.69	6.44	64.09	9.95	1.432	68.6
0.12	0.0072	1.83	6.45	67.46	10.46	1.506	72.1
0.13	0.0076	1.97	6.46	70.93	10.98	1.581	75.7
0.14	0.0079	2.11	6.47	74.30	11.48	1.653	75.7
0.14	0.0082	2.25	6.48	77.12	11.48	1.714	79.2
0.15	0.0085	2.40	6.49	79.83	12.30	1.714	82.0
0.16	0.0088	2.40	6.50	82.46			
0.18	0.0090	2.54	6.51	82.46	12.69	1.827	87.5
0.17	0.0090	2.82			12.94	1.864	89.2
0.19	0.0092	2.82	6.52 6.53	85.74 87.89	13.15	1.894	90.7
0.20	0.0094	3.10			13.46	1.939	92.8
0.20	0.0098	3.24	6.54	89.76	13.73	1.977	94.7
0.20	0.0098	3.38	6.55	91.36	13.96	2.010	96.2
			6.56	92.58	14.12	2.033	97.4
0.22	0.0099	3.52	6.57	92.86	14.14	2.037	97.5
0.23	0.0094	3.66	6.58	88.27	13.42	1.933	92.6
0.24 0.25	0.0088	3.81 3.95	6.58 6.59	82.46 71.21	12.52 10.80	1.803 1.555	86.3 74.5
					I		
(based on maximum		2.037 k	Pa sf		NOTES:		
	AD STRENGTH C .	48.76 k	Pa				

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

AECOM

Unit 6 - 854 Marion Street Winnipeg, Manitoba R2J 0K4 eng-tech@mts.net www.eng-tech.ca

ROCK CORE

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7

File No.:14-027-01Ref. No.:14-27-1-10

Attention: Saba Ibrahim

Project: WAVERLY UNDERPASS; PROJECT # 60321148

Contractor:-Page:1 of 1Date Cored:July 10, 14 and 15Date Received:Nov 10/14Cored By:ClientReceived By:ENG-TECH

Core		Ler	ngth	Average	Compressive	
No.	Location	Cored (mm)	Tested (mm)	Diameter (mm)	Strength (MPa)	Tested (m/d/y)
1	TH 14-02; sample No. R7, 24.0 – 24.3m.	254	113	63.0	194.4	Nov 13/14
2	TH 14-03; sample No. C6, 22.48 – 22.80m.	331	116	60.8	120.9	Nov 13/14
3	TH 14-04; sample No. R9, 25.4 – 25.6m.	244	118	60.9	114.9	Nov 13/14

_METHOD ASTM D 2938

MOISTURE CONDITIONED

x_OTHER (As received)

METHOD OTHER

__DRY CONDITIONED

DITIONED

Comments: The unconfined strength was determined in accordance with ASTM D2938-95 procedure with the cores in the as received moisture content. Core # 3 contained a vertical crack from the top to the bottom of specimen (as received).

Email: saba.ibrahim@aecom.com

ENG-TECH Consulting Limited

per Danny Holfeld, Principal Ph: (204) 233-1694 Fx: (204) 235-1579

6 - 854 Marion Street Winnipeg, Manitoba R2J 0K4 eng_tech@mts.net www.eng-tech.ca

ROCK CORE

AECOM Canada Ltd. 99 Commerce Drive Winnipeg, Manitoba R3P 0Y7
 File No.:
 16-027-01

 Ref. No.:
 16-27-1-5

Attention: Saba Ibrahim

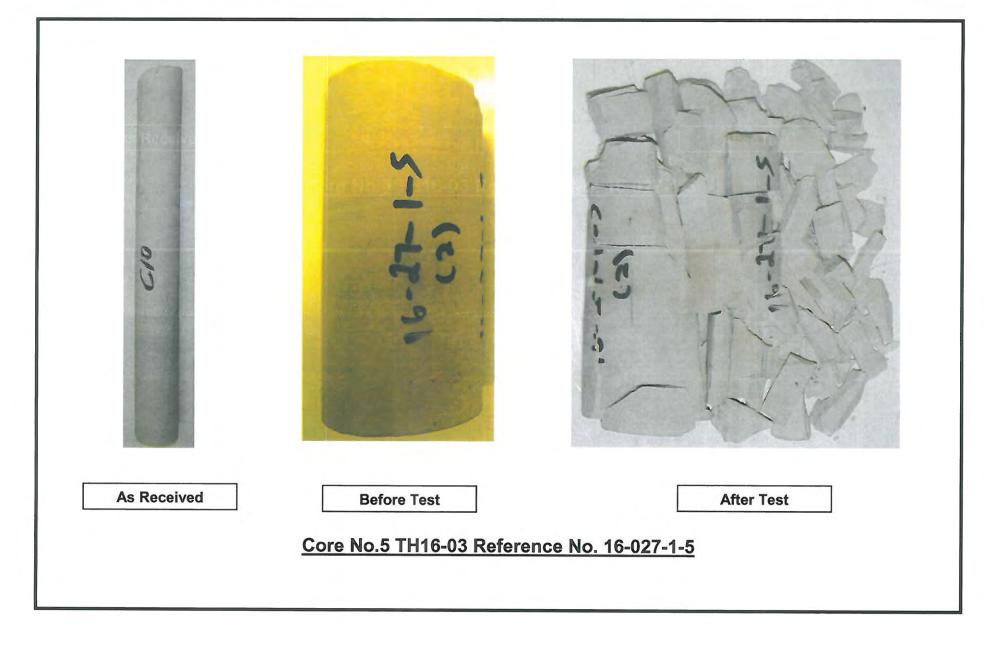
Project: WAVERLEY UNDERPASS; PROJECT NO. 60321148

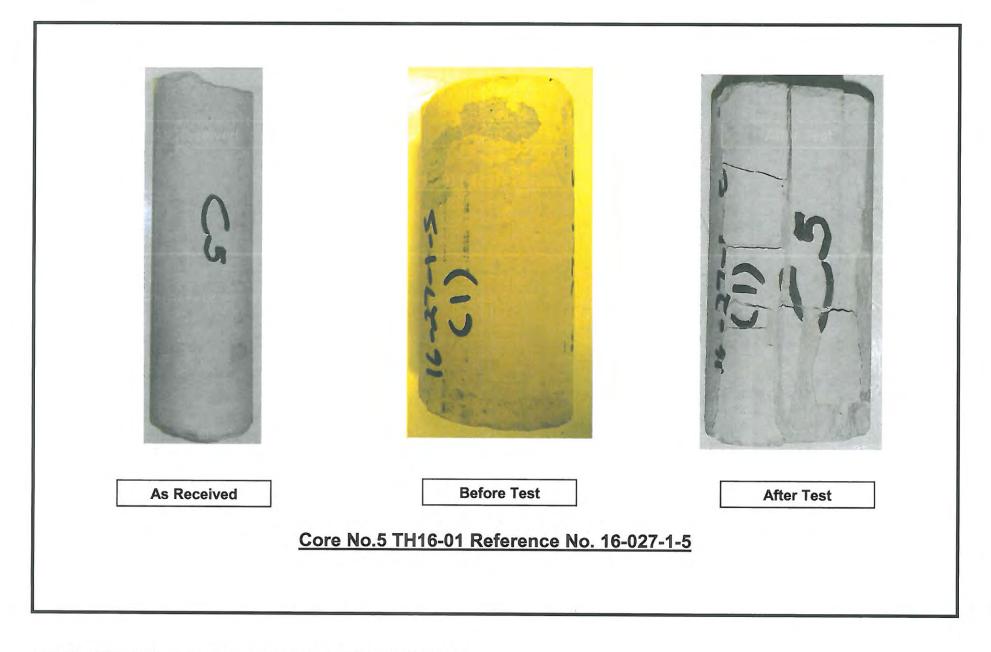
Contractor:	Maple Leaf	Page:	1 of 1
Date Cored:	Apr 13 and 19/16	Date Received:	Jun 7/16
Cored By:	Client	Received By:	ENG-TECH (Paul L'Angais)

Core			ngth	Average	Compressive	Date
No.	Location -	Cored (mm)	Tested (mm)	Diameter (mm)	Strength (MPa)	Tested (m/d/y)
1	C5, TH16-01, Depth: 80' - 85'	2040	122.5	60.5	107.7	Jun 15/16
2	C10, TH16-03, Depth: 75'5" - 80'2"	5200	123.0	60.5	145.1	Jun 15/16

x_METHOD ASTM D 2938	MOISTURE CONDITIONED	x_OTHER (As received)
METHOD OTHER	DRY CONDITIONED	

Comments: The unconfined strength was determined in accordance with ASTM D2938-95 procedure with the cores in the as received moisture content.


Enclosure; Photographs (2 pages)


Cc: Email: saba.ibrahim@aecom.com

ENG-TECH Consulting Limited

Per

Danny Holfeld, Principal Ph: (204) 233-1694 Fx: (204) 235-1579

P:\2016\Projects\027(AECOM Canada Ltd.)\01(2016 Various Projects)\Waverley Underpass\Core Photos.docx