

Cockburn and Calrossie Combined Sewer Relief Works C4 – 2700 Trunk Sewer Geotechnical Data Report

FINAL

KGS Group 11-0107-18 October 2016

Prepared By

Jacqueline MacLennan, B.Sc. E.I.T. Geotechnical Engineer-in-Training

Approved By

Dami Adedapo, Ph.D., P.Eng. Senior Geotechnical Engineer

KGS Group Winnipeg, Manitoba

TABLE OF CONTENTS

			<u>PAGE</u>
1.0	INTRO 1.1 1.2 1.3	DDUCTIONGENERALPURPOSE OF REPORTREPORT LIMITATIONS	1 1
2.0	BACK 2.1 2.2 2.3	GROUND INFORMATIONOTHER GEOTECHNICAL INVESTIGATIONS NEAR THE SITEREGIONAL GEOLOGIC SETTINGLOCAL GEOLOGY	3 4 4
3.0	SCOP 3.1 3.2 3.3	PE OF THE 2016 INVESTIGATION PROGRAM GENERAL TEST HOLE DRILLING AND SOIL SAMPLING GROUNDWATER MONITORING	7 7
4.0	LABO	RATORY TESTING	12
5.0	REFE	RENCES	13
6.0	STATI 6.1 6.2	EMENT OF LIMITATIONS THIRD PARTY USE OF REPORT GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATION	14
TARLE	= 9		

TABLES APPENDICES

P:\Projects\2011\11-0107-18\Doc.Control\lssued\SOURCE\Docs\GDR - Final\RPT_GDR.docx

LIST OF TABLES

- 1. Summary of Test Hole Locations
- 2. Typical Groundwater Measurements
- 3. Summary of Laboratory Testing

LIST OF FIGURES

1. Approximate Test Hole Locations

LIST OF APPENDICES

- A. 2015 Test Hole Logs
- B. 2016 Test hole Logs
- C. Photos
- D. Geotechnical Investigation Laboratory Data

1.0 INTRODUCTION

1.1 GENERAL

KGS Group was retained by the City of Winnipeg Water and Waste Department to perform geotechnical investigations to facilitate the design and construction of the proposed Land Drainage System (LDS) trunk sewer pipe from Parker Pond to Taylor Ave. The proposed LDS pipe project is part of the Cockburn/Calrossie Combined Sewer Relief Works currently being undertaken by the City of Winnipeg.

It is our understanding that the proposed LDS pipe will be 2700 mm in diameter, approximately 620 m in length and will convey water from Taylor Ave.to Parker Pond. It is further understood that trenchless construction methods will be employed for the installation of the proposed pipe.

The purpose of our investigation was to identify the subsurface soil and groundwater conditions along the route of the proposed works. This factual report contains a description of the geotechnical investigations program performed by KGS Group and our findings.

1.2 PURPOSE OF REPORT

This report summarizes the geotechnical conditions observed along the alignment from the proposed Parker Pond to Taylor Ave. and provides geotechnical considerations that would form part of the basis of the design for the Work. This report includes geotechnical data collected at the project site and summary of anticipated subsurface conditions along the alignment.

1.3 REPORT LIMITATIONS

This report has been prepared for the exclusive use of the City of Winnipeg for specific application to the proposed Cockburn/Calrossie Combined Sewer Relief Works project (from the proposed Parker Pond to Taylor Ave.). It has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty, express or implied, is made.

October 2016 KGS 11-0107-18

The geotechnical data presented in this report are based on the observations and test results obtained from field investigation programs completed between 2015 and 2016. The information provided indicate soil conditions and water levels only at specific locations and times, and only to the depths penetrated. Subsurface conditions and water levels at other locations may differ from conditions occurring at these explored locations. Also, the passage of time may result in a change in conditions at these locations. KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of subsurface data, without KGS Group's express written authorization.

2.0 BACKGROUND INFORMATION

2.1 OTHER GEOTECHNICAL INVESTIGATIONS NEAR THE SITE

KGS Group completed a geotechnical and environmental investigation south of the proposed trunk sewer in 2015. The 2015 investigation consisted of drilling five (5) test holes to investigate the subsurface stratigraphic conditions. Two (2) pneumatic piezometers were installed in the clay and one (1) standpipe piezometer was installed in the silt till to monitor the groundwater levels at the site.

The stratigraphy observed during the 2015 site investigation generally consisted of a layer of fill over an extensive layer of high plasticity silty clay and silt till. The top of the glacial silt till deposit at the proposed Parker Pond was approximately between elevations El. 218.4 m± and 218.9 m±. The borehole logs from the 2015 geotechnical investigation have been included in Appendix A and the groundwater data within the alignment of the proposed trunk sewer are included in Table 2.

2.2 REGIONAL GEOLOGIC SETTING

Winnipeg geology consisted of carbonate sedimentary bedrock overlaying Precambrian era granite and gneiss. The sedimentary rock consists of limestone, dolomite and shale to a lesser extent. Local geological maps indicate karst topography caused from dissolution of the soluble rock, and a heavily fractured upper bedrock layer. The karst topography is typically infilled with mixtures of silt, sand and gravel till material.

During the last glacial advance and retreat, Winnipeg's glacial till was laid down by ice masses. Glaciolacustrine deposits suspended in glacial lakes confined by ice masses settled to overlie the tills. Additional information on the regional geology can be found in Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba (Reference 1).

2.3 LOCAL GEOLOGY

Summary of the geology across the site as determined from the field investigation program completed in 2016 are provided herein, while the detailed stratigraphic sequence of subsurface material encountered at the site and key engineering considerations are presented in Section 3 of this report.

2.3.1 Overburden

The overburden deposits encountered at the project site generally consist of extensive deposit of high plastic clay overlying silt till deposit. Variable layers of organic clay, fill and silt were observed in the test holes within the upper complex zone.

Upper Complex Zone

The Complex Zone consists of stratified silty clays, and silts with variable amounts of organics, granular and fill material. This zone has high soil variability. The base of the Complex Zone is typically defined by the base of the silt layer. The silt interlayers in the Complex Zones can vary from 100 mm to up to 3 m in thickness and are typically approximately 1 m. Typically the silt is tan in colour, soft in consistency, of no to low plasticity and may have a perched groundwater table. The moisture content of the silt ranges from 20 to 35% and the unit weight is within the range of 18.8 to 20.4 kN/m³ (Ref 1).

Glaciolacustrine Clay

Underlying the upper Complex Zone is typically 9 to 12 m of glaciolacustrine silty clay deposit. In decreasing occurrence, the predominant mineral composition of the lacustrine clay generally consists of montmorillonite (a member of the smectite family), illite, kaolinite and some mica (Graham and Shields 1984). The clay deposits changes from brown to grey (sometimes referred to as blue clay) at depths of approximately 4 to 6 metres. Within this depth range, the brown and grey clays often appear mottled, making it sometimes difficult to observe a discrete contact between the two colours. It is believed the colour change is due to oxidation (the brown clay

being oxidized) as there is no obvious change in mineralogy, clay content or plasticity (Graham and Shields 1985).

The brown clay is typically stiff in consistency and of a high plasticity. The brown clay is highly fissured with the frequency of fissures decreasing with depth. White gypsum pockets and veins are typically observed within the brown clay, often filling in the fissures. The lower grey clay is firm to stiff in consistency and of intermediate to high plasticity. Fine to coarse grained gravel and boulders are found occasionally in the grey clay, near the till interface.

Typical moisture content in the clay ranges from 40 to 60%. Atterberg Limit tests within the brown and grey clay has shown the brown clay is typically more plastic than the underlying grey clay. Liquid Limits in the brown clay typically range from 80 to 110% and the Plastic Index from 60 to 70%. Liquid Limits in the grey clay range from 65 to 90% and the Plastic Index ranges from 40 to 65%. Unconfined compressive strengths usually range from 71 to 100 kPa. Measured values within the upper brown clay are variable due to fissures. The unconfined compressive strengths generally yield a lower bound to undrained shear strengths (Ref 1).

Undrained shear strengths measured from unconfined compression tests are generally higher within the upper clay zone (~ top 2 to 3 m), typically in the order of 75 to 100 kPa. Below a depth of about 4 to 5 metres, strengths typically decrease approximately uniformly with increasing depth. As the underlying till layer is approached, strengths are typically in the order of 40 kPa but may be as low as 25 kPa. The higher undrained shear strengths with the upper brown clay and lower shear strengths at depth near the till is caused by weathering near the ground surface and decreasing over consolidation ratios to approximately normally consolidated conditions near the bottom of the deposit. They may also reflect artesian ground water conditions (and therefore low vertical effective stresses).

Effective shear strength parameters of the brown and grey clay obtained from consolidated undrained compression triaxial strength testing of a large number of relatively undisturbed samples yielded intact peak strength of c' = 19.6 kPa and $\phi' = 20.5^{\circ}$ and c' = 29.8 kPa and $\phi' = 15.8^{\circ}$, respectively. While the effective large strain shear strength parameter for the brown and grey clay were c' = 14.5 kPa and $\phi' = 13.3^{\circ}$ and c' = 7.7 kPa and $\phi' = 15.7^{\circ}$, respectively (Ref 2).

The effective shear strength parameters typically used by local geotechnical engineers in Winnipeg for slope stability analysis are c' = 5 kPa and $\phi' = 14^{\circ}$ for both clays.

The laboratory test results from the 2016 geotechnical investigation typically fall within these bounds.

Till Deposits

The glaciolacustrine clays are underlain by silty tills. The till is typically 3 to 6 m thick around the project site and may include a transition zone of till lenses in clay and clay inclusions in the till. The composition of the till is variable. The till is of varying consistency with the dense to very dense portions of the deposits being a basal till (hardpan). The upper horizon of the till deposit may be frequently loose and considerably softer, and water bearing likely an ablation till (putty till). The upper ablation till typically may have water contents ranging from 10 - 15% while the denser basal till will typically have water contents in the range of 7 - 10%. The upper tills contain more clay, and have a slightly higher plasticity than the lower tills with high silt contain. Unconfined compressive strengths ranging from 3.4 - 3.6 MPa have been reported for very dense tills with a moisture content of about 5% (Ref 1). Young's moduli typically range from 170 to 240 MPa (Ref 1). The tills are highly variable in terms of thickness, density and boulder content. Pockets of non-combustible gas, often under pressure are occasionally encountered in the till layer (Ref 1).

2.3.2 Bedrock

Limestone bedrock was encountered at the site at depths ranging from 13.7 to 14.3 m below existing ground surface. The limestone was light beige in colour, lightly fractured and had Rock Quality Designations (RQD) ranging from 49% to 83%.

3.0 SCOPE OF THE 2016 INVESTIGATION PROGRAM

3.1 GENERAL

This section provides a summary of the 2016 field investigation program, and laboratory test results; as well as the subsurface conditions encountered at the project site.

The 2016 geotechnical investigation was completed to determine the subsurface conditions at the proposed trunk sewer site. The results of the 2016 field investigation were presented in a separate Geotechnical Investigations Report (KGS Group 11-0107-18 dated July 2016). The results of this investigation program are presented in this Geotechnical Data Report.

3.2 TEST HOLE DRILLING AND SOIL SAMPLING

The test hole drilling and sampling program was completed by KGS Group from April 18 to 22, 2016. The approximate locations of the test holes are shown in Figure 1 and a summary of the locations is presented in Table 1.

The program consisted of drilling nine (9) deep test holes to investigate the subsurface stratigraphic conditions. The information obtained from the site investigations will be used to facilitate the design and construction of the various components of the storm sewer line project including the excavation of the launch and reception shafts.

Maple Leaf Drilling Enterprises of Winnipeg, Manitoba provided the drilling services using a track mounted drill rig equipped with 125 mm solid stem augers and NQ coring. The drilling was completed under the continuous supervision and direction of KGS Group personnel. Soil samples were collected directly off the auger flights typically at 1.5 m (5 ft.) intervals or at changes in soil strata encountered during drilling. The soil samples were visually inspected for material type and classified according to the Modified Unified Soil Classification System (USCS).


Standard Penetration Tests were completed in the glacial till material to evaluate the in-situ density. Clay samples were tested with a field Torvane to evaluate consistency and estimate undrained shear strengths. Upon completion of drilling, the test holes were examined for indications of sloughing and seepage, and then backfilled. Squeezing was observed in the silt and clay layers and minor sloughing was observed in the silt till. The squeezing observed in the silt and clay occurred at depths ranging from approximately 2.7 to 12.8 m. Detailed test hole log records incorporating all field observations, field test results, and laboratory test results are provided in the test hole log records in Appendix B.

3.3 GROUNDWATER MONITORING

A total of ten (10) pneumatic piezometers were installed in 2016 and one (1) standpipe was installed in 2015. Five (5) pneumatic piezometers were installed within the clay, two (2) pneumatics piezometers were installed within the till and three (3) were installed within the bedrock. Table 2 summarizes the installation details and the monitoring to date. The installation details of the piezometers are shown on the borehole log records provided in Appendix A and B. A summary of the piezometric monitoring completed to date is included on Table 2.

FIGURE 1 TEST HOLE LOCATIONS

TABLE 1 SUMMARY OF TESTHOLE LOCATIONS

Test hole ID	Location	Northing (m)	Easting (m)	Approx. Ground Surface Elevation (m)	Approx. Borehole Depth (m)
TH15-05	Approx. Parker Pond inlet	5,523,764	632,435	232.46	14.19
TH16-01	18 m north of CN tracks	5,523,861	632,463	233.00	16.31
TH16-02	Approx. 45 m Southeast of Shaft B - East of Wilton	5,523,978	632,433	233.92	15.85
TH16-03	Approx. 65 m Northwest of Shaft B - East of Wilton	5,524,081	532,378	233.39	15.85
TH16-04	Approx. 50 m Southeast of Shaft C - East of Wilton	5,524,189	632,313	233.02	13.29
TH16-05	Approx. 100 m Southeast of Shaft C - East of Wilton	5,524,144	632,333	233.15	14.93
TH16-06	Approx. Shaft A	5,523,883	632,477	233.27	16.38
TH16-07	Approx. 45 m Northwest of Shaft A - East of Wilton	5,523,934	632,451	233.99	16.31
TH16-08	Approx. Shaft B	5,524,036	632,399	233.3	16.15
TH16-09	Approx. Shaft C - Taylor Ave. Boulevard East of Wilton	5,524,243	632,294	232.73	15.04

TABLE 2
GROUNDWATER MEASUREMENTS

Test Hole:	TH15-05	TH16	-05 (19)	TH16-06 (SI	HAFT A)	TH16-	TH16-07 (I3)		3 (SHAFT 3)	TH16-09 (SHAFT	
Ground Elevation (m):	232.80	233.15	233.15	233.27	233.27	233.99	233.99	233.30	233.30	232.73	232.73
Piezometer No.:	SP	36898	36890	36895	36891	36894	36894 36892		36893	36897	36889
Tip Elevation (m):	218.58	224.62	218.52	225.95	218.03	225.15	225.15 218.45		218.36	224.2	218.1
Monitoring Zone:	Silt till	Clay	Bedrock	Clay	Silt Till	Clay	Clay Silt Till		Bedrock	Clay	Bedrock
Date					Pie	zometric E	Elevation (ı	n)			
7-Jul-15	225.08			-	-	-	-	-	-	-	-
14-Oct-15	225.25		-	-	-	-	-	ı	-	-	-
25-May-16		230.03	226.36	227.47	226.30	229.97	(Note 1)	230.57	225.22	226.42	225.72
17-Jun-16	225.60	229.60	226.40	227.47	226.68	230.05	(Note 1)	230.50	224.86	226.42	225.65
26-Aug-16	225.17	229.52	227.10	227.47	227.39	229.90	(Note 1)	230.57	224.65	224.32	224.86
6-Oct-16	-	229.60	227.10	227.90	227.39	229.60	(Note 1)	230.36	224.07	225.62	225.36

Note 1: Erroneous reading

It should be noted that groundwater levels will fluctuate seasonally and following precipitation events.

4.0 LABORATORY TESTING

A diagnostic laboratory testing program was performed on representative soil samples to determine the relevant engineering properties of the subsurface soils relative to the trenchless construction method. Diagnostic testing completed included moisture content analyses, Atterberg Limit tests, grain size analysis and unconfined compressive strength testing for the cohesive soils. All laboratory testing was completed at a local laboratory accredited by Standards Council of Canada and testing was performed in accordance with ASTM standards.

Laboratory test results from the 2016 field program are summarized on Table 3. The laboratory testing for the 2015 and 2016 investigations are included in Appendix C.

5.0 REFERENCES

- 1. Department of Geological Engineering, the University of Manitoba, (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 2. KGS Group, Acres Engineering, UMA Engineering (2004). Appendix B, Floodway Channel Pre-Design, Floodway Expansion Project, Project Definition and Environmental Assessment, Preliminary Engineering Report.

6.0 STATEMENT OF LIMITATIONS

6.1 THIRD PARTY USE OF REPORT

This report has been prepared for the City of Winnipeg and designers and bidders for the Cockburn and Calrossie Combined Sewer Relief Works project to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

6.2 GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATION

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at this site. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and modified if necessary.

October 2016 KGS 11-0107-18

TABLES

TABLE 3 SUMMARY OF LABORATORY TESTING

Tootholo		Campula Danth		D.A. sietuure	Unconfined				Atterberg Limit					
Testhole ID	Sample	Sample Depth (m)	Description	Moisture content (%)	Compressive Strength (kPa)	Gravel (> 4.75 mm)		Medium Sand (0.425-2 mm)	Fine Sand (0.075- 0.425 mm)	Silt (0.002- 0.075 mm)	Clay (<0.002 mm)	Liquid Limit (%)	Plastic Limit (%)	Plastic Index
TH16-02	S 3	2.9	Silt	22.9								26	16	10
1110-02	S 5	5.6	Clay	56.3								105	32	73
TH16-03	S 5	5.3	Clay	53.4								98	29	69
TH16-05	S2	2.0	Silt	25								27	17	10
1110-03	S4	5.6	Clay	53.1								93	27	66
	S4	3.1	Clay	49										
TH16-06	S7	6.1	Clay	51.8	45	0	0	0.2	0.3	19.4	80.1	97	27	70
1110-00	S10	9.1	Clay	51.5	53							72	23	49
	S13	12.2	Clay	51.9										
	S 3	2.0	Silt	24.8										
	S 5	3.1	Clay	51										
TH16-08	S7	5.3	Clay	57.5								100	30	70
1110-00	S8	6.1	Clay	52.9	45	0	0	0.1	0.3	18.2	81.4	95	29	66
	S11	9.1	Clay	58.1	79							81	23	58
	S13	12.2	Clay	47.9										
	\$3	3.7	Clay	52.2										
TH16-09	S6	6.1	Clay	57.4	117	0	0.1	0.3	0.5	18.2	80.9	98	29	69
11110-09	S9	9.1	Clay	46.5	43							85	25	60
	S12	12.2	Silt Till	54.1										

October 2016 KGS 11-0107-18

APPENDIX A 2015 TEST HOLE LOGS

KGS GROUP

SOIL DESCRIPTION CRITERIA

PRINCIPAL AND MINOR SOIL COMPONENTS

And 35 – 50% With 20 – 35% Some 10 – 20% Trace 0 – 10%

Occasional Trace of very local concentration

FIELD MOISTURE CONTENT

Dry No moisture visible or to touch when fresh exposure is examined

Damp Slightly wet to touch Moist Fresh exposure wet to touch

Wet A film of water is readily visible around particles of granular soils, cohesive soils can readily be smeared or remolded; water can be squeezed

out

Saturated Water can easily be squeezed out

Free Water Water completely separated from the soil particles

DEPOSITIONAL STRUCTURE

Massive Structureless soil

Stratified (Layered) Different soils or visible variations in soil constituents arranged in layers, generally but not necessarily parallel to one another,

and not necessarily in horizontal position, at least 6 mm thick

Varved Glaciolacustrine deposits with annual pairs of fine and coarser laminae (thin laminae of alternately deposited inorganic silt and

clay)

Laminated Closely spaced, regularly alternating layers of differing soils and/or colours, or shades of similar gradation, relatively consistent in

thickness and consisting of sand, silt, or clay

Lens Inclusions of a different soil within surrounding soils, which thins out horizontally and may not be continuous over any

significant distance

Pocket A different soil type of very limited thickness or lateral extent (a small lens)

Inclusions Small pockets

Nuggety A different soil type in the form of small lumps Parting Paper thin separation of one type by another

POST DEPOSITIONAL STRUCTURE

Fissured A soil breaks along definite, pre-existing planes or fracture with little resistance to fracturing

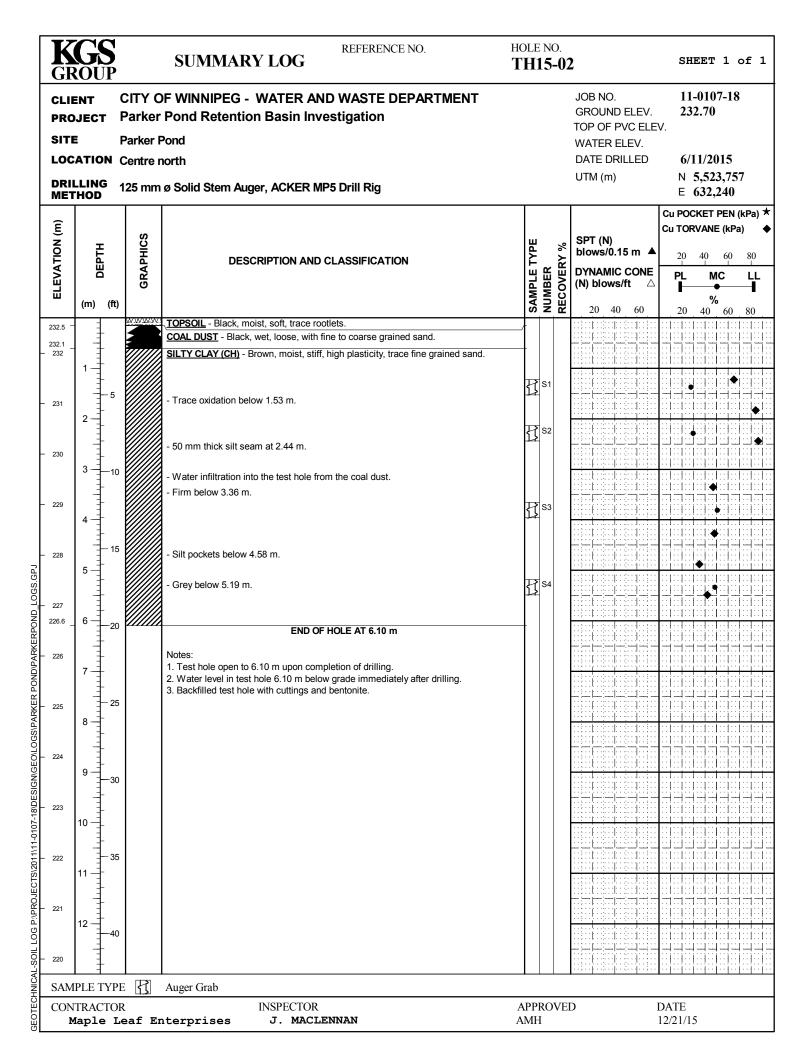
Slickensided Polished or glossy, sometimes striated surfaces resulting from movement of a material block relative to the adjacent blocks
Blocky/Friable/Platy Cohesive soil that can be broken down into angular larger fragments (blocky), small fragments (friable), or thin plate-like

fragments (platy) which resist further breakdown

Cemented Soil particles or fragments held together by cemented materials, often chemical precipitants, or deposits within overall soil mass

GRAIN SIZE DISTRIBUTION IN COARSE GRAINED SOIL

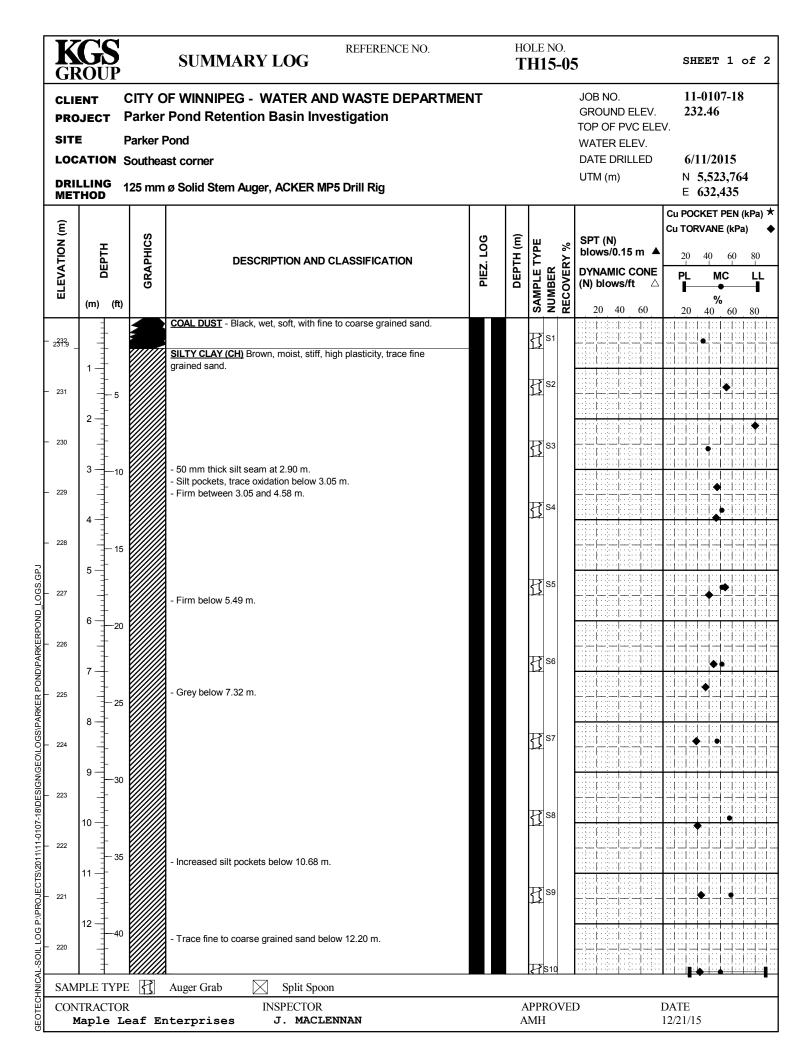
 $\begin{array}{lll} \mbox{Boulders} & >& 200 \mbox{ mm } \mbox{σ} \\ \mbox{Cobbles} & 75-200 \mbox{ mm } \mbox{σ} \\ \mbox{Coarse Grained Gravel} & 19-75 \mbox{ mm } \mbox{σ} \\ \mbox{Fine Grained Gravel} & 4.75-19 \mbox{ mm } \mbox{σ} \\ \mbox{Coarse Grained Sand} & 2-4.75 \mbox{ mm } \mbox{σ} \\ \mbox{Medium Grained Sand} & 0.425-2 \mbox{ mm } \mbox{σ} \\ \mbox{Fine Grained Sand} & 0.075-0.425 \mbox{ mm } \mbox{σ} \\ \mbox{} \end{array}$

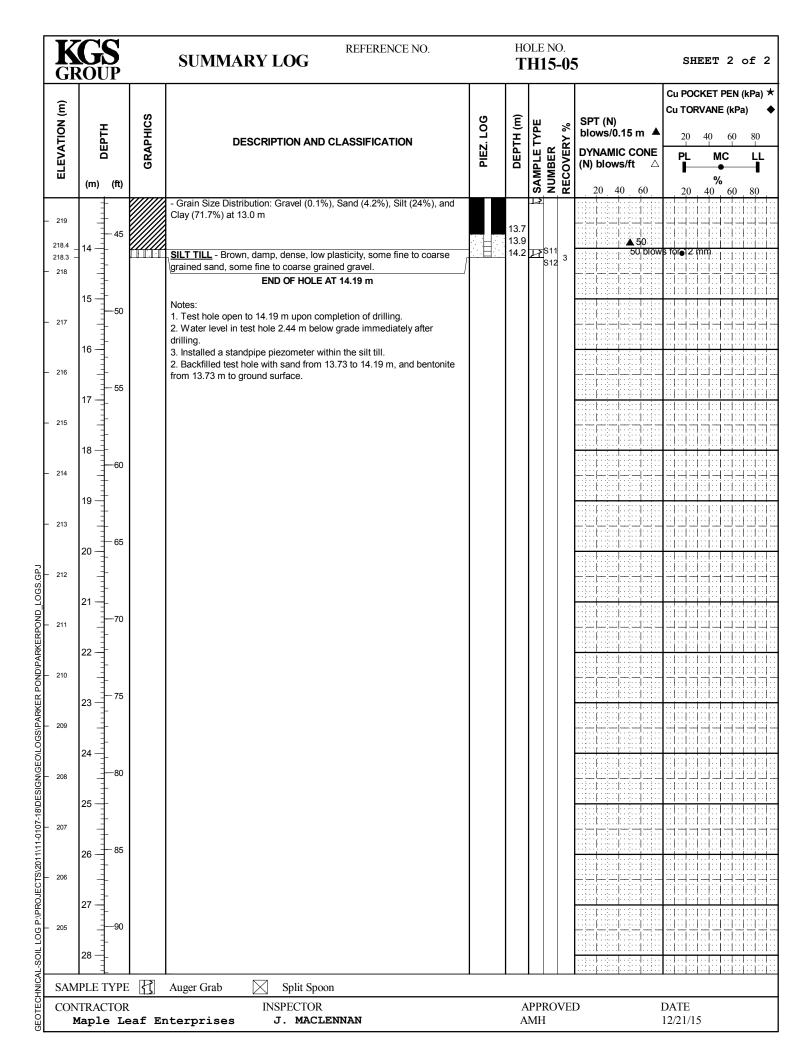

DENSITY OF GRANULAR SOIL

Description	Standard Penetration Test	Relative Density
Very Loose	0-4 Blows Per 0.3 m	<15%
Loose	4-10 Blows Per 0.3 m	15 - 35%
Compact	10 - 30 Blows Per 0.3 m	35 - 65%
Dense	30 - 50 Blows Per 0.3 m	65 - 85%
Very Dense	>50 Blows Per 0.3 m	>85%

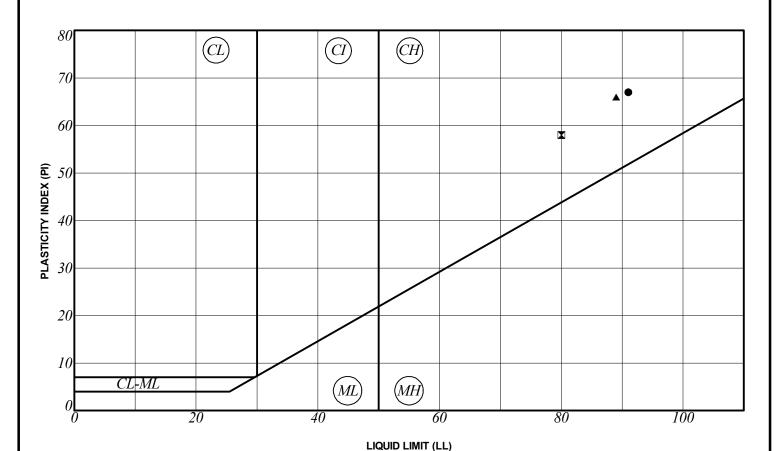
CONSISITENCY OF COHESIVE SOILS

Description	Torvane	Standard Penetration Test
Very Soft	<12 kPa	<2
Soft	12 – 25 kPa	2 - 4
Firm	25 - 50 kPa	4 - 8
Stiff	50 - 100 kPa	8 - 15
Very Stiff	100 – 200 kPa	15 - 30
Hard	>200 kPa	>30


	K	Gi	S JP				NO. 1 5-0	1				SH	EET	1	of 1
	CLII	ENT JEC			F WINNIPEG - WATER AND WASTE DEPARTMENT Pond Retention Basin Investigation			GR	3 NO. OUND P OF P\		≣V.		-010 2.80		3
	SITI			Parker F					TER EL			C 13	11/2/	015	
			_		st corner				ΓΕ DRII √I (m)	LLED			11/2(5,52		89
		HOD		25 mm	ø Solid Stem Auger, ACKER MP5 Drill Rig				. ,				632,		
	ELEVATION (m)	H	<u> </u>	GRAPHICS	DESCRIPTION AND CLASSIFICATION	YPE	% ≻	SP1	Γ (N) ws/0.1	5 m ▲	Cu POCKET PEN (kPa) Cu TORVANE (kPa) 20 40 60 80				
	ELEVA'			GRAF	DESCRIPTION AND CEASSIFICATION	MPLET	NUMBER RECOVERY %	DYN (N)	NAMIC blows/			PL	M	IC	LL I
		(m)	(ft)		COAL DUCT. Disply wat loose with fine to ecorac grained and	S A	3 2	. 2	20 40	60	<u> </u>	20	40	60	80
	- 232	1-	- - -		COAL DUST - Black, wet, loose, with fine to coarse grained sand.	<u> </u>	S1								
	231.6 _	=	- 5 -		SILTY CLAY (CH) - Brown, moist, stiff, high plasticity, trace organics. - No organics below 1.53 m. - Infiltration of water into the hole from the coal dust layer.										
		2 -	-		- Trace silt pockets below 2.14 m.	<u> </u>	S2								1
	- 230	3 —	- 10 -		- Trace oxidation below 3.05 m.										
-	- 229	4 -	-			<u>}</u>	S3								
7.	- 228	5	- 15 -		- Firm below 4.88 m.										
POND_LOGS.GPJ	- 227		-		- Grey below 5.19 m.	<u> </u>	S4							•	
KERPON		6-	—20 -		- Trace fine grained sand below 6.10 m.										
POND\PAF	- 226	7-	-			は	S5							•	1::1::1::
SIPARKER	- 225	8 -	— 25 -			<u>₹</u>	S6						 		
GEOLOG	- 224 223.7	9 —	-										. •		
18/DESIGN	- 223		—30 - -		END OF HOLE AT 9.15 m Notes:										-
1/11-0107-		10 -	-		Test hole open to 9.15 m upon completion of drilling. Water level in test hole 0.92 m below grade immediately after drilling due to surface water infiltration.	9									
JECTS\201	- 222	11 —	— 35 - -		Backfilled test hole with cuttings and bentonite.										
G P:\PRO	- 221	12 —	- - 40												1-1-1-
GEOTECHNICAL-SOIL LOG PAPROJECTS/2011/11-0107-18/DES/GN/GEO/LOGS/PARKER POND/PARKER	- 220														
HNIC		PLE			Auger Grab										
GEOTEC		TRA(APPI AMH	ROVE I	D			DA'	TE 21/1:	5		



	K	G	S IP			HOLE TH 1	E NO. 15-0 3	3				SH	EET	1	of 1	
		JECT	r F	Parker	F WINNIPEG - WATER AND WASTE DEPARTMENT Pond Retention Basin Investigation			GR	3 NO. OUND E P OF PV		٧.		-010 2.30		8	
	SITI			Parker F					TER EL TE DRIL			6/1	11/20	01 <i>E</i>		
		LLING	_		est corner				л (m)	LED			5,52		79	
		HOD		25 mm	ø Solid Stem Auger, ACKER MP5 Drill Rig							E 631,939				
	ELEVATION (m)	DEPTH	<u>:</u>	GRAPHICS	DESCRIPTION AND CLASSIFICATION	TYPE	NUMBER RECOVERY %	SPI	Γ (N) ws/0.15		20 40 00 8					
	ELEV/	(m)	i (ft)	GR/		AMPLE	UMBER	(N)	NAMIC (blows/f			PL 		/C ● / ₆	LL —∎	
-		,, 	(11)		SILTY CLAY Fill - Brown, moist, firm, high plasticity, some fine to coarse grained	Š	Z &	2	20 40	60	1 :: 1	20	40	60	80	
	231.4		-		sand, trace fine grained gravel.											
	- 231	1 -	-	XX	CLAYEY SILT - Brown, moist, firm, intermediate plasticity.	1	S1			- - -	•		 			
	230.8 _	2	- 5 -		SILTY CLAY (CH) - Brown, damp, firm, high plasticity, trace fine grained sand, trace silt pockets, trace oxidation.	- ₹	S2							1::1: 1::1: 1::1:		
-	- 230	1	-											- - -	: : : - : : : : : : : : : : : :	
	- 229	3 - 1	—10 -									:: :: :: :: :: ::		 	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		4-	-		- Firm below 3.97 m.	₹	S3							 • -		
	- 228	1	- 15		- Grey below 4.56 m.					———						
GEOTECHNICAL-SOIL LOG PAPROJECTS/2011/11-0107-18/DESIGN/GEO/LOGS/PARKER POND/PARKERPOND_LOGS.GPJ	- 227	5 - 1	-		- Grain Size Distribution: Gravel (0%), Sand (0.6%), Silt (23.2%), and Clay (76.2%) a 5.3 m.	t 🔢	S4							P		
OND	226.2	6-	- 20		END OF HOLE AT 6.10 m	4				- 1 - 1 - 1		::1::	:: :: 	1::1:: -	.1::1::1:: -1:-1:-1:-	
RKER	- 226		-		Notes:								:: :: :: ::	- -		
ND/PA		7 -	-		Test hole open to 5.80 m upon completion drilling. Trace water in the bottom of the test hole.							:: ::		 	 	
RKER PC	- 225	1	- 25		3. Backfilled test hole with cuttings and bentonite.											
GS\PA	- 224	8 –	-									:: ::		1::1:		
GEO/LC		9 —	-													
ESIGN	- 223		—30 -													
7-18\D		10 -	-													
\11-010	- 222		-													
S\2011		11 -	— 35 -											1::1::		
ROJECT	- 221	1	-											:: :: :		
JG P:\F		12 -	- 40									:: ::	: : : : 	: : : : 		
L-SOIL LC	- 220		-													
HNICA	SAM	PLE T	YPE		Auger Grab		. '				. '					
GEOTEC		TRAC Maple			INSPECTOR aterprises J. MACLENNAN	APP AME	ROVE I	D			DA 12/	TE 21/1:	5			


K	G	S JP		SUMMARY LOG REFERENCE NO.				NO. 5-0 4	4	SH	ŒET	1	of 2	
PRO	ENT DJEC		_	OF WINNIPEG - WATER AND WASTE DEPARTME Pond Retention Basin Investigation	NT				JOB NO. GROUND ELEV. TOP OF PVC ELEV	23	-010 32.00		3	
SIT			Parker I						WATER ELEV. DATE DRILLED	61	11/2(115		
		_	Centre s						UTM (m)		6/11/2015 N 5,523,687			
										E 632,144 POCKET PEN (kPa) ★				
ELEVATION (m)		UEN I	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	APLE TYPE	NUMBER RECOVERY %		Cu POC Cu TOF	40 M	60 IC		
	(m)	(ft)					SAI	NE SE	20 40 60	20	%	60	80	
231.1 - 231	1-			SILTY CLAY - Brown, damp, stiff, high plasticity. CLAYEY SILT - Brown, wet, firm, intermediate plasticity, trace fine	iganderijanderijanderijanderijanderijanderijanderijanderijanderijanderijanderijanderijanderijanderijanderijand									
230.5	-	- -5		grained sand. SILTY CLAY (CH) - Brown, moist, firm, high plasticity, trace fine to			몱	S1		† •				
- 230	2 -	-		coarse grained sand, trace oxidation.			₹ 3	S2			•			
- 229	3 -	—10 -		- Stiff between 3.66 and 4.58 m.		-	Þ	S3			:: :: :: :: :: •			
- 228	4 -	- - - 15		- Grey, trace fine grained gravel, silt pockets below 4.58 m.	engigamentigament	-	<u>}</u>					• • - -	 	
7d5.850J QNOd	5 -	-					<u>}</u>	S4						
	6 -	—20 —				-	ł;	S5					 	
ARKER POND	7-	25		- Trace fine grained sand below 7.63 m.		7.6	14							
MGEO/LOGS/PA	8	-		- Soft between 8.24 and 10.98 m. - Grain Size Distribution: Gravel (1.5%), Sand (7.2%), Silt (27.1%), and Clay (64.2%) at 8.4 m.	arinasijanensijanensijanensijane	-	<u>}</u>	S6		.				
7-18/DESIGN/	10 —	—30 - -		- Increased silt pockets between 9.15 and 10.07 m.	Andria and Andria and Andria and Andria and Andria						1 - 1 - 1			
S/2011/11-010-1	11 —	35			ilitarranija ranskija ranskija		ł	S7						
GEOTECHNICAL-SOIL LOG P:/PROJECTS/2011/11-0107-18/DESIGN/GEO/LOGS/PARKER PONDVPARKER S777 S777	12 —	-		- Soft below 11.29 m.			<u>}</u>	S8				 		
AL-SOIL LOG	-	- 40				12.2				- - -				
SAM	IPLE			Auger Grab Split Spoon										
E CON	TRAC			INSPECTOR nterprises J. MACLENNAN			PPI MH	ROVE		DATE 2/21/1	5			

	K	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H15-0	4	SHEET 2 of 2	2
	ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft	Cu POCKET PEN (kPa) 7 Cu TORVANE (kPa) 4 20 40 60 80 PL MC LL	* ◆
	ш	(m) (ft)					SAM	20 40 60	% 20 40 60 80	
	218.9 ⁻ - 218	45		SILT TILL - Brown, moist, compact, low plasticity, some fine to coarse grained sand, some fine to coarse grained gravel. - Split spoon dropped last 300 mm of SPT. Suspected gravel seam			S10 61			
	- 217	15 —		from 13.88 to 14.18 m.						
	216.8 _	50		END OF HOLE AT 15.27 m	00000	15.2	S11 2			
	- 216	16 —		Notes: 1. Test hole open to 1.22 m upon completion of drilling. 2. Installed pneumatic piezometer #036650 at 7.63 m and pneumatic						
	- 215	17 — 55		piezometer #036654 at 12.20 below grade. 3. Backfilled test hole with grout.						: : : : : : : :
	- 214	18								
	- 213	19 -								
	- 212	65								: : : : : :
OGS.GPJ	- 211	21 —								: : : : : : : : : : : : : : : : : : :
KERPOND_I		-70 70								
GEOTECHNICAL-SOIL LOG P.\PROJECTS\2011\11-0107-18\DESIGN\GEO\LOGS\PARKER POND\PARKERPOND_LOGS.GPJ	– 210	22								
OGS\PARKE	- 209	23 - 7								
SIGN/GEO/L	- 208	24								
0107-18\DE	- 207	25 - 1								: : : : : : : :
:TS\2011\11-	- 206	26 - 85								
P:\PROJEC	- 205	27 — 90								
F-SOIL LOG	- 204	28 —								: : : : : :
HNICA	SAM	PLE TYPE	B	Auger Grab Split Spoon	1					_
GEOTEC		TRACTOR		INSPECTOR nterprises J. MACLENNAN			PPROVE MH		DATE 12/21/15	

SYMBOL	HOLE	DEPTH (n	n) SAMPLE#	LL	PL	PI	% SAND	% SILT	% CLAY	% MC	CLASSIFICATION
•	TH15-03	5.3	S4	91	24	67	0.6	23.2	76.2	51.6	CH
	TH15-04	8.4	S6	80	22	58	7.2	27.1	64.2	46.3	CH
A	TH15-05	13.0	S10	89	23	66	12	24 0	71 7	49.8	CH

Notes:

ML - Low Plasticity Silt MH - High Plasticity Silt
CL-ML - Silty Clay
CL - Low Plasticity Clay
CI - Intermediate Plasticity Clay
CH - High Plasticity Clay

LL - Liquid Limit

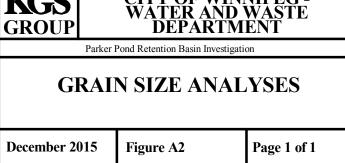
PL - Plastic Limit

PI - Plasticity Index MC - Moisture Content

NP - Non-Plastic

CITY OF WINNIPEG -WATER AND WASTE DEPARTMENT


Parker Pond Retention Basin Investigation


A-LINE PLOT

December 2015

Figure A1

Page 1 of 1

SIEVE ANALYSIS P./PROJECTS/2011/11-0107-18/DES/GN/GEO/LOGS/PARKER POND/PARKERPOND_LOGS.GPJ

APPENDIX B 2016 TEST HOLE LOGS

KGS GROUP

SOIL DESCRIPTION CRITERIA

PRINCIPAL AND MINOR SOIL COMPONENTS

And 35 – 50% With 20 – 35% Some 10 – 20% Trace 0 – 10%

Occasional Trace of very local concentration

FIELD MOISTURE CONTENT

Dry No moisture visible or to touch when fresh exposure is examined

Damp Slightly wet to touch Moist Fresh exposure wet to touch

Wet A film of water is readily visible around particles of granular soils, cohesive soils can readily be smeared or remolded; water can be squeezed

out

Saturated Water can easily be squeezed out

Free Water Water completely separated from the soil particles

DEPOSITIONAL STRUCTURE

Massive Structureless soil

Stratified (Layered) Different soils or visible variations in soil constituents arranged in layers, generally but not necessarily parallel to one another,

and not necessarily in horizontal position, at least 6 mm thick

Varved Glaciolacustrine deposits with annual pairs of fine and coarser laminae (thin laminae of alternately deposited inorganic silt and

clay)

Laminated Closely spaced, regularly alternating layers of differing soils and/or colours, or shades of similar gradation, relatively consistent in

thickness and consisting of sand, silt, or clay

Lens Inclusions of a different soil within surrounding soils, which thins out horizontally and may not be continuous over any

significant distance

Pocket A different soil type of very limited thickness or lateral extent (a small lens)

Inclusions Small pockets

Nuggety A different soil type in the form of small lumps Parting Paper thin separation of one type by another

POST DEPOSITIONAL STRUCTURE

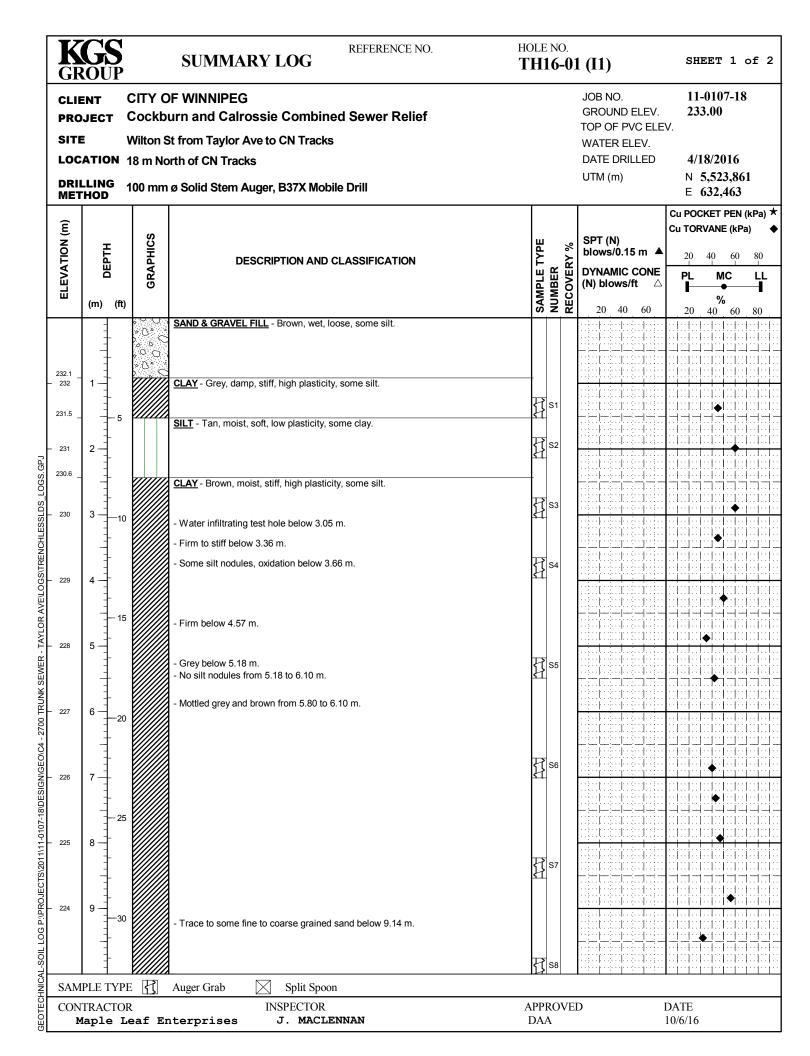
Fissured A soil breaks along definite, pre-existing planes or fracture with little resistance to fracturing

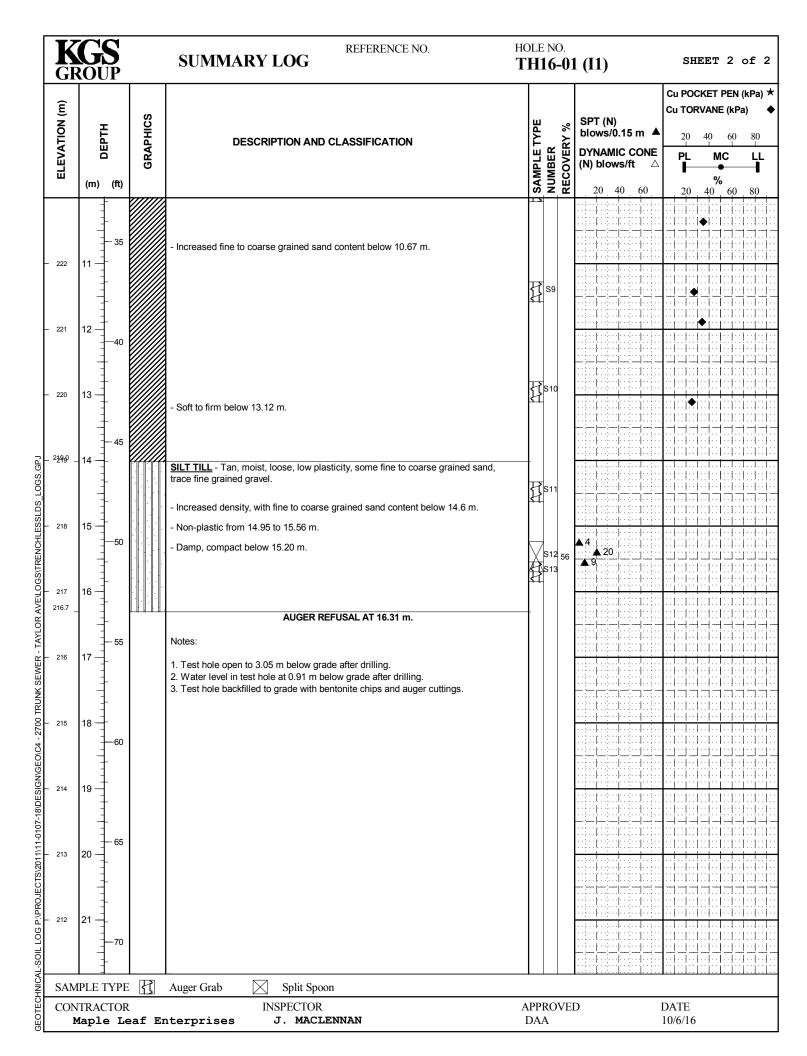
Slickensided Polished or glossy, sometimes striated surfaces resulting from movement of a material block relative to the adjacent blocks
Blocky/Friable/Platy Cohesive soil that can be broken down into angular larger fragments (blocky), small fragments (friable), or thin plate-like

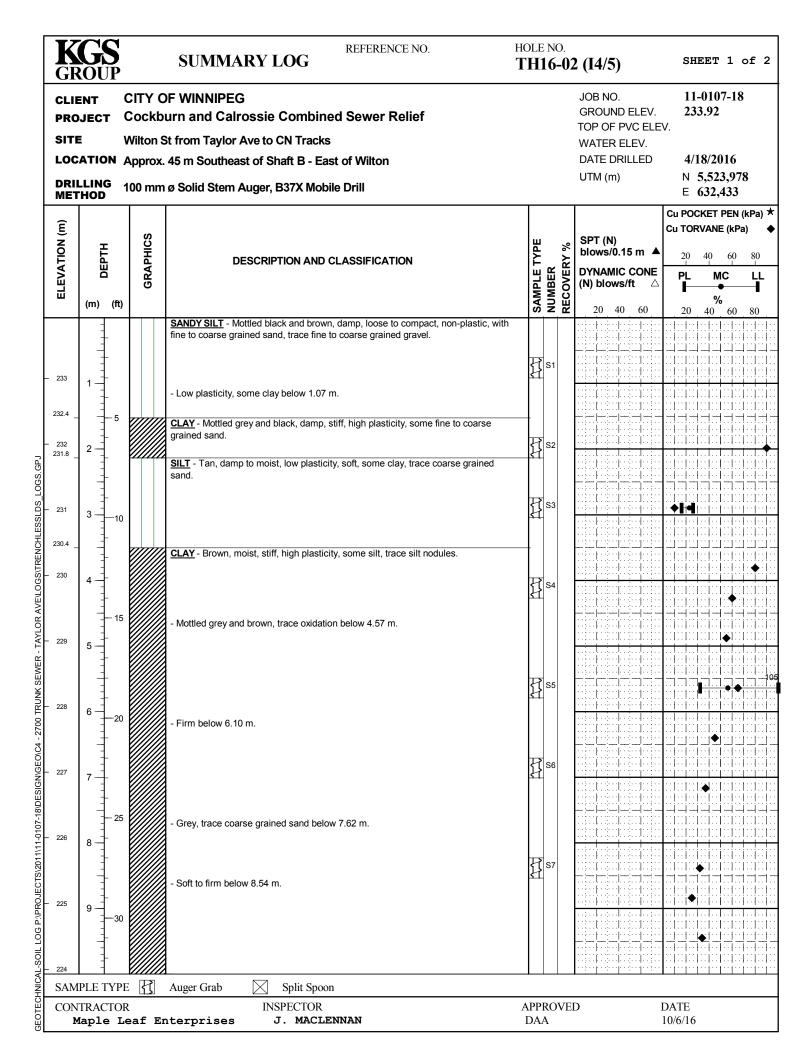
fragments (platy) which resist further breakdown

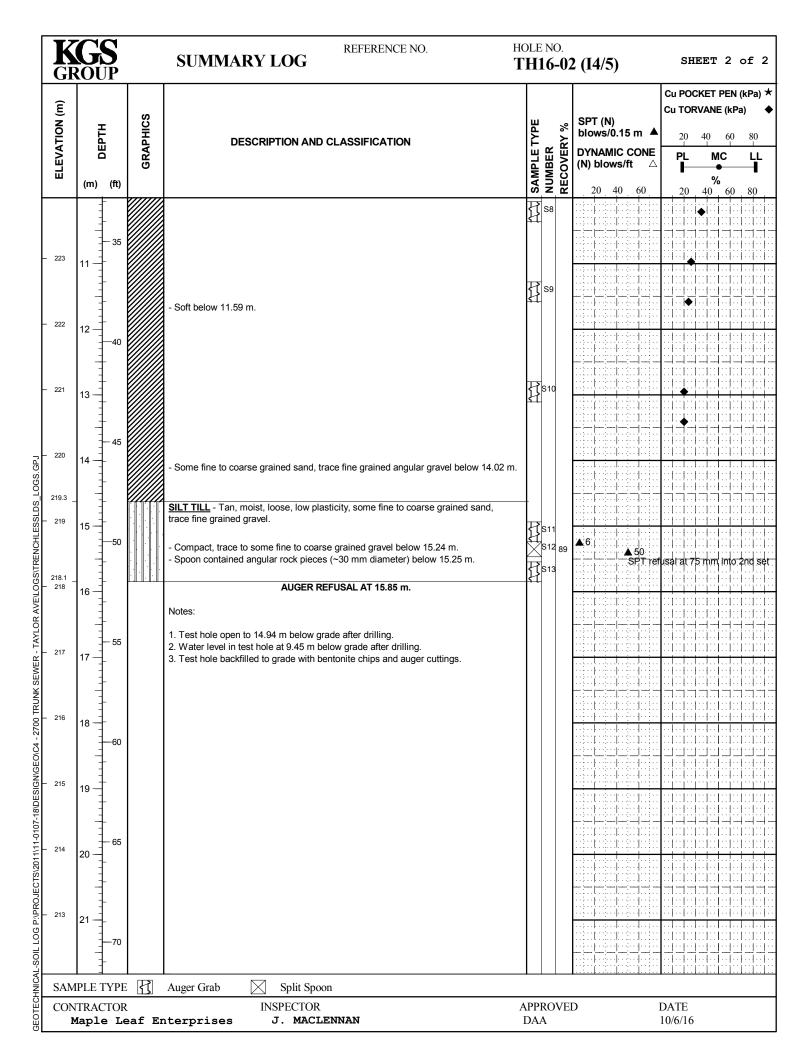
Cemented Soil particles or fragments held together by cemented materials, often chemical precipitants, or deposits within overall soil mass

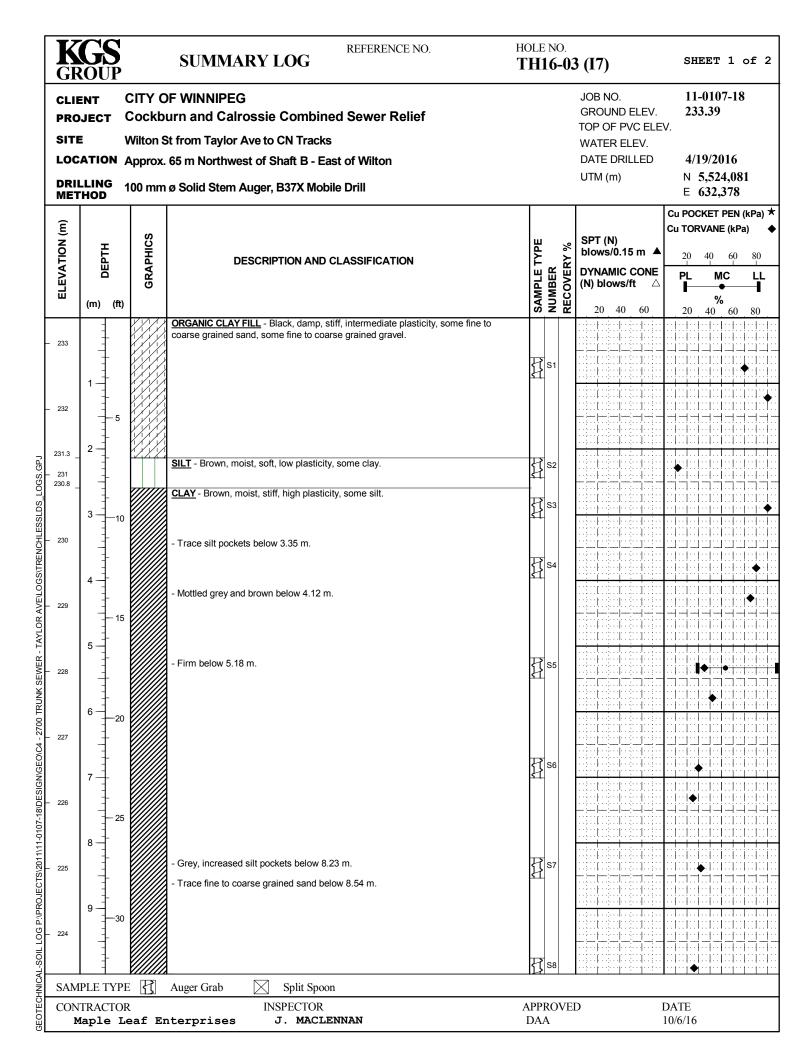
GRAIN SIZE DISTRIBUTION IN COARSE GRAINED SOIL

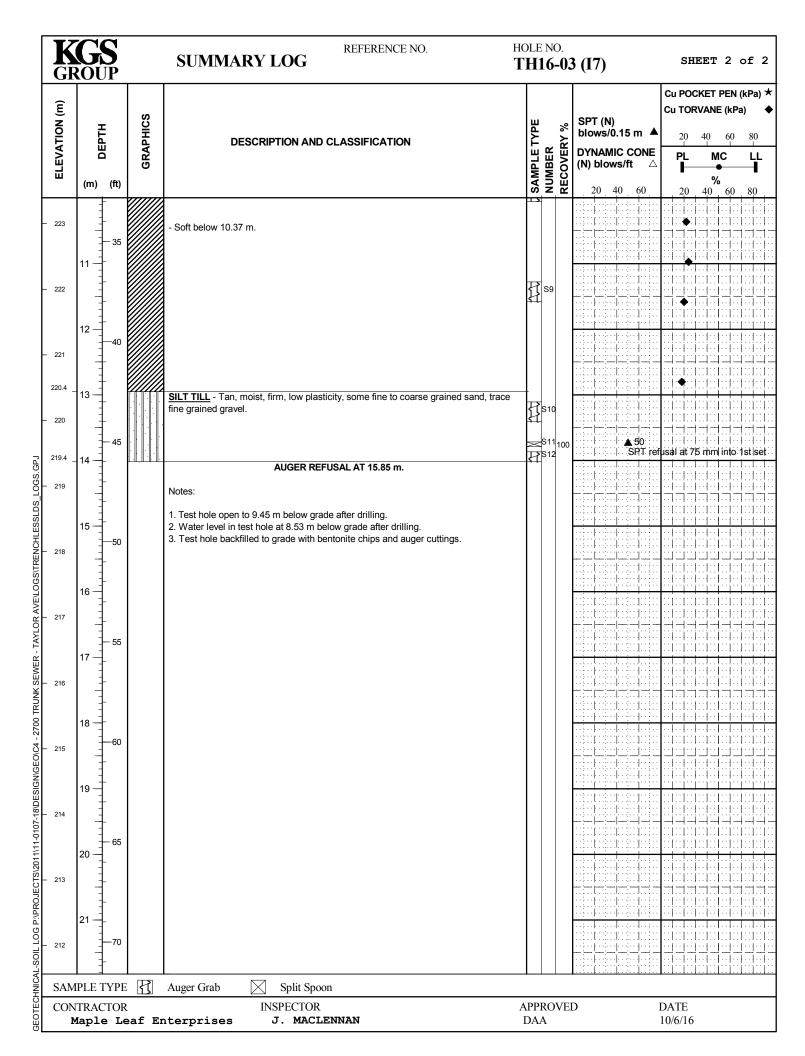

 $\begin{array}{lll} \mbox{Boulders} & >& 200 \mbox{ mm } \mbox{σ} \\ \mbox{Cobbles} & 75-200 \mbox{ mm } \mbox{σ} \\ \mbox{Coarse Grained Gravel} & 19-75 \mbox{ mm } \mbox{σ} \\ \mbox{Fine Grained Gravel} & 4.75-19 \mbox{ mm } \mbox{σ} \\ \mbox{Coarse Grained Sand} & 2-4.75 \mbox{ mm } \mbox{σ} \\ \mbox{Medium Grained Sand} & 0.425-2 \mbox{ mm } \mbox{σ} \\ \mbox{Fine Grained Sand} & 0.075-0.425 \mbox{ mm } \mbox{σ} \\ \mbox{} \end{array}$

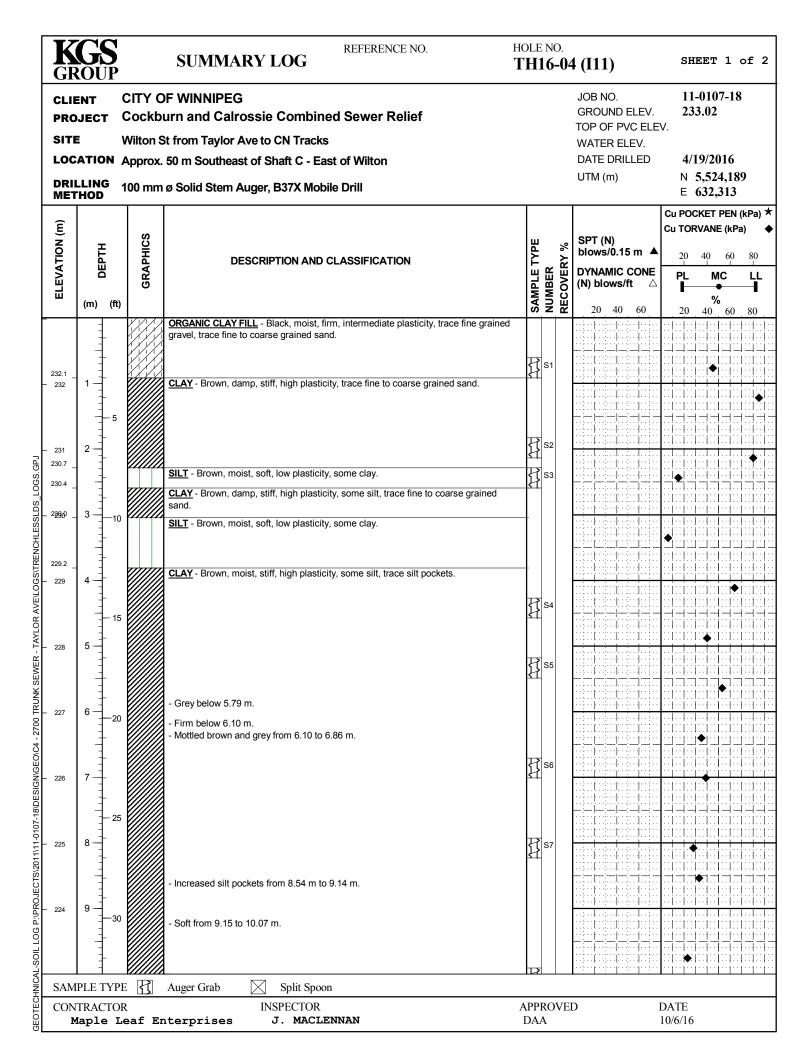

DENSITY OF GRANULAR SOIL

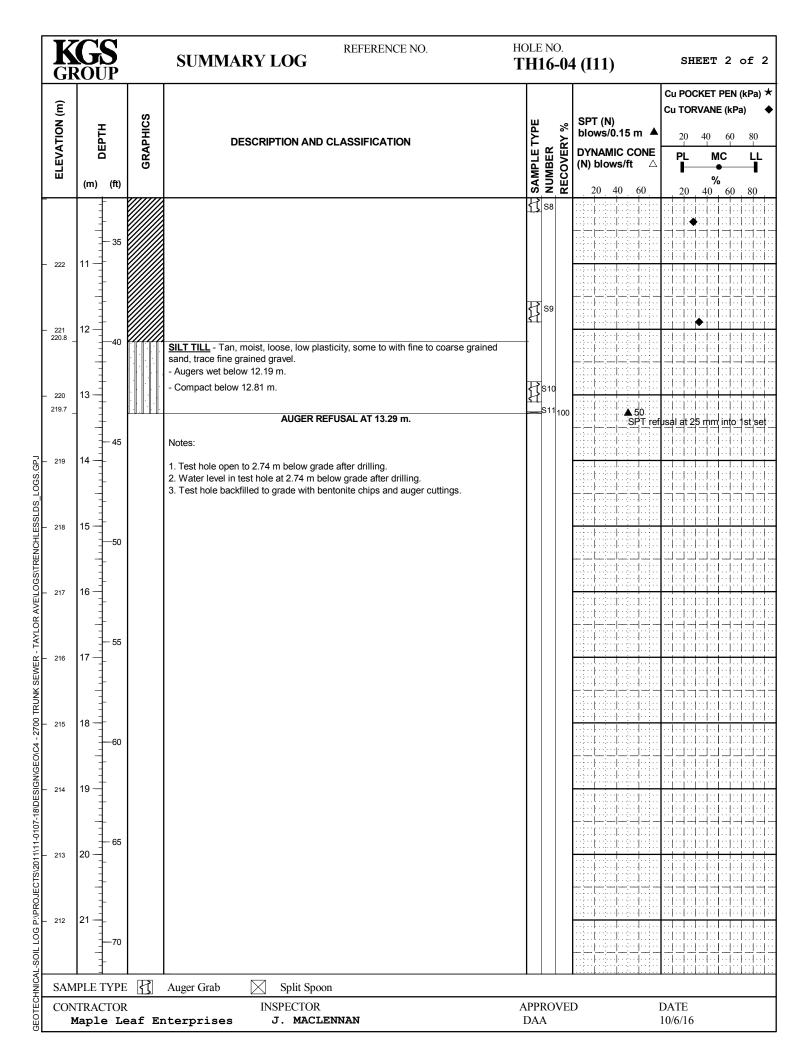

Description	Standard Penetration Test	Relative Density
Very Loose	0-4 Blows Per 0.3 m	<15%
Loose	4-10 Blows Per 0.3 m	15 - 35%
Compact	10 - 30 Blows Per 0.3 m	35 - 65%
Dense	30 - 50 Blows Per 0.3 m	65 - 85%
Very Dense	>50 Blows Per 0.3 m	>85%

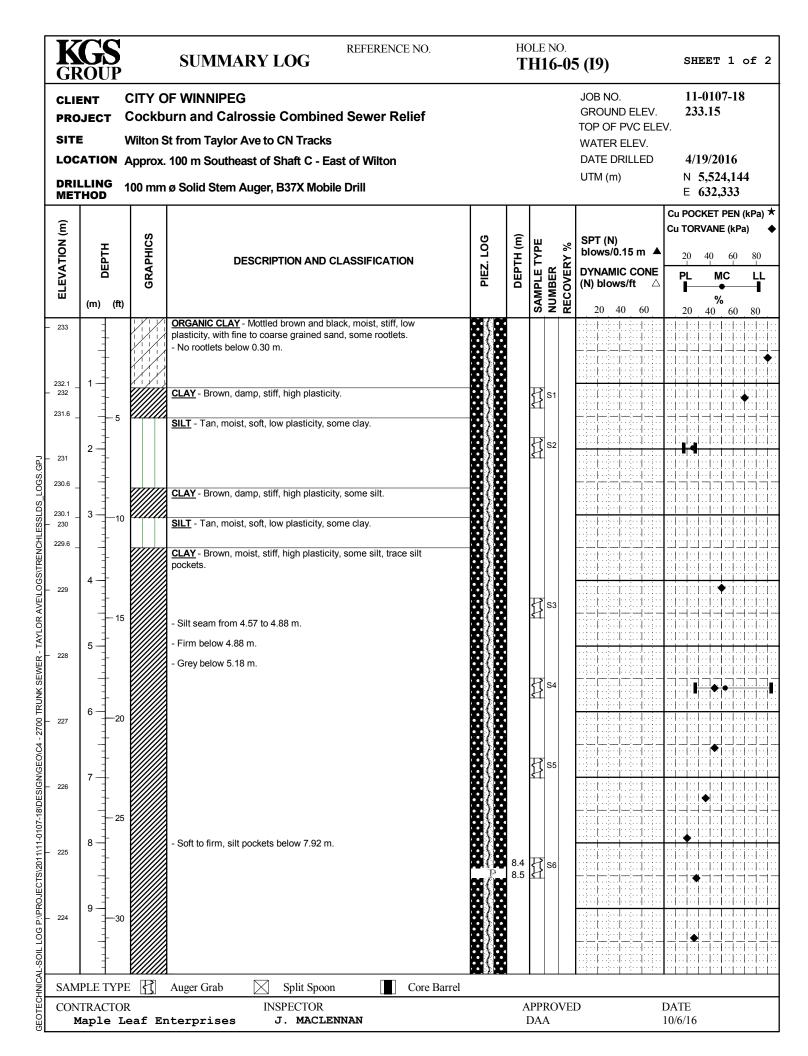

CONSISITENCY OF COHESIVE SOILS

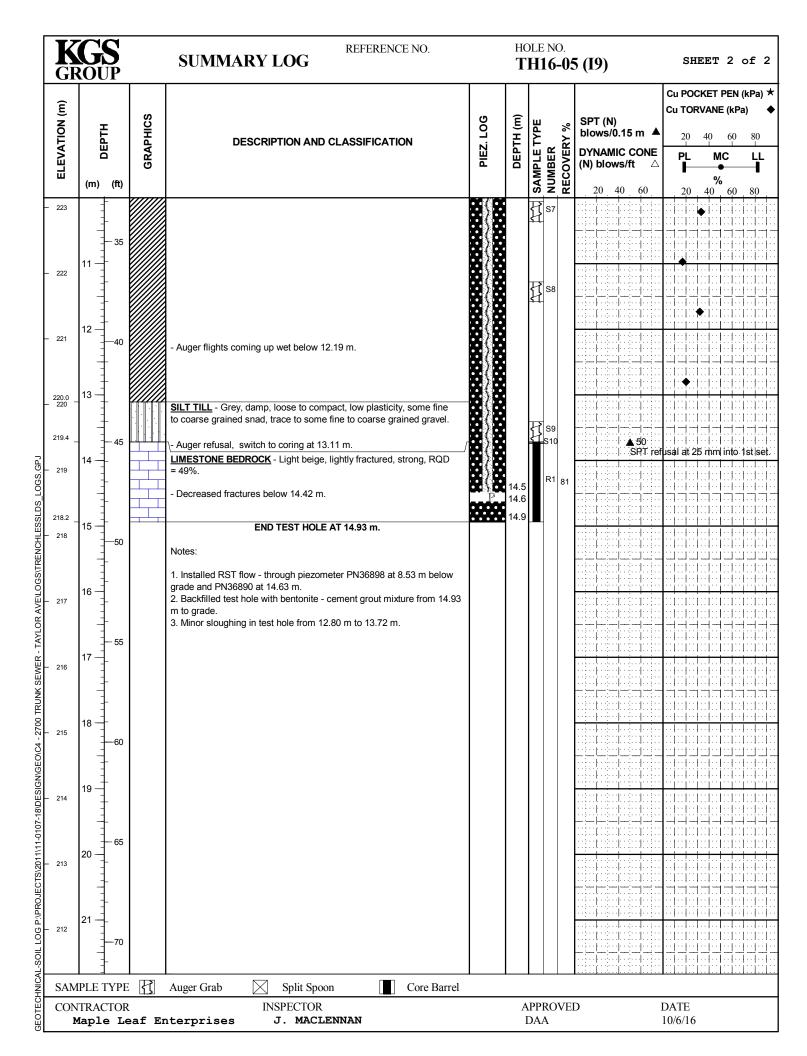

Description	Torvane	Standard Penetration Test
Very Soft	<12 kPa	<2
Soft	12 – 25 kPa	2 - 4
Firm	25 - 50 kPa	4 - 8
Stiff	50 – 100 kPa	8 - 15
Very Stiff	100 – 200 kPa	15 - 30
Hard	>200 kPa	>30

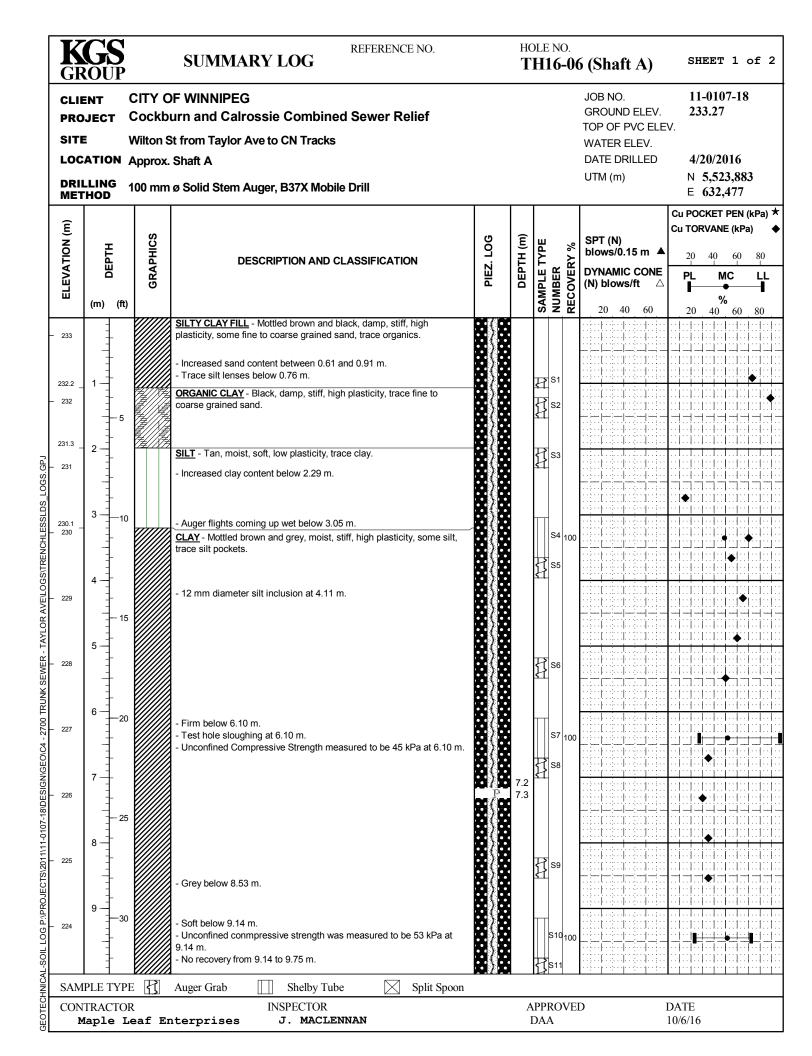


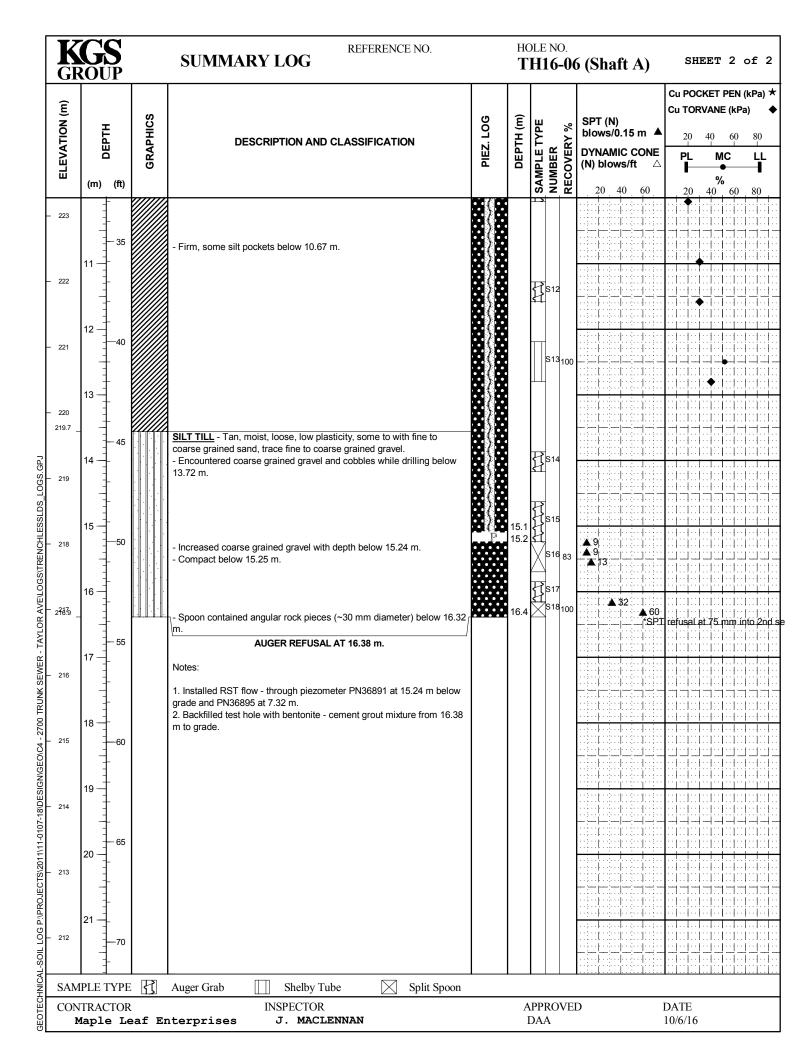


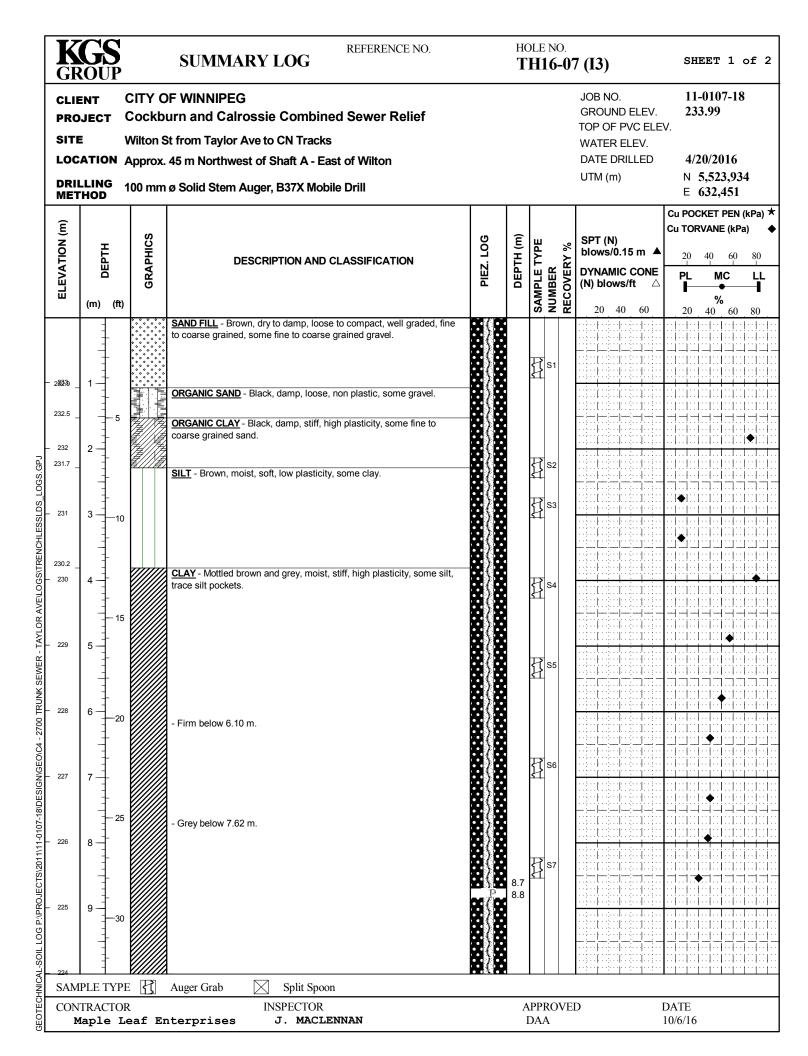


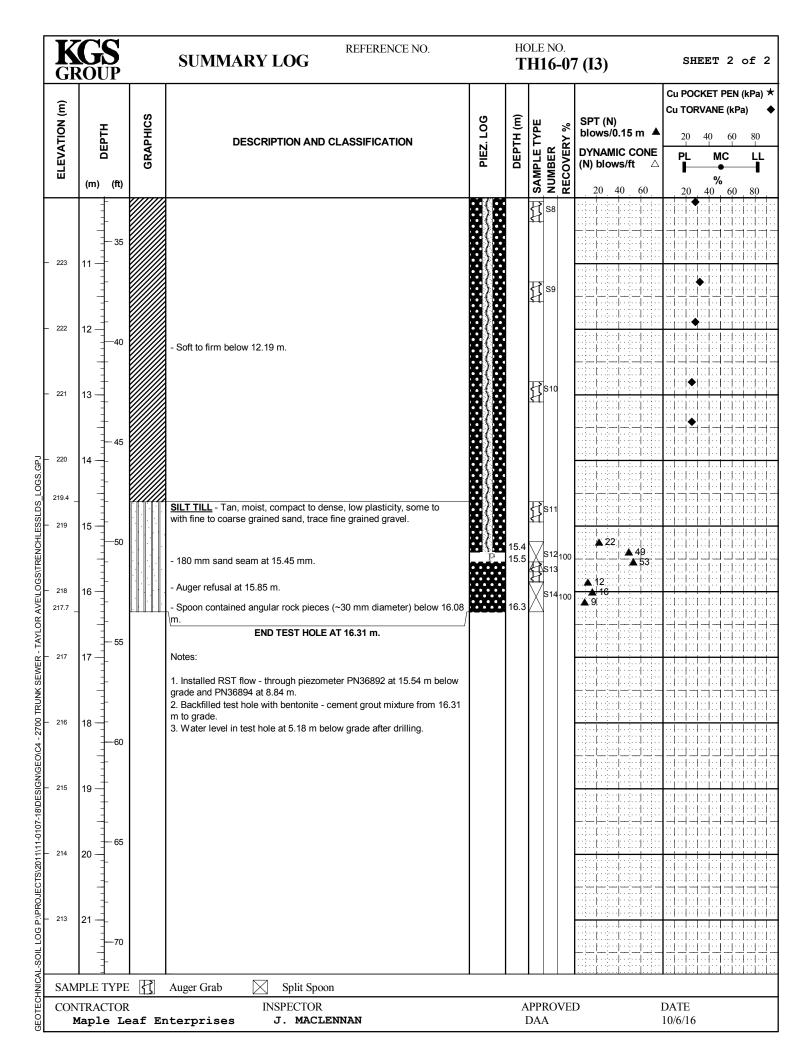


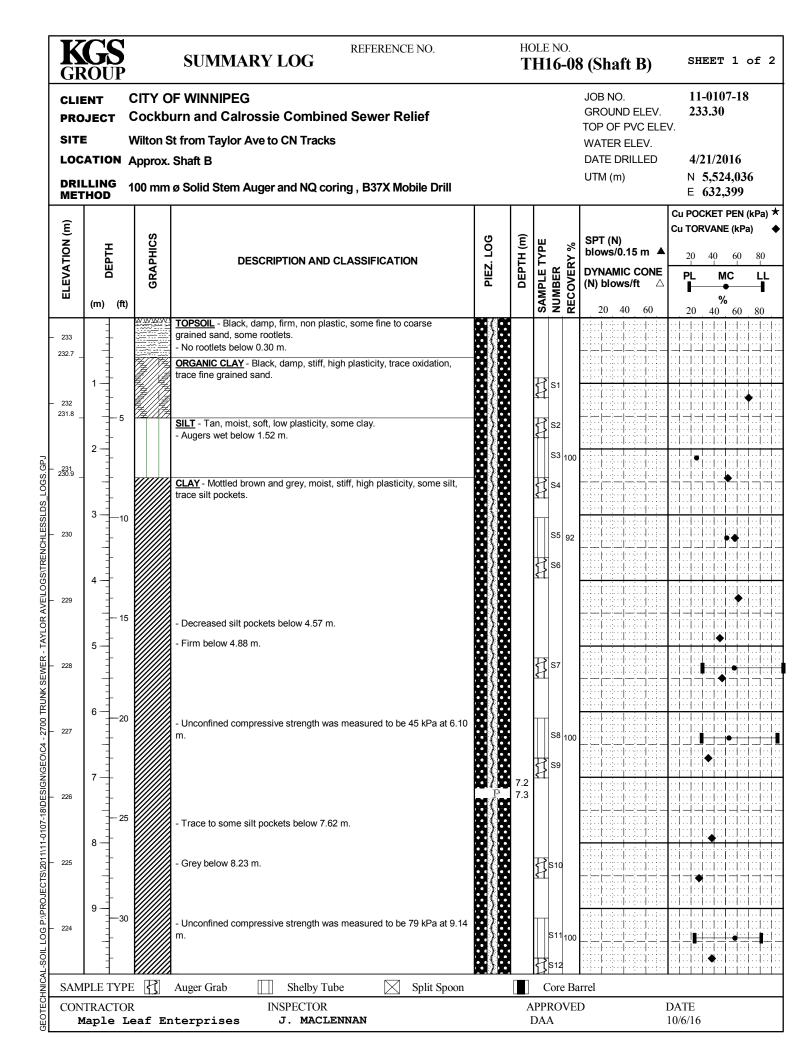


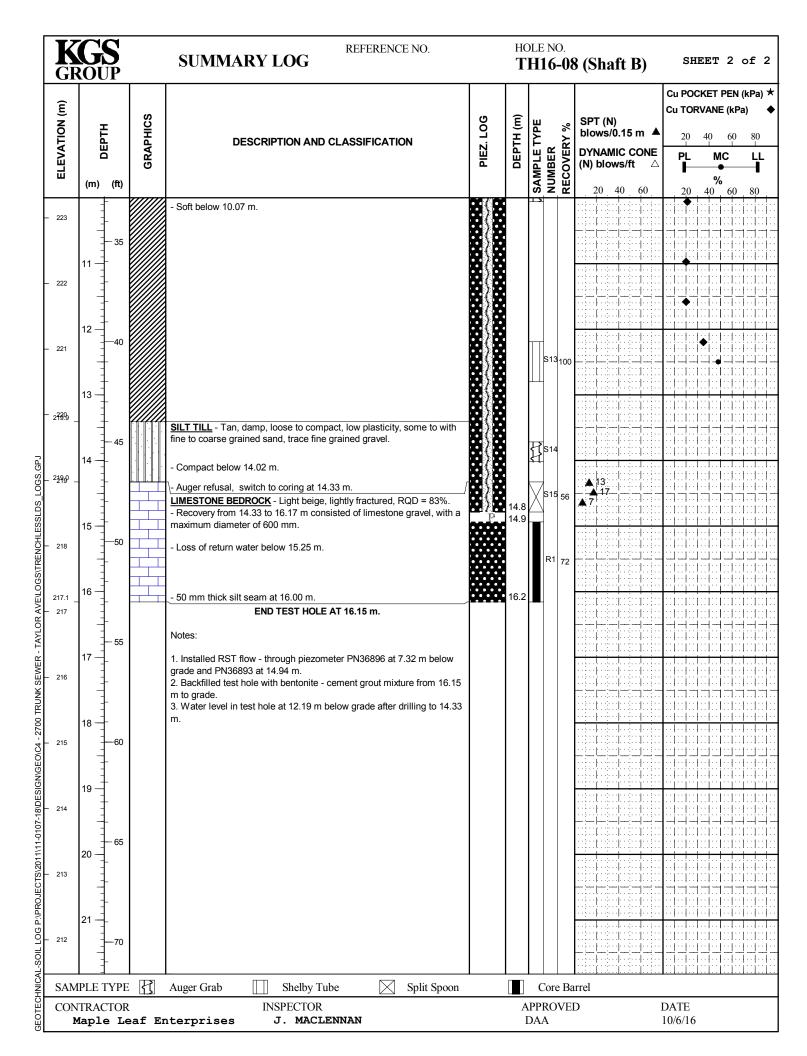


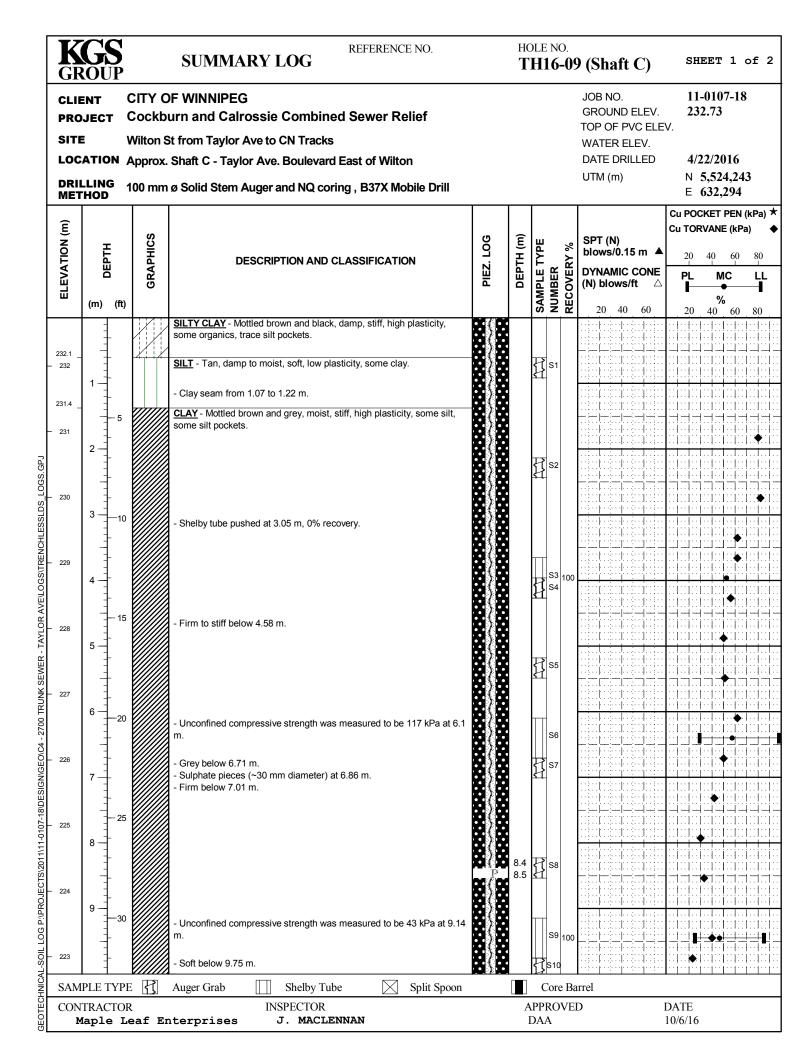


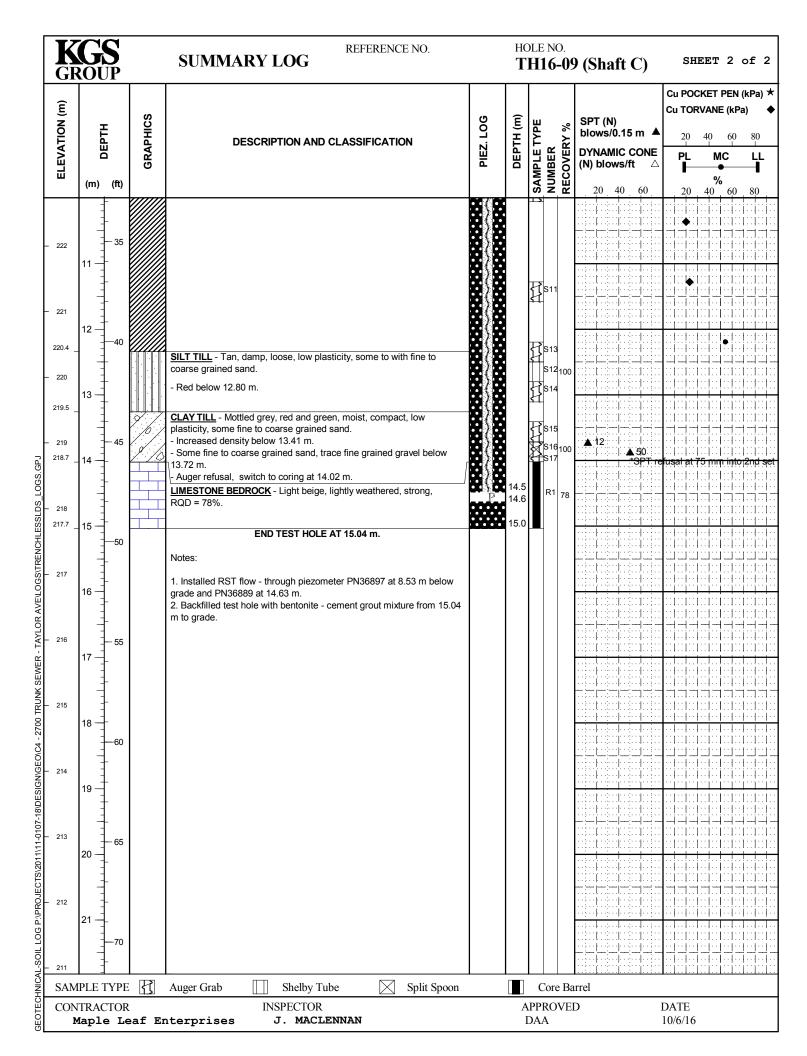


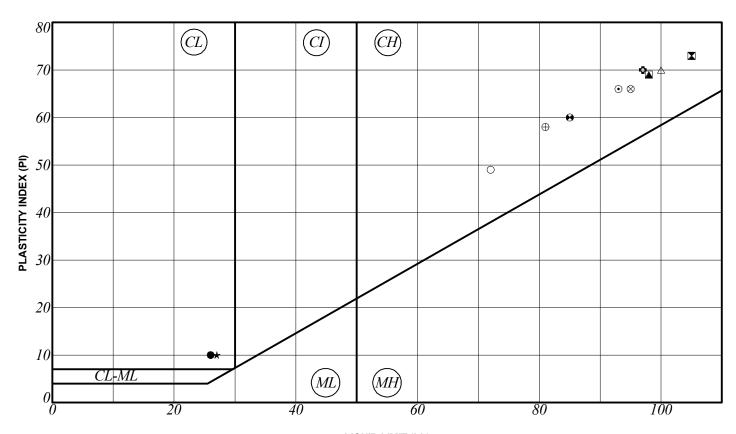












LIQUID	LIMIT	(LL)
--------	-------	------

SYMBOL	HOLE	DEPTH (m)	SAMPLE#	LL	PL	PΙ	% SAND	% SILT	% CLAY	% MC	CLASSIFICATION
•	TH16-02 (I4/5)	2.9	S3	26	16	10				22.9	CL
	TH16-02 (I4/5)	5.6	S5	105	32	73				56.3	CH
A	TH16-03 (I7)	5.3	S5	98	29	69				53.4	CH
*	TH16-05 (I9)	2.0	S2	27	17	10				25.0	CL
•	TH16-05 (I9)	5.6	S4	93	27	66				53.1	CH
O.	TH16-06 (Shaft A	A) 6.1	S7	97	27	70	0.5	19.4	80.1	51.8	CH
0	TH16-06 (Shaft A	A) 9.1	S10	72	23	49				51.5	CH
Δ	TH16-08 (Shaft E	3) 5.3	S7	100	30	70				57.5	CH
\otimes	TH16-08 (Shaft E	3) 6.1	S8	95	29	66	0.4	18.2	81.4	52.9	CH
\oplus	TH16-08 (Shaft E	3) 9.1	S11	81	23	58				58.1	CH
	TH16-09 (Shaft 0	C) 6.1	S6	98	29	69	0.9	18.2	80.9	57.4	CH
•	TH16-09 (Shaft 0	C) 9.1	S9	85	25	60				46.5	CH

Notes:

ML - Low Plasticity Silt

MH - High Plasticity Silt
CL-ML - Silty Clay
CL - Low Plasticity Clay
CI - Intermediate Plasticity Clay
CH - High Plasticity Clay

LL - Liquid Limit

PL - Plastic Limit PI - Plasticity Index

MC - Moisture Content

NP - Non-Plastic

CITY OF WINNIPEG

Cockburn and Calrossie Combined Sewer Relief

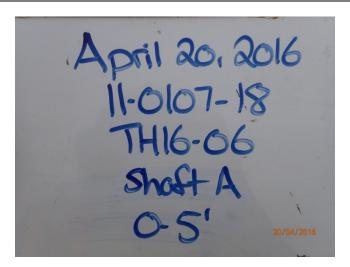
A-LINE PLOT

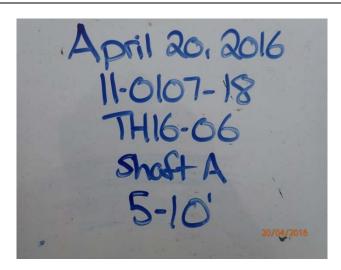
October 2016

Figure B1

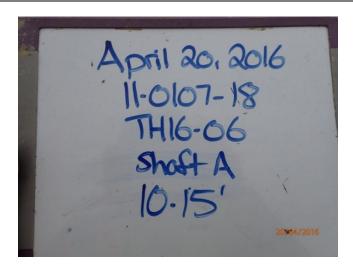
Page 1 of 1

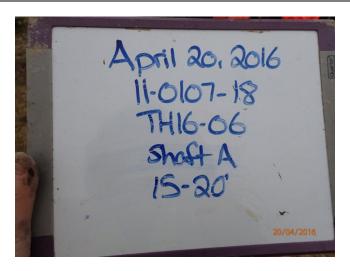
October 2016 KGS 11-0107-18

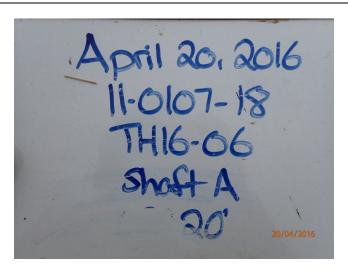

APPENDIX C PHOTOS

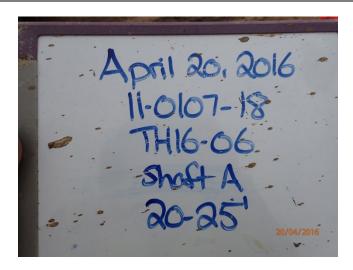

October 2016 KGS 11-0107-18

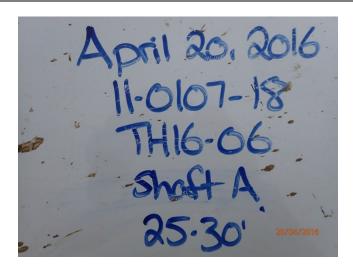
TH16-06 (SHAFT A)

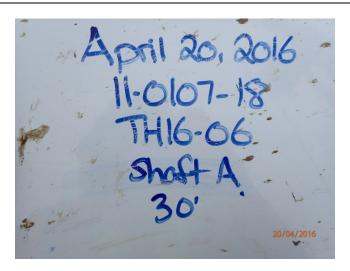


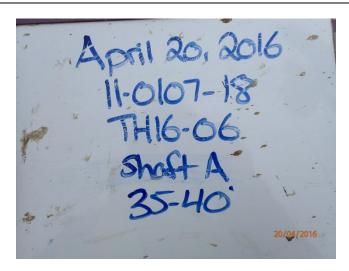


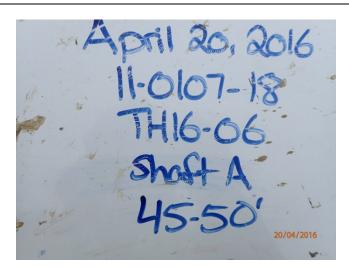


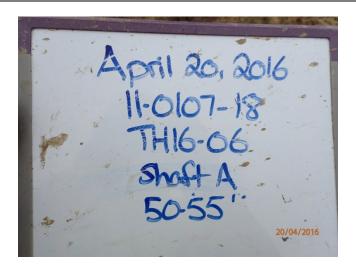


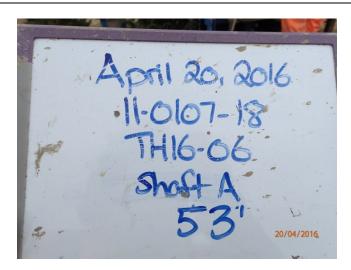


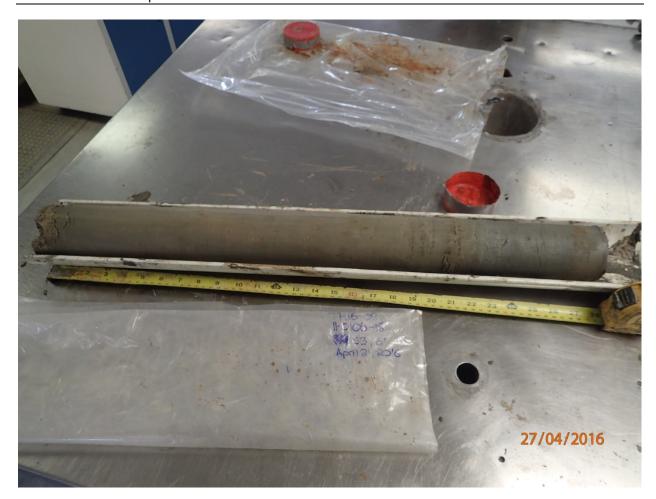






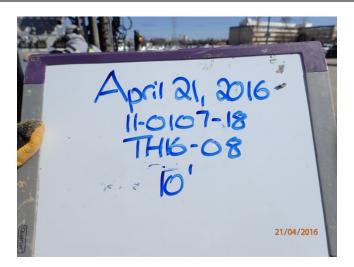


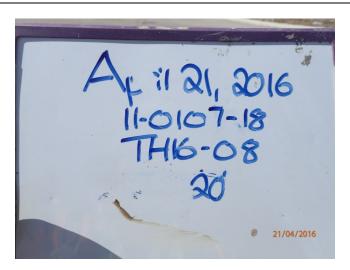


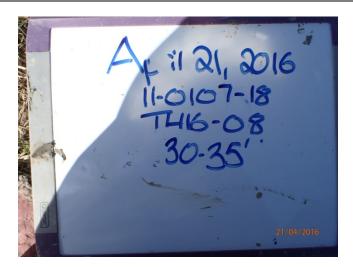


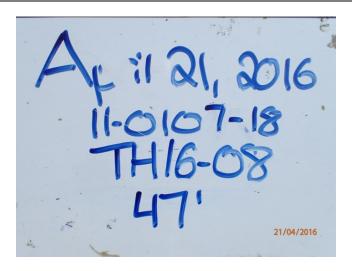
October 2016 KGS 11-0107-18

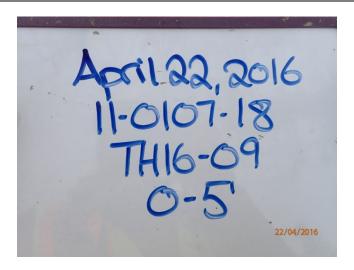
TH16-08 (SHAFT B)





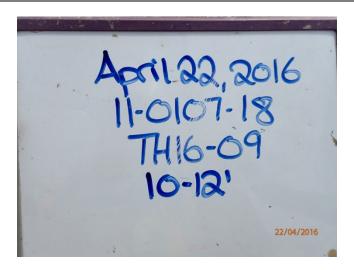


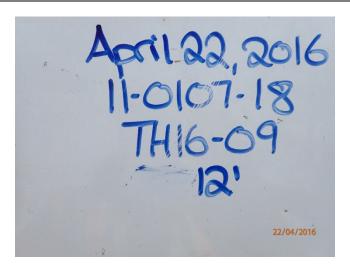


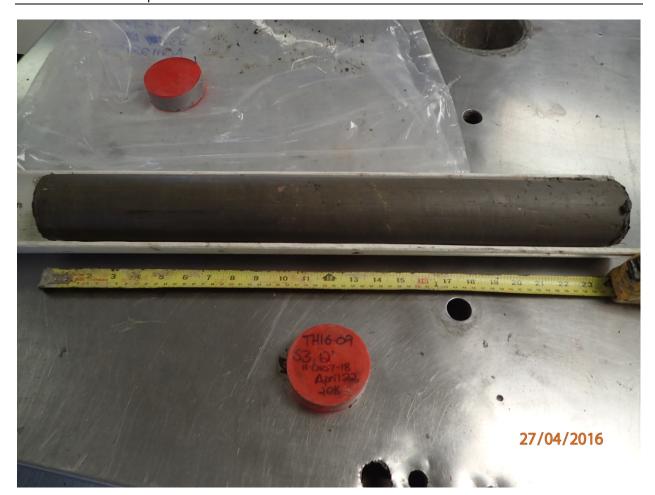


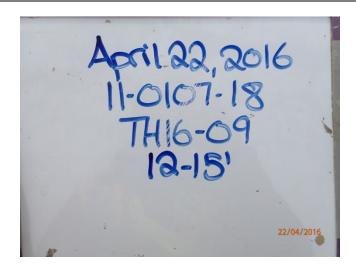
October 2016 KGS 11-0107-18

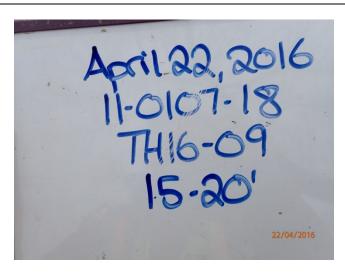
TH16-09 (SHAFT C)

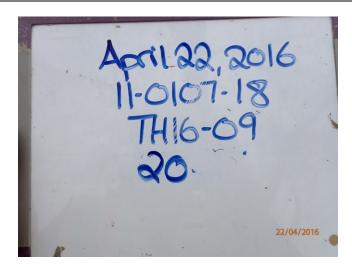


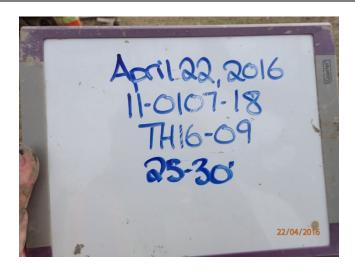


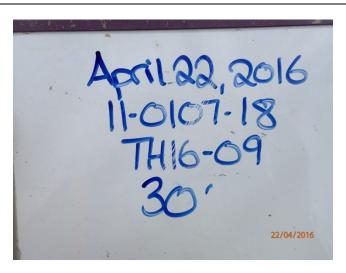


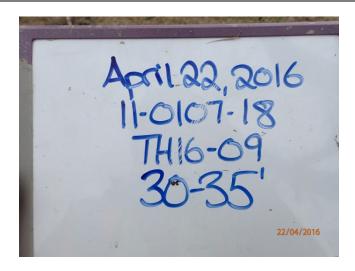


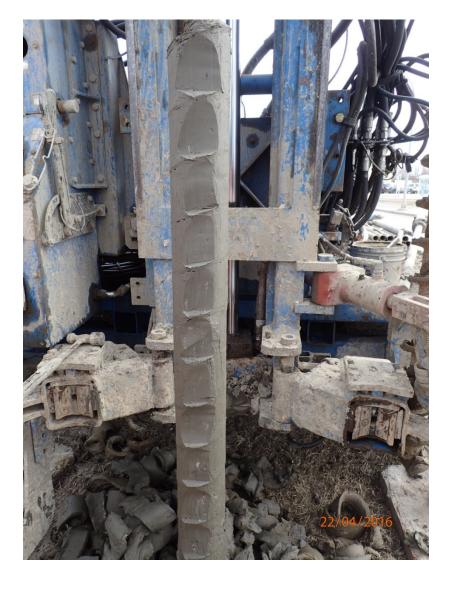


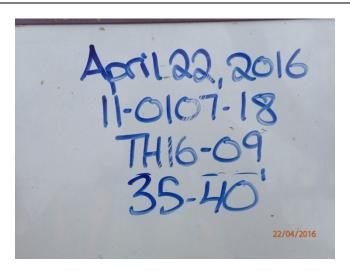


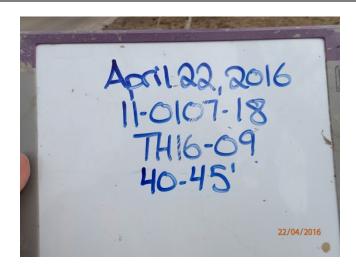


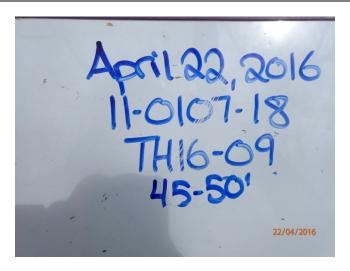












APPENDIX D GEOTECHNICAL INVESTIGATIONS LABORATORY DATA

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

June 24, 2015 File: 123311974

Attention: Ms. Jacqueline MacLennan

KGS Group Inc. 3rd Floor – 865 Waverley Street Winnipeg, MB R3T 5P4

Good day Jacqueline,

Reference: Cockburn & Calrossie Sewer Relief (11-0107-18)

Soil samples were submitted to our laboratory on June 16, 2015. The following tests were conducted on selected soil samples:

- Water content (ASTM D2216)
- Particle-Size Analysis (ASTM D422)
- Liquid Limit (multipoint), plastic limit, and plasticity index (ASTM D4318)

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

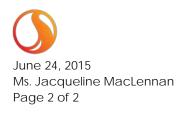
Regards,

STANTEC CONULTING LTD.

Jason Thompson, C.E.T.

Senior Associate - Team Lead

Manager, Materials Testing Services


Phone: (204) 928-4004 Fax: (204) 488-6947

Jason.Thompson@stantec.com

Attachment: Table 1 - Water Content Test Data

Table 2 - Particle Size Analysis and Atterberg Limits Test Data

3 x Particle Size Analysis Reports 3 x Atterberg Limits Reports

Reference: Cockburn & Calrossie Sewer Relief (11-0107-18)

TABLE 1
WATER CONTENT TEST DATA

Testhole	Sample ID	Sample Depth (ft)	Water Content (%)	Testhole	Sample ID	Sample Depth (ft)	Water Content (%)
TH15-01	S2	7-8	31.7	TH15-04	S5	22-23	49.8
TH15-01	S3	13-14	49.1	TH15-04	S6	27-28	46.3
TH15-01	S4	17-18	58.1	TH15-04	S7	33-34	58.2
TH15-01	S5	22-23	53.0	TH15-04	S8	37-38	50.6
TH15-01	S6	26-27	41.8	TH15-04	S9	43-44	17.9
TH15-02	S1	4-5	27.7	TH15-05	S1	1-2	34.8
TH15-02	S2	7-8	29.6	TH15-05	S3	8-9	39.1
TH15-02	S3	12-13	50.6	TH15-05	S4	12-13	51.1
TH15-02	S4	17-18	48.5	TH15-05	S5	17-18	51.3
TH15-03	S1	3-4	23.1	TH15-05	S6	22-23	51.1
TH15-03	S2	6-7	37.8	TH15-05	S7	27-28	46.9
TH15-03	S3	12-13	52.6	TH15-05	S8	32-33	57.7
TH15-03	S4	17-18	51.6	TH15-05	S9	37-38	59.0
TH15-04	S1	4-5	23.9	TH15-05	S10	42-43	49.8
TH15-04	S3	12-13	51.2	TH15-05	S11	46-46.5	16.4
TH15-04	S4	17-18	46.7				

TABLE 2
PARTICLE SIZE AND ATTERBERG LIMITS TEST DATA

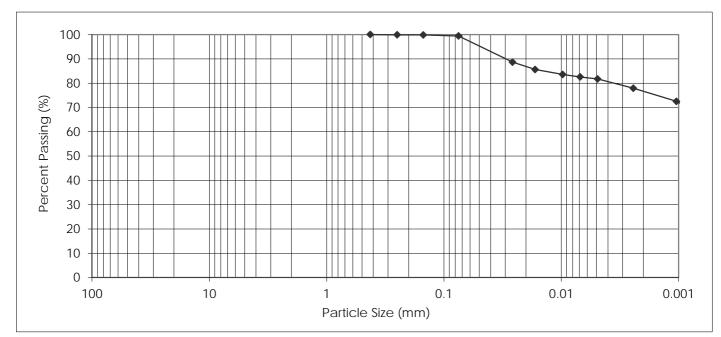
			Particle Size Analysis								Atterberg Limits		
Testhole	Sample	Gravel (%) 75 to 4.75 mm	Sand (%)		Silt (%)	Clay	Colloids						
	ID		Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	<0.075 to 0.002 mm	Clay (%) <0.002 mm	(%) < 0.001 mm	Liquid Limit	Plastic Limit	Plasticity Index		
TH15-03	S4 (17'-18')	0.0	0.0	0.0	0.6	23.2	76.2	72.0	91	24	67		
TH15-04	\$6 (27'-28')	1.5	1.2	3.2	2.8	27.1	64.2	57.6	80	22	58		
TH15-05	S10 (42′-43′)	0.1	0.7	0.7	2.8	24.0	71.7	63.5	89	23	66		

Notes:

- 1. A high speed stirring device was used for 1 minute to disperse the test sample for particle size analysis.
- 2. The soil samples were air-dried during sample preparation for Atterberg limits and particle size analysis.

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: Cockburn & Calrossie

Sewer Relief (11-0107-18)

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: June 16, 2015

SAMPLE ID: TH15-03, S4 (17'-18') TESTED BY: Nestor Abarca

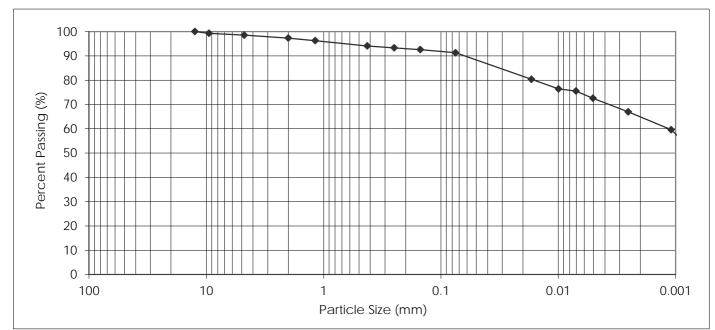
PARTICLE	PERCENT		PART	ICLE	PERCENT
SIZE	PASSING		SIZ	ĽΕ	PASSING
37.50 mm	100.0	1	1.18	mm	100.0
25.00 mm	100.0		0.425	mm	100.0
19.00 mm	100.0		0.250	mm	99.9
16.00 mm	100.0		0.150	mm	99.8
12.50 mm	100.0		0.075	mm	99.4
9.50 mm	100.0		0.005	mm	81.8
4.75 mm	100.0		0.002	mm	76.2
2.00 mm	100.0		0.001	mm	72.0
	Sand %				

Gravel, % 75 to 4.75 mm		Sand, %				
	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
0.0	0.0	0.0	0.6	23.2	76.2	72.0

June 24, 2015

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: Cockburn & Calrossie

Sewer Relief (11-0107-18)

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: June 16, 2015

SAMPLE ID: TH15-04, S6 (27'-28') TESTED BY: Nestor Abarca

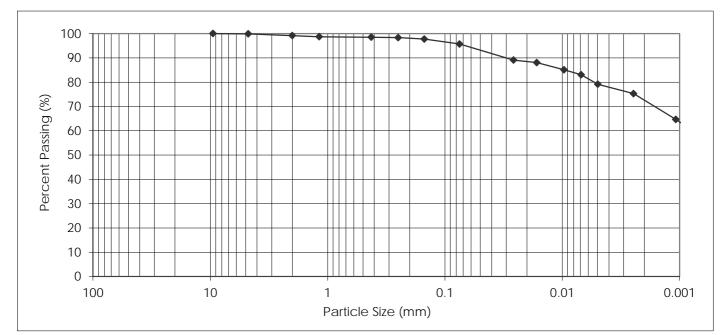
		1			
PARTICLE	PERCENT		PART	ICLE	PERCENT
SIZE	PASSING		SIZ	Έ	PASSING
37.50 mm	100.0]	1.18	mm	96.3
25.00 mm	100.0		0.425	mm	94.1
19.00 mm	100.0		0.250	mm	93.3
16.00 mm	100.0		0.150	mm	92.6
12.50 mm	100.0		0.075	mm	91.3
9.50 mm	99.3		0.005	mm	72.4
4.75 mm	98.5		0.002	mm	64.2
2.00 mm	97.3		0.001	mm	57.6
	Sand, %				

		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
1.5	1.2	3.2	2.8	27.1	64.2	57.6

June 24, 2015

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: Cockburn & Calrossie

Water Relief (11-0107-18)

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: June 16, 2015

SAMPLE ID: TH15-05, S10 (42'-43') TESTED BY: Nestor Abarca

PARTICLE	PERCENT		PART	ICLE	PERCENT
SIZE	PASSING		SIZ	Έ	PASSING
37.50 mm	100.0]	1.18	mm	98.7
25.00 mm	100.0		0.425	mm	98.5
19.00 mm	100.0		0.250	mm	98.3
16.00 mm	100.0		0.150	mm	97.7
12.50 mm	100.0		0.075	mm	95.7
9.50 mm	100.0		0.005	mm	79.2
4.75 mm	99.9		0.002	mm	71.7
2.00 mm	99.2		0.001	mm	63.5
	Sand. %				

Gravel, % 75 to 4.75 mm		Sand, %				
	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
0.1	0.7	0.7	2.8	24.0	71.7	63.5

June 24, 2015

Atterberg Limits

ASTM D4318 Method A- Multi-Point

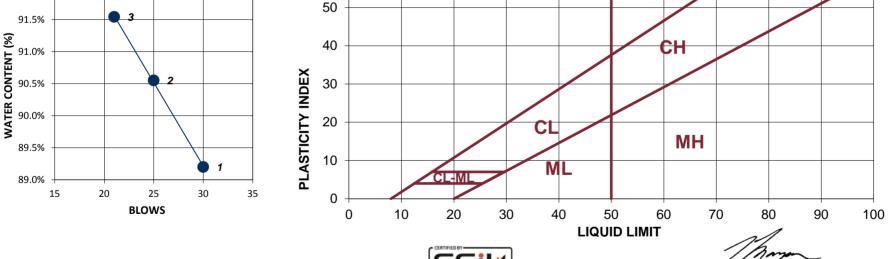
KGS Group Client:

Project Name: Cockburn & Calrossie Sewer

Project No: 123311974 Date Received: June 16, 2015

June 19, 2015 Date Tested:

Yan Wang Tested By:


LABORATORY

199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Reviewed By: Jason Thompson, C.E.T.

			rested by.	rair wang				
Sample :	TH15-03, S	64 (17'-18')						
	LIQUID LIMIT			 PL <i>P</i>	ASTIC LIMIT			
Trial	1	2	3	Triol	1	2		
No. of Blows	30	25	21	Trial	'	2	R	ESULTS
Tare No.	162	163	214	Tare No.	231	288	- 11	91
Wt. Sa. (wet+tare)(g)	37	40	37	Wt. Sa. (wet+tare)(g)	29.11	31.71	LL	91
Wt. Sa. (dry+tare)(g)	29	30	29	Wt. Sa. (dry+tare)(g)	27.51	29.58	PL	24
Wt. Tare (g)	20	20	21	Wt. Tare (g)	20.73	20.5	PL	24
Wt. Dry Soil (g)	8.9	10.4	8.6	Wt. Dry Soil (g)	6.8	9.1	PI	67
Wt. Water (g)	7.9	9.4	7.9	Wt. Water (g)	1.6	2.1		07
Water Content (%)	89.2%	90.5%	91.5%	Water Content (%)	23.6%	23.5%		
			60					
92.0%			60					
92.0%			50					
91.5%			50					
3			40					
≌		ı	40 —					

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

Sample:

Atterberg Limits

ASTM D4318 Method A- Multi-Point

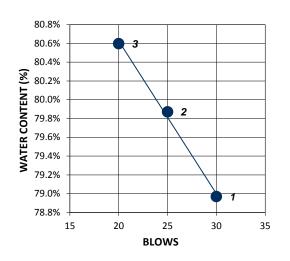
TH15-04, S6 (27'-28')

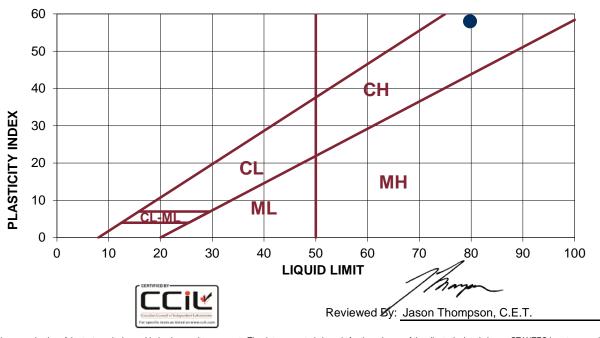
Client: KGS Group

Project Name: Cockburn & Calrossie Sewer

Project No: 123311974

Date Received: June 16, 2015 Date Tested: June 19, 2015


Tested By: Yan Wang **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			PLASTIC LIMIT			
Trial	1	2	3	Trial	1	2	
No. of Blows	30	25	20		1	2	
Tare No.	135	235	305	Tare No.	260	266	
Wt. Sa. (wet+tare)(g)	50	54	48	Wt. Sa. (wet+tare)(g)	34.06	31.93	
Wt. Sa. (dry+tare)(g)	37	39	36	Wt. Sa. (dry+tare)(g)	31.61	29.95	
Wt. Tare (g)	20	21	21	Wt. Tare (g)	20.52	20.77	
Wt. Dry Soil (g)	16.7	18.6	15.1	Wt. Dry Soil (g)	11.1	9.2	
Wt. Water (g)	13.2	14.8	12.1	Wt. Water (g)	2.5	2.0	
Water Content (%)	79.0%	79.9%	80.6%	Water Content (%)	22.1%	21.6%	

RESULTS					
LL	80				
PL	22				
PI	58				

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be considered above. the use of this report by any other party, with or without the knowledge of STANTEC.

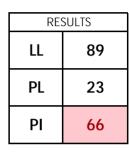
Atterberg Limits

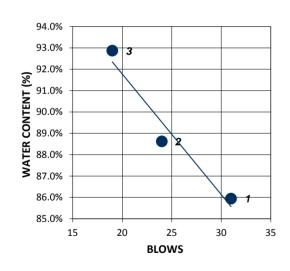
ASTM D4318 Method A- Multi-Point

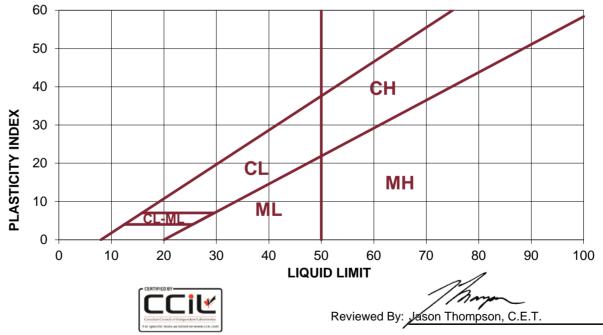
KGS Group Client:

Project Name: Cockburn & Calrossie Sewer

Project No: 123311974


Date Received: June 16, 2015 June 19, 2015 Date Tested:


Tested By: Yan Wang **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:	TH15-05, S1	10 (42'-43')				
	LIQUID LIMIT			 PL <i>A</i>	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	31	24	19	IIIai	'	2
Tare No.	318	286	249	Tare No.	289	195
Wt. Sa. (wet+tare)(g)	39	46	49	Wt. Sa. (wet+tare)(g)	31.38	33.12
Wt. Sa. (dry+tare)(g)	30	34	35	Wt. Sa. (dry+tare)(g)	29.22	30.71
Wt. Tare (g)	21	21	20	Wt. Tare (g)	19.86	20.1
Wt. Dry Soil (g)	9.8	13.0	14.7	Wt. Dry Soil (g)	9.4	10.6
Wt. Water (g)	8.4	11.5	13.7	Wt. Water (g)	2.2	2.4
Water Content (%)	85.9%	88.6%	92.9%	Water Content (%)	23.1%	22.7%

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

May 19, 2016 File: 123311974

Attention: Ms. Jacqueline MacLennan

KGS Group Inc. 3rd Floor – 865 Waverley Street Winnipeg, Manitoba R3T 5P4

Good day Jacqueline,

Reference: Cockburn and Calrossie Sewer Relief (11-0107-18)

Soil samples were submitted to our laboratory on May 4, 2016. The following tests were conducted on selected soil samples:

- Water content (ASTM D2216)
- Particle-Size Analysis (ASTM D422)
- Liquid Limit (multi-point), plastic limit, and plasticity index (ASTM D4318)
- Unconfined Compressive Strength of Cohesive Soil (ASTM D2166)

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

Regards,

STANTEC CONSULTING LTD.

Larry Presado, C.Tech. Geotechnical Technologist

Phone: (204) 488-6999 larry.presado@stantec.com Jason Thompson, C.E.T.
Senior Associate – Team Lead
Manager, Materials Testing Services

Phone: (204) 928-4004 jason.thompson@stantec.com

Attachment: Table 1 - Water Content Test Data

Table 2 - Particle Size Analysis and Atterberg Limits Test Data

3 x Particle Size Analysis Reports 12 x Atterberg Limits Reports

6 x Unconfined Compressive Strength Reports

May 19, 2016 Ms. Jacqueline MacLennan Page 2 of 3

Reference: Cockburn and Calrossie Sewer Relief (11-0107-018)

TABLE 1 WATER CONTENT TEST DATA

Testhole	Field Sample No.	Depth (ft.)	Water Content (%)	Testhole	Field Sample No.	Depth (ft.)	Water Content (%)
TU1/ 00	S3	9-10	22.9		S5	10	51.0
TH16-02	S5	18-19	56.3		S7	17-18	57.5
TH16-03	S5	17-18	53.4	TH16-08	S8	20	52.9
TU1/ OF	S2	-	25.0		S11	30	58.1
TH16-05	S4	18-19	53.1		S13	40	47.9
	S4	10	49.0		S3	12	52.2
TU1/ 0/	S7	20	51.8	TU1/ 00	S6	20	57.4
TH16-06	S10	30	51.5	TH16-09	S9	30	46.5
	S13	40	51.9		S12	40	54.1
TH16-08	S3	6	24.8				

May 19, 2016 Ms. Jacqueline MacLennan Page 3 of 3

Reference: Cockburn and Calrossie Sewer Relief (11-0107-018)

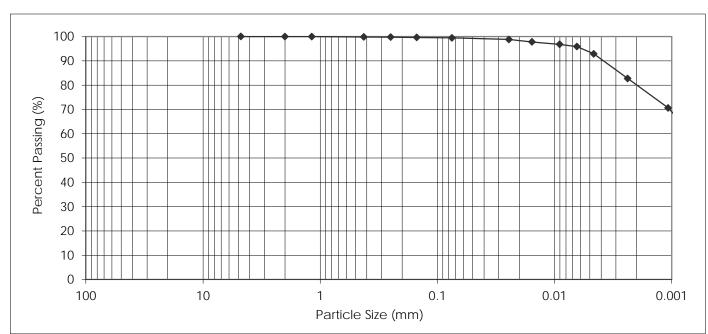
TABLE 2 PARTICLE SIZE AND ATTERBERG LIMITS TEST DATA

					Partic	le Size An	alysis			Att	terberg Li	mits
Testhole	Field Sample No.	Depth (ft.)	Gravel (%) 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Sand (%) Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt (%) <0.075 to 0.002 mm	Clay (%) <0.002 mm	Colloids (%) < 0.001 mm	Liquid Limit	Plastic Limit	Plasticity Index
TH16-02	S3	9-10	NT	NT	NT	NT	NT	NT	NT	26	16	10
TH16-02	S5	18-19	NT	NT	NT	NT	NT	NT	NT	105	32	73
TH16-03	S5	17-18	NT	NT	NT	NT	NT	NT	NT	98	29	69
TH16-05	S2	ı	NT	NT	NT	NT	NT	NT	NT	27	17	10
TH16-05	S4	18-19	NT	NT	NT	NT	NT	NT	NT	93	27	66
TH16-06	S 7	-	0.0	0.0	0.2	0.3	19.4	80.1	69.0	97	27	70
TH16-06	S10	-	NT	NT	NT	NT	NT	NT	NT	72	23	49
TH16-08	S 7	17-18	NT	NT	NT	NT	NT	NT	NT	100	30	70
TH16-08	S8	-	0.0	0.0	0.1	0.3	18.2	81.4	66.6	95	29	66
TH16-08	S11	-	NT	NT	NT	NT	NT	NT	NT	81	23	58
TH16-09	S6	-	0.0	0.1	0.3	0.5	18.2	80.9	67.3	98	29	69
TH16-09	S9	-	NT	NT	NT	NT	NT	NT	NT	85	25	60

Notes:

- 1. A high speed stirring device was used for 1 minute to disperse the test sample for particle size analysis
- 2. The soil samples were air-dried during sample preparation for Atterberg limits and particle size analysis
- 3. NT* sample not tested

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

PROJECT: Cockburn & Calrossie

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-06, S7 TESTED BY: Nestor Abarca

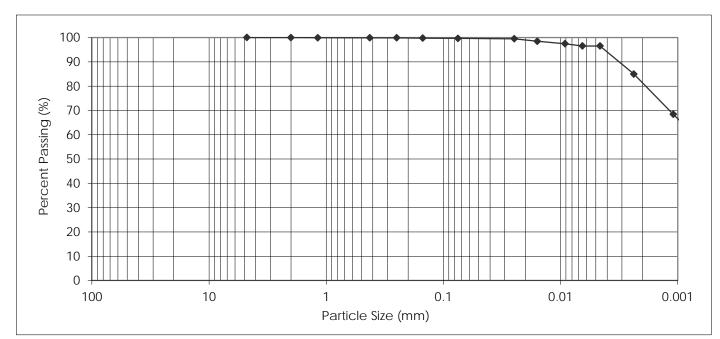
PART	TCLE	PERCENT		PARTI	CLE	PERCENT
SI	ZE	PASSING		SIZI	Ε	PASSING
37.50	mm	100.0		1.18	mm	100.0
25.00	mm	100.0		0.425	mm	99.8
19.00	mm	100.0		0.250	mm	99.7
16.00	mm	100.0		0.150	mm	99.6
12.50	mm	100.0		0.075	mm	99.5
9.50	mm	100.0		0.005	mm	93.6
4.75	mm	100.0		0.002	mm	80.1
2.00	mm	100.0		0.001	mm	69.0
		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse	Medium	Fine	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm

Gravel, %
75 to 4.75 mm

Coarse
Coarse
Medium
Fine
<0.425 to 0.075 mm
Silt, %
Clay, %
Colloids, %
<0.001 mm
0.00 mm
0.00 mm
0.01 mm
80.1
69.0

REPORT DATE: May 14, 2016

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

PROJECT: Cockburn & Calrossie

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-08, S8 TESTED BY: Nestor Abarca

PART	ICI F	PERCENT		PART	ICI F	PERCENT
FARI	FARTICLL PERCEIVI			FANI	ICLL	ILICLINI
SIZ	ZE	PASSING		SIZ	ĽΕ	PASSING
37.50	37.50 mm 100.0			1.18	mm	99.9
25.00	25.00 mm 100		0.425 mm		99.9	
19.00	mm	100.0		0.250	mm	99.9
16.00	mm	100.0		0.150	mm	99.7
12.50	mm	100.0		0.075	mm	99.6
9.50	mm	100.0		0.005	mm	96.5
4.75	mm	100.0		0.002	mm	81.4
2.00	mm	100.0		0.001	mm	66.6
		Sand, %	-			
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm

REPORT DATE: May 14, 2016

0.0

0.0

0.3

18.2

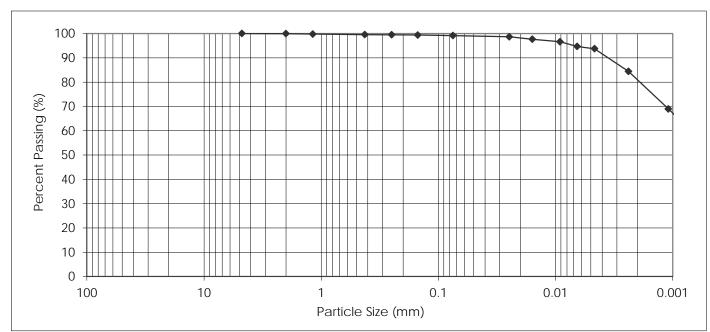
REVIEWED BY: Jason Thompson, C.E.T.

81.4

66.6

0.1

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

PROJECT: Cockburn & Calrossie

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-09, \$6 TESTED BY: Nestor Abarca

PAR	TICLE	PERCENT		PARTI	CLE	PERCENT
SI	ZE	PASSING		SIZE	Ξ	PASSING
37.50	mm	100.0		1.18	mm	99.8
25.00	mm	100.0		0.425	mm	99.6
19.00	mm	100.0		0.250	mm	99.5
16.00	mm	100.0		0.150	mm	99.4
12.50	mm	100.0		0.075	mm	99.1
9.50	mm	100.0		0.005	mm	93.9
4.75	mm	100.0		0.002	mm	80.9
2.00	mm	99.9		0.001	mm	67.3
		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse	Medium	Fine	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm

Gravel, %
75 to 4.75 mm

Coarse Medium Fine Co.075 to 0.002 mm
Colloids, %
<a href="#"

REPORT DATE: May 14, 2016

Atterberg Limits

ASTM D4318

Method A- Multi-Point

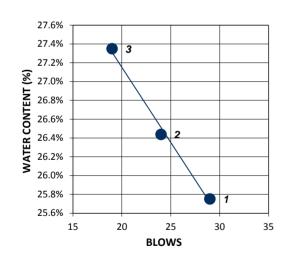
KGS Group Client:

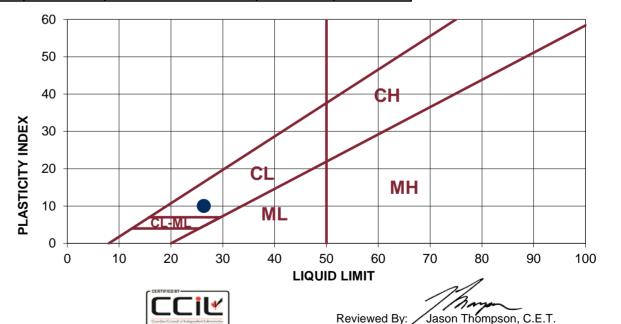
Project Name: Cockburn & Calrossie

Project No: 123311974

Date Received: May 4, 2016 Date Tested: May 12, 2016

Tested By: Nestor Abarca **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4


Tel: (204) 488-6999

sample :	1H16-C)2, 53					
	LIQUID LIMIT			PLA:	STIC LIMIT		
Trial	1	2	3		1	2	
No. of Blows	29	24	19	Illai	1	2	
Tare No.	158	181	217	Tare No.	261	280	
Wt. Sa. (wet+tare)(g)	48	41	43	Wt. Sa. (wet+tare)(g)	40.82	35.96	
Wt. Sa. (dry+tare)(g)	43	37	38	Wt. Sa. (dry+tare)(g)	37.99	33.78	

No. of Blows	29	24	19	IIIai	'	2
Tare No.	158	181	217	Tare No.	261	280
Wt. Sa. (wet+tare)(g)	48	41	43	Wt. Sa. (wet+tare)(g)	40.82	35.96
Wt. Sa. (dry+tare)(g)	43	37	38	Wt. Sa. (dry+tare)(g)	37.99	33.78
Wt. Tare (g)	20	20	19	Wt. Tare (g)	20.39	20.21
Wt. Dry Soil (g)	22.3	16.3	19.1	Wt. Dry Soil (g)	17.6	13.6
Wt. Water (g)	5.7	4.3	5.2	Wt. Water (g)	2.8	2.2
Water Content (%)	25.8%	26.4%	27.3%	Water Content (%)	16.1%	16.1%

RE:	SULTS
LL	26
PL	16
PI	10

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

Sample:

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-02, S5

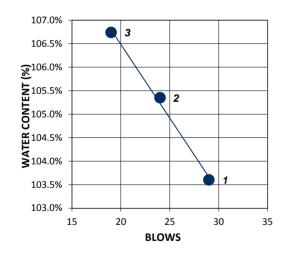
Client: KGS Group
Project Name: Cockburn & Calrossie

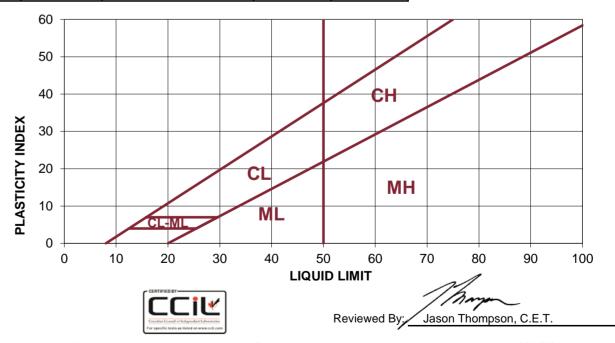
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 11, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

		- ,				
	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	29	24	19	Illai	'	2
Tare No.	133	140	178	Tare No.	238	310
Wt. Sa. (wet+tare)(g)	38	40	39	Wt. Sa. (wet+tare)(g)	30.54	28.54
Wt. Sa. (dry+tare)(g)	29	30	29	Wt. Sa. (dry+tare)(g)	28.17	26.62
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.70	20.54
Wt. Dry Soil (g)	9.2	9.9	9.2	Wt. Dry Soil (g)	7.5	6.1
Wt. Water (g)	9.5	10.4	9.8	Wt. Water (g)	2.4	1.9
Water Content (%)	103.6%	105.3%	106.7%	Water Content (%)	31.7%	31.6%

RESULTS		
LL	105	
PL	32	
PI	73	

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

Sample:

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-03, S5

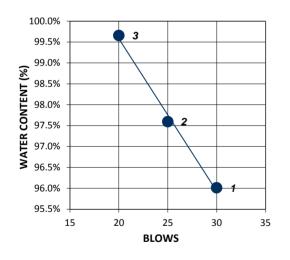
Client: KGS Group
Project Name: Cockburn & Calrossie

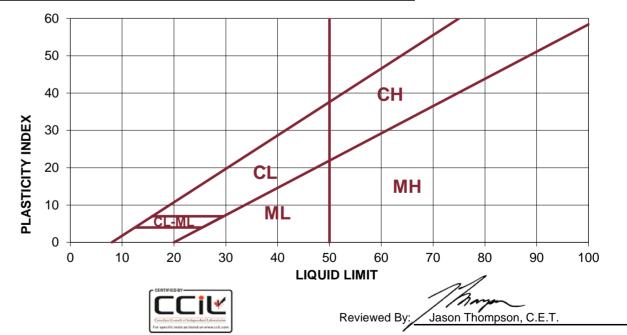
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

		,				
	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	30	25	20	IIIdi	1	2
Tare No.	133	140	178	Tare No.	238	310
Wt. Sa. (wet+tare)(g)	39	40	43	Wt. Sa. (wet+tare)(g)	29.30	31.07
Wt. Sa. (dry+tare)(g)	30	30	31	Wt. Sa. (dry+tare)(g)	27.34	28.68
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.68	20.54
Wt. Dry Soil (g)	10.0	10.4	11.7	Wt. Dry Soil (g)	6.7	8.1
Wt. Water (g)	9.6	10.2	11.7	Wt. Water (g)	2.0	2.4
Water Content (%)	96.0%	97.6%	99.7%	Water Content (%)	29.4%	29.4%

RESULTS			
LL	98		
PL	29		
PI	69		

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

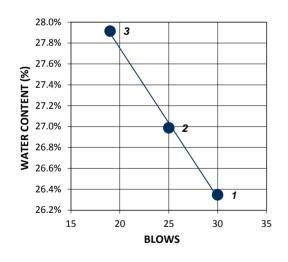
Atterberg Limits

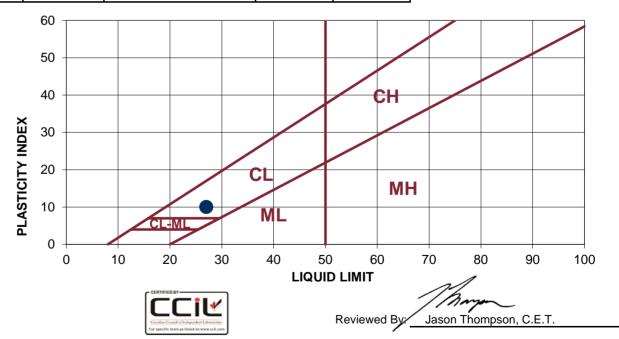
ASTM D4318 Method A- Multi-Point

KGS Group Client: Project Name: Cockburn & Calrossie

Project No: 123311974

Date Received: May 4, 2016 Date Tested: May 12, 2016


Tested By: Nestor Abarca **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:	TH16-0	05, S2				
LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	19	Illai	'	2
Tare No.	189	196	259	Tare No.	266	311
Wt. Sa. (wet+tare)(g)	43	41	44	Wt. Sa. (wet+tare)(g)	36.69	38.28
Wt. Sa. (dry+tare)(g)	38	37	39	Wt. Sa. (dry+tare)(g)	34.33	35.72
Wt. Tare (g)	19	20	20	Wt. Tare (g)	20.61	20.77
Wt. Dry Soil (g)	18.8	17.0	18.3	Wt. Dry Soil (g)	13.7	15.0
Wt. Water (g)	4.9	4.6	5.1	Wt. Water (g)	2.4	2.6
Water Content (%)	26.3%	27.0%	27.9%	Water Content (%)	17.2%	17.1%

RESULTS				
LL	27			
PL	17			
PI	10			

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. The data presented above is for the sole use of the client stipulated above. STANTEC is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of STANTEC.

Atterberg Limits

ASTM D4318 Method A- Multi-Point Client: KGS Group

Project Name: Cockburn & Calrossie
Project No: 123311974

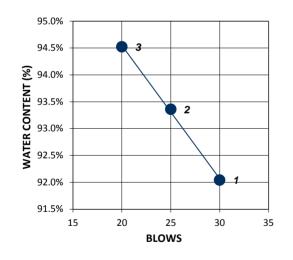
Date Received: May 4, 2016

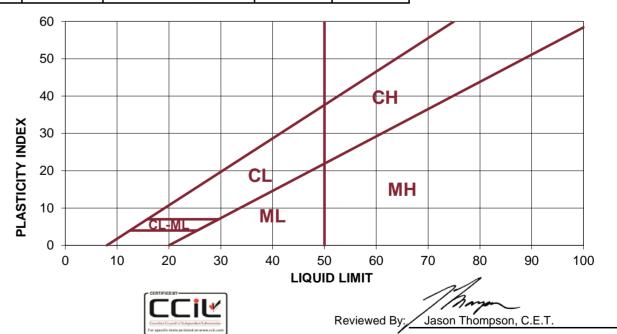
Date Tested: May 11, 2016
Tested By: Nestor Abarca

16 Tel: (204) 488-6999

Sample: TH16-05, \$4

	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIai	'	2
Tare No.	154	235	247	Tare No.	264	293
Wt. Sa. (wet+tare)(g)	38	40	40	Wt. Sa. (wet+tare)(g)	28.83	31.05
Wt. Sa. (dry+tare)(g)	29	31	30	Wt. Sa. (dry+tare)(g)	27.00	28.87
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.23	20.89
Wt. Dry Soil (g)	9.3	10.1	10.4	Wt. Dry Soil (g)	6.8	8.0
Wt. Water (g)	8.6	9.4	9.8	Wt. Water (g)	1.8	2.2
Water Content (%)	92.0%	93.4%	94.5%	Water Content (%)	27.0%	27.3%


RESULTS		
LL	93	
PL	27	
PI	66	


LABORATORY

199 Henlow Bay

Winnipeg, Manitoba

Canada R3Y 1G4

Atterberg Limits

ASTM D4318 Method A- Multi-Point Client: KGS Group

Project Name: Cockburn & Calrossie

Project No: 123311974

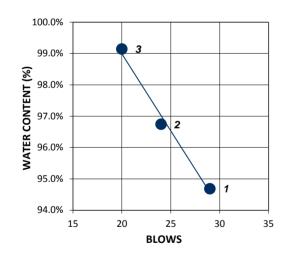
Date Received: May 4, 2016

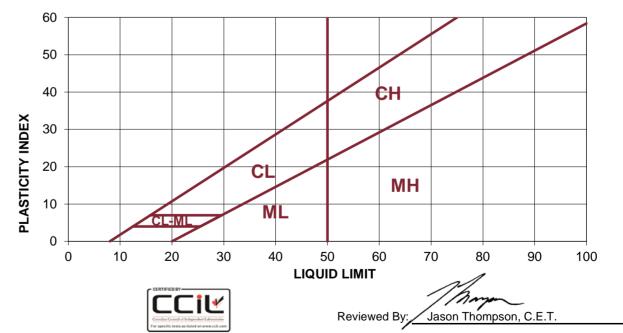
Date Tested: May 11, 2016
Tested By: Nestor Abarca

Tel: (204) 488-6999

Winnipeg, Manitoba

Canada R3Y 1G4


LABORATORY


199 Henlow Bay

Sample: TH16-06, S7

	LIQUID LIMIT			PLA	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	29	24	20	Illai	1	2
Tare No.	152	157	192	Tare No.	243	254
Wt. Sa. (wet+tare)(g)	36	38	36	Wt. Sa. (wet+tare)(g)	30.70	32.96
Wt. Sa. (dry+tare)(g)	28	29	28	Wt. Sa. (dry+tare)(g)	28.59	30.31
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.86	20.65
Wt. Dry Soil (g)	8.5	8.9	8.2	Wt. Dry Soil (g)	7.7	9.7
Wt. Water (g)	8.0	8.6	8.1	Wt. Water (g)	2.1	2.7
Water Content (%)	94.7%	96.7%	99.1%	Water Content (%)	27.3%	27.4%

RESULTS		
LL	97	
PL	27	
PI	70	

Atterberg Limits

ASTM D4318

Method A- Multi-Point

TH16-06, S10

Client: KGS Group

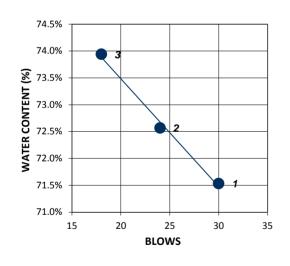
Project Name: Cockburn & Calrossie

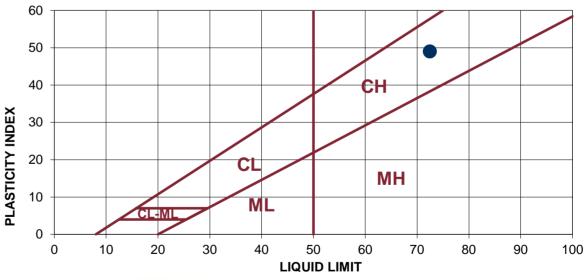
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 10, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			PL#	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	30	24	18	Illai	'	2
Tare No.	158	181	217	Tare No.	261	280
Wt. Sa. (wet+tare)(g)	41	44	39	Wt. Sa. (wet+tare)(g)	35.13	32.56
Wt. Sa. (dry+tare)(g)	33	34	30	Wt. Sa. (dry+tare)(g)	32.40	30.29
Wt. Tare (g)	20	20	19	Wt. Tare (g)	20.40	20.22
Wt. Dry Soil (g)	12.3	13.8	11.3	Wt. Dry Soil (g)	12.0	10.1
Wt. Water (g)	8.8	10.0	8.4	Wt. Water (g)	2.7	2.3
Water Content (%)	71.5%	72.6%	73 9%	Water Content (%)	22.8%	22.5%

RE	RESULTS				
LL	72				
PL	23				
PI	49				

Canadian Council of Independent Laboratories
For specific lesis as listed on www.ccii.com

Reviewed By: Jason Thompson, C.E.T.

Atterberg Limits

ASTM D4318

Method A- Multi-Point

TH16-08, S7

Client: KGS Group

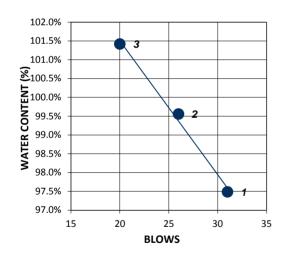
Project Name: Cockburn & Calrossie

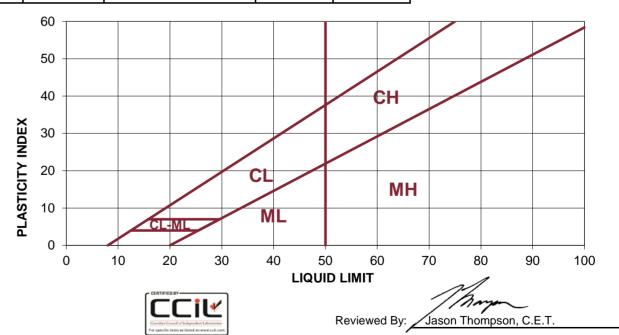
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 11, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

		,				
	LIQUID LIMIT			 PLA	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	31	26	20	Illai	1	2
Tare No.	234	245	249	Tare No.	262	287
Wt. Sa. (wet+tare)(g)	37	38	38	Wt. Sa. (wet+tare)(g)	30.28	33.21
Wt. Sa. (dry+tare)(g)	29	29	29	Wt. Sa. (dry+tare)(g)	28.10	30.29
Wt. Tare (g)	21	20	20	Wt. Tare (g)	20.72	20.57
Wt. Dry Soil (g)	8.4	9.0	9.2	Wt. Dry Soil (g)	7.4	9.7
Wt. Water (g)	8.2	9.0	9.3	Wt. Water (g)	2.2	2.9
Water Content (%)	97.5%	99.6%	101.4%	Water Content (%)	29.5%	30.0%

RE:	RESULTS				
LL	100				
PL	30				
PI	70				

Atterberg Limits

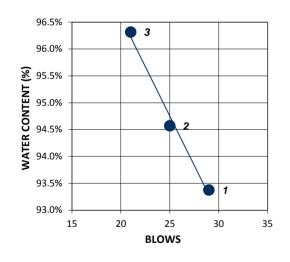
ASTM D4318 Method A- Multi-Point

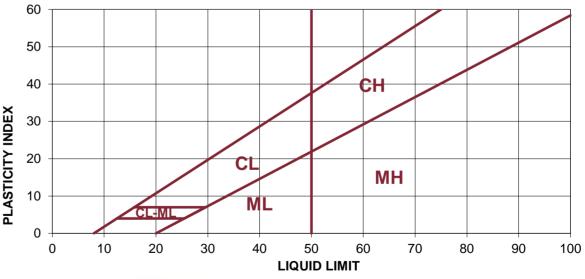
KGS Group Client:

Project Name: Cockburn & Calrossie

Project No: 123311974 Date Received: May 4, 2016

Date Tested: May 12, 2016


Tested By: Nestor Abarca **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:	TH16-0	08, S8				
	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	29	25	21	IIIai	'	2
Tare No.	152	157	192	Tare No.	243	254
Wt. Sa. (wet+tare)(g)	38	38	42	Wt. Sa. (wet+tare)(g)	30.56	30.81
Wt. Sa. (dry+tare)(g)	29	30	31	Wt. Sa. (dry+tare)(g)	28.40	28.53
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.85	20.64
Wt. Dry Soil (g)	9.5	9.2	11.4	Wt. Dry Soil (g)	7.6	7.9
Wt. Water (g)	8.9	8.7	11.0	Wt. Water (g)	2.2	2.3
Water Content (%)	93.4%	94.6%	96.3%	Water Content (%)	28.6%	28.9%

RESULTS		
LL	95	
PL	29	
PI	66	

Reviewed By: Jason Thompson, C.E.T.

Atterberg Limits

ASTM D4318 Method A- Multi-Point

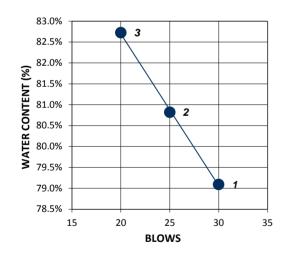
TH16-08, S11

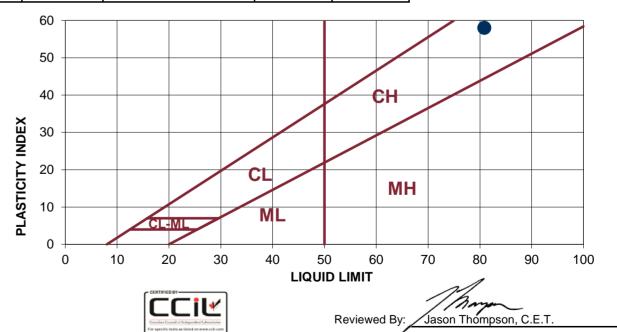
Client: KGS Group

Project Name: Cockburn & Calrossie
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016
Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

•						
	LIQUID LIMIT			 PL <i>F</i>	ASTIC LIMIT	
Trial	1	2	3		1	2
No. of Blows	30	25	20	Illai	'	2
Tare No.	234	245	249	Tare No.	262	287
Wt. Sa. (wet+tare)(g)	41	41	41	Wt. Sa. (wet+tare)(g)	30.65	30.48
Wt. Sa. (dry+tare)(g)	32	32	32	Wt. Sa. (dry+tare)(g)	28.76	28.59
Wt. Tare (g)	21	20	20	Wt. Tare (g)	20.70	20.55
Wt. Dry Soil (g)	11.2	11.7	11.5	Wt. Dry Soil (g)	8.1	8.0
Wt. Water (g)	8.9	9.4	9.5	Wt. Water (g)	1.9	1.9
Water Content (%)	79.1%	80.8%	82.7%	Water Content (%)	23.4%	23.5%

RESULTS		
LL	81	
PL	23	
PI	58	

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-09, S6

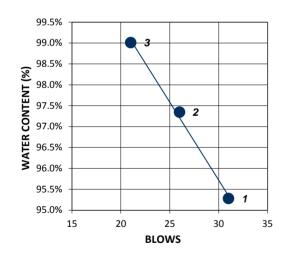
Client: KGS Group
Project Name: Cockburn & Calrossie

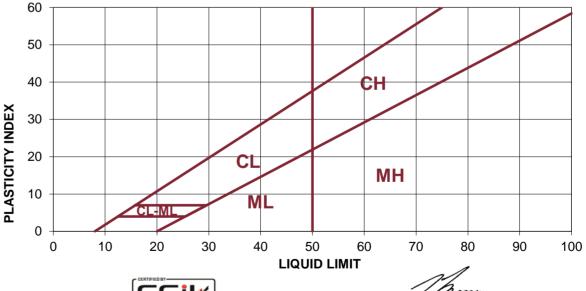
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 10, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			 PL <i>F</i>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	31	26	21	IIIdi	'	2
Tare No.	189	196	259	Tare No.	266	311
Wt. Sa. (wet+tare)(g)	37	40	39	Wt. Sa. (wet+tare)(g)	31.55	32.1
Wt. Sa. (dry+tare)(g)	28	30	30	Wt. Sa. (dry+tare)(g)	29.11	29.56
Wt. Tare (g)	19	20	20	Wt. Tare (g)	20.61	20.79
Wt. Dry Soil (g)	9.1	10.6	9.1	Wt. Dry Soil (g)	8.5	8.8
Wt. Water (g)	8.7	10.3	9.0	Wt. Water (g)	2.4	2.5
Water Content (%)	95.3%	97.3%	99.0%	Water Content (%)	28.7%	29.0%

RESULTS		
LL	98	
PL	29	
PI	69	

Consilian Council of Independent Laboratories
For specific lesis as listed on www.ccil.com

Reviewed By: Jason Thompson, C.E.T.

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-09, S9

Client: KGS Group

Project Name: Cockburn & Calrossie

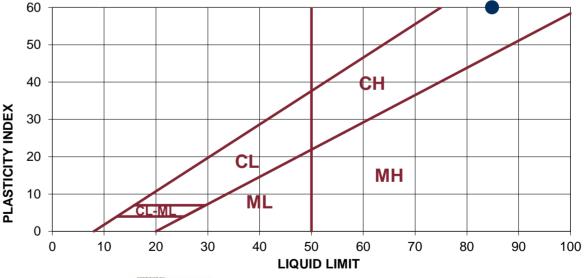
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			 PLA	STIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIai	'	2
Tare No.	154	235	247	Tare No.	264	293
Wt. Sa. (wet+tare)(g)	42	40	44	Wt. Sa. (wet+tare)(g)	33.52	33.69
Wt. Sa. (dry+tare)(g)	32	31	33	Wt. Sa. (dry+tare)(g)	30.88	31.15
Wt. Tare (g)	20	21	20	Wt. Tare (g)	20.23	20.87
Wt. Dry Soil (g)	12.4	10.4	12.9	Wt. Dry Soil (g)	10.7	10.3
Wt. Water (g)	10.3	8.8	11.2	Wt. Water (g)	2.6	2.5
Water Content (%)	83.2%	84.8%	86.6%	Water Content (%)	24.8%	24.7%

RESULTS		
LL	85	
PL	25	
PI	60	

Canadian Council of Independent Laboratories
For specific tests as listed on www.ccii.com

Reviewed By: <u>Jason Thompson, C.E.T.</u>

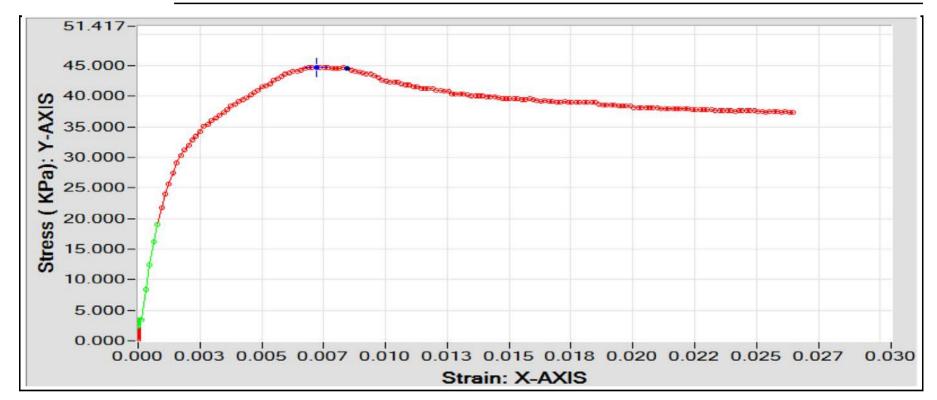
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-06, S7
TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	71.36
Height, mm:	162.17
Height/Diameter Ratio:	2.27 : 1
Sample Weight, g:	1108.87
Moisture Content. %:	53.1
Wet Unit Weight, kN/m³:	16.76
Dry Unit Weight, kN/m³:	10.95
Void ratio:	1.46
Saturation, %:	99.84
Unconfined Compressive Strength, kPa:	45
Strain at Failure, %:	0.72

REPORT DATE: May 18, 2016

REVIEWED BY:

Asson Thompson, C.E.T.

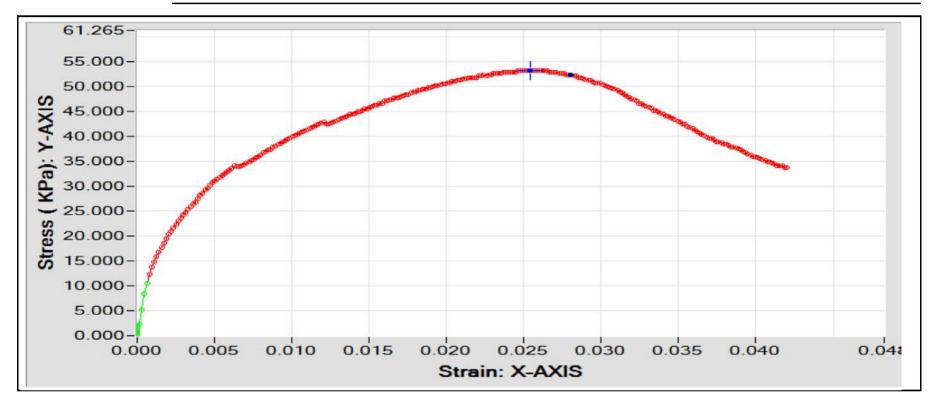
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016 SAMPLE ID: TH16-06, S10 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

REPORT DATE: May 18, 2016

Diameter, mm:	71.88
Height, mm:	162.10
Height/Diameter Ratio:	2.26 : 1
Sample Weight, g:	1130.61
Moisture Content. %:	52.4
Wet Unit Weight, kN/m³:	16.84
Dry Unit Weight, kN/m³:	11.05
Void ratio:	1.44
Saturation, %:	100.16
Unconfined Compressive Strength, kPa:	53
Strain at Failure, %:	2.54

REVIEWED BY: Jason Thompson, C.E.T.

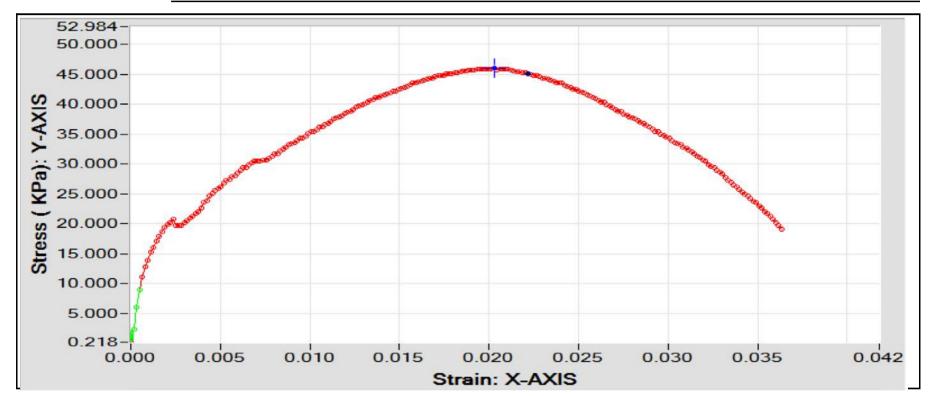
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL **ASTM D2166**

PROJECT: Cockburn/Calrossie (11-0107-18) Client KGS Group Inc.

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: **REPORT NO.:** Ms. Jacqueline MacLennan

SAMPLED BY: Client DATE RECEIVED: May 4, 2016 SAMPLE ID: TH16-08, S8 TESTED BY: Larry Presado

Clay, grey, firm, moist, high plasticity Soil Description:

trace silt till inclusions

Failure Description: Diagonal shear failure

REPORT DATE: May 18, 2016

Diameter, mm:	72.11
Height, mm:	161.47
Height/Diameter Ratio:	2.24 : 1
Sample Weight, g:	1099.55
Moisture Content. %:	58.1
Wet Unit Weight, kN/m³:	16.34
Dry Unit Weight, kN/m³:	10.34
Void ratio:	1.61
Saturation, %:	99.39
Unconfined Compressive Strength, kPa:	45
Strain at Failure, %:	2.03

REVIEWED BY: /Jason Thompson, C.E.T.

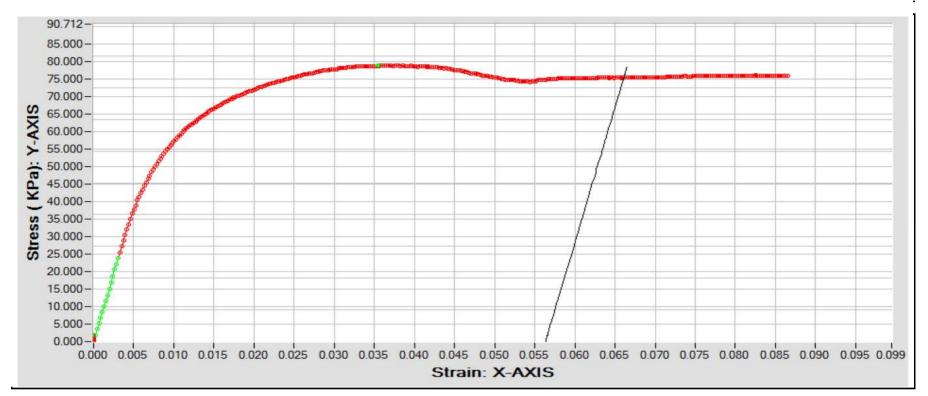
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL **ASTM D2166**

PROJECT: Cockburn/Calrossie (11-0107-18) Client KGS Group Inc.

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

REPORT NO.: Attention: Ms. Jacqueline MacLennan

SAMPLED BY: DATE RECEIVED: Client May 4, 2016 SAMPLE ID: TH16-08, S11 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	71.85
Height, mm:	116.27
Height/Diameter Ratio:	1.62 : 1
Sample Weight, g:	818.44
Moisture Content. %:	54.1
Wet Unit Weight, kN/m³:	17.02
Dry Unit Weight, kN/m³:	11.04
Void ratio:	1.44
Saturation, %:	103.28
Unconfined Compressive Strength, kPa:	79
Strain at Failure, %:	3.54

REPORT DATE: May 18, 2016

REVIEWED BY: / Jason Thompson, C.E.T.

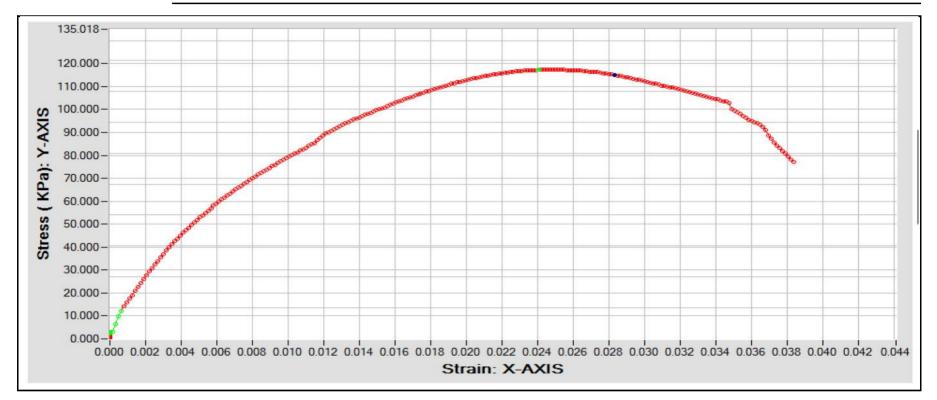
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-09, S6 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	72.09
Height, mm:	161.26
Height/Diameter Ratio:	2.24 :1
Sample Weight, g:	1105.62
Moisture Content. %:	51.2
Wet Unit Weight, kN/m³:	17.00
Dry Unit Weight, kN/m³:	10.89
Void ratio:	1.47
Saturation, %:	95.40
Unconfined Compressive Strength, kPa:	117
Strain at Failure, %:	2.41

REPORT DATE: May 18, 2016

REVIEWED BY:

Jason Thompson, C.E.T.

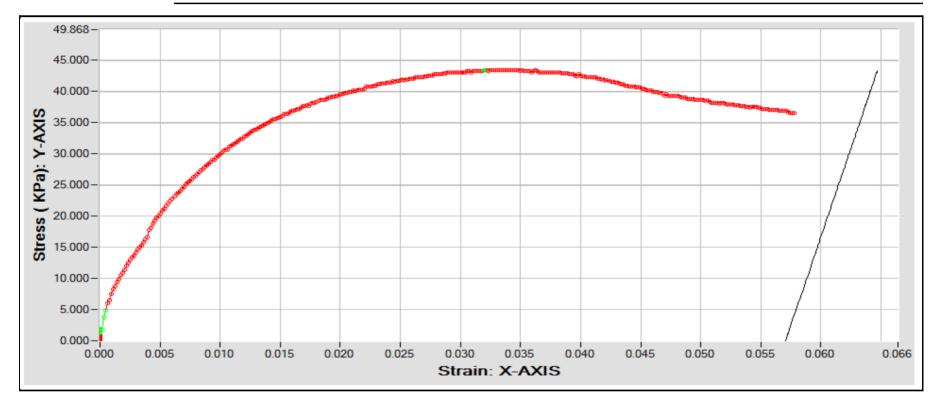
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-09, S9 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	72.82
Height, mm:	160.54
Height/Diameter Ratio:	2.2:1
Sample Weight, g:	1117.87
Moisture Content. %:	52.1
Wet Unit Weight, kN/m³:	16.40
Dry Unit Weight, kN/m³:	10.77
Void ratio:	1.50
Saturation, %:	95.40
Unconfined Compressive Strength, kPa:	43
Strain at Failure, %:	3.20

REPORT DATE: May 18, 2016

REVIEWED BY:

ason Thompson, C.E.T.