

FINAL REPORT

GEOTECHNICAL INVESTIGATION PROPOSED PUMPING STATION ADDITION 5719 ROBLIN BLVD WINNIPEG, MANITOBA

Prepared for: City of Winnipeg

SNC-LAVALIN INC.

June 19, 2017 FINAL REPORT Project No.: 644548

NOTICE TO READER

This report has been prepared and the work referred to in this report has been undertaken by SNC-Lavalin Inc. (SNC-Lavalin), for the exclusive use of the City of Winnipeg (the Client), who have been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

The findings, conclusions and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect SNC-Lavalin's best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made with respect to the professional services provided to Client or the findings, conclusions and recommendations contained in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered or project parameters change, modifications to this report may be necessary.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final version of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

SNC-Lavalin disclaims any liability to third parties in respect of the use of (publication, reference, quoting, or distribution), any decision made based on, or reliance on this report or any of its contents.

Proposed Pumping S	tation Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

TABLE OF CONTENTS

1	INTR	ODUC.	TION1
2	SITE LOCATION AND DESCRIPTION1		
3	SCO	PE OF	WORK1
4	GEO	TECHN	IICAL INVESTIGATION DETAILS2
	4.1	Drilli	NG INVESTIGATION
		4.1.1	Borehole Drilling 2
	4.2	GEOTE	CHNICAL LABORATORY TESTING
5	SUB	SURFA	CE CONDITIONS
	5.1	SOIL P	ROFILE
	5.2	GROUN	NDWATER SEEPAGE AND SLOUGHING
	5.3	COBBL	ES AND BOULDERS
6	GEO	TECHN	IICAL RECOMMENDATIONS4
	6.1	GEOTE	CHNICAL CONSIDERATIONS
	6.2	SITE P	REPARATION4
		6.2.1	General 4
		6.2.2	Proof Rolling 5
	6.3	FILL M	ATERIALS, PLACEMENT AND COMPACTION
		6.3.1	General 5
		6.3.2	Subgrade Fill
		6.3.3	Structural Fill
		6.3.4	Utility Trench Backfill7
		6.3.5	Fill Settlement
	6.4	FOUND	ATIONS9
		6.4.1	Limit States Design
		6.4.2	Drilled, Cast-in-Place Concrete Piles10
		6.4.3	Pile Settlement and Pile Group Effects11
		6.4.4	Grade Beams and Pile Caps12
	6.5	GRADE	SUPPORTED CONCRETE SLABS13

Proposed Pumping Station Addition – 5719 Roblin Blv	rd., Winnipeg, MB	June 19, 2017
644548 City of Winnipeg		Final Report

	6.6 FOUNDATION CONCRETE	13
7	CONSTRUCTION CONTROL AND MONITORING	14
8	DISCLOSURE OF INFORMATION AND CLOSURE	15

LIST OF TABLES

Table 6.1 – Base and sub base gradation specifications	7
Table 6.2 – Estimated fill settlement versus compaction level.	
Table 6.3 – Shaft resistance (drilled piles)	
Table 6.4 – Foundation Concrete Requirements	

LIST OF APPENDICES

Appendix I	Site Plan – Borehole Locations
------------	--------------------------------

- Appendix IITerms and Symbols, Borehole LogsAppendix IIILaboratory Testing Results

Proposed Pumping Sta	tion Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

1 INTRODUCTION

This report presents the results of the geotechnical investigation conducted by SNC-Lavalin for the proposed City of Winnipeg Pumping Station expansion located at 5719 Roblin Blvd (north of the intersection of Roblin Blvd and Community Row) in Winnipeg, Manitoba. The geotechnical investigation included the field investigation program (borehole drilling), field and laboratory soil testing and a report that provides geotechnical foundation design recommendations for development of the site.

The proposed pump house expansion covers an area of approximately 28 m². The purpose of the addition is to house electrical equipment with a total weight of approximately 2,500 kg. It is understood that the expansion will consist of an at-grade concrete structure with a grade-supported concrete floor slab. It is anticipated that a pile/grade beam foundation system will be utilized to support the addition.

2 SITE LOCATION AND DESCRIPTION

The existing pumping station is located at 5719 Roblin Blvd in Winnipeg, Manitoba. The proposed addition will be constructed along the north edge of the existing building structure. The site is currently undeveloped land with grass as the primary vegetation. A site plan showing the existing pumping station and proposed addition and the location of the borehole has been shown as Figure I.1, Appendix I.

3 SCOPE OF WORK

The objective of the geotechnical investigation was to conduct a field investigation within the proposed building addition footprint and to provide geotechnical recommendations to support design of the proposed structure foundations. The following scope of work was completed:

- Field investigation consisting of one (1) deep borehole, geotechnical field tests, logging of soils and collection of soil samples for laboratory testing. The deep borehole was drilled to a depth of 9.5 m below ground level (mbgl);
- Laboratory testing of select soil samples obtained from the borehole, including water contents, Atterberg limits, grain size distribution analysis, and unconfined compressive strengths (UCS); and,
- Preparation of a report summarizing the field investigation and providing geotechnical recommendations containing foundation recommendations.

	Station Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

The borehole location is shown on the site plan in Appendix I, and the borehole log has been included in Appendix II.

4 GEOTECHNICAL INVESTIGATION DETAILS

4.1 Drilling Investigation

The field investigation was conducted on April 21, 2017. Maple Leaf Drilling Ltd. from Winnipeg, Manitoba utilized a track-mounted drill rig equipped with continuous flight, solid stem augers and an automatic standard penetration test (SPT) hammer to drill the borehole.

4.1.1 Borehole Drilling

Disturbed soil samples were collected from the auger cuttings and from the SPT sampler. Relatively undisturbed Shelby tube samples were taken at select locations. All soil samples were transported to the SNC-Lavalin soil testing laboratory Saskatoon, Saskatchewan. The soil samples were stored in a humidity-controlled room to prevent drying prior to testing. Soil samples collected from the borehole are shown on the borehole logs in Appendix II.

Field testing included pocket penetrometer tests (PP's) conducted on all cohesive samples collected and SPT's conducted at selected depths. The results of field tests are presented on the borehole log in Appendix II. The Terms and Symbols used on the borehole logs are provided in Appendix II preceding the borehole logs.

The borehole was backfilled with auger cuttings and bentonite chips to surface.

4.2 Geotechnical Laboratory Testing

Geotechnical laboratory tests were conducted on soil samples obtained from the borehole. The laboratory analyses included water contents, Atterberg limits, grain size distribution analysis, and unconfined compressive strength (UCS) tests.

The detailed laboratory test results are provided in Appendix III and also annotated on the borehole log presented in Appendix II.

	tation Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

5 SUBSURFACE CONDITIONS

5.1 Soil Profile

The general subsurface soil conditions consisted of a thin veneer of organic topsoil at the surface. The organic topsoil was underlain by a 0.6 m thick layer of clay fill, followed by 7.6 m thick layer of high plastic clay which was underlain by glacial till which extended to a depth of at least 9.5 mbgl, the maximum depth drilled.

The clay fill was silty, contained trace amounts of fine to coarse grained sand, trace amounts of organics, occasional rootlets, was mottled brown to black, firm, medium plastic and moist. The clay contained trace silt, was brown, firm becoming stiff with depth, high plastic, moist and contained occasional silt pockets and oxidation. The glacial silt till was clayey, contained some fine to coarse grained sand, trace fine to coarse grained gravel, was light brown, dense becoming very dense with depth, non-plastic, and moist.

5.2 Groundwater Seepage and Sloughing

No groundwater seepage or sloughing was encountered during the drilling and within 10 minutes after the drilling was completed.

5.3 Cobbles and Boulders

Suspected cobbles/boulders were encountered within the glacial silt till deposit underlying the high plastic clay deposts during test drilling.

Glacial till is comprised of a heterogeneous mixture of clay, silt, sand and gravel-sized particles. Due to the nature of the formation and deposition, glacial till also inherently contains larger particle sizes (cobbles and boulders). Cobbles and boulders are often located randomly within glacial till deposits but can also form sorted layers, such as boulder pavements. The actual location and frequency of cobbles and boulders varies and the probability of encountered such deposits increases with the number of holes drilled, volume of soil excavated, number of piles installed, etc. Considering this, cobbles and boulders should be anticipated during construction.

1 1 0	ation Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

6 GEOTECHNICAL RECOMMENDATIONS

6.1 Geotechnical Considerations

It is understood that the building will be supported on a pile/grade beam foundation system with a grade-supported concrete floor slab. It is also understood that the floor elevation of the building will be situated near the existing ground level.

The subsurface soil profile consisted of 0.6 m of clay fill overlying high plastic clay, followed by glacial till. No groundwater seepage/sloughing were encountered within the borehole and the borehole remained open during and immediately after drilling.

A deep foundation system consisting of drilled, cast-in-place concrete piles should perform satisfactorily at this site.

Design recommendations have been presented for site preparation; fill materials, placement and compaction; foundations; grade-supported concrete slabs; and, foundations concrete.

6.2 Site Preparation

6.2.1 General

Excess water should be drained from the work areas as quickly as possible both during and after construction. Initial grading operations should be focused on providing surface drainage, such that precipitation and surface run-off is directed away from work areas.

Following stripping of topsoil and excavation to design subgrade elevation, the exposed subgrade should be inspected by qualified SNC-Lavalin personnel to verify the removal of unsuitable materials and to provide additional recommendations, as appropriate. Unsuitable materials include topsoil, organic matter, and clay fill material. The lateral extent of all excavations and removals should be at least 1.5 m from beyond the edge of all structures. Topsoil may be stockpiled and re-used for non-structural areas only, such as landscaping.

As a minimum (unless otherwise stated), all exposed subgrade soil within the proposed development areas should be scarified to a minimum depth of 200 mm, moisture conditioned (wetted or dried) to within \pm 2% of optimum moisture content, and compacted to at least 98% of Standard Proctor Maximum Dry Density (SPMDD) tested in accordance with ASTM Method D 698.

	ation Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

6.2.2 Proof Rolling

Upon completion of initial site preparation activities (as discussed above), proof rolling of the subgrade should be conducted to verify that competent and uniform soil subgrade support conditions have been achieved. Proof rolling should not be conducted during or shortly following precipitation events, and heavy equipment shall not be allowed to travel on wet/soft subgrade soils until adequate drying has occurred. Proof rolling should be performed by two passes of a dual-wheel truck (or comparable equipment) with a minimum of 80 kN single axle load. Soils which display rutting or appreciable deflections upon proof-rolling should be over excavated to expose more competent soil and replaced with suitable engineered fill. Alternately, the use of geosynthetics (woven geotextile, geogrid in conjunction with non woven geotextile, or, combination geotextile/geogrid products), possibly in conjunction with some over excavation, may be an alternative.

If geosynthetics are utilized, it is recommended that granular fill materials be placed directly over the geosynthetics. The geosynthetics should be placed in accordance with the manufacturer's recommendations. Construction techniques should be designed to minimize the potential for damage to the geosynthetics and underlying subgrade soils (ie, end-dump and spread methods, use of long reach and/or low contact pressure equipment, etc). SNC-Lavalin should be retained to provide guidance with respect to subgrade improvement measures.

Following efforts to stabilize the soil, proof rolling should be repeated. All proof rolling and compaction efforts should include documentation detailing the findings, including photographs where possible. All finished subgrades should be protected from construction traffic and erosion as soon as possible.

6.3 Fill Materials, Placement and Compaction

6.3.1 General

All proposed fill material should comply with the recommendations provided in this report and should be approved by SNC-Lavalin prior to use. All fill soils should be free of appreciable amounts of deleterious and/or organic materials, large particle sizes and contaminants. Fill soils should not be placed in a frozen state, or placed on a frozen subgrade. All lumps of materials should be broken down during placement.

Prior to placement of fill material, representative bulk samples (about 25 kg) should be taken of the proposed fill soils and laboratory tests should be conducted to determine (as applicable) Atterberg limits, natural moisture content, grain size distribution and standard Proctor moisture density relationship. These test results will be necessary for the proper control of construction for the engineered fill.

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	

Prior to placing any fill, the exposed subgrade surface should be prepared in accordance with the preceding sections. It is important that the fill soils be compacted uniformly in order to maintain uniformity and minimize the potential of subsequent differential vertical movements.

6.3.2 Subgrade Fill

Subgrade fill, if required to achieve a uniformly level subgrade surface, should be placed in loose lifts (150 mm thickness, maximum), moisture conditioned (wetted or dried) to within \pm 2% of optimum moisture content, and compacted to at least 98% of SPMDD tested in accordance with ASTM Method D 698. Subgrade fill, if required, should consist of soil free of unsuitable materials (topsoil, organic matter, vegetation, oversized material and other deleterious materials).

6.3.3 Structural Fill

Well-graded granular material is preferred as structural fill at this site due to the relative ease of compaction and more uniform/rapid settlement response (as compared to poorly graded granular soils or fine grained soils).

All structural fill should be placed in thin lifts (150 mm thickness, maximum), moisture conditioned (wetted or dried) to within $\pm 2\%$ of optimum moisture content, and uniformly compacted to at least 100% of SPMDD tested in accordance with ASTM Method D 698. Where not contained by grade beams or suitable curbs, the structural fill should extend laterally 1 m or equal to the full depth of fill (whichever is the greater) beyond the footprint of grade-supported structures (asphalt surfacing, concrete slabs etc).

The recommended gradation requirements for base course and sub-base course material have been presented in Table 6.1. Alternate gradations may be acceptable but should be approved by SNC-Lavalin prior to use. For granular sub-base course material, the uppermost 300 mm of the fill should meet the gradation requirements presented above. For lower levels of sub-base fill, over-sized particles may be incorporated. For quality control testing of fill material containing over-sized particles, the gradation should be determined on samples with all oversized materials (ie, greater than 50 mm) removed.

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	

Sieve Size		Percent Passing by Weight	
Sieve	5 0126	Base Course Type 33	Sub-Base Type 6
50	mm		100
18	mm	100	
12.5	mm	75 -100	
5	mm	50 - 75	
2	mm	32 - 52	0 - 80
900	μm	20 - 35	
400	μm	15 - 25	0 - 45
160	μm	8 - 15	0 - 20
71	μm	6 - 11	0 - 6
Plasticity Index		0 - 6	0 - 6
Fractured Face %		Min 50	
Lightweight pieces %		Max 5	

Table 6.1 – Base and sub base gradation specifications.

6.3.4 Utility Trench Backfill

Utility bedding materials will vary depending on the type of utility. Utility bedding material gradation, placement, thickness, compaction, etc, should be in accordance with the utility manufacturer's specifications and recommendations. Care must be taken to ensure damage does not occur to the utilities as a result of placement/compaction of the bedding material and overlying fill materials.

Below buildings/structures and concrete surfaced areas, the use of well graded granular fill is recommended above the bedding material (as discussed above) as this type of material will settle less and more uniformly as compared to common fill (ie, locally excavated soil). Within all other areas (where some potential settlement of the excavation backfill material may be permissible), the use of locally excavated soil as backfill should be suitable. In areas where there will be no surface cover (asphalt, concrete, etc), it is recommended that the excavations be capped with low hydraulic conductivity soils to limit surface water ingress into the utility trench. In areas where there will be a permeable surface cover (ie, graveled areas, landscape areas, etc). The drainage adjacent to the utility trench should provide for positive drainage away from the trench.

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548 City of Winnipeg	Final Report		

6.3.5 Fill Settlement

Fill materials will tend to settle due to self weight and any imposed loading. The amount of settlement is unpredictable due to a number of variables associated with the properties of the fill material and the placement history of the fill. The settlement of fill materials can be reduced by adhering to strict placement and compaction specifications for the entire fill thickness (ie, utilizing thin uniform lifts, maintaining moisture content near optimum, compacting to a uniform, high density condition). Maintaining a uniform fill thickness will also serve to minimize differential movements across the fill area. The estimated settlements of cohesive and non cohesive fill materials as a function of compaction level have been presented in Table 6.2.

Compaction Level	Estimated Fill Settlement (% of Fill Thickness)		
(%SPMMD)	Cohesive Soils	Non-cohesive Soils	
100	0.5	< 0.5	
98 – 100	1.0	0.5	
95 – 98	1.5	1.0	
90 – 95	4.0	3.0	
< 90	> 4.0	> 3.0	

Table 6.2 – Estimated fill settlement versus compaction level.

SPMDD = Standard Proctor Maximum Dry Density (± 2% of optimum moisture content).

The above settlement estimates are for fill materials placed during non freezing conditions. The self weight induced settlement will be significantly higher than shown in Table 6.2 if frozen fill materials are utilized (particularly for cohesive fill materials).

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	
	© SNC-Lavalin Inc. 2016. A	Il rights reserved Confidential	Ĺ

6.4 Foundations

6.4.1 Limit States Design

6.4.1.1 General

As per limits states design principles presented in the Canadian Foundation Engineering Manual (4th edition, 2006), foundation design must consider both ultimate limit states (ULS) and serviceability limit states (SLS).

ULS are primarily concerned with collapse mechanisms of the structure, and hence, safety. For foundation design, ULS consist of:

- Exceed the load carrying ability of the ground that supports the foundation (ie, ultimate bearing capacity)
- Sliding
- Uplift
- Overturning
- Large deformation of the foundation subgrade that leads to an ULS being introduced in the structure
- Loss of overall stability

SLS represent conditions or mechanisms that restrict or constrain the intended use, function or occupancy of the structure under expected service or working loads. SLS are usually associated with movements or deformations that interrupt or hinder the function (ie, serviceability) of the structure. For foundation design, SLS generally consist of:

- Excessive movements (eg, settlement, differential settlement, heave, lateral movement, cracking, tilt)
- Unacceptable vibrations
- Local damage and deterioration

During the design process, the structural engineer will need to consider both ULS and SLS geotechnical parameters. Factored (ULS) structural loads will need to be compared to factored (ULS) geotechnical parameters. Likewise, working structural loads will need to be compared to SLS geotechnical parameters.

i iopoood i diiipiiig oto	tion Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

6.4.1.2 ULS Geotechnical Resistance Factors

For the purposes of this report, ultimate geotechnical design parameters have been presented. To determine factored parameters (limit states design), the ultimate parameters should be multiplied by the applicable geotechnical resistance factors (ϕ) as per the National Building Code of Canada 2010 (NBCC). The recommended geotechnical resistance factors (ϕ) as per the National Building Code of Canada 2010 (NBCC) are as follows:

1. Deep Foundations

- (a) Resistance to axial load
 - (i) Semi empirical analysis using laboratory and in situ test data ($\phi = 0.4$)
 - (ii) Analysis using static loading test results ($\phi = 0.6$)
 - (i) Analysis using dynamic monitoring results ($\phi = 0.5$)
 - (ii) Uplift resistance by semi empirical analysis ($\phi = 0.3$)
 - (iii) Uplift resistance using loading test results ($\phi = 0.4$)
- (b) Horizontal load resistance ($\phi = 0.5$)

Ultimate geotechnical resistances to axial loads for deep foundations were calculated using semi empirical analysis using laboratory and in situ test data.

6.4.2 Drilled, Cast-in-Place Concrete Piles

Conventional piling equipment utilized in western Canada for typical straight shaft drilled piles is not meant to clean the base of the pile hole. As such, drilled straight shaft, cast in place concrete piles may be designed on the basis of shaft resistance only.

The shaft resistance values of the subgrade soils are presented in Table 6.3.

Depth (mbgl)	ULS Shaft Resistance (kPa)	SLS Shaft Resistance (kPa)		
	ULS Shall Resistance (RFa)	Compression	Tension	
0 to 2	0	0	0	
2 to 8.5	35	14	11	
8.5 to 9.5	125	50	38	

Table 6.3 – Shaft resistance (drilled piles).

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	

© SNC-Lavalin Inc. 2016. All rights reserved Confidential

The following recommendations should be considered in the design of drilled, cast-in-place concrete piles:

- 1. To minimize frost heave potential, drilled straight shaft concrete piles should be extended to a minimum depth of 6 m. The potential for frost heave of the piles can be reduced by using a sonotube form for the uppermost 2 m (below ground surface) of the pile shaft. The diameter of the sonotube form should be a minimum of 50 mm smaller than the diameter of the drilled hole. It is noted that the use of a sonotube form may not be practical for piles subject to significant lateral loads, as the sonotube portion of the pile will not provide any lateral capacity.
- 2. Pile reinforcement must be adequate to withstand all vertical, lateral and tensile forces within the pile.
- 3. A minimum pile diameter of 400 mm is recommended.
- 4. A minimum centre-to-centre pile spacing of three pile diameters is recommended.
- 5. Although not anticipated, if groundwater seepage or sloughing conditions are encountered during construction, casing will be required to maintain the pile holes open and dry for placement of the reinforcing steel and concrete. The annular space between the casing and drilled hole must be filled with concrete. As the casing is extracted, concrete in the casing must have adequate head to displace all water in the annular space. Water which accumulates on top of the pile upon removal of the casing must be removed to ensure the integrity of the concrete is not compromised.
- 6. Pile holes should be filled with concrete as soon as possible after drilling. Excess water should not be allowed to collect within the drilled hole (if applicable). If excess water collects in the drilled hole, it will be necessary to remove the water (by pumping or bailing) prior to placing reinforcing steel and concrete. Vibration of the concrete in the upper 3 m of the pile shaft is required to produce uniform strength concrete.
- 7. Concrete shall be fed to the bottom of the drilled shaft by pumping and filled from bottom up or, using the free fall method or, another method approved by the structural engineer. If the free fall method is used, the concrete must be poured through a centering chute, making it fall down at the centre of the hole, and minimize the fresh concrete hitting the reinforcing steel or the side of the shaft.
- 8. Continuous monitoring by SNC-Lavalin during pile installation is recommended to document the installation of each drilled, straight shaft concrete pile installed at this site.

6.4.3 Pile Settlement and Pile Group Effects

For individual drilled piles, pile settlement is not expected to exceed 10 mm. Differential settlement between piles is anticipated to be about half the total settlement of a single pile. Pile group settlement will be larger than for individual piles, and will depend on the pile group size/geometry, pile type, pile depth, etc. Estimates of pile group settlement can be provided once the pile group configurations and loads have been finalized.

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	

If pile groups are required to achieve the required structural capacity, the minimum centre to centre pile spacing should be three times the pile diameter. A reduction in pile capacity will not be required for pile groups where the centre to centre pile spacing is at least three pile diameters. For pile groups with a centre to centre spacing of less than three pile diameters, a capacity reduction may need to be applied. In this case, SNC-Lavalin should be contacted to reassess the pile group capacity (will be affected by the number of piles, the pile layout and pile diameters).

6.4.4 Grade Beams and Pile Caps

Grade beams should be constructed to allow for a minimum of 100 mm of net void space between the underside of the grade beam and the subgrade soil (compressible void form). The finished grade adjacent to each grade beam should be capped with hard surfacing or well compacted, low permeable material and should be positively drained away from the grade beam so that surface runoff is not allowed to infiltrate and collect in the void space. If water is allowed to accumulate in the void space, the beneficial effect will be negated and frost heaving may occur.

Exterior pile caps exposed to freezing conditions should be based below the potential depth of frost penetration or protected against frost action. Pile caps based above the frost penetration depth should be constructed to allow for a minimum of 100 mm of net void space between the underside of the pile cap and the subgrade soil (compressible void form). As with grade beams, the finished grade adjacent the pile cap should be positively drained away from the pile cap so that surface runoff is not allowed to infiltrate and collect in the void space. Alternatively, the pile caps may be protected from frost action by strategically located, rigid polystyrene insulation. Further insulation recommendations can be provided upon request.

The use of bond breakers between the foundation and the soil can reduce the potential for foundation movements due to adfreezing forces, and is recommended.

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg		Final Report

6.5 Grade Supported Concrete Slabs

The near surface subgrade soils consisted of clay fill overlying high plasticity clay. Gradesupported concrete slabs should perform satisfactorily provided that some floor slab movements/cracking can be tolerated. If some differential movements/floor cracking cannot be tolerated, then a structural slab should be constructed.

For continually heated areas, the following recommendations should be incorporated into the design of reinforced, grade supported, cast in place concrete slabs at this site:

- 1. Over-excavate, as required, to allow for a minimum granular fill thickness of 450 mm below the floor slab. The uppermost 150 mm of fill immediately below the slab should consist of crushed granular base course material.
- 2. All structural fill should be placed in thin lifts (150 mm thickness, maximum), moisture conditioned (wetted or dried) to within $\pm 2\%$ of optimum moisture content, and uniformly compacted to at least 100% of SPMDD tested in accordance with ASTM Method D 698.
- 3. Separation joints should be used to isolate the slab from foundation walls, columns, etc.
- 4. Reinforce the concrete slab and provide control joints at regular intervals to provide for controlled cracking.
- 5. The finished grade should be landscaped to provide for positive site drainage away from the structure.
- 6. Concrete slabs should not be constructed on loose, softened, desiccated, frozen or wet soil.
- 7. Frost should not be allowed to penetrate beneath the concrete slab just prior to, during or after construction.
- 8. Continuous quality control inspection by SNC-Lavalin should be provided during fill placement.

6.6 Foundation Concrete

The clay soils in the Winnipeg area contain sulphates that will cause deterioration of concrete. The class of exposure for concrete in contact with clay soil in the Winnipeg area is considered to be severe (S-2 in CSA A23.1-09 Table 3). The requirements for concrete exposed to severe sulphate attack are provided in the following table:

Proposed Pumping Station Addition – 5719 Roblin Blvd., Winnipeg, MB June 19, 2017			
644548	City of Winnipeg	Final Report	

Parameter	Design Requirements
Class of exposure	S-2
Compressive strength	32 MPa at 56 days
Air content	4 to 7%
Water-to-cementing materials ratio	0.45 max.
Cement	Type HS or HSb

Table 6.4 – Foundation Concrete Requirements

7 CONSTRUCTION CONTROL AND MONITORING

The recommendations presented in this report are based on the premise that full time inspection, monitoring, and control testing are provided by qualified SNC-Lavalin personnel during site development and construction. Hence, quality control should be provided as follows:

- Inspection during site grading, clearing/excavation and proof rolling to verify the removal of unsuitable materials;
- In-situ density and moisture content testing during subgrade preparation and placement of fill/backfill;
- Inspection during foundation installation; and,
- Materials and concrete laboratory testing during construction.

	tion Addition – 5719 Roblin Blvd., Winnipeg, MB	June 19, 2017
644548	City of Winnipeg	Final Report

8 DISCLOSURE OF INFORMATION AND CLOSURE

The Client hereby agrees that any information provided in this report, even if it is identified as being supplied in confidence, may be disclosed where required by law or if required by order of a court. The proponent hereby consents to the disclosure, on a confidential basis, of this report by SNC-Lavalin Inc. to the Client's advisers retained for the purpose of evaluating or participating in the evaluation of this report.

We trust that this report meets your requirements. Should you have any questions or comments please contact us at +1.204.786.8080.

Submitted by:

SNC-LAVALIN INC. ENVIRONMENT & GEOSCIENCE

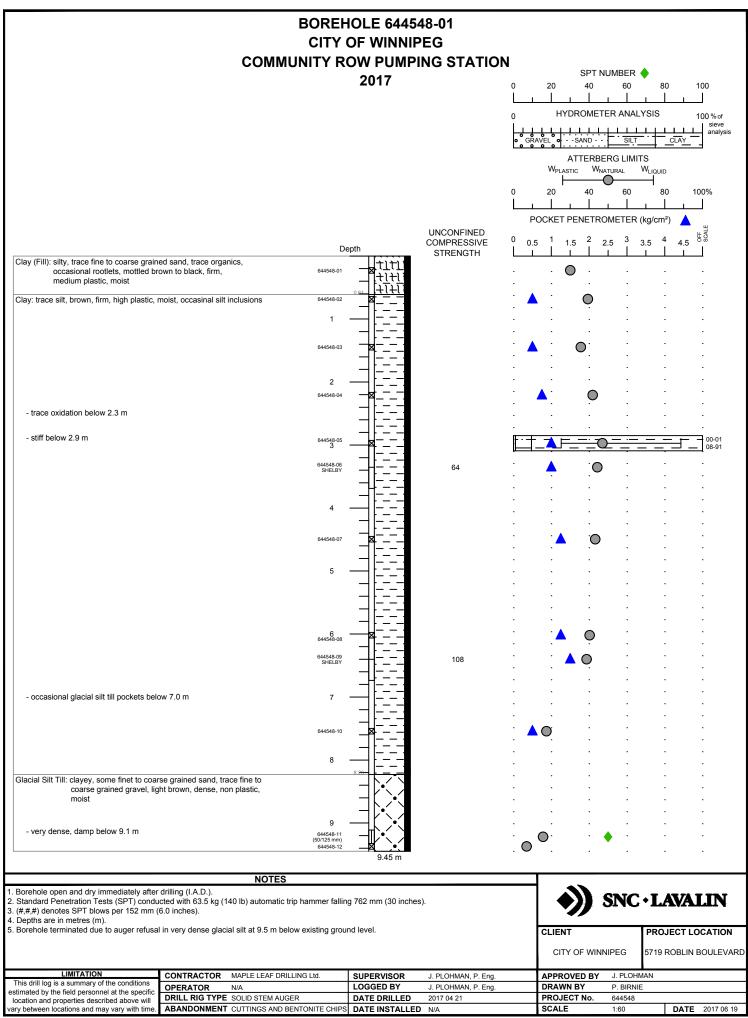
Prepared by:

Jason Plohman, P. Eng. Geotechnical Engineer


Reviewed by:

Cory Zubrowski, P. Eng. Senior Geotechnical Engineer

	ing Station Addition – 5719 Roblin Blvd., Winnipeg	, MB June 19, 2017
644548	City of Winnipeg	Final Report


Site Plan – Borehole Location

G:\CADD_Data\city Of Winnipeg\644548\644548-61-1.dwg

APPENDIX II

Terms and Symbols, Borehole Logs

G:\CADD_Data\city Of Winnipeg\644548\BH-644548-01.dwg

Laboratory Testing Results

WATER CONTENT TEST REPORT Test Reference: ASTM D2216-05)

		Client:	City of Winni	peg					
		Project:	Community F	Row Pumping	Station				
•))		Project #:	644548 DH/CH						
SNC · LAVAI	IN	Technician:							
	Date:	01-May-17							
Sample #	1	2	3	4	5	6			
Test Hole #	TH01	TH01	TH01	TH01	TH01	TH01			
Depth (m)	0.15	0.76	1.5	2.3	3.1	3.1-3.7			
Tare #									
Tare Mass (g)	41.68	38.17	38.48	40.25	38.32	60.58			
Wet sample + tare (g)	190.97	177.01	204.44	163.56	100.70	158.81			
Dry sample + tare (g)	156.53	137.83	160.95	127.19	80.77	128.67			
Wt. Dry sample (g)	114.85	99.66	122.47	86.94	42.45	68.09			
Water Content (%)	29.99	39.31	35.51	41.83	46.95	44.26			
Sample #	7	8	9	10	11	12			
Test Hole #	TH01	TH01	TH01	TH01	TH01	TH01			
Depth (m)	4.6	6.1	6.1-6.7	7.6	9.1-9.3	9.3-9.5			
Tare #									
Tare Mass (g)	38.63	38.96	48.97	37.17	37.94	38.49			
Wet sample + tare (g)	171.78	169.87	191.66	181.78	180.65	128.67			
Dry sample + tare (g)	131.65	132.34	151.90	160.45	161.45	122.91			
Wt. Dry sample (g)	93.02	93.38	102.93	123.28	123.51	84.42			
Water Content (%)	43.14	40.19	38.63	17.30	15.55	6.82			
Sample #									
Test Hole #									
Depth (m)									
Tare #									
Tare Mass (g)									
Wet sample + tare (g)									
Dry sample + tare (g)									
Wt. Dry sample (g)									
Water Content (%) Comments:									

The testing services reported here have been performed in accordance with accepted local industry standards.

The results presented are for the sole use of the designated client only.

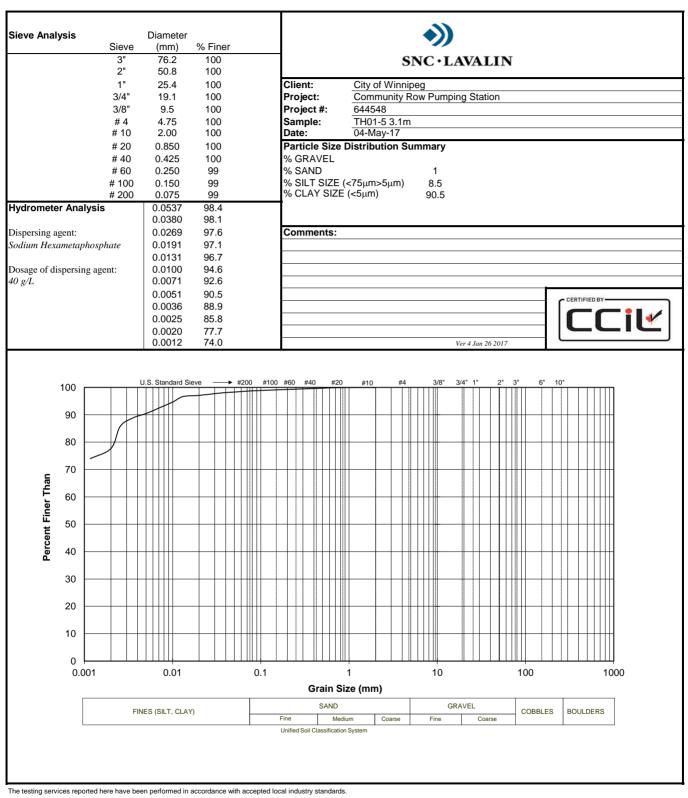
This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.

Engineering interpretation will be provided by SNC Lavalin upon request.

ATTERBERG LIMITS TEST REPORT

(Test Reference: ASTM D 4318)

				Client:	Cit	y of Winnipe	g		
•				Project	Co	mmunity Rov	v Pumping	Station	
	Percentage of sample retained of c Limit #			Project #:	644	644548			
SNC	·LAVA	ALIN		Technician:	JA				
		Project Community Row Pumping Sta Project #: 644548 Technician: JA Date: 4-May-2017 n (air-dried) mple retained on 425-um (No. 40) sieve: N/A Liquid Limit (method B) # of Blows 20 20 22 Tare Wt, g 14.49 Wet + tare, g 26.89 26.22 Dry + tare, g 20.96 20.59 Water content 91.7% 89.4% Adjusted W/C 89.1% 87.9% Comments:							
Sample:TH	101-5 at 3.1m	1		(air-dried)					
Perce	ntage of sam	ple retained	on 425-	um (No. 40) si	eve:	N/A			
Sample:				, , ,					
				# of Blows		20	22		
Tare #	mple: TH01-5 at 3.1m Percentage of sample retained astic Limit re #			Tare Wt, g		14.49	14.29		
Tare Wt, g	14.14			Wet + tare, g		26.89	26.22		
Wet + Tare, g	17.27			Dry + tare, g		20.96	20.59		
Dry + Tare, g	16.64			Water conten	t	91.7%	89.4%	AVERAGE	
M%	25.2%			Adjusted W/C	;	89.1%	87.9%	88.5%	
				Comments:					
SUMMARY				-					
Plastic Limit:	25.2%								
Liquid Limit:	88.5%								
Plasticity Index:	63.3%								
Classification:	СН				Ver	7 - 2016/01/11		⊂i⊮	
Natural Water C	ontent:	47.0%)	
70% -									
C00/							•		
60% -						U-line			
⊟_ _{50%} -							Asline		
ép 40% -					(CH or OH			
y In									
- %08 iti									
20% -			CI or	01					
		CL or OL				MH or OH			
10% -		ML	ML	or OL					
09	%	20%	409		60%	80)%	100%	
				Liquid Limit					


The testing services reported here have been performed in accordance with accepted local industry standards.

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation will be provided by SNC Lavalin upon request.

PARTICLE-SIZE ANALYSIS REPORT

(Test Reference: ASTM D 422)

The results presented are for the sole use of the designated client only.

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability.

Engineering interpretation will be provided by SNC-Lavalin upon request.

UNCONFINED COMPRESSION TEST REPORT

(Test Reference: ASTM D2166)

101-06 at Data are, g Decimen	LAVALI	N		Project: Project #: Technician: Date:	644548	/ Row Pumping	g Station Checked b	y: DH
H01-06 a Data Date, g Decimen Decimen	t 3.1-3.7m	N		Technician:	СН	7	Checked by	y: DH
H01-06 a Data Date, g Decimen Decimen	t 3.1-3.7m	N				7	Checked by	y: DH
Data are, g becimen becimen				Date:	May 1, 201	(
Data are, g becimen becimen								
are, g becimen becimen	Wet + Tare							
becimen becimen	Wet + Tare			1		ocket Pen Res		
becimen becimen	Wet + Tare		= L2R			st Specimen,	-	
pecimen	wet + rate		= 60.58 = 158.81		Wet Densit Dry Density		= 1713 = 1170	
	Weight of Specimen Wet + Tare, g = 158.81 Weight of Specimen Dry + Tare, g = 127.68						= 1170 = 2.70	(assumed
, <i>7</i> 0	Diy + Tale	, y	= 46.4%		Specific Gr		= 0.96	(assumed
					Dogioo or	Bataration	_ 0.00	
ter, D _o , c	:m =	7.21		Stress =	load/(corr.	area)	Consistency	q _u , kPa
A _o , cm ²	=	40.84	Cor	rr. Area =	A _o /(1 - unit	strain)	Very soft	0-24
, L _o , cm	=	14.41	Uni	t Strain =	$\Delta L/L_o$		Soft	24-48
e, V _o , cm	n ³ =	588.36		L _o /D _o =	2.00		Medium	48-96
-					0.88	%/min	Stiff	96-192
						,	Very stiff	192-383
Compres	sive Stren	gth, q _u	= 64	kPa			Hard	>383
oad-cell	Avial	Strain	Total		Corrected	Stroco	NUR US	
Dial				Unit Strain			1100万利的1000	
leading	-							
6	1.18	0	0.00	0.00%		2.8		
								-15
-								
							ATTEN AND AN	
								8 / 1
								States.
66		225	5.72	3.97%		63.8		
65	27.21	250	6.36	4.41%	42.73	62.5		
62	25.89	275	7.00	4.86%	42.92	59.1		
59	24.56	300	7.63	5.30%	43.12	55.9		State -
								101
							1 Charles	
							103110	ວເ
70								
E								
60			~			•		
50 🗧								
40 🖡								
30 -								
E								
E	/							7
10	/							
0		10/			20/	40/	E 9/	6%
0%		1%	2%	Axial Str		4%	5%	6%
								Ver 12 - 2016/05
	Compress Dad-cell Dial deading 6 30 42 49 54 59 62 64 65 66 65 62 59 70 62 64 65 66 65 62 59 70 70 60 50 40 30 40 30 40 30 40 50 40 50 59 59	compressive Streng Dad-cell Axial Load, kg 6 1.18 30 11.77 42 17.06 49 20.15 54 22.36 59 24.56 62 25.89 64 26.77 65 27.21 66 27.65 65 27.21 62 25.89 59 24.56 0 24.56 0 27.65 65 27.21 62 25.89 59 24.56 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{rcl} \text{L}_{o}, \text{ cm} &=& 14.41 \\ \text{e}, \text{V}_{o}, \text{ cm}^{3} &=& 588.36 \\ \hline \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{l} L_{o}, cm &= 14.41 \\ e, V_{o}, cm^{3} &= 588.36 \end{array} \\ \begin{array}{l} \mbox{Unit Strain} &= \\ L_{o}/D_{o} &= \\ \mbox{Strain Rate} &= \\ \hline \mbox{Compressive Strength}, q_{u} &= 64 \ kPa \\ \hline \mbox{oad-cell} & Axial & Strain & Total & Unit Strain \\ \hline \mbox{Dial} & Load, kg & Dial & Strain, mm & Unit Strain \\ \hline \mbox{eeading} & 0 & 0.00 & 0.00\% \\ \hline \mbox{30} & 11.77 & 25 & 0.64 & 0.44\% \\ \hline \mbox{42} & 17.06 & 50 & 1.27 & 0.88\% \\ \hline \mbox{49} & 20.15 & 75 & 1.91 & 1.32\% \\ \hline \mbox{54} & 22.36 & 100 & 2.54 & 1.77\% \\ \hline \mbox{59} & 24.56 & 125 & 3.18 & 2.21\% \\ \hline \mbox{62} & 25.89 & 150 & 3.82 & 2.65\% \\ \hline \mbox{64} & 26.77 & 175 & 4.45 & 3.09\% \\ \hline \mbox{65} & 27.21 & 200 & 5.09 & 3.53\% \\ \hline \mbox{66} & 27.65 & 225 & 5.72 & 3.97\% \\ \hline \mbox{65} & 27.21 & 250 & 6.36 & 4.41\% \\ \hline \mbox{62} & 25.89 & 275 & 7.00 & 4.86\% \\ \hline \mbox{59} & 24.56 & 300 & 7.63 & 5.30\% \\ \hline \mbox{65} & 9 & 24.56 & 300 & 7.63 & 5.30\% \\ \hline \mbox{65} & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0 & 0.00\% \\ \hline \mbox{70} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		$\begin{array}{l} \begin{array}{c} L_{0}, cm & = 14.41 \\ e, V_{0}, cm^{3} & = 588.36 \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Unit Strain } = \Delta L/L_{0} \\ L/D_{0} & = 2.00 \\ \hline \text{Strain Rate } = 0.88 \ \%/\text{min} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \text{Compressive Strength, } q_{u} & = 64 \ \text{kPa} \\ \hline \text{ad-cell} & \hline \text{Axial} & \hline \text{Strain} & \hline \text{Total} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{Area, cm}^{2} & \hline \text{kPa} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \text{Corrected} & \hline \text{Stress,} \\ \hline \text{ad-cell} & \hline \text{Load, kg} & \hline \text{Dial} & \hline \text{Strain, mm} & \hline \text{Unit Strain} & \hline \ \text{Corrected} & \hline \ \text{Stress,} \\ \hline \text{Atial 2015} & 7.5 & 1.91 & 1.32\% & 41.39 & 47.7 \\ \hline \text{St} & 22.58 & 125 & 3.18 & 2.21\% & 41.76 & 57.7 \\ \hline \text{St} & 22.58 & 125 & 3.18 & 2.21\% & 41.76 & 57.7 \\ \hline \text{St} & 22.58 & 125 & 5.72 & 3.97\% & 42.53 & 63.8 \\ \hline \text{St} & 27.21 & 250 & 6.36 & 4.41\% & 42.73 & 62.5 \\ \hline \text{St} & \hline \text{St} & 25.89 & 1 \\ \hline \text{St} & \hline \ \text{St} & \hline \ \text{St} & \hline \ \ \text{St} & \hline \ \ \text{St} & \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{c} L_{o}, cn & = 14.41 \\ e, V_{o}, cn^{3} & = 588.36 \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \hline \\$

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation will be provided by SNC-Lavalin upon request.

UNCONFINED COMPRESSION TEST REPORT

(Test Reference: ASTM D2166)

					Client:	City of Winnipeg						
SNC·LAVALIN					Project:	Community Row Pumping Station 644548						
					Project #:							
					Technician:		_	Ch	ecked by:	DH		
	TU04.00	10407			Date:	May 1, 201	7					
ample:	TH01-09 a	it 6.1-6.7m								-		
pecimer	n Data			7)/5	1		ocket Pen R		1.1			
are No:	-			= ZV5			st Specimer	/ 0	1061.76			
/eight of		· · · · · · · · · · · · · · · · · · ·		= 48.97		Wet Densit		=	1807			
Weight of Specimen Wet + Tare, g = 191.66						Dry Density		=	1303	,		
Weight of Specimen Dry + Tare, g = 151.90						Specific Gr	•	=	2.70	(assume		
/ater Cor	ntent, %			= 38.6%	J	Degree of	Saturation	=	0.97			
itial Diar	neter, D _o , o	- m	7.24	1	Stress =	load/(corr.	area)	Consi	stency	q _u , kP		
	A_0, Cm^2	=	41.12	Co	rr. Area =	A _o /(1 - unit	strain)	Very s	oft	0-24		
	ght, L _o , cm	=	14.29	Uni	t Strain =			Soft		24-48		
	ume, V _o , cn	n ³ =	587.74		$L_o/D_o =$			Mediu	n	48-96		
	o, v ₀ , on	•	007.74	Ctro			%/min	Stiff		96-192		
				Sila	in Rate =	0.09	/0/11111	Very s	tiff	192-38		
nconfine	d Compres	sive Stren	gth, q,	= 108	kPa			Hard		>383		
	Load-cell			1	-*	Correct	0.		-			
lapsed	Dial	Axial	Strain	Total	Unit Strain	Corrected	Stress,	a second		Mar and		
ime,min	Reading	Load, kg	Dial	Strain, mm		Area, cm ²	kPa			International International		
0.0	8	1.18	0	0.00	0.00%	41.12	2.8					
0.5	66	26.77	25	0.64	0.44%	41.31	63.6			-		
1.0	85	35.15	50	1.27	0.89%	41.49	83.1					
1.5	97	40.44	75	1.91	1.33%	41.68	95.2	198		ALC: NO		
2.0	102	42.65	100	2.54	1.78%	41.87	99.9	A State				
2.5	105	43.97	125	3.18	2.22%	42.06	102.5	TEX.S				
3.0	107	44.85	150	3.82	2.67%	42.25	104.1	1000		BING IN		
3.5	109	45.72	175	4.45	3.11%	42.45	105.6		1			
4.0	112	47.00	200	5.09	3.56%	42.64	108.1	11068	11			
4.5	100	41.77	225	5.72	4.00%	42.84	95.6		1	1 C		
								1.1				
								1.11				
										1		
	100											
-	120 E											
Ţĸ P.	100 -							-				
Compressive Stress (kPa)	80 -		~						•			
Stre	50											
š	60 +											
essi	40											
npre												
Cor	20 -	/										
-	o 🗸	· · · · · · · · · · · · · · · · · · ·				<u></u> .						
	0.09	۶ 0.5 ^c	% 1.	0% 1.5%		2.5%	3.0%	3.5%	4.0%	4.5%		
					Axial Str	ain						
										/er 12 - 2016/0		

This report constitutes a testing service only. It does not represent any interpretation or opinion regarding specification compliance or material suitability. Engineering interpretation will be provided by SNC-Lavalin upon request.

