Template Version: C420180115 - RW

APPENDIX 'A' GEOTECHNICAL REPORT

420 Turenne Street, Winnipeg, Manitoba R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579 Email: engtech@mymts.net www.eng-tech.ca

> Table 1 Summary of Pavement Structure

Page 1 of 2

File No.: 17-035-02

East and West bound Lanes on Chevrier Boulevard

Core		GPS Coo	GPS Coordinates	Pavemen	Pavement Surface
Number	Core Location	14N	MTU	Туре	Thickness (mm)
PC01	18.94 m (2.5 m south off the curve) East of northeast corner of Gamble Street – Westhound lane of Chavrier	5520518	0634003	Asphalt	153
	Boulevard	010000	000 1020	Concrete	208
PC02	95.98 m (2.5 m north off the curve) East of core PC01	5520564	0631111	Asphalt	225
	Eastbound lane of Chevrier Boulevard	1000000		Concrete	130
PC03	99.45 m (2.5 m south off the curve) East of core PC02	ちちつほうの	0634404	Asphalt	197
	Westbound lane of Chevrier Boulevard	222020	1800	Concrete	132
PC04	97.25 m (2.5 m north off the curve) East of PC03	5530656	0831282	Asphalt	213
	Eastbound lane of Chevrier Boulevard	00000	702 707	Concrete	145
PC05	117.25 m (2.5 m south off the curve) East of PC04-	5520725	0631278	Asphalt	174
	Westbound lane of Chevrier Boulevard	0020120	0/6/600	Concrete	157
PC06	92.54 m (2.5 m north off the curve) East of PC05	5520750	0631453	Asphalt	235
	Eastbound lane of Chevrier Boulevard	007070	200	Concrete	130
PC07	107.97 m (2.5 m south off the curve) East of PC06	5520820	0631544	Asphalt	273
	Westbound lane of Chevrier Boulevard	02000	1	Concrete	160
PC08	114.77 m (2.5 m north off the curve) East of PC07	5520866	0631645	Asphalt	235
	Eastbound lane of Chevrier Boulevard		7	Concrete	120

Core		GPS Co	GPS Coordinates	Pavement Surface	t Surface
Number		14U	MTU	Туре	Thickness (mm)
PC09	114.77 m (2.5 m south off the curve) East of PC08-	5520013	0624700	Asphalt	235
)	Westbound lane of Chevrier Boulevard	0180300	000 11 20	Concrete	120
2	114.96 m (2.5 m north off the curve) East of PC11			Asphalt	228
2	Eastbound lane of Chevrier Boulevard, 90.38 m West of Northwest corner of Hamelin Street	5520962	0631825	Concrete	142
PC11	98.35 m (2.5 m south off the curve) East of PC10 Westhound lane of Chevrier Boulevard Middle of	5520005	0624004	Asphalt	190
)	intersection of Hamelin Street and Chevrier Boulevard	0020300	081 500	Concrete	127
PC12	24.84 m (2.5 m north off the curve) East of Northwest	5501048	0631083	Asphalt	135
] -)	Westbound lane of Chevrier Boulevard.	200	500	Concrete	195
DC13	106.31 m (2.5 m south off the curve) East of PC12,	70770	00000	Asphalt	188
)	Eastbound lane of Chevrier Boulevard.	3321104	0/07500	Concrete	150

420 Turenne Street, Winnipeg, Manitoba R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579 Email: engtech@mymts.net www.eng-tech.ca

Table 3

Page 1 of 5

File No.: 17-035-02

Summary of Pavement Structure

Chevrier Boulevard: From Trottier Street to Pembina Highway

	ticity				45											
Limits	Plasticity	4			4							20				
Atterberg Limits	Plastic Limit				22							22				
A	Liquid				29							72				
	Clay (%)				60.1							7.07				
Analysis	Silt (%)				31.3							27.8				
Hydrometer Analysis	Sand (%)				6.7							1.5				
Hyc	Gravel (%)				1.8							0.0				
Moisture	Content (%)		18.2	21.6	26.7	21.7	20.6	29.0	23.4	42.8	27.2	28.5	28.7	31.3	33.9	39.8
Sample	Depth (m)		0.1	0.4	7.0	1.0	1.3	1.6	1.9	0.1	0.4	0.7	1.0	1.3	1.6	1.9
Subgrade	Description		Gravel Fill	Silty Clay	Ē		Clay				Clay	Fill		Š	Clay	
cture Material	Thickness (mm)				24	150	150						200			
Pavement Structure Material	Туре					Gravel Fill (20 mm)	(20 mm)						Gravel Fill (20 mm)			
Pavement Surface	Thickness (mm)				195	122				57				157		
Paveme	Туре			Asnhalt				Concrete		Asphalt						
GPS Coordinates	14N					06322154							0632252			
GPS Coc	MTU					5521136							5521201			
Test	Hole		7-								-		2			

Notes:

Table 3 - Summary of Pavement Structure Chevrier Boulevard: From Trottier Boulevard to Pembina Highway.

imits	Plasticity				41						50					
Atterberg Limits	Plastic Limit				21						22					
¥	Liquid				62						72					
	Clay (%)	65.7									69.7					
Hydrometer Analysis	Silt (%)	29.7									28.2					
ydromete	Sand (%)	9.7									2.1					
Í	Gravel (%)	0.0									0.0					
Moisture	Content (%)	25.4	13.7	23.3	27.4	33.7	37.2	44.6	19.6	30.0	28.5	29.1	28.4	29.1	30.3	
Sample	Depth (m)	0.1				1.3	1.6	1.9	0.1	0.4	0.7	1.0	1.3	1.6	1.9	
Subarade	Description	Gravel Fill	Clay	Fill		ō		Gravel Fill		Clay Fill	•	ō	Cia			
cture Material	Thickness (mm)				150				200							
Pavement Structure	Туре	Gravel Fill (20 mm)							Gravel Fill (20 mm)							
Surface	Thickness (mm)	64							8 5					142		
Pavement Surface	Type	Asphalt					Concrete		Asphalt							
Test Hole Location	140	0632347								, i		0632471				
Test Hole	UTM	5521242							05521320							
Test	Hole	ю							4							

Notes:

	€,															
imits	Plasticity Index					43	61						40			
Atterberg Limits	Plastic Limit					19	27						22			
«	Liquid					62	88						62			
(0)	Clay (%)					62.0	82.4						46.4			
Analysi	Silt (%)	(%)				36.5	16.8						42.0			
drometer	Hydrometer Analysis (%) (%) (%)				1.5	0.8						11.1				
H	Gravel (%)					0.0	0.0						0.4			
Moisture	Content (%) 8.3 31.4 25.3				31.4	35.6	40.1	42.3	7.7	32.6	28.7	26.5	34.7	22.3	24.6	
Sample	Sample Depth (m)		0.1	0.4	0.7	1.0	1.3	1.6	1.9	0.1	0.4	0.7	1.0	1.3	1.6	1.9
Subgrade	Description		Gravel Fill	Silty Clay Fill					Gravel Fill		yelOvelio	Fill		Clayer Cilt	Olayey Oll	
cture Material	Thickness (mm)					200							200			
Pavement Structure	Туре		Gravel Fill				Gravel Fill (20 mm)						Gravel Fill (20 mm)			
Pavement Surface	Thickness (mm)		53												142	
Paveme	Туре		Asphalt				Concrete					Asphalt Concrete				
Location	14N		0632549				71						0632624			
Test Hole Location	MTO		- 5500			5521361		- 1-					5521412			
Test	Test Hole 5										9					

Notes:

Table 3 - Summary of Pavement Structure Chevrier Boulevard: From Trottier Boulevard to Pembina Highway

mits	Plasticity Index			48							54				
Atterberg Limits	Plastic Limit			24							22				
At	Liquid			72							92				
	Clay (%)	53.1									69.1				
Hydrometer Analysis	Silt (%)	0.14									27.7				
drometer	Sand (%)	ου O									3.2				
Į	Gravel (%)	0.0									0.0				
Moisture	Content (%)	8.3	27.7	33.3	29.1	29.1	29.0	31.1	23.8	29.6	29.0	30.1	31.0	35.9	41.3
Sample	Depth (m)	0.1	0.7 0.7 0.7 1.8 1.9				1.9	0.1	0.4	0.7	1.0	1.3	1.6	1.9	
Subgrade	Description	Gravel Fill		Silty Clay Fill		ō	Clay			Clay Fill			ō	Clay	
cture Material	Thickness (mm)				250							20			
Pavement Structure	Туре	Gravel Fill (20 mm)							Gravel Fill (20 mm)						
Pavement Surface	Thickness (mm)		28	}	44				35				143		
Pavemen	Туре		Asnhalt			*	Concrete			Asphalt				Concrete	
GPS Coordinates	14U	0632687										0632769	1		
GPS Co	MTU	5521436							5521487 0						
Test	Hole											∞			

- No water seepage was encountered in the test holes.

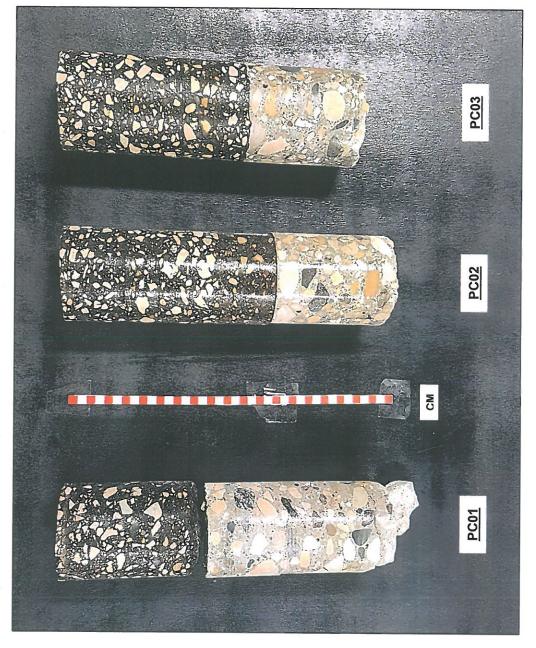
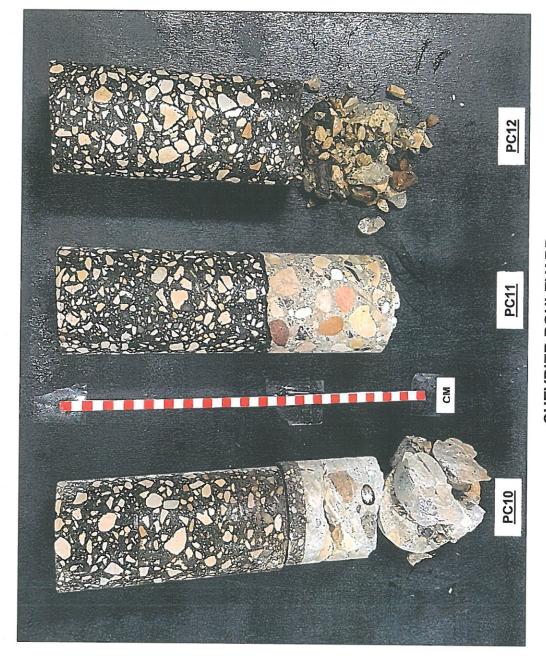

Notes:

Table 3 - Summary of Pavement Structure Chevrier Boulevard: From Trottier Boulevard to Pembina Highway

mits	Plasticity Index				49						25				
Atterberg Limits	Plastic Limit				21						17				
¥.	Liquid				70						42				
6	Clay (%)	58.3									31.3				
r Analysis	Silt (%)	25.4									66.4				
Hydrometer Analysis	Sand (%)	5.4									2.3				
Ţ	Gravel (%)	8.									0.0				
Moisture	Content (%)	7.0	36.0	29.2	28.4	33.7	33.0	33.0	23.6	28.3	23.7	21.3	20.9	32.5	22.2
Sample	Depth (m)	0.7				1.3	1.6	1.9	0.1	0.4	0.7	1.0	1.3	1.6	1.9
Subgrade	Description			•	Clay				1	Clayey Silt Fill		Clayey Silt		Clay	
Pavement Structure Material	Thickness (mm)				20							20			
Pavemen Mat	Type	Gravel Fill (20 mm)							Gravel Fill (20 mm)						
Pavement Surface	Thickness (mm)		139						43					149	
Pavemer	Туре	Asphalt					Concrete		Asphalt						
Location	14U	0632855										0632924			
Test Hole Location	MTU	5521529							5521676						
Test	Hole	თ										10			

Notes:


CHEVRIER BOULEVARD

CHEVRIER BOULEVARD

CHEVRIER BOULEVARD

CHEVRIER BOULEVARD

CHEVRIER BOULEVARD

CHEVRIER BLVD

CHEVRIER BLVD

P:\2017\Projects\035\WSP Canada Inc. Winnipeg)\02(Geo_Industrial Streets Package 18-RL-02)\Core Photographs\Chervier Core Pictures\Chevrier Blvd Test Hole Cores 7 to 9.docx

CHEVRIER BLVD

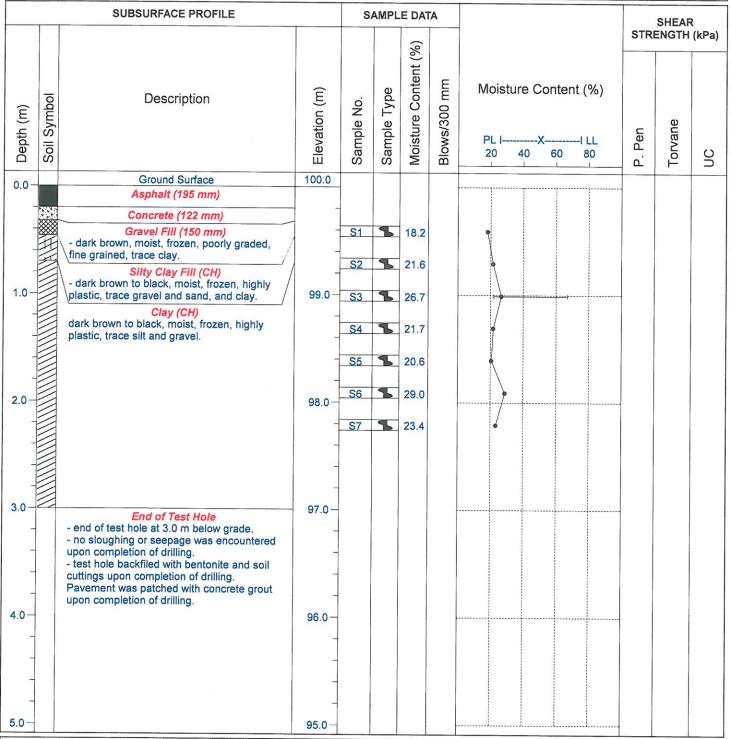
				MODIFIED	UNIFIED CLASSIFICATION SYSTEM FOR SOILS
	MAJOR D	IVISION	GROUP SYMBOL	GRAPH SYMBOL	TYPICAL DESCRIPTION LABORATORY CLASSIFICATION
	шЕ	CLEAN GRAVELS	GW		WELL GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES $C_{U} = \frac{D_{60}}{D_{10}} > 4; C_{C} = \frac{(D_{30})^{2}}{D_{10} \times D_{60}} = 1 \text{ TO } 3$
NN 75 µm)	GRAVELS THAN HALF TH RSE FRACTION RR THAN 4.75 m	(TRACE OR NO FINES)	GP	2°25	POORLY GRADED GRAVELS, GRAVEL- SAND NOT MEETING ABOVE MIXTURES, LITTLE OR NO FINES REQUIREMENTS
SOILS RGER THA	SOILS ARGER		GM	9200 9000 9000	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4
SRAINED S	ر ح	MORE FINES)	GC		CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES ATTERBERG LIMITS ABOVE "A" LINE AND P.I. MORE THAN 7
COARSE GRAINED IALF BY WEIGHT LA	A P. F. E	CLEAN SANDS (TRACE OR NO	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR $C_U = \frac{D_{80}}{D_{10}} > 6$; $C_C = \frac{(D_{30})^2}{D_{10} \times D_{80}} = 1 \text{ TO } 3$		
E THAN H	SANDS HAN HALF T SE FRACTIO	FINES)	SP		POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE NOT MEETING ABOVE OR NO FINES REQUIREMENTS
(MOR	SANDS MORE THAN HALF THE COARSE FRACTION SMALLER THAN 4.75 mm	DIRTY SANDS (WITH SOME OR	SM		SILTY SANDS, SAND-SILT MIXTURES ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4
		MORE FINES)	sc		CLAYEY SANDS, SAND-CLAY MIXTURES ATTERBERG LIMITS ABOVE "A" LINE AND P.I. MORE THAN 7
(mr	SILTS BELOW "A" LINE NEGLIGIBLE ORGANIC CONTENT	LL ≤ 50%	ML		INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHTY PLASTICITY
FINE GRAINED SOILS (MORE THAN HALF BY WEIGHT SMALLER THAN 75 µm)	BELON NEG OR	LL > 50%	МН		INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS
SOILS	LINE	LL ≤ 30%	CL		INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY OR SILTY CLAYS, LEAN CLAYS
SRAINED WEIGHT	CLAYS ABOVE "A" LINE NEGLIGIBLE ORGANIC CONTENT	30% < LL ≤ 50%	CI		INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS CLASSIFICATION IS BASED UPON PLASTICITY CHART
FINE (LL > 50%	СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
RE THAN	ORGANIC SILTS & CLAYS BELOW "A" LINE	LL < 50%	OL .		ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
(MC	ORGAN & C BELOW	LL > 50%	ОН		ORGANIC CLAYS OF HIGH PLASTICITY
	HIGHLY ORGA	NIC SOILS	Pt		PEAT AND OTHER HIGHLY ORGANIC STRONG COLOUR OR ODOUR, AND OFTEN FIBROUS TEXTURE
		ADDITIONAL SYMBOI	NDSTONE	· · · · · · · · · · · · · · · · · · ·	PLASTIC SOILS
F TO	FILL PSOIL		RANITE	*****	DAMP MEDIUM OXIDES SOFT 0-0.5 2-4 MOIST HIGH MICA FIRM 0.5-1.0 4-8 WET GYPSUM STIFF 1.0-2.0 8-15
	HALE				ETC. VERY STIFF 2.0 - 4.0 15 - 30 HARD > 4.0 > 30
LIME	STONE	DI ACTIONY OVER	OD.		TSF x 95.8 = kPa (q _U) $S_U = \frac{1}{2} \times q_U$
60		PLASTICITY CHART FOR SOILS PASSING 425 µm			SOIL DESCRIPTIONS
- 60	LOW	INTERMEDIATE	HIGH	/	TRACE: 0 - 10% BOULDERS: > 200 mm COARSE SAND: 2 - 4.75 mm SOME: 10 - 20% COBBLES: 75 - 200 mm MEDIUM SAND: 0.425 - 2 mm
40 40 30 30 30 30 30 30 30 30 30 30 30 30 30		(MEDIUM)	СН		WITH: 20 - 35% COURSE GRAVEL: 19 - 75 mm FINE SAND: 0.075 - 0.425 mm AND: 35 - 50% FINE GRAVEL 4.75 - 19 mm FINES: < 0.075 mm
=		CI	A' LINE		GRANULAR SOILS
20	CL		OH &	мн	MOISTURE DENSITY GRADATION INTRUSIONS SPT (N) DRY VERY LOOSE POORLY ROOTLETS 0 - 4 DAMP LOOSE WELL OXIDES 4 - 10 MOIST MED. DENSE MICA 10 - 30 WET DENSE FINES 30 - 50 VERY DENSE ETC. > 50
10	7 4 CL-ML 10 20	30 40 50 60 LIQUID LIMIT (%)			DEFINITIONS C _C = COMPRESSION INDEX
0					100 P.I. = PLASTICITY INDEX Winnipeg, MB R2J 3W8 Cu = COEFFICIENT OF UNIFORMITY Phone: (204) 233-1694 Fax: (204) 233-1694

Test Hole #: TH1C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

File No.: 17-035-02

Water Elevation: - -

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

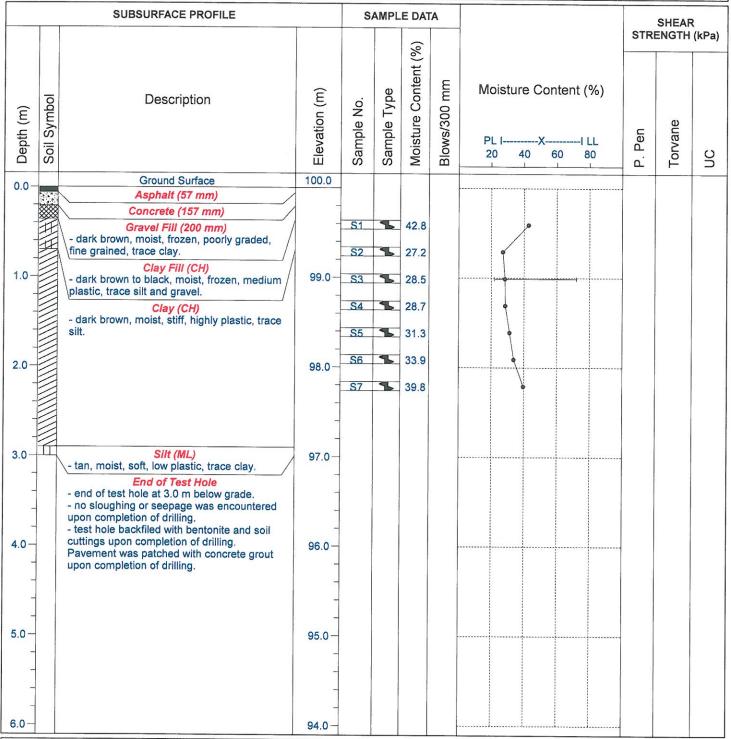
SPLIT BARREL

Test Hole #: TH2C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

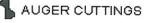
Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

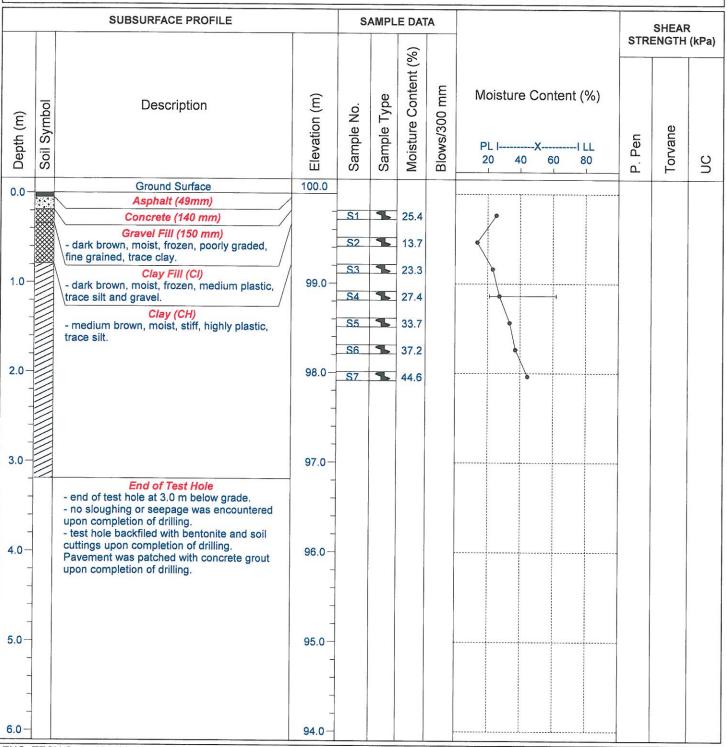
SPUT BARREL

Test Hole #: TH3C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


Grade Elevation: 100.0 m

Water Elevation: - -

Date Drilled: December 19, 2017

File No.: 17-035-02

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

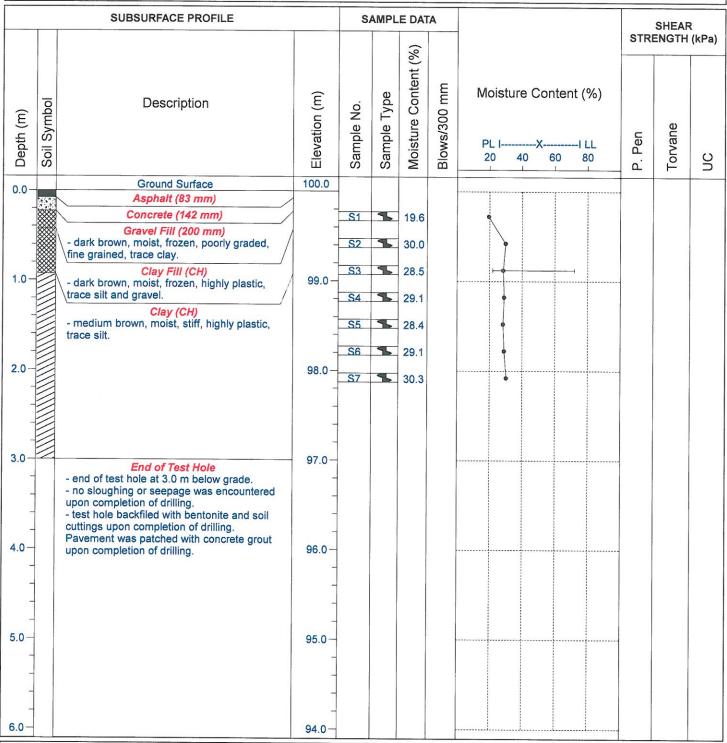
SAMPLE TYPE

Test Hole #: TH4C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

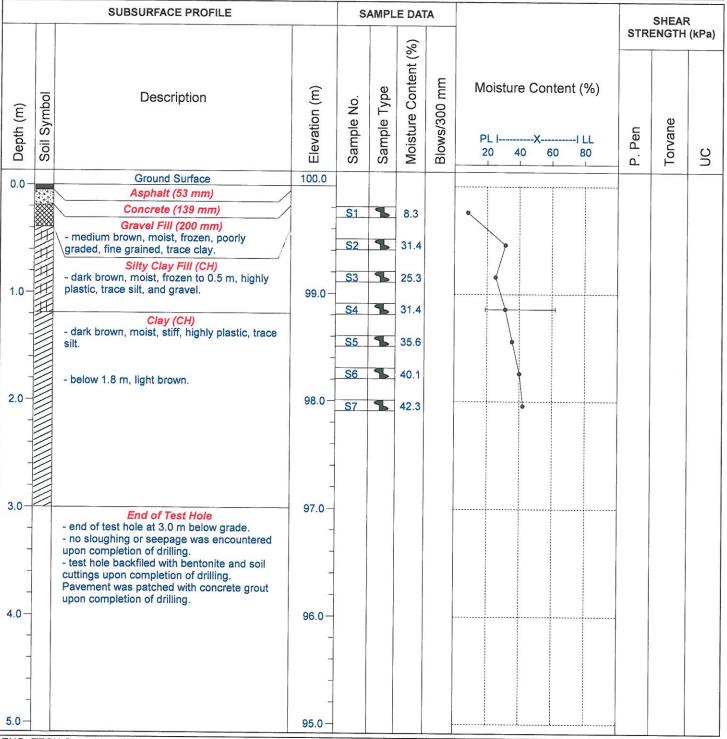
AUGER CUTTINGS

Test Hole #: TH5C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

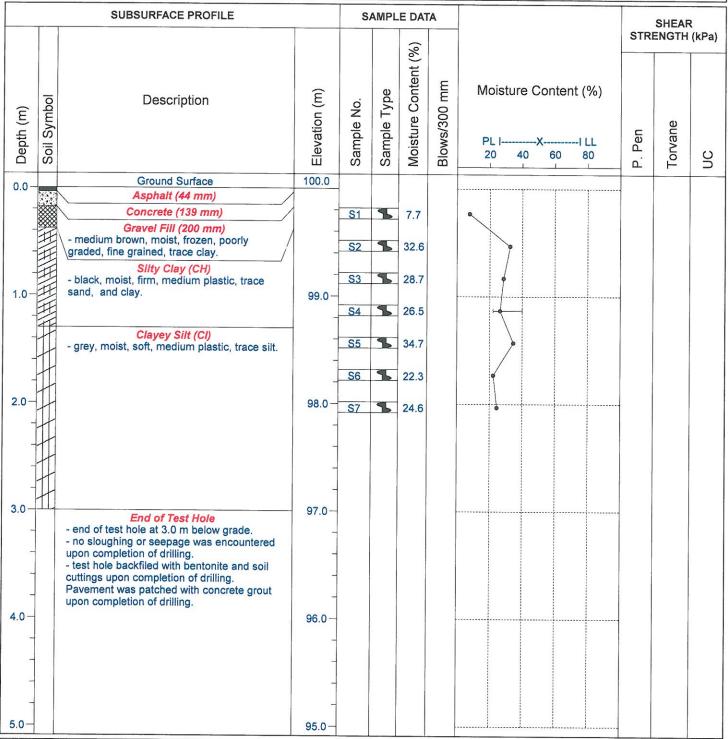
SAMPLE TYPE

Test Hole #: TH6C

Client: WSP Canada Inc.

Site: Chervier Boulevard, Winnipeg, MB

Location: See Figure 1.


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Street Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE SPUT BARREL

SHELBY TUBE

AUGER CUTTINGS

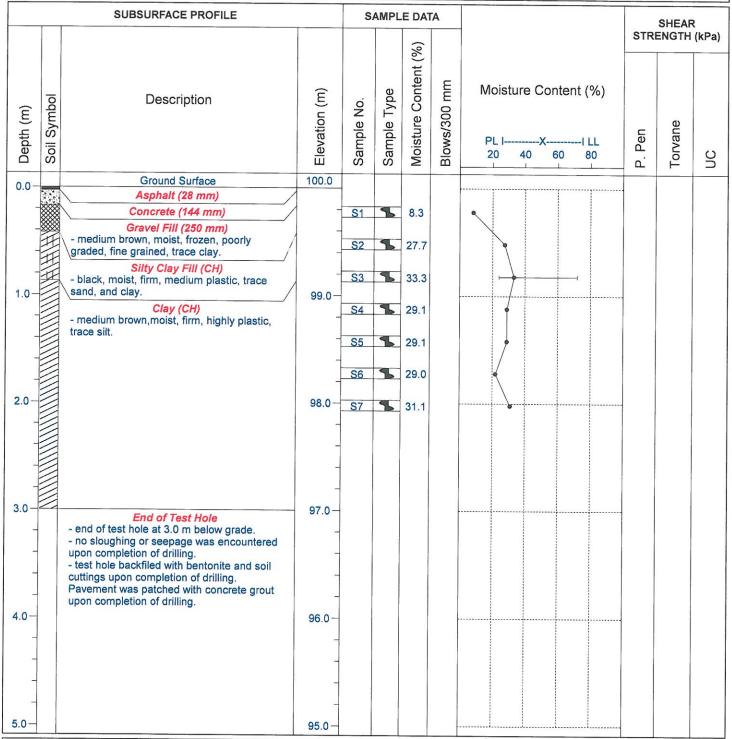
Test Hole #: TH7C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1

Location. See Figure 1


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE SPUT BARREL

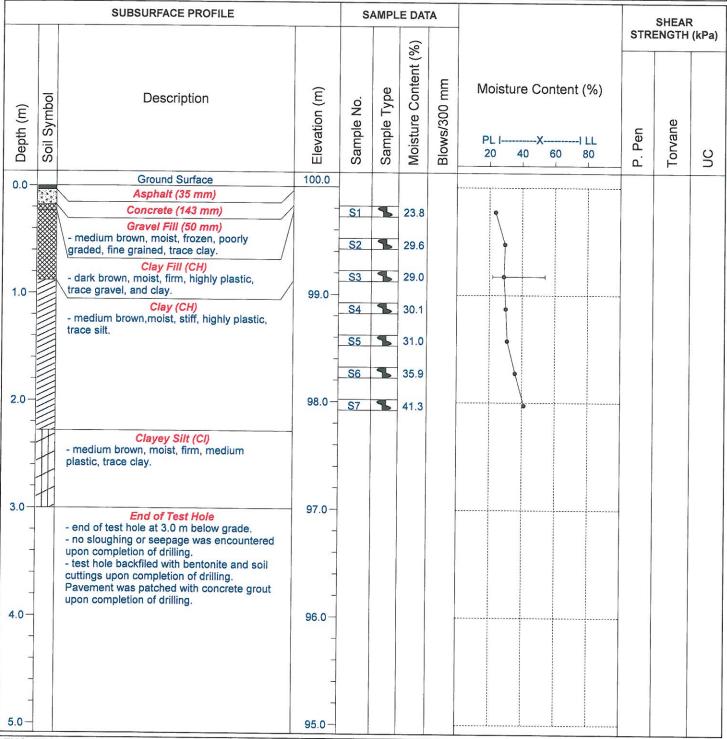
SHELBY TUBE

Test Hole #: TH8C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

File No.: 17-035-02

Water Elevation: - -

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drill Rig: CME 75

Drilled By: Subterranean (Manitoba) Ltd.

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

Auger Size: 125 mm Solid Stem

SHELBY TUBE

SPLIT SPOON

SAMPLE TYPE

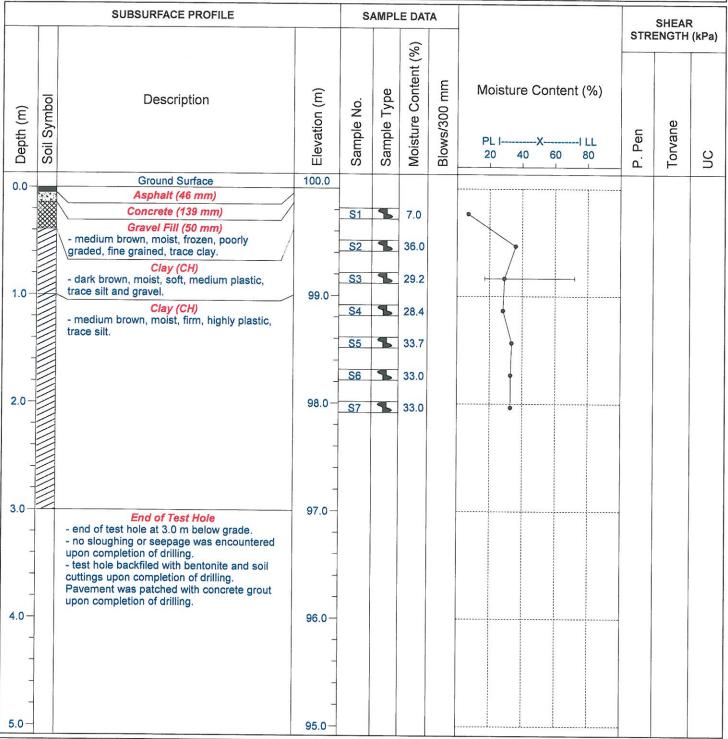
SPUT BARREL

Test Hole #: TH9C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Water Elevation: - -

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

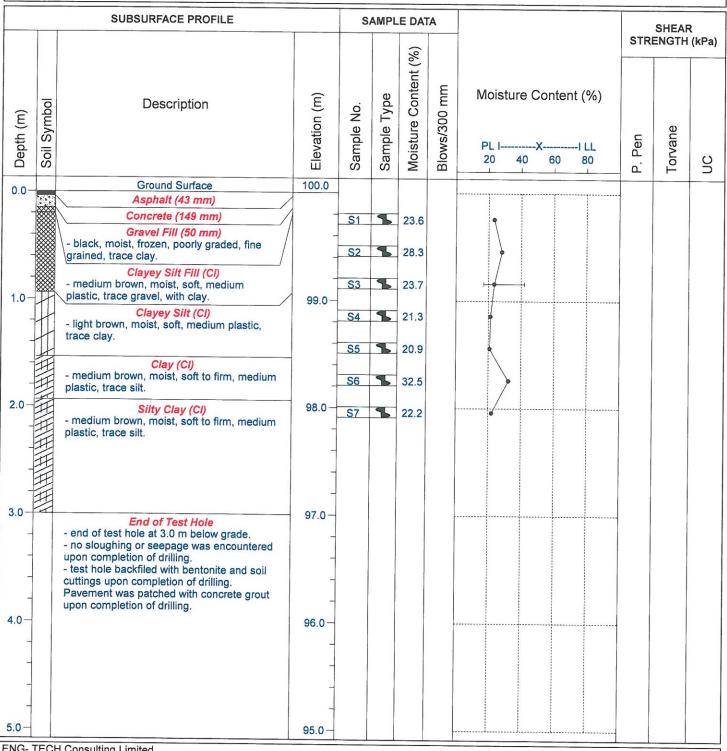
SPUT BARREL

Test Hole #: TH10C

Client: WSP Canada Inc.

Site: Chevrier Boulevard, Winnipeg, MB

Location: See Figure 1


Water Elevation: - -

File No.: 17-035-02

Date Drilled: December 19, 2017

Grade Elevation: 100.0 m

Project: Geotechnical Investigation - Industrial Streets Package 18-RL-02

ENG-TECH Consulting Limited

Logged by: TDR

Reviewed by:

Drilled By: Subterranean (Manitoba) Ltd.

Drill Rig: CME 75

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

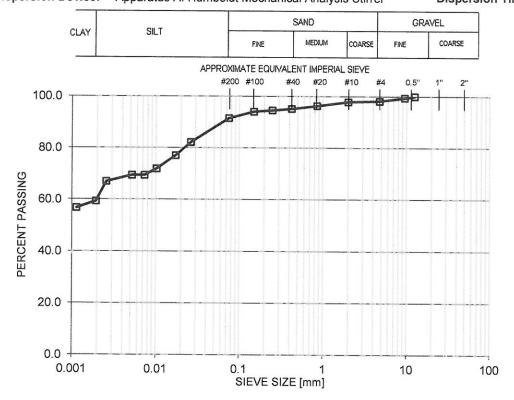
SPUT BARREL

File No.: 17-035-02

Ref. No.: 17-35-2-16

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba

R3B 3B1


Joel Piwniuk, E.I.T. Attention:

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH1C Sample No. 3 Depth: 0.7 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Received: Dec 19/17 Date Tested: Jan 3/18 Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer Dispersion Time (min.):

PERCENT
PASSING
100.0
99.5
98.2
97.9
96.3
95.2
94.5
94.1
91.5
82.1
77.0
71.9
69.4
69.4
66.9
59.3
56.7

1

GRAVEL (1.8 %), SAND (6.7 %), SILT (31.3 %), CLAY (60.1 %) Percent of:

Sample Description:

Comments: Insitu Moisture content is 26.7%.

ENG-TECH Consulting Limited

Per

Clárk Hryhoruk, M. Sc., P. Eng., President

Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-18

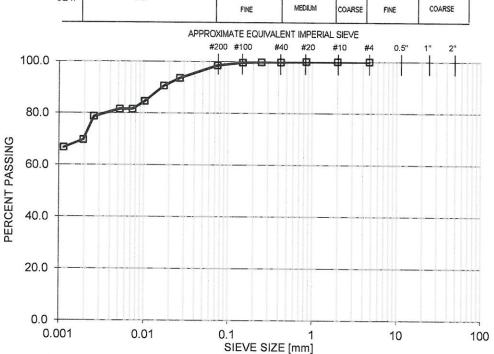
WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH2C Sample No. 3 Depth: 0.7 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard


Date Sampled: Dec 19/17 Date Received: Dec 19/17 Date Tested: Jan 3/18

Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer Dispersion Device:

Dispersion Time (min.):

CLAY SILT SAND GRAVEL

CLAY SILT MEDIUM COARSE FINE COARSE F

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	100.0
0.425	99.8
0.250	99.8
0.150	99.6
0.075	98.5
0.027	93.5
0.017	90.5
0.010	84.5
0.007	81.5
0.005	81.5
0.003	78.7
0.002	69.7
0.001	66.7

Percent of: GRAVEL (0.0 %), SAND (1.5 %), SILT (27.8 %), CLAY (70.7 %)

Sample Description:

Comments: Insitu Moisture content is 28.5%.

ENG-TECH Consulting Limited

Clark Hryhoruk, M.&c., P.Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

PARTICLE SIZE ANALYSIS

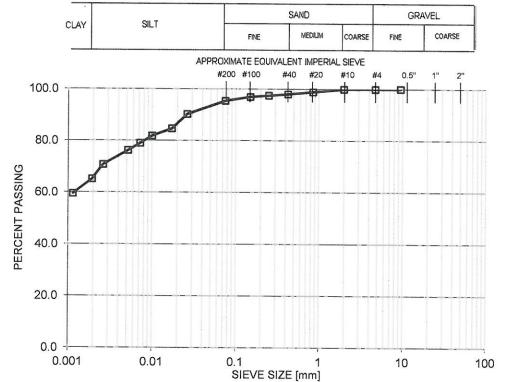
File No.: 17-035-02

Ref. No.: 17-35-2-20

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02


Test Hole No. TH3C Sample No. 4 Depth: 1.0 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Tested: Jan 3/18

Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer

Dispersion Time (min.):

SIEVE	PERCENT
SIZE (mm)	PASSING
9.5	100.0
4.75	100.0
2.0	99.9
0.850	98.9
0.425	98.0
0.250	97.5
0.150	96.9
0.075	95.3
0.026	90.2
0.017	84.6
0.010	81.8
0.007	79.0
0.005	76.2
0.003	70.7
0.002	65.1
0.001	59.5

Percent of: GRAVEL (0.0 %), SAND (4.6 %), SILT (29.7 %), CLAY (65.7 %)

Sample Description:

Comments: Insitu Moisture content is 27.4%.

ENG-TECH Consulting Limited

Per__/

Clark Hryhoruk, M.Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-22

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba

R3B 3B1

Attention:

Joel Piwniuk, E.I.T.

Project:

GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH4C

Sample No.

Depth:

0.7 m

Sample By:

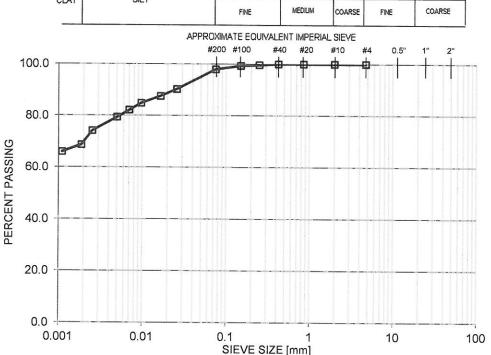
ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source:

Chevrier Boulevard

1

Date Sampled: Dec 19/17 Dispersion Device:

Date Received:


Dec 19/17 Apparatus A: Humboldt Mechanical Analysis Stirrer

3

Date Tested: Jan 3/18

Dispersion Time (min.):

SAND GRAVEL CLAY SILT MEDIUM COARSE FINE COARSE FINE

	T
SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	100.0
0.425	100.0
0.250	99.7
0.150	99.3
0.075	97.9
0.026	90.3
0.017	87.5
0.010	84.8
0.007	82.1
0.005	79.4
0.003	74.1
0.002	68.6
0.001	65.9

Percent of:

GRAVEL (0.0 %), SAND (2.1 %), SILT (28.2 %), CLAY (69.7 %)

Sample Description:

Comments:

Insitu Moisture content is 28.5%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M. Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-24

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1

Attention: Joel Piwniuk, E.I.T.

GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02 Project:

Test Hole No. TH5C

Dispersion Device:

Sample No.

Depth:

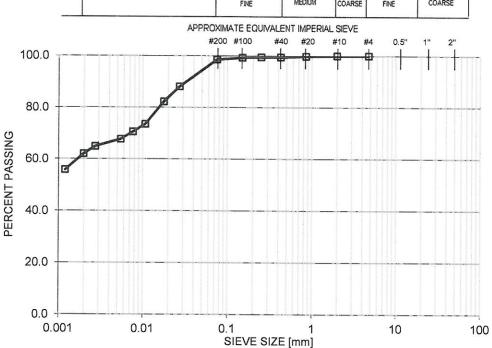
1.0 m

Sample By:

ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting

Source:

Chevrier Boulevard


Date Sampled: Dec 19/17

Date Received: Dec 19/17

Date Tested: Jan 4/18 Dispersion Time (min.):

SAND GRAVEL CLAY SILT MEDIUM COARSE FINE COARSE FINE

Apparatus A: Humboldt Mechanical Analysis Stirrer

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	99.8
0.425	99.4
0.250	99.4
0.150	99.3
0.075	98.5
0.027	88.0
0.018	82.2
0.011	73.4
0.008	70.5
0.005	67.6
0.003	64.8
0.002	61.9
0.001	55.8

Percent of:

GRAVEL (0.0 %), SAND (1.5 %), SILT (36.5 %), CLAY (62.0 %)

Sample Description:

Comments:

Insitu Moisture content is 31.4%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M.Sc., P.Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-26

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba

R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH5C Sample No. 5 Depth: 1.3 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Received: Dec 19/17 Date Tested: Jan 4/18

Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer

Dispersion Time (min.):

SAND **GRAVEL** SILT CLAY MEDIUM COARSE COARSE FINE APPROXIMATE EQUIVALENT IMPERIAL SIEVE #200 #100 100.0 0.08 PERCENT PASSING 60.0 40.0 20.0 0.0 0.001 0.01 10 100 SIEVE SIZE [mm]

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	99.6
0.425	99.4
0.250	99.2
0.150	99.2
0.075	99.2
0.026	99.4
0.017	96.4
0.010	93.4
0.007	90.4
0.005	87.4
0.003	84.5
0.002	81.5
0.001	78.2

1

Percent of: GRAVEL (0.0 %), SAND (0.8 %), SILT (16.8 %), CLAY (82.4 %)

Sample Description:

Comments: Insitu Moisture content is 35.6%.

ENG-TECH Consulting Limited

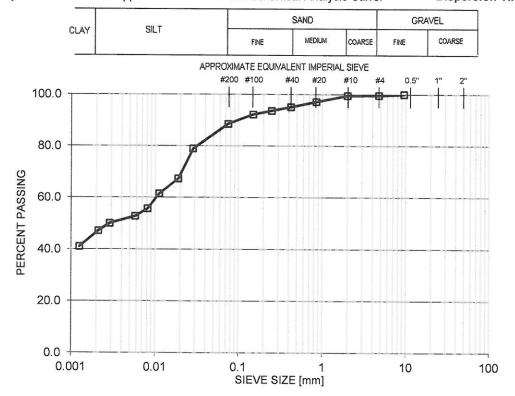
Per

Clark Hryhoruk, M.Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-28

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1


Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE. 18-RL-02

Test Hole No. TH6C Sample No. 4 Depth: 1.0 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Received: Dec 19/17 Date Tested: Jan 4/18 Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer Dispersion Time (min.):

0.00	
SIEVE	PERCENT
SIZE (mm)	PASSING
9.5	100.0
4.75	99.6
2.0	99.5
0.850	97.1
0.425	95.1
0.250	93.7
0.150	92.2
0.075	88.5
0.028	78.9
0.019	67.3
0.011	61.5
800.0	55.6
0.006	52.7
0.003	50.0
0.002	47.1
0.001	41.0

1

Percent of: GRAVEL (0.4 %), SAND (11.1 %), SILT (42.0 %), CLAY (46.4 %)

Sample Description:

Comments: Insitu Moisture content is 26.5%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M. Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

PARTICLE SIZE ANALYSIS

File No.: 17-035-02

Ref. No.: 17-35-2-30

WSP Canada Inc.

111 - 93 Lombard Avenue

Winnipeg, Manitoba

R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH7C Sample No. 3 Depth: 0.7 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Tested: Jan 4/18

Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer Dispersion Device:

Dispersion Time (min.):

SAND GRAVEL SILT CLAY MEDIUM COARSE COARSE FINE FINE APPROXIMATE EQUIVALENT IMPERIAL SIEVE #200 #100 #20 #10 100.0 80.0 PERCENT PASSING 60.0 40.0 20.0 0.0 0.001 0.01 10 100 SIEVE SIZE [mm]

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	99.4
0.425	98.9
0.250	98.3
0.150	97.8
0.075	94.1
0.028	82.4
0.018	79.5
0.011	73.6
0.008	64.8
0.006	61.9
0.003	56.2
0.002	53.3
0.001	50.1
West = 100 -	

1

Percent of: GRAVEL (0.0 %), SAND (5.9 %), SILT (41.0 %), CLAY (53.1 %)

Sample Description:

Comments: Insitu Moisture content is 33.3%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M.Sc., P.Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-32

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba

R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH8C

Dispersion Device:

Sample No.

Depth:

0.7 m

Sample By:

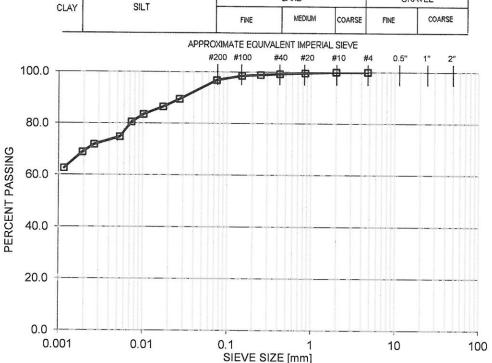
ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting

3

Source:

Chevrier Boulevard

Date Sampled: Dec 19/17


Date Received: Dec 19/17

Date Tested: Jan 4/18 Dispersion Time (min.):

1

SAND GRAVEL SILT MEDIUM COARSE COARSE FINE

Apparatus A: Humboldt Mechanical Analysis Stirrer

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	99.6
0.425	99.3
0.250	98.9
0.150	98.5
0.075	96.8
0.027	89.4
0.017	86.5
0.010	83.5
0.007	80.5
0.005	74.7
0.003	71.8
0.002	68.8
0.001	62.6

Percent of:

GRAVEL (0.0 %), SAND (3.2 %), SILT (27.7 %), CLAY (69.1 %)

Sample Description:

Comments:

Insitu Moisture content is 29.0%.

ENG-TECH Consulting Limited

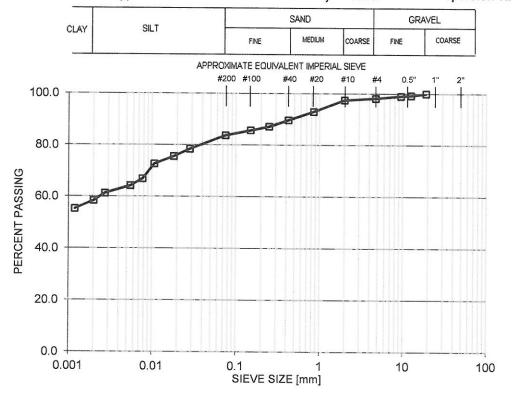
Per

Clark Hryhoruk, M.Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

File No.: 17-035-02

Ref. No.: 17-35-2-34

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1


Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH9C Sample No. 4 Depth: 1.0 m

Sample By: ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting Source: Chevrier Boulevard

Date Sampled: Dec 19/17 Date Received: Dec 19/17 Date Tested: Jan 4/18 Dispersion Device: Apparatus A: Humboldt Mechanical Analysis Stirrer Dispersion Time (min.):

SIEVE	PERCENT
SIZE (mm)	PASSING
19.0	100.0
12.5	99.3
9.5	99.1
4.75	98.2
2.0	97.5
0.850	92.9
0.425	89.7
0.250	87.1
0.150	85.7
0.075	83.7
0.028	78.4
0.018	75.5
0.011	72.6
0.008	66.8
0.006	64.1
0.003	61.2
0.002	58.3
0.001	55.1

1

Percent of: GRAVEL (1.8 %), SAND (14.5 %), SILT (25.4 %), CLAY (58.3 %)

Sample Description:

Comments: Insitu Moisture content is 28.4%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M. Sc., P. Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579

420 Turenne Street Winnipeg, Manitoba **R2J 3W8** engtech@mymts.net www.eng-tech.ca

PARTICLE SIZE ANALYSIS

File No.: 17-035-02

Ref. No.: 17-35-2-36

WSP Canada Inc. 111 - 93 Lombard Avenue Winnipeg, Manitoba R3B 3B1

Attention: Joel Piwniuk, E.I.T.

Project: GEOTECHNICAL INVESTIGATION - INDUSTRIAL STREETS PACKAGE 18-RL-02

Test Hole No. TH10C

Dispersion Device:

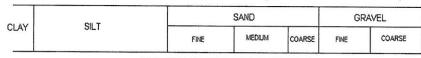
Sample No.

Depth:

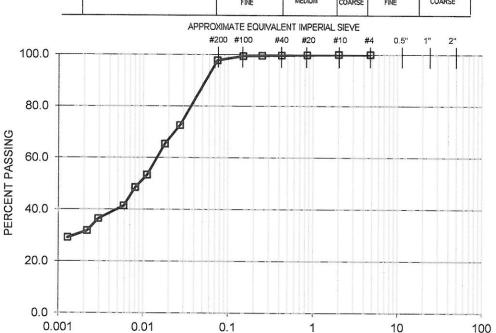
0.7 m

Sample By:

ENG-TECH (Trevor Robertson) Type of Sample: Auger cutting


Source:

Chevrier Boulevard


Date Sampled: Dec 19/17

Date Received: Dec 19/17

Date Tested: Jan 4/18 Dispersion Time (min.):

Apparatus A: Humboldt Mechanical Analysis Stirrer

SIEVE	PERCENT
SIZE (mm)	PASSING
4.75	100.0
2.0	100.0
0.850	99.8
0.425	99.7
0.250	99.5
0.150	99.4
0.075	97.7
0.027	72.5
0.018	65.3
0.011	53.3
800.0	48.5
0.006	41.4
0.003	36.4
0.002	31.7
0.001	29.1

Percent of:

GRAVEL (0.0 %), SAND (2.3 %), SILT (66.4 %), CLAY (31.3 %)

SIEVE SIZE [mm]

Sample Description:

Comments:

Insitu Moisture content is 23.7%.

ENG-TECH Consulting Limited

Per

Clark Hryhoruk, M.Sc, P.Eng., President Ph: (204) 233-1694 Fx: (204) 235-1579