

City of Winnipeg Wellington Crescent Riverbank Assessment – Lamont Boulevard to Academy Road Geotechnical Investigation, Instrument Monitoring and Existing Stability Report

Prepared for:

Mr. Kendall Thiessen, Ph.D., P.Eng. Riverbank Management Engineer – Waterways Authority Planning, Property, and Development Department City of Winnipeg 15 – 30 Fort Street Winnipeg, Manitoba R3C 4X5

Project Number: 0015 017 00

Date: January 22, 2018

Quality Engineering | Valued Relationships

January 22, 2018

Our File No. 0015 017 00

Mr. Kendall Thiessen, Ph.D., P.Eng Riverbank Management Engineer – Waterways Authority Planning, Property, and Development Department City of Winnipeg 15 – 30 Fort Street Winnipeg, MB R3C 4X5

RE: Wellington Crescent Riverbank Assessment – Lamont Boulevard to Academy Road Geotechnical Investigation, Instrument Monitoring and Stability Report

TREK Geotechnical Inc. is pleased to submit our Final Report for the riverbank assessment for the above noted project.

Please contact the undersigned if you have any questions. Thank you for the opportunity to serve you on this assignment.

Sincerely,

TREK Geotechnical Inc. Per:

Nelson Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer Tel: 204.975.9433

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	SGB	January 22, 2018	Final Report

Authorization Signatures

Prepared By:

Shawn Beaudry, B.Sc., EIT

Geotechnical Engineer

Reviewed By:

Nelson Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introduction1							
2.0	Background and Site Conditions1							
3.0	Field Program							
	3.1	Site Survey	2					
	3.2	Sub-surface Investigation	2					
4.0	Sub-S	Surface Conditions	3					
	4.1	Soil Stratigraphy	3					
	4.2	Groundwater Conditions	4					
	4.3	Sub-Surface Slope Movement	5					
5.0	Slope	Stability Analysis	5					
	5.1	Model Development	6					
	5.2	Stability Modeling Results	7					
6.0	Futur	e Considerations	9					
7.0	Closure							
Figure	es							
Test H	Hole Lo	ogs						

Appendices

List of Tables

Table 01	Groundwater Monitoring at Cross-Section C Standpipe Piezometers	5
Table 02	Soil Properties used in Stability Modeling	7
Table 03	Summary of Calculated Factors of Safety	8

List of Figures

Figure 01	Test Hole Location and Instrumentation Plan
Figure 02	Groundwater Monitoring Plot
Figure 03	SI-01 Cumulative Displacement Plot
Figure 04	SI-01 Displacement Rate Plot
Figure 05	SI-02 Cumulative Displacement Plot
Figure 06	SI-02 Displacement Rate Plot

List of Appendices

Appendix A Soil Laboratory Test Results

I.0 Introduction

This report summarizes the results of a geotechnical investigation, instrument monitoring and slope stability analysis completed by TREK Geotechnical Inc. (TREK) along the Assiniboine riverbank on Wellington Crescent extending from Lamont Boulevard to Academy Road. The terms of reference are included in our proposal addressed to Mr. Kendall Thiessen (City of Winnipeg Planning, Property and Development Department) dated September 21, 2016 and subsequent scope change authorization dated August 21, 2017.

2.0 Background and Site Conditions

The study area is situated along the south bank of the Assiniboine River within the City of Winnipeg as shown on Figure 01. The site encompasses a relatively straight section of the river to the west transitioning into an outside bend to the east. Wellington Crescent generally runs parallel to the Assiniboine River and is situated in close proximity (as close as $3 \text{ m} \pm$) to the top of riverbank within the study area. An asphalt paved active transportation (AT) pathway is also present on the riverside of the roadway and generally follows the top of riverbank with sections of the path transitioning into the mid-bank area west of Grenfell blvd. Evidence of historical riverbank instabilities are present at various locations within the site including historical slump blocks, cracks in the AT pathway, and visible tension cracks.

Three representative riverbank sections (Cross-section A to C) were selected for the study based on a visual assessment performed in September 2016 by Mr. Kendall Thiessen (City of Winnipeg), Mr. Nelson Ferreira (TREK), and Mr. Ken Skaftfeld (TREK). The location of each Cross-section is shown on Figure 01. At the time of the site review, evidence of active riverbank instabilities was present at sections A and C such as ancestral slump blocks and tension cracks, whereas no clear evidence of riverbank instability was visible at Cross-section B. Evidence of riverbank erosion was present at all sections.

The riverbank at Cross-section A is approximately 8.3 m high and is characterized by an ancestral slump block situated downslope of the AT pathway. The upper bank is relatively flat at an elevation of 232.9 m sloping at approximately 3 horizontal to 1 vertical (3H:1V) down to flat mid- and lower bank areas. Below the lower bank area, the riverbank is steeply sloping to the river channel bottom at approximately 1.3H:1V. The riverbank is moderately treed and has moderate vegetative ground cover consisting of native weeds.

The riverbank at Cross-section B is approximately 6 m high. The upper bank is relatively flat at an elevation of 230.6 m and is over-steepened, sloping down into the river channel at approximately 1H:1V. There are few to no trees in the vicinity of the cross-section. The upper-bank is grassed and the bank slope is relatively unvegetated.

The riverbank at Cross-section C is approximately 8 m high with an upper bank elevation (at the road edge) of 232.4 m. Downslope of the road, the bank is sloped at approximately 11H:1V and transitions to a 3H:1V near the river edge at elevation 228.5 m. The AT pathway is situated about mid-slope. The

riverbank is moderately treed and has moderate vegetative ground cover consisting of native weeds.

In June 2017, a large slope instability occurred at Cross-section C. The slope instability initiated upslope of the AT pathway and extended into the river channel. The headscarp dropped vertically as much as 1.0 m and numerous tension cracks were observed in close proximity to the headscarp within the zone of riverbank movements. The instability rendered the AT pathway impassable and damaged geotechnical instrumentation that was installed at that Cross-section. It is suspected that the riverbank became saturated due to surface runoff from the roadway through a culvert upslope of the riverbank movement. A supplemental survey and sub-surface investigation was undertaken to further evaluate conditions in and around the riverbank instability.

3.0 Field Program

3.1 Site Survey

A topographic and bathymetric survey was performed at the site between November 2 and 5, 2016. A supplemental topographic survey was performed at Cross-section C on July 24, 2017 following the slope instability. Survey was completed by Wanless Geo-Point Solutions Inc. Riverbank elevations, channel bottom elevations, and relevant site features (*i.e.* AT pathway and road locations, existing tension cracks, test hole locations, etc.) were measured as part of the survey in the vicinity of each of the selected Cross-sections. The surveyed Cross-sections were verified against LIDAR data provided by the City of Winnipeg collected in October 2011 to confirm overall bank geometry. Elevation contours derived from the LIDAR data are shown on Figure 01 to depict general bank geometries across the site. However, ground elevations derived from the surveyed Cross-sections were used in the slope analysis.

3.2 Sub-surface Investigation

A sub-surface investigation was completed between October 17 and 19, 2016 under the supervision of TREK personnel to evaluate sub-surface conditions at each cross-section. The investigation included drilling four deep test holes (TH16-01 to TH16-04) at the locations shown on Figure 01. Test holes were drilled using an Acker SX track mounted rig equipped with 170 mm diameter solid stem augers and a split barrel continuous sampler. All test holes were advanced into till. Power auger refusal (PAR) was encountered at 7.6 (elev. 222.99 m) and 8.4 m (elev. 224.12 m) in TH16-02 and TH16-04, respectively.

Geotechnical instrumentation was installed in all test holes and included slope inclinometers (SIs), standpipe (SP) and vibrating wire (VW) piezometers or combination thereof. The name and location of each instrument is shown on Figure 01. In addition to permanently installed instrumentation, a vibrating wire piezometer (VW-03) was installed inside the casing of standpipe SP-03 to allow continuous monitoring of piezometric levels using a data logger. Data loggers were attached to vibrating wire piezometers in test holes TH16-03 (Cross-section A) and TH16-02 (Cross-section B).

A supplemental sub-surface investigation program was completed by TREK on July 7 and 13, 2017 following the slope movements at Cross-section C. Test holes (HA17-01 to HA17-04) were drilled at the locations shown on Figure 01. Test holes were drilled using a 50 mm diameter hand auger to depths ranging between 2.7 and 4.0 m. A standpipe piezometer was installed in each test hole (SP17-01 to SP17-04).

Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Disturbed (split barrel and split spoon) and relatively undisturbed (Shelby tube) samples were collected during drilling. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of water content determination on all samples, Atterberg limits, bulk unit weight measurements and unconfined compressive strength testing on select samples. Soil laboratory test results are included in Appendix A.

Detailed test hole logs are attached to this report and include a description of the soil units encountered during drilling and other pertinent information such as groundwater conditions, a summary of the laboratory testing results, and instrument installation details.

4.0 Sub-Surface Conditions

4.1 Soil Stratigraphy

A brief summary of the soil units encountered at the test hole locations during drilling is provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

The soil stratigraphy varies slightly by Cross-section but generally consists of alluvial soils over top of lacustrine clay soils underlain by silt (till). The alluvial soils vary in thickness from a veneer to about 3.8 m. The alluvial soils are predominately clay with interlayers and seams of silt and sand. The extent and detailed characterization of the alluvial was not determined and would required additional test holes and laboratory testing. In this regard, the descriptions below do not distinguish depositional geology.

At Cross-section A (TH16-03 and TH16-04), clay fill was observed at the top of bank extending to a depth of 2.9 m (elev. 229.6 m). The clay fill is brown, damp to moist, stiff to very stiff and is highly plastic. The native silty clay extended to an approximate elevation of 226.3 m. The native clay is brown, damp to moist, very stiff becoming stiff with depth, and intermediate to highly plastic. Interlayers of silt and sand were observed within the silty clay unit ranging in thickness between approximately 0.5 and 0.6 m. A sand layer was encountered near the surface of the silt (till) ranging in thickness between 0.8 and 1.1 m. The silt (till) below is grey, damp to moist, loose becoming dense with depth and low to non-plastic.

At Cross-section B (TH16-02), native silty clay was observed to a depth of 5.8 m (elev. 224.8 m). The silty clay is brown, damp to moist, very stiff becoming firm with depth and of intermediate plasticity.

The underlying silt (till) is grey, damp to moist, loose becoming dense with depth and low to non-plastic.

At Cross-section C (TH16-01 & HA17-01 to HA17-04), native silty clay was observed to a depth of 5.8 m (elev. 223.8 m). The silty clay is brown, moist, very stiff becoming firm with depth, of intermediate plasticity, and contains medium grained sand lenses ranging in diameter between 25 and 75 mm. The underlying silt (till) is light grey, moist to wet, loose becoming dense with depth and low plastic.

4.2 Groundwater Conditions

Groundwater conditions described herein are based on monitoring of piezometers installed at the site. Groundwater levels were recorded either manually or daily using data loggers. It is important to note that the measured piezometric levels are valid at the time they were recorded, and that levels may vary between readings or spatially between piezometers.

Figure 02 shows the monitoring results for piezometers installed in TH16-01 to TH16-04 as well as Assiniboine river levels monitored at the St. James Bridge. Prior to river elevations rising to flood stage at the end of March 2016, piezometric elevations in the clay and silt (till) appeared to be static at Cross-section A and B at elevations of 227.0 and 226.3 m or at 3.7 and 4.3 m below ground surface, respectively. Piezometric elevations in the silt (till) at Cross-section C were comparable to those at A at an approximate elevation of 227.1 m or 3.3 m below ground surface. In general, piezometers in the clay and silt (till) appear to trend relatively closely with rising and falling river levels during the 2016 spring flood. A lag off approximately 4 days was observed between increasing and decreasing clay groundwater levels to river changes. Following flood drawdown, porewater pressure dissipation in both the silt and clay appears to be a slower response when compared to porewater pressure increases recorded due to rising river levels. Piezometric elevations at VW-02 are showing a very slow dissipation and have remained approximately 0.8 m above pre-flood conditions to the end of the current monitoring period.

Note that vibrating wire piezometer VW-01A malfunctioned around March 30, 2017. Also, VW-02A did not work properly following installation based on our interpretation of the readings which appear to be realistic but are likely false based on expected behavior.

Piezometric elevations in the silty clay monitored within SP17-01 to SP17-04 are presented in Table 01. TREK understands that surface run-off from a culvert beneath the road resulted in ponded water upslope of the zone of movement for some time, likely saturating the riverbank prior to the slope movement. The standpipes were installed shortly after the instability occurred and the recorded water levels within SP17-01, SP-02 and SP03 were initially within 1.0 m of ground surface and may have been higher at the time when riverbank movements occurred. Measured groundwater levels lowered with time following remedial works by the City to minimize surface water from entering the area of instability over the summer of 2017.

Piezometric and river elevations used in the stability analysis are discussed in Section 5.1.

Standpipe No.	SP17-01		SP1	SP17-02		SP17-03		7-04
Ground Elev. (m)	230	0.08	231	231.27		/5	229.11	
Tip Elevation (m)	22(6.13	227.33		226.97		226.37	
Date	Depth (Below T.O.P.)	Elev. (m)	Depth (Below T.O.P.)	Elev. (m)	Depth (Below T.O.P.)	Elev. (m)	Depth (Below T.O.P.)	Elev. (m)
08-Jul-17	0.82	229.24	1.10	230.15	DRY	-	1.00(1)	228.08
24-Jul-17	1.33	228.73	1.60	229.65	DRY	-	1.16	227.92
02-Aug-17	1.70	228.36	3.26	227.99	DRY	-	1.43	227.65
25-Aug-17	2.16	227.90	3.21	228.04	DRY	-	2.01	227.07
29-Sep-17	2.68	227.38	DRY	- '	DRY	-	2.43	226.65

 Table 01 – Groundwater Monitoring at Cross-Section C Standpipe Piezometers

(1) Depth was not measured but was visually estimated to be 1.0 m below the top of pipe.

4.3 Sub-Surface Slope Movement

Two slope inclinometers (SI-01 and SI-02) were installed at Cross-section A to monitor movements within an ancestral slump block. Following the initial baseline measurements, SI-01 and SI-02 have been monitored a total of 4 and 3 times, respectively. Monitoring events spanned between February 2, 2017 and August 25, 2017. Cumulative displacement profiles as well as displacement rate plots for each SI are shown on Figures 03 to 06. Observations for each SI are also provided below.

SI-01 (Mid-Bank) – Cross-section A

A zone of movement has been observed around elevation 227.4 m which is approximately 2.3 m above the silt till contact (Elev. 225.1 m). A total of 11 mm of cumulative displacement has been observed at this elevation. Of this 11 mm, 5 mm appears to have occurred prior to the 2017 spring flood and the additional 6 mm occurred while flood levels were receding. No additional movements were observed following the spring movements to the end of the monitoring period.

SI-02 (Upper-Bank) – Cross-section A

One apparent zone of movement has been observed at elevation 227.2 m which is approximately 0.9 m above the silt till contact (Elev. 226.3 m). 5 mm of total cumulative displacement has been observed at this elevation. Of this 5 mm, 1 mm appears to have occurred prior to the 2017 spring flood and the additional 4 mm occurred following recession of the flood river levels.

5.0 Slope Stability Analysis

Slope stability analysis was competed at all three sections. A back-analysis was completed a Crosssection A to determine conditions and soil properties that could result in riverbank instabilities at the locations where movements were observed in the slope inclinometers. The back analyzed results were then used to predict the level of stability at Cross-sections B and C. The analysis at Cross-

section C was modeled to represent conditions at the time riverbank movements occurred. The location of each Cross-section (A to C) is shown in plan on Figure 01.

5.1 Model Development

The stability analysis was conducted using a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2016 software package (Geo-Slope International Inc.). The slope stability model used the Morgenstern-Price method of slices with a half-sine interslice force function to calculate factors of safety (FS) along various potential slip surfaces. Circular and block shaped slip surfaces were used in the back-analysis for Cross-section A. The circular slip surfaces were determined using a grid and radius slip surface method while the block slip surface was fully specified. Resulting FS between circular and block slip surfaces were comparable for a slip surface through the zones of observed movement. Based on the comparable results between the two types of slips, circular slip surfaces were used for Cross-sections B and C in order to search for critical slip locations.

Groundwater conditions were modeled using a piezometric line defined based on measured groundwater and river levels. Measured piezometric conditions in the clay and till were generally static or demonstrated a slight downward flow gradient. Static groundwater conditions were assumed in the model and is considered a conservative approach. At Cross-section A, the groundwater level in the upper-bank above the piezometers was assumed to be approximately 2.0 m below the ground surface within the silt layer assuming periodic saturation. The river level at Cross-section C was selected based on the approximate date of slope movements estimated to be in June 2017. The groundwater level at Cross-Section C was assumed parallel to the ground surface at about 1 m below ground surface. This groundwater profile is consistent with measured piezometric elevations in standpipe piezometers SP17-01 to SP17-04.

Bank geometries were based on the site-specific survey (bathymetry and topographic survey) conducted as part of this assignment. The soil units used in the models include the silty clay (alluvial or lacustrine), sand till, and silt till units based on sub-surface information. At cross-section A and C, the lacustrine clay was divided into discrete zones in the slope models to reflect varying degrees of soil strengths anticipated due to active ground movements. For Cross-section A, the zone assuming residual clay strengths was situated between the roadway and the river while strengths beyond the road were assigned higher, fully softened strengths. The residual clay zone in Cross-Section C was situated at the approximate location of the head scarp with fully softened strengths upslope of the tension crack. The silty clay at Cross-Section B was assigned alluvial strength properties based on published relationships between Atterberg Limits and friction angles.

Back Analysis (Cross-Section A)

The back analysis focused on a slip surface matching the location of observed movement in SI-01 and SI-02. The strength parameters of the lacustrine clay (residual) were adjusted until the FS for a slip surface matching the observed movements was near unity (FS=1.0). Table 02 lists the soil properties

used for the soil units in the stability modeling and the back analyzed residual clay strength. The selected material strength properties used in the model are considered consistent with previous observations for soils in the Winnipeg area.

Soil Description	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (deg)
Silty Clay – Lacustrine Fully Softened	17.5	5	17
Silty Clay – Lacustrine Residual (back-analyzed)	17.5	1.5	12
Silty Clay - Alluvial	17.5	3	23
Sand Till	19	10	30
Silt Till	20	10	30

Table 02 Soil Properties used in Stability Modeling

Groundwater and river levels used in the back-analysis were selected based on the most critical condition measured during the monitoring period. Critical conditions were observed following the 2016 spring flood when river levels were receding and measured pore-pressures within the clay and till remained near peak elevations. The critical condition is consistent with when riverbank movements typically occur in Winnipeg. Reduced riverbank stability and slope movements in riverbanks (slope instabilities) are often associated with the annual drawdown of the Red and Assiniboine Rivers in the late fall and an associated time lag before groundwater levels adjust (reduce) to lower river levels.

5.2 Stability Modeling Results

Table 03 summarizes the stability modeling cases and associated factors of safety calculated using the numerical model for each of the cross-sections. Figure 07 to 09 show the stability analysis results for each case, as referenced in Table 03.

Cross- Section	Geometry Case	River Elevation	Groundwater Level	Slip Surface	Description	FS	Figure No.		
			230.5 m	SS1 (Circular)	Critical FS Back Analysis through the zone of observed movement	0.99			
А	Existing Geometry	227.2 m	Upper Bank 228.1 m	Upper Bank ו 228.1 m	Upper Bank 228.1 m	SS2 (Block)	Back Analysis through the zone of observed movement	1.02	07
			Lower Bank	SS3 (Circular)	At the existing edge of roadway	1.02			
В		227.2 m		SS1 (Circular)	Critical FS	1.01			
	Existing Geometry		227.7 m Upper Bank	SS2 (Circular)	At existing AT pathway edge (corresponds to the closest distance between the top of riverbank and the roadway, 25 m west of Section B)	1.12	08		
				SS3 (Circular)	At the existing edge of roadway	1.47			
С	Drior to			SS1 (Circular)	Critical FS	0.78			
	June 2017 Slope Movements	226.4 m	1 m Below Ground	SS2 (Circular)	Approximate zone of observed movement	1.04	09		
				-	At the existing edge of roadway	>1.5			

Table 03 - Summary of Calculated Factors of Safety

The calculated minimum FS for all three sections are at or close to unity indicating the riverbanks in this area are unstable (FS \leq 1.0) or marginally stable (FS \sim 1.10) depending on the groundwater conditions at any given time. The FS at the AT path varies between <1.0 and 1.12 whereas the FS at the road edge varies between 1.02 and >1.5. The level of stability at the AT path edge at all cross-sections and edge of road at cross-sections A and 25m west of B are below typical minimum target values (FS >1.3) for infrastructure under the conditions analyzed.

It should be noted that the application of residual material strengths within the bank at Cross-sections A and C is a simplified approach to evaluating stability in the general areas where movements have occurred. Residual strengths may not exist everywhere in those zones. As such, slip surfaces with an FS less than unity downslope of the instability at Cross-section C may be more stable than depicted in the analysis. The FS for potential slip surfaces in the lower bank area below unity may also be the result of conditions that cannot be accurately incorporated into the model (unsaturated soils, vegetation) and can be considered a limitation of the analysis.

6.0 Future Considerations

Based on the subsurface investigation and stability analysis results, TREK provides the following considerations for future work.

- Ongoing monitoring of instrumentation should be completed to observe trends over a longer duration, assist in identifying critical groundwater and river level conditions, and monitor performance of the bank where slope inclinometers are installed.
- Installation of slope inclinometers at Cross-section B and C would be beneficial to determine if riverbank movements are occurring, where and when they occur, and at what rate to better predict the stability of the riverbank in these areas, especially if stabilization works are being considered. Slope inclinometers may also be beneficial to monitor bank performance if remedial or stabilization works are undertaken.
- Riverbank stabilization works or relocation of infrastructure should be considered at Crosssection A and C given active bank movements that have been observed to date. Riverbank stability is expected to deteriorate as creep movements continue which may lead to retrogression of the slope instabilities that may impact the road or path.
- Remedial repairs of the riverbank in the vicinity of the instability at Cross-section C should be undertaken to minimize the risk of instabilities retrogressing upslope toward the roadway. This should include sealing of tension cracks, re-grading of the riverbank to promote positive drainage, diverting surface runoff, and construction of erosion protection to maintain bank geometries with some improvement to stability. These works may be implemented quickly and with relative ease.

7.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of the City of Winnipeg (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

SCALE = 1 : 2 000 (279 mm x 432 mm)

APPROXIMATE PROPERTY LINE

_ _

HAND AUGER TEST HOLE (TREK, JULY 7 AND 13, 2017)

NOTES: 1.

2. ELEVATION CONTOURS ARE BASED ON CITY OF

WINNIPEG LIDAR DATA FROM OCTOBER, 2011.

0015 017 00 City of Winnipeg

Wellington Crescent Riverbank Assessment - Lamont Blvd. to Academy Rd.

Test Hole Location and Instrumentation Plan

	- 233
el @ St. James Bridge	200
ction A	
lt Till - Tip Elev. 223.85 m - VW	-
lay - Tip Elev. 226.75 m	- 232
Clay - Tip Elev. 226.81 m	
ction B	
lt (Till) - Tip Elev. 223 m	- 231
Clay - Tip Elev. 226.02 m	
Clay - Tip Elev. 226.15 m	
ction C	5
lt (Till) - Tip Elev. 221.24 m	230 5
	∃ati
	- 229 🗓
	let let
	228
	_ _
	tic
101111111111	- 227 💆
	- 226
• • • • • •	
~	_
	-
	225
	-
	_
	224
\sim	

City of Winnipeg Wellington Crescent Riverbank Assessment (Lamont Blvd. to Academy Rd.)

SLOPE INCLINOMETER WORKSHEET SI-01 Baseline ► 2017-02-23 ← 2017-03-30 <u> 2017-05-25</u> - 2017-08-25 231 231 230 230 229 229 228 228 Elevation (m) Elevation (m) 227 227 226 226 225 225 224 224 15 \$? \$? 15 2 ŝ 0 Ś 2 ŝ ŝ 15 20 ŝ 0 Ś 20 15 ~ ~ Cumulative Displacement (mm) A-Direction Cumulative Displacement (mm) B-Direction

SLOPE INCLINOMETER RATE PLOT

SI-01

City of Winnipeg Wellington Crescent Riverbank Assessment (Lamont Blvd. to Academy Rd.)

SLOPE INCLINOMETER WORKSHEET SI-02 •Baseline —== 2017-03-30 -== 2017-05-25 -== 2017-08-25 233 233 232 232 231 231 230 230 229 229 Elevation (m) Elevation (m) 228 228 227 227 226 226 225 225 224 224 ŝ Ŷ 15 2 ŝ 0 Ś 2 15 \$ \$ ŝ ŝ 15 20 ŝ 0 Ś 20 15 Cumulative Displacement (mm) A-Direction Cumulative Displacement (mm) B-Direction

SLOPE INCLINOMETER RATE PLOT

SI-02

Wellington Crescent Riverbank Assessment - Lamont Blvd. to Academy Rd.

SAVED: 19/01/2018 12:46:00 PM

Tabloid (279mm x 432mm)

SCALE: 1:235 (279mm x 432mm)

0015 017 00 City of Winnipeg

Figure 07 Cross Section A - Back Analysis

Tabloid (279mm x 432mm)

SAVED: 19/01/2018 1:11:03 PM

FILE NAME: B002.gsz

SCALE: 1:235 (279mm x 432mm)

0015 017 00 City of Winnipeg

Wellington Crescent Riverbank Assessment - Lamont Blvd. to Academy Rd.

Figure 08 Cross Section B

SCALE: 1:235 (279mm x 432mm)

0015 017 00 City of Winnipeg

Wellington Crescent Riverbank Assessment - Lamont Blvd. to Academy Rd.

Figure 09 Cross Section C

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names	Laboratory Classification Criteria			ş						
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve size	5 #4	o #10	to #40	200
sieve size	vels of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve nbols*	Not meeting all gradatio	on requiren	nents for GW	ە	STM S	#10	#401	#500	¥
s No. 200	Gra than half o	vith fines sciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	ticle Siz	٩			+	
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle ilows: W, SP SM, SC ts requirin	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Par		Ľ	, 8	25	
Coarse-Gr naterial is	action	sands no fines)	SW	***** ****	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fo sw, GP, S GM, GC, thine case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 UU tO 4 7		.075 to 0.4	c / N.N >
n half the r	nds of coarse fr an 4 75 mi	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sal Sal Saller th	vith fines sciable of fines)	SM		Silty sands, sand-silt mixtures	le percent of on perc rained soil than 5 per than 12 per than 12 per than 2 percent.	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5			100	Clay
	(More	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Mate	ואומר	Sand	Mediu	Fine Citt or	oll oi
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity	/ Chart			e Sizes		-	Ľ	
. 200 sieve	ts and Cla	Liquid limit sss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	TM Sieve	> 12 in 2 in to 12	2	3/4 in. to 3 #4 to 3/4	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%) 00 (%)		CH CH		rticle Siz	ASI	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Pa	m	300 200	222	to 75	P 10
Fine Fine the materia ts and Clar Liquid limit ater than 5	Liquid limi ater than (СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F	
than half	N	gre	OH		Organic clays of medium to high plasticity, organic silts		ML OR OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Classification Limit Strong colour or odour, and often fibrous texture		lour or odour, fibrous texture	Mate	ואומוכ	Bould	Grave	Coarse		

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM EXAMPLES		PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Test	blow count (N) of a cor	nesive soil can be related to its c	consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Client	:	Cit	y of W	/innipeg						Project	Number	: .	0015	017 0	0								_
Projec	ct Nam	e: <u>W</u> e	ellingte	on Crescen	t (Lamont E	Blvd. to A	cademy	/ Rd.)		Locatio	n:	-	UTM	N-55	2608	8.156	, E-62	2815	7.89				
Contra	actor:	Pa	ddock	Drilling Ltd	l.					Ground	Elevatio	on:	230.3	88 m E	xistir	ng Gro	ound						
Metho	d:	170	mm H	ollow Stem Au	ger, Acker SX	(Track Mou	unt			Date Dr	illed:	-	Octol	oer 19	, 201	6							_
Ś	Sample	е Туре			Grab (G)		Sh	nelby Tu	ıbe (T)	Sp Sp	lit Spoor	ı (S	S) 🕨	Sp	olit Ba	arrel (S	SB) [Core	(C)			
F	Particle	e Size I	_eger	nd:	Fines		Clay		Silt		Sand			Gra	vel	57	<u> </u>	obble	s	В	bulde	rs	
E	Backfil	l Leger	nd:		Bentonite		Ceme	ent		Drill Cutti	ngs 🚫		Filter Pa Sand	ack	•	G	rout		Ŕ	Slo	ugh		
Elevation (m)	Depth (m)	Soil Symbol	Standpipe			MATERI	AL DES	SCRIPT	ION			Sample Type	Sample Number	SPT (N)	16 1 0 2 0 2	□ Bul 7 18 Particl 0 40 PL 0 40	Ik Unit N/m ³) e Size 60 MC 60	Wt 20 (%) 80 LL 80	21 100 100 0	Undr Stre	ained S ength (I est Typ orvan cket P ⊠ Qu ∑ eld Val 00 15	Shear	
230.1		<u>\</u>		CLAY (TOF - black - inter	PSOIL) - si k, moist mediate to	lty, some high plas	rootlets sticity, bl	s, trace s locky/fria	sand able				G50			•							
200.1				CLAY - silt	y, trace sar	nd		,															
Ē	-0.5-		10	- prow - mois	t, stiff to ve	ery stiff	4: .:						G51			•				_			┢
Ē			10	- inter - block	ky/friable	nign plas	SUCILY													_	•		_
Ę			10									I	SB52										
Ē	-1.0-		10																				T
Ę																				_			L
Ę			10													•						o	
F	-1.5-		10										SB53							_			┝
Ę																							
E			10	- sand lens	; (~ 30 mm	diam)-1	trace silt	t brown	drv po	orly grade	ed												
E	-2.0-			medium gr	ained at 1.	8 m		.,	., ury, po	4:-:+										_			-
Ē			10	- trace silt i below 1.91	m	(<20 mm	diam.), i	moist, h	ligh plas	ticity, varv	/ed		SB54			•				•			
Ē																							t
È	-2 5-		10																				
Ē												V											
Ę			10										SB55				●┼			o a			┝
Ē	20																						
F	-3.0-																						Γ
E																							_
Ē			10										SB56			9	•			•			
Ē	-3.5-																						t
Ę			10	- sand lens	s (~ 70 mm	diam.) - 1	trace silt	t, brown	, dry to o	damp, po	orly												
Ę			18	graded, me - trace to se	edium grair ome silt inc	ned at 3.7 clusions (′ m <20 mm	n diam.)	, trace a	ravel belo	w 3.7 m												
Ē	-4.0-			- firm belov	v 4.0 m	,		,	, J				SB57				•			4			ł
Ē																							
F			10	- sand lens	(~ 25 mm	diam.) - 1	trace silt	t, brown	i, dry, po	orly grad	ed,									_			Ī
Ē	-4.5-		10	medium gr	ained at 4.	3 M							0055										╞
E			10										SB28										
Ē			10																				t
Ē	-5 0-		10	- sand lens	(~ 50 mm	diam.) - 1	trace silt	t, brown	i, dry, po	orly grad	ed,												
t			10	meaium gr	ameu al 4.	5 111																	
ŀ			/																				1

2 of 2

۰

				Droject Numb		0015.01	7.00		
Client:		eg		Project Numb	er:	<u>0015 01</u>	<u>/ UU</u>	628462 206	
Project Name:		escent (Lamont Bivo. t	5 Academy Rd.)	Location:	•! • · · · ·	010 FO #	<u>5526110.587, E</u>	-028402.290	
Contractor:				Ground Eleva	tion:	230.59 1	n Existing Groun	IQ	
Method:	1/0 mm Hollow S	Stem Auger, Acker SX Track	Mount	Date Drilled:		October	18, 2016		
Sample T	ype:	Grab (G)	Shelby T	Tube (T) Split Sport	on (S	S)	Split Barrel (SB) Core (C)
Particle S	ize Legend:	Fines	Clay 🛄	Silt San	d		Gravel	Cobbles	Boulders
Backfill Lo	egend:	Bentonite	Cement	Drill Cuttings		Filter Pack Sand	Grou	ut 😥	Slough
Elevation (m) Depth	Standpipe VW Piezo	M.	ATERIAL DESCR	RIPTION	Sample Type	Sample Number	□ Bulk U 16 17 18 Particle S 0 20 40 PL MC 0 20 40	Injit Wt 19 20 21 19 20 21 60 80 100 10 10 10 10 10 10 10 10 10	Undrained Shear Strength (kPa) <u>Test Type</u> △ Torvane △ ● Pocket Pen. ● ⊠ Qu ⊠ ○ Field Vane ○ 50 100 150 200
		CLAY - silty, some ro	otlets, trace sand, plasticity, blocky/fr	, brown, moist, firm, iable					
230.3						G33	•		
		- brown, damp to	o moist						
		- no to low plasti	city			634			
		CLAY - silty, trace sa	nd		┦				
-1.0-		 brown, moist, v intermediate pl 	ery stiff asticity			SB35			
			·				•		•
-1.5-		• • •							
									△●
		- sand seam (~2 mm	thick) at 1.8 m						
-2.0-									
		•				T36	● 1		•
		•							
-2.5-		- soft below 2.4 m							
		• •				SB37			
		 sand seam (~40 mn graded, fine grained a 	ו thick) - silty, bro at 2.7 m	wn, damp to moist, poorly		0201	•	•	
-3.0-		•							
		·							
						T37		Q	
-3.5-		• •							
		• •							
		•				SB38		D A	
-4.0-						0200			
		•							
		•							
								•	
-5 0-									
					Å	SB39			
	Shawp Boouds	,	Reviewed Pur	Jelson Ferroiro		Dro	iact Engineer:	Shawn Boourd	ny in in in

Sub-Surface Log

	CHHIC	ML										
Client:	City of Winnip	eg		Project Number:	001	5 017 0	0					
Project Name:	Wellington Cr	escent	(Lamont Blvd. to Academy Rd.)	Location:	UTI	M N-55	26085.2	253, E-62	28689.36	6		
Contractor:	Paddock Drilli	ng Ltd.	·	Ground Elevation	: 230	.69 m E	xisting	Ground				
Method:	170 mm Hollow S	Stem Aug	ger, Acker SX Track Mount	Date Drilled:	Oct	ober 19	, 2016					
Sample T	уре:		Grab (G) Shelby Tube (T) Split Spoon (SS)	🗙 Sp	olit Barro	el (SB) [Co	ore (C)		
Particle S	ize Legend:		Fines Clay Silt	Sand Sand		Gra	vel	67 C	obbles		Boulde	ərs
Backfill Le	egend:		Bentonite Cement	Drill Cuttings	Filter Sand	Pack		Grout			Slough	
Elevation (m) Depth (m)	Soll Symbol Slope Inclinometer Standpipe	VW Piezo		ION ION	Sample Number	SPT (N)	16 17 Pa 0 20 PL 0 20	Bulk Unit (kN/m³) 18 19 article Size 40 60 MC 40 60	Wt 20 21 (%) 80 100 LL 80 100	U - - - - - - - - - - - - - - - - - - -	ndrained <u>Strength</u> <u>A Torva</u> Pocket ⊠ Qu D Field V 100	Shear (kPa) /pe ne △ Pen. ♥ ane ○ 150 20
230.4			rootlets, trace gravel, black, moist, inter blocky/friable	mediate plasticity,	G01	_	•					
-0.5-			- brown, moist, very stiff - intermediate to high plasticity		GO	-						
229 6 - 1.0 -			- trace sand, trace gravel (<20 mm diar	n.) below 0.8 m	SB0	3		•				
			SILT - trace sand, trace clay - light brown, damp - low plasticity		SB0	4	●⊢	1				
-2.0			CLAY - silty, trace sand, trace rootlets - brown, moist, stiff - intermediate to high plasticity - some sand, some gravel, poorly grade gravel below 2.1 m	ed, fine sand to fine	SB0	5					Δ	
227.9			SAND - trace to some silt. trace gravel		SB0 SB0	6 7	•					
-3.0-			- brown, damp to moist - poorly graded, fine to coarse grai	ned	SB0	3	•					
-3.5			CLAY - silty, trace to some silt inclusior trace sand, trace gravel - brown mottled grey, moist, stiff - high plasticity	is (<15 mm diam.),	SB0	9		•		• ^		
-4.0-			Transition from clay to till below 3.8 m - moist to wet, soft, low to intermediate p	some sand, grey, lasticity.	SB1	5	•					
-4.5-			SAND (TILL) - silty - light brown - wet, loose - poorly graded, fine to medium gra	ained	SB1	1	•					
-5.0-					SS1	2 8						
Logged By: S	Shawn Beaudry	,	Reviewed By: Nelson	Ferreira		Projec	t Engin	eer: Sl	nawn Be	audry		

			1 of M										0015	017.0	0									
Broid	L: of Nam		<u>y or w</u>	nnnipeg	ont (Larr	ont B	lyd to	Acado	my Pd	\	Project Number			N 55	2608	6 3 3 0		2860	2 40	<u>ົ</u>				-
Cont	ractor.	е. <u>- ме</u> Ра	ddock	Drilling	td		100.10	Acaue	iny itu.		Ground Elevation	on.	230	77 m F	- <u>2000</u> Fxisti	na Gra	<u>, L-0</u>	2003	2.43	2				-
Meth	od.	170	mm H	ollow Stem	Auger Act	ker SX	Track M	lount			Date Drilled	011.	Octo	ber 19	201	6	Juna							_
mean	Sample				Grah				Shelby	Tube (T	Split Spoor	n (S	<u>s</u>)		hit B	arrel (SB)			re (C)			_
	Particle	Sizo	Logor			, (O)	7///	Clay				1 (0					<u>д с</u>				, Roi	uldor	<u> </u>	
	Dealafill					5			<u> </u>			577	Filter P	ack	er F				-5 E				5	
	Васклії	Leger	10:		Bent	onite			ment				Sand			Bu	Ik Unit	t Wt		<u>8</u>	Indrai	gn ned S	hear	
c		8										be	nbe		16 1	7 18	(N/m ³) 3 19	20	21		Stren	gth (k	Pa)	
/atio m)	n) apth	Syml	/W ezo			I	MATE	RIAL D	ESCRII	PTION		le T	Nu	L N		Partic	le Size	e (%)				rvane	<u>e</u> ⊳∆	
Elev (ă	Soil	- <u>-</u>									amp	mple	SP	0 2	20 40 PL	MC 60) 80 	100				en. 🗣	
		0,										S	Sa		0 2	40	60	80	100	0 50) 100	0 Van) 150	0 20	10 2
			•	Notes: 1 Refer	to TH16	-03 fo	or the r	naterial	descrir	otion														
				2. Vibrat	ing wire	piezo	meter	VW-02	A (tip e	levation 2	26.81 m) installed													
				3. Test h	ole back	filled	with c	ement-	bentoni	te grout t	o surface.													
	-0.5-																							
		ļ																						
	⊧																							
			•																					
	-2.0-	ŀ																						
	2.5																							
	}																							
			•																					
	F - 1																							
		•																						
		-																						
	F - 1																	-						
	ŧ		•																					
	<u>r 1</u>																							
	ed Bv:	Shav	vn Re	audry			R	eviewe	d By:	Nelson F	erreira			Proiec	t Fn	ninee	r .S	hawr	1 Bes	audry	,			_
	y.	Chav		a a a a g			- ''		-				_						. 200	y				

UEUIE					
Client:	City of Winnipeg Proje	ect Number:	0015 017 0	00	
Project Name:	Wellington Crescent (Lamont Blvd. to Academy Rd.)	tion:	UTM N-55	26075.783, E-628684.6	25
Contractor:	Paddock Drilling Ltd. Grou	Ind Elevation:	232.52 m E	Existing Ground	
Method:	_170 mm Hollow Stem Auger, Acker SX Track Mount Date	Drilled:	October 18	3, 2016	
Sample ⁻	ype: Grab (G) Shelby Tube (T)	Split Spoon (S	SS) 🔀 SI	plit Barrel (SB)	ore (C)
Particle S	ize Legend:	Sand	Gra		Boulders
Backfill L	eaend:	uttings	Filter Pack	Grout	Slough
			Sand	Bulk Unit Wt	Undrained Shear
Elevation (m) (m) (m)		Sample Type	Sample Numbe SPT (N)	16 17 (KN/m) 19 20 2' Particle Size (%) 0 20 40 60 80 10' 0 20 40 60 80 10' PL MC LL 10' 10' 10'	Strength (kPa) <u>Test Type</u> △ Torvane △ ○ ● Pocket Pen. ● ∅ Qu ⊠ ○ Field Vane ○ 0
	brown, moist, low to intermediate plasticity, blocky/friable	gravel,	010		
232.2	CLAY (FILL) - silty trace rootlets to 0.6 m. trace sand		G16		
-0.5-	- brown, moist, very stiff		G17		
-1.0-			SB18		
			3010		
-1.5-					
			SB19	•	∆ ®
-2.0-	• - silt lens (~100 mm thick) - light brown, moist at 1.9 m		SB20	• • • • • • • • • • • • • • • • • • •	•
			SB21		
-2.5-	• • • • • • • • • • • • • • • • • • •	and	CD00		• • • • • • • • • • • • • • • • • • •
	degraded black rock at 2.5 m		3622		
229.6			SB23	•	•
-3.0-	- brown, damp to moist, stiff				
	- intermediate to high plasticity				
			SB24	+●1	
-3.5-					
-4.0-			SB25		
			0020		
-4.5-		I			
-5.0-		Y			
			SB26		
Logged By:	hawn Beaudry Reviewed By: Nelson Ferreira		_ Projec	ct Engineer: <u>Shawn Be</u>	eaudry

GE	O T	'EC	H	1	ICAL													
Elevation (m)	Depth (m)	Soil Symbol	Slope Inclinometer		MATERIAL DESCRIPTION	Sample Type	Sample Number	SPT (N)	16 0 0	17 Pi 20 PL 20	Bulk (kt) 18 article 40 - 1 40	C Unit V/m ³) 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Wt 20 (%) 80 10 LL 80 10	21 00 00 0	Und St • F 01 50	Irained rength Test Ty Torva Ocket I ⊠Qu Field Va 100	Shea (kPa) pe $1e \triangle$ Pen. 1 ane C 50	ır D) 200 250
<u>227.0</u> <u>226.3</u> <u>226.0</u> <u>225.2</u>	-5.5- -6.0- 				Transition from clay to till below 5.5 m - trace silt inclusions, trace sand, trace gravel (<10 mm diam.), moist to wet, soft to firm. SILT (TILL) - trace to some sand, trace gravel (<20 mm diam.), trace clay, grey, moist to wet, loose, low plasticity SAND (TILL)- silty - brown - wet, loose to compact - poorly graded, fine to medium grained SILT (TILL) - trace to some sand, trace gravel (<65 mm diam.) - grey, wet, loose - moist, dense below 7.6 m - very dense below 7.9 m		SB27 SB28 SB29 SB30 SB31 SS32	26 / 52mm						•				
					 END OF TEST HOLE AT 8.4 m in SILT (TILL) Notes: 1. Power auger refusal encountered at 8.4 m in silt (till). 2. Seepage and sloughing conditions were not observed due to drilling nethod. 3. Slope inclinometer SI-02 installed in TH16-04. 4. Test hole backfilled with cement-bentonite grout to surface. 													

Clien	t:	City of V	Vinnipeg					Project Number	:	0015	017 (00							
Proje	ct Name:	Wellingt	on Crescen	t (Lamont B	lvd. to Acad	emy Rd.)		Location:		UTM	N-55	2609	4.171,	E-628	3172.5	52			
Contr	ractor:	TREK G	eotechnical	Inc.				Ground Elevation	on:	230.0)8 m E	Existir	ng Gro	und					
Meth	od:	50 mm Ha	nd Auger					Date Drilled:		July	7, 201	7							
	Sample 1	Туре:		Grab (G)		Shelby	Tube (T)	Split Spoon	ı (S	S) 🕨	< s	olit Ba	arrel (S	SB)	Co	ore (C	;)		
	Particle S	Size Leger	nd:	Fines	Clay		Silt	Sand Sand			Gra	vel	57] Cot	obles	• •	Во	ulders	3
	Backfill L	egend:		Bentonite		ement		Drill Cuttings		Filter P Sand	ack		G	rout	P	29	Slou	gh	
		_							e	oer		10 1	⊟ Bull	k Unit W N/m³)	/t		Undrai Stren	ned Sl ath (kl	near Pa)
tion	÷	'mbo pipe							, Typ	Muml	2		Particle	Size (%)		<u>Tes</u>	st Type	2
Eleva (m	D Dep	oil Sy Itand			MATERIAL	DESCRIP	HON		mple	I aldı	SPT	0 2	0 40	60	80 100	1		ket Pe Qu 🖾	n. 🗣
ш		ω N							Sa	Sam		0 2	PL 10 40	60	LL - 80 100	0 5	O Fiel 0 10	d Van 0 150	e () 200
			CLAY - silt	y, trace san	d, trace grav	/el (<20 m	m diam.), trace rootlets to											
	- 4		friable	wii, uaiiip, ii	inn to sun, n	iterneulat	e to nigh	plasticity, blocky,											
			- moist bel	ow 0.3 m						C01									
									A	GUI									
	/																		
			- moist to v	vet below 1	.0 m														
	1.5																		
			- moist hel	ow 1.8 m					\vdash										
	-2.0-		- 110131 DCI	000 1.0 111															
										G02									
	-2.5-																		
	- 7																		
	-3.0-																		
	-3.5-								\vdash	000									
									L	G03									
226 1	: <i>1</i> /																		
			END OF T	EST HOLE	AT 4.0 m IN	CLAY													
			1) Seepag	e observed	below 1.1 m	during dr	illig.												
			3) Test hol	e open to 4	ved. .0 m 15 min	utes after o	drilling.												
			 4) Water le 5) Standpi 	evel at 0.8 n pe SP17-01	n 15 minutes installed in	s atter drilli HA17-01.	ing.												
			6) Test hol	e backfilled	with sand to	o 3.0 m, ar	nd bento	nite to surface.											
Logg	ed By: _	Shawn Be	audry		_ Review	/ed By: _l	Nelson F	erreira		_	Projec	ct Eng	gineer	Sha	awn Be	audry	/		_

ucuit	LANIL														
Client:	City of Winnig	peg			Project Nu	nber:	0015	<u>5 017 0</u>	00						
Project Name:	Wellington C	rescent (Lamont	Blvd. to Academy	/ Rd.)	Location:		UTM	N-55	26094	.876, E-0	628194.78	5			_
Contractor:	TREK Geoted	chnical Inc.			Ground Ele	vation:	231.	27 m E	Existing	g Ground					
Method:	50 mm Hand Aug	ger			Date Drille	d:	July	13, 20	17						
Sample 1	Гуре:	Grab (G) S	helby Tube (T)	Split S	poon (S	SS)	S p	olit Bar	rel (SB)	Co	ore (C)			
Particle S	Size Legend:	Fines	Clay	Silt	ःःः s	and		Gra	vel	67 (Cobbles		Bould	lers	
Backfill L	egend:	Bentonit	e 🔀 Cem	ent	Drill Cuttings		Filter F Sand	Pack		Grout			Slough		
Elevation (m) Depth (m)	Soil Symbol Standpipe		MATERIAL DES	SCRIPTION		Sample Type	ample Number	SPT (N)	[16 17 F 0 20 P	Bulk Un (kN/m 18 1 Particle Siz 40 6 L MC	it Wt 9 20 21 e (%) 0 80 100 LL	U ; 0 (ndrained Strength <u>Test T</u> △ Torva Pocket ⊠ Qu ◯ Field \	d Shear <u>(kPa)</u> <u>ype</u> ane ∆ Pen. ∎ J⊠ /ane ⊖	r •
		Y - silty, trace ro	ootlets to 0.3 m, br	ownish black, da	amp to moist		0)		0 20	40 6	0 80 100	0 50	100	150 2	00 250
	- bro	plasticity	e to high plasticity	below 0.3 m			G04 G05								
-3.5-	- gre	ey, moist, firm, h	gh plasticity below	v 3.5 m			G06 G07	-							
227.3															
	ENE Note 1) S 2) N 3) T 4) W 5) S 6) T	O OF TEST HOL es: eepage observe lo sloughing obs est hole open to /ater level at 1.1 tandpipe SP17- est hole backfille	E AT 3.9 m IN CL ed below 1.5 m du erved. 3.9 m 10 minutes m 10 minutes aft 02 installed in HA ed with sand to 3.4	AY ring drillig. er drilling. er drilling. 17-02. 1 m, and bentoni	te to surface										

1 of 1

-																									
Cli	ent:	City o	f Winni	peg						Pro	ject Nun	nber:	_	0015	017 (00									_
Pr	oject Name	: Wellir	igton C	rescent	t (Lamont E	Blvd. to	Academ	y Rd.)		Loc	ation:		_	UTM	N-55	2608	5.321	, E-6	2814	5.87					_
Co	ontractor:	TREK	Geote	chnical	Inc.					Gro	ound Ele	vation	n: _	230.7	′5 m E	Existir	ng Gro	ound							_
Me	ethod:	50 mm	Hand Au	ger						Dat	e Drilled	l:		July 1	13, 20	17									
	Sample	Type:			Grab (G)		S	helby T	ube (T)	\boxtimes	Split Sp	poon ((SS	5) 📐	SI	olit Ba	arrel (SB)		Cor	re (C)			
	Particle	Size Leç	gend:		Fines		Clay] Silt		🔅 Sa	and			Gra	vel	67	<u>]</u> c	obble	s	· .	Βοι	ulder	S	
	Backfill I	Legend:			Bentonite		Cem	ent		Drill	Cuttings			and	ack		C	Grout			×3	Slou	gh		
Elevation	(m) Depth (m)	Soil Symbol Standnine		Marilla		MATE		SCRIPT	TION	- 4 00 - 0 - 0		H-	Sample Type	Sample Number	SPT (N)	16 1 0 2 0 2	□ Bu (- 7 18 Partic 0 40 PL 0 40	Ik Unit (N/m ³) 3 19 Ie Size 0 60 MC 0 60	Wt 20 (%) 80 LL 80	21 100 100 0	() 50	Jndrai Stren △ To Pocl Ø Fiel ○ Fiel	ned S gth (k st Type rvane ket Pe Qu X d Van 0 150	hear Pa) e n. Ф e O 0 20	00 250
			- tra - tra - tra ENE Note 1) N 2) T 3) V 4) S 5) T	Y - silty m - brow - mois - mois - intern ce to so ce to so of OF TE est hole /ater le tandpip est hole	y, trace sar n t mediate to ome silt inc ome silt inc n to stiff be EST HOLE age or slou e open to 3 vel not obs oe SP17-03 e backfilled	high pla high pla clusions clusions low 3.3 AT 3.8 ughing o 3.8 m 10 served f 3 install d with sa	e gravel (asticity • (<15 mm m IN CL observed) minutes following ed in HA and to 3.0	AY AY safter di drilling. 17-03. 0 m, and) below ⁻ rilling. d bentor	1.1 m	surface.			G08 G09 G10 G11											

9

GEOTE	CHNI	CAL													
Client:	City of Winr	nipeg			Project Number	: 001	15 017 (00							_
Project Name:	Wellington	Crescent (Lamont Bl	vd. to Academy	y Rd.)	Location:	UT	M N-55	52610	0.925, E	-628161	.311				_
Contractor:	TREK Geot	echnical Inc.			Ground Elevation	on: 229	9.11 m l	Existi	ng Grour	d					_
Method:	50 mm Hand A	uger			Date Drilled:	Jul	y 13, 20)17							_
Sample ⁻	Туре:	Grab (G)	S	helby Tube (T)	Split Spoon	(SS)	X s	plit B	arrel (SB)	Core	(C)			_
Particle S	Size Legend:	Fines	Clay	Silt	Sand		Gra	avel	F97	Cobble	s 🎦	Вс	oulder	ſS	
Backfill L	_egend:	Bentonite	Cem	ent	Drill Cuttings	Filter	Pack		Grou	ut	500	Slou	ıgh		-
							1			nit Wt		Undra	ained S	Shear	
5 _	ipe ipe					Type	Î	16	17 18	19 20	21	Sue <u>Te</u>	est Typ	vea)	
evati (m) (m)	Syn	Ν	ATERIAL DES	SCRIPTION		e N) Te	0 :	Particle S 20 40	IZE (%) 60 80	100	∆T ФPo	orvano cket P	e 🛆 en. 🔹	
	Soil					Sam	· 5					∑ O Fie	I Qu ⊠ eld Vai	⊠ ne⊖	
						Ű Ö		0 2	20 40	60 80	100 0	50 10	00 15	50 200) 25
		AY - silty, trace rootl - brown	ets												
		- moist - high plasticity						-							
		- high plasticity				G1	2								
228.3		T - clavev													
		- light brown					_								
		- low plasticity				G1	3								
						_	_								
-1.5-															
227.3												_			
	CL	AY - silty													
-2.0-		- wet, soft	<i>u</i>				_								
		- intermediate plas	sticity			G1	4								
-2.5-															
226.4			T 0 T 0 U 0												
	EN No	ID OF TEST HOLE A ites:	AT 2.7 m IN CL	AY											
	1) 2)	Seepage observed b Sloughing observed	elow 1.3 m du in silt laver fror	ring drillig. n 0 75 to 1 8 m	durina drillina										
-	3)	Test hole open to 1.4	4 m 10 minutes	after drilling.	tor drilling										
	4) 5)	Standpipe SP17-04	installed in HA	17-04.	ter drilling.										
	6)	Test hole backfilled v	with sand to 1.8	3 m, and bentor	nite to surface.										
Logged By:	Shawn Beauc	Irv	Reviewed	Bv: Nelson F	erreira		Proie	ct En	aineer:	Shawn	Beaud	rv			
б у.									J			,			

Appendix A Soil Laboratory Test Results

Project No.	0015-017-00
Client	City of Winnipeg
Project	Wellington Crescent
Sample Date	02-Nov-16
Test Date	05-Nov-16
Technician	LI

Test Pit	TH16-03	TH16-03	TH16-03	TH16-03	TH16-03	TH16-03
Depth (m)	0.2 - 0.3	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	2.1 - 2.3	2.5 - 2.7
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	AB16	AB28	AB40	AB98	AB67	AB91
Mass of tare	6.7	6.7	6.8	6.7	6.7	6.6
Mass wet + tare	284.8	286.6	273.1	169.5	301.0	178.7
Mass dry + tare	238.5	222.9	215.2	157.2	225.7	154.5
Mass water	46.3	63.7	57.9	12.3	75.3	24.2
Mass dry soil	231.8	216.2	208.4	150.5	219.0	147.9
Moisture %	20.0%	29.5%	27.8%	8.2%	34.4%	16.4%

Test Pit	TH16-03	TH16-03	TH16-03	TH16-03	TH16-03	TH16-03
Depth (m)	2.7 - 2.9	3.1 - 3.3	3.5 - 3.7	4.0 - 4.1	4.6 - 4.7	5.3 - 5.4
Sample #	G07	G08	G09	G10	G11	G12
Tare ID	AB21	AC28	AB96	AB20	AB14	AB86
Mass of tare	6.6	6.6	6.7	6.6	6.6	6.6
Mass wet + tare	249.8	319.8	332.5	375.4	335.1	332.7
Mass dry + tare	202.8	267.5	224.9	328.5	279.2	280.9
Mass water	47.0	52.3	107.6	46.9	55.9	51.8
Mass dry soil	196.2	260.9	218.2	321.9	272.6	274.3
Moisture %	24.0%	20.0%	49.3%	14.6%	20.5%	18.9%

Test Pit	TH16-03	TH16-03	TH16-03	TH16-04	TH16-04	TH16-04
Depth (m)	6.1 - 6.2	6.6 - 7.0	7.0 - 7.4	0.2 - 0.3	0.5 - 0.6	1.1 - 1.2
Sample #	G13	SS14	SS15	G16	G17	G18
Tare ID	AB64	AB63	N43	F20	E37	K26
Mass of tare	6.6	6.8	8.5	8.4	8.2	8.5
Mass wet + tare	448.9	380.6	344.0	215.6	311.9	293.6
Mass dry + tare	412.4	354.7	321.1	186.8	249.8	224.9
Mass water	36.5	25.9	22.9	28.8	62.1	68.7
Mass dry soil	405.8	347.9	312.6	178.4	241.6	216.4
Moisture %	9.0%	7.4%	7.3%	16.1%	25.7%	31.7%

Project No.	0015-017-00
Client	City of Winnipeg
Project	Wellington Crescent
Sample Date	02-Nov-16
Test Date	05-Nov-16
Technician	LI

Test Pit	TH16-04	TH16-04	TH16-04	TH16-04	TH16-04	TH16-04
Depth (m)	1.7 - 1.8	2.0 - 2.0	2.3 - 2.4	2.9 - 3.0	3.4 - 3.5	4.1 - 4.3
Sample #	G19	G20	G21	G23	G24	G25
Tare ID	D26	D37	E123	A103	E6	F76
Mass of tare	8.8	8.2	8.4	8.5	8.2	8.7
Mass wet + tare	346.2	253.4	287.7	245.6	333.6	329.9
Mass dry + tare	263.4	208.0	213.4	192.9	260.6	253.1
Mass water	82.8	45.4	74.3	52.7	73.0	76.8
Mass dry soil	254.6	199.8	205.0	184.4	252.4	244.4
Moisture %	32.5%	22.7%	36.2%	28.6%	28.9%	31.4%

Test Pit	TH16-04	TH16-04	TH16-04	TH16-04	TH16-04	TH16-04
Depth (m)	5.2 - 5.3	5.8 - 5.9	6.2 - 6.4	6.6 - 6.7	7.0 - 7.3	7.8 - 7.9
Sample #	G26	G27	G28	G29	G30	G31
Tare ID	AB65	F91	F103	W18	F83	E35
Mass of tare	6.8	8.4	8.9	8.5	8.5	8.5
Mass wet + tare	358.6	301.4	369.4	384.9	369.3	449.3
Mass dry + tare	258.6	193.5	309.9	320.6	310.3	418.7
Mass water	100.0	107.9	59.5	64.3	59.0	30.6
Mass dry soil	251.8	185.1	301.0	312.1	301.8	410.2
Moisture %	39.7%	58.3%	19.8%	20.6%	19.5%	7.5%

Test Pit	TH16-04	TH16-02	TH16-02	TH16-02	TH16-02	TH16-02
Depth (m)	7.9 - 8.1	0.2 - 0.3	0.5 - 0.6	1.1 - 1.2	2.9 - 3.0	4.0 - 4.3
Sample #	G32	G33	G34	G35	G37	G38
Tare ID	E128	Z64	AB82	F42	Z138	F109
Mass of tare	8.4	8.3	6.6	8.3	8.6	8.7
Mass wet + tare	327.0	280.5	206.4	318.3	345.3	421.9
Mass dry + tare	306.4	213.8	178.4	265.3	270.2	326.9
Mass water	20.6	66.7	28.0	53.0	75.1	95.0
Mass dry soil	298.0	205.5	171.8	257.0	261.6	318.2
Moisture %	6.9%	32.5%	16.3%	20.6%	28.7%	29.9%

Project No.	0015-017-00
Client	City of Winnipeg
Project	Wellington Crescent
Sample Date	02-Nov-16
Test Date	05-Nov-16
Technician	LI

Test Pit	TH16-02	TH16-02	TH16-02	TH16-02	TH16-01	TH16-01
Depth (m)	5.2 - 5.5	5.8 - 5.9	6.2 - 6.4	7.3 - 7.4	0.2 - 0.3	0.5 - 0.6
Sample #	G39	G40	G41	G42	G50	G51
Tare ID	F72	K24	AC27	AB02	N77	D40
Mass of tare	8.5	8.6	6.6	6.6	8.4	8.2
Mass wet + tare	361.5	337.2	461.3	195.6	215.3	174.5
Mass dry + tare	275.5	263.5	423.3	180.4	169.6	138.3
Mass water	86.0	73.7	38.0	15.2	45.7	36.2
Mass dry soil	267.0	254.9	416.7	173.8	161.2	130.1
Moisture %	32.2%	28.9%	9.1%	8.7%	28.3%	27.8%

Test Pit	TH16-01	TH16-01	TH16-01	TH16-01	TH16-01	TH16-01
Depth (m)	0.8 - 0.9	1.4 - 1.5	2.1 - 2.3	2.7 - 2.9	3.4 - 3.5	4.0 - 4.1
Sample #	G52	G53	G54	G55	G56	G57
Tare ID	F102	N93	H38	F89	E102	N52
Mass of tare	8.8	8.5	8.4	8.4	8.7	8.4
Mass wet + tare	377.9	313.0	366.8	326.6	357.5	334.2
Mass dry + tare	311.6	240.1	268.2	226.3	248.3	224.8
Mass water	66.3	72.9	98.6	100.3	109.2	109.4
Mass dry soil	302.8	231.6	259.8	217.9	239.6	216.4
Moisture %	21.9%	31.5%	38.0%	46.0%	45.6%	50.6%

Test Pit	TH16-01	TH16-01	TH16-01	TH16-01	TH16-01	
Depth (m)	4.7 - 4.9	5.3 - 5.5	5.9 - 6.1	7.0 - 7.2	7.9 - 8.4	
Sample #	G58	G59	G60	G61	SS63	
Tare ID	W42	F5	H54	Z04	E130	
Mass of tare	8.3	8.4	8.3	8.4	8.2	
Mass wet + tare	332.8	313.5	342.8	390.5	401.8	
Mass dry + tare	251.8	204.3	237.3	253.4	371.2	
Mass water	81.0	109.2	105.5	137.1	30.6	
Mass dry soil	243.5	195.9	229.0	245.0	363.0	
Moisture %	33.3%	55.7%	46.1%	56.0%	8.4%	

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Test Hole Sample # Depth (m)	TH16-01 G54 2 13 - 2 29					
Sample Date	20-Oct-16				Liquid Limit	79
Test Date	14-Nov-16				Plastic Limit	25
Technician	JW				Plasticity Index	55
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blo	ws (N)	15	25	35		
Mass Wet Soil	+ Tare (g)	20.154	22.113	21.533		
Mass Dry Soil	+ Tare (g)	17.403	18.571	18.332		
Mass Tare (g)		14.088	14.130	14.161		
Mass Water (g)	2.751	3.542	3.201		
Mass Dry Soil	(g)	3.315	4.441	4.171		
Noistrue Content (%) Noistrue Content (%) Noist	•			y = -7.282ln(x) + R ² = 0.990		
75 +						
10		Ν	25 umber of Blo	ws (N)		100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	22.072	23.875			
Mass Dry Soil + Tare (g)	20.453	21.945			
Mass Tare (g)	13.968	14.138			
Mass Water (g)	1.619	1.930			
Mass Dry Soil (g)	6.485	7.807			
Moisture Content (%)	24.965	24.721			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Test Hole Sample # Depth (m)	TH16-01 G58 4.72 - 4.88					
Sample Date	20-Oct-16				Liquid Limit	54
Test Date	14-Nov-16				Plastic Limit	21
Technician	JW				Plasticity Index	33
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blo	ows (N)	16	25	35		
Mass Wet Soil	+ Tare (g)	23.274	21.641	20.779		
Mass Dry Soil	+ Tare (g)	20.052	19.029	18.526		
Mass Tare (g)		14.313	14.176	14.236		
Mass Water (g)	3.222	2.612	2.253		
Mass Dry Soil	(g)	5.739	4.853	4.290		
Moisture Content (%) Box Content (%) Content (%) Content	*			y = -4.661ln(x) + R ² = 0.993	68.992	
52 —						
51 +						
10		Ν	25 umber of Blo	ws (N)		100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.206	20.582			
Mass Dry Soil + Tare (g)	19.106	19.494			
Mass Tare (g)	14.030	14.319			
Mass Water (g)	1.100	1.088			
Mass Dry Soil (g)	5.076	5.175			
Moisture Content (%)	21.671	21.024			

Project	Wellington Cresc	cent				
Test Hole Sample # Depth (m)	TH16-01 G60 5.94 - 6.1					
Sample Date	20-Oct-16				Liquid Limit	57
Test Date	14-Nov-16				Plastic Limit	24
Technician	JW				Plasticity Index	33
Liquid Limit				T		
Trial #		1	2	3	4	5
Number of Blo	ws (N)	17	25	35		
Mass Wet Soil	+ Tare (g)	22.403	20.874	21.272		
Mass Dry Soil	+ Tare (g)	19.371	18.442	18.725		
Mass Tare (g)		14.249	14.181	14.107		
Mass Water (g)		3.032	2.432	2.547		
Mass Dry Soil	(g)	5.122	4.261	4.618		
Moisture Conte	ent (%)	59.196	57.076	55.154		
66						
65 —						
6 4						
ഉ് പ						
			!			
			1			
t 61 +			1			
<u>ද</u> 60 —			1			
a 50		•	<u> </u>	$v = -5.595 \ln(x) +$	75 059	
				$R^2 = 0.999$	9.0000	
St 28				K = 0.555		
5 57 —			★			
≥ ₅₆ ⊥			\downarrow			
55						
			i			
54 +		1				
10		N	25 umber of Blo	ws (N)		100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	21.452	22.453			
Mass Dry Soil + Tare (g)	20.083	20.874			
Mass Tare (g)	14.252	14.198			
Mass Water (g)	1.369	1.579			
Mass Dry Soil (g)	5.831	6.676			
Moisture Content (%)	23.478	23.652			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Test Hole Sample # Depth (m)	TH16-02 T36 1.83 - 2.44					
Sample Date	20-Oct-16				Liquid Limit	50
Test Date	17-Nov-16				Plastic Limit	20
Technician	SB				Plasticity Index	30
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blow	rs (N)	22	27	35		
Mass Wet Soil +	Tare (g)	33.667	33.761	21.464		
Mass Dry Soil +	Tare (g)	27.108	27.123	19.012		
Mass Tare (g)		14.172	13.900	13.995		
Mass Water (g)		6.559	6.638	2.452		
Mass Dry Soil (g	a)	12.936	13.223	5.017		
Moisture Conter	nt (%)	50.703	50.200	48.874		
58			_			
57 —						
- 56						
$\left\{ \mathcal{S}_{1}^{\circ} \right\}$						
55 t			1			
5 4 –			<u> </u>			
5 3 —			1	$v = -3.992 \ln(x) +$	63 155	
ō 52				$R^2 = 0.965$	7	
		•				
ts 50 +						
				· · · · · · · · · · · · · · · · · · ·		
Š 48						
47						
47						
46 +			25			
10						100
		Ν	umber of Blo	ws (N)		

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	27.593	26.973			
Mass Dry Soil + Tare (g)	25.363	24.754			
Mass Tare (g)	14.220	14.030			
Mass Water (g)	2.230	2.219			
Mass Dry Soil (g)	11.143	10.724			
Moisture Content (%)	20.013	20.692			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Test Hole Sample # Depth (m)	TH16-02 G38 3.96 - 4.27					
Sample Date	20-Oct-16				Liquid Limit	38
Test Date	14-Nov-16				Plastic Limit	21
Technician	JW				Plasticity Index	16
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blo	ws (N)	15	25	34		
Mass Wet Soil	+ Tare (g)	22.282	21.938	22.192		
Mass Dry Soil -	F Tare (g)	19.947	19.786	20.024		
Mass Tare (g)		14.216	14.076	14.030		
Mass Water (g)		2.335	2.152	2.168		
Mass Dry Soll (<u>g)</u>	5.731	5.710	5.994		
47 46 45 44 43 44 40 41 40 41 40 41 40 39 38 37 36	•		y	= -5.629In(x) + 5 R ² = 0.9976	55.938 	
35 🗕						
10		N	25 u mber of Blo	ws (N)		100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	21.454	21.678			
Mass Dry Soil + Tare (g)	20.143	20.340			
Mass Tare (g)	13.968	14.154			
Mass Water (g)	1.311	1.338			
Mass Dry Soil (g)	6.175	6.186			
Moisture Content (%)	21.231	21.629			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Гest Hole Sample # Depth (m)	TH16-03 G04 1.22 - 1.37					
Sample Date	18-Oct-16				Liquid Limit	31
Fest Date	14-Nov-16				Plastic Limit	24
Fechnician	JW				Plasticity Index	7
_iquid Limit						
rial #		1	2	3	4	5
lumber of Blov	ws (N)	15	25	35		
lass Wet Soil	+ Tare (g)	21.252	20.926	20.829		
lass Dry Soil -	⊦ Tare (g)	19.474	19.294	19.253		
lass Tare (g)		14.142	14.083	13.994		
lass Water (g)		1.778	1.632	1.576		
lass Dry Soil ((g)	5.332	5.211	5.259		
40						
39						
→ 38 +			-			
ల ి 37 ⊥						
t 36						
3 5 —						
ර් 34 —			<u> </u>	$y = -3.986 \ln(x) +$	44.141	
9 33 —	•		1	$R^2 = 1$		
			i			
						
o 31 +						
≥ ₃₀						
29						
20						
28 +		1		I	I I I	
10			25			100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	22.871	23.200			
Mass Dry Soil + Tare (g)	21.137	21.476			
Mass Tare (g)	14.024	14.315			
Mass Water (g)	1.734	1.724			
Mass Dry Soil (g)	7.113	7.161			
Moisture Content (%)	24.378	24.075			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresc	ent				
Test Hole Sample # Depth (m) Sample Date	TH16-03 G09 3.51 - 3.66 18-Oct-16				Liquid Limit	88
Test Date	14-Nov-16				Plastic Limit	25
Fechnician	JW				Plasticity Index	63
Liquid Limit						
frial #		1	2	3	4	5
Number of Blow	ws (N)	20	25	34		
lass Wet Soil	+ Tare (g)	21.252	20.926	20.829		
Mass Dry Soil -	⊦ Tare (g)	17.937	17.713	17.667		
Mass Tare (g)		14.250	14.045	13.980		
Mass Water (g)		3.315	3.213	3.162		
Mass Dry Soil ((g)	3.687	3.668	3.687		
95 96 94 94 93 93 94 93 92 91 90 93 88 93 88 93 88 93 90 93 91 90 93 90 94 90 95 90 90 90 91 90 93 90 94 90 95 90 96 90 97 90 98 90 98 90 97 90 98 90 98 90 98 90 98 90 99 90 90 90 91 90 92 90 93 90 94 90 95 90 96 90 97 90			ч ч ч ч ч ч ч ч ч ч ч ч ч ч	= -7.708ln(x) + 1 R ² = 0.9752	12.78	
≥ ₈₆						
00						
84 + 10		1	25			100
		Ν	umber of Blo	ws (N)		

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.140	20.230			
Mass Dry Soil + Tare (g)	18.937	18.984			
Mass Tare (g)	14.178	14.066			
Mass Water (g)	1.203	1.246			
Mass Dry Soil (g)	4.759	4.918			
Moisture Content (%)	25.278	25.336			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Crescent					
Test Hole Sample # Depth (m)	TH16-04 G19 1.67 - 1.83					
Sample Date	20-Oct-16				Liquid Limit	73
Test Date	14-Nov-16				Plastic Limit	23
Technician	WL				Plasticity Index	50
Liquid Limit			-	-		
Trial #		1	2	3	4	5
Number of Blov	ws (N)	15	25	32		
Mass Wet Soil	+ Tare (g)	24.441	21.834	22.353		
Mass Dry Soil	- Tare (g)	19.910	18.590	18.894		
Mass Tare (g)		14.079	14.123	14.030		
Mass Water (g)		4.531	3.244	3.459		
Mass Dry Soil (g)	5.831	4.467	4.864		
82 81 80 79 79 78 77 76 75 74 75 74 73 72 71 70	•		y = -	8.888ln(x) + 101 R ² = 0.989	64	
10		N	25 umber of Blo	ws (N)		100

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	23.973	21.819			
Mass Dry Soil + Tare (g)	22.145	20.340			
Mass Tare (g)	14.268	14.034			
Mass Water (g)	1.828	1.479			
Mass Dry Soil (g)	7.877	6.306			
Moisture Content (%)	23.207	23.454			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Cresce	ent				
Test Hole	TH16-04					
Sample #	G24					
Depth (m)	3.35 - 3.50					
Sample Date	20-Oct-16				Liquid Limit	49
Test Date	14-Nov-16				Plastic Limit	22
Technician	JW				Plasticity Index	26
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blow	vs (N)	15	25	32		
Mass Wet Soil ·	+ Tare (g)	20.691	19.780	21.000		
Mass Dry Soil +	- Tare (g)	18.407	17.800	18.813		
Mass Tare (g)		14.036	13.743	14.169		
Mass Water (g)		2.284	1.980	2.187		
Mass Dry Soil (g)	4.371	4.057	4.644		
Moisture Conte	nt (%)	52.253	48.805	47.093		
Noisture Content (%) Noisture Content (%) Noisture Content (%) Noisture Content Noisture Cont			y =	-6.802ln(x) + 70 R ² = 1	.68	
46 + 10			25		II	100
		Ν	umber of Blo	ws (N)		

Plastic Limit					
Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	21.458	22.045			
Mass Dry Soil + Tare (g)	20.135	20.610			
Mass Tare (g)	14.176	14.248			
Mass Water (g)	1.323	1.435			
Mass Dry Soil (g)	5.959	6.362			
Moisture Content (%)	22.202	22.556			

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Crescent (Lamont Blvd. to Academy)			
Test Hole	Th16-02			
Sample #	T36			
Depth (m)	1.8 - 2.1			
Sample Date	18-Oct-16			
Test Date	15-Nov-16			
Technician	W			
Tube Extraction				
Recovery (mm)	260			

Bottom - 2.1 m	Top - 1.8 m
MC Visual	Due to silt laminations, sample broke into short pieces, too short for Qu or bulk weight
PP, TV	

160 mm

100 mm

Visual Class	ification		Moisture Co	ntent	
Material	CLAY		Tare ID		H35
Composition	silty		Mass tare (g)		8.3
trace rootlets			Mass wet + tar	re (g)	398.2
trace oxidation			Mass dry + tar	re (g)	313
			Moisture %		28.0%
			Unit Weight		
			Bulk Weight (g	g)	
Color	brown				
Moisture	moist		Length (mm)	1	
Consistency	firm			2	
Plasticity	intermediate plasticity			3	
Structure	blocky, silt laminations	;		4	
Gradation	-		Average Leng	th (m)	
Torvane			Diam. (mm)	1	
Reading		0.40		2	
Vane Size (s,m	ı,l)	m		3	
Undrained She	ear Strength (kPa)	39.2		4	
			Average Diam	eter (m)	
Pocket Pene	etrometer				
Reading	1	2.00	Volume (m ³)		
	2	2.00	Bulk Unit Weig	ght (kN/m ³)	
	3	2.00	Bulk Unit Weig	ght (pcf)	
	Average	2.00	Dry Unit Weig	ht (kN/m³)	
Undrained She	ear Strength (kPa)	98.1	Dry Unit Weig	ht (pcf)	

Project No. Client Project	0015-017-00 City of Winnipeg Wellington Crescent (Lamont Blvd. to Academy)
Test Hole	TH16-02
Sample #	T37
Depth (m)	3-3.4
Sample Date	18-Oct-16
Test Date	15-Nov-16
Technician	JW

Tube Extraction

Recovery (mm) 380

Bottom - 3.4 m					Т	op - 3 m
	MC Visual PP, TV		Qu Bulk Weight			
	150 mm	I	150 mm			
Visual Classi	fication			Moisture Content		
Material	CLAY		•			H25
Composition	silty			Mass tare (g)		8.3
	0			Mass wet + tare (q)		430
			-	Mass dry + tare (g)		331.4
			-	Moisture %		30.5%
			-			
			-	Unit Weight		
				Bulk Weight (g)		1030.5
Color	brown					
Moisture	moist			Length (mm) 1		141.65
Consistency	<u>firm</u>			2		142.03
Plasticity	high plasticity			3		142.05
Structure	ыоску			4		141.98
Gradation	-		- · ·	Average Length (m)		0.142
Torvane				Diam. (mm) 1		72.72
Reading		0.28	•	2		72.58
Vane Size (s,m	,I)	m		3		72.83
Undrained She	ar Strength (kPa)	27.5	-	4		72.64
	_		-	Average Diameter (m)	0.000	0.073
Pocket Pene	trometer					
Reading	1 _	0.60		Volume (m ³)		5.89E-04
	2	0.60		Bulk Unit Weight (kN/m ³)		17.2
	3 _	0.50		Bulk Unit Weight (pcf)		109.2
_	Average	0.57		Dry Unit Weight (kN/m ³)		13.1
Undrained She	ar Strength (kPa)	27.8		Dry Unit Weight (pcf)		83.7

Project No. Client Project	0015-017-00 City of Winni Wellington C	peg rescent (Lamont Blvd.	to Academy)			
Test Hole Sample #	TH16-02 T37					
Depth (m)	3-3.4			Unconfine	ed Strength	
Sample Date	18-Oct-16				kPa	ksf
Test Date	15-Nov-16			Max q _u	58.7	1.2
Technician	JW			Max S _u	29.3	0.6
Specimen [Data					
Description	CLAY - silty,	, brown, moist, firm, hi	gh plasticity, blocky			
Length	141.9	(mm)	Moisture %	31%		
Diameter	72.7	(mm)	Bulk Unit Wt.	17.2	(kN/m ³)	
L/D Ratio	2.0		Dry Unit Wt.	13.1	(kN/m ³)	
Initial Area	0.00415	(m ²)	Liquid Limit	-		
Load Rate	1.00	(%/min)	Plastic Limit	-		
			Plasticity Index	-		
Undrained	Shear Stren	igth Tests				
Torvane			Pocket Penetr	ometer		
Reading	Undrained S	Shear Strength	Reading	Undraine	d Shear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.28	27.5	0.57	0.60	29.4	0.61	
Vane Size			0.60	29.4	0.61	
m			0.50	24.5	0.51	

Failure Geometry

Sketch:

Photo:

0.57

Average

27.8

0.58

Unconfined Compressive Strength ASTM D2166

Project No.	0015-017-00
Client	City of Winnipeg
Project	Wellington Crescent (Lamont Blvd. to Academy)

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004150	0.0	0.00	0.00
10	4	0.2540	0.18	0.004158	13.1	3.14	1.57
20	8	0.5080	0.36	0.004165	26.2	6.28	3.14
30	10	0.7620	0.54	0.004173	32.7	7.84	3.92
40	13	1.0160	0.72	0.004180	42.5	10.18	5.09
50	15	1.2700	0.89	0.004188	49.1	11.72	5.86
60	18	1.5240	1.07	0.004195	58.9	14.05	7.02
70	20	1.7780	1.25	0.004203	65.5	15.58	7.79
80	22	2.0320	1.43	0.004210	72.1	17.12	8.56
90	25	2.2860	1.61	0.004218	82.4	19.54	9.77
100	27	2.5400	1.79	0.004226	89.0	21.06	10.53
110	29	2.7940	1.97	0.004234	95.6	22.58	11.29
120	31	3.0480	2.15	0.004241	102.2	24.10	12.05
130	33	3.3020	2.33	0.004249	108.8	25.61	12.80
140	35	3.5560	2.51	0.004257	115.4	27.11	13.55
150	38	3.8100	2.68	0.004265	125.3	29.38	14.69
160	40	4.0640	2.86	0.004273	131.9	30.87	15.43
170	42	4.3180	3.04	0.004280	138.5	32.35	16.18
180	44	4.5720	3.22	0.004288	145.1	33.83	16.91
190	46	4.8260	3.40	0.004296	151.7	35.31	17.65
200	48	5.0800	3.58	0.004304	158.3	36.77	18.38
210	50	5.3340	3.76	0.004312	164.9	38.23	19.11
220	52	5.5880	3.94	0.004320	171.4	39.68	19.84
230	54	5.8420	4.12	0.004328	178.0	41.13	20.56

Project No.0015-017-00ClientCity of WinnipegProjectWellington Crescent (Lamont Blvd. to Academy)

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	55	6.0960	4.2952	0.004336	181.4	41.82	20.91
250	57	6.3500	4.47	0.004345	187.9	43.26	21.63
260	58	6.6040	4.65	0.004353	191.2	43.93	21.97
270	59	6.8580	4.83	0.004361	194.5	44.61	22.30
280	60	7.1120	5.01	0.004369	197.8	45.27	22.64
290	62	7.3660	5.19	0.004377	204.4	46.69	23.35
300	64	7.6200	5.37	0.004386	211.0	48.12	24.06
310	66	7.8740	5.55	0.004394	217.6	49.52	24.76
320	68	8.1280	5.73	0.004402	224.2	50.93	25.46
330	70	8.3820	5.91	0.004411	230.8	52.32	26.16
340	72	8.6360	6.08	0.004419	237.4	53.72	26.86
350	74	8.8900	6.26	0.004428	244.0	55.11	27.55
360	75	9.1440	6.44	0.004436	247.3	55.74	27.87
370	75	9.3980	6.62	0.004445	247.3	55.64	27.82
380	75	9.6520	6.80	0.004453	247.3	55.53	27.76
390	76	9.9060	6.98	0.004462	250.6	56.16	28.08
400	77	10.1600	7.16	0.004470	253.9	56.79	28.39
410	78	10.4140	7.34	0.004479	257.2	57.41	28.71
420	79	10.6680	7.52	0.004488	260.4	58.04	29.02
430	80	10.9220	7.70	0.004496	263.8	58.67	29.33
440	80	11.1760	7.87	0.004505	263.8	58.55	29.28
450	80	11.4300	8.05	0.004514	263.8	58.44	29.22
460	80	11.6840	8.23	0.004523	263.8	58.33	29.16
470	78	11.9380	8.41	0.004531	257.2	56.75	28.37
480	76	12.1920	8.59	0.004540	250.6	55.19	27.59
490	74	12.4460	8.77	0.004549	244.0	53.63	26.82