APPENDIX 'A'

GEOTECHNICAL REPORT

Morrison Hershfield

19-C-10 Sargent Avenue Pavement Renewal

Prepared for:

Morrison Hershfield I-59 Scurfield Boulevard Winnipeg, MB R3Y IV2 Attention: Ron Bruce, P. Eng

Project Number: 0035 082 00 403

Date: November 19, 2019

Final Report

Quality Engineering | Valued Relationships

November 19, 2019

Our File No. 0035 082 00

Mr. Ron Bruce, P. Eng Morrison Hershfield 1-59 Scurfield Boulevard Winnipeg, Manitoba, R3Y 1V2

RE: Sub-Surface Investigation Report for 19-C-10 Sargent Avenue Pavement Renewal

TREK Geotechnical Inc. is pleased to submit our report for the sub-surface investigations for the 19-C-10 Sargent Avenue Pavement Renewal project.

Please contact the undersigned if you have any questions. Thank you for the opportunity to serve you on this assignment.

Sincerely,

TREK Geotechnical Inc. Per:

Nelson John Ferreira, Ph.D., P. Eng. Geotechnical Engineer, Principal Tel: 204.975.9433 ext. 103

cc: Angela Fidler-Kliewer C.Tech. (TREK Geotechnical)

Revision History

Revision No.	Author	Issue Date	Description
0	AFK	November 19, 2019	Final Report

Authorization Signatures

flun

Prepared By:

Angela Fidler-Kliewer, C. Tech Manager of Laboratory and Field Services

Reviewed By:

Nelson John Ferreira, Ph.D., P.Eng. Geotechnical Engineer

GEOSCIENTISTS
MANITOBA
Certificate of Authorization
TREK GEOTECHNICAL INC.
TREK SECTECHNICAL INC. No. 4877 Date: No. 19,229

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introduction	1
2.0	Road Investigation and Laboratory Program	1
3.0	Closure	2

List of Tables

Table 1 CBR Testing Summary

List of Figures

Figure 01 Test Hole Location Plan – Sargent Avenue

List of Appendices

Appendix A	Test Hole Logs,
Appendix B	Summary Table & Lab Testing Results
Appendix C	Photographs of Pavement Core Samples

1.0 Introduction

This report summarizes the results of the road investigation completed for the 19-C-10 Sargent Ave Pavement Renewal project. The test holes were located along Sargent Avenue between Erin Street and Arlington Street. The information collected describes the pavement structure of the existing road as well as the soil stratigraphy beneath the pavement structure at select locations.

2.0 Road Investigation and Laboratory Program

The investigation included coring of pavement and drilling test holes. TREK Geotechnical and Morrison Hershfield selected the investigation locations as shown on Figure 01 (attached). The road investigation was conducted between October 3, 2019, October 10, 2019 and October 18, 2019. The pavement structure (asphalt and/or concrete) was cored by Harsimran Singh of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 150 mm diameter diamond core drill bit. Fourteen test holes were drilled to a depth of 3.0 m below road surface by Maple Leaf Drilling Ltd. using a truck mounted drill rig equipped with 125 mm diameter solid stem augers. Due to overhead powerlines, one test hole was drilled using a 50 mm diameter hand auger to a depth of 2.1 m below the road surface. The sub-surface conditions were observed during drilling and visually classified by Bryan Hiebert of TREK. Other pertinent information such as groundwater and drilling conditions were also recorded during the drilling investigation. Disturbed (auger cuttings) samples and bulk samples retrieved during the sub-surface investigation were transported to TREK's material testing laboratory for further testing. Core samples were also retrieved and logged at TREK's material testing laboratory.

Core and test hole locations noted on the summary tables and test hole logs are based on UTM coordinates obtained using a hand-held GPS and their location relative to the nearest address, and measured distances from the edge of pavement or other permanent features.

The laboratory testing program consisted of moisture content determination on all samples, as well as Atterberg limits, and grain size analysis (mechanical sieve and hydrometer methods) on select samples between 0.5 and 1.0 m below pavement as well as Standard Proctor and CBR testing. Laboratory testing results are included on the test hole logs in Appendix A, while the individual test results are included in Appendix B with a summary table. Photos of the asphalt and concrete pavement cores are included in Appendix C.

Three CBR's were completed on bulk samples of differing soil units and the results are shown in the table below.

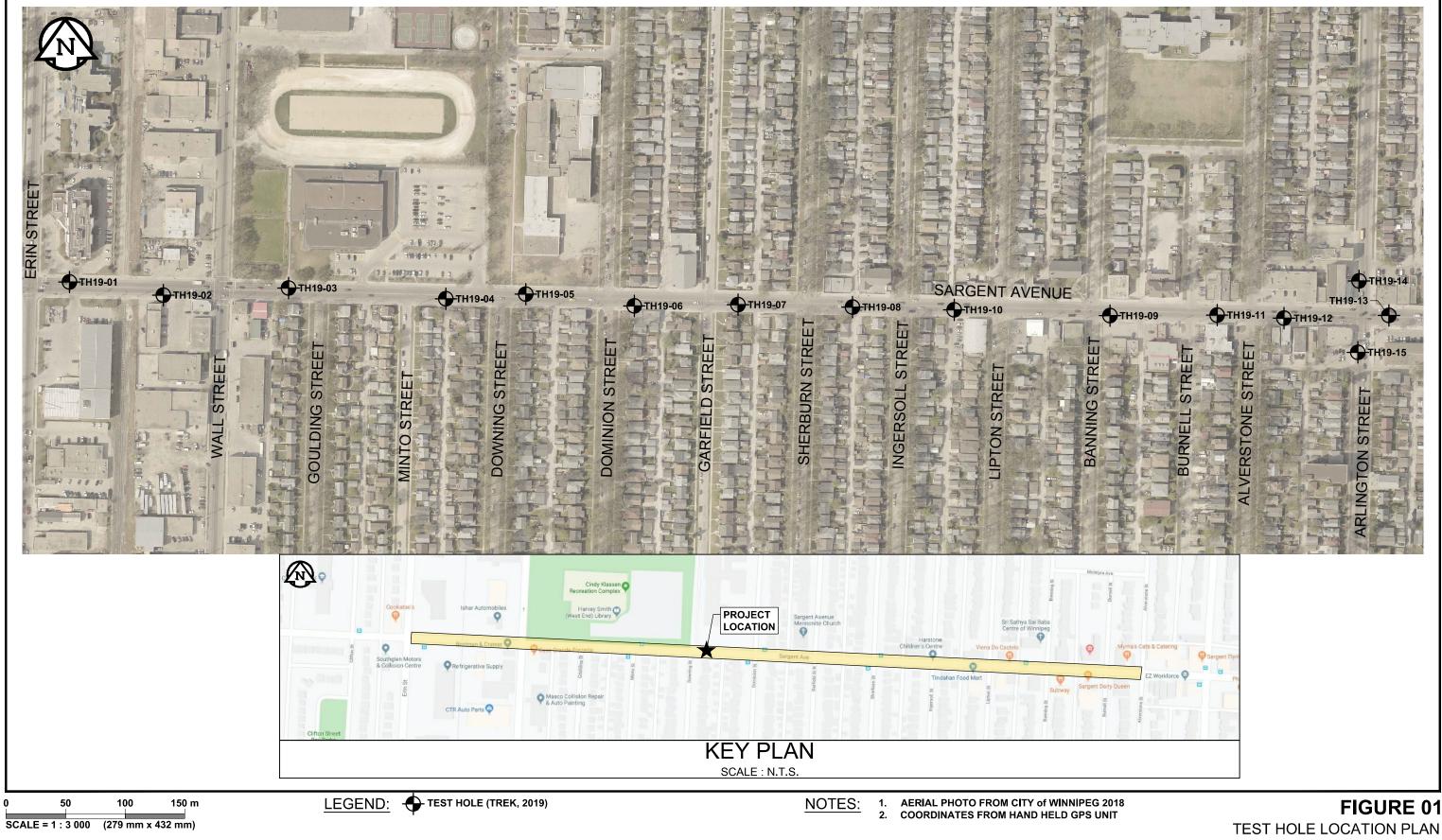
Sample Description	Test Hole	Depth (m)	SPMDD (kg/m³)	Opt. Moisture (%)	Percent Proctor (%)	Moisture Content (%)	CBR Value at 2.54 mm	CBR Value at 5.08 mm
Silt and Clay	TH19-05	0.4-1.5	1645	21.1	96.1	21.3	3.5%	2.9%
Silt, Sand	TH19-01	0.3-1.5	1622	21.2	04.1	25.0	4.00/	2.00/
and Clay	TH19-04	0.3-1.5	1622	21.3	94.1	25.8	4.8%	3.8%
Silt and Clay	TH19-03	0.3-1.5	1726	17.8	95.6	20.9	3.4%	3.0%

Table 1. CBR Testing Summary

* Testing completed on bulk samples

3.0 Closure

The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.


All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

17.00 ANSI full bleed B (11.00 × 0035-082-00.dwg, 11/8/

19-C-10 SARGENT AVENUE PAVEMENT RENEWAL

Appendix A

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criteria				ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$O_{U}^{-} D_{10}$ $O_{C}^{-} D_{10} \times D_{60}$		$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)	Gravels than half of coarse fraction alarder than 4.75 mm)	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradation requirements for GW				ASTM Sieve	#10	#401	#500	¥
ained soils larger than No. 200 sieve	Gra than half o	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+	
ained soils larger than	lore	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, g	25	
Coarse-Grained (More than half the material is larger	e fraction mm)	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 00 to 4 75	0.425 to 2.00	0.075 to 0.425	c/0.0 >
n half the r	Sands alf of coarse fi r than 4 75 mi		SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sands than half of coarse smaller than 4 75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	lemine percentages of s, pending on percentage of arse-grained solls are cla: arse than 5 percent More than 12 percent 6 to 12 percent Bord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Material	5				Clay
	(More t	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	ey sands, sand-clay mixtures $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & $					ואומר	Sand	Medium	Fine Silt or	SIIT OF CIAY
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity	/ Chart	r LINE		e Sizes		-	i i i	
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70- 60-		,U LI . A LINE	e	S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in	15 2 14	
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH CH		Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 1 40 - L 40 - L 40 - S30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	P 10
Fine the materi	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1	· ·	191 4 75) F
than half	N		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class			lour or odour, fibrous texture	Material	ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
Very loose	< 4	
Loose	4 to 10	
Compact	10 to 30	
Dense	30 to 50	
Very dense	> 50	
The Standard Penetration Test blow count (N) of a col	hesive soil can be related to its consistency as follows:	:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

TREK
GEOTECHNICAL

Clien	t:	Morrison Her	shfield			Project Number:	0035	-082-(00-40)3					
Proje	ct Nam	e: <u>19-C-10 Pav</u>	ement Renewals -	Sargent Ave		Location:	N-55	28801	I, E-6	30445					
Cont	ractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор с	of Pav	remer	nt					
Meth	od:	125 mm Solid S	tem Auger, CME55 Tru	ick Mount		Date Drilled:	Octol	ber 10), 201	9					
	Sample	e Type:	Grab (G)		Shelby Tube (T)	Split Spoon (S				arrel (S	в)	Core	e (C)		
	-	Size Legend:	Fines	Clay		Sand								Boulde	re
		olze Legenu.	MAN Thes							Bulk	Unit Wt	<u>c</u> 3		drained	
Depth (m)	Soil Symbol	ASPHALT - 130		TERIAL DES	CRIPTION		Sample Type	Sample Number		Particle 20 40 PL N	Size (%)	0 21 0 100 0 100 0		Tength (<u>Test Ty</u> Torvan Pocket F ⊠ Qu I Field Va 100 1	<u>kPa)</u> pe ne ∆ Pen. Ф ⊠ ane ⊖
		CONCRETE - 24							~~~~~			•.•.•			
-0.5-		SILT AND CLAY - black - moist, firm - intermedia	′ - sandy, trace gra	ivel (<10 mm (diam.), trace orga	nics		G78		🖶			4		
		- Internedia					Ζ	G79		•			/•		
-1.0-								G80	-	•			•		
		CLAY - silty - grey - moist, firm - high plasti						G81	_	•			/ 0		
-1.5-								G82		•			49		
-2.0-															
-2.5-							Ζ	G83		•			/ ©		
-3.0-															
		1) No seepage of 2) Test hole ope 3) Test hole bac	HOLE AT 3.0 m IN or sloughing obsen n to 2.4 m immedia kfilled with auger of ated in Westbound	ved. ately after drill cuttings, granu	lar fill and cold pa	atch asphalt. 5 and 51 m East of W	all								
	ed By:	Bryan Hiebert		Reviewe	d By: Angela Fi	dler-Kliewer		Proied	ct End	aineer:	Nelso	n Ferr	eira		

GEOTECHNICAL

Sub-Surface Log

Ut	<u>. U I E</u>	<u>ECHNI</u>	.HL													
Clier	nt:	Morrison He	rshfield			Project Number:	0035	-082-0	00-40)3						
Proje	ect Name:	<u>19-C-10 Pav</u>	ement Renewals -	Sargent Ave		Location:	N-55	28786	6, E-6	30524	4					
Cont	ractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор о	of Pav	emer	nt						
Meth	nod:	125 mm Solid S	tem Auger, CME55 Tru	ick Mount		Date Drilled:	Octo	ber 10), 201	19						
	Sample 7	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	(S)	< s	olit Ba	arrel (SB) [C	ore (C))		
	Particle S	Size Legend:	Fines	Clay	Silt	Sand		Gra	vel	50	7 Co	obbles		Bou	ders	
Depth (m)	So			TERIAL DESC	RIPTION		Sample Type	Sample Number		17 18	MC	20 21		△ Tor Pocke ⊠ 0 ⊃ Field	th (kPa <u>Type</u> vane ∆ et Pen. Qu ⊠	a) 2 . •
• • • • •		SPHALT - 140 ONCRETE - 2														
-0.5-	S	 brown moist, cor well grade 	ravelly, trace silt, t npact ed sand to gravel (· led to angular	-				G19								
- - 		moist to wet be	elow 1.1 m					G20								
-1.5-								G21 G22 G23A								
2.5-	C	 mottled bi moist to w 	ce silt inclusions (< rown and grey /et, soft ate plasticity	10 mm diam.)				G23		•						
-2.5-			HOLE AT 3.0 m IN													
	2) 3) 4)) Sloughing fro) Test hole ope) Test hole bac	erved below 1.5 m m sand and grave en to 0.6 m immedi kfilled with auger o ated in Eastbound	l layer observed ately after drillin cuttings, granul	ng. ar fill and cold pa		St.									
Logo	aed By:	Bryan Hiebert		Reviewed	I By: Angela Fi	dler-Kliewer		Projec	t En	ginee	r: Ne	elson Fe	rreira			

GE	<u>E O T</u>	<u>ECHNI</u>	<u>CAL</u>												
Clier	nt:	Morrison He	rshfield			Project Number:	0035-	-082-0	00-40	3					
Proje	ect Nam	e: <u>19-C-10 Pav</u>	ement Renewals -	Sargent Ave		Location:	N-552	28792	, E-6	30629					
Cont	tractor:	Maple Leaf [Drilling Ltd.			Ground Elevation:	Тор о	of Pav	emen	nt					
Meth	nod:	125 mm Solid S	item Auger, CME55 Tru	ck Mount		Date Drilled:	Octob	per 10	, 201	9					
	Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	SS)	Sp	olit Ba	arrel (S	6B)	Co	ore (C)		
	Particle	e Size Legend:	Fines	Clay	Silt	Sand		Gra	vel	67	- 	bbles		Boulde	ers
Depth (m)	So	ASPHALT - 100		TERIAL DESC	RIPTION		Sample Type	Sample Number	0 20	(k) 7 18 Particle 0 40 PL I		20 21	• •	drained trength ∆ Torvar Pocket F ⊠ Qu Field Va 100 1	(kPa) p <u>e</u> ne ∆ Pen. Φ ⊠
Ē		CONCRETE - 2													
-0.5-		SILT AND CLA) - black - moist, firn - intermedia	- some sand to satisfy the		anics			G72 G73					<i>.</i>		
		SILT - some cla	v trace sand					015	-	•					
- - 1.0- - -		- grey - moist to w - low plastic	vet, soft city					G74							
 - - - -1.5-		- light brown bel	ow 1.2 m					G75		•					
		CLAY - silty - brown - moist, firn - high plast						G76		•					
[G77			•		4		
- 2.5- -								011							
-3.0-															
-2.5-		 No seepage of Sloughing from Test hole ope Test hole back 	m silt layer observ en to 1.4 m immedi kfilled with auger o	ed between 0.7 ately after drillir cuttings, granula	ng. ar fill and cold pa	atch asphalt. 5 and 51 m East of W	/all								
Logg	ged By:	Bryan Hiebert		_ Reviewed	I By: _Angela Fi	dler-Kliewer	F	Projec	t Eng	gineer:	Ne	son Fe	rreira		

GEOTECHNICAL

Client:	Morrison He	ershfield				Project Nu	mber:	0035	-082-0	00-40	3						
Project Name:	<u>19-C-10 Pa</u>	vement Renewals	- Sargent A	ve		Location:		N-55	28783	8, E-6	30761						
Contractor:	Maple Leaf	Drilling Ltd.				Ground Ele	vation:	Тор о	of Pav	emer	nt						
Method:	125 mm Solid	Stem Auger, CME55 T	ruck Mount			Date Drille	d:	Octo	ber 10), 201	9						
Sample T	уре:	Grab (G)		Shelb	y Tube (T)	Split S	poon (S	SS) 📐	< s	olit Ba	arrel (S	В)	Co	ore (C)		
	ize Legend:	Fines	Cla		Silt		and		Gra		~ ~				·	Iders	
			<u> ////</u>	., L							Bulk	Unit Wt		L (Jndrair	ned Sh	iea
Q								ype	Sample Number	16 1	7 18	I/m³) 19	20 21			gth (kP t Type	
Depth (m) Soil Symbol		М	ATERIAL D	ESCRIPT	ΓΙΟΝ			Sample Type	NUN			Size (%	,			vane 4	Δ
								dme	nple	0 2		60 //C LI	80 100		\boxtimes	et Pen Qu⊠	
N N								ů,	Sar	0 2			- 80 100			d Vane 150	
AS	SPHALT - 110) mm thick															
C	ONCRETE - 1	180 mm thick															
SI SI		Y - trace sand, tra	ce organics						G24							•	
-0.5-	- black - moist, sti	ff to very stiff															
	- intermed	iate to high plastic	ity														
									G25		•					•	
-1.0-									G26		•				_ _O		_
										1							
	_AY - silty														_		
	- light grey								G27		•				4		
	- moist, sti - intermedi	ff iate to high plastic	ity														
1.5			-						000								
									G28						_0		
- r	nottled brown	and grey, high pla	asticity below	w 1.8 m													
-2.0-																	
*//// - s	oft to firm be	low 2.1 m															
									000								
									G29								
-2.5-																	
El	ND OF TEST	HOLE AT 3.0 m I	N CLAY														
1) 2)	No seepage	or sloughing obse en to 2.6 m immed	rved. liately after (drilling													
3)	Test hole ba	ckfilled with auger ated in Eastbound	cuttings, gra	anular fill	and cold pa	atch asphalt.											
4) Mi	Test hole loc into St.	ated in Eastbound	i median lan	ne, 4.5 m	North of cu	rd and 30 m E	ast of										
logged By: F	Bryan Hiebert		Revie	wed By:	Angela F	dler-Kliewer		1	Proied	t End	ineer:	Nels	on Fe	rreira			

G	EOT	<u>ECHNI</u>														
Clie	nt:	Morrison He	rshfield			Project Number:	0035-	082-0	00-40)3						
Proj	ect Nam	ne: <u>19-C-10 Pav</u>	ement Renewals	- Sargent Ave		Location:	N-552	28791	I, E-6	30828						
Con	tractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор о	f Pav	eme	nt						
Meth	nod:	125 mm Solid S	Stem Auger, CME55 T	ruck Mount		Date Drilled:	Octob	oer 10), 201	9						
	Sampl	е Туре:	Grab (G)	Shelby Tube (T)	Split Spoon (S	S)	S	plit B	arrel (S	SB)	Co	re (C)			
	Particl	e Size Legend:	Fines	Clay	Silt	Sand		Gra	ivel	57		bbles		Bould	ers	
		Ū								Bul	k Unit V		U	ndraine	d Shea	
	log						Sample Type	Sample Number	16 1		N/m ³) 19	20 21	5	Strength Test	. ,)
Depth (m)	Soil Symbol		N	IATERIAL DESC	RIPTION		ole 1	e NL	0 2	Particle 20 40	e Size (' 60	%) 80 100	٥	△ Torva Pocket	ane \triangle	۵
	Soil						Sam	ldm	-	PL	MC			∑ Qi Field \	l 🖂	
							0)	Sa	0 2	20 40	60	80 100		100		
ł	-	ASPHALT - 100														
ļ.		CONCRETE - 2	50 mm thick													
Ē																
ţ.		SILT AND CLAY	Y - some sand, tra	ace organics				G66	1	•			A			
-0.5		- moist, firn														
F		- intermedia - trace sand, gre	ate plasticity ey, high plasticity	below 0.6 m				G67	1				<u>.</u>			
F		SILT - trace clay	/ trace sand							-						
ļ.	1	- light brow - moist to w	'n													
-1.0		- low plastic						G68		•					_	
2		CLAY - silty							1							
- a - −	_////	- brown - moist, stif												-	_	_
5	<i>.</i>	- high plast	licity					G69					2	10		
		- firm below 1.5	m					G70	1							
	Į///								-				T			
	-////															
	<u> </u>															
2.0·	-////															
	¥///	- soft to firm bel	ow 2.1 m					074	1		•					
	-////							G71			•		4		_	
n-70	<u>-</u>															
[-2.5 [.]	-////															_
	-////															
a. 	¥///															
2 5 - 3 0	Y															
			HOLE AT 3.0 m l	N CLAY												
		1) No seepage (2) Sloughing fro	observed. m silt layer obser	ved between 0.7	to 1.1 m depth.											
200		3) Test hole ope	en to 1.2 m immed ckfilled with auger	diately after drillin	ng.	atch asphalt										
2		5) Test hole loca	ated in Westbour	id median lane, 6	S m North of curb	and 15 m East of										
L L		Downing St.														
	nod Der	Dryon Liebert		Deview	Du Ancele E	dlor Kliewer	-	Dreis	of E	aless	• NI		roirc			
	деа Ву:	Bryan Hiebert		Reviewed	By: Angela Fi	aler-Kliewer	_ F	rojec	CTEN	gineer	: <u>Ne</u>	lson Fer	reira			

GE	EOT	ECHNIC	CAL												
Clier	nt:	Morrison He	rshfield			Project Number:	0035-	-082-0	00-40	3					
Proje	ect Nam	e: <u>19-C-10 Pav</u>	ement Renewals	- Sargent Ave		Location:	N-552	28777	, E-6	30919					
Cont	tractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор о	of Pav	emer	nt					
Meth	nod:	125 mm Solid S	Stem Auger, CME55 T	ruck Mount		Date Drilled:	Octob	ber 10	, 201	9					
	Sample	е Туре:	Grab (G))	Shelby Tube (T)	Split Spoon (S	SS)	S	olit Ba	arrel (Sl	B)	Core (C)		
	-	e Size Legend:	Fines	Clay	Silt	Sand		Gra		h?			_	oulders	
		5 0.20 20goa.								Bulk	Unit Wt			ained Sh	
	<u> </u>						/pe	Number	16 1	7 18	/m ³) 19 20	21		ngth (kF	,
Depth (m)	Symbol		M	IATERIAL DESC	RIPTION		e T)	Nur		Particle	Size (%)			est Type orvane	Δ
D D D D D	Soil S						Sample Type	aldr			60 80	0 100	D	cket Per Qu	
	0						လိ	Sample I				0 100 0		eld Vane	e () 200 25
-	-	ASPHALT - 110) mm thick						-						
ţ	P 6 4 9 4 9	CONCRETE - 1	80 mm thick												
È .															
E			Y - some sand, tra	ace gravel (<40 n	nm diam.), trace	organics		G30							
-0.5-		 black moist, stif 	Ť												
1 0.0			ate plasticity												
;		- trace sand, hig	gh plasticity below	/ 0.6 m				G31		•					
E		SILT - trace clay	v trace cand												
-1.0-		- light brow	'n					G32		•					
2		 moist to w low plastic 													
· -	4									_					
	1							G33		•					
-1.5-		CLAY - silty, trac	ce silt inclusions ((<10 mm diam.)				G34							
		- mottled bi - moist, stif	rown and grey					004	-						
_ ·	-////	- high plast													
2.0-															
∐– -															
		- firm below 2.3	m					G35	1						
	¥///								-						
-2.5-	III														
j.															
- - - -													-		
-3.0-	-///														
			HOLE AT 3.0 m II or sloughing obse												
		Test hole ope	en to 2.1 m immed	diately after drillir	ig.										
		3) Lest hole bac4) Test hole loca	ckfilled with auger ated in Eastbound	cuttings, granula curb lane, 2 m l	ar fill and cold pa North of curb and	itch asphalt. d 17 m East of									
1		Dominion St.		,											
1															
í —	ad Dra	Dryon Llichert		Daviance	Bu Annala E	dlor Kliower		Drois	+ E	-	Nelas	n Eorrain			
sl rođč	уеа ву:	Bryan Hiebert		Reviewed	By: Angela Fi		_ '	rojec	π ⊏nζ	jineer:	iveiso	n Ferreir	d		_

TREK
GEOTECHNICAL

Clien		ECHNIC Morrison Her				Project Number:	003	5-082-	00-40	03					
			ement Renewals -	Sargant Ava		Location:		52877			06				
-	ractor:	Maple Leaf D		Sargent Ave		Ground Elevation					0				
			-	als Marriet		Date Drilled:									
Meth			tem Auger, CME55 Tru				_	ober 1			r				
	Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon	(SS)	X S	plit B	arrel	(SB)	Co	re (C)		
	Particle	e Size Legend:	Fines	Clay	Silt	Sand :		Gr	avel		Co Collic Unit	obbles		Bould	
Depth (m)	Soil Symbol			TERIAL DES	CRIPTION		Samula Tvna	Sample Number		17 Partia 20 PL	(kN/m ³) 18 19 cle Size	20 21 (%) 80 100 LL	•	ndrained <u>Test T</u> △ Torva Pocket ⊠ Qu) Field V 100	(kPa) <u>ype</u> ine ∆ Pen. Ф ⊠
		ASPHALT - 130 CONCRETE - 29	90 mm thick												
-0.5-		SAND (FILL) - g sand to gravel (< CLAY - silty som	<20 mm diam.), su	race to some b-rounded to a	clay, brown, wet, angular	compact, well grade	ed	G36							
-1.0-		- dark grey	f to very stiff					G37							
								G38 G39	_						
-1.5-								G33	_						
-2.0-															
-2.5-		- firm below 2.1	m					G41			•		4		
		1) No seepage of 2) Test hole ope 3) Test hole bac	HOLE AT 3.0 m IN or sloughing obsen in to 2.7 m immedia kfilled with auger o ated in Eastbound i	ved. ately after drill cuttings, granu	lar fill and cold pa	atch asphalt. and 22 m East of					<u> </u>	1			
	ed By:	Bryan Hiebert		Reviewe	d By: Angela Fi	dler-Kliewer		Proje	ct En	giner	or: No	elson Fei	reira		

	/
	K
GEOTECHNIC	AL

G	EOT	<u>echnic</u>	CAL											
Clie	nt:	Morrison He	rshfield			Project Number:	0035	-082-0	00-403					
Proj	ect Nam	e: <u>19-C-10 Pav</u>	ement Renewals	- Sargent Ave		Location:	N-552	28776	6, E-63	1102				
Con	tractor:	TREK Geote	chnical			Ground Elevation:	Тор с	of Pav	rement					
Met	hod:	Hand Auger				Date Drilled:	Octob	oer 18	3, 2019)				
	Sample	e Type:	Grab (G)	S	helby Tube (T)	Split Spoon (S	S) 🔪	< Sr	olit Bar	rel (SB)	СС	ore (C)		
	-	Size Legend:	Fines	Clay	Silt	Sand		Gra			Cobbles		Bould	ers
		0120 2090114.								Bulk Un	it Wt		ndrained	
	0						ype	Sample Number	16 17	(kN/m ³ 18 1	°) 9 20 21	5	Strength Test T	
Depth	Soil Symbol		MA	ATERIAL DESCI	RIPTION		Sample Type	Nui		Particle Siz	. ,]		ine 🛆
	oil						amp	nple	0 20		60 80 100	-1	Pocket	\square
	0						ů.	Sar	0 20				Field V 100	'ane () 150 20025(
-	-	ASPHALT - 120	mm thick											
F		CONCRETE - 3	80 mm thick											
F														
ł	A 4 4 A 4 4													
-0.5		GRAVEL (FILL)	trace cand				_							
ł		- light brow	n											
F		- damp, cor - poorly gra	mpact ided coarse grave	l (<50 mm diam.), angular limest	one		G84						
E	<u>N</u> N	SILT AND CLAY	I - trace sand	(,, , , , , , , , , , , , , , , , , , , ,									
ł		 light brown moist, firm 	n to stiff				\vdash		-	_				
-1.0		- intermedia	ate to high plasticit	ty				G85	'	•		•		
- -														
6L/6L/LL	-	- stiff to very stiff	f below 1.2 m					G86					/0	
								G00						
							7	G87		•			<u>^o</u>	
ц – Э.														
≚[G88		•			۰	
ہے۔ 1.0		- stiff below 2.0	m				Ī	G89	-	•				
HM8		END OF TEST F	HOLE AT 2.1 m in		/					•		_		
Þ		No seepage of	or sloughing obser	ved.										
00-22		3) Test hole bac	en to 2.1 m immedi kfilled with auger	cuttings, granula	r fill and cold pa	tch asphalt.								
20-65		 Test hole loca Sherburn St. 	ated in Eastbound	median lane, 5	m North of curb	and 35 m East of								
-		energani et.												
H H H														
RGE														
Z-0L-4														
\$10Z														
200														
200														
L C E														
URFACE LOG LUGS 2019-10-21 SAKGEN I SI KEEL _ UUSD-082-00_ 0_ A_ BI														
Ň	ged By:	Bryan Hiebert		Reviewed	By: Angela Fi	dler-Kliewer	_	Projec	ct Engi	neer: _N	Velson Fe	erreira		

TREK
GEOTECHNICAL

Sub-Surface Log

		CHNIC														
Clier		Morrison Her				•	0035-									
-			ement Renewals -	Sargent Ave			<u>N-552</u>				8					
	ractor:	Maple Leaf D				Ground Elevation:										
Meth			tem Auger, CME55 Tru			Date Drilled:	Octob	_								
	Sample T	уре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	S)			arrel			re (C))		
	Particle S	Size Legend:	Fines	Clay	Silt	Sand Sand		Gra	vel	6		obbles			Iders	
Depth (m)	So	SPHALT - 230		TERIAL DESC	RIPTION		Sample Type	Sample Number		17 1 Partic 20 4 PL	ulk Unit kN/m^3) 8 19 cle Size 0 60 MC 0 60	20 21	•	Strenc <u>Tes</u> △ Tor Pock ⊠ 0 ○ Field	t Type t Type vane ∠ et Pen Qu ⊠ I Vane 150	a) ∆ . ₽
-0.5-		 light brown moist, con well grade sub-round 		<20 mm diam.)				G43		•						
 - -		- moist, firm	ate plasticity					G44		•			4			
1.0-		- light brown - moist to w - low plastic	n /et, soft					G45		•						
								G46		•						
		_AY - silty, trac - mottled br - moist, stiff - high plasti		:10 mm diam.)				G47	-		•					
	- f	irm below 2.3	m					G48			•					
 -																
-2.5-	1) 2) 3) 4)	No seepage of Sloughing from Test hole oper Test hole back Test hole locat	m silt layer observents n to 1.2 m immedi kfilled with auger o	ed between 0.9 ately after drillir cuttings, granula	ng. ar fill and cold pa	atch asphalt. d 10 m West of Banni	ing									
Logo	aed By: F	Bryan Hiebert		Reviewed	I By: Angela Fi	dler-Kliewer	F	Proied	t En	ainee	er: No	elson Fei	reira			

FREK	
GEOTECHNICA	L

GE	EOT	<u>echni</u>	CAL													
Clier	nt:	Morrison He	rshfield			Project Number:	0035	-082-0	00-40)3						_
Proje	ect Nam	e: <u>19-C-10 Pav</u>	vement Renewals	- Sargent Ave		Location:	N-552	28766	6, E-6	31187						_
Cont	tractor:	Maple Leaf I	Drilling Ltd.			Ground Elevation:	Тор с	of Pav	emer	nt						_
Meth	nod:	125 mm Solid S	Stem Auger, CME55 Ti	ruck Mount		Date Drilled:	Octob	ber 10), 201	9						_
	Sample	e Type:	Grab (G)		Shelby Tube (T)	Split Spoon (S	S)	SI SI	olit Ba	arrel (S	B)	Core	e (C)			
	-	e Size Legend:	Fines	Clay		Sand		Gra		67	_			Boulde	ro	
	Fallicie	e Size Legeriu.	Filles									65		Irained		
	<u> </u>						be	Sample Number	16 1	7 18	J/m^3	0 21	St	rength (kPa)	
(m)	Symbol			ATERIAL DESC			Sample Type	Nun		Particle	Size (%)			Test Ty Torvar		
De	Soil S		IVI	ATERIAL DESC			ldm	əlqı	0 2	20 40		0 100	фР	ocket F Qu 🛛	en. 🗭	
	N N						Sa	Sam	0 2	PL N PL 1 20 40		0 100 0		Field Va	ne O	0.250
-	_	ASPHALT - 80 I	mm thick				_	0,		20 40	60 8	0 100 0	50	100 1	50 20	0250
ł		CONCRETE - 2					_1									
È.																
ł			gravelly, some silt,	trace clay				G48								
F ₀		- brown - moist, cor	mpact					040	┤╹							
-0.5-		 well grade 	ed sand to gravel ded to angular	(<20 mm diam.)												
ł		- Sub-round						G49	•							
- ·																
ţ.																
-1.0-								G50	•							
									1							
=								G51	•							
-15]							
-0.2		TRANSITION: S	SAND (FILL) to CL							-						
E C								G52								
일 [
Ť																
9																
4 		CLAY - silty						G53]	•			4			
	- III	- grey - moist, stif														
-082-		- high plast	ticity													
g-2.5-	-////															
	<i>{///</i>															
ž	-////													_		
-3.0-																
7		END OF TEST	HOLE AT 3.0 m I	N CLAY									1			
		1) No seepage (2) Sloughing fro	observed. om sand and grave	el laver observer	between 0.3 to	2 1 m denth										
20 20		Test hole operation	en to 2.1 m immed	diately after drilling	ng.											
		5) Test hole loca	ckfilled with auger ated in Eastbound	cuttings, granula I median lane, 5	ar fill and cold pa m North of curb	atch asphalt. and 16 m West of										
LOG		Lipton St.		, -												
-ACE																
by Loge	ged By:	Bryan Hiebert		Reviewed	By: Angela Fi	dler-Kliewer	_ I	Projec	ct Eng	gineer:	Nelso	n Ferr	eira			

Sub-Surface Log

<u>GEU I</u>	<u>echnic</u>	<u>.HL</u>										
Client:	Morrison Her	rshfield			Project Number:	0035-	-082-00-	403				
Project Nan	ne: <u>19-C-10 Pav</u>	ement Renewals	Sargent Ave		Location:	N-552	28777, E	-631408				
Contractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор о	of Paven	nent				
Method:	125 mm Solid S	tem Auger, CME55 Tr	uck Mount		Date Drilled:	Octob	oer 10, 2	019				
Samp	е Туре:	Grab (G)	s s	helby Tube (T)	Split Spoon (S	(S)	Split	Barrel (SE	3) 🔲 Co	ore (C)		
	e Size Legend:	Fines	Clay	Silt	Sand		Grave		Cobbles		Boulders	
							.	Bulk	Unit Wt		Irained She	ar
Depth (m) Soil Symbol			ATERIAL DESC	RIPTION		Sample Type	Sample Number	Particle S 20 40 PL M 20 40	(m ³) 19 20 21 Size (%) 60 80 100 C LL	Str A P O F	rength (kPa <u>Test Type</u> Torvane ∆ ocket Pen. ⊠ Qu ⊠ Field Vane (100 150	a) •
	ASPHALT - 230											
-0.5-	CONCRETE AN	ID WOOD - 150 m	ım diam. wood e	mbedded in cor	ncrete		G60	•				
	- brown - moist, firm	′ - sandy, trace gra n ate to high plastici	·	am.)			G61		+	4•		
-1.0	SILT - trace clay - light brow - moist to w - low plastic	r, trace sand n ret, soft	<u>.</u>				G62 G63	•				
-1.5-	CLAY - silty - brown - moist, firm	n to stiff					G64	•		A		
2.0-	- high plasti											
							G65					
-2.5-												
-3.0-												
	 No seepage of Sloughing from Test hole ope Test hole bac 	HOLE AT 3.0 m IN bbserved. m silt layer between in to 1.2 m immed kfilled with auger ated in Eastbound	en 0.9 to 1.5 m c ately after drillin cuttings, granula	g. ar fill and cold pa	atch asphalt. and 15 m East of							
Logged By:	Bryan Hiebert		Reviewed	By: _Angela Fi	dler-Kliewer	_ F	Project E	Engineer:	Nelson Fe	rreira		

Sub-Surface Log

						Duala of New 1	0005	000	0.44	22						
Clien		Morrison He		Corgont Aug		Project Number:	0035-				4					
-			ement Renewals -	Sargent Ave		Location:	N-552				4					
	ractor:	Maple Leaf [al Mariat		Ground Elevation:										
Meth			Stem Auger, CME55 Tru			Date Drilled:	Octob	_								
	Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	SS)	Sp	olit B	arrel (ore (C)			
	Particle	Size Legend:	Fines	Clay	Silt	Sand		Gra	vel	67		bbles		Boul		
Depth (m)	So	SPHALT - 120		TERIAL DESC	RIPTION		Sample Type	Sample Number		17 1 Partic 20 40 PL	$\frac{11 \text{k Unit}}{\text{kN/m}^3)} = \frac{19}{19}$ $\frac{19}{10} = \frac{19}{10}$ $\frac{10}{10} = \frac{10}{10}$	20 21	.	Streng <u>Test</u> △ Ton Pocke ⊠ C ⊃ Field	ed She th (kPa <u>Type</u> vane △ et Pen. u ⊠ Vane (150) • •
- 0.5 -		ONCRETE - 2	20 thick ID WOOD - 150 m	m diam. wood o	embedded in cor	icrete		G54			•					
	N NS	ILT AND CLAY	Y - some sand						-	_						
		- brown - moist, firm						G55		•			<u> </u>		_	_
·1.0-	S	ILT - trace clay - light brow - moist to w - low plastio	n /et, soft					G56 G57		•						
-1.5- - -2.0-		LAY - silty - brown - moist, ver - high plast	y stiff icity					G58	-	•					^ •	
		firm below 2.1	m					G59	-		•		<i>1</i> 0			
·2.5-																
-3.0-																
_	1) 2) 3) 4)) No seepage o) Test hole ope) Test hole bac	HOLE AT 3.0 m IN or sloughing obser en to 2.7 m immedi :kfilled with auger o ated in Eastbound	ved. ately after drillin cuttings, granuli	ar fill and cold pa	tch asphalt. and 26 m East of										_
_ogg	ed Bv:	Bryan Hiebert		Reviewed	I By: Angela Fi	dler-Kliewer	F	Proiec	t En	ainee	r: Ne	elson Fe	rreira			

TREK
GEOTECHNICAL

GE	UT	<u>ECHNIC</u>	.HL											
Clien	it:	Morrison Hei	rshfield			Project Number:	0035	-082-0	0-403					
Proje	ect Nam		ement Renewals	- Sargent Ave		Location:			, E-631	1552				
	ractor:	Maple Leaf				Ground Elevation:								
Methe			item Auger, CME55 Tr			Date Drilled:	Octob							
	Sampl	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	SS) 🗲	Sp	olit Barr	rel (SB)	Cor	e (C)		
	Particle	e Size Legend:	Fines	Clay	Silt	Sand 😳		Gra			-	В	oulder	S
Depth (m)	Soil Symbol			ATERIAL DESC	RIPTION		Sample Type	Sample Number	16 17	Bulk Unit (kN/m ³) 18 19 article Size 40 60 - MC 40 60	20 21 (%) 80 100 LL	Stre <u>T</u> △ 1 ● Po [○ Fi	ained S ength (k est Typ forvane cket Pe I Qu I eld Var 00 15	:Pa) <u>e</u> e ∆ en. Φ]
-0.5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ASPHALT - 220												
		SILT AND CLAY - light brow - moist, ver - low to inte SILT - trace clay	n y stiff ermediate plasticit	у				G13					20	
		- light brow - moist to w - low plastic	n /et, soft					G14	•					
								G15 G16	•					
								G17						
								G18						
			HOLE AT 3.0 m IN											
		 No seepage of Sloughing fro Test hole ope Test hole bac 		ved between 2.0 liately after drilli cuttings, granul	ng. ar fill and cold pa	atch asphalt. across from 795								
Logg	ed By:	Bryan Hiebert		Reviewed	1 By: Angela Fi	dler-Kliewer	I	Projec	t Engiı	neer: <u>N</u>	elson Ferr	eira		

TREK
GEOTECHNICAL

Depth (m)

Sub-Surface Log

1 of 1

200 250

Client	t:	Morrison He	ershfield			Project Number:	0035-	082-0	00-403					
Proje	ct Nam	e: <u>19-C-10 Pav</u>	vement Renewals - Sa	argent Ave		Location:	N-552	28798	, E-631	527				
Contr	actor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Тор с	f Pav	ement					
Metho	od:	125 mm Solid S	Stem Auger, CME55 Truck	Mount		Date Drilled:	Octob	oer 3,	2019					
	Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	SS) 🕨	Sp	olit Barr	el (SB)	C	ore (C	C)	
	Particle	e Size Legend:	Fines	Clay	Silt	Sand		Gra	vel	67 (Cobbles		Bould	ders
Depth (m)	Soil Symbol	ASPHALT - 50		RIAL DESC	RIPTION		Sample Type	Sample Number	16 17	Bulk Un (kN/m 18 1 article Siz 40 6 MC 40 6	³) 9 20 2 (%) 60 80 10 LL	1 	Undraine Strengtl <u>Test</u> △ Torv ● Pocke ⊠ Q ○ Field 0 100	n (kPa) <u>Type</u> ane ∆ t Pen. Ф u ⊠ Vane ⊖
-0.5-	N 4 N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CONCRETE - 2 SAND (FILL) - ç - brown - moist, cou - well gradu	200 mm thick gravelly, some silt, trac	-				G01	•					
-1.0-		CLAY - silty, tra - grey - moist, vei - high plas SILT - trace clas - light brow - moist to v	ce sand ry stiff ticity y, trace sand m					G02 G03	•			0 0 0	A •	b
-1.5-		- low plasti						G04						
-2.0-								G05						
-2.5-		CLAY - silty - mottled b - moist, firr - high plasi	rown and grey n to stiff ticity					G06	-	•				
-3.0-		END OF TEST 1) No seepage	HOLE AT 3.0 m IN CI	AY										

2) Sloughing from silt layer observed between 0.9 to 2.4 m depth.

- 3) Test hole open to 2.6 m immediately after drilling.
 4) Test hole backfilled with auger cuttings, granular fill and cold patch asphalt.
- 5) Test hole located in Arlington Southbound curb lane, 2 m East of curb and 19 m South

GE	UT	<u>ECHNI</u>														
Clien	nt:	Morrison He	rshfield			Project Number:	0035	-082-0	00-40	3						
Proje	ect Name	e: 19-C-10 Pav	ement Renewals	- Sargent Ave	<u> </u>	Location:	N-55	28738	<u>8, E-6</u>	31526						
Cont	ractor:	Maple Leaf	Drilling Ltd.			Ground Elevation:	Top o	of Pav	remei	nt						
Meth	od:	125 mm Solid S	Stem Auger, CME55 T	ruck Mount		Date Drilled:	Octol	oer 3,	2019)						
	Sample	туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	SS) 🕨	< s	plit Ba	arrel (S	зв) [Co	ore (C	C)		
	Particle	Size Legend:	Fines	Clay	Silt	Sand		Gra	ivel	52		bbles	•	Во	ulders	;
Depth (m)	So			ATERIAL DESC	RIPTION		Sample Type	Sample Number		(k) 7 18 Particle		20 21		Stren <u>Te</u> △ To ● Pooc ⊠ ○ Fie	ined Sł igth (kł st Type orvane ket Pei Qu ⊠ Id Vane 0 150	Pa) ≙ ∆ n. Ф
		- brown, mo - sub-round SILT AND SANI - black - moist, sof	70 mm thick pravelly, some silt oist, compact, we led to angular D - some clay, tra	Il graded sand to				G07 G08								
-1.0-		SILT AND CLAY - grey - moist, stifi - intermedia						G09 G10	-	•				<u>/</u> 0		
		CLAY - silty - grey - moist, firn - high plast						G11 G12	-		•		4 •			
Logg		1) No seepage o 2) Test hole ope 3) Test hole bac 4) Test hole loca	HOLE AT 2.3 m II or sloughing obse en to 2.3 m immer skfilled with auger ated in Arlington S e intersection of S	erved. diately after drilli cuttings, granul Southbound lane	ar fill and cold pa e, 9 m West and	itch asphalt. 10 m South of fire		L								
Logg	jed By:	Bryan Hiebert		Reviewed	I By: _Angela Fi	dler-Kliewer		Projec	ct Eng	gineer:	Nel	son Fe	rreira	1		

Appendix B

Summary Table & Lab Testing Results

Test Hole		Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysis	6	At	tterberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	130	Concrete	240	Silt and Sand	0.3	0.5	30	15	45	35	5	24	48	24
	UTM : 5528801 N,					Silt and Sand	0.6	0.8	31							
TH19-01	630445 E Located in Westbound					Silt and Sand	0.9	1.1	23							
1019-01	median lane, 4 m South of curb and 51 m East of					Clay	1.2	1.4	30							
	Wall St.					Clay	1.5	1.7	34							
						Clay	2.4	2.6	43							
										-	Fines (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
	UTM : 5528786 N,	Asphalt	140	Concrete	290	Sand (Fill)	0.5	0.6	13							
	630524 E					Sand (Fill)	0.8	0.9	14		7	71	22			
TH19-02	Located in Eastbound curb lane, 2 m North of					Sand (Fill)	1.1	1.2	16							
	curb and 41 m West of Wall St.					Sand (Fill)	1.4	1.5	17							
	Waii St.					Sand (Fill)	1.7	1.8	18							
						Clay	2.3	2.4	30							
		Asphalt	100	Concrete	200	Silt and Clay	0.3	0.5	21							
	UTM : 5528792 N,					Silt and Clay	0.6	0.8	33							
TH19-03	630629 E Located in Westbound					Silt	0.9	1.1	21	16	73	5		16	29	14
1119-03	median lane, 4 m South of curb and 51 m East of					Silt	1.2	1.4	23							
	Wall Street					Clay	1.5	1.7	39							
						Clay	2.3	2.4	51							
		Asphalt	110	Concrete	180	Silt and Clay	0.3	0.5	42							
	UTM : 5528783 N,					Silt and Clay	0.6	0.8	31							ľ
TH19-04	630761 E Located in Eastbound					Silt and Clay	0.9	1.1	27							
1019-04	median lane, 4.5 m North of curb and 30 m East of					Clay	1.2	1.4	33							
	Minto St.					Clay	1.5	1.7	38							
						Clay	2.3	2.4	50							

Test Hole No.		Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysi	s	Atterberg Limits		
	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	100	Concrete	250	Silt and Clay	0.3	0.5	26							
	UTM : 5528792 N,					Silt and Clay	0.6	0.8	33							
TH19-05	630828 E Located in Westbound					Silt	0.9	1.1	25							
11119-05	median lane, 6 m North of curb and 15 m East of					Clay	1.2	1.4	34							
	Downing St.					Clay	1.5	1.7	44							
						Clay	2.1	2.3	48							
		Asphalt	110	Concrete	180	Silt and Clay	0.3	0.5	21							
	UTM : 5528777 N,					Silt and Clay	0.6	0.8	32							
TU40.00	630919 E Located in Eastbound					Silt	0.9	1.1	24							
TH19-06	curb lane, 2 m North of curb and 17 m East of					Silt	1.2	1.4	25							
	Dominion St.					Clay	1.5	1.7	40							
						Clay	2.3	2.4	45							
		Asphalt	130	Concrete	290	Sand (Fill)	0.5	0.6	17							
	UTM : 5528778 N,					Silt and Clay	0.8	0.9	37	56	33	11		27	75	49
TU40.07	630006 E Located in Eastbound					Silt and Clay	1.1	1.2	37							
TH19-07	median lane, 4 m North of curb and 22 m East of					Silt and Clay	1.4	1.5	36							
	Garfield St.					Silt and Clay	1.7	1.8	34							
						Clay	2.3	2.4	45							
										-	Fines (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	120	Concrete	380	Gravel (Fill)	0.6	0.8	4		2	2	96			
	UTM : 5528776 N,					Silt and Clay	0.9	1.1	28							
TH19-08	631102 E Located in Eastbound					Silt and Clay	1.2	1.4	28							
1119-00	median lane, 5 m North of curb and 35 m East of					Silt and Clay	1.5	1.7	33							
	Sherburn St.					Silt and Clay	1.8	2.0	34							
						Silt and Clay	2.0	2.1	33					1		

Test Hole		Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysi	6	Atterberg Limits		
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
	UTM : 5528767 N, 631318 E	Asphalt	150	Concrete		Sand (Fill)	0.3	0.5	20							
						Silt and Clay	0.6	0.8	33							
TH19-09	Located in in Eastbound					Silt	0.9	1.1	26							
11119-09	curb lane, 2 m North of curb and 10 m West of					Silt	1.2	1.4	23							
	Banning St.					Clay	1.5	1.7	43							
						Clay	2.1	2.3	47							
		Asphalt	80	Concrete	220	Sand (Fill)	0.3	0.5	15							
	UTM : 5528766 N,					Sand (Fill)	0.6	0.8	9							
TH19-10	631187 E Located in Eastbound					Sand (Fill)	0.9	1.1	7							
1119-10	median lane, 5 m North o curb and 16 m West of					Sand (Fill)	1.2	1.4	5							
	Lipton St.				Transition from Sand to Clay	1.5	1.7	29								
						Clay	2.1	2.3	43							
		Asphalt	230	Concrete	N/A	Concrete Rubble and Wood Debris	0.3	0.5	40							
	UTM : 5528777 N, 631408 E					Silt and Clay	0.6	0.8	26	30	42	24	4	26	53	27
TH19-11	Located in Eastbound					Silt	0.9	1.1	25							
11119-11	median lane, 4 m North of curb and 15 m East of					Silt	1.2	1.4	22							
	Burnell St.					Clay	1.5	1.7	39							
						Clay	2.1	2.3	47							
		Asphalt	120	Concrete	220	Concrete Rubble and Wood Debris	0.3	0.5	45							
	UTM : 5528771 N,					Silt and Clay	0.6	0.8	27							
TU40.42	631464 E Located in Eastbound					Silt	0.9	1.1	20							
TH19-12	median lane, 5 m North of curb and 26 m East of					Silt	1.2	1.4	22							
	Alverstone St.					Clay	1.5	1.7	32							
						Clay	2.1	2.3	48							

Test Hole	-	Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysi	6	At	tterberg L	imits.
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	220	Concrete	390	Silt and Clay	0.8	0.9	22							
	UTM : 5528769 N,					Silt	1.1	1.2	20							
TH19-13	630552 E Located in Eastbound					Silt	1.4	1.5	20							
1119-13	median lane, 4 m North of curb across from 795					Silt	1.7	1.8	19							
	Sargent Ave.					Silt	2.0	2.1	22							
	U U					Silt	2.3	2.4	25							
		Asphalt	50	Concrete	200	Sand (Fill)	0.3	0.5	5							
	UTM : 5528798 N,					Silt and Clay	0.6	0.8	29	63	34	3		74	24	49
TU40.44	631527 E Located in Arlington St.					Silt	0.9	1.1	24							
TH19-14	Southbound curb lane, 2 m East of curb and 19 m					Silt	1.2	1.4	22							
	South of 666 Arlington St.					Silt	1.8	2.0	24							
						Clay	2.4	2.6	31							
	UTM : 5528738 N,	Asphalt	50	Concrete	170	Sand (Fill)	0.3	0.5	11							
	631526 E					Silt and Sand	0.6	0.8	13							
TU 40 45	Located in Arlington St. Southbound lane, 9 m					Silt and Clay	0.9	1.1	22							
TH19-15	West and 10 m South of					Silt and Clay	1.2	1.4	30							
	fire hydrant at the intersection of Sargent					Clay	1.5	1.7	49							
	Ave and Arlington St.					Clay	1.8	2.0	53							1

Www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0035-082-00-403
Client	Morrison Hershfield
Project	19-C-10 Pavement Renewal - Sargent Ave
Sample Date	10-Oct-19

Test Date22-Oct-19TechnicianHS

Test Hole	TH19-01	TH19-01	TH19-01	TH19-01	TH19-01	TH19-01
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.4 - 2.6
Sample #	G78	G79	G80	G81	G82	G83
Tare ID	D32	Z102	F44	C22	P20	P85
Mass of tare	8.6	8.5	8.5	8.6	8.6	8.6
Mass wet + tare	376.2	272.8	287.7	232.5	253.1	214.4
Mass dry + tare	290.4	210.2	235.2	180.8	190.7	152.8
Mass water	85.8	62.6	52.5	51.7	62.4	61.6
Mass dry soil	281.8	201.7	226.7	172.2	182.1	144.2
Moisture %	30.4%	31.0%	23.2%	30.0%	34.3%	42.7%

Test Hole	TH19-02	TH19-02	TH19-02	TH19-02	TH19-02	TH19-02
Depth (m)	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8	2.3 - 2.4
Sample #	G19	G20	G21	G22	G23A	G23
Tare ID	Z16	STEPHEN	A13	AC03	F35	Z134
Mass of tare	8.7	255.8	8.4	6.8	8.5	8.4
Mass wet + tare	404.4	790.3	221.0	176.3	153.2	222.8
Mass dry + tare	358.7	723.3	191.0	151.5	131.5	172.8
Mass water	45.7	67.0	30.0	24.8	21.7	50.0
Mass dry soil	350.0	467.5	182.6	144.7	123.0	164.4
Moisture %	13.1%	14.3%	16.4%	17.1%	17.6%	30.4%

Test Hole	TH19-03	TH19-03	TH19-03	TH19-03	TH19-03	TH19-03
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.3 - 2.4
Sample #	G72	G73	G74	G75	G76	G77
Tare ID	F129	D49	D10	AB18	N62	F144
Mass of tare	8.4	8.5	8.6	6.8	8.6	8.5
Mass wet + tare	277.8	247.3	422.0	318.5	223.8	213.1
Mass dry + tare	231.7	188.2	349.4	259.5	163.4	144.1
Mass water	46.1	59.1	72.6	59.0	60.4	69.0
Mass dry soil	223.3	179.7	340.8	252.7	154.8	135.6
Moisture %	20.6%	32.9%	21.3%	23.3%	39.0%	50.9%

Project No.	0035-082-00-403
Client	Morrison Hershfield
Project	19-C-10 Pavement Renewal - Sargent Ave
Sample Date	10-Oct-19

Test Date 22-Oct-19 HS Technician

Test Hole	TH19-04	TH19-04	TH19-04	TH19-04	TH19-04	TH19-04
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.3 - 2.4
Sample #	G24	G25	G26	G27	G28	G29
Tare ID	H13	Z116	W97	H90	D47	D19
Mass of tare	8.6	8.7	8.5	8.5	8.5	8.4
Mass wet + tare	163.1	185.0	196.9	185.9	198.0	198.5
Mass dry + tare	117.4	143.0	157.3	142.4	146.0	135.0
Mass water	45.7	42.0	39.6	43.5	52.0	63.5
Mass dry soil	108.8	134.3	148.8	133.9	137.5	126.6
Moisture %	42.0%	31.3%	26.6%	32.5%	37.8%	50.2%

Test Hole	TH19-05	TH19-05	TH19-05	TH19-05	TH19-05	TH19-05
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.1 - 2.3
Sample #	G66	G67	G68	G69	G70	G71
Tare ID	AB47	W27	AC29	AB60	F8	F38
Mass of tare	6.8	8.4	6.9	6.6	8.8	8.5
Mass wet + tare	265.7	177.1	200.3	193.2	218.9	258.3
Mass dry + tare	213.0	134.9	161.7	145.9	155.1	176.8
Mass water	52.7	42.2	38.6	47.3	63.8	81.5
Mass dry soil	206.2	126.5	154.8	139.3	146.3	168.3
Moisture %	25.6%	33.4%	24.9%	34.0%	43.6%	48.4%

Test Hole	TH19-06	TH19-06	TH19-06	TH19-06	TH19-06	TH19-06
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.3 - 2.4
Sample #	G30	G31	G32	G33	G34	G35
Tare ID	W36	N01	AB09	K10	H9	F9
Mass of tare	8.5	8.6	6.7	8.5	8.8	8.9
Mass wet + tare	199.4	191.3	213.2	166.3	178.0	172.2
Mass dry + tare	166.8	147.2	173.6	134.7	129.3	121.2
Mass water	32.6	44.1	39.6	31.6	48.7	51.0
Mass dry soil	158.3	138.6	166.9	126.2	120.5	112.3
Moisture %	20.6%	31.8%	23.7%	25.0%	40.4%	45.4%

Project No.	0035-082-00-403
Client	Morrison Hershfield
Project	19-C-10 Pavement Renewal - Sargent Ave
Sample Date	10-Oct-19

Test Date 22-Oct-19 HS Technician

Test Hole	TH19-07	TH19-07	TH19-07	TH19-07	TH19-07	TH19-07
Depth (m)	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8	2.3 - 2.4
Sample #	G36	G37	G38	G39	G40	G41
Tare ID	N02	E13	AB43	F124	E2	K4
Mass of tare	8.6	8.8	6.7	8.5	8.8	8.6
Mass wet + tare	251.7	485.1	228.7	207.6	196.0	174.0
Mass dry + tare	217.0	355.4	168.9	155.3	148.1	123.1
Mass water	34.7	129.7	59.8	52.3	47.9	50.9
Mass dry soil	208.4	346.6	162.2	146.8	139.3	114.5
Moisture %	16.7%	37.4%	36.9%	35.6%	34.4%	44.5%

Test Hole	TH19-08	TH19-08	TH19-08	TH19-08	TH19-08	TH19-08
Depth (m)	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.0 - 2.1
Sample #	G84	G85	G86	G87	G88	G89
Tare ID	Z1	Z11	AB100	Z118	F131	Z93
Mass of tare	238.0	8.8	7.0	8.4	8.5	8.8
Mass wet + tare	1665.8	234.6	208.5	174.8	190.1	226.6
Mass dry + tare	1605.8	185.2	164.3	133.5	143.9	172.6
Mass water	60.0	49.4	44.2	41.3	46.2	54.0
Mass dry soil	1367.8	176.4	157.3	125.1	135.4	163.8
Moisture %	4.4%	28.0%	28.1%	33.0%	34.1%	33.0%

Test Hole	TH19-09	TH19-09	TH19-09	TH19-09	TH19-09	TH19-09
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.1 - 2.3
Sample #	G42	G43	G44	G45	G46	G47
Tare ID	F56	W29	W41	F42	AB88	Z24
Mass of tare	8.4	8.6	8.6	8.4	6.7	8.4
Mass wet + tare	278.7	238.7	246.4	253.5	213.9	234.3
Mass dry + tare	234.0	181.7	197.6	207.0	151.4	162.0
Mass water	44.7	57.0	48.8	46.5	62.5	72.3
Mass dry soil	225.6	173.1	189.0	198.6	144.7	153.6
Moisture %	19.8%	32.9%	25.8%	23.4%	43.2%	47.1%

Www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0035-082-00-403
Client	Morrison Hershfield
Project	19-C-10 Pavement Renewal - Sargent Ave
Sample Date	10-Oct-19

Test Date22-Oct-19TechnicianHS

Test Hole	TH19-10	TH19-10	TH19-10	TH19-10	TH19-10	TH19-10
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.1 - 2.3
Sample #	G48	G49	G50	G51	G52	G53
Tare ID	E8	P24	A17	P10	K1	N56
Mass of tare	8.6	8.6	8.6	8.9	8.4	8.4
Mass wet + tare	201.1	186.9	184.1	188.7	234.8	238.8
Mass dry + tare	175.7	171.9	172.2	180.0	183.7	169.6
Mass water	25.4	15.0	11.9	8.7	51.1	69.2
Mass dry soil	167.1	163.3	163.6	171.1	175.3	161.2
Moisture %	15.2%	9.2%	7.3%	5.1%	29.2%	42.9%

Test Hole	TH19-11	TH19-11	TH19-11	TH19-11	TH19-11	TH19-11
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.1 - 2.3
Sample #	G60	G61	G62	G63	G64	G65
Tare ID	D12	W35	W103	K5	C19	AA23
Mass of tare	8.4	8.4	8.4	8.6	8.6	6.8
Mass wet + tare	124.4	393.6	287.6	397.8	220.8	303.4
Mass dry + tare	91.5	314.6	231.4	326.5	161.6	208.4
Mass water	32.9	79.0	56.2	71.3	59.2	95.0
Mass dry soil	83.1	306.2	223.0	317.9	153.0	201.6
Moisture %	39.6%	25.8%	25.2%	22.4%	38.7%	47.1%

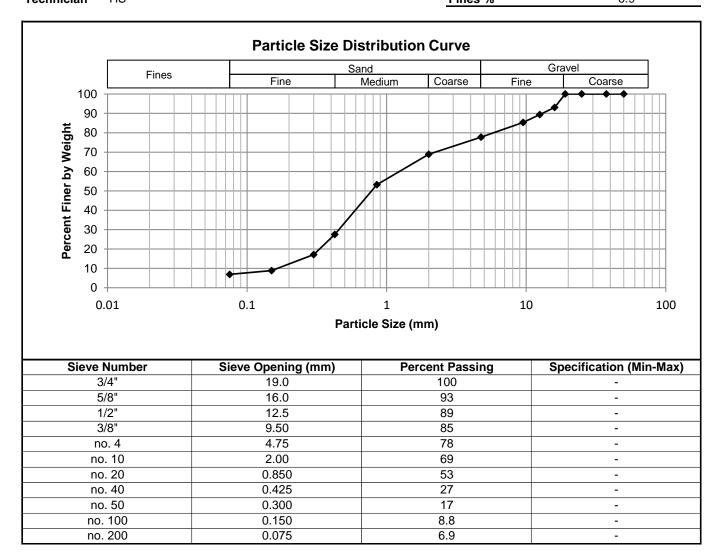
Test Hole	TH19-12	TH19-12	TH19-12	TH19-12	TH19-12	TH19-12
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	2.1 - 2.3
Sample #	G54	G55	G56	G57	G58	G59
Tare ID	P14	N113	Z44	F50	F48	A109
Mass of tare	9	8.6	8.6	8.6	8.6	8.4
Mass wet + tare	123.6	288.8	152.0	254.2	283.4	293.4
Mass dry + tare	87.8	229.9	128.0	210.6	217.4	201.2
Mass water	35.8	58.9	24.0	43.6	66.0	92.2
Mass dry soil	78.8	221.3	119.4	202.0	208.8	192.8
Moisture %	45.4%	26.6%	20.1%	21.6%	31.6%	47.8%

Project No.	0035-082-00-403
Client	Morrison Hershfield
Project	19-C-10 Pavement Renewal - Sargent Ave
Sample Date	10-Oct-19

Test Date10 Oct 10TechnicianHS

Test Hole	TH19-13	TH19-13	TH19-13	TH19-13	TH19-13	TH19-13
Depth (m)	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.7 - 1.8	2.0 - 2.1	2.3 - 2.4
Sample #	G13	G14	G15	G16	G17	G18
Tare ID	H6	E92	C8	W91	F98	AB19
Mass of tare	8.6	8.4	8.4	8.6	8.5	6.7
Mass wet + tare	192.2	195.4	212.3	199.3	248.7	253.0
Mass dry + tare	159.0	164.6	177.9	168.4	206.0	203.8
Mass water	33.2	30.8	34.4	30.9	42.7	49.2
Mass dry soil	150.4	156.2	169.5	159.8	197.5	197.1
Moisture %	22.1%	19.7%	20.3%	19.3%	21.6%	25.0%

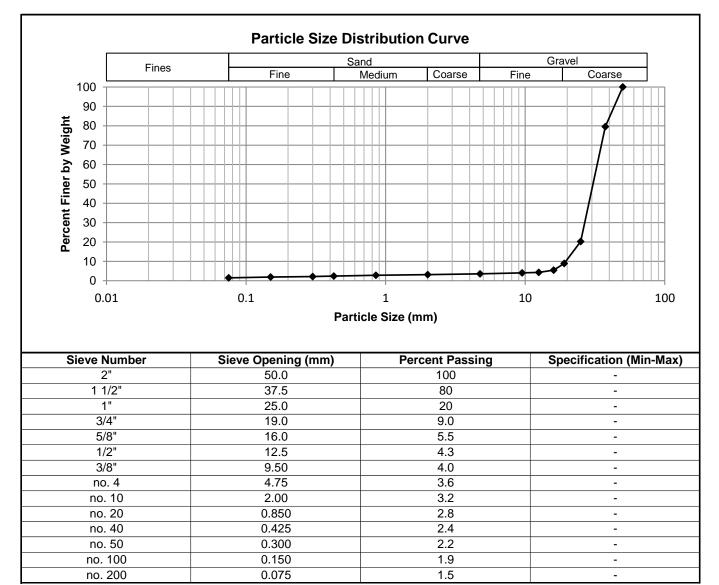
Test Hole	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.8 - 2.0	2.4 - 2.6
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	F128	E110	C14	AB91	N110	E53
Mass of tare	8.7	8.6	8.5	6.6	8.5	8.6
Mass wet + tare	268.4	342.8	231.2	441.9	252.0	272.1
Mass dry + tare	255.4	267.3	188.1	363.5	205.5	209.8
Mass water	13.0	75.5	43.1	78.4	46.5	62.3
Mass dry soil	246.7	258.7	179.6	356.9	197.0	201.2
Moisture %	5.3%	29.2%	24.0%	22.0%	23.6%	31.0%


Test Hole	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0
Sample #	G07	G08	G09	G10	G11	G12
Tare ID	W35	E110	W59	N27	Z77	E15
Mass of tare	8.7	8.6	8.5	8.6	8.5	9
Mass wet + tare	257.1	131.0	199.1	184.2	180.2	251.1
Mass dry + tare	231.6	117.2	164.5	143.9	124.0	167.4
Mass water	25.5	13.8	34.6	40.3	56.2	83.7
Mass dry soil	222.9	108.6	156.0	135.3	115.5	158.4
Moisture %	11.4%	12.7%	22.2%	29.8%	48.7%	52.8%

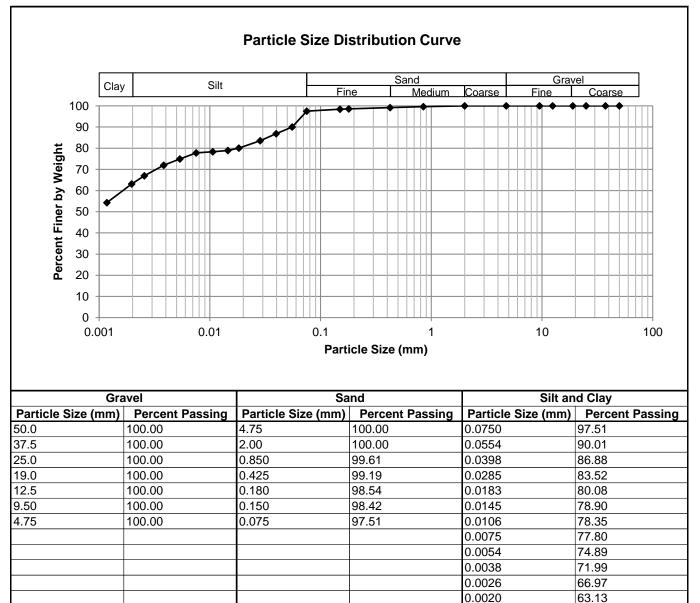
www.trekgeotechnical.ca 1712 St James St. Winnipeg, MB R3H 0L3 Tel: 204.975.9433

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave
Test Hole	TH19-02
Sample #	G20
Depth	0.8 - 0.9
Date Sampled	10-Oct-19
Date Tested	28-Oct-19
Technician	HS

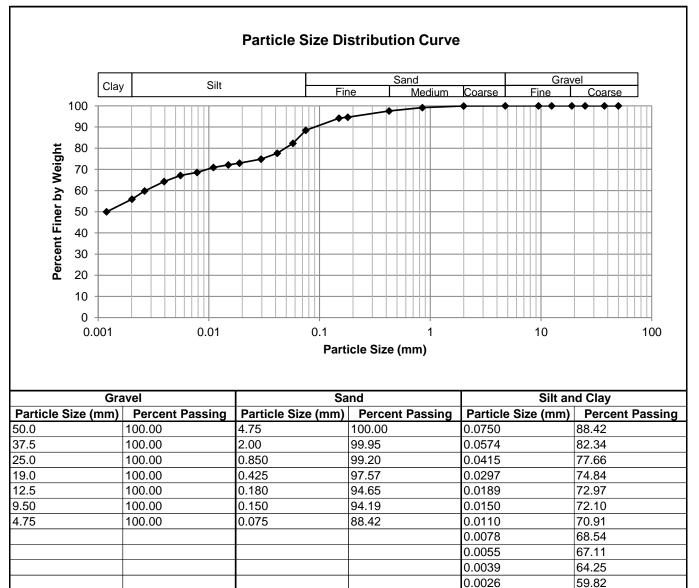
Gravel %	22.3
Sand %	70.8
Fines %	6.9



Fax:

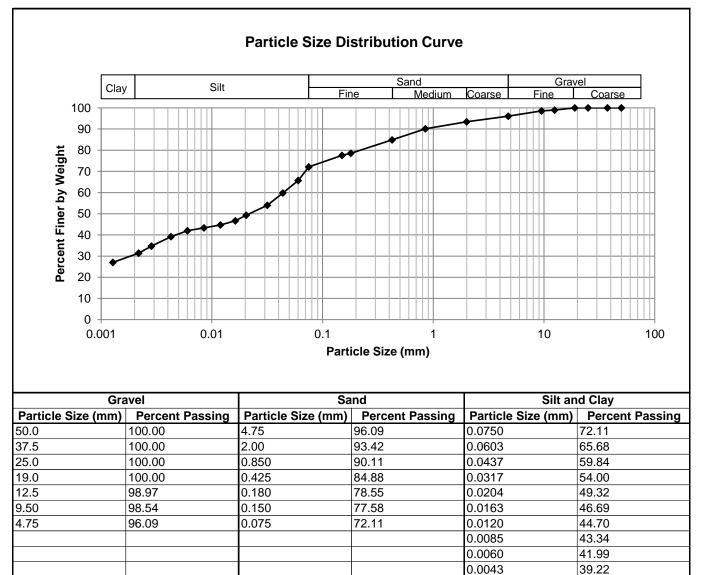

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave
Test Hole	TH19-08
Sample #	G84
Depth	0.6 - 0.8
Date Sampled	10-Oct-19
Date Tested	28-Oct-19
Technician	HS

Gravel %	96.4
Sand %	2.1
Fines %	1.5


Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave		CERTIFIED BY
Test Hole	TH19-14		
Sample #	G02		
Depth (m)	0.6 - 0.8	Gravel	0.0%
Sample Date	10-Oct-19	Sand	2.5%
Test Date	23-Oct-19	Silt	34.2%
Technician	AFK	Clay	63.3%

54.30

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave		CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-07		
Sample #	G37		
Depth (m)	0.8 - 0.9	Gravel	0.0%
Sample Date	10-Oct-19	Sand	11.6%
Test Date	23-Oct-19	Silt	32.6%
Technician	AFK	Clay	55.8%


55.95

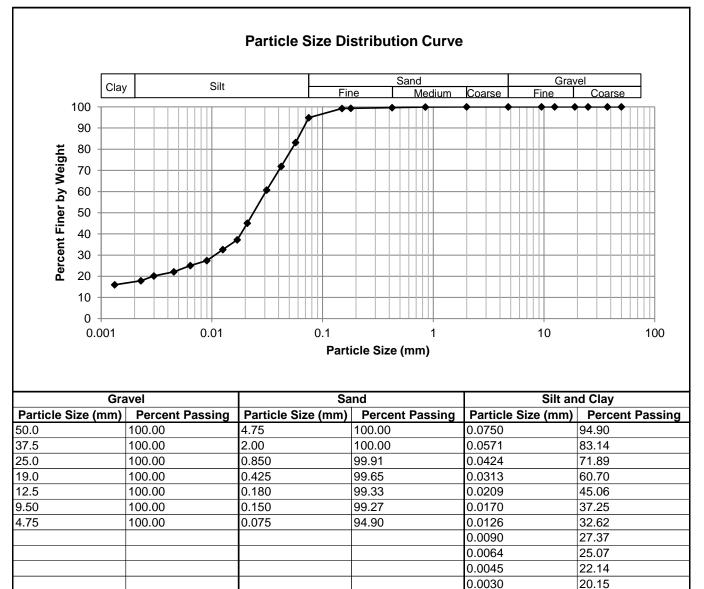
49.95

0.0020

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave		CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-11		
Sample #	G61		
Depth (m)	0.6 - 0.8	Gravel	3.9%
Sample Date	10-Oct-19	Sand	24.0%
Test Date	23-Oct-19	Silt	41.6%
Technician	AFK	Clay	30.5%

34.75

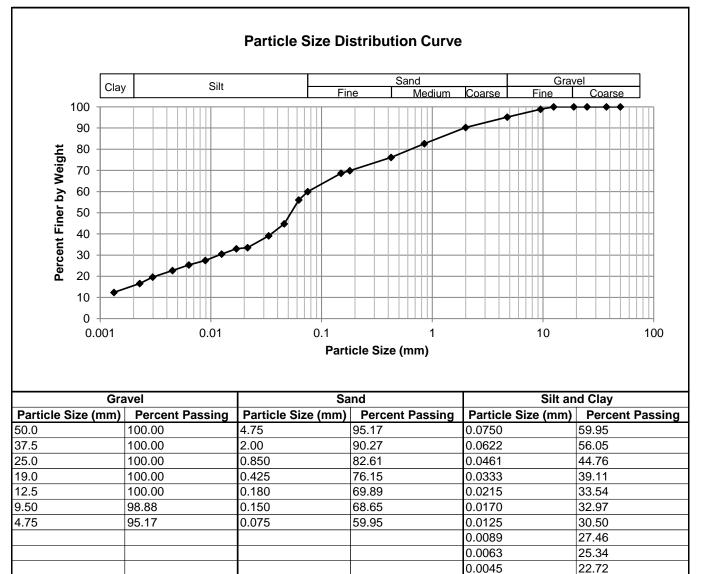
31.40


27.02

0.0028

0.0022

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave		CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-03		
Sample #	G74		
Depth (m)	0.9 - 1.1	Gravel	0.0%
Sample Date	10-Oct-19	Sand	5.1%
Test Date	23-Oct-19	Silt	79.3%
Technician	AFK	Clay	15.6%


17.84

15.96

0.0023

Project No. Client Project	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement Renewal - Sargent Ave		Certified BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-01		
Sample #	G78		
Depth (m)	0.3 - 0.5	Gravel	4.8%
Sample Date	10-Oct-19	Sand	35.2%
Test Date	23-Oct-19	Silt	44.6%
Technician	AFK	Clay	15.4%

19.60

16.63

12.39

0.0030

0.0023

Project No. Client Project	0035-82-00-403 Morrison Hershfiel 19-C-10 Pavemen		ent Ave		CERTIFIED BY-	Independent Laboratories
Test Hole	TH19-14				For specific tests a	s listed on www.ccil.com
Sample #	G02		-			
Depth (m)	0.6 - 0.8		-			
Sample Date	10-Oct-19		-		Liquid Limit	74
Test Date	23-Oct-19		-		Plastic Limit	24
Technician	HS		-		Plasticity Index	49
Liquid Limit			-			
Trial #		1	2	3		
Number of Blov		19	21	32		
Mass Wet Soil		27.544	28.680	25.630		
Mass Dry Soil +	· Tare (g)	21.605	22.326	20.818		
Mass Tare (g)		14.031	14.031	13.889		
Mass Water (g)		5.939	6.354	4.812		
Mass Dry Soil (7.574	8.295	6.929		
Moisture Conte	nt (%)	78.413	76.600	69.447		
 0 0<	Plasticity Chart for smaller than 0.425	5 mm	vith particles	CH MH or C 60 70	Line "A" Line OH 80 90	100 110

Trial #	1	2	3	4	5
Mass Tare (g)	13.961	14.150			
Mass Wet Soil + Tare (g)	20.411	23.424			
Mass Dry Soil + Tare (g)	19.146	21.593			
Mass Water (g)	1.265	1.831			
Mass Dry Soil (g)	5.185	7.443			
Moisture Content (%)	24.397	24.600			

Project Test Hole Sample # (Depth (m) (Sample Date Test Date Technician 1 Liquid Limit Trial # Number of Blows Mass Wet Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	Tare (g)	Renewal - Sarge	ent Ave	3 34	Liquid Limit Plastic Limit Plasticity Index	Independent Laboratories Listed on www.ccil.com 75 27 49
Test HoleSample #Depth (m)Sample DateTest DateTest DateTechnicianLiquid LimitTrial #Number of BlowsMass Wet Soil + 1Mass Tare (g)Mass Water (g)Mass Dry Soil (g)	TH19-07 G37 0.8 - 0.9 10-Oct-19 23-Oct-19 HS s (N) Tare (g)	1 17 31.046 23.414	- 23	34	Liquid Limit Plastic Limit	75 27
Sample #GDepth (m)GSample DateFTest DateGTechnicianHLiquid LimitTrial #Number of BlowsMass Wet Soil + TMass Tare (g)Mass Water (g)Mass Dry Soil (g)	G37 0.8 - 0.9 10-Oct-19 23-Oct-19 HS s (N) Tare (g)	17 31.046 23.414	23	34	Liquid Limit Plastic Limit	75 27
Depth (m) (Sample Date Test Date Technician I Liquid Limit Trial # Number of Blows Mass Wet Soil + 1 Mass Dry Soil + 1 Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	0.8 - 0.9 10-Oct-19 23-Oct-19 HS s (N) Tare (g)	17 31.046 23.414	23	34	Plastic Limit	27
Sample Date Test Date Technician Liquid Limit Trial # Number of Blows Mass Wet Soil + T Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	10-Oct-19 23-Oct-19 HS s (N) Tare (g)	17 31.046 23.414	23	34	Plastic Limit	27
Test Date Technician Liquid Limit Trial # Number of Blows Mass Wet Soil + T Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	23-Oct-19 HS s (N) Tare (g)	17 31.046 23.414	23	34	Plastic Limit	27
TechnicianLiquid LimitTrial #Number of BlowsMass Wet Soil + 1Mass Dry Soil + 7Mass Tare (g)Mass Water (g)Mass Dry Soil (g)	HS s (N) Tare (g)	17 31.046 23.414	23	34		
Liquid Limit Trial # Number of Blows Mass Wet Soil + 1 Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	s (N) Tare (g)	17 31.046 23.414	23	34	Plasticity Index	49
Trial # Number of Blows Mass Wet Soil + 1 Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	Tare (g)	17 31.046 23.414	23	34		
Number of Blows Mass Wet Soil + 1 Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	Tare (g)	17 31.046 23.414	23	34		
Mass Wet Soil + 1 Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	Tare (g)	31.046 23.414	=•			
Mass Dry Soil + T Mass Tare (g) Mass Water (g) Mass Dry Soil (g)		23.414	29.434			
Mass Tare (g) Mass Water (g) Mass Dry Soil (g)	Tare (g)			29.430		
Mass Water (g) Mass Dry Soil (g)			22.727	22.976		
Mass Dry Soil (g)		13.677	13.896	14.085		
		7.632	6.707	6.454		
		9.737	8.831	8.891		
Moisture Content	t (%)	78.381	75.948	72.590		
	Plasticity Chart for smaller than 0.425	mm CL ML	with particles	CH MH or C	"Line "A" Line "A" Line OH	100 110

Trial #	1	2	3	4	5
Mass Tare (g)	14.260	14.121			
Mass Wet Soil + Tare (g)	22.170	21.610			
Mass Dry Soil + Tare (g)	20.497	20.041			
Mass Water (g)	1.673	1.569			
Mass Dry Soil (g)	6.237	5.920			
Moisture Content (%)	26.824	26.503			

Sample Date 10 Test Date 23 Technician HS Liquid Limit Trial # Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla	6 - 0.8 -Oct-19 -Oct-19 5 N) re (g) -e (g)	1 21 27.358 22.742 14.230 4.616	2 27 30.620 24.972	3 34 34.765 27.829	Liquid Limit Plastic Limit Plasticity Index	53 26 27
Sample Date 10 Test Date 23 Technician HS Liquid Limit Trial # Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla	P-Oct-19 P-Oct-19 S N) re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765	Plastic Limit	26
Test Date23TechnicianHSLiquid LimitTrial #Number of Blows (NMass Wet Soil + TarMass Dry Soil + TarMass Tare (g)Mass Dry Soil (g)Mass Dry Soil (g)Moisture Content (%80708170	N) re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765	Plastic Limit	26
Technician HS Liquid Limit Trial # Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Vater (g) Mass Dry Soil (g) Moisture Content (% 80 70 Pla 70 smax	S N) re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765		
Liquid Limit Trial # Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla sma	N) re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765		
Trial # Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla	re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765		
Number of Blows (N Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla	re (g) re (g)	21 27.358 22.742 14.230 4.616	27 30.620 24.972	34 34.765		
Mass Wet Soil + Tar Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla 5m	re (g) re (g)	27.358 22.742 14.230 4.616	30.620 24.972	34.765		
Mass Dry Soil + Tar Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla 5m	re (g)	22.742 14.230 4.616	24.972			
Mass Tare (g) Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla 5m		14.230 4.616		27.829		
Mass Water (g) Mass Dry Soil (g) Moisture Content (% 80 70 - Pla 5m	%)	4.616				
Mass Dry Soil (g) Moisture Content (% 80 70 Pla 5m	%)		14.146	14.001		
Moisture Content (% 80 70	%)		5.648	6.936		
80 70 - Pla	%)	8.512	10.826	13.828		
Pla 70 - sma		54.229	52.171	50.159		
60 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -	esticity Chart for saller than 0.425 r	nm CL ML	with particles	CH MH or C	Line "A" Line OH 80 90	100 110

Trial #	1	2	3	4	5
Mass Tare (g)	14.290	14.197			
Mass Wet Soil + Tare (g)	23.512	21.570			
Mass Dry Soil + Tare (g)	21.612	20.082			
Mass Water (g)	1.900	1.488			
Mass Dry Soil (g)	7.322	5.885			
Moisture Content (%)	25.949	25.285			

Project No. Client Project	0035-82-00-403 Morrison Hershfie 19-C-10 Pavemer		ent Ave		Canadian Council of For specific tests a	Independent Laboratories s listed on www.ccil.com
Test Hole	TH19-03		_			
Sample #	G74					
Depth (m)	0.9 - 1.1					
Sample Date	10-Oct-19		_		Liquid Limit	29
Test Date	23-Oct-19		_		Plastic Limit	16
Technician	HS		-		Plasticity Index	14
Liquid Limit						
Trial #		1	2	3		
Number of Blov		15	20	30		
Mass Wet Soil		36.251	36.298	33.447		
Mass Dry Soil -	⊦ Tare (g)	31.077	31.241	29.138		
Mass Tare (g)		14.105	14.120	14.167		
Mass Water (g)		5.174	5.057	4.309		
Mass Dry Soil (16.972	17.121	14.971		
Moisture Conte	ent (%)	30.486	29.537	28.782		
 08 70 <	Plasticity Chart for smaller than 0.42	5 mm	vith particles	CH MH or C 60 70	и Line "А" Line И ВО 90	100 110

Trial #	1	2	3	4	5
Mass Tare (g)	14.257	14.189			
Mass Wet Soil + Tare (g)	22.328	21.351			
Mass Dry Soil + Tare (g)	21.238	20.383			
Mass Water (g)	1.090	0.968			
Mass Dry Soil (g)	6.981	6.194			
Moisture Content (%)	15.614	15.628			

Project No. Client	0035-82-00-403 Morrison Hershfiel	4	-		CERTIFIED BY	-:
	19-C-10 Pavemen		- opt Avo			
Project	19-C-10 Pavemen	Renewal - Sarge			Canadian Council of	Independent Laboratories
Test Hole	TH19-01		_		For specific tests a	s listed on www.ccil.com
Sample #	G78		_			
Depth (m)	0.3 - 0.5		_			
Sample Date	10-Oct-19		_		Liquid Limit	48
Test Date	23-Oct-19		_		Plastic Limit	24
Technician	HS		_		Plasticity Index	24
Liquid Limit						
Trial #		1	2	3		
Number of Blov	vs (N)	18	23	34		
Mass Wet Soil +	⊦ Tare (g)	32.089	29.785	36.125		
Mass Dry Soil +		26.127	24.715	29.242		
Mass Tare (g)		14.134	14.209	14.122		
Mass Water (g)		5.962	5.070	6.883		
Mass Dry Soil (g)	11.993	10.506	15.120		
Moisture Conte	nt (%)	49.712	48.258	45.522		
80 70 60 40 40 40 40 40 40 40 40 40 40 40 40 40	Plasticity Chart fo smaller than 0.425	imm CL ML	with particles	CH MH or (60 70	"Line "A" Line DH 80 90	100 110

Trial #	1	2	3	4	5
Mass Tare (g)	14.232	14.117			
Mass Wet Soil + Tare (g)	21.509	21.688			
Mass Dry Soil + Tare (g)	20.102	20.217			
Mass Water (g)	1.407	1.471			
Mass Dry Soil (g)	5.870	6.100			
Moisture Content (%)	23.969	24.115			

Client Project Sample # Source Material			on Hersh	nfield												
Sample # Source		19-C-10	-C-10 Pavement Renewal - Sargent Ave										Canadian Council of Independent Laboratories			
Source			0 Paven	nent Re	enewal ·	- Sargen	t Ave						ecific tests a			
			H19-01		9-04)											
Material)1 & TH	19-04												
		Clay														
Sample Dat	te	10-Oct-														
Test Date		27-Oct-	·19						Dry Dei		g/m3)				22	
Technician		HS					Opti	mum	Moistur	e (%)	(6)			21	.3	
Trial Number		1			2		3			4			5			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1879		1959			197			1978			1942			
Dry Density		1589 1627			161			1593		1538						
Moisture Co	ontent (%)		18.2		2	20.4		22.	2		24.2			26	.3	
1660 1640 1620 1620 1600 1580 1580																
L 1560		,														
1540																
1520																
	16		18		20		22		2	24		26			28	

Project	t No.	0035-082-00-403			CERTIFI	
Client		Morrison Hershfield				
Project	t	19-C-10 Pavement F	Renewal - Sargent	Ave	lian Council of Independent Laboratories ecific tests as listed on www.ccil.com	
Sample	e #	Bulk TH19-03				
Source	e	TH19-03				
Materia		Silt and Clay				
	e Date	10-Oct-19				
Test Da		26-Oct-19		Maximum Dry Dens		1726
Techni	ician	HS		Optimum Moisture	(%)	17.8
	umber	1	2	3	4	
	ensity (kg/m ³)	2008	2044	2043	2000	
-	ensity (kg/m³)	1721	1722	1697	1633	
Moistu	ire Content (%)	16.7	18.7	20.4	22.5	
	1740					
g/m³)	1700					
Y DENSITY (kg/m³)	1680					
DRY D	1660					
	1640					
	1620	14	16	18 20	22	24
	12	14	¹⁶ MOISTURE	18 20 CONTENT (%)	22	24

Project	No.	0035-082-00-403			CERTIF	IED BY		
Client			Morrison Hershfield					
Project	t	19-C-10 Pavement F	Renewal - Sargent	Ave		dian Council of Independent Laboratories ecific tests as listed on www.ccil.com		
Sample	e #	Bulk TH19-05						
Source		TH19-05						
Materia	al	Silt and Clay						
Sample	e Date	10-Oct-19						
Test Da		26-Oct-19		Maximum Dry Dens	sity (kg/m3)	1645		
Technie	cian	HS		Optimum Moisture		21.1		
Tui al Nia	h							
Trial Nu		1	2	3	4			
	ensity (kg/m ³)	1859	1970	2003	1981			
	nsity (kg/m³)	1580	1639	1643	1596			
vioistu	re Content (%)	17.6	20.2	21.9	24.1			
DRY DENSITY (kg/m³)	1680 1660 1640 1640 1620 1620 1600 1580 1560							
	1540 16	17 18	19 20	21 22	23 24	25 26		
			MOIOTUDE	CONTENT (%)				

Project No.	0035-082-00-403	Source	TH19-01 & TH19-04
Client	Morrison Hershfield	Material	Silt, Sand and Clay
Project	19-C-10 Pavement Renewal - Sarge	en Sample Date	2019-10-03
Sample #		Test Date	2019-11-07
		Technician	BMH

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1622 kg/m3	Dry Density	1527 kg/m3
Optimum Moisture Content	21.3 %	Initial Moisture Content	25.8 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	94.1 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	4.8 %
Surcharge Swell	4.54 kg 0.1 %	CBR at 2.54 mm CBR at 5.08 mm	4.8 % 3.8 %
0	5		

Test Data			Load/Penetration Curve
Penetration (mm)	Measured Pressure (MPa)	Corrected Pressure (MPa)	0.60
0.64	0.13	0.13	0.50
1.27	0.22	0.22	J APA
1.91	0.29	0.29	<u> </u>
2.54	0.33	0.33	
3.18	0.35	0.35	6 U U U U U U U U U U U U U U U U U U U
3.81	0.37	0.37	
4.45	0.38	0.38	D.30 (Wba) 0.40 (Wba) 0.40 (Wba) 0.20 (Wba)
5.08	0.39	0.39	
7.62	0.43	0.43	0.00
10.16	0.46	0.46	0 2 4 6 8 10 12 14 16
12.70	0.49	0.49	Penetration (mm)

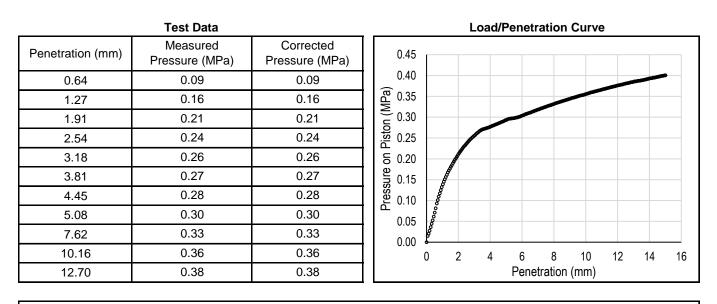
Comments:

Client	0035-082-00-403 Morrison Hershfield 19-C-10 Pavement	d t Renewal - Sargen	Source Material Sample Date Test Date	TH19-03 Silt and Cla 2019-10-03 2019-11-03	3	
			Technician	BMH		
Proctor Results (AS	<u>TM D698)</u>		CBR Sample Compact	ion		
Maximum Dry Density	y 17	'26 kg/m3	Dry Density		1651	kg/m3
Optimum Moisture Co	ontent 1	7.8 %	Initial Moisture Content		20.9	%
Material Retained on	19 mm Sieve	0.0 %	Relative Density		95.6	% SPMDD

Soaking Results

Surcharge	4.54 kg
Swell	0.1 %
Moisture Content in top 25 mm	21.7 %
Immersion Period	96 h

	2010 /0
Relative Density	95.6 % SI
CBR Results	
CBR at 2.54 mm	3.4 %
CBR at 5.08 mm	3.0 %
Zero Correction	0 mm


Test Data Load/Penetration Curve Measured Corrected Penetration (mm) 0.50 Pressure (MPa) Pressure (MPa) 0.45 0.10 0.10 0.64 University of the second secon 0.16 0.16 1.27 0.20 0.20 1.91 0.24 2.54 0.24 3.18 0.26 0.26 0.28 0.28 3.81 0.29 0.29 4.45 5.08 0.31 0.31 0.05 0.36 0.36 7.62 0.00 0.40 0.40 10.16 2 6 8 0 4 10 12 14 16 12.70 0.43 0.43 Penetration (mm)

Comments:

Project No.	0035-082-00-403	Source	TH19-05
Client	Morrison Hershfield	Material	Silt and Clay
Project	19-C-10 Pavement Renewal - Sarger	n Sample Date	2019-10-03
Sample #		Test Date	2019-11-04
		Technician	SB

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1645 kg/m3	Dry Density	1580 kg/m3
Optimum Moisture Content	21.1 %	Initial Moisture Content	21.3 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	96.1 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	3.5 %
Swell	0.7 %	CBR at 5.08 mm	2.9 %
Swell Moisture Content in top 25 mm	0.7 % 26.9 %	CBR at 5.08 mm Zero Correction	2.9 % 0 mm

Comments:

Appendix C

Photographs of Pavement Core Samples

Photo 1: Pavement Core Sample at Test Hole TH19-01

Photo 2: Pavement Core Sample at Test Hole TH19-02

Photo 3: Pavement Core Sample at Test Hole TH19-03

Photo 4: Pavement Core Sample at Test Hole TH19-04

Photo 5: Pavement Core Sample at Test Hole TH19-05

Photo 6: Pavement Core Sample at Test Hole TH19-06

Photo 7: Pavement Core Sample at Test Hole TH19-07

Photo 8: Pavement Core Sample at Test Hole TH19-08

Photo 9: Pavement Core Sample at Test Hole TH19-09

Photo 10: Pavement Core Sample at Test Hole TH19-10

Photo 11: Pavement Core Sample at Test Hole TH19-11A

Photo 12: Pavement Core Sample at Test Hole TH19-11B

Photo 13: Pavement Core Sample at Test Hole TH19-12

Photo 14: Pavement Core Sample at Test Hole TH19-13

Photo 15: Pavement Core Sample at Test Hole TH19-14

Photo 16: Pavement Core Sample at Test Hole TH19-15

Morrison Hershfield Ltd.

Sargent Avenue Watermain CP Rail Crossing Geotechnical Investigation Report

Prepared for:

Hartley Katz, CET, P. Eng. Morrison Hershfield Suite I, 59 Scurfield Boulevard Winnipeg, MB R3Y IV2

Project Number: 0035-086-00

Date: February 28, 2020

Quality Engineering | Valued Relationships

February 28, 2020

Our File No. 0035-086-00

Hartley Katz, CET, P. Eng. Morrison Hershfield Suite 1, 59 Scurfield Boulevard Winnipeg, MB R3Y 1V2

RE: Sargent Avenue Watermain CPR Rail Crossing Geotechnical Investigation Report

TREK Geotechnical Inc. is pleased to submit our final report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions or require further information.

Sincerely,

TREK Geotechnical Inc. Per:

Nelson Ferreira, Ph.D., P.Eng.

Senior Geotechnical Engineer

Encl.

Morrison Hershfield Ltd. Sargent Avenue Watermain CPR Rail Crossing Geotechnical Investigation Report

Revision History

Revision No.	Author	Issue Date	Description
0	KF	February 25, 2020	Final Report
1	KF	February 28, 2020	Final Report

Authorization Signatures

Prepared By:

lin

Kate Franklin, M.Sc.

Reviewed By:

latut

Steven Harms, M.Sc., P.Eng. Geotechnical Engineer

Nelson Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introd	uction						
2.0	Project Understanding and Site Conditions							
	2.1 Site Conditions							
3.0	Sub-s	urface Ir	vestigation	2				
	3.1	.1 Drilling Program						
	3.2	Subsur	face Conditions	2				
		3.2.1	Soil Stratigraphy	2				
		3.2.2	Groundwater Conditions	3				
4.0	Trenc	hless Pip	be Installation Recommendations	3				
	4.1	Settlen	ent	3				
		4.1.1	Soil Collapse	3				
		4.1.2	Soil Consolidation	3				
	4.2	Heave.		4				
5.0	Const	ruction I	Monitoring Program	4				
6.0	Excav	vations a	nd Shoring	5				
7.0	Closu	re		6				

List of Tables

Table 1	Recommended Design Parameters for Cantilevered Walls

List of Figures

- Figure 01 Test Hole and Monitoring Location Plan
- Figure 02 Subsurface Monitoring Point Concept

List of Appendices

- Appendix A CPR Geotechnical Protocols
- Appendix B Laboratory Testing Results

I.0 Introduction

This report summarizes the results of the geotechnical investigation conducted by TREK Geotechnical Inc. (TREK) for Morrison Hershfield Ltd. (MHL) for the proposed watermain crossing under the Canadian Pacific Rail (CPR) line crossing Sargent Avenue between Wall Street and Erin Street in Winnipeg, Manitoba. The terms of reference for the investigation are included in our proposal to MHL dated January 8, 2020. The scope of work includes a sub-surface investigation, laboratory testing, and the provision of recommendations for the design and construction of the watermain in compliance with CPR requirements. As part of CPR's requirements, a construction monitoring program to monitor vertical track displacements to determine if movements are within CPR's tolerable limits is also included.

2.0 **Project Understanding and Site Conditions**

The proposed 250 mm diameter polyvinyl chloride (PVC) watermain will cross under CPR's rail line (Great West Development Lead, Mile 0.77), where it crosses Sargent Avenue between Wall Street and Erin Street. A 457 mm diameter steel casing will be used to convey the watermain beneath the rail line and is to be installed using auger boring trenchless methods. The obvert of the casing will be approximately 3.2 m below the bottom of rail beneath the track centerline. Sending and receiving pits (Figure 01) will be located outside of the CPR right of way, and the depth will be limited such that the excavations remain outside the CPR's zone of potential train loading (ZPTL).

CPR requires geotechnical protocols be followed for pipe installations below their right of way in accordance with their stipulated guidelines, CP Geotechnical Pipe and Utility Crossing Protocol 20170706. The guidelines include geotechnical protocols regarding subsurface investigations, recommendations and construction settlement monitoring. The Great West Development Lead is classified as a Class 1 track and the rail settlement thresholds for trenchless pipe installations based on CPR requirements are:

- A warning level of 11 mm and;
- A critical level of 22 mm or above, which if observed shall halt construction for a minimum of 12 hours.

Track classification and associated settlement tolerances for the rail were provided by CPR. Other relevant information regarding CPR's geotechnical protocols for trenchless pipe installations are included in Appendix A.

2.1 Site Conditions

The new watermain is being installed along Sargent Avenue below the eastbound lane, approximately 2.5 m north of the eastbound curb. The rail line runs in a north-south orientation where it crosses Sargent Ave, and the roadway is graded at a slope of approximately 1% to promote drainage away from the rail line. There are railway signal lights for both eastbound and westbound Sargent Avenue traffic. North and south of Sargent Ave, the rail line runs down the center of the CPR right of way (ROW), which is generally flat with grass, gravel and railway ballast visible at ground surface.

3.0 Sub-surface Investigation

3.1 Drilling Program

A sub-surface investigation was undertaken on January 28, 2020 under the supervision of TREK personnel to evaluate the subsurface conditions at the site. Test holes TH20-01 and TH20-02 were drilled to 6.1 m below ground surface near the proposed watermain alignment east and west of the rail line, respectively. Test hole locations are shown on Figure 01.

The test holes were drilled by Maple Leaf Drilling Ltd. using a truck mounted rig equipped with 125 mm diameter solid augers. Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Samples retrieved during drilling include disturbed auger cuttings and relatively undisturbed Shelby tubes. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture contents on all samples as well as bulk unit weight measurements and unconfined compressive strength tests on select Shelby tube samples. Laboratory testing results are included in Appendix B.

The test hole locations were determined by measuring offsets from site features and elevations were not surveyed. The attached test hole logs include a description of the soil units encountered and other pertinent information such as test hole location, groundwater and sloughing conditions, and a summary of the laboratory testing results.

3.2 Subsurface Conditions

3.2.1 <u>Soil Stratigraphy</u>

Brief descriptions of the soil units encountered at the test hole locations are provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

In general, soil stratigraphy below the roadway pavement consists of a thin layer of gravel fill (base) over clay fill, which is underlain by native silt and silty clay. The gravel fill is well-graded, rounded, 19 mm down and was found to be 100 to 300 mm thick. The underlying clay fill is silty, contains trace of sand, and mottled grey and brown. The clay fill was frozen at the time of the subsurface investigation and is moist, firm when thawed. At test hole TH20-01, a 1.1 m thick layer of silt is present below the fill. The silt is clayey, brown, moist, soft and of intermediate plasticity. Native silty clay was

encountered below the fill and silt to the maximum depth of exploration (6.1 m below ground surface). The silty clay contains trace sand, trace silt inclusions, is moist, brownish grey and very stiff becoming soft to firm with depth and is of high plasticity.

3.2.2 <u>Groundwater Conditions</u>

Seepage or sloughing was not observed during drilling. The groundwater observations made during drilling are short-term and should not be considered reflective of long-term (static) groundwater levels. Long-term (static) groundwater conditions can only be determined by monitoring over an extended period to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

4.0 Trenchless Pipe Installation Recommendations

TREK understands MHL's preferred installation method for the steel casing is auger boring. The steel casing recommendations provided were developed in consultation with local contractors and TREK's geotechnical assessment of site conditions. The recommendations relate to settlement due to soil collapse and consolidation, and heave. The installation should be halted while trains are moving over the casing alignment.

4.I Settlement

4.1.1 Soil Collapse

During auger boring, if the augers extend beyond the leading edge of the casing, there is a potential for an unsupported length of soil to be exposed in front of the casing should the augers be retracted midinstallation. TREK considered the potential collapse of this unsupported length and recommends the augers should not extending 150 mm beyond the end of the casing to reduce the risk of collapse.

4.1.2 <u>Soil Consolidation</u>

Casing vibrations can cause consolidation or even liquefaction of the soil surrounding the casing, depending on the nature of the soil and groundwater conditions. Soil settlements due to vibrations during installation are difficult to predict. However, the foundation soils at the site have been subjected to loading and vibrations associated with regular train and vehicular traffic and any vibration-induced settlement likely will have already occurred. However, the soils may react differently as the frequency and amplitude of pipe vibrations during installation will likely be different than from train loading and will be monitored during construction.

4.2 Heave

Heave can occur if the pipe is pushed forward without spinning the augers, causing the soil in front of the casing to displace as the pipe continues to move forward. This is not likely to occur with auger boring provided the material at the leading edge of the casing is drawn in and removed by the augers. TREK recommends the auger return in the jacking pit be monitored during installation by observing the rate of auger cutting return relative to the speed of casing advancement. If low auger cutting return is observed, installation should be halted to confirm the augers are operational.

5.0 Construction Monitoring Program

CPR requires sub-surface and surficial points be monitored prior to, during and after construction to measure any ground movements (settlement and heave) associated with any trenchless pipe installations. Sub-surface monitoring points will consist of sleeved rods anchored in the soil 1 m above the casing obvert elevation as shown on Figure 02; the sleeve is required to isolate the rod from the surrounding soil and provide an accurate reading of ground movement at the anchor depth. Based on experience on previous projects, the sub-surface monitoring points have the potential to settle under their own weight. Measures to minimize self-weight settlement should be considered and TREK can assist in the design of the sub-surface anchors, if requested. Surficial monitoring points will be in pairs at the base of each rail. In total, TREK recommends 2 sub-surface and 22 surficial monitoring points. The monitoring point locations are shown on Figure 01.

All monitoring points should be surveyed to an accuracy of +/- 2 mm (or better) every 12 hours beginning a minimum of 2 days before the excavation of the pits and finishing a minimum of three days after construction is complete. As per CPR requirements, there will be two ground movement thresholds (Warning and Critical) that will trigger response measures. The following is a brief summary of CPR's monitoring requirements as summarized in their April 29, 2014 document entitled *"Track Movement Monitoring Guidelines for Trenchless Pipe Installation"*, which is included in Appendix A:

Level 1: Warning

The warning level of ground movement for the CPR Great West Development Lead crossing Sargent Avenue is 11 mm. If 11 mm of ground movement is measured at the sub-surface monitoring points, the surficial survey points must be immediately measured:

- If the surficial monitoring points have not settled or heaved since the previous monitoring event, construction can continue;
- If settlement or heave has been observed at the surficial monitoring points, construction must be put on hold until the movement at both the sub-surface and surficial monitoring locations stops. TREK recommends construction can continue when two consecutive monitoring point surveys taken 30 minutes apart indicate no additional ground movement has occurred.

Level 2: Critical

The critical level of ground movement for the CPR Great West Development Lead crossing Sargent Avenue is 22 mm. If 22 mm of ground movement is measured at the sub-surface monitoring points, construction must be halted, and the surficial survey points must be immediately measured.

- If the surficial monitoring points have not settled or heaved since the previous monitoring event, construction must remain on hold for a minimum of 12 hours to confirm no surficial ground movement is occurring.
- If settlement or heave has been observed at the surficial monitoring points, monitoring of both sub-surface and surficial monitoring points must continue every 12 hours until movement has stopped. In addition, the installation procedure must be modified to mitigate ground movement and approved by CPR before construction can continue.

It should be noted that short-term natural movement (mostly horizontal) of the rails, in particular due to thermal changes, in the absence of any construction activities can exceed the tolerances outlined by CPR. TREK recommends surficial monitoring points using survey nails be located on the top of the rail tie beside the rail and not on the rail itself.

6.0 Excavations and Shoring

Excavations must be carried out in compliance with the appropriate regulations under the Manitoba Workplace Safety and Health Act. Any open-cut excavation greater than 3 m deep must be designed and sealed by a professional engineer and reviewed by the geotechnical engineer of record (TREK). If space is limited or the stability of adjacent structures or infrastructure may be endangered by an excavation, a shoring system may be required to prevent damage to, or movement of, any part of adjacent structures, and the creation of a hazard to workers and the public. Jacking pits should be designed by a qualified structural engineer to support anticipated jacking forces based on the soil conditions at the site.

Excavation stability is the responsibility of the Contractor for the duration of construction. Excavations should be monitored regularly and flattened as necessary to maintain stability recognizing that excavation stability is time and weather dependent. Excavated slopes should be covered with polyethylene sheets to prevent wetting and drying.

Stockpiles of excavated material and heavy equipment should be kept away from the edge of any excavation by a distance equal to or greater than the depth of excavation. Dewatering measures should be completed as necessary to maintain a dry excavation and permit proper completion of the work. If seepage is encountered, it should be collected and pumped out of the excavation. If saturated silts or sands are encountered, shoring or slope flattening may be required. To prevent wet silts and sands from entering the excavation, gravel buttressing could be used in conjunction with sump pits for dewatering. Surface water should be diverted away from the excavation and the excavation should be backfilled as soon as possible following construction.

Cantilevered (un-braced or braced) walls will be required for deep excavations or physically

constrained areas where temporary shoring is necessary. Table 01 provides the recommended earth pressure coefficients and bulk unit weights of clay for use in the calculation of lateral earth pressures. Surcharge loads and hydrostatic water pressure should be incorporated into the design of cantilevered walls, as well as an adequate factor of safety against instability.

Design Parameter	Earth Pressure Coefficients and Bulk Unit Weights Silty Clay
Active (Ka)	0.5
At-rest (K₀)	0.7
Passive (K _p)	1.8
Bulk Unit Weight, Y (kN/m³)	18

 Table 01. Recommended Design Parameters for Cantilevered Walls

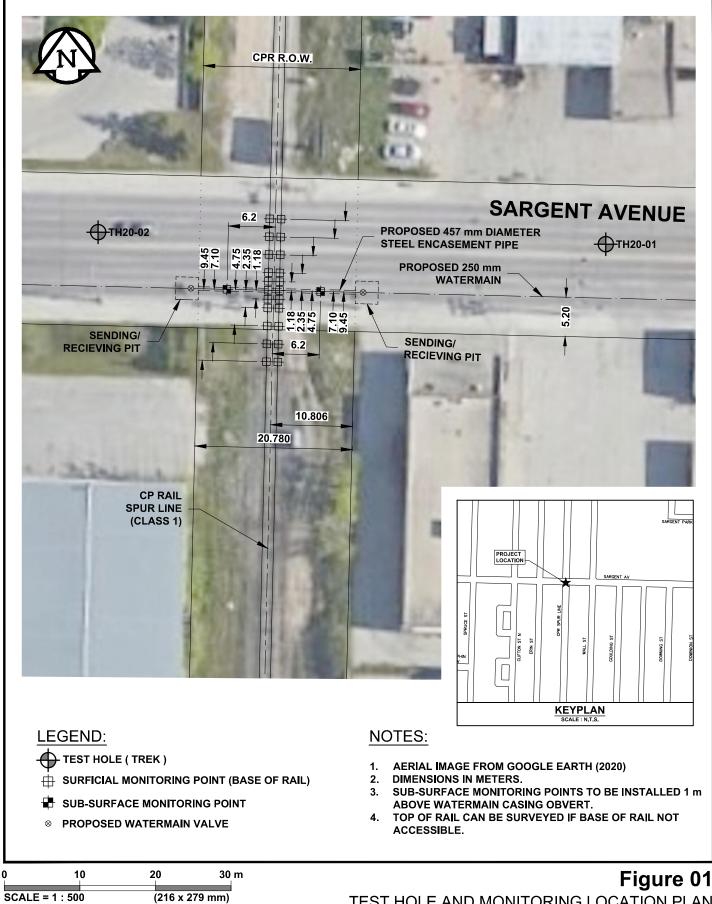
A certain amount of ground movement behind the shoring will occur and is largely unavoidable. The amount of movement that will occur cannot be accurately predicted, mainly because the movement is as much a function of installation procedures and workmanship as it is a function of theoretical considerations. It is anticipated that the design of temporary shoring will be the responsibility of the Contractor. Once the proposed shoring design is complete, it should be reviewed by TREK prior to construction to ensure the design is appropriate and to assess the need for groundwater control. Performance of the excavation system should be monitored from the onset of installation to removal of the shoring system.

7.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

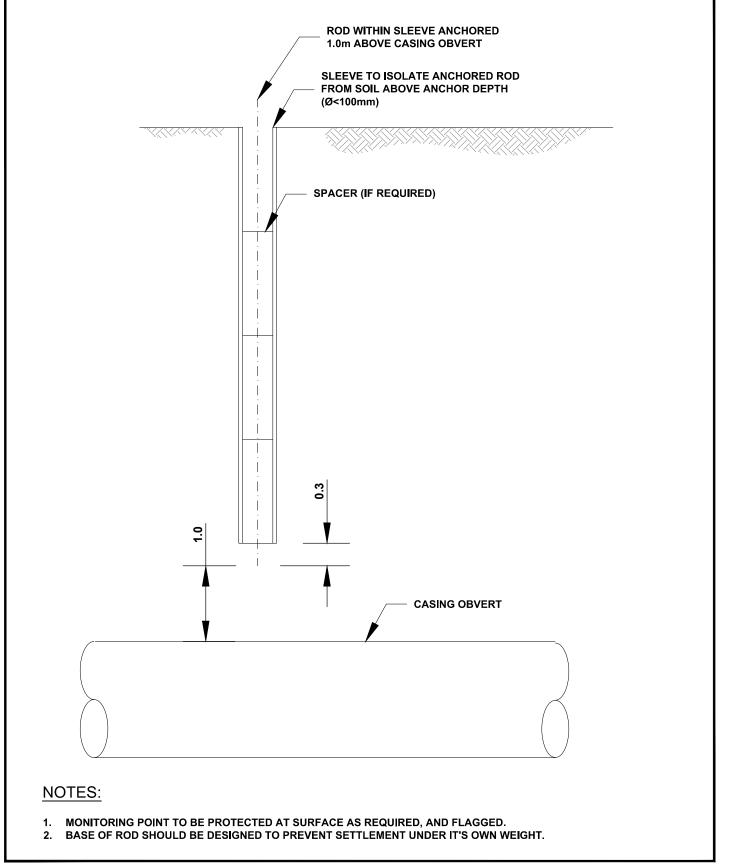
All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of the Morrison Hershfield Ltd. (the Client), Canadian Pacific Railway and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.



Figures

0035 086 00 Morrison Hershfield Ltd. Sargent Avenue Watermain CPR Crossing


TEST HOLE AND MONITORING LOCATION PLAN

SCALE = 1 : 500

0035 086 00 Morrison Hershfield Ltd. Sargent Avenue Watermain CPR Crossing

Z. Projects/0035 Morrison Hershfield/0035 086 00 Sargent Ave Rail Crossing/3 Survey and Dwg/3,4 CAD/3,4.3 Working Folder/Fig 01_SARGENT_CP RR CROSSING_0_A_CJH_0035-076-00.dwg, 2/25/2028/8/4/tilB/b44d A (8.50 x 11.00 Inches)

Test Hole Logs

STREK	
GEOTECHNICAL	

Sub-Surface Log

1 of 1

	<u>ECHNI</u>														
Client:	Morrison Her				Project Number:				0.07 5	00050	5.00				
-		nue Watermain CPF	R Crossing		Location: UTM N-5528793.67, E-630535.23 Ground Elevation: Not Surveyed										
Contractor: Method:	Maple Leaf D	tem Auger, B40 Mobile	Truck Mount			28 Jar	-		0						
					·		_	_						-	
Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	-			Split Ba	-	-			Core	
Particle	e Size Legend:	Fines	Clay	Silt	ڏِنْنَنْ Sand		Grav	el		-		•			
ASPHALT CONCRETE CONCRETE CONCRETE CONCRETE GRAVEL (FILL) - some sand, dark brown, moist, 19 mm diameter d rounded CLAY (FILL) - silty, trace sand - mottled black and grey - frozen, moist, firm when thawed - high plasticity SILT - clayey - brown - frozen to 1.2 m, moist, soft when thawed - intermediate plasticity - 2.0 CLAY - silty, trace sand, trace silt inclusions (< 5 mm diameter) - grey-brown - moist, very stiff - high plasticity - 4.0- - 4.5-					Sand	Sample Type	ample Num	116 · · · · · · · · · · · · · · · · · ·	17 18 Particle 20 40 PL N 10 20 40 10 9 10 10 10 10 10	Unit W 1/m ³) 19 Size (%	t 20 21 6) 80 100 L 80 100		C Undra Strer <u>Te</u> △ Ta ④ Paco ○ Fiel 0 10 10 10 10 10 10 10 10 10 10	ulders ined Si gth (kf st Type orvane ket Pee orvane 0 150 0 15	near Pa) ≙ ∆ n. ♥
	Notes: 1) No sloughing 2) Test hole oper	HOLE AT 6.1 m IN 0 or seepage observe n to 6.1 m at end of	d. drilling.				T7 G8			•]		
	_Kate Franklin	kfilled with cuttings,		ed By: <u>Nelson F</u>		_ F	Project	t En	gineer:	Nels	son Fer	reira			

TREK	
GEOTECHNICAL	

Sub-Surface Log

1 of 1

Ultrain Morisson Headmail (bit) Project Number: Option: Morisson Headmail (bit) Project Number: Option: Morisson Headmail (bit) Discontractor: Marke Leaf Delling Contractor: Marke Leaf Delling Gravel (bit) Date Drilled: 20.01 Split Sport (bit) Split	G	EOTO	<u>echni</u>															
Contractor: Maple Leaf Drilling Ground Elevation: Not Surveyed Method: 125mm Sold Stem Auger, B40 Mobile Truck Mount Date Drilled: 28 January 2020 Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) / SPT Split Barrel (SB) / LPT Core (C Particle Size Legend: Image: Clay Image: Clay </th <th>Clie</th> <th>nt:</th> <th>Morrison Her</th> <th>shfield l</th> <th>_td.</th> <th></th> <th></th> <th>Project Number:</th> <th>0035</th> <th>086 0</th> <th>0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Clie	nt:	Morrison Her	shfield l	_td.			Project Number:	0035	086 0	0							
Method: 125mm Solid Stem Auger, B40 Mobile Truck Mount Date Drilled: 28 January 2020 Sample Type: Grab (G) Grab (C) Sheltby Tube (T) Split Spoon (SS) / SPT Split Barrel (SB) / LPT Core (C Particle Size Legend: Eines Clay Sitt Sand Gravel Bauk Unit WT Or avel Cobbles Baukders G6 (G) 0<	Proj	ect Name	: Sargent Aver	nue Wat	ermain CF	PR Crossing		Location: UTM N-5528795.26, E-630468.1										
Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) / SPT Split Barrel (SB) / LPT Core (C Particle Size Legend: Split Barrel (SB) / LPT Core (C Particle Size Legend: Split Barrel (SB) / LPT Core (C Particle Size Legend: Split Barrel (SB) / LPT Undrained Size (%) Grave Colbies Boulders MATERIAL DESCRIPTION Split Barrel (SB) / LPT Undrained Size (%) Grave (C) Colbies Boulders ASPHALT Colspan="2">Colspan="2">Colspan="2">Split Barrel (SB) / LPT Undrained Size (%) Colspan="2">Split Barrel (SB) / SPT Split Barrel (SB) / SPT	Con	tractor:	Maple Leaf D	Drilling				Ground Elevation:	: Not S	urvey	ed							
Particle Size Legend: Fines Clay Sitt Sand Gravel Cobbies Boulders Big 0 10	Meth	hod:	125mm Solid S	tem Auge	er, B40 Mobil	le Truck Mount		Date Drilled:	_28 Ja	nuary	2020)						
Image: Construct of the second se		Sample	Туре:		Grab (G)		Shelby Tube (T)	Split Spoon (S	S) / SP	т 🗋		Split E	Barrel (S	SB) / LP	т[Core	(C)
Image: Strength (KPa) Image: Strength (KPa) Image: Strength (KPa) Image: Strength (KPa) <th></th> <th>Particle</th> <th>Size Legend:</th> <th></th> <th>Fines</th> <th>Clay</th> <th>Silt</th> <th>Sand</th> <th></th> <th>Gra</th> <th>ivel</th> <th>50</th> <th>Z C₀</th> <th>bbles</th> <th></th> <th>Βοι</th> <th>Iders</th> <th></th>		Particle	Size Legend:		Fines	Clay	Silt	Sand		Gra	ivel	50	Z C₀	bbles		Βοι	Iders	
CONCRETE 0.5 GRAVEL (FILL) - some sand, dark brown, moist, 19 mm diameter down, well graded, rounded CLAY (FILL) - silty, trace sand, mottled black, brown and grey - frozen, moist, firm when thawed, high plasticity 1.0 - brown - frozen to 1.4 m, moist, firm to stiff when thawed - high plasticity - silt seam 10 mm thick at 1.8 m - silt seam 100 mm thick, clayey, brown, moist, soft, low plasticity - 3.0- 3.0-	Depth (m)				N	IATERIAL DESC	RIPTION		Sample Type	Sample Number	0 2	(17 1) Partic 20 4) PL	kN/m ³) 8 19 :le Size (0 60 MC	20 21 %) 80 100 LL	•	Stren <u>Tes</u> △ To Pocl ⊠ ○ Fiel	gth (kł rvane ket Pe Qu ⊠ d Van	Pa) ≙ ∆ n. ●
1.0 CLAY - silty, trace sand, trace silt inclusions (< 5 mm diameter) - brown - frozen to 1.4 m, moist, firm to stiff when thawed - high plasticity - silt seam 10 mm thick at 1.8 m - silt seam 100 mm thick, clayey, brown, moist, soft, low plasticity - silt seam 100 mm thick, clayey, brown, moist, soft, low plasticity - silt seam 100 mm thick at 1.8 m	- - - 0.5		CONCRETE GRAVEL (FILL) ounded CLAY (FILL) - si	lty, trace	e sand, mo	ottled black, brow	n and grey	own, well graded,		G9	_	•						
Solution of the second of t	-1.0		CLAY - silty, trac - brown - frozen to 1	e sand, I.4 m, m	trace silt i	nclusions (< 5 m	m diameter)			G10		•						
END OF TEST HOLE AT 6.1 m IN CLAY Notes: 1) No sloughing or seepage observed. 2) Test hole backfilled with cuttings, bentonite pellets and quick set asphalt.	2.0 2.5 2.5					brown, moist, sol	t, low plasticity			T11							k 	
 +.0 - soft to firm below 4.3 m - soft to firm below 4.3 m - f.0 -																		
 5.5- 6.0 END OF TEST HOLE AT 6.1 m IN CLAY Notes: No sloughing or seepage observed. Test hole open to 4.6 m at end of drilling. Test hole backfilled with cuttings, bentonite pellets and quick set asphalt. 	4.0 4.5 4.5		soft to firm belo	ow 4.3 n	ı								•					
Notes: 1) No sloughing or seepage observed. 2) Test hole open to 4.6 m at end of drilling. 3) Test hole backfilled with cuttings, bentonite pellets and quick set asphalt.	5.5-			IOLE A	T 6.1 m IN	CLAY				G16					Ø			
B Logged By: Kate Franklin Reviewed By: Nelson Ferreira Project Engineer: Nelson Ferreira		1 2 3	 No sloughing Test hole oper Test hole back 	n to 4.6	m at end o	of drilling. s, bentonite pelle				Proied	ct En	ginee	er: Ne	lson Fe	rreira			

Appendix A

CPR Geotechnical Protocols

CP Geotechnical Protocol for pipeline and utility installations within Railway Right of Way

Last updated 2017 07 06

1. Introduction

The purpose of this document is to assure the safety of rail operation during the process of third party pipe crossings of the Canadian Pacific Railway right-of-way. It is intended to guide the Applicant of the pipe crossing, and the CP Utility team and Geotechnical group in screening and approving applications for installations crossing under the railway right of way. The goal of the protocol is to:

1.1 Provide safe track conditions during and after installation.

1.2 Set out specifications and procedures to reduce problems during installation and operation of pipe/track crossing.

1.3 Specify minimum engineering standards.

1.4 Assure adequate geotechnical investigation and engineering review has been completed to achieve the above goals.

1.5 Allow timely processing of crossing approvals.

Limitations - The following protocol is independent of the requirements for assessing the structural components of the pipeline crossing. The structural requirements for all pipe crossings are included in CP – SP-TS-2.39 Pipeline and Cable Installations within Railway Right of Way. An agreement or permit from CP's Utilities group will be required before commencing with any work within the railway corridor. Proposals for pipelines and utilities parallel to the track are not covered by this protocol.

Geotechnical approval of a proposed crossing by CP in no way warrants the applicability of the construction method to the expected ground conditions nor does it warrant the suitability of the ground conditions for the use proposed by the proponent of the crossing. CP does not take any responsibility for the suitability of the construction method or warrantee the ground conditions. CP geotechnical approval of a specific design indicates that based on available information the proposed construction and design addresses the railways needs. With all third party work on our right-of-way CP will not attract any liability because of its approval of a specific design. As a result, CP does not provide recommendations, direction or minimum standards to the proponent or their contractor. CP insists that the proponent provide adequate documentation identifying the Geotechnical engineer of record and the components of the project for which they are responsible.

2. Emergencies

In the event of any occurrence that does or could pose a hazard immediately contact Canadian

Pacific Railway at **1 800 716 9132.**

3. General terminology

3.1 Base of rail (BOR) is the bottom surface of the rail and is frequently used as a local datum from which vertical measurements are referenced. If an external datum is utilized the elevation of the BOR will be identified.

3.2 The "zone of potential track loading" (zptl) is considered the area under the track and within a 1V to 1.5H zone extending down from a point at the level of the BOR and 2 m (6.6 ft) from the centreline of track as shown in Figure 3.

4. Process

To provide the appropriate level of engineering review of a specific proposal and allow timely processing of applications, the Geotechnical review has been divided into three processes. Table 1 identifies the three levels, Minimum, Intermediate and Detailed, of geotechnical investigation and engineering dependent on the size, proximity and construction methodology of the proposed crossing. The proponent should consult Table 1 to assess what effort and detail of submission is required to meet the CP requirements.

			Process	
		1. Minimum ¹	2. Intermediate	3. Detailed
	Outside pipe diameter	Less than 300 mm (12")	300 mm (12") to 1500 mm (59")	Greater than 1500 mm (59")
Condition	Cover between BOR and top of pipe	Greater than 1.5 m (5 ft) or three pipe diameters which ever is greater	Greater than 1.5 m (5 ft) or two (2) pipe diameters which ever is greater	Less than 1.5 m (5 ft) or two (2) pipe diameters
0	Adjacent structures, switches and signals	s, Greater than 10 m Within 2.5 times cover between BC of pipe		•

		Process						
		1. Minimum ¹	2. Intermediate	3. Detailed				
	Depth of pipes outside zptl	Refer to SP-TS 2.39 All pipes will be at least 0.91 m (3 ft) below ground where pipes are not below the zptl	•	3 ft) burial within the zone of al track loading				
Condition Near the track		Jacking/access pits shall be more than 10 m (30 ft) from the closest track centreline and not encroach on the zptl.	Excavations or jacking/access pits within 10 (30 ft) of the closest track centreline					
ပိ	Crossing angle	Less than 45 degrees off perpendicular to the track	More than 45 degree	ees off perpendicular to the track				
		Non-tunneling						
Construction method		Pipe bursting will only be o predicted heave is less movement that would resu FRA or TC tra	s than 10% of the ult in a change of the	All methods considered				
Approval process		Utility Group to approve with no Geotechnical submission	Proponent to pay the cost for CP to retain an independent geotechnical engineer to review the proponents engineers design, construction method and Geotech report	Proponent to pay the cost for CP to retain an independent geotechnical engineer to review the proponents engineers design, construction method and Geotech report				

¹ Move to next class if one or more criteria are not met.

² Non – tunneling methods include all forms of pipe augering, pipe jacking, directional drilling or the use of tunnel boring machines (TBM's) but excludes any type of mining techniques where any stand up time is required before the tunnel support is placed.

5. General requirements

5.1 All proposals for crossing approvals will be under the signature of a locally registered professional engineer. The objective here is to ensure a registered professional / firm or organization is given the responsibility to assess the site and take responsibility to ensure the proposal is appropriate for the site conditions. This may be in addition to the requirement for the proposal to be signed by a geotechnical and or structural engineer.

- 5.2 Applications to meet current regulatory and industry criteria for structural capacity, etc.
- 5.3 The application will include a construction plan that specifies the terms and conditions for execution of the work, including assignment of responsibility. The proponent of the crossing is responsible to the railway and must ensure the work is executed in accordance with the terms of the agreement.

All pipe/track crossing will be accompanied by at least the following three drawings showing the features indicated in true scale.

- 5.3.1. Plan of the proposed pipe crossing under the track (Figure 1) This drawing will show the following features:
 - 5.3.1.1 The location of the crossing referencing identifiable landmarks including the mileage and subdivision of the proposed crossing as per the CP subdivision naming and mileage convention. The proponent can obtain the mileage and subdivision information from the Utility Group.
 - 5.3.1.2 The pipe centerline, size and limits;
 - 5.3.1.3 Any adjacent structures, signals, switches;
 - 5.3.1.4 The location of the ditch line and any breaks in slope;
 - 5.3.1.5 The location of any boreholes or test pits; and
 - 5.3.1.6 The location of all tracks.
- 5.3.2 Profile of the track and proposed pipe crossing along the centreline of the track (Figure 2). This drawing will show the following features:
 - 5.3.2.1 The location of the crossing referencing identifiable landmarks including the mileage and subdivision of the proposed crossing;
 - 5.3.2.2 The pipe centerline, size and limits;
 - 5.3.2.3 Any adjacent structures, signals, switches or buried services including Fibre Optics Transmission Systems (FOTS);
 - 5.3.2.4 The elevation of the surface water in ditches, the elevation of the ground water table at all bore holes locations and the date they were measured;
 - 5.3.2.5 The test pit and borehole location and stratigraphic logs as determined by the geotechnical investigation;
 - 5.3.2.6 The depth of the top of pipe to the base of rail; and
 - 5.3.2.7 The profile of the track.

- 5.3.3 Section of the track along the centreline of the proposed pipe crossing (Figure 3). This drawing will show the following features:
 - 5.3.3.1 The location of the crossing referencing identifiable landmarks including the mileage and subdivision of the proposed crossing;
 - 5.3.3.2 The pipe centerline, size and limits;
 - 5.3.3.3 Any adjacent structures, signals, switches and buried services including FOTS;
 - 5.3.3.4 The elevation of the surface water in ditches, the elevation of the ground water table at all bore holes locations and the date they were measured;
 - 5.3.3.5 The test pit and borehole location and stratigraphic logs as determined by the geotechnical investigation;
 - 5.3.3.6 The location of jacking or access pits and proposed cut slope angles;
 - 5.3.3.7 The location of the centerline of all tracks;
 - 5.3.3.8 The depth of the top of pipe to the base of rail; and
 - 5.3.3.9 Any excavations that encroach on the zptl;
- 5.4 Proposals for open cut will only be considered at sites where conditions make other installation techniques impractical or where rail traffic is low.
- 5.5 Installations using water jet methods will not be considered.
- 5.6 The cost of re-mediating any settlement or heave induced by the crossing installation will be borne by the crossing proponent.
- 5.7 All pipes installed below the highest ground water level predicted will be sealed during construction.
- 5.8 All pipes that will or could carry water shall be:
 - 5.8.1 Installed with even bearing throughout its length to limit local settlement, and
 - 5.8.2 Slope to one end and prevent standing water. Special exemptions will be considered for inverted siphons or other applications requiring level pipes.
- 5.9 CP head office is located in Calgary. As a result submissions received in English will generally be reviewed and processed more rapidly than those in French.

6. Process 1 – Minimum

6.1 Conditions

The general requirements included in Section 5 and the following requirements must be met to obtain approval for a pipe crossing that qualifies as a Process 1 crossing.

6.1.1 The pipe diameter is less than 300 mm (12.0 inches).

- 6.1.2 The cover between the BOR and the pipe obvert exceeds the greater of 1.5 m (5 ft) or three times the pipe diameter.
- 6.1.3 There are no structures, signals or track switches within 10 m horizontal of the pipe.
- 6.1.4 Installation is by a "non-tunneling method" (including boring, jacking, combined jack and bore, directional drilling, etc.).
- 6.1.5 All pipes will be at least 0.91 m (3 ft) below ground where pipes are not below the zone of potential track loading.
- 6.1.6 Jacking or access pits shall not be within 10 m (30 ft) from the centreline of track and not encroach on the zone of potential track loading.

6.2 Requirements

- 6.2.1 The proponent will provide drawings containing the information identified in Figures 1, 2 and 3.
- 6.2.2 Generally a geotechnical investigation is not required. However, in areas or conditions where problems have arisen with similar pipe crossings CP reserves the right to require a geotechnical investigation be completed and submitted with the application.
- 6.2.3 Even if not required by CP a geotechnical investigation may be completed at the discretion of the proponent.

6.3 Process

- 6.3.1 Proponent submits engineering documents to CP Utility & Flagging Dept.
- 6.3.2 Utility group reviews documents to assure appropriate engineering documents have been provided.
- 6.3.3 Utility & Flagging group to provide approval.

7. Processes 2 and 3

The intermediate and detailed processes pertain to those proposed pipe/track crossings that exceed the minimum criteria. The applicant will be required to submit information for review and approval by CP geotechnical engineers or their designated consultants at proponents cost.

CP requires that all designs, analysis and notification protocol be reviewed by a qualified geotechnical engineer.

8. Process 2 – Intermediate

The intermediate process pertains to those proposed pipe/track crossings that exceed the minimum criteria but do not exceed the maximum criteria. The applicant will be required to submit information for review and approval of our engineers but may not be subjected to additional engineering, monitoring and construction requirements.

8.1 Conditions

- 8.1.1 The general requirements identified in Section 5 must be met.
- 8.1.2 The pipe diameter is between 300mm (12"} and 1500 mm (59")

- 8.1.3 The cover between the BOR and the pipe obvert is the greater of 1.5 m (5 ft) or more than twice times the pipe diameter.
- 8.1.4 There are no structures, signals or track switches horizontally within 2.5 times the distance from the BOR to the invert of the pipe.
- 8.1.5 Installation is by a "non-tunneling method" (including boring, jacking, combined jack and bore, or directional drilling).
- 8.1.6 Pipe bursting methods will only be considered where the predicted heave is less than 10 percent of the movement that would result in a change of the FRA or TC track class as per latest Transport Canada Track Safety Rules accessible at <u>www.tc.gc.ca</u>.
- 8.1.7 Excavations or jacking/access pits are within 10 m (30 ft) of the closest track centreline or encroach on the zone of potential track loading.

8.2 Requirements

- 8.2.1 Identification of the geotechnical engineer of record. The Geotechnical Engineer of Record will be responsible for the works on CP's Right of Way.
- 8.2.2 Description of the subsurface soil and ground water conditions within and adjacent to CP embankment along the proposed pipe/track crossing alignment and to a depth no less that 1.5 times the invert depth below the BOR. This will consider the impact of silt, fine sand or sand soil, and their relation to the water table and pipe depth.
- 8.2.3 An estimate of the expected extent and magnitude of ground movement over time based on the proposed pipe installation method will be provided.
- 8.2.4 A program of ground surface and subsurface (settlement plates) movement monitoring will be implemented. The program must be capable of detecting movement of no less than 50 percent of the movement that would result in a change of the track FRA or TC class as per the latest Transport Canada Track Safety Rules accessible at <u>www.tc.gc.ca</u>.
- 8.2.5 A procedure for notification of the appropriate CP personnel in the event that excessive or unexpected settlement occurs. A complete CP contact list, including local personnel and OC will be compiled.
- 8.2.6 A recovery plan will be provided outlining the steps to be implemented in the event of failure (excessive ground loss or settlement / collapse, heaving etc).
- 8.2.7 Design of de-watering control measures where applicable for the proposed construction method.
- 8.2.8 Temporary track support system will be required if any of the excavation is closer than 6 m (19.7 feet) from the centre of track and encroaches on the zone of potential track loading. The length of the excavation and an estimated stand-up time of the proposed cut within these limits must be provided and demonstrated to be safe.
- 8.2.9 A complete description of the proposed construction method.
- 8.2.10 Confirmation that the proposed construction/installation technique is suited to the site conditions and performance criteria. An assessment of the influence

of construction on the track structure including estimated settlement/heave and assessment of risk associated with uncontrolled loss of ground or heaving.

8.2.11 Upon review of the conditions, the geotechnical group may elevate a proposed crossing to Process 3 if complexities arise through the review of the project.

A qualified independent engineer is required to provide periodic or continuous (at the discretion of CP) on-site supervision and document conditions during construction.

8.2.12 - Daily Inspection & Reporting during Construction :

The proponent will identify a Geotechnical Engineer of Record (Engineer of Record) responsible for the work on CP's right of way. The Engineer of Record will assign a competent person to act as Site Inspector. The Site Inspector must have the required training, experience and understanding of the site conditions, proposed design, and construction methodology to make sound engineering decisions and reports during the course of the work. The Site Inspector must ensure the works are being done in accordance with the approved designs, procedures and/or specifications. The Site Inspector must report on any issues that arise over the course of the work that could have an effect on the stability of the embankment and/or potentially cause either future or immediate settlement. Any concerns about the imminent stability of the grade shall immediately be escalated to the CP Flagman in order to protect against train operations. The concerns shall also be escalated to the Engineer of Record and CP's Regional Utility & Flagging Representative so immediate remediation plans can be implemented.

The Site Supervisor will provide a daily report to CP's Regional Utility & Flagging Representative copying the Engineer of Record outlining the progress during the day, any deviations from the original plans, any unexpected ground conditions, or any other issues that arose during the course of construction worth noting. The report will include settlement monitoring data if required, along with a synopsis of the results highlighting any measures out of compliance or requiring attention.

Upon completion of the installation, the Engineer of Record will supply a letter/Final Construction report to CP's Regional Utility & Flagging Representative under his/her P.Eng. stamp confirming that the work has been completed in accordance with the submitted plans and procedures. If there are any deviations from the approved plans/procedures, these must be noted in the letter. As-built drawings if applicable should accompany this letter.

8.3 Process

- 8.3.1 Proponent submits engineering documents to CP Utility & Flagging Dept.
- 8.3.2 Utility group reviews documents to assure appropriate engineering documents have been provided.
- 8.3.3 CP Geotechnical Group to review and provide final geotechnical approval.
- 8.3.4 Structural Engineering Group may have to provide structural approval.
- 8.3.5 Utility & Flagging group to provide final approval.

9. Process 3 – Detailed

The third process will be followed for those crossing designs that do not meet the conditions of Process 2. In these instances, expert engineering submissions are required, along with preliminary work such as dewatering as well as, monitoring by on site engineering consultants during construction.

9.1 Conditions

- 9.1.1 Provided the above general requirements are met, and
- 9.1.2 Ground conditions, complex installation method, and/or the complexity of the project warrant that specialist-engineering personnel review the design and or construction of the pipe/track crossing.

9.2 Requirements

- 9.2.1 The proponent will meet the requirement outlined in Process 2 Section 8.2.
- 9.2.2 The proponent will provide resources for CP to retain qualified geotechnical engineers or experts to analyses and advise CP on the impact of the proponent's proposal to the right-of-way.

9.2.3 Daily Inspection & Reporting during Construction:

The proponent will identify a Geotechnical Engineer of Record (Engineer of Record) responsible for the work on CP's right of way. The Engineer of Record will assign a competent person to act as Site Inspector. The Site Inspector must have the required training, experience and understanding of the site conditions, proposed design, and construction methodology to make sound engineering decisions and reports during the course of the work. The Site Inspector must ensure the works are being done in accordance with the approved designs, procedures and/or specifications. The Site Inspector must report on any issues that arise over the course of the work that could have an effect on the stability of the embankment and/or potentially cause either future or immediate settlement. Any concerns about the imminent stability of the grade shall immediately be escalated to the CP Flagman in order to protect against train operations. The concerns shall also be escalated to the Engineer of Record and CP's Regional Utility & Flagging Representative so immediate remediation plans can be implemented.

The Site Supervisor will provide a daily report to CP's Regional Utility & Flagging Representative copying the Engineer of Record outlining the progress during the day, any

deviations from the original plans, any unexpected ground conditions, or any other issues that arose during the course of construction worth noting. The report will include settlement monitoring data if required, along with a synopsis of the results highlighting any measures out of compliance or requiring attention.

Upon completion of the installation, the Engineer of Record will supply a letter/Final Construction report to CP's Regional Utility & Flagging Representative under his/her P.Eng. stamp confirming that the work has been completed in accordance with the submitted plans and procedures. If there are any deviations from the approved plans/procedures, these must be noted in the letter. As-built drawings if applicable should accompany this letter.

9.3 Process

- 9.3.1 Proponent submits engineering documents to CP Utilities and Flagging department.
- 9.3.2 Utility group reviews documents to assure appropriate engineering documents have been provided.
- 9.3.3 Review by independent geotechnical or tunneling specialist (at the proponents cost).
- 9.3.4 Upon acceptable review by independent geotechnical consultant or tunneling specialist the CP Geotechnical Group to provide approval.
- 9.3.5 Structural Engineering Group to provide structural approval.
- 9.3.6 Utility & Flagging group to provide final approval.

10. Geotechnical Engineering check-list

The following is a check list of steps that will be completed to assure that the appropriate level of care has been taken for Process 2 and 3 pipe crossings below the track.

No.	Step	Group
10.1	Submission of crossing proposal by proponent including details of	Proponent
	the crossing specification and potential construction method(s) to	
	CP Utility & Flagging dept.	
10.2	Review of the proposal with respect to this protocol to determine	Utility Group
	what level of geotechnical engineering and review is required.	
10.3	Designation of review (CP Utilities Application, CP Geotechnical	Utility Application
	or Engineering Consultant required)	
10.4	Identification of the geotechnical engineer of record.	Geotechnical
		Engineering
10.5	Assessment of the adequacy of the geotechnical investigation.	Geotechnical
		Engineering

Table 2 – Check List

No.	Step	Group
10.6	Proponent's geotechnical engineer determines that the proposed construction/installation method will not cause settlement of the CP track or structures.	Geotechnical Engineering
10.7	If there is a possibility of track settlement, a monitoring program will be developed by the proponent's geotechnical engineer, and reviewed and approved by CP.	Geotechnical Engineering
10.8	Once a contractor has been selected, the geotechnical engineer of record will review the shop drawings submitted by the contractor or the sub-contractor(s) to determine if the tunnel and dewatering (if required) method proposed could cause track settlement.	Geotechnical Engineering
10.9	The proponent will provide CP with written documentation of who will be completing the onsite review of the contractor's construction practice and the specifics of the assignment.	Geotechnical Engineering
10.10	The proponent will enlist the services of a geotechnical engineer of record with the responsibility for inspection of the tunnel contractor's work. They will also assure that adequate measures are in place to minimize the potential for track settlement. The intention is not make the geotechnical engineer responsible for the settlement of the track but to empower an appropriate group with the task of assuring that actions undertaken by the contractor do not endanger the track structure as a result of ground loss during tunneling.	Geotechnical Engineering
10.11	An emergency response will be developed and posted on site and will reside with key personnel.	Geotechnical Engineering
10.12	A contingency plan will be identified that can be completed within hours if settlement is experienced.	Geotechnical Engineering

11. Abandoned pipe/track crossing

In the event that an existing installation is abandoned or a proposed crossing is abandoned during construction, all potential hazards to CP property must be removed or abated. This may be achieved by removal of any buried pipes and the backfill and compaction of any excavations. Alternately, upon approval of the CP Geotechnical group any voids within ground may be backfilled with non-shrinkable fill, or pressured grout sufficient to prevent future sloughing or track settlement. Any buried material (wood or metal) that could increase or decrease volume over time due to chemical reaction (oxidation) or decomposition must be removed or stabilized to the satisfaction of the CP.

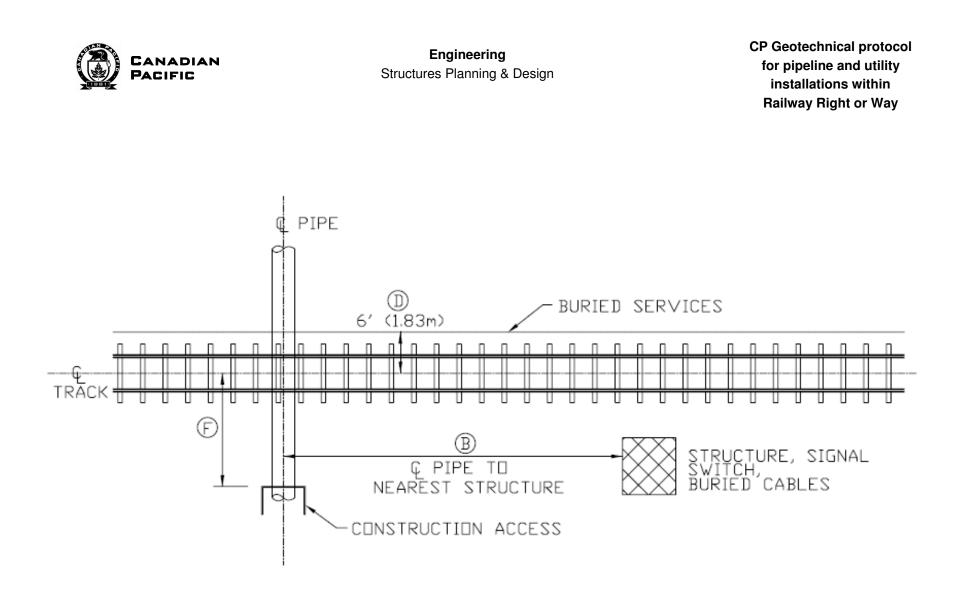
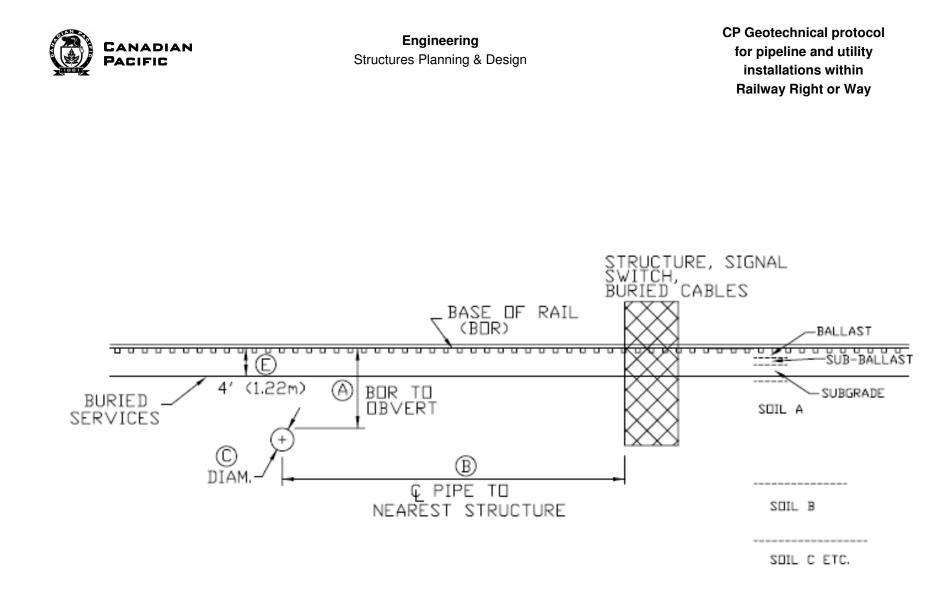
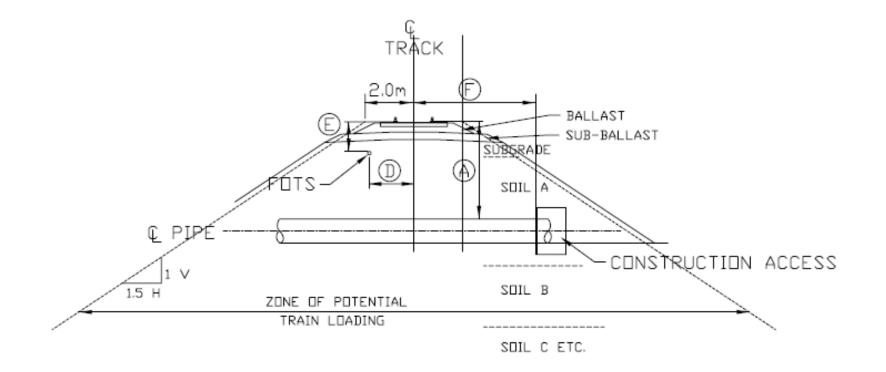
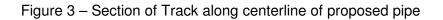
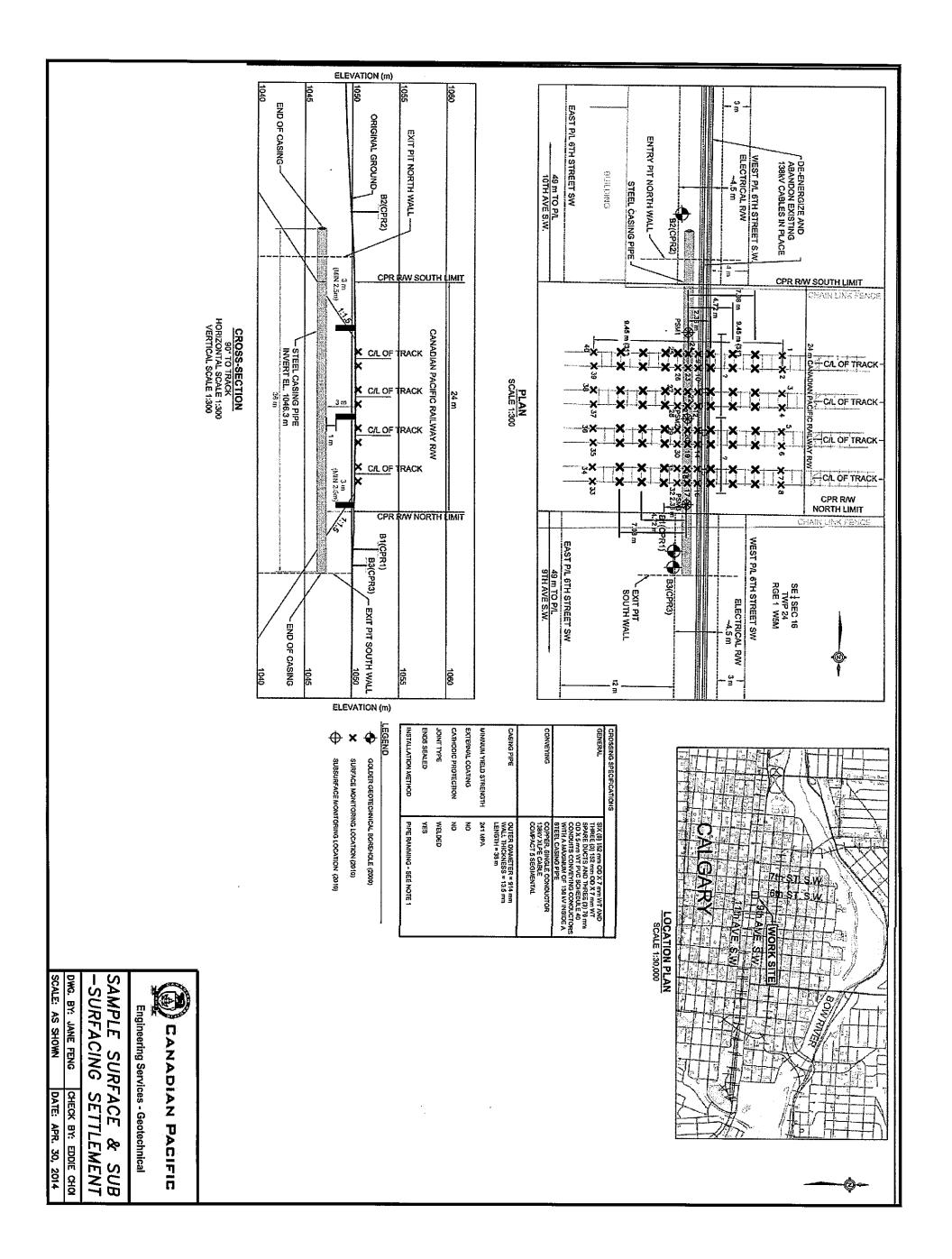


Figure 1 – Plan of the proposed pipe crossing


Figure 2 – Profile of the track and proposed pipe crossing along the centerline of track



CP Geotechnical protocol for pipeline and utility installations within Railway Right or Way

FOTS = FIBRE OPTICS TRANSMISSIONS SYSTEM

Track Movement Monitoring Guidelines for Trenchless Pipe Installation

Last updated April 9, 2014

The monitoring of track settlement should be accomplished by means of surface and subsurface settlement points. The intent of subsurface settlement points is to measure soil voids created just above the pipe during construction in order to help predict the potential movement of tracks above. The settlement point essentially consists of a small diameter pipe anchored at the bottom of a vertical borehole and an outer casing to isolate the pipe from down drag forces caused by settlement of soil above the anchor. The subsurface settlement points will be installed to 1 m above the crown of the casing profile. A total of (specified the number) subsurface settlement points will be installed within the CPR right of way along the axis of the proposed pipe crossing installation. The proposed locations are shown on the attached sketch. The surface settlement points should be monitored in pairs at the base of rails perpendicular to the center line of the track. As a minimum, the first pairs of surface settlement points have to be monitored at the intersection of the proposed center line of the pipe crossing and the existing center line of track. The next pairs of surface settlement points are to be monitored at a distance of 9.45 m (31') along the center line of track on each side of the first surface monitoring pairs taken at the intersection of the center line of the pipe crossing. Any additional surface monitoring points should be spaced with the same measurement of 9.45 m (31') from the last monitored pairs. The intent is to monitor differential transversal elevation between both rails over the projected settlement trough. A total of at least (specified the number) surface points will be installed on the right of way. The proposed locations are shown on the attached sketch. These points would be monitored simultaneously with the subsurface settlement points which act as a precursor to potential surface movement during pipe installation.

Once the installation is complete, a monitoring program of all points is to be conducted in accordance with the following instructions:

1. Monitoring should start before the excavation of the pits and pipe installation begins and be done at least twice per day for no less than two days. This is required to establish a reliable methodology and demonstrate the accuracy achievable.

2. Monitoring should proceed through the construction period and should be completed at least twice daily.

3. Monitoring should continue for at least 3 days after the completion of construction.

4. If there is any loss of ground during pipe installation, any reason to believe settlement may be delayed or any settlement is identified during the installation of pipe or subsequent monitoring period, the monitoring must be continued until the proponent's geotechnical engineer deems it is safe to discontinue such monitoring.

Monitoring measurements should be taken with sufficient frequency to capture the unexpected performance at the earliest possible stage and be evaluated in a timely manner. Additional measures will be proposed should this monitoring protocol is considered insufficient based on the ground conditions or installation process. Two alarm levels are proposed:-

Level 1:

"WARNING" will be indicated on the field memo when a settlement of 50% of the critical monitoring threshold is obtained from the subsurface settlement point. A survey of the surface points will then be conducted and work will be authorized to continue if no movement has been measured from the previous reading. If movement of the rails is recorded, monitoring will be continued until movement is stopped at which time the drilling work will then be authorized to continue.

Level 2:

"CRITICAL" will be indicated on the field memo when a settlement of (specified monitoring threshold) is obtained from the subsurface settlement point. A survey of the surface points will then be conducted and work will be authorized to continue if no movement is measured for at

least two (2) readings taken 12 hours apart. If movement of the rails is recorded, monitoring will be continued until movement is stopped and a new pipe installation procedure has been submitted by the proponent and approved.

The proponent and their engineer are responsible for ensuring that track settlement does not occur and notifying CP Roadmaster should unforeseeable track settlement occur or be expected. The above guidelines do not relieve the proponent and their engineer of this responsibility. The proponent or their engineer shall provide the settlement information and their interpretation of the data (no track settlement, deep settlement, etc. and how much track settlement has occurred, is likely to occur and when it is likely to occur) in terms that CP Roadmaster can easily understand. This information should be directed to local CP Roadmaster, Manager Structures and Director Geotechnical Engineering.

Track Settlement Monitoring Review and Alert Thresholds

.

Class	Alert Threshold	Review Threshold
1	22 mm	11 mm
2	22 mm	11 mm
3	19 mm	10 mm
4	16 mm	8 mm
5	13 mm	6 mm
6	10 mm	5 mm

Class of Track

	TRACK CLASSES							
Class	Freight Train Speed	Passenger Train Speed						
1	10 MPH	15 MPH						
2	25 MPH	30 MPH						
3	40 MPH	60 MPH						
4	60 MPH	80 MPH						
5	80 MPH	95 MPH 9 90 MPH 2						

● For LRC Trains, 100 MPH

Applies to US only

Figure 5-1

Appendix B

Laboratory Results

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	Major Divisions USCS Classi- fication Symbols Typical Names			Laboratory Classif	fication C	riteria		ş							
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)	Gravels than half of coarse fraction alarder than 4.75 mm)	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradatio	on requiren	nents for GW	ە	ASTM Sieve	#10	#401	#500	¥
ained soils larger than No. 200 sieve	Gra than half o	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+	
ained soils larger than	lore	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, 8	25	
Coarse-Grained (More than half the material is larger	e fraction mm)	sands no fines)	SW	***** *****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 00 to 4 75	0.425 to 2.00	0.075 to 0.425	c/0.0 >
n half the r	Sands alf of coarse fi r than 4 75 mi		SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sands than half of coarse smaller than 4 75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	lemine percentages of s, pending on percentage of arse-grained solls are cla: arse than 5 percent More than 12 percent 6 to 12 percentBord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5				Clay
	(More t	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Material	ואומר	Sand	Medium	Fine Silt or	SIIT OF CIAY
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity chart for solid fraction with particles an 0.425 mm	/ Chart	r LINE		e Sizes		-	i i i	
. 200 sieve	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH		Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 1 40 - L 40 - L 40 - S30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	P 10
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size)	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F
than half	N		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class			lour or odour, fibrous texture	Material	ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES PERCENTAGE		
and	and and CLAY 35 to 50 perce		
"y" or "ey"	clayey, silty	20 to 35 percent	
some	some silt	10 to 20 percent	
trace	trace gravel	1 to 10 percent	

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
Very loose	< 4	
Loose	4 to 10	
Compact	10 to 30	
Dense	30 to 50	
Very dense	> 50	
The Standard Penetration Test blow count (N) of a col	hesive soil can be related to its consistency as follows:	:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing
Sample Date	28-Jan-20
Test Date	01-Feb-20

Test Date Technician

HS

Test Hole	TH 01	TH 02				
Depth (m)	0.8 - 0.9	1.4 - 1.5	2.9 - 3.0	4.3 - 4.4	5.8 - 5.9	0.5 - 0.6
Sample #	G1	G2	G4	G6	G8	G9
Tare ID	W102	Z45	K16	N59	K11	AC09
Mass of tare	8.4	8.7	8.3	8.4	8.8	6.6
Mass wet + tare	160.0	179.8	201.8	207.3	310.5	260.5
Mass dry + tare	119.6	152.4	140.2	134.9	198.9	202.7
Mass water	40.4	27.4	61.6	72.4	111.6	57.8
Mass dry soil	111.2	143.7	131.9	126.5	190.1	196.1
Moisture %	36.3%	19.1%	46.7%	57.2%	58.7%	29.5%

Test Hole	TH 02	TH 02	TH 02	TH 02	
Depth (m)	1.4 - 1.5	2.9 - 3.0	4.4 - 4.6	5.9 - 6.1	
Sample #	G10	G12	G14	G16	
Tare ID	AB50	Z51	W79	E131	
Mass of tare	6.9	8.5	8.7	8.8	
Mass wet + tare	204.9	236.5	225.1	169.3	
Mass dry + tare	166.4	159.2	148.9	111.5	
Mass water	38.5	77.3	76.2	57.8	
Mass dry soil	159.5	150.7	140.2	102.7	
Moisture %	24.1%	51.3%	54.4%	56.3%	

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

0035-086-00-100
Morrison Hershfield
Sargent Avenue Watermain CP Rail Crossing
TH 01
Т3
1.5 - 2.1
28-Jan-20
02-Feb-20
HS

Tube Extraction

Recovery (mm)	620						
A	2.00			1 74 m	В	4	
Bottom - 2.1 m	2.00	Jm		1.74 m	1.6	4m T	op - 1.5 m
Keep Bulk Insufficient clay sample for Qu	Moisture Content Visual PP/TV	Кеер			Visual	Mois Cont	
140 mm (A)	20 mm (A)	240 mm	(B)		100 mm (B)	120 mr	n (B)
Visual Classific	cation	Α	В		Moisture Content	Α	в
Material		CLAY	SILT	-	Tare ID	Z24	F124
Composition		silty	clayey	_	Mass tare (g)	8.4	8.4
		trace sand		-	Mass wet + tare (g)	225	314.4
				_	Mass dry + tare (g)	173.4	259.1
				-	Moisture %	31.3%	22.1%
Color Moisture Consistency Plasticity		grey moist very stiff intermediate	brown moist soft intermediate	-	<u>Unit Weight</u> Bulk Weight (g) Length (mm) 1	857.80	-
T labilony		plasticity	plasticity	-	2 2	112.51	-
Structure			-	-	3	112.44	-
onaciale		-	-	-	3 4	112.44	-
Gradation				-	Average Length (m)	0.122	-
			1	-	,	0.122	
Torvane		Α	В		Diam. (mm) 1	71.78	-
Reading		0.5	-		2	71.78	-
Vane Size (s,m,l)		S	-	1	3	71.90	-
Undrained Shear	Strength	122.6	-	(kPa)	4	71.68	-
					Average Diameter (m)	0.072	-
Pocket Penetro		A	В	-	•		
5	1	2.500	-	_	Volume (m ³)	4.97E-04	-
	2	2.700	-	_	Bulk Unit Weight (kN/m ³)	16.9	-
	3	2.700	-	4	Bulk Unit Weight (pcf)	107.8	-
	Average	2.633	-	-	Dry Unit Weight (kN/m ³)	12.9	-
Undrained Shear	Strength	129.1	-	(kPa)	Dry Unit Weight (pcf)	82.1	-

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing
Test Hole	TH 01
Sample #	T5
Depth (m)	3.0 - 3.7
Sample Date	28-Jan-20

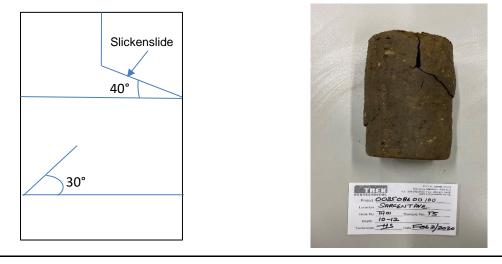
. Test Date 02-Feb-20 Technician

Tube Extraction

Recovery (mm) 560

HS

Bottom - 3.6 m		3.33 m	3.29 m	3.13 n	ⁿ Top - 3 m
	Кеер	Moistu Conte	D	ulk Qu	PP TV Visual
	280 mm	40 mn	16 ⁻	0 mm	80 mm
	200 mm				
Visual Classi	fication		Moisture C	ontent	
Material	CLAY		Tare ID		Z18
Composition	silty		Mass tare (g)) –	8.4
trace silt inclusion	ons (<10 mm diam.)		Mass wet + t	are (g)	307.4
trace sand			Mass dry + ta	are (g)	204.4
trace oxidation			Moisture %		52.6%
			L Incit \\/ a inch	1	
			Unit Weigh Bulk Weight		975.8
Color	grey		Buik Weight	(9)	575.0
Moisture	moist		Length (mm)	1	142.43
Consistency	firm to stiff			2	142.95
Plasticity	intermediate plasticity			3	142.23
Structure	-			4	142.68
Gradation			Average Leng	gth (m)	0.143
Torvane			Diam. (mm)	1	71.21
Reading		0.65	Dianii (iiiii)	2	71.58
Vane Size (s,m	.1)	m		3	71.33
	ar Strength (kPa)	63.8		4	71.72
	• • · · <u> </u>		Average Diar	neter (m)	0.071
Pocket Pene					
Reading	1	1.50	Volume (m ³)	· -	5.72E-04
	2	1.40	Bulk Unit We		16.7
	3	1.40	Bulk Unit We	• • • •	106.5
	Average	1.43	Dry Unit Wei		11.0
Undrained She	ar Strength (kPa)	70.3	Dry Unit Weig	ght (pcf)	69.8

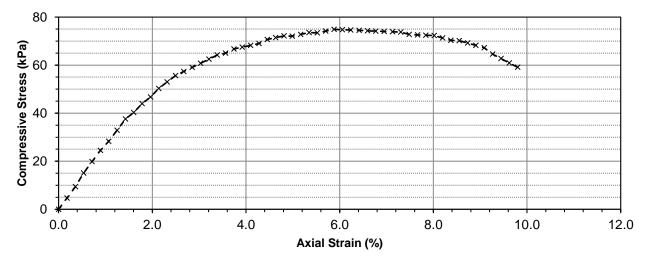

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing								
Test Hole Sample # Depth (m)	TH 01 T5 3.0 - 3.7			<u>Unconfine</u>	d Strength				
Sample Date	28-Jan-20 2-Feb-20			Moxa	kPa	ksf			
Test Date Technician	Z-Feb-20 HS			Max q _u Max S _u	74.9 37.4	1.6 0.8			
	-			- u					
Specimen [Data								
Description	CLAY - silty, trace silt inclusions (<10 mm diam.), trace sand, trace oxidation, grey, moist, firm to stiff, intermediate plasticity								
Length	142.6	(mm)	Moisture %	53%					
Diameter	71.5	(mm)	Bulk Unit Wt.	16.7	(kN/m ³)				
L/D Ratio	2.0		Dry Unit Wt.	11.0	(kN/m ³)				
Initial Area	0.00401	(m ²)	Liquid Limit	-					
Load Rate	1.00	(%/min)	Plastic Limit	-					
			Plasticity Index	-					
	Shear Stren	gth Tests							
Torvane	Pocket Penetrometer								
Reading	Undrained Shear Strength		Reading	Undrained Shear Strength					

Reading	Undrained SI	near Strength	Re	Reading		Undrained Shear Strength		
tsf	kPa	ksf	tsf		kPa	ksf		
0.65	63.8	1.33		1.50	73.6	1.54		
				1.40	68.7	1.43		
				1.40	68.7	1.43		
			Average	1.43	70.3	1.47		

Failure Geometry

Sketch:

Photo:



www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004011	0.0	0.00	0.00
10	5	0.2540	0.18	0.004018	18.7	4.66	2.33
20	10	0.5080	0.36	0.004025	37.9	9.41	4.71
30	16	0.7620	0.53	0.004032	60.8	15.09	7.55
40	21	1.0160	0.71	0.004039	80.0	19.80	9.90
50	26	1.2700	0.89	0.004047	99.1	24.50	12.25
60	30	1.5240	1.07	0.004054	114.4	28.23	14.11
70	35	1.7780	1.25	0.004061	133.6	32.89	16.45
80	40	2.0320	1.43	0.004069	152.7	37.54	18.77
90	43	2.2860	1.60	0.004076	164.2	40.29	20.14
100	47	2.5400	1.78	0.004083	179.5	43.96	21.98
110	50	2.7940	1.96	0.004091	191.0	46.69	23.34
120	54	3.0480	2.14	0.004098	206.1	50.29	25.15
130	57	3.3020	2.32	0.004106	217.4	52.96	26.48
140	60	3.5560	2.49	0.004113	228.8	55.62	27.81
150	62	3.8100	2.67	0.004121	236.3	57.35	28.67
160	64	4.0640	2.85	0.004128	243.9	59.07	29.54
170	66	4.3180	3.03	0.004136	251.4	60.79	30.39
180	68	4.5720	3.21	0.004144	259.0	62.50	31.25
190	70	4.8260	3.38	0.004151	266.5	64.20	32.10
200	71	5.0800	3.56	0.004159	270.3	64.99	32.50
210	73	5.3340	3.74	0.004167	277.8	66.69	33.34
220	74	5.5880	3.92	0.004174	281.6	67.47	33.73
230	75	5.8420	4.10	0.004182	285.4	68.24	34.12

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
240	76	6.0960	4.28	0.004190	289.1	69.01	34.51
250	78	6.3500	4.45	0.004198	296.6	70.66	35.33
260	79	6.6040	4.63	0.004205	300.4	71.42	35.71
270	80	6.8580	4.81	0.004213	304.1	72.18	36.09
280	80	7.1120	4.99	0.004221	304.1	72.04	36.02
290	81	7.3660	5.17	0.004229	307.8	72.79	36.39
300	82	7.6200	5.34	0.004237	311.6	73.54	36.77
310	82	7.8740	5.52	0.004245	311.6	73.40	36.70
320	83	8.1280	5.70	0.004253	315.3	74.14	37.07
330	84	8.3820	5.88	0.004261	319.1	74.88	37.44
340	84	8.6360	6.06	0.004269	319.1	74.73	37.37
350	84	8.8900	6.24	0.004277	319.1	74.59	37.30
360	84	9.1440	6.41	0.004286	319.1	74.45	37.23
370	84	9.3980	6.59	0.004294	319.1	74.31	37.15
380	84	9.6520	6.77	0.004302	319.1	74.17	37.08
390	84	9.9060	6.95	0.004310	319.1	74.03	37.01
400	84	10.1600	7.13	0.004318	319.1	73.88	36.94
410	84	10.4140	7.30	0.004327	319.1	73.74	36.87
420	83	10.6680	7.48	0.004335	315.3	72.74	36.37
430	83	10.9220	7.66	0.004343	315.3	72.60	36.30
440	83	11.1760	7.84	0.004352	315.3	72.46	36.23
450	83	11.4300	8.02	0.004360	315.3	72.32	36.16
460	82	11.6840	8.20	0.004369	311.6	71.32	35.66
470	81	11.9380	8.37	0.004377	307.8	70.33	35.16
480	81	12.1920	8.55	0.004386	307.8	70.19	35.10
490	80	12.4460	8.73	0.004394	304.1	69.20	34.60
500	79	12.7000	8.91	0.004403	300.4	68.22	34.11
510	78	12.9540	9.09	0.004411	296.6	67.24	33.62
520	75	13.2080	9.26	0.004420	285.4	64.57	32.28
530	73	13.4620	9.44	0.004429	277.8	62.74	31.37
540	71	13.7160	9.62	0.004438	270.3	60.91	30.46
550	69	13.9700	9.80	0.004446	262.7	59.09	29.55

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing
Test Hole	TH 01
Sample #	Τ7
Depth (m)	4.6 - 5.2
Sample Date	28-Jan-20

Test Date02-Feb-20TechnicianHS

Tube Extraction

Recovery (mm) 610

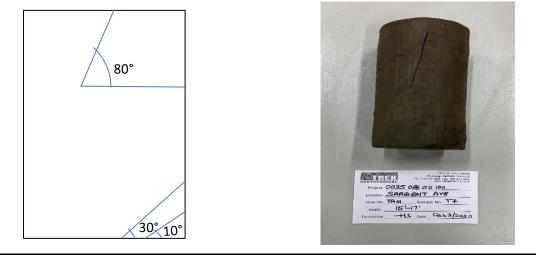
Bottom - 5.2 m	1	4.89 m	4.	72 m	^{4.64 m} Top - 4.6 m
	Кеер		Bulk Qu	PP TV Visual	Moisture Content
	290 mm		170 mm	80 mm	70 mm
Visual Class	ification		Moisture Content		
Material	CLAY		Tare ID		W100
Composition	silty		Mass tare (g)		8.5
	ons (<10 mm diam.)		Mass wet + tare (g)		263.3
			Mass dry + tare (g)		170.8
			Moisture %		57.0%
			Unit Weight		
			Bulk Weight (g)		1036.4
Color	grey				
Moisture	moist		Length (mm) 1		150.03
Consistency	firm		2		149.90
Plasticity	high plasticity		3		149.95
Structure	-		4		150.15
Gradation			Average Length (m)	_	0.150
Torvane			Diam. (mm) 1		71.77
Reading		0.30	2		71.76
Vane Size (s,m	.,I)	m	3		71.70
Undrained She	ar Strength (kPa)	29.4	4		71.90
Doolvot Dooo	tromotor		Average Diameter (m)	0.072
Pocket Pene Reading	1	0.60	Volume (m ³)		6.07E-04
	2	0.60	Bulk Unit Weight (kN	/m³)	16.7
	3	0.60	Bulk Unit Weight (pc		106.6
	Average	0.60	Dry Unit Weight (kN/i	·	10.7
Undrained She	ear Strength (kPa)	29.4	Dry Unit Weight (pcf)		67.9

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing			
Test Hole	TH 01			
Sample #	Τ7			
Depth (m)	4.6 - 5.2	Unconfined	Strength	
Sample Date	28-Jan-20		kPa	ksf
Test Date	2-Feb-20	Max q _u	94.8	2.0
Technician	HS	Max S _u	47.4	1.0

Specimen Data

Description CLAY - silty, trace silt inclusions (<10 mm diam.), grey, moist, firm, high plasticity

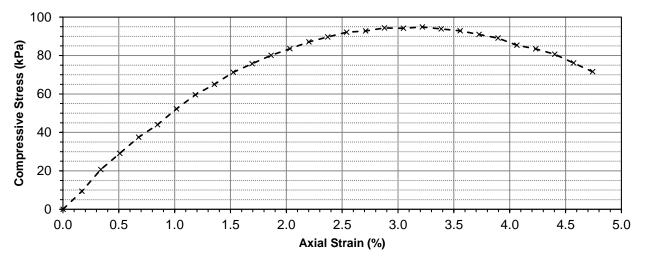
Length	150.0	(mm)	Moisture %	57%	
Diameter	71.8	(mm)	Bulk Unit Wt.	16.7	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	10.7	(kN/m^3)
Initial Area	0.00405	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	


Undrained Shear Strength Tests

Torvane			Po	ocket Pene	etrometer		
Reading	Undrained SI	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	-	kPa	ksf	
0.30	29.4	0.61		0.60	29.4	0.61	
				0.60	29.4	0.61	
				0.60	29.4	0.61	
			Average	0.60	29.4	0.61	

Failure Geometry

Sketch:


Photo:

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0	0.0000	0.00	0.004047	0.0	0.00	0.00
10	10	0.2540	0.17	0.004054	37.9	9.34	4.67
20	22	0.5080	0.34	0.004061	83.8	20.64	10.32
30	31	0.7620	0.51	0.004068	118.3	29.08	14.54
40	40	1.0160	0.68	0.004075	152.7	37.48	18.74
50	47	1.2700	0.85	0.004081	179.5	43.98	21.99
60	56	1.5240	1.02	0.004088	213.7	52.26	26.13
70	64	1.7780	1.19	0.004095	243.9	59.54	29.77
80	70	2.0320	1.35	0.004103	266.5	64.97	32.48
90	77	2.2860	1.52	0.004110	292.9	71.27	35.63
100	82	2.5400	1.69	0.004117	311.6	75.69	37.84
110	87	2.7940	1.86	0.004124	330.3	80.09	40.05
120	91	3.0480	2.03	0.004131	345.2	83.58	41.79
130	95	3.3020	2.20	0.004138	360.2	87.05	43.52
140	98	3.5560	2.37	0.004145	371.4	89.60	44.80
150	101	3.8100	2.54	0.004152	382.4	92.10	46.05
160	102	4.0640	2.71	0.004160	386.0	92.79	46.39
170	104	4.3180	2.88	0.004167	393.0	94.32	47.16
180	104	4.5720	3.05	0.004174	393.0	94.16	47.08
190	105	4.8260	3.22	0.004181	396.6	94.84	47.42
200	104	5.0800	3.39	0.004189	393.0	93.83	46.91
210	103	5.3340	3.56	0.004196	389.5	92.82	46.41
220	101	5.5880	3.73	0.004204	382.4	90.98	45.49
230	99	5.8420	3.89	0.004211	375.2	89.09	44.55

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	95	6.0960	4.06	0.004218	360.2	85.39	42.69
250	93	6.3500	4.23	0.004226	352.7	83.47	41.73
260	90	6.6040	4.40	0.004233	341.5	80.67	40.33
270	85	6.8580	4.57	0.004241	322.8	76.12	38.06
280	80	7.1120	4.74	0.004248	304.1	71.58	35.79

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing
Test Hole	TH 02
Sample #	T11
David (m)	

 Depth (m)
 1.5 - 2.1

 Sample Date
 28-Jan-20

 Test Date
 02-Feb-20

 Technician
 HS

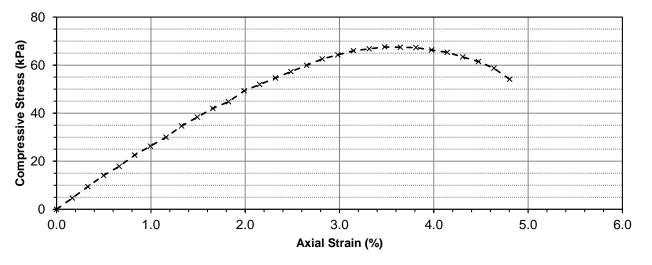
Tube Extraction

Recovery (mm) 410

Bottom - 1.9 m	1	1.80 m 1.79 m	1	.63 m 1.	^{58 m} Top - 1.5 m
	Кеер	Silt Seam	Bulk Qu	PP TV Visual	Moisture Content
	135 mm	10 mm	155 mm	55 mm	55 mm
Visual Class	ification		Moisture Content		
Material	CLAY		Tare ID		E2
Composition	silty		Mass tare (g)		8.7
	ons (<10 mm diam.)		Mass wet + tare (g)		239.7
trace sand			Mass dry + tare (g)		191.1
	t seam observed at 1	.8 m	Moisture %		26.6%
			Unit Weight		
<u> </u>			Bulk Weight (g)		1160.8
Color	grey				450.74
Moisture	moist		Length (mm) 1		153.71
Consistency	stiff to very stiff		2		153.51
Plasticity	intermediate plast	city	3		153.21
Structure Gradation	blocky				152.90
Gradation			Average Length (m)		0.153
Torvane			Diam. (mm) 1		71.51
Reading		0.45	2		71.50
Vane Size (s,m	n,l)	S	3		71.90
Undrained She	ear Strength (kPa)	110.3	4		71.40
Dealert Dava	-		Average Diameter (m	ו)	0.072
Pocket Pene Reading	1	2.20	Volume (m ³)		6.17E-04
Reading	2	2.30	Bulk Unit Weight (kN	l/m ³)	18.5
	3	2.20	Bulk Unit Weight (kr		117.5
	Average	2.23	Dry Unit Weight (kN/		14.6
	ear Strength (kPa)	109.5	Dry Unit Weight (kiv		92.7

Blocky Slickenslide

60°


Test Hole Sample # T11 Depth (m) Test Date 2-Feb-20The first Date 2-Feb-20Unconfined Strength Max q_u 67.6Ksf Max q_u 67.6Specimen DataMoisture % Description27% Moisture % DiameterMoisture % 71.627% Moisture % DiameterLength Diameter 1.00153.3 (%/min)Moisture % Bulk Unit Wt.27% 18.5Moisture % (kN/m³)Liquid Limit Plastic Limit 0.452.1 (%/min)Provide the field of	Project No. Client Project	0035-086-00 Morrison Her Sargent Aver		Rail Crossing]			
Description CLAY - silty, trace silt inclusions (<10 mm diam.), trace sand, 10 mm thick silt seam observed at 1.8 m, grey, moist, stiff to very stiff, intermediate plasticity, blocky	Sample # Depth (m) Sample Date Test Date	T11 1.5 - 2.1 28-Jan-20 2-Feb-20				Max q _u	kPa 67.6	1.4
moist, stiff to very stiff, intermediate plasticity, blockyLength153.3 (mm)Moisture % Bulk Unit Wt.27% Bulk Unit Wt.Diameter71.6 (mm)Bulk Unit Wt.18.5 (kN/m³)L/D Ratio2.1Dry Unit Wt.14.6 (kN/m³)Initial Area0.00402 (m²)Liquid Limit- Plastic LimitLoad Rate1.00 (%/min)Plastic Limit- Plasticity IndexUndrained Shear Strength TestsPocket PenetrometerReading tsfUndrained Shear Strength kPaReading ksfUndrained Shear Strength c.2010.45110.32.302.20 2.30107.92.25 2.20Average2.23109.52.29	Specimen I	Data						
Diameter71.6(mm)Bulk Unit Wt.18.5(kN/m³)L/D Ratio2.1Dry Unit Wt.14.6(kN/m³)Initial Area0.00402(m²)Liquid Limit-Load Rate1.00(%/min)Plastic Limit-Undrained Shear Strength TestsPocket PenetrometerReadingUndrained Shear StrengthtsfkPaksftsfkPa0.45110.32.302.20107.92.252.30112.82.362.20107.92.252.30112.82.362.20107.92.25Average2.23109.52.292.29	Description					0 mm thick si	It seam observed at	1.8 m, grey,
Pocket PenetrometerReadingUndrained Shear StrengthReadingUndrained Shear StrengthtsfkPaksftsfkPaksf0.45110.32.302.20107.92.252.30112.82.362.20107.92.25Average2.23109.52.29	Diameter L/D Ratio Initial Area	71.6 2.1 0.00402	(mm) (m ²)		Bulk Unit Wt. Dry Unit Wt. Liquid Limit Plastic Limit	18.5 14.6 -		
Reading tsfUndrained Shear Strength kPaReading ksfUndrained Shear Strength ksf0.45110.32.302.20107.92.252.30112.82.362.20107.92.252.30112.82.362.20107.92.25Average2.23Failure Geometry		Shear Stren	igth Tests		De alas (Da a st			
tsf kPa ksf tsf kPa ksf 0.45 110.3 2.30 2.20 107.9 2.25 2.30 112.8 2.36 2.20 107.9 2.25 Average 2.23 109.5 2.29 2.29								
0.45 110.3 2.30 2.20 107.9 2.25 2.30 112.8 2.36 2.20 107.9 2.25 2.20 107.9 2.25 Average 2.23 109.5 2.29 Failure Geometry	-				-		-	
			-	Average	2.20 2.30 2.20	107.9 112.8 107.9	2.25 2.36 2.25	
Sketch: Photo:	Failure Geo	ometry						
	Sketch:				Photo:			

A second second

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	,
0	0	0.0000	0.00	0.004024	0.0	0.00	0.00
10	5	0.2540	0.17	0.004031	18.7	4.65	2.32
20	10	0.5080	0.33	0.004037	37.9	9.38	4.69
30	15	0.7620	0.50	0.004044	57.0	14.10	7.05
40	19	1.0160	0.66	0.004051	72.3	17.86	8.93
50	24	1.2700	0.83	0.004057	91.5	22.54	11.27
60	28	1.5240	0.99	0.004064	106.8	26.27	13.14
70	32	1.7780	1.16	0.004071	122.1	29.99	15.00
80	37	2.0320	1.33	0.004078	141.2	34.63	17.32
90	41	2.2860	1.49	0.004085	156.5	38.32	19.16
100	45	2.5400	1.66	0.004092	171.9	42.00	21.00
110	48	2.7940	1.82	0.004099	183.3	44.73	22.37
120	53	3.0480	1.99	0.004105	202.3	49.28	24.64
130	56	3.3020	2.15	0.004112	213.7	51.95	25.98
140	59	3.5560	2.32	0.004119	225.0	54.62	27.31
150	62	3.8100	2.48	0.004126	236.3	57.27	28.63
160	65	4.0640	2.65	0.004133	247.6	59.91	29.96
170	68	4.3180	2.82	0.004140	259.0	62.55	31.27
180	70	4.5720	2.98	0.004148	266.5	64.26	32.13
190	72	4.8260	3.15	0.004155	274.1	65.97	32.98
200	73	5.0800	3.31	0.004162	277.8	66.76	33.38
210	74	5.3340	3.48	0.004169	281.6	67.55	33.78
220	74	5.5880	3.64	0.004176	281.6	67.44	33.72
230	74	5.8420	3.81	0.004183	281.6	67.32	33.66

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	73	6.0960	3.98	0.004190	277.8	66.30	33.15
250	72	6.3500	4.14	0.004198	274.1	65.29	32.65
260	70	6.6040	4.31	0.004205	266.5	63.38	31.69
270	68	6.8580	4.47	0.004212	259.0	61.48	30.74
280	65	7.1120	4.64	0.004220	247.6	58.69	29.34
290	60	7.3660	4.80	0.004227	228.8	54.12	27.06

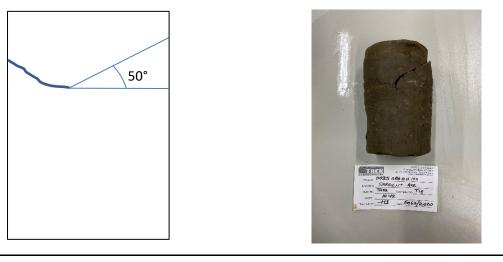
Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing
Test Hole	TH 02
Sample #	T13
Depth (m)	3.0 - 3.7

Sample Date28-Jan-20Test Date02-Feb-20TechnicianHS

Tube Extraction

Recovery (mm) 430

Bottom - 3.5 m		3.32 m	3	18 m 3.14	m 3.12	^m Top - 3 m
	Bulk Qu		Кеер	PP TV Visual	Silt Seam	Moisture Content
	160 mm	Ì	140 mm	60 mm	70 mm	70 mm
Visual Classi	fication		Moisture Content			
Material	CLAY		Tare ID			F131
Composition	silty		Mass tare (g)			8.5
trace sand			Mass wet + tare (g)			253.4
trace gravel			Mass dry + tare (g)			188.1
trace precipitate	s (sulphates)		Moisture %			36.4%
25 mm thick silt	seam observed at 3.12 m	1				
			Unit Weight			
			Bulk Weight (g)			1055.5
Color	grey					
Moisture	moist		Length (mm) 1		-	150.43
Consistency	stiff		2			149.90
Plasticity	high plasticity		3			150.25
Structure	-		4			149.98
Gradation			Average Length (m)			0.150
Torvane			Diam. (mm) 1			71.51
Reading		0.80	2			71.21
Vane Size (s,m		m	3			71.31
Undrained She	ar Strength (kPa)	78.5	4			71.36
Pocket Pene	trometer		Average Diameter (m	1)		0.071
Reading	1	1.90	Volume (m ³)			6.00E-04
	2	1.80	Bulk Unit Weight (kN	/m ³)		17.2
	3	1.80	Bulk Unit Weight (pc			109.8
	Average	1.83	Dry Unit Weight (kN/r	•		12.6
Undrained She	ar Strength (kPa)	89.9	Dry Unit Weight (pcf)			80.5
	_ , ,	_				



Project No. Client Project	0035-086-00- Morrison Hers Sargent Aven		ail Crossing				
Test Hole Sample #	TH 02 T13						
Depth (m)	3.0 - 3.7				Unconfine	d Strength	
Sample Date	28-Jan-20					kPa	ksf
Test Date	2-Feb-20				Max q _u	102.4	2.1
Technician	HS				Max S _u	51.2	1.1
Specimen [Data						
Description	•	race sand, trace gra tiff, high plasticity	vel , trace pre	ecipitates (sulpha	ates), 25 mm	thick silt seam observ	ed at 3.12 m,
Length	150.1	(mm)	Ν	Moisture %	36%		
Diameter	71.3	(mm)	E	Bulk Unit Wt.	17.2	(kN/m ³)	
L/D Ratio	2.1	(),	0	Dry Unit Wt.	12.6	(kN/m^3)	
Initial Area	0.00400	(m ²)	L	_iquid Limit	-	. ,	
Load Rate	1.00	(%/min)	F	Plastic Limit	-		
			F	Plasticity Index	-		
Undrained	Shear Streng	gth Tests					
Torvane		-	F	Pocket Penet	rometer		
Reading	Undrained S	Shear Strength	F	Reading	Undraine	d Shear Strength	
tsf	kPa	ksf	t	sf	kPa	ksf	
0.80	78.5	1.64		1.90	93.2	1.95	
				1.80	88.3	1.84	
				1.80	88.3	1.84	
			Average	1.83	89.9	1.88	
	and the second sec						

Failure Geometry

Sketch:

Photo:

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.003998	0.0	0.00	0.00
10	5	0.2540	0.17	0.004005	18.7	4.68	2.34
20	11	0.5080	0.34	0.004012	41.7	10.40	5.20
30	17	0.7620	0.51	0.004018	64.7	16.09	8.05
40	26	1.0160	0.68	0.004025	99.1	24.63	12.31
50	33	1.2700	0.85	0.004032	125.9	31.23	15.61
60	41	1.5240	1.02	0.004039	156.5	38.76	19.38
70	49	1.7780	1.18	0.004046	187.2	46.26	23.13
80	56	2.0320	1.35	0.004053	213.7	52.72	26.36
90	64	2.2860	1.52	0.004060	243.9	60.07	30.03
100	70	2.5400	1.69	0.004067	266.5	65.53	32.77
110	77	2.7940	1.86	0.004074	292.9	71.89	35.95
120	82	3.0480	2.03	0.004081	311.6	76.35	38.18
130	87	3.3020	2.20	0.004088	330.3	80.79	40.40
140	91	3.5560	2.37	0.004095	345.2	84.31	42.15
150	94	3.8100	2.54	0.004102	356.5	86.90	43.45
160	97	4.0640	2.71	0.004109	367.7	89.48	44.74
170	99	4.3180	2.88	0.004116	375.2	91.14	45.57
180	101	4.5720	3.05	0.004124	382.4	92.74	46.37
190	103	4.8260	3.21	0.004131	389.5	94.29	47.15
200	105	5.0800	3.38	0.004138	396.6	95.83	47.92
210	106	5.3340	3.55	0.004145	400.1	96.52	48.26
220	108	5.5880	3.72	0.004153	407.2	98.05	49.02
230	109	5.8420	3.89	0.004160	410.7	98.73	49.36

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	110	6.0960	4.06	0.004167	414.2	99.40	49.70
250	111	6.3500	4.23	0.004175	417.8	100.07	50.03
260	112	6.6040	4.40	0.004182	421.3	100.74	50.37
270	112	6.8580	4.57	0.004189	421.3	100.56	50.28
280	113	7.1120	4.74	0.004197	424.8	101.22	50.61
290	114	7.3660	4.91	0.004204	428.3	101.88	50.94
300	114	7.6200	5.08	0.004212	428.3	101.70	50.85
310	115	7.8740	5.24	0.004219	431.9	102.36	51.18
320	115	8.1280	5.41	0.004227	431.9	102.17	51.09
330	114	8.3820	5.58	0.004234	428.3	101.16	50.58
340	112	8.6360	5.75	0.004242	421.3	99.31	49.66
350	112	8.8900	5.92	0.004250	421.3	99.13	49.57
360	112	9.1440	6.09	0.004257	421.3	98.96	49.48
370	112	9.3980	6.26	0.004265	421.3	98.78	49.39
380	112	9.6520	6.43	0.004273	421.3	98.60	49.30
390	112	9.9060	6.60	0.004280	421.3	98.42	49.21
400	111	10.1600	6.77	0.004288	417.8	97.42	48.71
410	111	10.4140	6.94	0.004296	417.8	97.24	48.62
420	111	10.6680	7.11	0.004304	417.8	97.06	48.53
430	111	10.9220	7.27	0.004312	417.8	96.89	48.44
440	111	11.1760	7.44	0.004320	417.8	96.71	48.36
450	111	11.4300	7.61	0.004327	417.8	96.53	48.27
460	110	11.6840	7.78	0.004335	414.2	95.54	47.77
470	110	11.9380	7.95	0.004343	414.2	95.37	47.68
480	110	12.1920	8.12	0.004351	414.2	95.19	47.60
490	108	12.4460	8.29	0.004359	407.2	93.40	46.70
500	108	12.7000	8.46	0.004367	407.2	93.22	46.61
510	106	12.9540	8.63	0.004376	400.1	91.44	45.72
520	106	13.2080	8.80	0.004384	400.1	91.27	45.63
530	105	13.4620	8.97	0.004392	396.6	90.30	45.15
540	105	13.7160	9.14	0.004400	396.6	90.13	45.06
550	105	13.9700	9.30	0.004408	396.6	89.96	44.98
560	104	14.2240	9.47	0.004416	393.0	88.99	44.50
570	104	14.4780	9.64	0.004425	393.0	88.83	44.41
580	103	14.7320	9.81	0.004433	389.5	87.86	43.93
590	103	14.9860	9.98	0.004441	389.5	87.70	43.85
600	102	15.2400	10.15	0.004450	386.0	86.74	43.37
620	100	15.7480	10.49	0.004467	378.9	84.83	42.42
640	99	16.2560	10.83	0.004483	375.2	83.68	41.84
660	98	16.7640	11.17	0.004501	371.4	82.53	41.26
680	95	17.2720	11.50	0.004518	360.2	79.73	39.86
700	95	17.7800	11.84	0.004535	360.2	79.42	39.71

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing
Test Hole	TH 02
Sample #	T15
Depth (m)	4.6 - 5.2
Sample Date	28-Jan-20

Sample Date28-Jan-20Test Date01-Feb-20

Tube Extraction

Technician

Recovery (mm) 640

HS

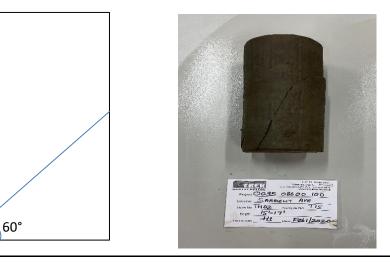
Bottom - 5.2 m	ı	4.94 m	4.	76 m 4	^{.66 m} Top - 4.6 m	
	Кеер		Bulk Qu	PP TV Visual	Moisture Content	
	270 mm		180 mm	100 mm	90 mm	
Visual Class	ification		Moisture Content			
Material	CLAY		Tare ID		AB51	
Composition	silty		Mass tare (g)		6.8	
	ions (<5 mm diam.)		Mass wet + tare (g)		271.8	
trace oxidation			Mass dry + tare (g)		180.8	
			Moisture %		52.3%	
			Unit Weight			
			Bulk Weight (g)		1028.8	
Color	grey		5 (5)			
Moisture	moist		Length (mm) 1		151.40	
Consistency	firm		2		151.20	
Plasticity	high plasticity		3		150.90	
Structure	-		4		150.98	
Gradation			Average Length (m)		0.151	
Torvane			Diam. (mm) 1		71.76	
Reading		0.35	2		71.57	
Vane Size (s,m	n,l)	m	3		71.90	
Undrained She	ear Strength (kPa)	34.3	4		72.20	
Dookot Door	tromotor		Average Diameter (m	n)	0.072	
Pocket Pene Reading	1	0.70	Volume (m ³)		6.13E-04	
	2	0.70	Bulk Unit Weight (kN	l/m ³)	16.5	
	3	0.70	Bulk Unit Weight (pc		104.8	
	Average	0.70	Dry Unit Weight (kN/		10.8	
	ear Strength (kPa)	34.3	Dry Unit Weight (pcf)		68.8	

Project No. Client Project	0035-086-00-100 Morrison Hershfield Sargent Avenue Watermain CP Rail Crossing			
Test Hole	TH 02			
Sample #	T15			
Depth (m)	4.6 - 5.2	Unconfined	Strength	
Sample Date	28-Jan-20		kPa	ksf
Test Date	1-Feb-20	Max q _u	84.9	1.8
Technician	HS	Max S _u	42.5	0.9

Specimen Data

Description CLAY - silty, trace silt inclusions (<5 mm diam.), trace oxidation, grey, moist, firm, high plasticity

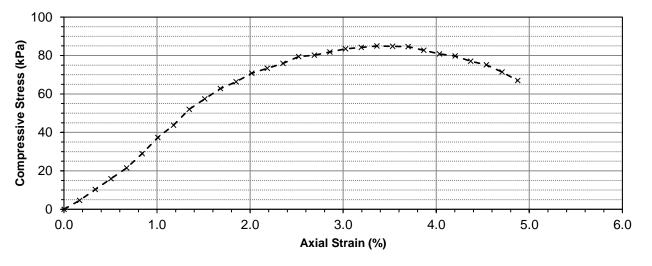
Length	151.1	(mm)	Moisture %	52%	
Diameter	71.9	(mm)	Bulk Unit Wt.	16.5	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	10.8	(kN/m ³)
Initial Area	0.00406	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	


Undrained Shear Strength Tests

Torvane	0		Po	ocket Pene	etrometer		
Reading	Undrained SI	hear Strength	Re	ading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	-	kPa	ksf	
0.35	34.3	0.72		0.70	34.3	0.72	
				0.70	34.3	0.72	
				0.70	34.3	0.72	
			Average	0.70	34.3	0.72	

Failure Geometry

Sketch:


Photo:

Project No.	0035-086-00-100
Client	Morrison Hershfield
Project	Sargent Avenue Watermain CP Rail Crossing

Unconfined Compression Test Graph

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004055	0.0	0.00	0.00
10	5	0.2540	0.17	0.004062	18.7	4.61	2.31
20	11	0.5080	0.34	0.004069	41.7	10.25	5.12
30	17	0.7620	0.50	0.004076	64.7	15.87	7.93
40	23	1.0160	0.67	0.004083	87.6	21.47	10.73
50	31	1.2700	0.84	0.004090	118.3	28.92	14.46
60	40	1.5240	1.01	0.004097	152.7	37.28	18.64
70	47	1.7780	1.18	0.004104	179.5	43.75	21.87
80	56	2.0320	1.34	0.004111	213.7	51.98	25.99
90	62	2.2860	1.51	0.004118	236.3	57.39	28.69
100	68	2.5400	1.68	0.004125	259.0	62.78	31.39
110	72	2.7940	1.85	0.004132	274.1	66.33	33.17
120	77	3.0480	2.02	0.004139	292.9	70.76	35.38
130	80	3.3020	2.19	0.004146	304.1	73.35	36.67
140	83	3.5560	2.35	0.004153	315.3	75.92	37.96
150	87	3.8100	2.52	0.004160	330.3	79.39	39.69
160	88	4.0640	2.69	0.004167	334.0	80.15	40.07
170	90	4.3180	2.86	0.004175	341.5	81.80	40.90
180	92	4.5720	3.03	0.004182	349.0	83.45	41.72
190	93	4.8260	3.19	0.004189	352.7	84.20	42.10
200	94	5.0800	3.36	0.004196	356.5	84.94	42.47
210	94	5.3340	3.53	0.004204	356.5	84.80	42.40
220	94	5.5880	3.70	0.004211	356.5	84.65	42.32
230	92	5.8420	3.87	0.004218	349.0	82.73	41.36

Project No.0035-086-00-100ClientMorrison HershfieldProjectSargent Avenue Watermain CP Rail Crossing

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	90	6.0960	4.03	0.004226	341.5	80.81	40.41
250	89	6.3500	4.20	0.004233	337.8	79.79	39.89
260	86	6.6040	4.37	0.004241	326.5	77.00	38.50
270	84	6.8580	4.54	0.004248	319.1	75.10	37.55
280	80	7.1120	4.71	0.004256	304.1	71.46	35.73
290	75	7.3660	4.87	0.004263	285.4	66.94	33.47