

Submittal Review

Project Name:	Transit Track 25-36 – Mechancal Upgrade – HRV Pretender		
Project / File No.:	19-332-01		
Shop Drawing ID:			
Description:	Heat Recovery Ventilators – HRU-9 to HRU-11		

Consultant's Stamp

Reviewed	This review by SMS Engineering Ltd. is for the sole purpose of ascertaining conformance with the general desig concept. This review shall not mean that SMS Engineering Ltd. approves the detail design inherent in the sho					
Not Reviewed	drawings, responsibility for which shall remain with the contractor submitting same, and such review shall no relieve the contractor of his responsibility for errors or omissions in the shop drawings or of his responsibility for					
Reviewed as Modified						
Revise and Resubmit	construction and installation and for co-ordination of the work of all					
Signed by: Jeff Horrock	s (mech) and Valor Kane (elec)	Date: February 3, 2020				

Comments

Mechanical – Revise coil handing to opposite side for HRV -9 and 11.

Electrical – none

Structural – refer to attached comments from CKP.

Submittal Drawings

Project: Winnipeg Transit Storage Track 25-36 Job No: 24112

Date: Jan 20/20 Sold To: City of Winnipeg - Winnipeg Transit Consulting Engineer: SMS Engineering Midwest Engineering Contact: Dale Ziemanski

Equipment:

Tag	Section	Description
HRU-9	23 80 10	TempEff Heat Recovery Ventilators
HRU-10	23 80 10	TempEff Heat Recovery Ventilators
HRU-11	23 80 10	TempEff Heat Recovery Ventilators

Comments:

Revisio	n 1		Approved
🗌 Revisio	n 2		Approved with revisions noted
🗆 Revisio	n 3		Resubmit
JOB S	TATUS :		
7	Equipment w drawings are	rill not return <i>releas</i>	R APPROVAL be scheduled until approved ned to Midwest Engineering. se is required, notify ng in writing.
			D TO PRODUCTION

Submittal Drawings

Project: Transit Garage fort Rouge

Tag: HRU-9

PO#: 24121-03

Date: January 14, 2020

Agent: Midwest Engineering

Revision #	Revision Detail	Date Revised	Revised by
1	Added support and filter information	Jan 20, 2020	CR

JOB STATUS

HELD FOR APPROVAL

Equipment will not be scheduled until approved drawings are returned to Tempeff North America

Current lead times from release is 12-14 weeks

If immediate release is required, notify Tempeff in writing

RELEASED TO PRODUCTION

Scheduled shipment from factory: _

UNITS ARE SHIPPED SPLIT, WIRING RECONNECTION ON SITE REQUIRED – SEE PROPOSAL DRAWING FOR SPLIT LOCATIONS

675 Washington Ave, WINNIPEG, MB CANADA R2K 1M4 PH: (204) 783-1902

			_								_		_
Project	Transit Gara	age Fort Rouge				Line I	n						
Tag(s)	HI	RU-9				Voltage	575-3-60						
Agent	Midwest	Engineering				FLA	58.6	AMPS					
Job Number						AMPACITY	66	AMPS					
						MAX.NON-TIME DELAY FUSE		AMP					
						MAX.TIME DELAY FUSE		AMP					
						MAX.CIRCUIT BREAKER	100	AMP					
						MIN.WIRE SIZE	#4	AWG					
							odel						
				RG 33	3000 Welc	led Damper							
Approxim	nate Weight	9130	KG	20177	LBS	Outdoor		Con	figuration	Ту	vpe 1	1	
										•		4	
						1							

Power and energy demand

Fans

		Exhau
Technical data		
Input data	Sup. air	Exh. air
Total volume (SCFM)	27692	2 27692
HX Air volume (SCFM)	27692	27692
Filter	Merv 10 (2")	None
	-	-
External pressure drop (in. W.C)	1.50	1.00

Output data		
Filter air velocity (fpm)	498	0
Design pressure drop filter (in W.C)	0.73	0.00
HX air velocity (fpm)	495	495
Pressure drop heat exch. (in W.C)	0.76	0.76
Auxillary Pressure Drop drop (in W.C)	0.38	0.00
Backdraft dampers	0.00	0.00
Static pressure (in W.C)	3.37	1.76

1163	1053
1600	1600
73.95	66.73
23.89	16.57
24.14	18.49
	1600 73.95 23.89

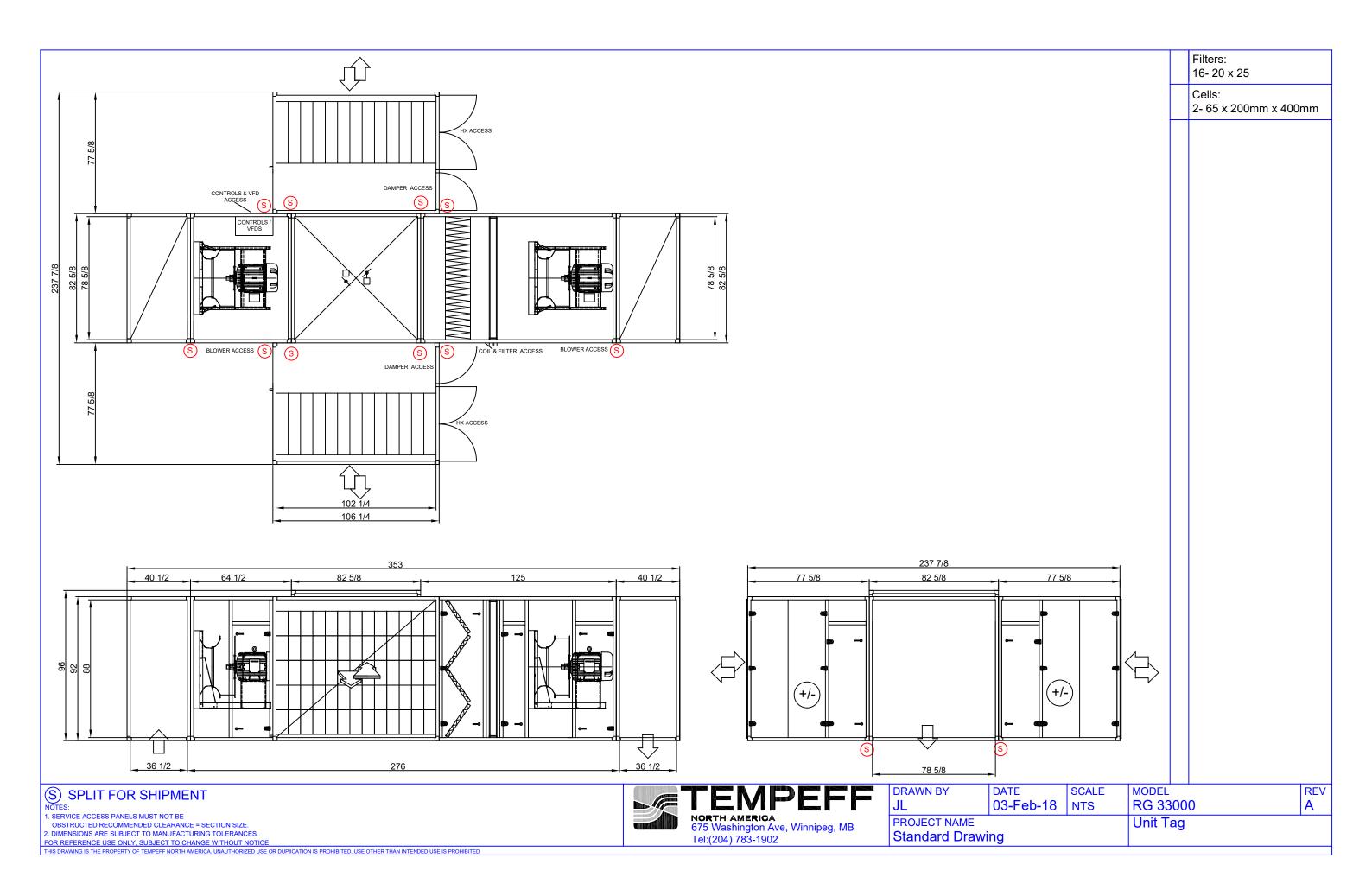
Motor efficiency (%)	93	93
Motor power rating (hp)	30.00	25.00
Motor RPM	1175	1175
Motor Operating Frequency (Hz)	59	54

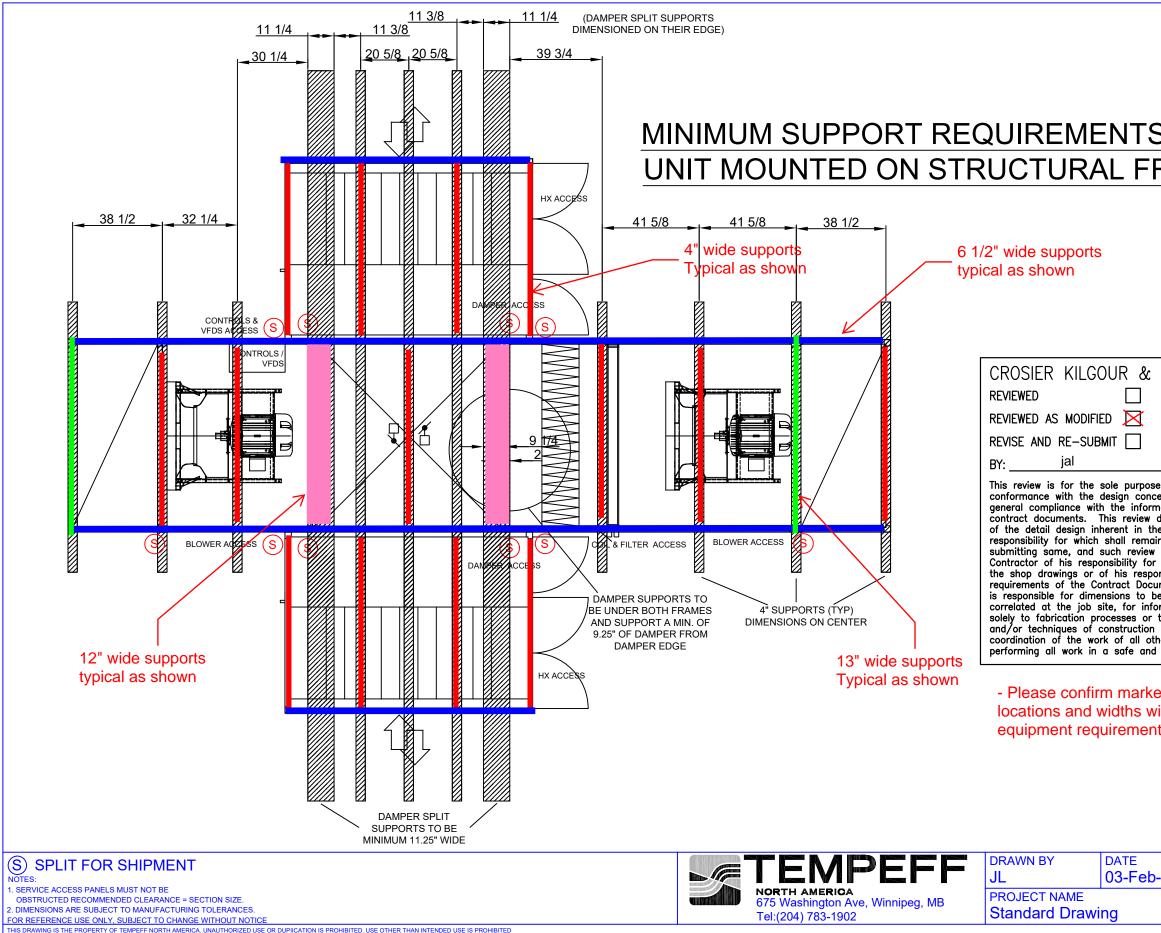
Standard Features 2" Foam injected panels Extruded aluminum post and corner construction All sections come with hinged access doors and locking latches Multi-Damper switchover section complete with actuators SS Drain Pans under Heat Exchanger(s) w/ 1"NPTConnections Galvanized Heat Exchanger Frames Galvanized damper blades, damper rods and axles 18Ga Roof & Gutters 4" Ventex Louvers SLEEPER/STAND MOUNT (BY OTHERS)

Input data	Calculated
	Winter
	DB
Design outdoor temp. (°F)	-30.00
Desired supply air temp. winter (°F)	70
Exhaust air temperature (°F)	70.0
Output data	
Efficiency (across unit) (%)	86.5
Supply air temp. after unit (°F)	56.48
Recovered energy across unit (BTUH)	2,586,445

Summer		
DB		WB
	90.0	
	75.0	

75.0	
78.7	
-336,624.7	


Additional Features Exterior Casing: 24 Ga G90 Galv Interior Casing: 24 Ga G90 Galv 30 HP WEG TEFC Premium Eff. 6 Pole 326T Frame


CROSIER KILGOUR &	PARTNERS LTD.
REVIEWED	
REVIEWED AS MODIFIED	REJECTED
REVISE AND RE-SUBMIT	DATE: 2020/01/31
BY: jal	
This review is for the sole purpos conformance with the design conc general compliance with the inforr contract documents. This review of the detail design inherent in th responsibility for which shall rema submitting same, and such review Contractor of his responsibility for the shop drawings or of his respo requirements of the Contract Docu is responsible for dimensions to b correlated at the job site, for info solely to fabrication processes or and/or techniques of construction coordination of the work of all ot performing all work in a safe and	sept of the project and nation given in the does not mean approval he shop drawings, in with the Contractor shall not relieve the errors or omissions in onsibility for meeting all uments. The Contractor be confirmed and ormation that pertains to means, methods and installation, for her trades, and for

- Review applies to operating weight

25 HP WEG TEFC Premium Eff. 6 Pole 324T Frame SA Drive: ACH550-UH-032A-6 RA Drive: ACH550-UH-027A-6 1in. Seismic Spring Isolation SA Pre-Filter: Dafco Merv 10 (2") 400 HC Hot Water Coil Single point power Quick connect Low Limit Freight Insurance

and structural support locations only. Please review structural support location drawing and confirm requirements.

NG IS THE PE

				Filters: 16- 20 x 25	
				Cells: 2- 65 x 200mm x 400	mm
	OR				
R	ME				
	TNERS L1 Reviewed []	ſD.			
REJEC		1			
		_			
ept of nation	scertaining gene the project an given in the ot mean appro	d			
e shop n with shall ı	drawings, the Contractor not relieve the or omissions				
nsibility ments. e confi	/ for meeting (The Contract irmed and	all :or			
to mea and in	n that pertains ans, methods Istallation, for des, and for				
	actory manner.				
ill su	bearing it the				
ts.					
-18	SCALE NTS	MODEL RG 33	00	0	REV A
		Unit T			I

HOT WATER COIL REPORT

Company: Contact: Tel: Fax or Email:

5055 Taylor Kidd Blvd T: (613) 544-2200 Millhaven, Ontario F: (613) 544-7779

> E-Mail: info@directcoil.com Website: directcoil.com

December 10, 2019

Date: Reference: Prepared By: Project Name:

Coil Tag: Coil Model Number: 5W-02-81.0-07-72.0-13 Item: 001, Coil Hand: Right

Physical Data			
Number Of Coils	One (1)	Tube Diameter	5/8 1.50 x 1.299
Fin Height (Per Coil)	81.000"	Tube Turbulators	No
Fin Length (Per Coil)	72.000"	Tube Material	Copper - 0.020 Plain
Number Of Rows Deep	Two (2)	Fin Material	Aluminum 0.010
Circuit Ratio	0.24	Fin Style	Corrugated
Fins Per Inch	Seven (7)	Connection Type	MPT Steel
Supply Connection Size	1 1/2"	Coil Weight (Per Coil)[operating]	308 [409]LBS
Return Connection Size	1 1/2"	Coil Internal Volume (Per Coil)	11.610 gal
Header Material	Copper (L)	Casing Style	Standard
		Casing Material	Galvanized Steel 16 gauge
Air Data		Fluid Data	
Total Airflow (All Coils)	27,692 SCFM	Fluid Type	Ethylene Gly.
Airflow (Per Coil)	27,692 SCFM	Glycol Ratio	55%
Face Velocity	684 FPM	Entering Fluid Temp	170.00 °F
Altitude	0.00FT	Leaving Fluid Temp	130.00 °F
Entering Dry Bulb	56.48 °F	Fluid Flow Per Coil (Total)	58.62 GPM (58.62)
Leaving Dry Bulb	90.00 °F	Tube Velocity	5.03 FPS
Air Pressure Drop	0.38"WG	Fluid Pressure Drop	12.10'WG
Fouling Factor	0.0000 ft² °F h/Btu	Fouling Factor	0.0000 ft² °F h/Btu

Capacity

Capacity Per Coil (Total)

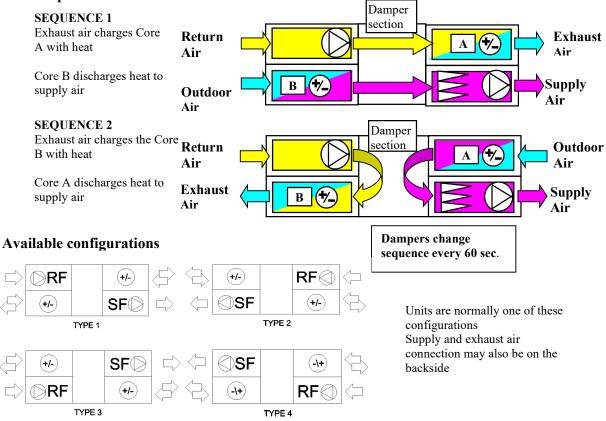
1,013.36 MBH (1,013.36)

Notes:

1. Certified in accordance with the AHRI Forced-Circulation Air-Cooling and Air-Heating Coils Certification Program which is based on AHRI Standard 410 within the Range of Standard Rating Conditions listed in Table 1 of the Standard. Certified units may be found in the AHRI Directory at www.ahridirectory.org

Software version: 0.99.8165

GENERAL DESCRIPTION OF FUNCTION


A Dual CoreTM air handling unit comes with a regenerative cyclic dual core heat exchanger. It includes a supply and an exhaust fan (both optional) and two cores filled with specially corrugated 0.7 mm thick aluminium plates which act as heat accumulators. In between the cores is a patented damper section which changes over every 60 seconds to periodically direct warm air through one of the two cores while outside air gains heat from the other. Before each fan is a filter section (optional) to filter the air. Heat recovery is automatically activated when called upon.

The unit may also be used for cooling recovery. If the outside temperature is higher than the indoor the damper cycling starts, enabling cooling recovery. This function reduces the demand for mechanical cooling.

In the off position, the dampers all close against outdoor air thereby reducing infiltration losses through the unit.

The extremely high temperature efficiency (90% +/- 5%) gives a supply air temperature just a few degrees below room temperature which in many cases allow systems to be designed without additional heating coils.

The inspection doors to fan and damper sections have lockable handles, which contributes to high security.

Principle of function

Tempeff North America Ltd.www.tempeffnorthamerica.com675 Washington Ave, Winnipeg, MB Canada R2K 1M4Ph: (204) 783-1902

RG 33000-56000 Units

Sequence of Operation

- A. Testing Damper Actuators:
 - 1. The damper motors can be tested by using the changeover switch S1 and S2 in the damper control panel.
 - 2. The normal position of the S1 and S2 switches are 0 where the actuators follow the signals from a central control system (BMS).
 - 3. If S1 is in position 1 the damper actuator M1 runs continuously, and in position 2 actuator M2 runs continuously. If S2 is in position 1 the damper actuator M3 runs continuously, and in position 2 actuator M4 runs continuously.
- B. Sequence with the unit controlled by central control system (BMS):
 - 1. The damper is controlled by the central control system (BMS).
 - a. Enable contact (see field wiring diagram) controls whether the damper and blower operate or not (contact closed = operating, open = not operating).
 - b. Heat Recovery contact (see field wiring diagram) controls the damper operating mode (contact closed = heat recovery, open = free cooling).
 - 2. When Enable contact is closed, the damper section starts and the PLC-Blower Interlocks are energized, enabling the enabling the VFDs to start the motors and run at a set constant speed.
 - 3. Enable contact closed and Heat Recovery contact open = damper changes position every 3 hours (free cooling).
 - 4. Enable contact closed and Heat Recovery contact closed = damper changes position every 60 seconds (field adjustable) (heat recovery).
 - 5. Enable Contact open and Heat Recovery contact open = the PLC-Blower Interlocks are deenergized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.

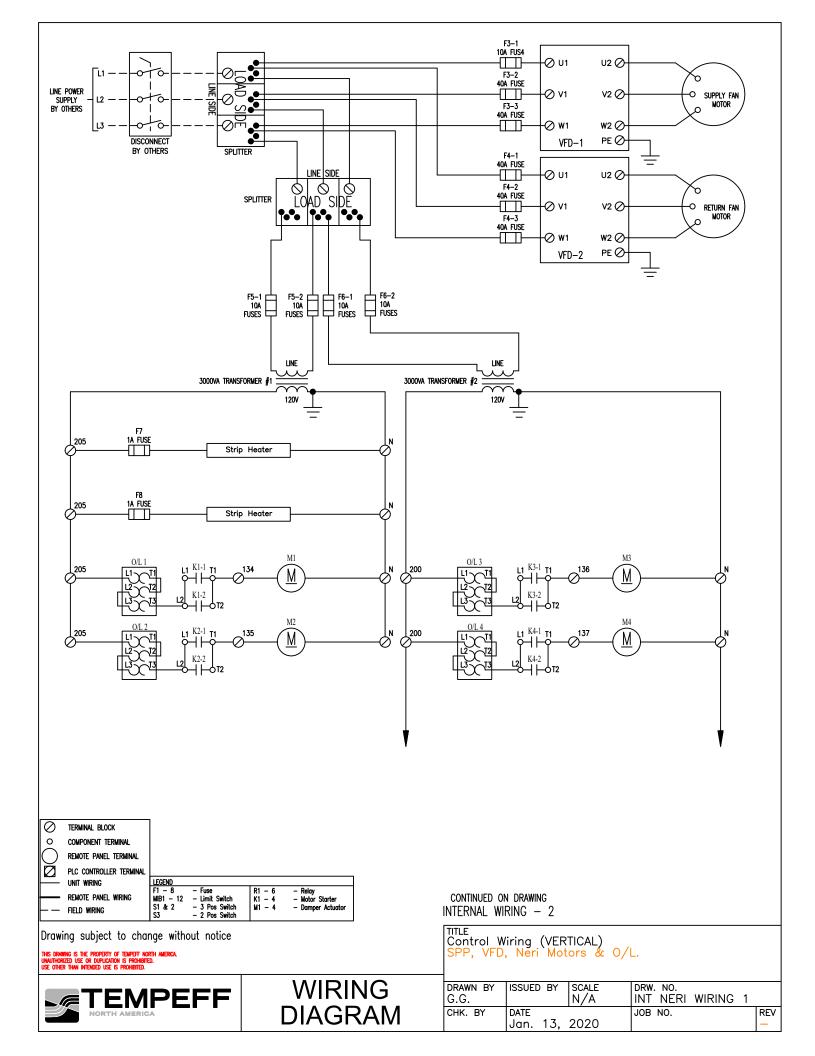
- 6. Should the system fall below an internal low limit set point for 5 min, the PLC-Blower Interlocks are de-energized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - a. 24Vdc low limit alarm to BMS signal will be enabled.
 - b. The low limit requires the unit turned off and then back on (remove Enable signal and then re-enable or turn S2 switch to Manual Night and back).
- C. Heating and cooling:
 - 1. Any type of supplemental heating or cooling of the supply air will be controlled by others (central control system).
- D. Additional Notes:
 - 1. The unit has blade location micro switches to enable the PLC-Blower interlocks if the unit is operating normally.
 - 2. If fire alarm contacts are used, remove the factory installed jumper from terminals 101 & 150 and connect the Normally Closed fire alarm contact. If the contact opens during operation, the unit will shut down and dampers close.
 - 3. When the System Switch S3 is in the On position, the unit runs normally. When the System Switch S3 is in the Off position, the unit is disabled, but testing can still be performed.

Note: In all cases ensure that damper section is first on and last off, (after supply and exhaust blower section) to prevent damage to internal damper section.

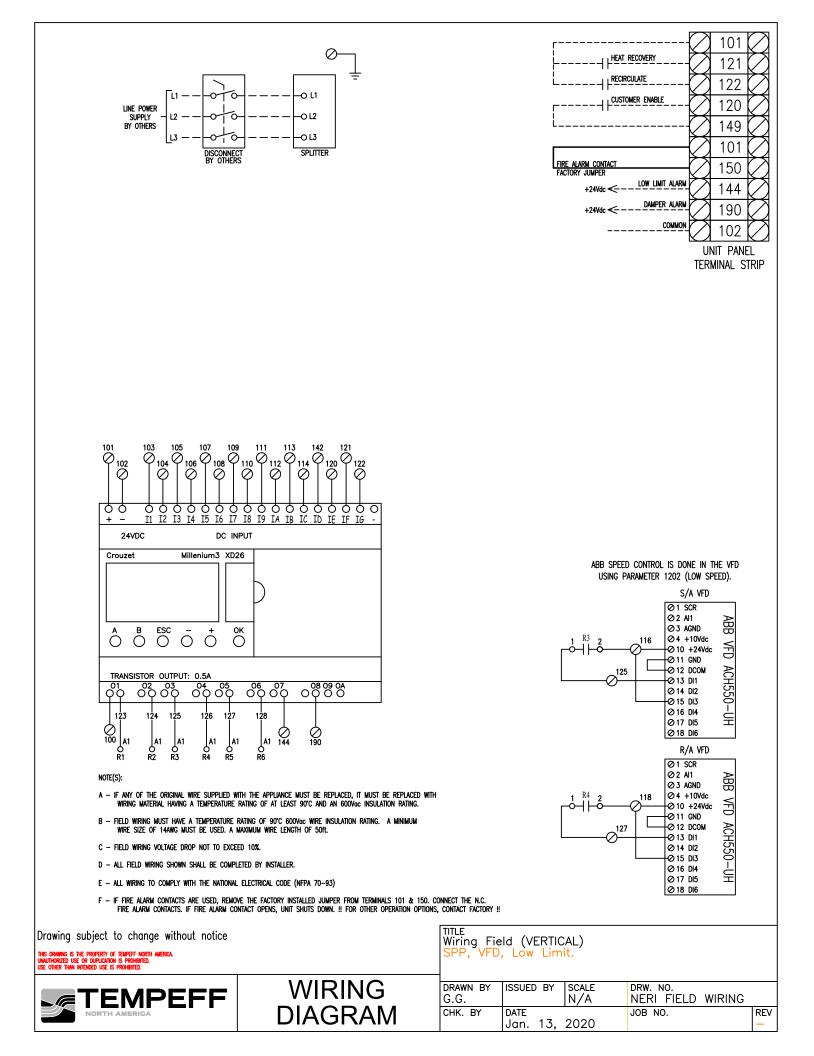
ABB Variable Frequency Drive

ACH550-UH

Programming Single Speed

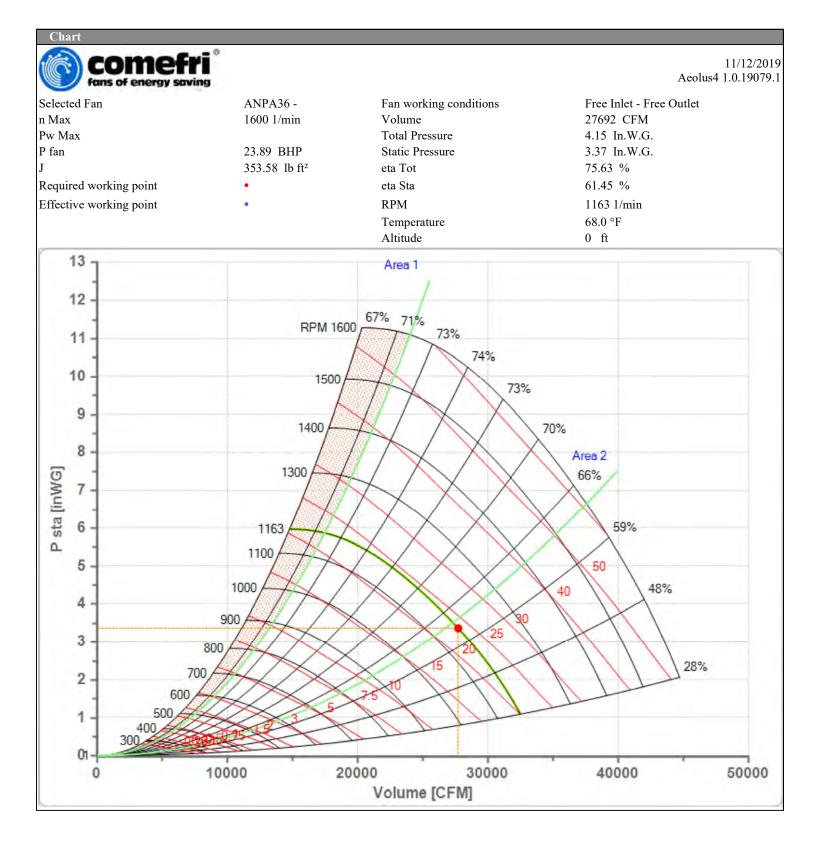

On initial start-up, or after resetting to factory parameters, follow the Start-Up Assistant to enter motor and supply information, use HVAC Default for Application Macro.


Enter Menu, then enter Parameters

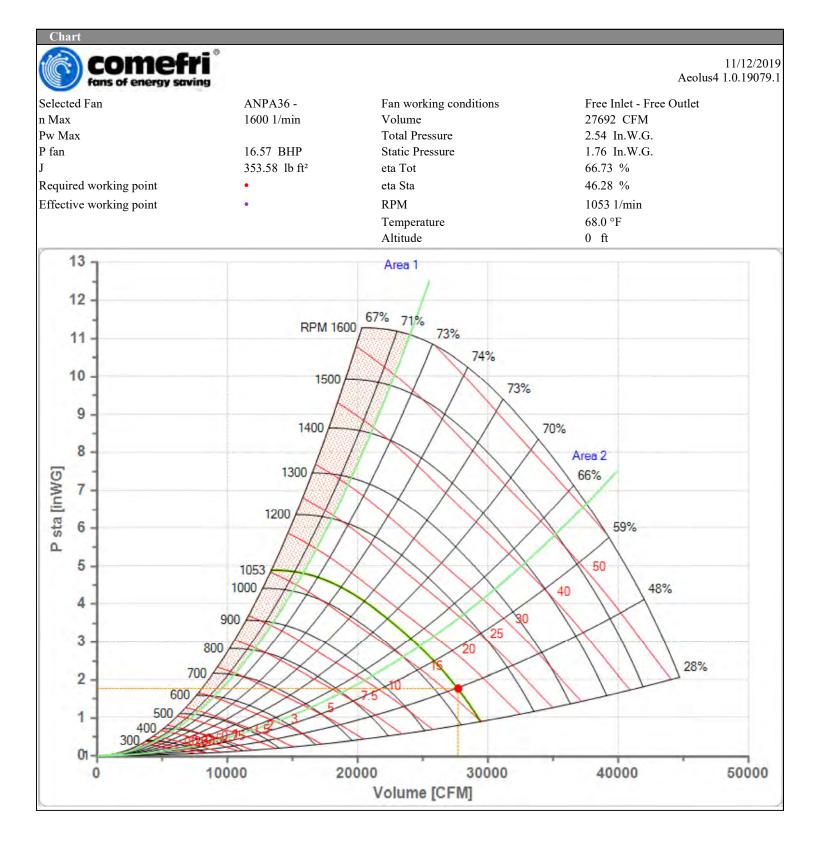

P1001 –1	EXT1 Command (DI1 - Two-Wire Start/Stop) (default)
P1102 – 0	Ext 1/Ext 2 Sel (Ext1) (default)
P1201 – 3	Const Speed Sel (DI3) (default)
P1202 – 59.0	Const Speed 1 (DI3) (Hz) – Supply Air VFD
P1202 – 54.0	Const Speed 1 (DI3) (Hz) – Return Air VFD
P1608 – 0	Start Enable 1 (Not Sel)
P2007- 0.0	Minimum Frequency (Hz) (default)
P2008 – 70.0	Maximum Frequency (Hz)

P9902 – 1 Reset to factory parameters by selecting HVAC DEFAULT (after pressing SAVE press EXIT to return to the main screen, cut off main power and wait until LCD display turns off, re-apply main power).

!! Maximum Reference (Hz) = (maximum fan RPM / maximum motor RPM) * 60Hz !!



Customer						Deserie	4.0					
Project Your Ref.						Descrip Our Re				Tempeff Nor	th America	
I our Kei.							1.			Tempen Nor	III America	
Input dat	a											
Volume		27692 CFM		Temperature		68.0 °F			Density		0.075 lb/cu.ft	
Static Press	ure	3.37 In.W.G.		Altitude		0 ft			Free Inlet -	Free Outlet		
					Catala	d = 4 =			1 1			
					Catalog	gue data					A	
				n Max	Pw]	Max		J				
		ed Fan A36 -		1/min	BI	ΗP	1	b ft²				
				1600 353.58		-						
Fan Infor	mation								-			
c ft/min	p tot * In.W.G.	p sta In.W.G.	p dyn ** In.W.G.	tip speed ft/min	RPM 1/min	eta Tot %	*	eta Sta %	P fan BHP	Min Mot. BHP	P mot BHP	Shaft diameter in
	4.15	3.37	0.78	10792	1163	75.63		61.45	23.89			0.00
				ssure at the impelle	r outlet							
(**)Theoric value	e, calculated at	the impeller outl	et 63	125	250		500	1000	2000	4000	8000	Tot.
fm[Hz] L w3 Total 9	Sound Pow	or Loval in t		t- Lwi Inlet D								101.
Level Lw3		dB/dB(A)	92 / 0		91 / 8		/ 80	84 / 8			68 / 67	97 / 89
				let Sound Pov		-						
Level Lw5		dB/dB(A)	91/0		97 / 8	-	/ 83	83 / 8			73 / 71	100 / 91
			he free outle	et - Lwmo Out	tlet Soun	d Power	Level	(free out	let) do not i	ncludes the e	effect of duct	end
Level Lw6		dB/dB(A)	95 / (69 92 / 76	97 / 8	88 96	/ 93	90 / 9	0 84 / 85	80 / 81	77 / 76	102 / 96


.

Customer												
Project						Descrip						
Your Ref.						Our Re	f.			Tempeff Nor	th America	
T (1)	_											
Input dat Volume	ta	27692 CFM		Temperature		68.0 °F			Density		0.075 lb/cu.ft	
Static Press		1.76 In.W.G.		Altitude		00.0 F				Free Outlet		
Static Fress	sure	1.70 III.W.G.		Annuae		0 11			Free fillet -	Free Outle		
					Catalo	gue data			1	-		1
									-		A	
				n Max	Pw	Max		J				I
	Select ANP	ed Fan A36 -		1/min	BI	ΗP	lł	o ft²				
				1600			35	3.58		1.1.1.1		
Fan Info	rmation											
с	p tot *	p sta	p dyn **	tip speed	RPM	eta Tot	* 6	eta Sta	P fan	Min Mot.	P mot	Shaft
ft/min	In.W.G.	In.W.G.	In.W.G.	ft/min	1/min	%		%	BHP	BHP	BHP	diameter in
	2.54	1.76	0.78	9771	1053	66.73		46.28	16.57			0.00
				ssure at the impelle	r outlet		!		•			
(^{m)}) neoric valu fm[Hz]	e, calculated at	the impeller out	63	125	250	4	500	1000	2000	4000	8000	Tot.
1 1	Sound Powe	er Level in t		t- Lwi Inlet D		-					0000	100
Level Lw3		iB/dB(A)	92/0		89 / 8		/ 81	84 / 84			67 / 66	99 / 88
Lw5 Inlet 7				let Sound Pov	ver Level						d correction	
Level Lw5		lB/dB(A)	90 / 0		93 / 8	-	/ 81	82 / 82			70 / 69	99 / 89
Lw6 Total S	Sound Powe	er Level at t	he free outle	et - Lwmo Out	let Sound	d Power	Level (free out	let) do not i	ncludes the e	ffect of duct	end

.

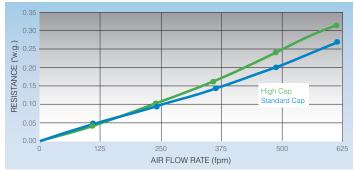
PRODUCT OVERVIEW

- Standard Capacity (MERV 8) & High Capacity (MERV 10)
- Available in 1", 2" & 4"depths
- Ideal for use in
 Prefilter for high efficiency
 - filters
 - Office and Retail
 - Manufacturing and Distribution
 - Government and
 Education facilities
 - Doctor offices, assisted living facilities and Hospitals
 - Hotels and Airports
 - Single and Multi-Family Housing

AEROSTAR SERIES 400 PLEAT

WHY THE SERIES 400?

- 100% synthetic pleated media achieves exceptionally high levels of efficiency
 - Does not rely on electrostatic charge
 - Low resistance to air flow means minimal energy costs
 - Moisture resistant and will not promote microbial growth
 - Excellent pre-filter for higher efficiency air filters
 - Effectively removes airborne irritants
 - Protects cooling coils & ductwork of HVAC system


- Durable construction optimizes performance
 - Media laminated to metal grid
 - Minimized media fluttering
 - Design helps maintain pleat uniformity
 - Frame constructed of high wet strength beverage board
 - Will not warp, crack or distort under normal operating conditions

AEROSTAR SERIES 400 PLEAT

PERFORMANCE DATA (24 x 24)

	v.g.)					
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
	1"	0.14	0.21	-	-	1.0
Standard MERV 8	2"	_	0.14	0.20	0.27	1.0
	4"	_	0.09	0.14	0.21	1.0

INITIAL RESISTANCE (24 x 24 x 2)

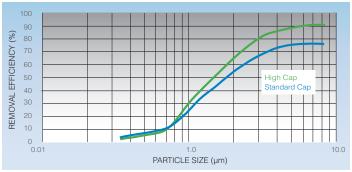
PRODUCT DATA

PART N	UMBER	NOMINAL Size*	ACTUAL Size	CFM CAP	ABILTIES
STD CAP	HIGH CAP	(H" × W" × D")	(H" × W" × D")	300 fpm	375 fpm
10403 10404 10364 10405 10406 10365 10407 10366 10367 10368 10369 10408 10370 10471 10409 10410 10372 10411 10373 10412 10413 10414 10375 10416 10376 10417 10377	10476 10477 10436 10478 10479 10437 10480 10438 10440 10441 10441 10442 10443 10442 10443 10443 10443 10444 10445 10485 10485 10485 10486 10447 10488 10446 10447 10489 10448	$\begin{array}{c} 8 \times 16 \times 1 \\ 10 \times 10 \times 1 \\ 10 \times 20 \times 1 \\ 10 \times 25 \times 1 \\ 10 \times 25 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 25 \times 1 \\ 14 \times 20 \times 1 \\ 14 \times 25 \times 1 \\ 14 \times 25 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 16 \times 16 \times 1 \\ 16 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 25 \times 1 \\ 20 \times 20 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 22 \times 22 \times 1 \\ 24 \times 24 \times 1 \end{array}$	$\begin{array}{c} 7\ \frac{3}{4} \times 15\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 9\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 19\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 23\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 24\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{3}{4} \times 11\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 15\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 13\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 15\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 21\ \frac{3}{4} \times 21\ \frac{3}{4} \times \frac{3}{4} \\ 21\ 3$	250 200 400 525 300 400 500 600 625 575 700 725 625 800 725 625 800 825 650 800 825 675 750 825 800 825 825 800 925 825 1000 1050 1050 1000	325 250 525 625 625 750 775 725 875 900 775 975 650 825 1000 1050 850 925 1025 1125 1175 1050 1250 1250 1250

* Contact Customer Care for additional sizes and information.

ENGINEERING SPECIFICATIONS

1.0 General


- 1.1 Filters shall be Aerostar® Series 400 extended surface pleated air filters as manufactured Dafco by Filtration Group.
- 1.2 Filters shall be available in standard and high capacity configurations and available in nominal depths of 1", 2", and 4".
- 1.3 Underwriters Laboratories classified to UL 900 and ULC-S111-07.

2.0 Filter Materials of Construction

- 2.1 Media shall be 100% synthetic, mechanical media that does not support microbial growth.
- 2.2 Filters shall have a high wet strength beverage board with a cross member design that increases filter rigidity and prevents breaching. Frame shall be recyclable.

		INI	TIAL RESIS			
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
112.1	1"	0.20	0.28	—	-	1.0
High MERV 10	2"	_	0.16	0.24	0.32	1.0
	4"	_	0.08	0.17	0.26	1.0

MINIMUM REMOVAL EFFICIENCY (24 x 24 x 2)

PA	RT NUMBER	NOMINAL Size*	ACTUAL Size	CFM CAP	ABILTIES
STD C	CAP HIGH CAF		(H" × W" × D")	375 fpm	500 fpm
1041 1037 1041 1038 1038 1038 1042 1038 1042 1038 1042 1038 1042 1038 1038 1039 1039	79 10451 19 10492 30 10452 31 10453 32 10454 33 10455 20 10493 34 10456 35 10457 36 10458 21 10494 37 10459 22 10493 38 10450 39 10461 30 10462 31 10453	$\begin{array}{c} 10 \times 10 \times 2 \\ 10 \times 20 \times 2 \\ 12 \times 20 \times 2 \\ 12 \times 24 \times 2 \\ 14 \times 20 \times 2 \\ 14 \times 25 \times 2 \\ 15 \times 20 \times 2 \\ 16 \times 16 \times 2 \\ 16 \times 20 \times 2 \\ 16 \times 24 \times 2 \\ 16 \times 25 \times 2 \\ 18 \times 22 \times 2 \\ 18 \times 24 \times 2 \\ 20 \times 20 \times 2 \\ 20 \times 24 \times 2 \\ 20 \times 25 \times 2 \\ 24 \times 24 \times 2 \\ 25 \times 25 \times 2 \end{array}$	$\begin{array}{c}9\ \frac{9}{4} \times 9\ \frac{9}{4} \times 1\ \frac{3}{4}\\9\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\11\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\23\ \frac{3}{6} \times 23\ \frac{3}{6} \times 1\ \frac{3}{4}\\23\ \frac{3}{6} \times 23\ \frac{3}{6} \times 1\ \frac{3}{4}\\24\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\end{array}$	250 525 625 750 725 900 775 650 825 1000 1050 1025 1125 1175 1050 1250 1300 1500 1625	350 700 825 1000 975 1200 1025 875 1100 1325 1400 1375 1500 1550 1400 1650 1750 2000 2150
1039 1039 1039 1039 1039 1039 1039 1040 1040 1040	94 10466 95 10467 96 10468 97 10469 98 10470 99 10471 00 10472 01 10473	$\begin{array}{c} 12 \times 24 \times 4 \\ 16 \times 20 \times 4 \\ 16 \times 25 \times 4 \\ 18 \times 24 \times 4 \\ 20 \times 20 \times 4 \\ 20 \times 25 \times 4 \\ 20 \times 25 \times 4 \\ 24 \times 24 \times 4 \\ 25 \times 29 \times 4 \\ 28 \times 30 \times 4 \end{array}$	$\begin{array}{c} 11 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 17 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 19 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 24 \ \frac{3}{6} \times 28 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 27 \ \frac{3}{6} \times 29 \ \frac{3}{6} \times 3 \ \frac{3}{4} \end{array}$	500 fpm 1000 1100 1400 1500 1400 1650 1750 2000 2525 2900	625 fpm 1250 1400 1750 1875 1750 2100 2200 2500 3150 3650

2.3 Filters shall have an expanded metal support grid bonded to the air-exiting side of the filter to maintain pleat uniformity and prevent fluttering. Metal support grid shall be recyclable and contain a significant amount of post-consumer and pre-consumer content.

3.0 Filter Performance

- 3.1 Filters shall be MERV 10/10A in a high capacity configuration and MERV 8/8A in a standard capacity configuration when tested in accordance with ASHRAE 52.2 Test Standard.
- 3.2 For initial resistance of filters, see Performance Data chart above.
- 3.3 Filters shall be rated to withstand a continuous operating temperature up to 200°F.
- 3.4 Filters shall have a recommended final resistance of 1.0" w.g.

Submittal Drawings

Project: Transit Garage fort Rouge

Tag: HRU-10

PO#: 24121-03

Date: January 14, 2020

Agent: Midwest Engineering

Revision #	Revision Detail	Date Revised	Revised by
1	Added support and filter information	Jan 20, 2020	CR

JOB STATUS

HELD FOR APPROVAL

Equipment will not be scheduled until approved drawings are returned to Tempeff North America

Current lead times from release is 12-14 weeks

If immediate release is required, notify Tempeff in writing

RELEASED TO PRODUCTION

Scheduled shipment from factory: _

UNITS ARE SHIPPED SPLIT, WIRING RECONNECTION ON SITE REQUIRED – SEE PROPOSAL DRAWING FOR SPLIT LOCATIONS

675 Washington Ave, WINNIPEG, MB CANADA R2K 1M4 PH: (204) 783-1902

Project	Transit Garage Fort Ro	ouge		Line I	n						
Tag(s)	HRU-10			Voltage	575-3-60						
Agent	Midwest Engineering	g		FLA	9	AMPS					
Job Number				AMPACITY	11	AMPS					
				MAX.NON-TIME DELAY FUSE		AMP					
				MAX.TIME DELAY FUSE		AMP					
				MAX.CIRCUIT BREAKER		AMP					
				MIN.WIRE SIZE	#14	AWG					
					odel						
				RG 5500							
Approxima	ate Weight 3	³⁰⁹⁰ KG	6830 LBS	Outdoor		Con	ifiguration	Ту	pe 1]	

Power and energy demand

Input data

Fans

		Exhaus
Technical data		
Input data	Sup. air	Exh. air
Total volume (SCFM)	5152	2 5152
HX Air volume (SCFM)	5152	2 5152
Filter	Merv 10 (2")	None
	-	-
External pressure drop (in. W.C)	1.50) 1.00

Output data		
Filter air velocity (fpm)	357	0
Design pressure drop filter (in W.C)	0.45	0.00
HX air velocity (fpm)	328	328
Pressure drop heat exch. (in W.C)	0.41	0.41
Auxillary Pressure Drop drop (in W.C)	0.11	0.00
Backdraft dampers	0.00	0.00
Static pressure (in W.C)	2.47	1.41

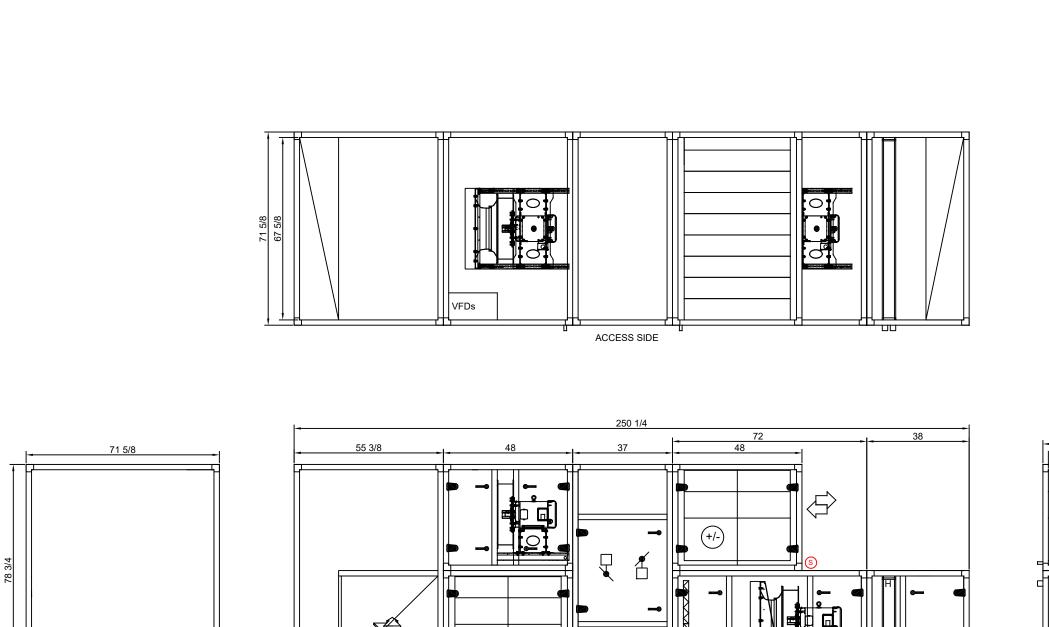
Fan speed (rpm)	1848	1622
Max (rpm)	3300	3300
Fan efficiency (%)	74.12	66.35
Required BHP	3.46	2.24
Actual Required bhp		2.43

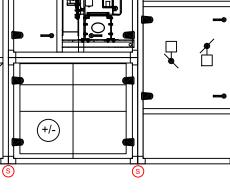
Motor efficiency (%)	89.5	89.5
Motor power rating (hp)	5.00	3.00
Motor RPM	1755	1760
Motor Operating Frequency (Hz)	63	55

Standard Features 2" Foam injected panels Extruded aluminum post and corner construction All sections come with hinged access doors and locking latches Multi-Damper switchover section complete with actuators SS Drain Pans under Heat Exchanger(s) w/ 1"NPTConnections Galvanized Heat Exchanger Frames Galvanized damper blades, damper rods and axles 18Ga Roof & Gutters 4" Ventex Louvers SLEEPER/STAND MOUNT (BY OTHERS)

	Winter DB
Design outdoor temp. (°F)	-30.00
Desired supply air temp. winter (°F)	70
Exhaust air temperature (°F)	70.0
Output data	
Efficiency (across unit) (%)	90.5
Supply air temp. after unit (°F)	60.51
Recovered energy across unit (BTUH)	503,589

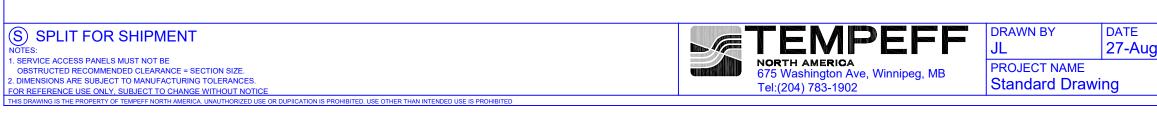
Calculated

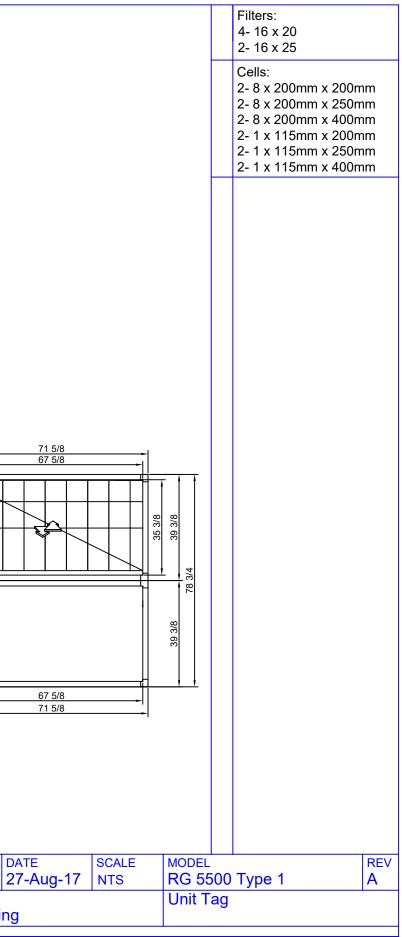

Summer		
DB		WB
	90.0	
	75.0	


79.7
78.0
-66,547.5

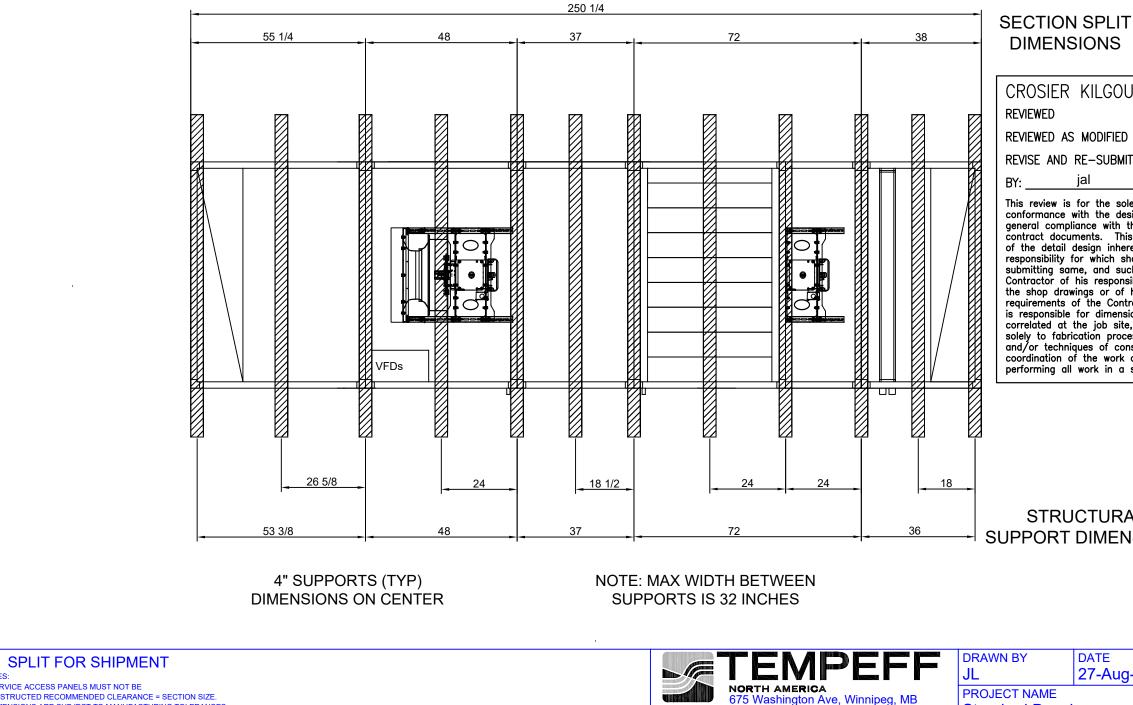
REVIEWED AS MODIFIED 🗌 REVISE AND RE-SUBMIT 🗌	PARTNERS LTD. NOT REVIEWED REJECTED DATE: 2020/01/31
BY: jal This review is for the sole purpose conformance with the design conce general compliance with the inform contract documents. This review d of the detail design inherent in the responsibility for which shall remain submitting same, and such review Contractor of his responsibility for the shop drawings or of his respon requirements of the Contract Docur is responsible for dimensions to be correlated at the job site, for infor solely to fabrication processes or t and/or techniques of construction coordination of the work of all oth	ept of the project and ation given in the loes not mean approval e shop drawings, m with the Contractor shall not relieve the errors or omissions in nsibility for meeting all ments. The Contractor e confirmed and rmation that pertains to means, methods and installation, for


Additional Features Exterior Casing: 24 Ga G90 Galv Interior Casing: 24 Ga G90 Galv 5 HP WEG TEFC Premium Eff. 4 Pole 184T Frame 3 HP WEG TEFC Premium Eff. 4 Pole 182T Frame SA Drive: ACS255-03U-06A5-6 RA Drive: ACS255-03U-04A1-6 1in. Seismic Spring Isolation SA Pre-Filter: Dafco Merv 10 (2") 400 HC Hot Water Coil Single point power Quick connect Low Limit Freight Insurance


- Review applies to operating weight and structural support locations only.



14 1/2



MINIMUM SUPPORT REQUIREMENTS FOR UNIT MOUNTED ON STRUCTURAL FRAME

Structural layout is for guideline purposes only

Tel:(204) 783-1902

SERVICE ACCESS PANELS MUST NOT BE OBSTRUCTED RECOMMENDED CLEARANCE = SECTION SIZE. DIMENSIONS ARE SUBJECT TO MANUFACTURING TOLERANCES. OR REFERENCE USE ONLY, SUBJECT TO CHANGE WITHOUT NOTICE

 (\mathbb{S})

ED USE OR DUPIICATION IS PROHIBITED. USE OTHER THAN INTENDED USE IS P

-					
JR & PARTNE NOT REVIEW REJECTED T DATE: 202	NED). —			
e purpose of ascertai sign concept of the p iche information given s review does not me ent in the shop drawi all remain with the C ch review shall not rel ibility for errors or or his responsibility for r ract Documents. The ions to be confirmed , for information that sesses or to means, m struction and installat of all other trades, a safe and satisfactory	roject and in the an approve ings, ontractor lieve the missions in meeting all Contractor and pertains ion, for nd for	l			
AL ISIONS					
SCALE -17 NTS	MODEL RG 55 Unit Ta		Type 1		REV A

Standard Drawing

HOT WATER COIL REPORT

Company: Contact: Tel: Fax or Email:

5055 Taylor Kidd Blvd T: (613) 544-2200 Millhaven, Ontario F: (613) 544-7779

> E-Mail: info@directcoil.com Website: directcoil.com

December 10, 2019

Date: Reference: Prepared By: Project Name:

Coil Tag: Coil Model Number: 5W-01-30.0-10-57.0-2 Item: 004, Coil Hand: Right

Physical Data			
Number Of Coils	One (1)	Tube Diameter	5/8 1.50 x 1.299
Fin Height (Per Coil)	30.000"	Tube Turbulators	No
Fin Length (Per Coil)	57.000"	Tube Material	Copper - 0.020 Plain
Number Of Rows Deep	One (1)	Fin Material	Aluminum 0.010
Circuit Ratio	0.1	Fin Style	Corrugated
Fins Per Inch	Ten (10)	Connection Type	MPT Steel
Supply Connection Size	1"	Coil Weight (Per Coil)[operating]	71 [87] LBS
Return Connection Size	1"	Coil Internal Volume (Per Coil)	1.770 gal
Header Material	Copper (L)	Casing Style	Standard
		Casing Material	Galvanized Steel 16 gauge
Air Data		Fluid Data	
Total Airflow (All Coils)	5,152 SCFM	Fluid Type	Ethylene Gly.
Airflow (Per Coil)	5,152 SCFM	Glycol Ratio	55%
Face Velocity	434 FPM	Entering Fluid Temp	170.00 °F
Altitude	0.00FT	Leaving Fluid Temp	130.00 °F
Entering Dry Bulb	60.51 °F	Fluid Flow Per Coil (Total)	9.61 GPM (9.61)
Leaving Dry Bulb	90.00 °F	Tube Velocity	5.36 FPS
Air Pressure Drop	0.11"WG	Fluid Pressure Drop	12.70'WG
Fouling Factor	0.0000 ft² °F h/Btu	Fouling Factor	0.0000 ft² °F h/Btu

Capacity Capacity Per Coil (Total)

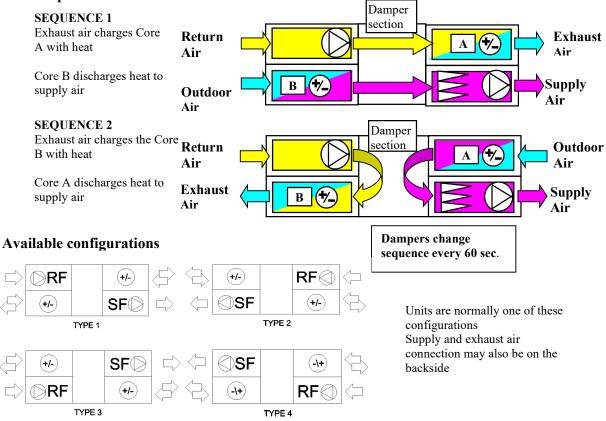
166.09 MBH (166.09)

Notes:

1. Certified in accordance with the AHRI Forced-Circulation Air-Cooling and Air-Heating Coils Certification Program which is based on AHRI Standard 410 within the Range of Standard Rating Conditions listed in Table 1 of the Standard. Certified units may be found in the AHRI Directory at www.ahridirectory.org

Software version: 0.99.8165

GENERAL DESCRIPTION OF FUNCTION


A Dual CoreTM air handling unit comes with a regenerative cyclic dual core heat exchanger. It includes a supply and an exhaust fan (both optional) and two cores filled with specially corrugated 0.7 mm thick aluminium plates which act as heat accumulators. In between the cores is a patented damper section which changes over every 60 seconds to periodically direct warm air through one of the two cores while outside air gains heat from the other. Before each fan is a filter section (optional) to filter the air. Heat recovery is automatically activated when called upon.

The unit may also be used for cooling recovery. If the outside temperature is higher than the indoor the damper cycling starts, enabling cooling recovery. This function reduces the demand for mechanical cooling.

In the off position, the dampers all close against outdoor air thereby reducing infiltration losses through the unit.

The extremely high temperature efficiency (90% +/- 5%) gives a supply air temperature just a few degrees below room temperature which in many cases allow systems to be designed without additional heating coils.

The inspection doors to fan and damper sections have lockable handles, which contributes to high security.

Principle of function

Tempeff North America Ltd.www.tempeffnorthamerica.com675 Washington Ave, Winnipeg, MB Canada R2K 1M4Ph: (204) 783-1902

RG 1000-18000 Units

Sequence of Operation

- A. Testing Damper Actuators:
 - 1. The damper motors can be tested by using the changeover switch S1 in the damper control panel.
 - 2. The normal position of the S1 switch is 0 where the actuators follow the signals from a central control system (BMS).
 - 3. If S1 is in position 1 the damper actuator M7 runs continuously, and in position 2 actuator M6 runs continuously.
- B. Sequence with the unit controlled by central control system (BMS):
 - 1. When the S2 switch is in position A (auto) the damper is controlled by the central control system (BMS).
 - a. Enable contact (see field wiring diagram) controls whether the damper and blower operate or not (contact closed = operating, open = not operating).
 - b. Heat Recovery contact (see field wiring diagram) controls the damper operating mode (contact closed = heat recovery, open = free cooling).
 - 2. When enable contact is closed, the damper section starts and the PLC-Blower Interlocks are energized, enabling the VFDs to start the motors and run at a set constant speed.
 - 3. Enable contact closed and Heat Recovery contact open = damper changes position every 3 hours (free cooling).
 - 4. Enable contact closed and Heat Recovery contact closed = damper changes position every 60 seconds (field adjustable) (heat recovery).
 - 5. Enable contact open and Heat Recovery contact open = the PLC-Blower Interlocks are deenergized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - 6. Should the system fall below an internal low limit set point for 5 min, the PLC-Blower Interlocks are de-energized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - a. 24Vdc low limit alarm signal to BMS will be enabled.
 - b. The low limit requires the unit turned off and then back on (remove Enable signal and then re-enable or turn S2 switch to Off and then back).

- C. Operation of the changeover damper if central control system (BMS) is not used:
 - When the S2 switch is in position M (manual), the damper section starts and the PLC-Blower Interlocks are energized, enabling the VFDs to start the motors and run at a set constant speed.
 - 2. The damper is now controlled by the 2 internal thermostats; GT1 in the supply air and GT2 in the exhaust air. GT1 is set to 59 °F (15 °C) and GT2 is set to 68 °F (20 °C).
 - 3. The sequence will now be:
 - a. If exhaust air < 68 °F (20 °C) = heat recovery (cycling every 60 seconds).
 - b. If exhaust air > 68 °F (20 °C) and supply air > 59 °F (15 °C) = free cooling (cycling every 3 hours).
 - c. If exhaust air > 68 °F (20 °C) and supply air < 59 °F (15 °C) = heat recovery until supply air > 59 °F (15 °C) then it will revert to free cooling mode.
 - 4. When the S2 switch is in position 0 = shut off = the PLC-Blower Interlocks are de-energized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - 5. Should the system fall below an internal low limit set point for 5 min, the PLC-Blower Interlocks are de-energized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - a. 24Vdc low limit alarm signal to BMS will be enabled.
 - b. The low limit requires the unit turned off and then back on (turn S2 switch to Off and then back).
- D. Heating and cooling:
 - 1. Any type of supplemental heating or cooling of the supply air will be controlled by others (central control system).
- E. Internal Damper Alarm:
 - 1. Should an error occur in the function of the internal damper (Energy Recovery Damper failure), the internal damper will be disabled.
 - 2. The PLC–Blower Interlocks are de-energized, disabling the VFDs.
 - 3. Damper alarm signal to BMS will be enabled (24Vdc signal).
 - 4. To reset damper alarm, power must be cycled off-on.
- F. Additional Notes:
 - If fire alarm contacts are used, remove the factory installed jumper from terminals 101 & 150 and connect the Normally Closed fire alarm contact. If the contact opens during operation, the unit will shut down and dampers close.

Note: In all cases ensure that damper section is first on and last off, (after supply and exhaust blower section) to prevent damage to internal damper section.

Troubleshooting – Damper Alarm

Damper has a built in alarm for testing the function of the internal components, if the damper goes into alarm the unit will shut down, disabling and re-enabling will reset the alarm and re-enable the unit for troubleshooting.

To rest the alarm do one of the below options

- 1. cycle power
- 2. Stop the Program and restart
 - a. Hold "OK" press "ESC"
 - b. Press "OK" on "STOP"
 - c. Press "OK" again
 - d. Press "OK" on "RUN"
 - e. Select "RESET LATCHED VALUES & RUN", press "OK"
 - f. Press "ESC"

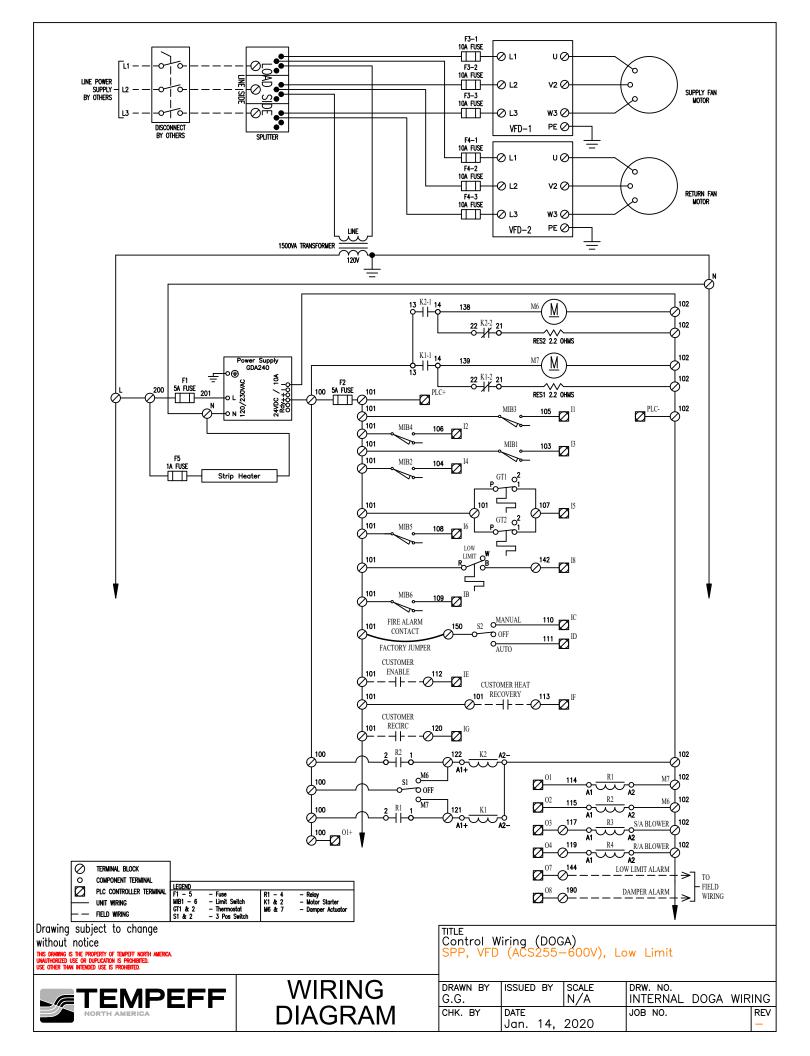
To reset the low limit, move S2 switch to the 0 (off) position and back on.

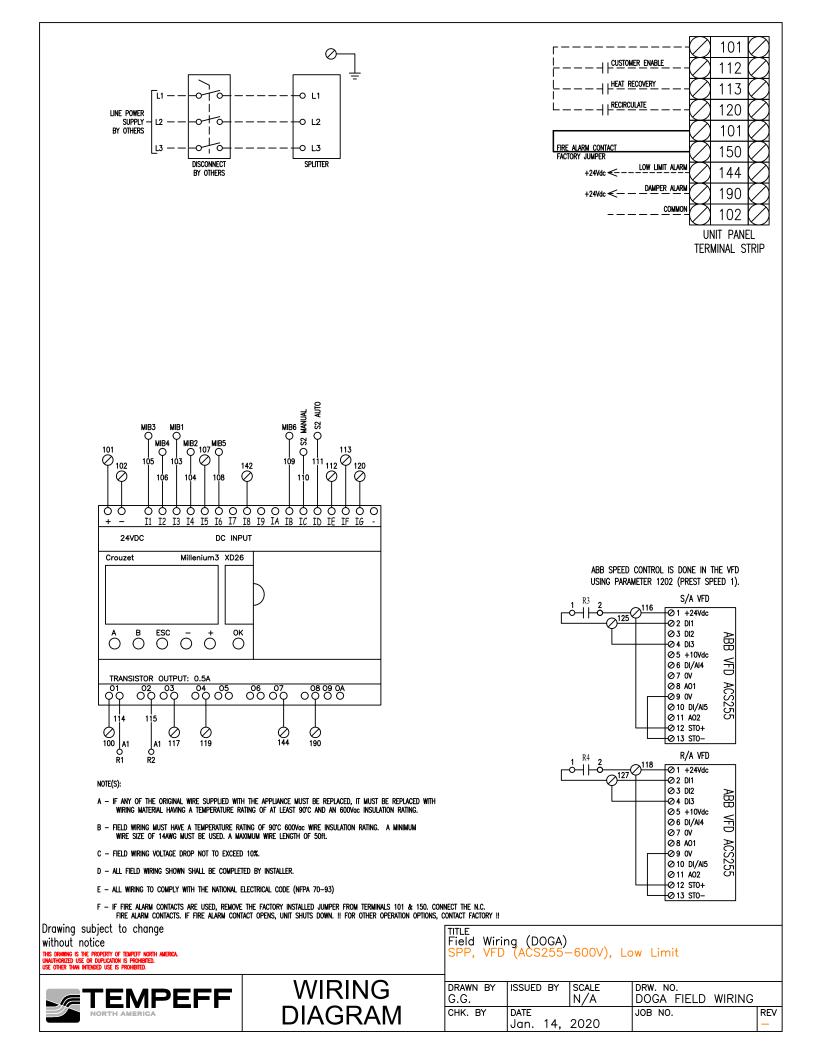
- B. M6 Motor Alarm
 - a. Use S1 switch (Position 2) to test movement on motor, when enabled, the motor will turn.
 - b. If motor moves on motor test, check NC contacts on MIB1 and MIB2 for continuity.
 - c. If motor does not move
 - i. Check NC contacts on MIB1 and MIB2 for continuity.
 - ii. Check motor starter (K2) for continuity.
 - iii. Manually enable relay (R2) and check for continuity across relay contacts.
 - iv. Check motor leads for voltage, Motor may defective contact Tempeff.
- C. M7 Motor Alarm
 - a. Use S1 switch (Position 1) to test movement on motor, when enabled, the motor will turn.
 - b. If motor moves on motor test, check NC contacts on MIB3 and MIB4 for continuity.
 - c. If motor does not move
 - i. Check NC contacts on MIB3 and MIB4 for continuity.
 - ii. Check motor starter (K1) for continuity.
 - iii. Manually enable relay (R1) and check for continuity across relay contacts.
 - iv. Check motor leads for voltage, Motor may defective contact Tempeff.
- D. MIB1 Alarm M6 Closed Position
 - a. Damper motor will not stop at MIB1; motor (M6) will just spin
 - i. Check that arm is making contact with the motor CAM (adjust position if necessary).
 - ii. Temporarily remove relay (R2), lift up limit switch arm with small screw driver, check continuity across both NC and NO contacts, if either sides not working replace limit switch.
- E. MIB2 Alarm M6 Open Position
 - a. Damper motor will not stop at MIB2; motor (M6) will just spin

- i. Check that arm is making contact with the motor CAM (adjust position if necessary).
- ii. Temporarily remove relay (R2), lift up limit switch arm with small screw driver, check continuity across both NC and NO contacts, if either sides not working replace limit switch.
- F. MIB3 Alarm M7 Closed Position
 - a. Damper motor will not stop at MIB3; motor (M7) will just spin
 - i. Check that arm is making contact with the motor CAM (adjust position if necessary).
 - ii. Temporarily remove relay (R1), lift up limit switch arm with small screw driver, check continuity across both NC and NO contacts, if either sides not working replace limit switch.
- G. MIB4 Alarm M7 Open Position
 - a. Damper motor will not stop at MIB4; motor (M7) will just spin
 - i. Check that arm is making contact with the motor CAM (adjust position if necessary).
 - ii. Temporarily remove relay (R1), lift up limit switch arm with small screw driver, check continuity across both NC and NO contacts, if either sides not working replace limit switch.
- H. MIB5 Alarm M6 Proof of Open
 - a. Blowers will enable for either 1 cycle or not at all, after a 10 second delay the unit will disable
 - i. Check that the arm is making contact with the end collar when the M6 motor cam is on MIB2
 - 1. Adjust the collar if micro switch is on flat.
 - 2. Adjust the micro switch to make contact with collar.
 - ii. Check to make sure the micro switch is releasing on the flat.
 - 1. When the unit is in the off position, the arm should be able to be pushed in and you should here the click.
 - 2. Adjust the flat on the collar to where the micro switch just releases on the flat.
- I. MIB6 Alarm M7 Proof of Open
 - a. Blowers will enable for either 1 cycle or not at all, after a 10 second delay the unit will disable
 - i. Check that the arm is making contact with the end collar when the M7 motor cam is on MIB4
 - 1. Adjust the collar if micro switch is on flat.
 - 2. Adjust the micro switch to make contact with collar.
 - ii. Check to make sure the micro switch is releasing on the flat.
 - 1. When the unit is in the off position, the arm should be able to be pushed in and you should here the click.
 - 2. Adjust the flat on the collar to where the micro switch just releases on the flat.

ABB Variable Frequency Drive

ACS255 – 600V

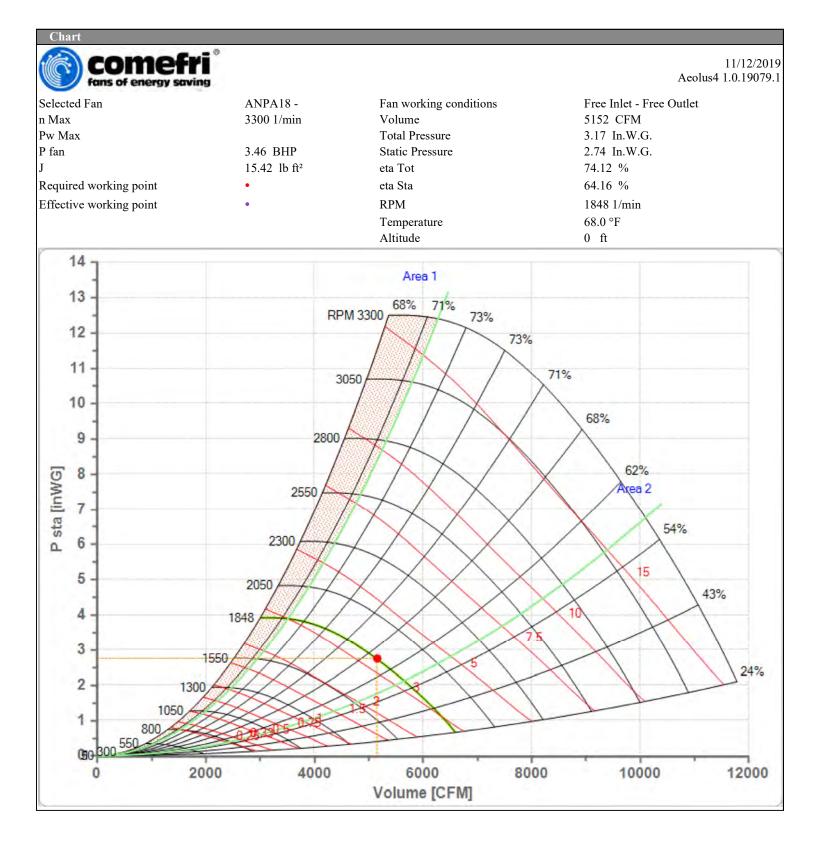

Programming Single Speed


On initial start-up, or after resetting to factory parameters (P9902), follow the Start-Up Assistant to enter motor and supply information, use HVAC Default for Application Macro.

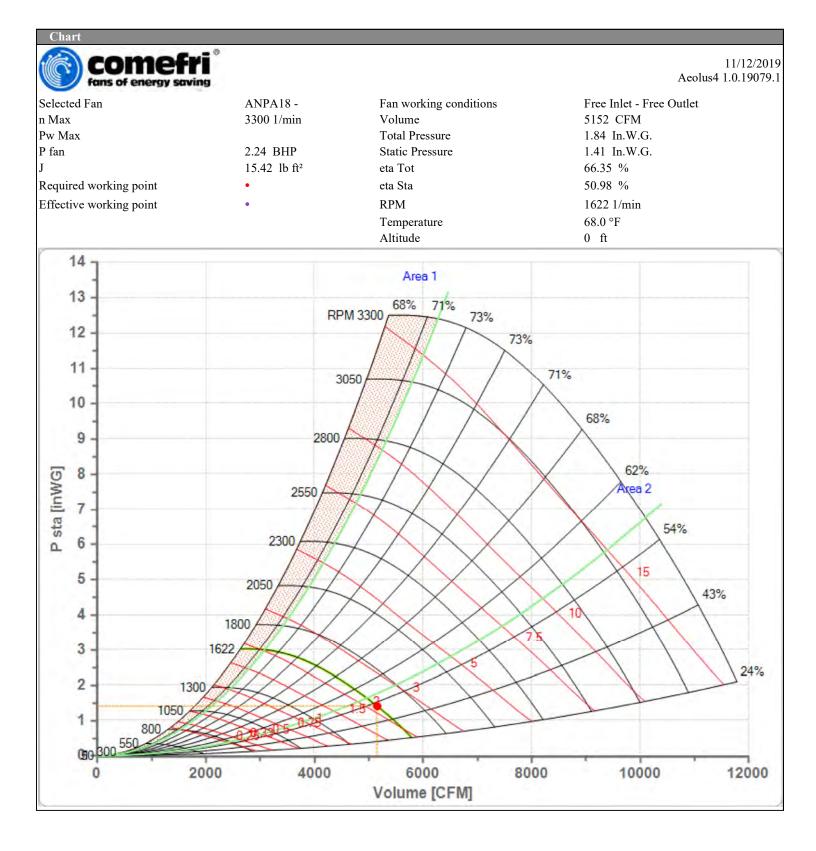
Enter Menu, then enter Parameters in Long Parameter Mode; press and hold navigate button for >1 sec, select PAr L, press navigate button to exit and save view.

P9902 –1	Digital Inputs Function Select (DI1-Stop/Run, DI2-Forward/Reverse, DI3-Speed Ref/Preset Speed)
P9908 –0	Motor Rated Speed (rpm) – all speed parameters are displayed in Hz
P1103 – 0	Primary Command Source Mode (Terminals) (default)
P1202 – 63.0	Const Speed 1 (Hz) – Supply Air VFD
P1202 – 55.0	Const Speed 1 (Hz) – Return Air VFD
P2007– 0.0	Minimum Frequency (Hz) (default)
P2008 – 80.0	Maximum Frequency (Hz)
P2202 – 30.0	Acceleration Ramp (sec.)
P2203 - 30.0	Deceleration Ramp (sec.)

!! Maximum Reference (Hz) = (required fan RPM / maximum motor RPM) * 60Hz !!



Customer			-									
Project						Descriptio	n					
Your Ref.						Our Ref.		Tempeff North America				
Input dat	ta					_		_				
Volume	Volume 5152 CFM		Temperature	emperature 68.0 °F				Density 0.075 lb/cu.ft				
Static Pressure		2.74 In.W.G.		Altitude		0 ft		Free Inlet	- Free Outlet			
				Γ								
					Catalog	gue data						
n					Pw Max		J					
Selected Fan ANPA18 -				1/min	E	BHP						
				3300	3300		15.42		Inter	T. T. T. T. T. T.		
Fan Info	rmation											
c ft/min	p tot * In.W.G.	p sta In.W.G.	p dyn ** In.W.G.	tip speed ft/min	RPM 1/min	eta Tot *	eta Sta %	P fan BHP	Min Mot. BHP	P mot BHP	Shaft diameter in	
	3.17	2.74	0.43	8573	1848	74.12	64.16	3.46			0.00	
				ssure at the impelle	er outlet			•				
(**) Theoric valu	e, calculated at	the impeller out	et 63	125	250	500	100	2000	4000	8000	Tot.	
	Sound Powe	r Loval in t									100.	
Lw3 Total Sound Power Level in the inlet duc Level Lw3 dB/dB(A) 77/5					79 / 7					63 / 62	84 / 80	
Level Lw5 dB/dB(A) 777 Lw5 Inlet Total Sound Power Level - Lwmi Ir												
Level Lw5		B/dB(A)	77 / f		89 / 8	, ,				66 / 65	92 / 86	
		. ,		et - Lwmo Ou								
	Sound rowe	i Leveratt	ne free outle	et - Lwino Ou	tiet sound	u rower Le	ver (free ou	net) uo not i	includes the 6		enu	
correction												


.

Customer												
Project						Descriptio	n					
Your Ref.						Our Ref.		Tempeff North America				
Input dat	ta											
Volume	Volume 5152 CFM		Temperature	iperature 68.0 °F			Density 0.075 lb/cu.ft					
Static Press	sure	1.41 In.W.G.		Altitude		0 ft		Free Inlet -	- Free Outlet			
				F							_	
					Catalo	gue data		3			1	
	n Max	lax Pw Max		J								
Selected Fan ANPA18 -				1/min		BHP						
				3300	3300		15.42		-lange	forent.		
Fan Info	rmation											
c ft/min	p tot * In.W.G.	p sta In.W.G.	p dyn ** In.W.G.	tip speed ft/min	RPM 1/min	eta Tot *	eta Sta %	P fan BHP	Min Mot. BHP	P mot BHP	Shaft diameter in	
	1.84	1.41	0.43	7525	1622	66.35	50.98	2.24			0.00	
				ssure at the impelle	er outlet	•	•					
(**)Theoric valu	e, calculated at	the impeller out	et 63	125	250	500	100	2000	4000	8000	Tot.	
	Sound Powe	r I ovol in t									101.	
Lw3 Total Sound Power Level in the inlet duc Level Lw3 dB/dB(A) 77 /				79/2					63 / 61	83 / 79		
		()		let Sound Po								
Level Lw5		B/dB(A)	77/5		87 / 2					64 / 63	90 / 85	
Lw6 Total S		. ,	he free outle	et - Lwmo Ou	tlet Soun	d Power Le	vel (free ou			effect of duct	end	
Level Lw6		lB/dB(A)	83 / 5	56 80 / 63	88 / 7	79 84/8	30 85 / 8	85 82 / 83	3 76/77	69/67	92 / 89	

.

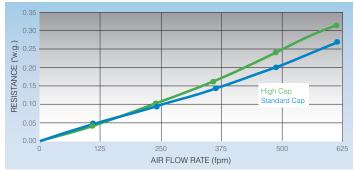
PRODUCT OVERVIEW

- Standard Capacity (MERV 8) & High Capacity (MERV 10)
- Available in 1", 2" & 4"depths
- Ideal for use in
 Prefilter for high efficiency
 - filters
 - Office and Retail
 - Manufacturing and Distribution
 - Government and
 Education facilities
 - Doctor offices, assisted living facilities and Hospitals
 - Hotels and Airports
 - Single and Multi-Family Housing

AEROSTAR SERIES 400 PLEAT

WHY THE SERIES 400?

- 100% synthetic pleated media achieves exceptionally high levels of efficiency
 - Does not rely on electrostatic charge
 - Low resistance to air flow means minimal energy costs
 - Moisture resistant and will not promote microbial growth
 - Excellent pre-filter for higher efficiency air filters
 - Effectively removes airborne irritants
 - Protects cooling coils & ductwork of HVAC system


- Durable construction optimizes performance
 - Media laminated to metal grid
 - Minimized media fluttering
 - Design helps maintain pleat uniformity
 - Frame constructed of high wet strength beverage board
 - Will not warp, crack or distort under normal operating conditions

AEROSTAR SERIES 400 PLEAT

PERFORMANCE DATA (24 x 24)

		INI	TIAL RESIS			
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
	1"	0.14	0.21	-	-	1.0
Standard MERV 8	2"	_	0.14	0.20	0.27	1.0
	4"	_	0.09	0.14	0.21	1.0

INITIAL RESISTANCE (24 x 24 x 2)

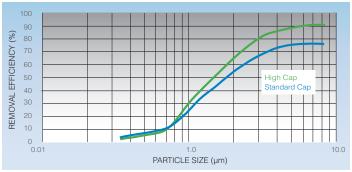
PRODUCT DATA

PART N	UMBER	NOMINAL Size*	ACTUAL Size	CFM CAP	ABILTIES
STD CAP	HIGH CAP	(H" × W" × D")	(H" × W" × D")	300 fpm	375 fpm
10403 10404 10364 10405 10406 10365 10407 10366 10367 10368 10369 10408 10370 10471 10409 10410 10372 10411 10373 10412 10413 10414 10375 10416 10376 10417 10377	10476 10477 10436 10478 10479 10437 10480 10438 10440 10441 10441 10442 10443 10442 10443 10443 10443 10444 10445 10485 10485 10485 10486 10447 10488 10446 10447 10489 10448	$\begin{array}{c} 8 \times 16 \times 1 \\ 10 \times 10 \times 1 \\ 10 \times 20 \times 1 \\ 10 \times 25 \times 1 \\ 10 \times 25 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 25 \times 1 \\ 14 \times 20 \times 1 \\ 14 \times 25 \times 1 \\ 14 \times 25 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 16 \times 16 \times 1 \\ 16 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 25 \times 1 \\ 20 \times 20 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 22 \times 22 \times 1 \\ 24 \times 24 \times 1 \end{array}$	$\begin{array}{c} 7\ \frac{3}{4} \times 15\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 9\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 19\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 23\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 24\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{3}{4} \times 11\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 15\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 13\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 15\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 21\ \frac{3}{4} \times 21\ \frac{3}{4} \times \frac{3}{4} \\ 21\ 3$	250 200 400 525 300 400 500 600 625 575 700 725 625 800 725 625 800 825 650 800 825 675 750 825 800 825 825 900 925 825 1000 1050 1050 1000	325 250 525 625 625 750 775 725 875 900 775 975 650 825 1000 1050 850 925 1025 1125 1175 1050 1250 1250 1250

* Contact Customer Care for additional sizes and information.

ENGINEERING SPECIFICATIONS

1.0 General


- 1.1 Filters shall be Aerostar® Series 400 extended surface pleated air filters as manufactured Dafco by Filtration Group.
- 1.2 Filters shall be available in standard and high capacity configurations and available in nominal depths of 1", 2", and 4".
- 1.3 Underwriters Laboratories classified to UL 900 and ULC-S111-07.

2.0 Filter Materials of Construction

- 2.1 Media shall be 100% synthetic, mechanical media that does not support microbial growth.
- 2.2 Filters shall have a high wet strength beverage board with a cross member design that increases filter rigidity and prevents breaching. Frame shall be recyclable.

		INI	TIAL RESIS			
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
High MERV 10	1"	0.20	0.28	—	-	1.0
	2"	_	0.16	0.24	0.32	1.0
	4"	_	0.08	0.17	0.26	1.0

MINIMUM REMOVAL EFFICIENCY (24 x 24 x 2)

PA	RT NUMBER	NOMINAL Size*	ACTUAL Size	CFM CAP	ABILTIES
STD C	CAP HIGH CAF		(H" × W" × D")	375 fpm	500 fpm
1041 1037 1041 1038 1038 1038 1042 1038 1042 1038 1042 1038 1042 1038 1038 1039 1039	79 10451 19 10492 30 10452 31 10453 32 10454 33 10455 20 10493 34 10456 35 10457 36 10458 21 10494 37 10459 22 10493 38 10450 39 10461 30 10462 31 10453	$\begin{array}{c} 10 \times 10 \times 2 \\ 10 \times 20 \times 2 \\ 12 \times 20 \times 2 \\ 12 \times 24 \times 2 \\ 14 \times 20 \times 2 \\ 14 \times 25 \times 2 \\ 15 \times 20 \times 2 \\ 16 \times 16 \times 2 \\ 16 \times 20 \times 2 \\ 16 \times 24 \times 2 \\ 16 \times 25 \times 2 \\ 18 \times 22 \times 2 \\ 18 \times 24 \times 2 \\ 20 \times 20 \times 2 \\ 20 \times 24 \times 2 \\ 20 \times 25 \times 2 \\ 24 \times 24 \times 2 \\ 25 \times 25 \times 2 \end{array}$	$\begin{array}{c}9\ \frac{9}{4} \times 9\ \frac{9}{4} \times 1\ \frac{3}{4}\\9\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\11\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\13\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 19\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\15\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\17\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\19\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\\23\ \frac{3}{6} \times 23\ \frac{3}{6} \times 1\ \frac{3}{4}\\23\ \frac{3}{6} \times 23\ \frac{3}{6} \times 1\ \frac{3}{4}\\24\ \frac{1}{2} \times 24\ \frac{1}{2} \times 1\ \frac{3}{4}\end{array}$	250 525 625 750 725 900 775 650 825 1000 1050 1025 1125 1175 1050 1250 1300 1500 1625	350 700 825 1000 975 1200 1025 875 1100 1325 1400 1375 1500 1550 1400 1650 1750 2000 2150
1039 1039 1039 1039 1039 1039 1039 1040 1040 1040	94 10466 95 10467 96 10468 97 10469 98 10470 99 10471 00 10472 01 10473	$\begin{array}{c} 12 \times 24 \times 4 \\ 16 \times 20 \times 4 \\ 16 \times 25 \times 4 \\ 18 \times 24 \times 4 \\ 20 \times 20 \times 4 \\ 20 \times 25 \times 4 \\ 20 \times 25 \times 4 \\ 24 \times 24 \times 4 \\ 25 \times 29 \times 4 \\ 28 \times 30 \times 4 \end{array}$	$\begin{array}{c} 11 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 17 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 19 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 24 \ \frac{3}{6} \times 28 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 27 \ \frac{3}{6} \times 29 \ \frac{3}{6} \times 3 \ \frac{3}{4} \end{array}$	500 fpm 1000 1100 1400 1500 1400 1650 1750 2000 2525 2900	625 fpm 1250 1400 1750 1875 1750 2100 2200 2500 3150 3650

2.3 Filters shall have an expanded metal support grid bonded to the air-exiting side of the filter to maintain pleat uniformity and prevent fluttering. Metal support grid shall be recyclable and contain a significant amount of post-consumer and pre-consumer content.

3.0 Filter Performance

- 3.1 Filters shall be MERV 10/10A in a high capacity configuration and MERV 8/8A in a standard capacity configuration when tested in accordance with ASHRAE 52.2 Test Standard.
- 3.2 For initial resistance of filters, see Performance Data chart above.
- 3.3 Filters shall be rated to withstand a continuous operating temperature up to 200°F.
- 3.4 Filters shall have a recommended final resistance of 1.0" w.g.

Submittal Drawings

Project: Transit Garage fort Rouge

Tag: HRU-11

PO#: 24121-03

Date: January 14, 2020

Agent: Midwest Engineering

Revision #	Revision Detail	Date Revised	Revised by
1	Added support and filter information	Jan 20, 2020	CR

JOB STATUS

HELD FOR APPROVAL

Equipment will not be scheduled until approved drawings are returned to Tempeff North America

Current lead times from release is 12-14 weeks

If immediate release is required, notify Tempeff in writing

RELEASED TO PRODUCTION

Scheduled shipment from factory: _

UNITS ARE SHIPPED SPLIT, WIRING RECONNECTION ON SITE REQUIRED – SEE PROPOSAL DRAWING FOR SPLIT LOCATIONS

675 Washington Ave, WINNIPEG, MB CANADA R2K 1M4 PH: (204) 783-1902

Project	Transit Gara	age Fort Rouge				Line I	n						
Tag(s)	HR	2U-11				Voltage	575-3-60						
Agent	Midwest	Engineering				FLA	58.6	AMPS					
Job Number						AMPACITY	66	AMPS					
						MAX.NON-TIME DELAY FUSE		AMP					
						MAX.TIME DELAY FUSE		AMP					
						MAX.CIRCUIT BREAKER		AMP					
						MIN.WIRE SIZE	#4	AWG					
							odel						
				RG 3	3000 Welc	ded Damper							
Approxim	ate Weight	9130	KG	2017	7 LBS	Outdoor		Con	figuration	Tγ	vpe 1	1	
							4			•		-	
						1							

Power and energy demand

Fans

		Exhau
Technical data		
Input data	Sup. air	Exh. air
Total volume (SCFM)	276	92 27692
HX Air volume (SCFM)	276	92 27692
Filter	Merv 10 (2'	") None
	-	-
External pressure drop (in. W.C)	1.	50 1.00

Output data						
Filter air velocity (fpm)	498	0				
Design pressure drop filter (in W.C)	0.73	0.00				
HX air velocity (fpm)	495	495				
Pressure drop heat exch. (in W.C)	0.76	0.76				
Auxillary Pressure Drop drop (in W.C)	0.38	0.00				
Backdraft dampers	0.00	0.00				
Static pressure (in W.C)	3.37	1.76				

Fan speed (rpm)	1163	1053
Max (rpm)	1600	1600
Fan efficiency (%)	73.95	66.73
Required BHP	23.89	16.57
Actual Required bhp	24.14	18.49

Motor efficiency (%)	93	93
Motor power rating (hp)	30.00	25.00
Motor RPM	1175	1175
Motor Operating Frequency (Hz)	59	54

Standard Features 2" Foam injected panels Extruded aluminum post and corner construction All sections come with hinged access doors and locking latches Multi-Damper switchover section complete with actuators SS Drain Pans under Heat Exchanger(s) w/ 1"NPTConnections Galvanized Heat Exchanger Frames Galvanized damper blades, damper rods and axles 18Ga Roof & Gutters 4" Ventex Louvers SLEEPER/STAND MOUNT (BY OTHERS)

Input data	Calculated
	Winter
	DB
Design outdoor temp. (°F)	-30.00
Desired supply air temp. winter (°F)	70
Exhaust air temperature (°F)	70.0
Output data	
Efficiency (across unit) (%)	86.5
Supply air temp. after unit (°F)	56.48
Recovered energy across unit (BTUH)	2,586,445

X1

Summer			
DB		WB	
	90.0		
	75.0		

75.0	
78.7	
-336,624.7	

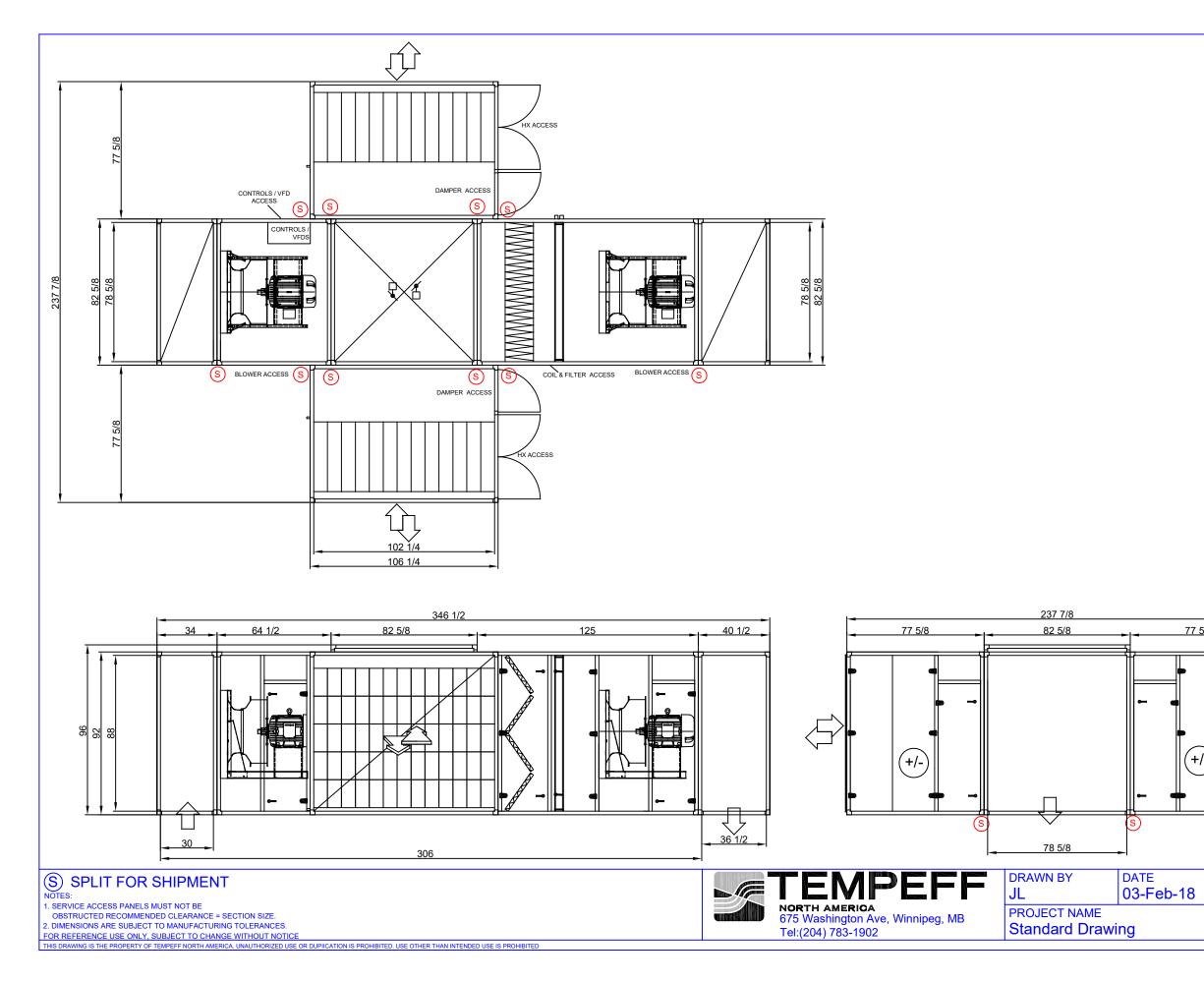
NOT REVIEWED

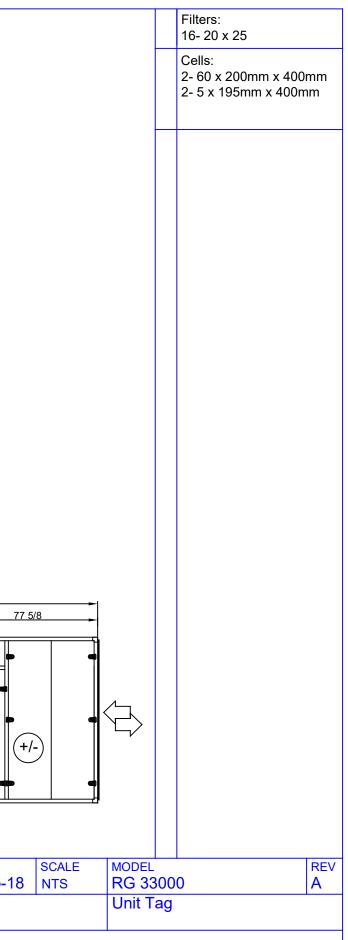
CROSIER KILGOUR & PARTNERS LTD.

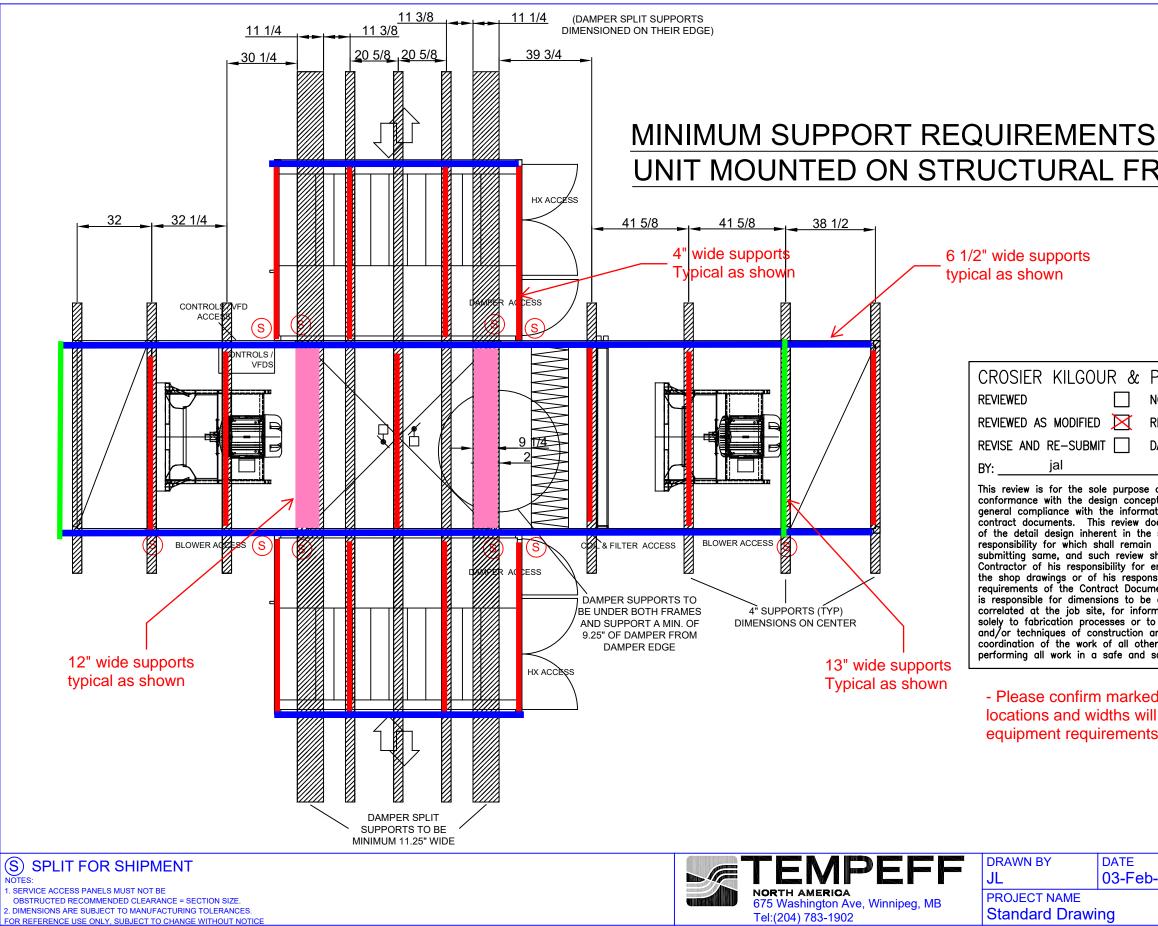
REVIEWED

 REVIEWED AS MODIFIED
 REJECTED

 REVISE AND RE-SUBMIT
 DATE: 2020/01/31


 BY:
 jal


 This review is for the sole purpose of ascertaining general conformance with the design concept of the project and general compliance with the information given in the contract documents. This review does not mean approval of the detail design inherent in the shop drawings, responsibility for which shall remain with the Contractor submitting same, and such review shall not relieve the Contractor of his responsibility for errors or omissions in the shop drawings or of his responsibility for meeting all requirements of the Contract Documents. The Contractor is responsible for dimensions to be confirmed and correlated at the job site, for information that pertains solely to fabrication processes or to means, methods and/or techniques of construction and installation, for coordination of the work of all other trades, and for performing all work in a safe and satisfactory manner.


Additional Features Exterior Casing: 24 Ga G90 Galv Interior Casing: 24 Ga G90 Galv 30 HP WEG TEFC Premium Eff. 6 Pole 326T Frame 25 HP WEG TEFC Premium Eff. 6 Pole 324T Frame SA Drive: ACH550-UH-032A-6 RA Drive: ACH550-UH-027A-6 1in. Seismic Spring Isolation SA Pre-Filter: Dafco Merv 10 (2") 400 HC Hot Water Coil Single point power Quick connect Low Limit Freight Insurance

and structural support locations only. Please review structural support location drawing and confirm requirements.

- Review applies to operating weight

ED USE OR DUPIICATION IS PROHIBITED. USE OTHER THAN INTENDED USE IS PROHI

NG IS THE PR

PERTY OF TEMPEFE NORTH AMERICA. UN

				Filters: 16- 20 x 25	
				Cells: 2- 60 x 200mm x 400 2- 5 x 195mm x 400m	
	<u>DR</u>				
RA	ME				
	NERS LTE).			
not re Rejecti					
DATE: _	2020/01/31	-			
pt of th ation giv loes not shall no errors on sibility f ments. confirm mation o means and inst er trade	ertaining generative project and ven in the mean approved drawings, the Contractor the Contractor the Contractor for meeting all The Contractor need and that pertains s, methods allation, for s, and for tory manner.	1			
ll suit	bearing the				
S.					
o-18	SCALE NTS	MODEL RG 33		0	REV A
		Unit T	ag		

HOT WATER COIL REPORT

Company: Contact: Tel: Fax or Email:

5055 Taylor Kidd Blvd T: (613) 544-2200 Millhaven, Ontario F: (613) 544-7779

> E-Mail: info@directcoil.com Website: directcoil.com

December 10, 2019

Date: Reference: Prepared By: Project Name:

Coil Tag: Coil Model Number: 5W-02-81.0-07-72.0-13 Item: 001, Coil Hand: Right

Physical Data			
Number Of Coils	One (1)	Tube Diameter	5/8 1.50 x 1.299
Fin Height (Per Coil)	81.000"	Tube Turbulators	No
Fin Length (Per Coil)	72.000"	Tube Material	Copper - 0.020 Plain
Number Of Rows Deep	Two (2)	Fin Material	Aluminum 0.010
Circuit Ratio	0.24	Fin Style	Corrugated
Fins Per Inch	Seven (7)	Connection Type	MPT Steel
Supply Connection Size	1 1/2"	Coil Weight (Per Coil)[operating]	308 [409]LBS
Return Connection Size	1 1/2"	Coil Internal Volume (Per Coil)	11.610 gal
Header Material	Copper (L)	Casing Style	Standard
		Casing Material	Galvanized Steel 16 gauge
Air Data		Fluid Data	
Total Airflow (All Coils)	27,692 SCFM	Fluid Type	Ethylene Gly.
Airflow (Per Coil)	27,692 SCFM	Glycol Ratio	55%
Face Velocity	684 FPM	Entering Fluid Temp	170.00 °F
Altitude	0.00FT	Leaving Fluid Temp	130.00 °F
Entering Dry Bulb	56.48 °F	Fluid Flow Per Coil (Total)	58.62 GPM (58.62)
Leaving Dry Bulb	90.00 °F	Tube Velocity	5.03 FPS
Air Pressure Drop	0.38"WG	Fluid Pressure Drop	12.10'WG
Fouling Factor	0.0000 ft² °F h/Btu	Fouling Factor	0.0000 ft² °F h/Btu

Capacity

Capacity Per Coil (Total)

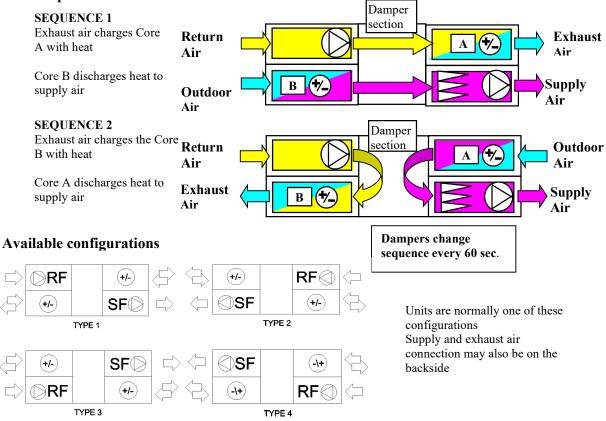
1,013.36 MBH (1,013.36)

Notes:

1. Certified in accordance with the AHRI Forced-Circulation Air-Cooling and Air-Heating Coils Certification Program which is based on AHRI Standard 410 within the Range of Standard Rating Conditions listed in Table 1 of the Standard. Certified units may be found in the AHRI Directory at www.ahridirectory.org

Software version: 0.99.8165

GENERAL DESCRIPTION OF FUNCTION


A Dual CoreTM air handling unit comes with a regenerative cyclic dual core heat exchanger. It includes a supply and an exhaust fan (both optional) and two cores filled with specially corrugated 0.7 mm thick aluminium plates which act as heat accumulators. In between the cores is a patented damper section which changes over every 60 seconds to periodically direct warm air through one of the two cores while outside air gains heat from the other. Before each fan is a filter section (optional) to filter the air. Heat recovery is automatically activated when called upon.

The unit may also be used for cooling recovery. If the outside temperature is higher than the indoor the damper cycling starts, enabling cooling recovery. This function reduces the demand for mechanical cooling.

In the off position, the dampers all close against outdoor air thereby reducing infiltration losses through the unit.

The extremely high temperature efficiency (90% +/- 5%) gives a supply air temperature just a few degrees below room temperature which in many cases allow systems to be designed without additional heating coils.

The inspection doors to fan and damper sections have lockable handles, which contributes to high security.

Principle of function

Tempeff North America Ltd.www.tempeffnorthamerica.com675 Washington Ave, Winnipeg, MB Canada R2K 1M4Ph: (204) 783-1902

RG 33000-56000 Units

Sequence of Operation

- A. Testing Damper Actuators:
 - 1. The damper motors can be tested by using the changeover switch S1 and S2 in the damper control panel.
 - 2. The normal position of the S1 and S2 switches are 0 where the actuators follow the signals from a central control system (BMS).
 - 3. If S1 is in position 1 the damper actuator M1 runs continuously, and in position 2 actuator M2 runs continuously. If S2 is in position 1 the damper actuator M3 runs continuously, and in position 2 actuator M4 runs continuously.
- B. Sequence with the unit controlled by central control system (BMS):
 - 1. The damper is controlled by the central control system (BMS).
 - a. Enable contact (see field wiring diagram) controls whether the damper and blower operate or not (contact closed = operating, open = not operating).
 - b. Heat Recovery contact (see field wiring diagram) controls the damper operating mode (contact closed = heat recovery, open = free cooling).
 - 2. When Enable contact is closed, the damper section starts and the PLC-Blower Interlocks are energized, enabling the enabling the VFDs to start the motors and run at a set constant speed.
 - 3. Enable contact closed and Heat Recovery contact open = damper changes position every 3 hours (free cooling).
 - 4. Enable contact closed and Heat Recovery contact closed = damper changes position every 60 seconds (field adjustable) (heat recovery).
 - 5. Enable Contact open and Heat Recovery contact open = the PLC-Blower Interlocks are deenergized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.

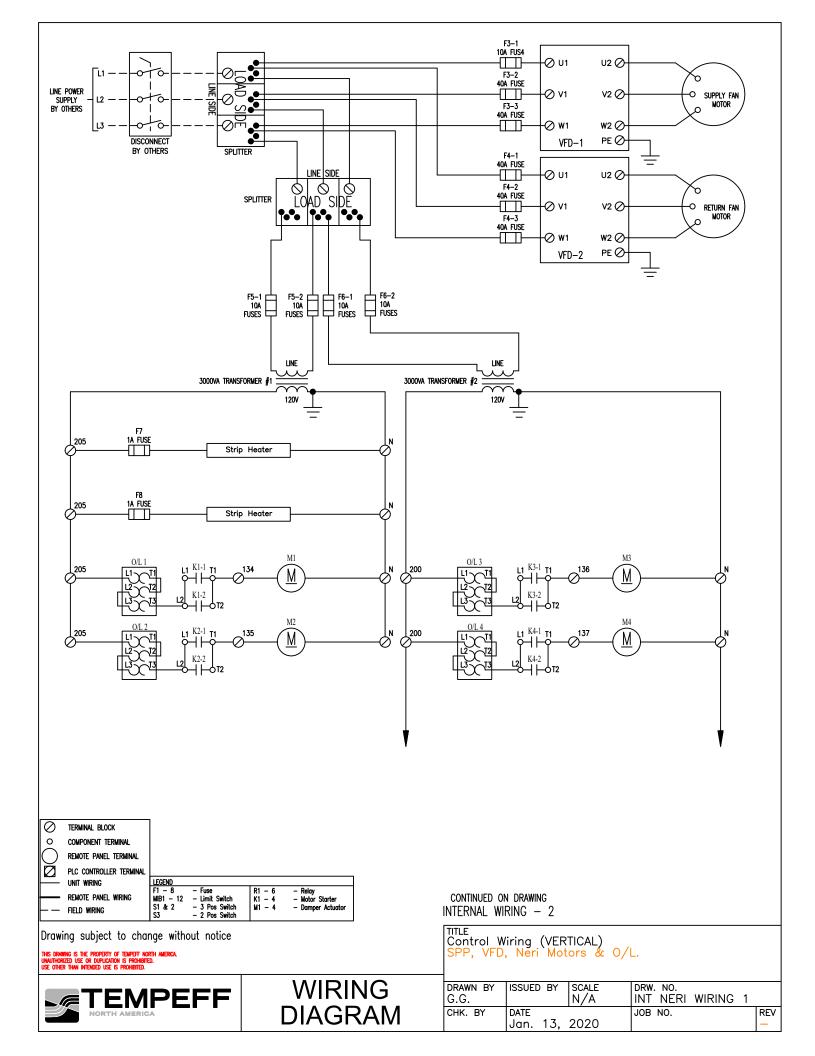
- 6. Should the system fall below an internal low limit set point for 5 min, the PLC-Blower Interlocks are de-energized, disabling the VFDs while enabling the damper to continue to cycle for 1 minute, to prevent damage to the damper unit.
 - a. 24Vdc low limit alarm to BMS signal will be enabled.
 - b. The low limit requires the unit turned off and then back on (remove Enable signal and then re-enable or turn S2 switch to Manual Night and back).
- C. Heating and cooling:
 - 1. Any type of supplemental heating or cooling of the supply air will be controlled by others (central control system).
- D. Additional Notes:
 - 1. The unit has blade location micro switches to enable the PLC-Blower interlocks if the unit is operating normally.
 - 2. If fire alarm contacts are used, remove the factory installed jumper from terminals 101 & 150 and connect the Normally Closed fire alarm contact. If the contact opens during operation, the unit will shut down and dampers close.
 - 3. When the System Switch S3 is in the On position, the unit runs normally. When the System Switch S3 is in the Off position, the unit is disabled, but testing can still be performed.

Note: In all cases ensure that damper section is first on and last off, (after supply and exhaust blower section) to prevent damage to internal damper section.

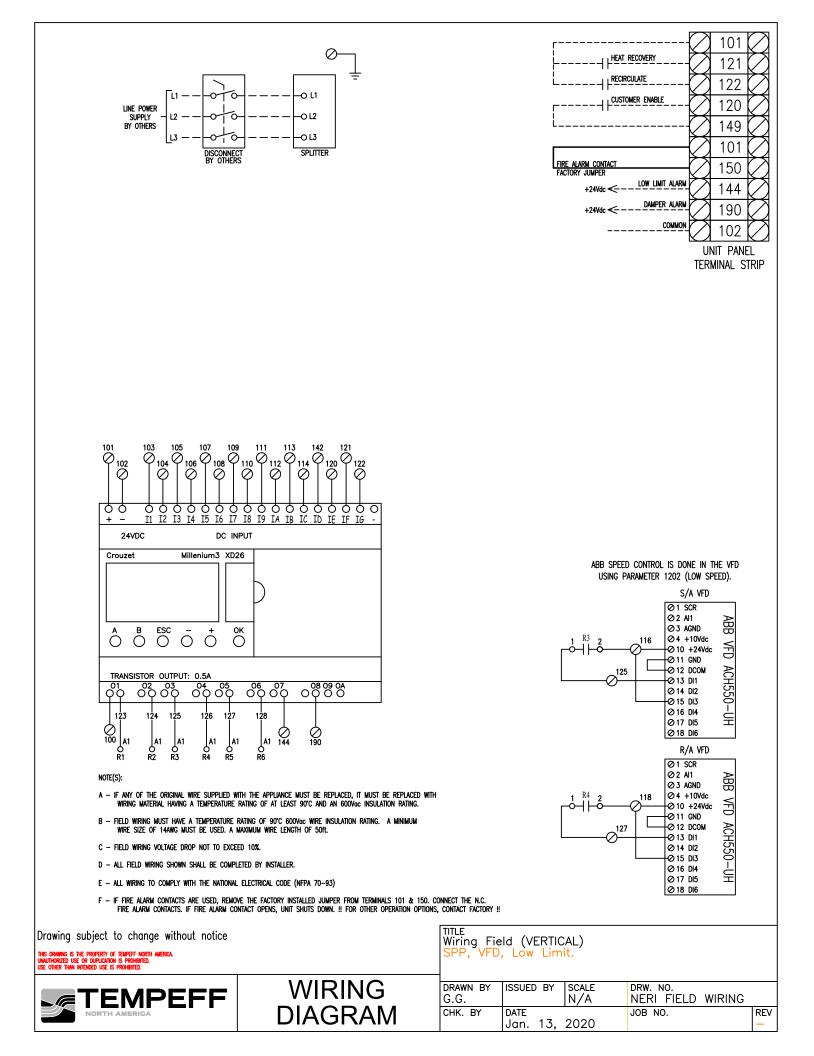
ABB Variable Frequency Drive

ACH550-UH

Programming Single Speed

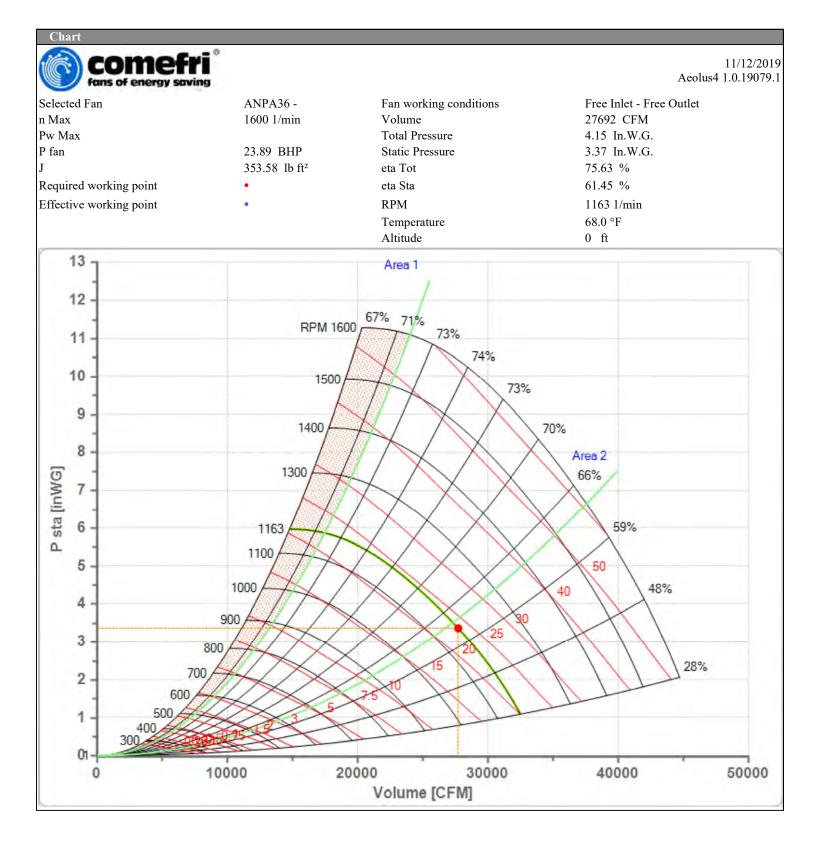

On initial start-up, or after resetting to factory parameters, follow the Start-Up Assistant to enter motor and supply information, use HVAC Default for Application Macro.


Enter Menu, then enter Parameters

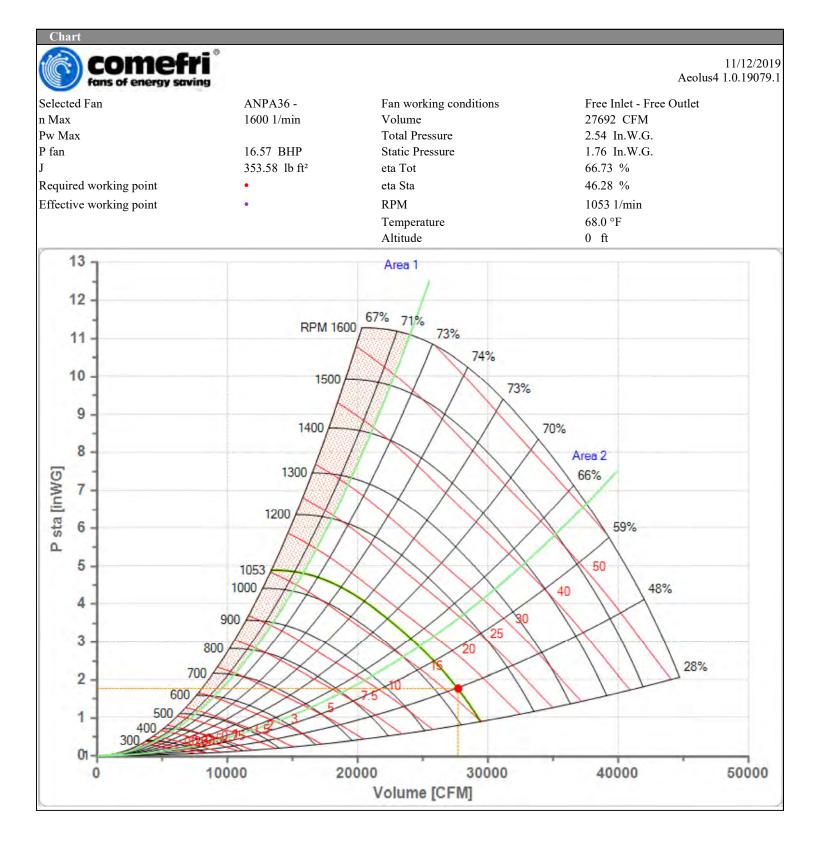

P1001 –1	EXT1 Command (DI1 - Two-Wire Start/Stop) (default)
P1102 – 0	Ext 1/Ext 2 Sel (Ext1) (default)
P1201 – 3	Const Speed Sel (DI3) (default)
P1202 – 59.0	Const Speed 1 (DI3) (Hz) – Supply Air VFD
P1202 – 54.0	Const Speed 1 (DI3) (Hz) – Return Air VFD
P1608 – 0	Start Enable 1 (Not Sel)
P2007- 0.0	Minimum Frequency (Hz) (default)
P2008 – 70.0	Maximum Frequency (Hz)

P9902 – 1 Reset to factory parameters by selecting HVAC DEFAULT (after pressing SAVE press EXIT to return to the main screen, cut off main power and wait until LCD display turns off, re-apply main power).

!! Maximum Reference (Hz) = (maximum fan RPM / maximum motor RPM) * 60Hz !!



Customer						Degerie	4:0-0					
Project Your Ref.						Descrip Our Re				Tempeff Nor	th America	
I our Kei.						Our Ke	1.				III America	
Input dat	a											
Volume		27692 CFM		Temperature		68.0 °F			Density		0.075 lb/cu.ft	
Static Press	ure	3.37 In.W.G.		Altitude		0 ft			Free Inlet -	- Free Outlet	t	
									1			-
					Catalog	gue data				3,	A	1
				n Max	Pw]	Max	J					
		ed Fan A36 -		1/min	BI	ΗP	1	b ft²				
				1600	1600		35	53.58				
Fan Infor	mation								-			
c ft/min	p tot * In.W.G.	p sta In.W.G.	p dyn ** In.W.G.	tip speed ft/min	RPM 1/min	eta Tot %	*	eta Sta %	P fan BHP	Min Mot. BHP	P mot BHP	Shaft diameter in
	4.15	3.37	0.78	10792	1163	75.63		61.45	23.89			0.00
				ssure at the impelle	r outlet				1		I	
(**)Theoric value	e, calculated at	the impeller out	et 63	125	250	-	00	1000	2000	4000	8000	Tot.
	Sound Powe	er Level in t		t- Lwi Inlet D								100
Level Lw3		dB/dB(A)	92 / 0		91 / 8		/ 80	84 / 8			68 / 67	97 / 89
Lw5 Inlet T				let Sound Pov	ver Level	(free inl	et) do	not inclu	des the effe	ct of duct en	d correction	
Level Lw5		dB/dB(A)	91 / 0		97 / 8		/ 83	83 / 8			73 / 71	100 / 91
Lw6 Total S correction	Sound Powe	er Level at t	he free outl	et - Lwmo Out	tlet Sound	d Power	Level	(free out	let) do not i	ncludes the e	effect of duct	end
Level Lw6		dB/dB(A)	95 / (69 92 / 76	97 / 8	8 96	/ 93	90 / 9	0 84 / 85	5 80 / 81	77 / 76	102 / 96


.

Customer												
Project		Descrip				T ((1))						
Your Ref.						Our Re	et.			Tempeff Nor	th America	
Turnut dat												
Input dat Volume		27692 CFM		Temperature		68.0 °F			Density		0.075 lb/cu.ft	
Static Press		1.76 In.W.G.		Altitude		00.0 T				· Free Outlet		
Static 1103	Juite			minuut		0 11			rice inice	The Outle		
					Catalog	gue data			1 1	1	11-1	1
				n Max	Pw	Max		J				
	Select ANP			1/min	1/min BHP		11	b ft²				
		100		1600	1600		35	53.58			Alteri	
Fan Info	rmation								_			
c ft/min	p tot * In.W.G.	p sta In.W.G.	p dyn ** In.W.G.	tip speed ft/min	RPM 1/min	eta Tot %	* (eta Sta %	P fan BHP	Min Mot. BHP	P mot BHP	Shaft diameter in
	2.54	1.76	0.78	9771	1053	66.73	;	46.28	16.57			0.00
				ssure at the impelle	r outlet	1			1			
(**) I heoric value [m[Hz]	e, calculated at	the impeller out	et 63	125	250		500	1000	2000	4000	8000	Tot.
1 1	Sound Powe	er Level in t		t- Lwi Inlet D		-						101.
Level Lw3		B/dB(A)	92/0		89 / 8		/ 81	84 / 84			67 / 66	99 / 88
				let Sound Pov								
Level Lw5		IB/dB(A)	90 / 0		93 / 8	-	/ 81	82 / 82			70 / 69	99 / 89
Lw6 Total S correction	Sound Powe	er Level at t	he free outle	et - Lwmo Out	let Soun	d Power	Level ((free out	let) do not i	ncludes the e	effect of duct	end

.

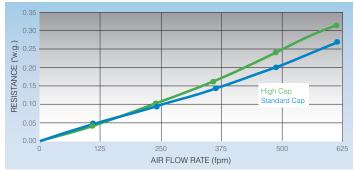
PRODUCT OVERVIEW

- Standard Capacity (MERV 8) & High Capacity (MERV 10)
- Available in 1", 2" & 4"depths
- Ideal for use in
 Prefilter for high efficiency
 - filters
 - Office and Retail
 - Manufacturing and Distribution
 - Government and
 Education facilities
 - Doctor offices, assisted living facilities and Hospitals
 - Hotels and Airports
 - Single and Multi-Family Housing

AEROSTAR SERIES 400 PLEAT

WHY THE SERIES 400?

- 100% synthetic pleated media achieves exceptionally high levels of efficiency
 - Does not rely on electrostatic charge
 - Low resistance to air flow means minimal energy costs
 - Moisture resistant and will not promote microbial growth
 - Excellent pre-filter for higher efficiency air filters
 - Effectively removes airborne irritants
 - Protects cooling coils & ductwork of HVAC system


- Durable construction optimizes performance
 - Media laminated to metal grid
 - Minimized media fluttering
 - Design helps maintain pleat uniformity
 - Frame constructed of high wet strength beverage board
 - Will not warp, crack or distort under normal operating conditions

AEROSTAR SERIES 400 PLEAT

PERFORMANCE DATA (24 x 24)

		INI	TIAL RESIS			
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
	1"	0.14	0.21	-	-	1.0
Standard MERV 8	2"	_	0.14	0.20	0.27	1.0
	4"	_	0.09	0.14	0.21	1.0

INITIAL RESISTANCE (24 x 24 x 2)

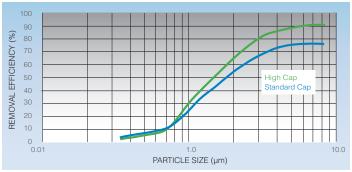
PRODUCT DATA

PART N	PART NUMBER		ACTUAL Size	CFM CAP	ABILTIES
STD CAP	HIGH CAP	SIZE* (H" × W" × D")	(H" × W" × D")	300 fpm	375 fpm
10403 10404 10364 10405 10406 10365 10407 10366 10367 10368 10369 10408 10370 10471 10409 10410 10372 10411 10373 10412 10413 10414 10375 10416 10376 10417 10377	10476 10477 10436 10478 10479 10437 10480 10438 10440 10441 10441 10442 10443 10442 10443 10443 10443 10444 10445 10485 10485 10485 10486 10447 10488 10446 10447 10489 10448	$\begin{array}{c} 8 \times 16 \times 1 \\ 10 \times 10 \times 1 \\ 10 \times 20 \times 1 \\ 10 \times 25 \times 1 \\ 10 \times 25 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 12 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 20 \times 1 \\ 12 \times 25 \times 1 \\ 14 \times 20 \times 1 \\ 14 \times 25 \times 1 \\ 14 \times 25 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 15 \times 20 \times 1 \\ 16 \times 16 \times 1 \\ 16 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 20 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 22 \times 1 \\ 18 \times 25 \times 1 \\ 20 \times 20 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 20 \times 25 \times 1 \\ 22 \times 22 \times 1 \\ 24 \times 24 \times 1 \end{array}$	$\begin{array}{c} 7\ \frac{3}{4} \times 15\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 9\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{1}{2} \times 19\ \frac{1}{2} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 23\ \frac{3}{4} \times \frac{3}{4} \\ 9\ \frac{3}{4} \times 24\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{3}{4} \times 11\ \frac{3}{4} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 15\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 11\ \frac{1}{2} \times 23\ \frac{1}{2} \times \frac{3}{4} \\ 13\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 15\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 17\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 19\ \frac{1}{2} \times 24\ \frac{1}{2} \times \frac{3}{4} \\ 21\ \frac{3}{4} \times 21\ \frac{3}{4} \times \frac{3}{4} \\ 21\ 3$	250 200 400 525 300 400 500 600 625 575 700 725 625 800 725 625 800 825 650 800 825 675 750 825 800 825 825 900 925 825 1000 1050 1050 1000	325 250 525 625 625 750 775 725 875 900 775 975 650 825 1000 1050 850 925 1025 1125 1175 1050 1250 1250 1250

* Contact Customer Care for additional sizes and information.

ENGINEERING SPECIFICATIONS

1.0 General


- 1.1 Filters shall be Aerostar® Series 400 extended surface pleated air filters as manufactured Dafco by Filtration Group.
- 1.2 Filters shall be available in standard and high capacity configurations and available in nominal depths of 1", 2", and 4".
- 1.3 Underwriters Laboratories classified to UL 900 and ULC-S111-07.

2.0 Filter Materials of Construction

- 2.1 Media shall be 100% synthetic, mechanical media that does not support microbial growth.
- 2.2 Filters shall have a high wet strength beverage board with a cross member design that increases filter rigidity and prevents breaching. Frame shall be recyclable.

		INI				
CAPACITY	FILTER Depth	300 fpm	375 fpm	500 fpm	625 fpm	FINAL RESISTANCE ("w.g.)
112.1	1"	0.20	0.28	-	-	1.0
High MERV 10	2"	_	0.16	0.24	0.32	1.0
	4"	_	0.08	0.17	0.26	1.0

MINIMUM REMOVAL EFFICIENCY (24 x 24 x 2)

	PART NUMBER		NOMINAL Size*	ACTUAL Size	CFM CAPABILTIES		
S	TD CAP	HIGH CAP	(H" × W" × D")	(H" × W" × D")	375 fpm	500 fpm	
	10418 10379 10419 10380 10381 10382 10383 10420 10384 10385 10386 10421 10387 10422 10388 10389 10389 10390 10391 10392	10491 10451 10452 10452 10453 10454 10455 10493 10456 10457 10458 10494 10459 10495 10460 10461 10462 10463 10464	$\begin{array}{c} 10 \times 10 \times 2\\ 10 \times 20 \times 2\\ 12 \times 20 \times 2\\ 12 \times 24 \times 2\\ 14 \times 20 \times 2\\ 14 \times 25 \times 2\\ 14 \times 25 \times 2\\ 15 \times 20 \times 2\\ 16 \times 20 \times 2\\ 16 \times 20 \times 2\\ 16 \times 24 \times 2\\ 16 \times 25 \times 2\\ 18 \times 22 \times 2\\ 18 \times 25 \times 2\\ 20 \times 20 \times 2\\ 20 \times 24 \times 2\\ 20 \times 25 \times 2\\ 24 \times 24 \times 2\\ 25 \times 25 \times 2\end{array}$	$\begin{array}{c}9\ \frac{9}{4}\times9\ \frac{9}{4}\times1\ \frac{3}{4}\\9\ \frac{1}{2}\times19\ \frac{1}{2}\times1\ \frac{3}{4}\\11\ \frac{1}{2}\times19\ \frac{1}{2}\times1\ \frac{3}{4}\\13\ \frac{1}{2}\times23\ \frac{3}{6}\times1\ \frac{3}{4}\\13\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\13\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\15\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\15\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\15\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\15\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\17\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\17\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\17\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\17\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\19\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\19\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\19\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\23\ \frac{3}{6}\times23\ \frac{3}{6}\times1\ \frac{3}{4}\\23\ \frac{3}{6}\times23\ \frac{3}{6}\times1\ \frac{3}{4}\\24\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\\24\ \frac{1}{2}\times24\ \frac{1}{2}\times1\ \frac{3}{4}\end{array}$	250 525 625 750 725 900 775 650 825 1000 1050 1025 1125 1175 1050 1250 1300 1500 1625	350 700 825 1000 975 1200 1025 875 1100 1325 1400 1375 1500 1550 1400 1650 1750 2000 2150	
	10393 10394 10395 10396 10397 10398 10399 10400 10401 10402	10465 10466 10467 10468 10469 10470 10471 10472 10473 10474	$12 \times 24 \times 4 \\ 16 \times 20 \times 4 \\ 16 \times 25 \times 4 \\ 18 \times 24 \times 4 \\ 20 \times 20 \times 4 \\ 20 \times 24 \times 4 \\ 20 \times 25 \times 4 \\ 24 \times 24 \times 4 \\ 25 \times 29 \times 4 \\ 28 \times 30 \times 4 \\ \end{array}$	$\begin{array}{c} 11 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 15 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 17 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 19 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 19 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 19 \ \frac{12}{2} \times 24 \ \frac{12}{2} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 23 \ \frac{3}{6} \times 23 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 24 \ \frac{3}{6} \times 28 \ \frac{3}{6} \times 3 \ \frac{3}{4} \\ 27 \ \frac{3}{6} \times 29 \ \frac{3}{6} \times 3 \ \frac{3}{4} \end{array}$	500 fpm 1000 1400 1500 1400 1650 1750 2000 2525 2900	625 fpm 1250 1400 1750 1875 1750 2100 2200 2500 3150 3650	

2.3 Filters shall have an expanded metal support grid bonded to the air-exiting side of the filter to maintain pleat uniformity and prevent fluttering. Metal support grid shall be recyclable and contain a significant amount of post-consumer and pre-consumer content.

3.0 Filter Performance

- 3.1 Filters shall be MERV 10/10A in a high capacity configuration and MERV 8/8A in a standard capacity configuration when tested in accordance with ASHRAE 52.2 Test Standard.
- 3.2 For initial resistance of filters, see Performance Data chart above.
- 3.3 Filters shall be rated to withstand a continuous operating temperature up to 200°F.
- 3.4 Filters shall have a recommended final resistance of 1.0" w.g.

