APPENDIX 'A'

GEOTECHNICAL REPORT

Morrison Hershfield

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements

Roadway Information Package

Prepared for:

Morrison Hershfield I-59 Scurfield Boulevard Winnipeg, MB R3Y IV2 Attention: Mr. Bill Ebenspanger, P. Eng

Project Number: 0035 079 00

Date:

October 24, 2019 Final Report

Quality Engineering | Valued Relationships

October 24, 2019

Our File No. 0035 079 00

Mr. Bill Ebenspanger, P.Eng. Morrison Hershfield 1-59 Scurfield Boulevard Winnipeg, Manitoba, R3Y 1V2

RE: Sub-Surface Investigation Report for Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements

TREK Geotechnical Inc. is pleased to submit our information package for the roadway sub-surface investigations for the Replacement of Existing Culvert at Sherwin Road over Omand's Creek and Associated Regional Street Improvements.

Please contact the undersigned if you have any questions. Thank you for the opportunity to serve you on this assignment.

Sincerely,

TREK Geotechnical Inc. Per:

Module

Michael Van Helden, Ph.D., P. Eng. Geotechnical Engineer, Tel: 204.975.9433

cc: Jashandeep Singh Bhullar, EIT (TREK Geotechnical)

Revision History

Revision No.	Author	Issue Date	Description
0	JSB	October 24, 2019	Draft Report

Authorization Signatures

Prepared By:

Jashandeep Singh Bhullar, EIF

THEE OF MANIA	
Shala/p/20 e	
GM.N.	
XAMAGLEEN	22
Wiersbar	
24729	
AOFESSION.	

Reviewed By:

Michael Van Helden, Ph.D., P.Eng. Geotechnical Engineer

	ENGINEERS GEOSCIENTISTS
Certificat	MANITOBA e of Autorization
TREK GEO	HECHNICAL INC.
No. 4877	Date: 01, 27, 2019

Table of Contents

Letter of Transmittal

Revision	History	and Authorization	Signatures
	2		0

1.0	Introduction1
2.0	Road Investigation and Laboratory Program1
3.0	Closure1

List of Figures

Figure 01	Site Plan of Test Hole Location Plan – Sherwin Road
Figure 02	Test Hole Location Plan – Sherwin Road
Figure 03	Test Hole Location Plan – Sherwin Road
Figure 04	Test Hole Location Plan – Sherwin Road
Figure 05	Test Hole Location Plan – Sherwin Road

List of Appendices

Appendix A	Test Hole Logs – Sherwin Road	
------------	-------------------------------	--

- Appendix B Soil Sample Laboratory Results and Summary Table Sherwin Road
- Appendix C Pavement Core Photographs Sherwin Road

I.0 Introduction

This report summarizes the results of the road investigation completed for the Replacement of Existing Culvert at Sherwin Road over Omand's Creek and Associated Regional Street Improvements project. The information collected describes the pavement structure of the existing road as well as the soil stratigraphy beneath the pavement structure at select locations.

2.0 Road Investigation and Laboratory Program

The subsurface investigation included of pavement coring and drilling of 13 shallow road test holes and 2 deep test holes at the existing culvert (which contain supplemental information on pavements and subgrade). The test hole locations are shown on Figure 01 to Figure 05 (attached).

Road test holes (THs) 19-01 to 19-13 were drilled between September 3, 2019 and September 5, 2019. Two additional deep test holes (THs 19-14 and 19-15) were drilled on September 5 and 6, 2019 for the structure replacement. The pavement structure (asphalt and/or concrete) was cored by Jashandeep Singh Bhullar of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 150 mm diameter diamond core drill bit. All shallow test holes were drilled to a depth of 3.0 m below road surface by Maple Leaf Drilling Ltd. using a truck mounted drill rig equipped with 125 mm diameter solid stem augers except for TH19-04 which was drilled to 3.4 m below ground. Deep test holes were drilled to depths greater than 20 m. The sub-surface conditions were also recorded. investigation. Disturbed (auger cuttings) samples retrieved during the sub-surface investigation were visually classified and transported to TREK's material testing laboratory.

Core and test hole locations noted on the summary tables and test hole logs are based on their location determined using a hand held GPS and location relative to the nearest address, and measured distances from the edge of pavement or other permanent features.

The laboratory testing program for the roadway program consisted of moisture content determination on all samples, as well as Atterberg limits, and grain size analysis (mechanical sieve and hydrometer methods) on select samples between 0.5 and 1.0 m below pavement. Laboratory testing results are included on the test hole logs in Appendix A, while the individual test results are included in Appendix B with a summary table. Photos of the asphalt and concrete pavement cores are included in Appendix C.

3.0 Closure

The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

50

0

100

150 m

0035 079 00 Morrison Hershfield

Sherwin Road Bridge over Omands Creek

Figure 01 TEST HOLE LOCATION PLAN

0035 079 00 Morrison Hershfield

Sherwin Road Bridge over Omands Creek

TEST HOLE LOCATION PLAN

DUBLIN AVENUE

1830 DUBLIN AVENUE

0

1093 SHERWIN ROAD

SHERWIN ROAD

0035 079 00

Morrison Hershfield Sherwin Road Bridge over Omands Creek

Figure 03 TEST HOLE LOCATION PLAN

full bleed B (11.00 x 17.00 l .dwg, 10/2/2019 9:05:58 AM

ANSI 79-00

NOTES:

0035 079 00 Morrison Hershfield

Sherwin Road Bridge over Omands Creek

Figure 04 TEST HOLE LOCATION PLAN

Appendix A

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names	Laboratory Classification Criteria		riteria		ş					
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve size	5 #4	o #10	to #40	200
sieve size	vels of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve nbols*	Not meeting all gradatio	Not meeting all gradation requirem			STM S	#10	#401	#500	¥
s No. 200	No. 200 s Grav han half o larger tha th fines ciable of fines)		GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	ticle Siz	٩			+	
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle ilows: W, SP SM, SC ts requirin	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Par		Ľ	, 8	25	
Coarse-Gr naterial is	action	sands no fines)	SW	***** *****	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fo sw, GP, S GM, GC, thine case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 UU tO 4 7		.075 to 0.4	c/U.U >
n half the r	nds of coarse fr an 4 75 mi	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Salier th	vith fines sciable of fines)	SM		Silty sands, sand-silt mixtures	le percent of on perc rained soil than 5 per than 12 per than 12 per than 2 percent.	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai					Clay
	(More	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Mate	ואומר	Sand	Mediu	Fine Citt or	oll oi
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity Chart Plasticity chart for sold fraction with particles				e Sizes		-	i i i	
. 200 sieve	ts and Cla	Liquid limit sss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -			"UT LI"		TM Sieve	> 12 in 2 in to 12	2	3/4 in. to 3 #4 to 3/4	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%) 00 (%)		CH CH		ticle Size	ASI	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Par		300 200	222	to 75	P 10
Fine the materi	Fine the materia ts and Clar iquid limit ater than 5	Liquid limi ater than (СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F
than half	N	gre	OH		Organic clays of medium to high plasticity, organic silts		ML OR OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Classification Limit Strong colou and often fibr		lour or odour, fibrous texture	Mate	ואומוכ	Bould	Grave	Coarse		

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some some silt		10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Test	blow count (N) of a cor	nesive soil can be related to its c	consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

GEOTECHNI	

Client	:	Morrison He	ershfield			Project Number:	0035	-079-	00					
Projec	t Name	: Sherwin Roa	ad Bridge Over O	mands Creel	(Location:	UTM	-14U,	55308	38N, 628	422E			
Contra	actor:	TREK Geote	echnical Inc.			Ground Elevation	: <u>Top</u>	of Pav	/ement					
Metho	d:	125mm Solid S	tem Auger, Acker MP	3 Truck Mount		Date Drilled:	Sept	embe	r 5, 201	19				
5	Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (SS)	< s	plit Bar	rel (SB)	Co	ore (C)		
F	Particle	Size Legend:	Fines		v IIII silt	Sand		Gra	avel	নি নি ন	obbles		Boulde	ers
· ·		oize Legena.									Wt	Und	Irained	Shea
Depth (m)	Soil Symbol		M	ATERIAL DE	ESCRIPTION		Sample Type	Sample Number	16 17 F 0 20 P 0 20	(kN/m ³) 18 19 Particle Size 40 60 L MC 40 60	Strength (kPa) Test Type △ Torvane △ ● Pocket Pen. ∅ Qu ⋈ ○ Field Vane (0 50 100 150			
		SPHALT (30 r	nm thick) 00 mm thick)											
-0.5-		CLAY - silty - black - moist, ver - high plas trace gravel (c brown and stif	ry stiff ticity liam. < 25 mm) at f below 0.5 m.	0.5 m.				G47		,			<u>^</u>	•
· -								010		•				-
-1.0-								G49	-	•		Δ	•	
		some silt lamin trace silt inclus	nations at 1.2 m. sions (diam. < 15	mm) and gre	yish brown below 1	3 m.		G50 G51		•		0 .	Ð	
-1.5-		trace gravel (c	liam. < 5 mm) at 1	.6 m.				G52	-	•		4		
-2.0-								G53		•				
-2.5-		soft below 2.3	m.					G54						
-3.0-	E N 1 2 3 3 4 5	ND OF TEST lotes:) No seepage) No sloughing) Test hole dry) Test hole baa) Test hole top	HOLE AT 3.0 m II observed. observed. and open to 3.0 i ckfilled with bento sealed with asph	N CLAY n below grou nite chips an alt cold patcl	und surface immedia d auger cuttings. n.	ately after drilling.								
	d By:	Jashan Bhulla	r	Revie	wed By: Nelson F	erreira		Proie	ct Enai	neer: N	ichael Va	an Helde	en	

	/
	Κ
GEOTECHNIC	

Clien	ıt:	Morrison He	ershfield			Project Number:	0035-	-079-0	0					
Proje	ect Name	: Sherwin Roa	ad Bridge Over Or	mands Creek		Location:	UTM-	-14U,	553075	54N, 628	8417E			
Conti	ractor:	TREK Geote	echnical Inc.			Ground Elevation	: <u>Top c</u>	of Pav	ement					
Meth	od:	125mm Solid S	tem Auger, Acker MP	3 Truck Mount		Date Drilled:	Septe	ember	5, 201	9				
	Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon ((SS)	< Sp	lit Barr	el (SB)	C	Core (C)		
	Particle	Size Legend:	Fines	Clay	Silt	👬 Sand		Gra	vel	67 (Cobbles		Boulde	rs
Depth (m)	Soil Symbol		Μ	ATERIAL DESC	RIPTION		Sample Type	Sample Number	L 16 17 Pa 0 20 PL 0 20	Bulk Un (kN/m ³ 18 1 article Siz 40 6 40 6	it Wt 9 20 2 e (%) 0 80 10 LL 0 80 10		ndrained 3 <u>Strength (</u> <u>Test Ty</u> △ Torvan Pocket P ⊠ Qu I ○ Field Va 100 19	Shea kPa) pe $1e \triangle$ 2en. ane C 50
		SPHALT (50 n CONCRETE (22 CLAY (FILL) - s - brownish	nm thick) 25 mm thick) ilty, trace silt inclu grey	sions (diam. <20	0 mm), trace gra	vel (diam. <20 mm)		G55		•			<u>.</u>	
-0.5-		- moist, ver - high plast	ry stiff ticity											
		11111 DEIOW U.6						G56		•				
1.0-								G57					2	-
- - - -								G58		•			Þ	
1.5-	-	trace organics soft below 1.5	below 1.3 m. m.					G59		•		¢		
-2 0								G60		•				
2.0-														
2.5-														
		AY - trace sil	t inclusions (diam	<20 mm) brow	n moist soft bi	nh nlasticity								
-3.0-	E N 1 2 3 4 5	ND OF TEST lotes:) No seepage) No sloughing) Test hole dry) Test hole bac) Test hole top	HOLE AT 3.0 m II observed. g observed. and open to 3.0 r ckfilled with bento sealed with asph	n below ground nite chips and a alt cold patch.	surface immedia	ately after drilling.		G61						<u> </u>
		Jachan Rhulla	-	Beviewe		orroiro		Droioc	t Engir	oor: N	lichaol \	/an Hol	don	-

	K
GEOTECHNIC	AL

Client	t:	Morrison He	rshfield			Project Number:	0035	-079-	00				
Proje	ct Name	Sherwin Roa	ad Bridge Over On	ands Creek		Location:	UTM	-14U,	553065	2N, 6284	18E		
Contr	actor:	TREK Geote	chnical Inc.			Ground Elevation:	Торо	of Pav	ement				
Metho	od:	125mm Solid St	em Auger, Acker MP8	Truck Mount		Date Drilled:	Sept	embe	r 5 <u>,</u> 201	9			
	Sample	Type:	Grah (G)		Shelby Tube (T)	Split Spoon (S			nlit Barr			ore (C)	
	Particle	Size Legend:	Fines	Clay	Silt	Sand		Gra	avel				Boulders
Depth (m)	Soil Symbol	SPHALT (35 n	M/ nm thick)	ATERIAL DES	CRIPTION		Sample Type	Sample Number	16 17 Pa 0 20 PL 0 20	17 18 19 20 21 Particle Size (%) 20 40 60 80 11 20 40 60 80 11 20 40 60 80 11 20 40 60 80 11		Strength (kF 1 Test Type △ Torvane 00 ● Pocket Per ○ Field Vane 00 50	
	° ≜ ≜ C	ONCRETE (20	00 mm thick)										
-0.5-	¢ C	LAY (FILL) - si - greyish lig - moist, firn - intermedia	ilty, trace silt inclus pht brown า ate plasticity	sions (diam. < :	20 mm), trace gra	avel		G39	•				
• • •	-	no trace grave	l and soft below 0.	9 m.				G40				•	
-1.0-	-	high plasticity l	pelow 1.0 m.					G41		•		•	
-1.5-	-	light brown and	d intermediate pla	sticity below 1.	2 m.			G42				•	
- - -								G43				•	
-2.0-		greyish brown	Delow 1.8 m.					G44					
-2.5-		LAY - trace silf	t					G45		_			
• • •		- greyish br - moist, sof - high plast	own t icity						_				
-3.0-								G46					
	N 1 2 3 4 5) No seepage () No sloughing) Test hole dry) Test hole bac) Test hole top	observed. observed. and open to 3.0 n kfilled with bentor sealed with aspha	n below ground ite chips and a ilt cold patch.	l surface immedia auger cuttings.	ately after drilling.							
	ed Bv:	Jashan Bhulla	r	Reviewe	d By: Nelson F	erreira		Proje	ct Engir	neer: Mi	chael V	an Held	len

	/
	Κ
GEOTECHNIC	

Client		Morrison Her	shfield				Project Nun	nber:	0035-0	079-0	0				
Droior	nt Norm		d Drida		anda Craak		Logotion			1411	55205	16NI 620	4110		
Contro			<u>u briug</u>		anus creek			-	<u>UTIVI-</u>	140, ; Devi	00000	+01N, 020	+11		
Contra	actor:		cnnicai				Ground Elev	vation:		. Pave					
Metho	od:	_125mm Solid St	em Auge	r, Acker MP8	Truck Mount		Date Drilled	: _	Septe	mber	5, 201	9			
:	Sample	е Туре:		Grab (G)		Shelby Tube (T)	Split Sp	boon (SS	S) 🗡	Sp	lit Bar	rel (SB)	Cor	re (C)	
	Particle	e Size Legend:		Fines	Clay	Silt	Sa	and		Gra	vel	67 C	obbles	Во	ulders
Depth (m)	Soil Symbol	ASDHALT (50 m	m thick	MA	TERIAL DES	CRIPTION			Sample Type	Sample Number	[16 17 P 0 20 P P 0 20	□ Bulk Unit (kN/m ³) 18 19 article Size 40 60 - MC 40 60	Wt 20 21 (%) 80 100 LL 80 100 0	Undrai Stren 	ned Shear gth (kPa) st <u>Type</u> vrvane ∆ ket Pen. Ф Qu ⊠ d Vane O 0 150 20
]	A 4 4	CONCRETE (20	0 mm t	hick)					-1						
-0.5-		CLAY (FILL) - si - brownish (- moist, firm - high plasti	lty, trac grey i to stiff city	e silt inclusi	ions (diam. <	10 mm), trace gra	ivel (diam. < 30) mm)		G62	•				•
		firm to stiff hale		~						G03		•			
-1.0-		- Tirm to stiff deic	ow 0.8 r	n.						G64		•			
1.5-										G65		•			
										G66		•			
-2.0		- soft below 1.8 i	n.							G67		•			
-2.5		CLAY - trace silt - dark brow - moist, soft - high plasti	inclusi n : to firm city	ons (diam. ·	< 5 mm)					G68		•		2	
ہ ہے ہے		END OF TEST F Notes:		\T 3.3 m IN	CLAY					G69		•		4	
		 No seepage of No sloughing Test hole dry Test hole bac Test hole top 	observe observ and op kfilled v sealed	d. ed. en to 3.3 m vith bentoni with aspha	below ground te chips and a It cold patch.	l surface immedia auger cuttings.	ately after drillir	ıg.							
		lashan Bhullar			Reviewe	d Bv: Nelson F	erreira		p	roiec	t Engi	neer: M	ichael Va	n Helden	

STREK	
GEOTECHNICAL	

Sub-Surface Log

GE	<u>OT</u>	<u>ECHNIC</u>	CAL									
Clien	it:	Morrison Her	rshfield			Project Number:	0035-0	079-00				
Proje	ect Nam	e: <u>Sherwin Roa</u>	ad Bridge Over On	ands Creek		Location:	UTM-1	14U, 55	30448N, 6	28414E		_
Cont	ractor:	TREK Geote	echnical Inc.			Ground Elevation:	Top of	f Pavem	ent			
Meth	od:	125mm Solid St	tem Auger, Acker MP8	Truck Mount		Date Drilled:	Septer	mber 5,	2019			
	Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	6S) 💌	Split	Barrel (SB) 🚺 Co	ore (C)	
	Particle	e Size Legend:	Fines	Clay	Silt	👯 Sand		Gravel	62	Cobbles	Вс	oulders
Depth (m)	Soil Symbol		M/	ATERIAL DESC	CRIPTION		Sample Type	Sample Number	□ Bulk L (kN/r 17 18 Particle S 20 40 PL MC 20 40 20 40	Jnit Wt n ³) 19 20 21 Size (%) 60 80 100 C LL 60 80 100	Undra Stre △ T • Por © 0 Fie 0 50 10	ained Shear ngth (kPa) <u>est Type</u> orvane △ cket Pen. ● 3 Qu ⊠ eld Vane ○ 00 150 200
E	A 4 A A	ASPHALT (20 m CONCRETE (20	nm thick) 00 mm thick)									
		CLAY (FILL) - si - brownish - moist, firm - high plast	ilty, trace organics grey n to stiff iicity					G31 G32	•			•
		- no trace organ	iics, grey and firm	pelow 1.3 m.				G33 G34	•			
-1.5-		- black and very	r stiff below 1.5 m.					G35	•			•
-2.0-		 trace sulphate grey and stiff b 	precipitates and tr below 1.8 m.	ace gravel (dia	m. < 15 mm) at 1	.8 m.		G36				•
-2.5-		CLAY - trace silt - greenish t - moist, stiff - high plast	t inclusions (diam. brown f iicity	< 5 mm), trace	sulphate precipita	ates (diam.< 5 mm)		G37	•		A . 9	
-3.0-								G38			¢	
		END OF TEST F Notes: 1) No seepage of 2) No sloughing 3) Test hole dry 4) Test hole bac 5) Test hole top	HOLE AT 3.0 m IN observed. and open to 3.0 m kfilled with bentor sealed with aspha	CLAY below ground ite chips and a lt cold patch.	surface immedia uger cuttings.	tely after drilling.						
Logg	ed By:	Jashan Bhullar	r	Reviewe	d By: Nelson Fe	erreira	P	roject E	ingineer:	Michael Va	an Helden	1

	_
RE	\boldsymbol{X}
GEOTECHNICI	

Sub-Surface Log

Clien	t:	Morrison He	rshfield				Project Number	0035	-079-0	00							
Proie	ect Name	: Sherwin Ros	d Brida	e Over Om	ands Creek		Location.	UTM.	.1411	5530	0328N	6284	07F				—
Cont	ractor.	TREK Geote	chnical	Inc			Ground Elevation:	Top c	of Pav	eme	nt	, 020-					
Meth	od.	125mm Solid St		· Acker MP8	Truck Mount		Date Drilled	Sente	ember	r 5 2	019						—
Meth	0										.010						_
	Sample	Туре:		Grab (G)				s)	SI SI	plit B	arrei (<u></u>		ore (C)			
	Particle	Size Legend:		Fines	Clay	Silt	Sand		Gra	avel	67		obbles		Bould	lers	
Depth (m)	Soil Symbol		41 - 1	MA	ATERIAL DESC	CRIPTION		Sample Type	Sample Number	16 0 : 0 :	Dartic 17 1 Partic 20 4 PL 20 4	$\frac{1100}{1000}$	20 21 (%) 80 100 LL 80 100	0 50	Indraine <u>Strength</u> <u>∆</u> Torva Pocket ⊠ Qu ⊃ Field \ 100	d Shea (kPa) fype ane \triangle Pen. \square \square \square \square \square \square \square \square	ar) Ф 200
		CONCRETE (18	1m thick) hick)													
-0.5-		CLAY - trace silf - brown - moist, stiff - high plast	laminat f icity	tions, trace	e sand, trace bl	ack clay			G70		•						
_		no trace sand a	and firm	to stiff bel	low 0.6 m.				G71		•			٨			
1.0-		trace oxidation	at 0.9 r	n.					G72		•				•		
1.5-			/						G73	_	•						
-		- light brow - wet, very : - low plastic	n soft city						G/4								
-2.0									G75		•						
2.5-																	
-3.0-		CLAY - trace silf - greyish br - wet, firm - high plast	i own icity						G76			•					
	E N 1 2 2 3	:ND OF TEST I lotes:) Seepage obs 2) No sloughing 2) Test hole bac 3) Test hole top	HOLE A oobserv kfilled w sealed	T 3.0 m IN ved. /ith benton with aspha	I CLAY ite chips and a ilt cold patch.	uger cuttings.											
.oqq	ed By:	Jashan Bhulla	r		Reviewe	d By: Nelson Fe	erreira	I	Projec	ct En	iginee	r: _Mi	chael Va	an Hel	den		

	_
RE	\boldsymbol{X}
GEOTECHNICI	

Client	:	Morrison He	rshfield			Project Numb	ər: _0	035-	079-0	00						
Projec	t Name	: Sherwin Roa	ad Bridge Over O	mands Creek		Location:	<u> </u>	JTM-	14U,	5530	242N, 6	28410				
Contra	actor:	TREK Geote	echnical Inc.			Ground Eleva	tion: <u> </u>	Гор о	f Pav	emer	nt					
Metho	d:	125mm Solid S	tem Auger, Acker MP	8 Truck Mount		Date Drilled:	5	Septe	mber	5, 20	019					
ŝ	Sample	Туре:	Grab (G)	Shelby Tube (T)	Split Spor	on (SS))	Sp	olit Ba	arrel (SB)	Core	e (C)		
F	Particle	Size Legend:	Fines	Clay	Silt	Sand	4		Gra	vel	FA	Cobbl	es '		Bould	ers
		Ū				<u> </u>			ř			Jnit Wt		Un	drained	l Shea
_	lod							ype	mbe	16 1	7 18	19 20	21	S	Test T	(kPa) vpe
(j) apt	Sym		N	ATERIAL DESC	RIPTION			ole T	e Nc		Particle S	Size (%)	100	"	∆ Torva	ne ∆ Pen ∎
	Soil							amp	mple		PL MC		, 100	-		
	0,							N	Sa	0 2	0 40	60 80	100 0	50	100	150
	A	SPHALT (40 r	nm thick)													
	° a a C	CONCRETE (2	05 mm thick)													
		LAY - trace sil	t inclusions (diam	. < 5 mm), trace	organics			┤┧								
		 blackish (moist, stil 	grey ff to very stiff						G24						· •	
0.5-		- high plas	ticity												_	
	////	no trace orgar	nics and stiff below	v 0.6 m.					C25	-					<u> </u>	
_									625						*	-
1.0									G26		•				/ •	
										1						
		brownich grov	and firm to stiff h	olow 1.2 m						-						
		brownish grey		elow 1.2 III.					G27		•					
-1.5-	////	trace sulphate	precipitates (diar	n. < 10 mm) at 1	.6 m.				C 20							
									G20	-					•	
									G29		•			∠		
2.0															_	-
_															_	
25	////	greyish brown	and firm below 2	4 m.												
7																
									C30	1				~		
-3.0-			HOLEATSOM						000		-					
	N	lotes:	HOLE AT 3.0 IN I													
	1 2) No seepage) No sloughing	observed.													
	3) Test hole dry	and open to 3.0	n below ground	surface immedia	ately after drilling.										
	4 5) Test hole top	sealed with asph	alt cold patch.	uy c i cullinys.											
onne	d By:	Jashan Bhulla	r	Reviewed	Bv: Nelson F	erreira		F	Proiec	t Ene	gineer:	Micha	el Var	n Held	en	

	_
RE	\boldsymbol{X}
GEOTECHNICI	

Client	t:	Morrison He	ershfield			Project Number:	0035	-079-0	00					
Proje	ct Name	: Sherwin Roa	ad Bridge Over O	mands Creek		Location:	UTM	-14U,	5530	143N, 628	402E			
Contr	ractor:	TREK Geote	echnical Inc.			Ground Elevation	: Top o	of Pav	emen	nt				
Metho	od:	125mm Solid S	tem Auger, Acker MP	3 Truck Mount		Date Drilled:	Septe	ember	5, 20)19				
	Sample	Type:	Grab (G)	Shelby Tube (T)	Split Spoon ((SS)	S	olit Ba	arrel (SB)	Co	ore (C)		
	Particle	Size Legend:	Fines	Clav		Sand		Gra	vel	ি নি ন	obbles		Boulde	rs
		OIZO LOGONA.									Wt	Un	drained	Shea
Depth (m)	Soil Symbol	ASPHALT (50 r	M	ATERIAL DES	CRIPTION		Sample Type	Sample Number	16 1 0 2 0 2	7 (kN/m ³) Particle Size 0 40 60 PL MC 0 40 60	20 21 (%) 80 100 LL 80 100	S • • 0 50	trength (<u>Test Ty</u> ∆ Torvan Pocket P ⊠ Qu D Field Va 100 15	kPa) pe $ie \triangle$ $ie \triangle$ $ine \triangle$ $ine \bigcirc$ 50
-		CONCRETE (1	90 mm thick)											
-0.5-		CLAY - trace sil - blackish ç - moist, firr - high plas trace gravel (d trace sand at (t inclusions (diam grey n to stiff ticity liam. < 30 mm) at 0.6 m	. < 20 mm), tra 0.5 m.	ce orgnaics			G77	-	•		A	•	-
- 								G78	-	•		Z	•	
-1.0-								G79				Δ	•	
1 5		no trace orgar	nics, brown and st	iff below 1.2 m				G80	-	•			þ	
1.0 - -		trace gravel (d	liam. < 5 mm) at 1	.6 m .				G81	-	•		•^		
-2.0-		greyish brown	and firm to stiff b	elow 1.9 m.				G82	-	•			•	
-3.0		dark brown be	low 2.7 m.					G83		•		₽		
	E N 1 2 3 3 4 5	END OF TEST Notes:) No seepage) No sloughing) Test hole dry) Test hole bac) Test hole top	HOLE AT 3.0 m I observed. observed. and open to 3.0 o ckfilled with bento sealed with asph	N CLAY m below groun- nite chips and alt cold patch.	d surface immedia auger cuttings.	ately after drilling.								
	ed Bv:	Jashan Bhulla	r	Review	ed Bv: Nelson F	erreira		Proiec	t Enc	aineer: M	ichael Va	an Held	en	

	_
RE	\boldsymbol{X}
GEOTECHNICI	

Client	t:	Morrison He	rshfield			Project Number:	0035	-079-	00					
Proje	ct Name	: Sherwin Roa	ad Bridge Over O	mands Creek		Location:	UTM	-14U,	5530	044N, 628	405E			
Contr	ractor:	TREK Geote	echnical Inc.			Ground Elevation	: <u>Top c</u>	of Pav	/emer	nt				
Metho	od:	125mm Solid S	tem Auger, Acker MP	3 Truck Mount		Date Drilled:	Septe	embe	r 5, 20	019				
	Sample	Type:	Grab (G)		Shelby Tube (T)	Split Spoon (SS)	< s	olit Ba	arrel (SB)	ССС	ore (C)		
	Particle	Size Legend:	Fines			Sand		Gra					Boulde	
		Size Legenu.				North Carlo					tWt		drained	She
Depth (m)	Soil Symbol	SPHALT (25 r	M	ATERIAL DE	SCRIPTION		Sample Type	Sample Number	16 1 0 2 0 2	(kN/m ³) Particle Size	20 21 (%) 80 100 LL 80 100	St St C St St St St St St St St St St	rength (<u>Test Ty</u> 3 Torvar ³ Torvar ⁹ Ocket F ⊠ Qu I Field Va 100 1	(kPa) <u>pe</u> 1e △ Pen. ■ ⊠ ane ⊂ 50
-		CONCRETE (20	05 mm thick)											
-0.5-		CLAY - trace sil - blackish g - moist, stif - high plast	t inclusions (diam grey f to very stiff ticity	. < 5 mm), tra	ice organics		7	G16	-	•			2 I	•
- - - -		no trace orgar	iics, light brown ai	nd stiff below	0.6 m.			G17	-	•			•	
-1.0-		trace gravel (d	iam. < 10 mm) at	0.9 m.				G18	-	•			•	
-1.5-								G19 G20		•			•	
-2.0		firm below 1.8	m.					G21 G22	-	•				
-3.0-		greyish brown	below 2.4 m.				7	G23		•				
	N 12 33 4 5) No seepage) No sloughing) Test hole dry) Test hole bac) Test hole top	observed. observed. and open to 3.0 r kfilled with bento sealed with asph	n below grou nite chips and alt cold patch	nd surface immedia d auger cuttings.	ately after drilling.								
	od By:	Jashan Bhulla		Review	ved Bv: Nelson F	erreira		Proie	ct End	aineer: N	lichael V	/an Held	en	

	_
RE	\boldsymbol{X}
GEOTECHNICI	

Client:	_N	Iorrison He	rshfield			Project Number:	0035	-079-	00					
Project Na	ame: <u>S</u>	Sherwin Roa	d Bridge Over Or	mands Creek		Location:	UTM	-14U,	5529	933N, 628	398E			
Contracto	r: _T	REK Geote	chnical Inc.			Ground Elevation:	Тор	of Pav	/emen	nt				
Method:	_1	25mm Solid St	em Auger, Acker MP	3 Truck Mount		Date Drilled:	Sept	embe	r 5, 20)19				
Sam	ple Typ	e:	Grab (G		Shelby Tube (T)	Split Spoon (S	SS)	< s	plit Ba	arrel (SB)	Co	re (C)		
Part	cle Siz	e Leaend:	Fines	Clav	Silt	Sand		Gra	avel	চন চ	obbles	E	Boulde	rs
											Wt	Unc	Irained	Shea
8							ype	mbe	16 1	(kN/m ⁻) 7 18 19	20 21	St	ength (kPa)
sym () Sym ()			N	ATERIAL DESC	CRIPTION		le T	Nu		Particle Size	(%)		Torvan	$e \Delta$
							amp	, nple	0 2	0 40 60 PL MC	80 100	¶ P ⊙ I		≊ ≊
0							ũ	Sar	0 2	0 40 60	80 100	0 50	-ieid va 100 1	ine (50
P. B.	ASP	HALT (50 n	nm thick)				/							
9 4 2 4 2 5	CON	ICRETE (19	∂0 mm thick)											
	CLA	Y - trace sill	inclusions (diam	. < 20 mm), trac	e organics									-
		 blackish g moist, ver 	rey y stiff					G91					<u> </u>	5
-0.5-		- high plast	icity	diam < 20 mm	hrownish arour	and stiff below 0.6 m								-
		liace organ	ics, liace graver (, brownish grey a			000					_	
								692		-			-	
-1.0-	- no	trace grave	l below 0.9 m.					G93		•		•		
									-					
								G94		•		ቀ△	2	
-1.5-	- trad	ce sulphate	precipitates (diar	n. < 15 mm) at 1	l.5 m.			005	_					
	- firm	n below 1.5	m.	,				G95	_			-		
													_	-
								G96		•		4	1	
-2.0-													_	-
2.5	- gre	yish dark bi	rown below 2.4 m	I.									_	
· //								G97	1			4		
-3.0-		OF TEST	HOLE AT 3.0 m l'	N CLAY			V	001				Ī		
	Note	S:												
	2) N	o seepage o o sloughing	observed.											
	3) Te 4) Te	est hole dry	and open to 3.0 i	n below ground nite chips and a	surface immedia	ately after drilling.								
	5) Te	est hole top	sealed with asph	alt cold patch.										
									. –					
Logged B	y: Jas	shan Bhulla	r	Reviewee	d By: Nelson F	erreira	_	Proje	ct Eng	gineer: _M	ichael Va	an Helde	en	

	RF	Z
GENTE	THULL	

Client		Morrison He	rshfield			Project Number:	0035-079-00									
Projec	ct Name	: Sherwin Roa	ad Bridge Over O	mands Creek		Location:	UTM-	-14U,	5529	9843N,	62840	2E				
Contra	actor:	TREK Geote	echnical Inc.			Ground Elevation:	Top of Pavement September 5, 2019									
Netho	od:	125mm Solid S	tem Auger, Acker MP	8 Truck Mount		Date Drilled:										
5	Sample	Туре:	Grab (G)	Shelby Tube (T)	Split Spoon (S	SS)	< s	plit B	arrel (S	SB)	Co	re (C)			
F	Particle	Size Legend:	Fines	Clay	Silt	Sand		Gra	avel	~		bles		Bould	ers	
								er I			L k Unit W	t	Un	drained	Shea	
_	lodr						Lype	qur	16	17 18	19	20 21	S	Test T	<u>(к</u> Ра) уре	
(i) (ii) (iii)	Syn		N	IATERIAL DES	SCRIPTION		ole J	e N	0	Particle 20 40	e Size (% 60	») 80 100	ر ا	∆ Torva Pocket	ne ∆ Pen.∎	
	Soil						ami	dm	<u> </u>	PL		L	0	⊠ Qu Field V	ane 🤇	
							S	Sa	0 2	20 40	60	80 100 0	0 50	100	150	
-	A	ASPHALT (150	mm thick)													
		CONCRETE (1	50 mm thick)													
		CLAY - trace sil	t inclusions (diam	. < 30 mm), tra	ace organics			000	-							
_		- blackish g	grey	,,	Ŭ -			G09	4							
-0.5		- high plast	ticity													
_		stiff below 0.8	m.					G10		•			4			
									-							
1.0														_		
-		no trace organ	iics, brownish gre	y below 1.1 m.				G11]	•						
-															-	
									-							
1.5-								G12		•				∠Φ	_	
	////	firm below 1.7	m.					G13			_					
								510	-		-					
20																
2.0-		trace gravel in	ciusions (diam. <	15 mm) at 2.0	m.			G14			•		ب			
									1							
2.5-																
-																
									-							
3.0-								G15		•						
	E	END OF TEST	HOLE AT 3.0 m l	N CLAY								i				
	r 1) No seepage	observed.													
	2	 No sloughing Test hole dry 	observed.	m below aroun	d surface immedia	ately after drilling										
	4) Test hole bac	ckfilled with bento	nite chips and	auger cuttings.	ato, and anning.										
	5) Test hole top	sealed with asph	ait cold patch.												
	d By:	lashan Bhulla	r	Poviow	od By: Nolson E	orroira		Droio	at En	ainoor	• Micł	nael Va	n Held	len		

SEREK
GEOTECHNICAL

UE		ELHIII												
Client	t:	Morrison He	ershfield			Project Number:	0035-	079-0	00					
Proje	ct Name	e: Sherwin Roa	ad Bridge Over O	mands Creek		Location:	UTM-	14U,	552973	39N, 62	8394E			
Contr	ractor:	TREK Geote	echnical Inc.			Ground Elevation:	Top o	f Pav	ement					
Metho	od:	125mm Solid S	item Auger, Acker MP	8 Truck Mount		Date Drilled:	Septe	mber	5, 201	9				
	Sample	Type:	Grab (G)	Shelby Tube (T)	Split Spoon (S	S) 💌	Sp	olit Barr	rel (SB)	Co	re (C)		
	Particle	Size Legend:	Fines	Clay	Silt	 Sand	•	Gra	vel	দিস (Cobbles		Boulde	ers
Depth (m)	Soil Symbol		N	IATERIAL DESC	CRIPTION		Sample Type	Sample Number	16 17 P 0 20 PL 0 20	Bulk Ur (kN/m 18 1 article Siz 40 6 MC 40 6	it Wt 9 20 21 60 80 100 LL 0 80 100	U (0 50	Indrained Strength △ Torva Pocket I ⊠ Qu ⊃ Field V: 100	Shear (kPa) /pe ne △ Pen. ● ⊠ ane ○ 150 20025
-0.5		ASPHALT (55 r CONCRETE (20 CLAY - trace sil - blackish ç - moist, stif - high plast	nm thick) 00 mm thick) It, trace organics grey ff ticity					G84 G85		•			40- 0.	
-1.0-		SILT AND CLA` CLAY - trace sil - brownish - moist, firm - high plast	Y - brown, moist, : tinclusions (diam grey n to stiff ticity	soft , high plastic < 10 mm)	sity			G86 G87		•			<u>\$</u>	
-2.0		- trace sand at 1	1.8 m.					G88		•			•	
-2.5-		- soft below 2.7	m. HOLE AT 3.0 m l	N CLAY				G90						
		Notes: 1) No seepage 2) No sloughing 3) Test hole dry 4) Test hole bac 5) Test hole top	observed. 9 observed. 9 and open to 3.0 f ckfilled with bento 9 sealed with asph	m below ground nite chips and a alt cold patch.	surface immedia uger cuttings.	tely after drilling.								
Logg	ed By:	Jashan Bhulla	ır	Reviewed	d By: Nelson Fe	erreira	P	Projec	t Engii	neer:	Michael Va	ın Hel	den	

	_
STREK	
GEOTECHNICAL	

Client		Morrison Her	rshfield					Pro	ject Numb	er: ()035	-079-0	00						
Project Name: Sherwin Road Bridge Over Omands Creek					Loc	ation:	<u> </u>	UTM-14U, 5529675N, 628398E											
Contra	actor:	r: TREK Geotechnical Inc. Ground E								tion: _	Гор с	of Pav	emen	ıt					
Metho	od:	125 mm Solid S	tem Auger					Dat	e Drilled:	S	Septe	ember	5, 20)19					
ç	Sample ⁻	Type:	Gra	b (G)		Shell	ov Tube (T		Split Spo	on (SS		S S	olit Ba	rrel (S	в) 🗌	Пс	ore (C	:)	
	Dortiola (,				4								., D-:	Idore
1		size Legenu:		:>		'		ļ	Sanc	L		Gia				JIES		Lindrai	ned Sho
Depth (m)	Soil Symbol	SPHALT (35 m ONCRETE (18	nm thick) 35 mm thick)	MATE	ERIAL DE	SCRIP	TION				Sample Type	Sample Number	16 1 0 20 0 20	7 (kN Particle 0 40 PL M 0 40	I/m ³) 19 Size (% 60 I/C LI 60	20 21) 80 100 L 80 100	0 5	Stren <u>Tes</u> △ Tc ● Pocl Ø Fiel 0 Fiel 0 100	gth (kPa st Type orvane ∆ ket Pen. Qu ⊠ Id Vane (0 150
-0.5-		RGANIC CLA` - blackish g - moist, stiff - high plast	Y - trace silt irey f icity									G01		•	//////			^ 	
-1.0-*	<u></u> 		(trace cano									G02					•	4	
• 		- brown - moist, sof - low to inte	t termediate pla	sticity								G03 G04		•			2 2		
-1.5												G05		•			2 . 0		
-2.0	C	LAY - trace silt - grey - moist, stiff - high plast	inclusions (f icity	diam. < ⁻	15 mm), tr	ace gra	avel (diam.	< 15 m	m)			G06		•				2 0	
·2.5-		trace sulphate firm below 2.4	precipitates m.	at 2.4 m								G07 G08			•		•	<u>×</u>	
	E N 2) 3) 4) 5)	ND OF TEST H otes:) No seepage of) No sloughing) Test hole dry) Test hole bac) Test hole top	HOLE AT 3.0 observed. and open to kfilled with b sealed with	0 m IN C 3.0 m be entonite the asph	LAY elow grour chips and alt cold pa	nd surfa I auger atch.	ace immed cuttings.	iately a	ter drilling.							1			
	d Der	Joober Dhull			Decit		Naless	- or				Dwata	4 🗖 🖓		N A? - 1	oci) (0		
onde	d Bv:	Jashan Bhullar	r		Review	ved Bv:	Nelson I	erreira			1	Proied	t Enc	ineer:	Mich	ael V	an He	elden	

UE	UI	EL	Li LL	ILHL														
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	16 0 0	17 Part 20 PL 20	Aulk Ui (kN/m 18 icle Si 40 MC 40	nit Wt 19 22e (% 60 60	t 20 21 5) 80 100 L 6 80 100	0 5	Undra Strer <u>Te</u> O To Strer Te O To Strer O Fiel Strer O To Strer O To	ined S <u>st Typ</u> orvane ket Po Qu B d Var 15 15 15 15 15 15 15 15 15 15	Shear (Pa) 20 <u>e</u> e △ en. ● 3 ne ○ 50 20	0 250
	-22.5 -23.0- -23.5 -23.5			the core axis below 22.1 m. - cherty dolomite and minor subhorizontal fractures below 22.95 m.		C156	66											
209.6	-24.5- 			- dolomite with subhorizontal thin clay seams at 25.05 m. - white to pink, hard and minor vugs below 25.2 m.		C157	86											
				 END OF TEST HOLE AT 25.4 m IN DOLOMITE BEDROCK. Not seepage observed. No sloughing observed. Switched to HWT casing and HQ coring below 12.6 m. SP19-14 installed in TH19-14A located approx. 1 m South-west of the test hole. Test hole backfilled with bentonite chips and auger cuttings. Test hole top sealed with asphalt cold patch. 														

SUB-

Sub-Surface Log

┝											Ik Linit	\ \ /+	-																				
	Elevation (m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION ADD IN MATERIAL DESCRIPTION				MATERIAL DESCRIPTION			MATERIAL DESCRIPTION				MATERIAL DESCRIPTION					MATERIAL DESCRIPTION						1 D	Strength (kPa) <u>Test Type</u> △ Torvane △ ● Pocket Pen. ● ⊠ Qu ⊠ ○ Field Vane O						
						ű			0 2	20 40	60	80 10	0 5	50 10	0 150	200 250																	
Ī		-10.5- - 11.0-		- compact below 10.7 m.	X	<u>G116</u> SS117		17	•					•																			
		-11.5 - - 12.0 - - 12.5				<u>G118</u> SS119		15	•				0																				
T 10/24/19		-13.0- 		- no clay, no plasticity and very dense below 13.7 m. - trace limestone gravel at 13.7 m.		G120 SS121		53	•																								
REK GEOTECHNICAL.GU	<u>219.8</u>	-14.5 		SANDY SILT (TILL) - brown - damp, very dense		G122 SS123		68	•																								
A_JSB 0035-079-00.GPJ T	218.6	-16.0- 		 no to low plasticity SANDY SILT - trace gravel light brown wet, very dense no plasticity 		G124 SS125		105	•		••••• •••••																						
ER OMANDS CREEK 0_/	216.8	17.5 - - 18.0 - - 18.5		SAND (TILL) - silty, trace gravel - brown		G126 SS127 C128		142 / 24mm/	•																								
	215.2	-19.0- 		 moist, very dense no plasticity SAND - poorly graded, fine grained, trace to some gravel, brown, wet, 		SS129		51 /																									
9-09-09 SHEK	214.6			very loose, no plasticity - limestone cobble at 20.3 m. END OF TEST HOLE AT 20.5 m IN SAND. Notes:		C130		<u>137mm</u>																									
SURFACE LOG LOGS 201				 Power auger refusal at 18.4 m in SAND (TILL). Switched to HWT casing and HQ coring below 18.4 m. Seepage observed at 15.0 m in SILT (TILL) and below 16.5 m in SANDY SILT. No sloughing observed. Test hole backfilled with bentonite chips and auger cuttings. Test hole top sealed with asphalt cold patch. 																													
5 CB	Logge	ed By:	Logged By: Jashan Bhullar Reviewed By: Nelson Ferreira Project Engineer: Michael Van Helden																														

Appendix B

Soil Sample laboratory Results and Summary Table

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

Test Hole No.		Paveme	ent Surface	Pavement Structure Material			Sample	Depth (m)	Moisture		Grain Siz	e Analysis	5	At	mits	
	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	30	Concrete	200	Clay	0.3	0.5	22							
	UTM : 5530838 N,					Clay	0.6	0.8	30							
TH19-01	628422 E					Clay	0.9	1.1	34							
	Located in Northbound					Clay	1.2	1.3	40							
	Curb and opposite of					Clay	1.3	1.4	39							
	2070 Notre Dame Avenue					Clay	1.5	1.7	41							
	on Sherwin Road					Clay	1.8	2.0	44							
						Clay	2.9	3.0	55							
		Asphalt	50	Concrete	225	Clay (Fill)	0.3	0.5	30							
	UTM : 5530754 N,					Clay (Fill)	0.6	0.8	38							
TH19-02	628417 E					Clay (Fill)	0.9	1.1	38	64	31	6	0	19	74	55
	Located in Southbound					Clay (Fill)	1.2	1.4	37							
	curb and opposite to 1240					Clay (Fill)	1.5	1.7	42							
TH19-02	Sherwin Road					Clay (Fill)	1.8	2.0	39							
						Clay	2.9	3.0	49							
		Asphalt	35	Concrete	200	Clay (Fill)	0.3	0.5	20							
	LITM : 5520652 N					Clay (Fill)	0.6	0.8	22							
	628418 E					Clay (Fill)	0.9	1.1	35							
TH10.02	Located in Northbound					Clay (Fill)	1.2	1.4	22							
1119-03	lane, 1.5 m West of East					Clay (Fill)	1.5	1.7	22						Liquid I Liquid I I <td< td=""><td></td></td<>	
	curb and opposite to 1221					Clay (Fill)	1.8	2.0	25							
	Sherwin Koau					Clay	2.4	2.6	45							
						Clay	2.9	3.0	52							
		Asphalt	50	Concrete	200	Clay (Fill)	0.3	0.5	20							
						Clay (Fill)	0.6	0.8	25							
	628411 F					Clay (Fill)	0.9	1.1	29							
T 1140.04	Located in Southbound					Clay (Fill)	1.2	1.4	35							
TH19-04	lane, 1 m East of West					Clay (Fill)	1.5	1.7	31							
	curb and opposite to 1200					Clay (Fill)	1.8	2.0	32		Grain Size Ana Silt Sa (%) (%) (%) (%) 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 6 31 7 31 7 31 7 31 7 31 7 31 7 31 7 31 7 31 7 31 7 32 7 33 7 33 7 7 31 32 33 32					
	Sherwin Road					Clay	2.4	2.6	54							
No. TH19-01 TH19-02 TH19-03						Clay	3.2	3.4	47							

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

Pavement Surface Pavement Structure Material Sample Depth (m) Grain Size Analysis Atterberg Limits Moisture Test Hole Test Hole Location Subgrade Description Content Thickness Thickness Тор Bottom Clay Silt Gravel Plasticity No. Sand Туре Туре Plastic Liquid (%) (mm) (mm) (m) (m) (%) (%) (%) (%) Index Asphalt 20 Concrete 200 Clay (Fill) 0.3 0.5 29 Clay (Fill) 0.6 0.8 29 UTM : 5530448 N, Clay (Fill) 0.9 1.1 34 628414 E 1.2 1.4 32 Located in Northbound Clay (Fill) TH19-05 lane, 1 m West of East Clay (Fill) 1.5 1.7 40 Curb and opposite to Clay (Fill) 1.8 2.0 38 1155 Sherwin Road Clay 2.4 2.6 36 Clay 2.9 3.0 39 Asphalt 40 Concrete 180 Clay 0.3 0.5 25 UTM : 5530328 N, Clay 0.6 0.8 31 628407 E Clay 0.9 1.1 34 Located in Southbound TH19-06 lane, 0.9 m East of West 1.2 30 Clay 1.4 curb and opposite to 1830 Silt and Clay 1.5 1.7 29 Dublin Avenue on Silt and Clay 1.8 2.0 26 Sherwin Road Clay 2.9 3.0 49 Asphalt 40 205 Clay 0.3 0.5 29 Concrete UTM : 5530242 N, Clay 0.6 0.8 34 628410 E Clay 0.9 1.1 34 Located in Northbound TH19-07 Clay 1.2 1.4 37 lane, 2.2 m West of East Clay 1.5 1.7 38 curb and opposite to 1093 Sherwin Road Clav 1.8 2.0 47 Clay 2.9 3.0 47 Asphalt 50 Concrete 190 Clay 0.3 0.5 34 UTM : 5530143 N, Clay 0.6 0.8 37 628402 E Clay 0.9 1.1 38 25 73 2 0 23 82 59 Located in Southbound TH19-08 Clay 1.2 1.4 39 lane, 1 m East of West Clay 1.5 1.7 41 curb and opposite to 1093 Sherwin Road Clay 1.8 2.0 45 Clav 2.9 3.0 53

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

Test Hole		Paveme	ent Surface	Pavement Str	ucture Material		Sample I	Depth (m)	Moisture		Grain Siz	e Analysis	3	At	terberg L	mits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	25	Concrete	180	Clay	0.3	0.5	32							
	LITM : 5530044 N					Clay	0.6	0.8	33							
	628405 E					Clay	0.9	1.1	35							
TH10.00	Located in Northbound					Clay	1.2	1.4	41							
11119-09	lane, 2.3 m West of East					Clay	1.5	1.7	46							
	Curb and opposite to					Clay	1.8	2.0	55							
	1063 Sherwin Road					Clay	2.4	2.6	53							
						Clay	2.9	3.0	49							
		Asphalt	50	Concrete	190	Clay	0.3	0.5	35							
	UTM : 5529933 N,					Clay	0.6	0.8	36							
	628398 E					Clay	0.9	1.1	35							
TH19-10	Located in Southbound					Clay	1.2	1.4	39							
	curb and opposite to 1051					Clay	1.5	1.7	43							
	Sherwin Road					Clay	1.8	2.0	46							
						Clay	2.9	3.0	42							
		Asphalt	150	Concrete	150	Clay	0.3	0.5	32							
	UTM : 5529843 N,					Clay	0.7	0.9	39							
	628402 E					Clay	1.1	1.2	39							
TH19-11	Located in Northbound					Clay	1.4	1.5	38							
	curb and opposite to 1001					Clay	1.7	1.8	49							
	Sherwin Road					Clay	2.0	2.1	52							
						Clay	2.9	3.0	40							
		Asphalt	55	Concrete	200	Clay	0.3	0.5	33							
	UTM : 5529739 N,					Clay	0.6	0.8	31							
	628394 E					Silt and Clay	0.9	1.1	38	62	35	3	0	18	72	54
TH19-12	Located in Southbound					Clay	1.2	1.4	38							
	West curb and opposite					Clay	1.5	1.7	39							
	to 975 Sherwin Road					Clay	1.8	2.0	39							
						Clay	2.9	3.0	52							

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

Test Hole		Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysi	S	At	tterberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	35	Concrete	185	Clay (Organic)	0.3	0.5	38							
	LITM : 5520720 N					Clay (Organic)	0.6	0.8	36	73	24	3	0	77	24	53
	628398 E					Silt and Clay	0.9	1.1	23					17	29	12
TU10 12	Located in Northbound					Silt and Clay	1.2	1.4	23							
1019-13	lane, 1.5 m West of East					Silt and Clay	1.5	1.7	24							
	Curb and opposite to 975					Clay	1.8	2.0	39							
	Sherwin Road					Clay	2.4	2.6	51							
						Clay	2.9	3.0	53							
		Asphalt	35	Concrete	200	Clay (Fill)	0.3	0.5	31							
	LITM : 5520420 N					Clay (Fill)	0.6	0.8	25							
	628409 E					Clay (Fill)	0.9	1.1	31							
TU10 14	Located in Southbound					Clay (Fill)	1.2	1.4	19							
1019-14	lane, 1 m East of West					Clay (Fill)	1.5	2.1	29							
	Curb and opposite to					Clay (Fill)	2.1	2.3	38							
	1151 Sherwin Road					Clay (Fill)	2.7	2.9	36							
						Clay (Fill)	2.9	3.0	21							
		Asphalt	30	Concrete	210	Clay (Fill)	0.2	0.3	12							
	LITM : 5520270 N					Clay (Fill)	0.3	0.5	25							
	628408 E					Clay (Fill)	0.6	0.8	29							
TU10 15	Located in at the					Clay (Fill)	0.9	1.1	22							
1119-13	intersection of Dublin Ave					Clay (Fill)	1.2	1.4	33							
	and Sherwin Road, 0.45					Clay	1.5	1.7	37							
	III East of West Curb					Clay	1.8	2.0	40							
						Clay	2.7	2.9	20							

Appendix C

Photographs of Pavement Core Samples

Photo 1: Pavement Core Sample at Test Hole TH19-01

Photo 2: Pavement Core Sample at Test Hole TH19-02 Project No. 0035-079-00 September 2019

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Morrison Hershfield

Photo 3: Pavement Core Sample at Test Hole TH19-03

Photo 4: Pavement Core Sample at Test Hole TH19-04 Project No. 0035-079-00 September 2019

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Photo 6: Pavement Core Sample at Test Hole TH19-06

Photo 7: Pavement Core Sample at Test Hole TH19-07

Photo 8: Pavement Core Sample at Test Hole TH19-08 Project No. 0035-079-00 September 2019

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Photo 9: Pavement Core Sample at Test Hole TH19-09

Photo 10: Pavement Core Sample at Test Hole TH19-10

Project No. 0035-079-00 September 2019

Photo 11: Pavement Core Sample at Test Hole TH19-11

Photo 12: Pavement Core Sample at Test Hole TH19-12

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Photo 13: Pavement Core Sample at Test Hole TH19-13

Photo 14: Pavement Core Sample at Test Hole TH19-14

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Morrison Hershfield Replacement of Existing Culvert on Omand's Creek and Associated Road Work on Sherwin Road

Photo 15: Pavement Core Sample at Test Hole TH19-15

Photo 16: Pavement Core Sample at Test Hole SP19-14

CHNICAL Quality Engineering | Valued Relationships

Date	November 18, 2019
То	Jashan Bhullar, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0035-079-00
Project	Sherwin Road Bridge Over Omands Creek
Subject	Laboratory Testing Results – Lab Req. R19-247
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. This report contains Standard proctor and California Bearing Ration (CBR) test results on a mixture of various samples from between the depths of 0.3 m and 1.1 m.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

Prepared By: AFK Reviewed By: AFK Checked By: NJF

Lab Requisition

TREK GEOTECHNICAL 1712 St. James Street Winnipeg, Manitoba R3H 0L3 T 204.975.9433 F 204.975.9435

F	PROJECT:	She	nicu	Rd.						P	ROJI	ЕСТ	NO:	_	
	CLIENT:	Mom	Noris	Hersh	fiel	6			FIEL	DT	ECH	NICI	AN:	7	Joshon Bhullor.
TEST HOLE NUMBER	SAMPLE NUMBER	Sample Start Depth (ft)	Sample End Depth (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS				Soil Description/ Comments
TH19-01	647	<u>()</u>	1'6"								() 				CBR
Thia -06	6 48 6 49 6 30 6 71	2' 3' 1' 2!	2'64 3'64 2'64						90						(Mix all the highlighted sompler topather)
1419-07	472 424 225 626	3' 1' 2 3'	3'6" 1'6" 2'6" 3'6"												2
7419-08	477 478 629	(1 2' 3'	1'6" 2'6" 1.6												
7119-09	<i>416</i> <i>617</i> <i>418</i>	1) 2) 2'	1'64 2°6" 8°64												
1419-10	6 91 6 92	2) 2) 2)	1, 6 m 2, 6 m 2, 9 m			· · · · ·	2								
<u>Tunq-11</u>	443 609 610	3' 1' 2'4"	3 6 1'64 31						5 <u>.</u> N.						
7119-12	485	11	1'64 2'64			. :									
		. <u>1</u> .		· · · · · · · · · · · · · · · · · · ·			- 10 - 10 -						-		
- Total San	wet ->	739	3-7,	ms	-				· ·	· · .					
	·	4	· · · · · · · · · · · · · · · · · · ·			-				-					
		- A-													
		1			,		-								
REQUE REQUIST	ESTED BY:	NNV	H 4, 19				TO: EQU		<u>्र</u> भ्	,					REQUISITION NO. R19 - 247
cc	OMMENTS:		ONE	CBR	Ov	1/4-									SHEET OF

Sept 30, 2015 DW

1	
	- 642

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

GEOTE																	
Test Hole	Tool Links I specifie	Paveme	nt Surface	Pavement Stru	icture Material		Sample D	epth (m)	Moisture	G	rain Size /	Inalysis		Atte	berg Limit	8	
No.	l est hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	(m) op	(m)	Content (%)	(%)	(%)	Sand G	iravel F	lastic	-iquid P	lasticity	
		Asphalt	30	Concrete	200	Clay	0.3	0.5	22					1	4		
	UTM : 5530838 N,					Clay	0.6	0.8	30				┛	┥	┦		
	628422 E					Clay	6.0	1.10	34								
TH19-01	lane. 1.6 m West of East					Clay	1.2	1.3	40								
	Curb and opposite of					Clay	1.3	1.4	39			r I			\downarrow		
	2070 Notre Dame Avenue					Clay	1.5	1.7	41								
	on Sherwin Road					Clay	1.8	2.0	44								
						Clay	2.9	3.0	55						_		
		Asphalt	50	Concrete	225	Clay (Fill)	0.3	0.5	30	_		_			_		
	UTM : 5530754 N,				×	Clay (Fill)	0.6	0.8	38								
	Located in Southbound					Clay (Fill)	0.9	1.1	38	64	31	თ	•	19	74	55	
TH19-02	lane, 0.9 m East of West					Clay (Fill)	1.2	1.4	37								
	curb and opposite to 1240					Clay (Fill)	1.5	1.7	42			_		-			
	Sherwin Road					Clay (Fill)	1.8	2.0	39								
						Clay	2.9	3.0	49								
		Asphalt	35	Concrete	200	Clay (Fill)	0.3	0.5	20			_			_		
	UTM : 5530652 N,					Clay (Fill)	0.6	0.8	22					_	_		
	628418 E					Clay (Fill)	0.9	1.1	35			_			_		
TH19-03	Located in Northbound					Clay (Fill)	1.2	1.4	22								
	rune, 1.5 m West of East					Clay (Fill)	1.5	1.7	22			_					
	Sherwin Road					Clay (Fill)	1.8	2.0	25						_		
	1					Clay	2.4	2.6	45								
						Clay	2.9	3.0	52								
		Asphalt	50	Concrete	200	Clay (Fill)	0.3	0.5	20		_				_		
	UTM : 5530546 N,					Clay (Fill)	0.6	0.8	25								
	628411 E					Clay (Fill)	0.9	1.1	29								
TH19-04	Located in Southbound					Clay (Fill)	1.2	1.4	35								
	lane, 1 m Last of West					Clay (Fill)	1.5	1.7	31					_	_		
	Sherwin Road					Clay (Fill)	1.8	2.0	32								
						Clay	2.4	2.6	54								
L						Clay	3.2	3.4	47								

•

41

GEOTE	REK					Sub-Surface Investigation Sherwin Road	-							90	
Test Hole		Paveme	nt Surface	Pavement Stru	icture Material		Sample [)epth (m)	Moisture	ត្	ain Size Ana	llysis	Þ	tterberg Lin	ıits
No.		Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	(m) Top	(m)	Content (%)	Clay (%)	Silt Sal	nd Grave	Plastic	Liquid	Plasticity
		Asphalt	20	Concrete	200	Clay (Fill)	0.3	0.5	29				1]	
	UTM : 5530448 N,					Clay (Fill)	0.6	0.8	29				1		
	628414 E					Clay (Fill)	0.9	1.1	34						
TH19-05	Located in Northbound					Clay (Fill)	1.2	1.4	32						
	Curb and opposite to					Clay (Fill)	1.5	1.7	40						
	1155 Sherwin Road					Clay (Fill)	1.8	2.0	38						
						Clay	2.4	2.6	36						
						Clay	2.9	3.0	39						
	UTM : 5530328 N,	Asphalt	40	Concrete	180	Clay	0.3	0.5	25						
	628407 E					Clay	0.6	0.8	31						
110000	Located in Southbound					Clay	0.9	1.1	34						
1H19-06	lane, 0.9 m East of West					Clay	1.2	1.4	30						
	Dublin Avenue on					Silt and Clay	1.5	1.7	29						
	Sherwin Road					Silt and Clay	1.8	2.0	26						
						Clay	2.9	3.0	49						
		Asphalt	40	Concrete	205	Clay	0.3	0.5	29						
	628410 F					Clay	0.6	0.8	34					1	
1 10 01	Located in Northbound					Clay	0.9	1.1	34						
10-61.11	lane, 2.2 m West of East					Clay	1.2	1.4	37						
	curb and opposite to 1093					Clay	1.5	1.7	38						
	Sherwin Road					Clay	1.8	2.0	47						
						Clay	2.9	3.0	47						
		Asphalt	50	Concrete	190	Clay	0.3	0.5	34						
	628402 E					Clay	0.6	0.8	37			-			
11000	Located in Southbound					Clay	0.9	1.1	38	25	73 2	0	23	82	59
00-61 U	lane, 1 m East of West					Clay	1.2	1.4	39						
	curb and opposite to 1093					Clay	1.5	1.7	41						
	Sherwin Road					Clay	1.8	2.0	45						
						Clay	2.9	3.0	53						

5

.

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements

660	IA
TE	
	33
	m
	1

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

GEOTE	CHRICOL															
Test Hole		Paveme	nt Surface	Pavement Stru	ucture Material		Sample D)epth (m)	Moisture	0	irain Size	Analysis		Atte	rberg Lim	its
No.	l est Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	(m) Top	Bottom	Content (%)	Clay	Silt	Sand	Gravel	Plastic	Liquid	Plasticity
		Asphalt	25	Concrete	180	Clay	0.3	0.5	32	ļ						
	UTM : 5530044 N.					Clay	0.6	0.8	33							
	628405 E					Clay	0.9	1.1	35							
TH19-09	Located in Northbound					Clay	1.2	1.4	41							
	lane, 2.3 m West of East					Clay	1.5	1.7	46							
	1063 Sherwin Road					Clay	1.8	2.0	55							
			z			Clay	2.4	2.6	53							
						Clay	2.9	3.0	49							
		Asphalt	50	Concrete	190	Clay	0.3	0.5	35							
	UTM : 5529933 N,					Clay	0.6	0.8	36							
	Located in Southbound					Clay	0.9	1.1	35							
TH19-10	lane, 1.3 m East of West					Clay	1.2	1.4	39							
	curb and opposite to 1051					Clay	1.5	1.7	43							
	Sherwin Road					Clay	1.8	2.0	46		_					
						Clay	2.9	3.0	42							
		Asphalt	150	Concrete	150	Clay	0.3	0.5	32							
	01M:5529843 N,					Clay	0.7	0.9	39							
	Located in Northbound					Clay	1.1	1.2	39							
I H19-11	lane, 1.5 m West of East			31		Clay	1.4	1.5	38							
	curb and opposite to 1001					Clay	1.7	1.8	49							
	Sherwin Road					Clay	2.0	2.1	52							
						Clay	2.9	3.0	40							
		Asphalt	55	Concrete	200	Clay	0.3	0.5	33							
	UTM : 5529739 N,					Clay	0.6	0.8	31							
	Located in Southbound					Silt and Clay	0.9	1.1	38	62	35	з	0	18	72	54
TH19-12	lane, 0.95 m East of					Clay	1.2	1.4	38							
	West curb and opposite					Clay	1.5	1.7	39							
	to 975 Sherwin Road					Clay	1.8	2.0	39							
L						Clay	2.9	3.0	52							

8

.

GEO	
180	
	GEOTECHNICAL

Replacement of Existing Culvert at Sherwin Road Over Omand's Creek and Associated Regional Street Improvements Sub-Surface Investigation Sherwin Road

GEOTE	CHRICAL															
Test Hole	Test Lolo Longing	Paveme	nt Surface	Pavement Stru	ucture Material		Sample D	epth (m)	Moisture	0	irain Size	Analysis		Atte	rberg Lin	lits
No.	l est noie Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	(m) D	(m)	Content (%)	Clay	Silt	Sand	Gravel	Plastic	Liquid	Plasticity
		Asphalt	35	Concrete	185	Clay (Organic)	0.3	0.5	38		ļ		ļ			
	UTM : 5529739 N,					Clay (Organic)	0.6	0.8	36	73	24	ω	•	77	24	53
	628398 E					Silt and Clay	0.9	1.1	23					17	29	12
TH19-13	Located in Northbound					Silt and Clay	1.2	1.4	23							
	lane, 1.5 m West of East					Silt and Clay	1.5	1.7	24							
	Sherwin Road					Clay	1.8	2.0	39							
						Clay	2.4	2.6	51		2					
						Clay	2.9	3.0	53							
		Asphalt	35	Concrete	200	Clay (Fill)	0.3	0.5	31							
	UTM : 5530420 N,					Clay (Fill)	0.6	0.8	25							
	628409 E					Clay (Fill)	0.9	1.1	31						_	
TH19-14	Located in Southbound					Clay (Fill)	1.2	1.4	19							
	Curb and opposite to					Clay (Fill)	1.5	2.1	29							
	1151 Sherwin Road					Clay (Fill)	2.1	2.3	38							
						Clay (Fill)	2.7	2.9	36							
						Clay (Fill)	2.9	3.0	21							
		Asphalt	30	Concrete	210	Clay (Fill)	0.2	0.3	12	e.						
	UTM : 5530379 N,					Clay (Fill)	0.3	0.5	25							
	628408 E					Clay (Fill)	0.6	0.8	29							
TH19-15	Located in at the					Clay (Fill)	0.9	1.1	22							
	and Sherwin Road 0.45					Clay (Fill)	1.2	1.4	33							
	m East of West Curb					Clay	1.5	1.7	37							
						Clay	1.8	2.0	40						_	
						Clay	2.7	2.9	20							

. · ·

P

Www.trekgeotechnical.ca I712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project Client Project	No.	0035-079-00 Morrison Hershfield Sherwin Road			Canadia	FIED BY
Sample Source Materia Sample	e # Il e Date	R19-247 Road Test Holes Clay 05-Sep-19				
Test Da	ate	06-Nov-19		Maximum Dry Dens	ity (kg/m3)	1496
Techni	cian	JSB		Optimum Moisture	(%)	26.0
Trial N	umber	1	2	3	4	
Wet De	nsity (kg/m ³)	1816	1896	1894	1893	
Dry De	nsity (kg/m³)	1472	1498	1485	1470	
DRY DENSITY (kg/m ³)	1520					
	1460					
	22	23 24	25 MOISTURE	26 27 CONTENT (%)	28	29 30

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.CClientMProjectSSample #C	0035-079-00 Morrison Hershfi Sherwin Road Clay	ield	Source Material Sample Date Test Date Technician	Road Test Holes Clay 05/09/2019 08/11/2019 JSB
Proctor Results (AST	Г <u>М D698)</u>		CBR Sample Compac	tion
Maximum Dry Density		1496 kg/m3	Dry Density	1433 kg/m3
Optimum Moisture Co	ntent	26.0 %	Initial Moisture Content	29.0 %
Material Retained on 19 mm Sieve		0.0 %	Relative Density	95.8 % SPMDD
Soaking Results			CBR Results	
Surcharge		4.54 kg	CBR at 2.54 mm	3.9 %
Swell		1.1 %	CBR at 5.08 mm	2.7 %
Moisture Content in to	p 25 mm	38.1 %	Zero Correction 0 mm	
Immersion Period		96 h		

Comments:

Morrison Hershfield Ltd.

Culvert Replacement at Sherwin Road over Omand's Creek - Winnipeg, MB

Geotechnical Investigation Report

Prepared for: Mr. Bill Ebenspanger, P.Eng. Morrison Hershfield Ltd. Suite 1, 59 Scurfield Blvd. Winnipeg, MB R3Y IV2

Project Number: 0035 079 00

Date: November 14, 2019

Quality Engineering | Valued Relationships

November 14, 2019

Our File No. 0035 079 00

Mr. Bill Ebenspanger, P.Eng. Morrison Hershfield Ltd. Suite 1, 59 Scurfield Blvd. Winnipeg, MB R3Y 1V2

RE: Culvert Replacement at Sherwin Road over Omand's Creek - Winnipeg, MB Geotechnical Investigation Report

TREK Geotechnical Inc. is pleased to submit our final geotechnical investigation report for the above noted project.

Please contact the undersigned should you have any questions or require additional information.

Sincerely,

TREK Geotechnical Inc. Per:

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	NM	November 14, 2019	Final Report

Authorization Signatures

Prepared By:

Nino MENDONU

Nuno Mendonça, El / Geotechnical Engineering Intern Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Reviewed By:

Kent Bannister, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introduction1					
2.0	Backg	ground Information	1			
	2.1	Project Description	1			
3.0	Field	Program	1			
	3.1	Site Conditions	1			
	3.2	Site Survey	2			
	3.3	Sub-surface Investigation	2			
	3.4	Stratigraphy	2			
	3.5	Power Auger / Excavator Refusal	3			
	3.6	Groundwater Conditions	3			
4.0	Slope	Stability Analysis	3			
	4.1	Design Criteria and Groundwater Conditions	4			
	4.2	Numerical Model Description	4			
	4.3	Analysis Results	5			
5.0	Found	lation Recommendations	6			
	5.1	Limit States Design (CHBDC, CAN/CSA-S6S1-14, 2014).	7			
	5.2	Foundation Alternatives	8			
	5.3	Lateral Loads1	5			
	5.4	Foundation Concrete	5			
	5.5	Foundation Inspection Requirements 1	6			
6.0	Latera	al Earth Pressure	6			
7.0	Temporary Excavations					
8.0	Desig	n Reviews1	8			
9.0	Closure					

Figures

Test Hole Logs

Appendices

List of Tables

Table 1. Groundwater Monitoring Summary	. 3
Table 2. Soil Parameters Used in Slope Stability Analysis	.4
Table 3. Slope Stability Analysis Summary table	. 5
Table 4 ULS Resistance Factors for Foundations (CHBDC, 2014)	.7
Table 5. Values of Modulus of Subgrade Reaction (k _v)	10
Table 6. Recommended ULS and SLS End Bearing Resistances for CIPC Caissons	11
Table 7. ULS Shaft Adhesion Resistances for CIPC caissons	11
Table 8. Recommended Values for Lateral Sub-grade Reaction Modulus (Ks)	15

List of Figures

Figure 01	Site and Test Hole Location Plan
Figure 02	Proposed Two-Cell Box Culvert – Plan and Section
Figure 03	Proposed Single-Span Bridge – Plan and Section

List of Appendices

Appendix A	Slope Stability	Outputs
------------	-----------------	---------

Appendix B Laboratory Testing Results

I.0 Introduction

This report summarizes the results of the geotechnical investigation completed by TREK Geotechnical Inc. (TREK) for the proposed culvert replacement on Sherwin Road over Omand's Creek located in Winnipeg, Manitoba. The terms of reference for the investigation are included in our proposal addressed to Beth Phillips, P.Eng., dated June 10, 2019. The scope of work includes a sub-surface investigation, laboratory testing, and provision of preliminary and detailed design recommendations for foundations, slope stability assessment and stabilization measures. The current report forms our primary deliverable for the geotechnical assessment and preliminary design component of the project.

2.0 Background Information

2.1 **Project Description**

The Sherwin Road bridge culvert over Omand's Creek presently consists of a twin barrel steel plate culvert of 12.46 m in length with concrete headwalls. The base of the culvert is showing signs of rust and deterioration, while the concrete works are also aging. The existing structure accommodates two travel lanes and a multi-use path on the west side which are to be maintained following the structure replacement.

Preferred replacement structure options are a single span bridge culvert or a cast-in-place concrete box culvert. A concrete precast arch culvert may also be considered. The width of the structures at the base of the channel will vary from 6 to 9 m with side slopes of 3H:1V armored with 0.6 m thick rip rap.

3.0 Field Program

3.1 Site Conditions

A visual inspection of site was conducted by TREK personnel during site survey and sub-surface investigation tasks. The creek banks surrounding the bridge culvert are grass-covered sloping towards the creek bottom at angles ranging from 3H:1V to 5.5H:1V. Several trees are present near the existing bridge culvert, which are slightly tilted towards the stream indicating potential bank movements. The site is fenced to west of the existing structure and there are noticeable signs of movement in the fence line likely due to erosion induced movements of the west ditch of Sherwin Road as it enters the creek.

There is also evidence of creek bank erosion near the crossing and slope instabilities (tension cracks) were observed east of the existing culvert (Figure 01). It is likely that these instabilities are influenced by creek bank erosion and rapid-drawdown events following sudden release of blockages (typically ice) downstream of the site. TREK has observed similar instabilities at various sites on Omand's Creek downstream of the project site. No instabilities were observed west of the structure.

3.2 Site Survey

A site survey was completed by TREK on August 8th and 10th and October 1st, 2019 to gather topographic and cross-sectional data for hydrotechnical and geotechnical assessments. The survey data was used to supplement available LiDAR information and to determine the existing creek geometries surrounding the bridge culvert and test hole locations. Existing tension cracks east of the culvert were surveyed and are shown on Figure 01.

3.3 Sub-surface Investigation

A sub-surface investigation was completed on September 6 and 11, 2019 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test holes TH19-14 and 15 were drilled with the Acker MP8 truck mounted rig and Acker Renegade track mounted rigs, both equipped with 125 mm solid stem augers and HQ coring. Test holes TH19-14 and 19-15 were drilled to 25.5 and 20.5 m depths, respectively. One standpipe piezometer was installed in a separate test hole immediately adjacent to TH19-14. All test holes were backfilled with bentonite chips and auger cuttings to surface.

Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Samples retrieved during drilling included disturbed (grab samples, split spoon samples), undisturbed (Shelby tube) samples and rock core samples. All samples retrieved during the investigation were transported to TREK's soils laboratory in Winnipeg, Manitoba for further testing and classification.

Laboratory testing consisted of water content determination on all samples as well as Atterberg limits, grain size analysis, bulk unit weight measurements and undrained shear strength testing (unconfined compression, pocket penetrometer and hand-held Torvane) on select samples. Soils laboratory testing results are included in Appendix B.

The sub-surface logs include a description of the soil units encountered and other pertinent information such as groundwater and sloughing conditions, and a summary of the laboratory testing results.

3.4 Stratigraphy

Brief descriptions of the soil units encountered at the test hole locations during drilling are provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached sub-surface logs.

The soil stratigraphy encountered in the test holes consists of 1.3 to 3.6 m of clay (fill) overlaying silty clay which extended to depths of 5.6 and 3.6 m in TH19-14 and 19-15, respectively, followed by silt (till) and sand (till) layers below. Dolomite (bedrock) was encountered in TH19-14 below a depth of 19.2 m below ground surface.

The clay (fill) contains trace sand, trace silt inclusions, trace gravel, is brownish grey becoming grey with depth, moist, firm to stiff and is of high plasticity. The silty clay contains trace gravel, is brown, moist, firm to stiff and is of high plasticity. The silt (till) layer extended to 12.2 and 18.3 m depths in

TH19-14 and 19-15, respectively. The silt (till) contains trace clay, trace gravel, is brownish grey, moist, compact and of low to intermediate plasticity. The sand (till) extended to a depth of 19.2 m in TH19-14 and to the maximum explored depth of 20.5 m in TH19-15. The sand (till) contains trace silt to silty, trace clay, trace cobbles, trace boulders, is brown, moist, dense to very dense and is of no to low plasticity. The dolomite (bedrock) is from the Upper Fort Garry member formation, contains chert nodules, is calcareous, cream to light grey, hard, is R3 to R4, brecciated and vuggy.

3.5 Power Auger / Excavator Refusal

Power auger refusal (PAR) occurred in TH19-15 at 18.4 m below ground surface (elevation of 216.7 m) within the sand (till), but was not encountered in TH19-14 where drilling switched to HQ coring below a depth of 12.6 m.

3.6 Groundwater Conditions

Groundwater seepage was observed in TH19-15 at 15.0 m within the silt (till) layer and below 16.5 m in the sand (till) layer. Sloughing was not observed in either test hole. A standpipe piezometer was installed within the silt (till) in TH19-14. Two monitoring events were performed and the groundwater level readings are summarized in table 1 below:

Piezometer	Soil Stratum	Tip Depth (Elevation)	Date	Creek Water Elevation	Standpipe Water Elevation
0010-14	Silt Till	8.4 m (EL. 226.7 m)	2019-09-04	Not measured	232.67 m
SF 19-14			2019-10-28	233.0 m	232.65 m

 Table 1. Groundwater Monitoring Summary

These observations are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

4.0 Slope Stability Analysis

Slope stability analysis was conducted to evaluate the existing stability of the creek banks at the location of the culvert replacement and to assess the effects of the proposed works. The analysis cases included a back-analysis of the observed instabilities east of the culvert, the proposed channel reconfiguration(s) and potential slope stabilization works required to achieve design targets. Schematics provided by MHL include two general alternatives for the channel geometry dependent upon whether a box-culvert or a rigid-frame bridge structure is used, which was used to determine the channel geometry for analysis (Figures 02 and 03).

Cross-section A (Figures 02 and 03) is located approximately 42 m east of the existing culvert centreline, within the existing observed instabilities, which was considered a representative section of stability conditions east of the proposed structure and wing-walls. Stability conditions west of the structure are not expected to be of concern to the structure, given that the Sherwin Road ditch (located between the proposed structure and the creek banks to the west) would serve to isolate the structure from any potential instabilities that may occur on that side of the crossing.

4.1 Design Criteria and Groundwater Conditions

A minimum factor of safety (FS) of 1.3 was targeted for areas immediately adjacent to critical infrastructure such as the replacement structure under short term extreme (rapid draw-down) groundwater conditions, representing a 30% improvement over back-analysed conditions.

Critical groundwater conditions assumed in the analysis are considered representative of a rapiddrawdown condition (high bank groundwater level and low creek level) and were established based on observed groundwater monitoring data and historical creek levels. Along Omand's Creek, a low creek level at the channel base (estimated summer water level of 232.6 m) was assumed along with a fully saturated bank (groundwater level considered to be at ground surface).

4.2 Numerical Model Description

The numerical analysis was conducted using a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2016 software package (Geo-Slope International Inc.). Static piezometric lines were used to represent the groundwater conditions discussed previously. The Morgenstern-Price method of slices with a half-sine interslice force function was used to calculate factors of safety. Critical slip surfaces were identified using a grid and radius slip surface method.

Table 2 lists the soil parameters assumed for the slope stability analysis. The strain softened shear strengths assigned to the intact high plastic silty clay are based on local experience, are considered representative of a slope that has undergone some limited straining over time, and are therefore considered conservative given that no signs of upper bank movements have been observed. The residual shear strengths assigned to the silty clay within the observed area of instability (downslope of tension cracks) are typical of slopes in Winnipeg clays that have undergone considerable movements.

Soil Description	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (degrees)
Silty Clay (Intact)	17.5	5	17
Silty Clay (Residual)	17.5	2	12
Silty Clay (Fill)	17.5	2	20
Rip Rap	19	0	45
Shear Key (Rockfill)	20	0	50
Till		Impenetrable	

 Table 2. Soil Parameters Used in Slope Stability Analysis

4.3 Analysis Results

Table 3 summarizes the results of the slope stability analysis, while model results figures are included in Appendix A, as referenced in the table.

4.3.1 Back Analysis

The intent of the back analysis performed is to determine a combination of groundwater and strength assumptions required to achieve a FS of 1.0 for a slip surface that coincides with the observed movements. As shown in Figures A-1 and A-2, the respective back-analysed factors of safety for the north and south slopes are 1.0 and 0.97.

4.3.2 Proposed Channel Geometry and Stabilization Works

The channel geometries proposed by MHL for the two structure replacements involve either a 6 m wide (box-culvert) or 9 m wide (rigid-frame bridge) channel base at Elev. 232.2 m with channel slopes at 3H:1V up to surrounding grades lined with riprap. For simplicity, the top of bank elevation included in the model for both banks was assumed to be consistent with the proposed Sherwin Road profile for each structure option (considered a worst case).

For the single-span bridge case, the FS for the north and south slopes without stabilization works are 0.82 and 0.91, respectively, representing a deterioration in stability over existing conditions (Figures A-3 and A-4). Stabilization works are therefore required. A 1.2 m wide rockfill shear key excavated into till was analysed, which improved the FS for the north and south slopes to 1.31 and 1.44, respectively, and satisfies the design criteria (Figures A-5 and A-6).

For the box-culvert case, the FS for the north and south slopes without stabilization works are 0.91 and 1.02, respectively, representing a deterioration or slight improvement in stability over existing conditions (Figures A-7 and A-8). Stabilization works are therefore required. A 1.2 m wide shear key into till was analysed, which improved the FS for both the north and south slopes to 1.50 and satisfies the design criteria (Figures A-9 and A-10).

Other stabilization alternatives such as thickened riprap or rockfill ribs were analyzed but are not considered to be feasible or cost effective in comparison to a shear key.

Back Analysis/Stabilization Works	Groundwater Case (Note 1)	Creek Level (Note 2)	Slip Surface	Factor of Safety	Bank (North/ South)	Change in FS (%Change) over Baseline	Fig No
			Critical/ Global (see note 3)	1.0	North		A-1
Back Analysis	SAT	SWL	Critical (localized)	0.97	South	Baseline	A 2
			Global(see note 3)	1.05	South		A-Z
Single Span Bridge with Rip Rap	SAT	SWL	Critical/ Global	0.82	North	-0.18 (-18%)	A-3
			Critical/ Global	0.91	South	-0.06 (-6.2%)	A-4
Single Span Bridge with	SAT	SWL	Critical/ Global	1.31	North	+0.31 (+31%)	A-5
Shear Key (Rockfill)			Critical/ Global	1.44	South	+0.47 (+48%)	A-6
Pox outwort with Pin Pon	SAT	SWL	Critical/ Global	0.91	North	-0.09 (-9%)	A-7
			Critical/ Global	1.02	South	-0.05 (+5%)	A-8
Box culvert with Shear	SAT	C/WI	Critical/ Global	1.50	North	+0.50 (+50%)	A-9
Key (Rockfill)	541	SVVL	Critical/ Global	1.50	South	+0.53 (+55%)	A-10
Notes: 1) Fully saturated bank (GWL at ground surface along the bank). 2) Estimated creek summer water level is 232.6 m. 3) Slip surface cleactly matches observed tonsion crack locations							

Table 3. Slope	Stability	Analysis	Summary	table
----------------	-----------	----------	---------	-------

4.3.3 <u>Summary and Recommendations</u>

A 1.2 m wide rockfill shear key will provide adequate stabilization to satisfy slope stability design criteria (FS>1.30) for the channel geometries provided by MHL. The proposed shear key width is considered the minimum practical width for construction. Rockfill for shear keys should consist of well-graded, durable, crushed rock and should be placed in lifts not exceeding 150 mm and compacted to the maximum achievable density based on field conditions. It should be noted that the location of shear keys has been selected for optimal slope stability improvement and also to avoid work within the existing waterway. However, it is advisable that the creek within the area of stabilization should be dewatered during construction of the stabilization works to minimize risks associated with seepage and caving into the shear key excavation. The stabilization works should be confirmed during detailed design, however a preliminary layout is shown on Figures 01 and 02.

5.0 Foundation Recommendations

Based on the sub-surface conditions encountered during the investigation, a raft foundation, strip footings, cast-in-place concrete (CIPC) end-bearing piles and driven steel H piles are feasible foundation alternatives for the new structure. Limit States Design and construction recommendations in accordance with Canadian Highway Bridge Design Code (CHBDC, CAN/CSA-S6S1-14, 2014) are provided in the following sections.

5.1 Limit States Design (CHBDC, CAN/CSA-S6S1-14, 2014).

Limit states design requires consideration of distinct loading scenarios comparing the structural loads to the foundation bearing capacity using resistance and load factors that are based on probabilistic reliability criteria. Two general design scenarios are evaluated corresponding to the serviceability and ultimate capacity requirements.

The Ultimate Limit State (ULS) is concerned with ensuring that the maximum structural loads do not exceed the nominal (ultimate) capacity of the foundation units. The ULS foundation bearing capacity is obtained by multiplying the nominal (ultimate) bearing capacity by a resistance factor (reduction factor), which is then compared to the factored (increased) structural loads. The ULS bearing capacity must be greater or equal to the maximum factored load. Table 4summarizes the resistance factors that can be used for the design of foundations as per the CHBDC depending upon the method of analysis and verification testing completed during construction. The CHBDC also requires that the degree of understanding of soil conditions (which can be classified as either low, typical or high) be assessed in the selection of the resistance factors. We consider the current level of understanding at the site to be high. CHBDC also requires that the resistance factor be modified by a consequence factor which ranges from 0.9 for high consequence structures to 1.15 for low consequence structures. The structures for this project are interpreted to be of typical consequence based on the CHBDC guidelines and as such the consequence factor is 1.0.

The **Service Limit State (SLS)** is concerned with limiting deformation or settlement of the foundation under service loading conditions such that the integrity of the structure will not be impacted. The SLS should generally be analysed by calculating the settlement resulting from applied service loads and comparing this to the settlement tolerance of the structure. However, the settlement tolerance of the structure is typically not defined at the preliminary design stage. As such, SLS bearing capacities (or unit resistances) provided are developed on the basis of limiting settlement to approximately 25 mm or less. A more detailed settlement analysis should be conducted to refine the estimated settlement and/or adjust the SLS vertical bearing resistance if a more stringent settlement tolerance is required.

Description	Resistance Factor for Typical Degree of Understanding of Soil Conditions	Resistance Factor for High Degree of Understanding of Soil Conditions
Shallow foundations with a typical degree of understanding of soil conditions and using empirical analysis	0.50	0.60
Deep foundations in compression based on static analysis	0.40	0.45
Deep foundations in compression based on dynamic testing	0.50	0.55
Deep foundations in tension based on static analysis	0.30	0.40

Table 4 ULS Resistance Factors for Foundations (CHBDC, 2014)

5.2 Foundation Alternatives

5.2.1 Shallow Foundations

Raft Slabs

Based on the anticipated underside elevation of proposed box culverts, raft foundations may be founded on either clay or the underlying till layer. The depth of excavation to bear on till may be excessive, therefore raft foundations should be designed assuming they bear on firm to stiff silty clay using ULS and SLS bearing resistances of 150 kPa and 85 kPa, respectively. The ULS bearing resistances incorporate a resistance factor of 0.60, while the SLS bearing resistances are based on limiting settlement to less than 25 mm. The net weight of soil removed above the underside of concrete can be added to the ULS and SLS values provided (note any riprap placed within the culvert should be deducted from the net weight of soil removed).

Additional design and construction considerations for raft foundations are provided below:

- 1. Excavation should be completed by an excavator equipped with a smooth bladed bucket to minimize disturbance to the exposed subgrade. The contractor should be equipped to manage cobbles and boulders during the excavation, if encountered.
- 2. Till groundwater levels in the area may be close to prairie ground surface. As such, heave and blowout of excavation bases may occur and may require passive or active depressurization measures to achieve a stable excavation base. Due to unusually high fall creek levels, the measured groundwater levels in the till are likely not representative of typical conditions when the creek level is low. Additional monitoring is required in detailed design to evaluate groundwater levels under more typical low flow conditions.
- 3. The bearing surface should be protected from freezing, drying, inundation with water and mechanical disturbance at all times. If any of these conditions occur, the disturbed material should be removed in its entirety such that only undisturbed silty clay is present.
- 4. The final bearing surface should be inspected and documented by TREK prior to concrete placement to verify the adequacy of the bearing surface and proper installation of the foundation.

- 5. If a levelling course is required or the ground surface must be built up, granular "Class A" base course should in accordance with MI Standard Construction Specification No. 900 (Granular Base Course) should be placed in lifts no greater than 150 mm and compacted to a minimum of 100% of the Standard Proctor Maximum Dry Density (SPMDD). It should be noted that even at this level of compaction that long-term settlement of approximately 0.5% of the fill thickness should be expected. Alternatively, a concrete mud-slab with a minimum compressive strength of 2 MPa may be used and may perhaps be more advantageous due to potential groundwater seepage and dewatering issues.
- 6. The raft should be designed by a qualified structural engineer to resist all applied loads from the proposed structures.

Strip Footings

The depth of excavation required for shallow footings to bear on till may be excessive, therefore shallow foundations (strip footings) should be designed assuming they bear on firm to stiff silty clay using ULS and SLS bearing resistances of 140 kPa and 80 kPa, respectively. The ULS bearing resistance incorporates a resistance factor of 0.6 while the SLS bearing resistance is based on limiting settlement to less than 25 mm.

Additional recommendations regarding shallow foundations are provided below:

- 1. Footings should be a minimum 0.6 m in width.
- 2. Fill placed on top of footings above the natural ground surface should be considered as a dead load for the SLS loading case. In this regard, a unit weight of 20 kN/m³ for fill materials can be used.
- 3. Organics, fill soils, silts, and any other deleterious materials should be stripped away such that the sub-grade consists of native, undisturbed, firm to stiff clay. Excavation should be completed by an excavator equipped with a smooth bladed bucket to minimize disturbance to the exposed subgrade. The contractor should be equipped to manage cobbles and boulders during the excavation if encountered.
- 7. Till groundwater levels in the area may be close to prairie ground surface. As such, heave and blowout of excavation bases may occur and may require passive or active depressurization measures to achieve a stable excavation base. Due to unusually high fall creek levels, the measured groundwater levels in the till are likely not representative of typical conditions when the creek level is low. Additional monitoring is required in detailed design to evaluate groundwater levels under more typical low flow conditions.
- 8. The bearing surface should be protected from freezing, drying, inundation with water and disturbance at all times. If any of these conditions occur, the disturbed material should be removed in its entirety such that only undisturbed silty clay is present.
- 4. If a levelling course is required or the ground surface must be built up, a well graded, 20 mm down sand and gravel or crushed rock may be placed in lifts no greater than 150 mm and compacted to a minimum of 100% of the SPMDD. Alternatively, a concrete mud-slab with a minimum compressive strength of 2 MPa may be used. Granular fill thicknesses should be kept to a minimum as some long-term consolidation of the fill soils will occur (about 0.5% of the fill thickness).

- 5. The final bearing surface should be inspected and documented by TREK prior to concrete placement to verify the adequacy of the bearing surface and proper installation of the footing.
- 6. The foundation should be designed by a qualified structural engineer to resist all applied loads from the proposed structures.

Modulus of Subgrade Reaction for Shallow Foundations

The soil response (subgrade reaction) to vertical loads can be modeled assuming the soil beneath a grade-supported slab can be simulated by a series of vertical springs. The soil response can be estimated using an equivalent spring constant referred to as the vertical modulus of subgrade reaction (k_v) , which is often defined as the contact bearing pressure of a foundation against the soil that will produce a unit of deflection of the foundation. The modulus of subgrade reaction is not a fundamental soil property and therefore should be applied appropriately by the structural designer, but a function of following combined soil and structural components:

- elastic soil properties
- soil layer thickness and compressibility
- foundation size and depth
- foundation stiffness (moment of inertia and modulus of elasticity)

Recommended values for k_v are provided in Table 5 based on the anticipated size of the strip and and raft footings, as well as the anticipated loading conditions (i.e. linear loading). The values of k_v provided are only to serve as a boundary condition for analyses of structural stresses and should not be used to determine or predict settlements beneath the foundation unit.

Footing Size	Modulus of Subgrade Reaction, k _v (MPa/m)	
Raft Slab (4 m line load spacing)	3.8 to 7.5	
Strip Footing (1 to 2 m wide)	7.5 to 30	

Table 5. Values of Modulus of Subgrade Reaction (k_v)

The values provided in Table 5 assume the foundation is bearing on silty clay. If foundations bear on granular fill over silt till, or directly on silt till, the modulus values may be an approximately an order of magnitude higher. This possibility should be considered in design of the footings, as the till elevations at the site may be variable.

Resistance to Overturning, Uplift and Sliding

If the structure is subjected to lateral and/or eccentric loads, the foundations must be designed to resist overturning and uplift forces. Lateral and eccentric loading will result in the development of overturning and uplift forces and consequently a non-uniform applied pressure distribution under footings. In this regard, the maximum applied pressure should not exceed the ULS unit bearing resistance and the minimum applied pressure should not be less than 0 kPa. Sliding is not expected to be a concern for design; however, the interface sliding resistance of concrete footings on clay can be based on a factored ULS friction angle of 15 degrees.

5.2.2 Cast-in-Place Concrete End Bearing Caissons (straight shaft or belled)

Cast-in-place concrete (CIPC) end bearing caissons (straight shaft or belled) installed in very dense sand till (anticipated to be encountered below Elev. 223 m to 218.5 m) are a suitable foundation alternative to support the proposed structure. However, we anticipate that belling may not be possible due to the presence of boulders and seepage. If belled caissons are required, a test bell should be performed at the site to confirm feasibility. The caissons will derive a majority of their axial-compressive resistance in end bearing with a relatively small contribution from shaft friction. Caissons subjected to frost jacking and tension loads will derive a majority of their axial-uplift resistance. Tables 6 and 7 provide the recommended ULS and SLS end bearing and shaft friction (adhesion) resistance values for axial-compressive and axial-tensile (uplift) loading conditions for mechanically-cleaned caissons bearing on very dense sand till. The uplift bearing resistance for belled caissons is based on the assumption that the bell uplift resistance is provided by the compact to dense silt till above the very dense sand till unit. The SLS capacity of the caissons is settlement-dependent and is based on a maximum settlement of 25 mm. Differential settlements are expected to be less than 13 mm.

 Table 6. Recommended ULS and SLS End Bearing Resistances for CIPC Caissons

0.1111.11	Elevation (m) (Note 1)	Factored ULS Axial Resistance (kPa)		SLS Axial Resistance (kPa)		
Soil Unit		Compression $oldsymbol{\phi} = 0.45$	Uplift $oldsymbol{\phi} = 0.4$	Compression		
Sand Till	Below 218.5 to 223.0 m (varies)	900	400	750		
Notes: 1. Piles should be designed assuming a minimum pile tip elevation of 218.5 m, however shorter piles may						

be acceptable depending on the depth to dense sand till encountered in each pile.

Soil Unit	Elevation Range (m)	Factored ULS Resistance (kPa) (Note 1)				
		$\begin{array}{c} \text{Compression} \\ \Phi = 0.45 \end{array}$	Uplift $\mathbf{\Phi} = 0.4$			
Clay	Above 229.3	0	0			
Till	229.3 m to 217.5 m	1.5 (top) to 12.0 (bottom)	1.0 (top) to 9.0 (bottom)			
 Notes: Shaft resistance varies linearly over the elevation range provided. Shaft adhesion is not applicable for the Service Limit State. 						

 Table 7. ULS Shaft Adhesion Resistances for CIPC caissons

Caisson Design Recommendations

The following recommendations apply to the design of CIPC end bearing caissons (straight shaft or belled):

- 1. The weight of the embedded portion of the pile should be included in the calculation of pile dead loads.
- 2. Shaft adhesion should be neglected within the upper 2.4 m below final grade and within the upper 1.5 m of the pile shaft (whichever is greater). Shaft adhesion should also be neglected for belled piles below one pile shaft diameter above the top of the bell.
- 3. Caisson bases must be founded in very dense sand till. The base of the caisson must be free from debris, and in a clean dry state prior to concrete placement. Disturbed or softened till soils should be entirely removed prior to concrete placement.
- 4. Caissons should have a minimum spacing of 2.5 caisson diameters measured centre to centre. If a closer spacing is required, TREK should be contacted to provide an efficiency (reduction) factor to account for potential group effects.
- 5. All caissons require steel reinforcement design by a qualified structural engineer for the anticipated axial (compression and uplift), lateral, and bending loads from the structure.

Caisson Installation Recommendations

The following recommendations apply to the installation of CIPC end bearing caissons (straight shaft or belled):

- 1. Temporary steel casings (*i.e.* sleeves) should be on site and used if sloughing of the caisson hole occurs, to control groundwater seepage if encountered. Care should be taken in removing sleeves to prevent sloughing (necking) of the shaft walls and a reduction in the cross-sectional area of the pile.
- 2. The foundation contractor should expect to encounter boulders during installation of the caissons. Chopping and removal of boulders may be necessary to advance the caisson shaft to the very dense sand till.
- 3. Caisson bases must be free of loose and/or disturbed soil.
- 4. Concrete should be placed immediately after the completion of drilling the caisson hole and under dry conditions to avoid softening of the soil at the base of the pile and construction problems such as sloughing or caving of the caisson hole and groundwater seepage.
- 5. Concrete placed by free-fall methods should be directed through the middle of the caisson shaft and steel reinforcing cage to prevent striking of the caisson walls to protect against soil contamination of the concrete.
- 6. Concrete should be placed in one continuous operation.
- 7. The drilling of all caisson shafts should be observed and documented by TREK Geotechnical to verify the soil conditions and proper installation of the caissons.

5.2.3 Driven Steel H-Piles

Driven steel H-piles may reach refusal on very dense till or bedrock and are considered suitable to support the proposed structure. However, the depth and strength characteristics of the bearing stratum where pile driving refusal will be reached is uncertain due to variability of the soil stratigraphy at site. Pile capacities are therefore based on practical refusal occurring in dense till and are lower than if piles were to reach refusal on bedrock. The depth of refusal is also uncertain; and bedrock was encountered only in one of the test holes at 19.4 m. Power auger refusal was encountered only in one of TREK's test holes at 18.4 m below ground surface.

This pile type will derive a majority of its resistance in end bearing with a significant contribution from shaft adhesion. Piles driven to practical refusal based on the hammer energy and criteria described below are expected to develop a nominal pile capacity of 2,400 kN, resulting in a factored ULS pile capacity of 1,320 kN.

A wave-equation analysis (WEAP) is recommended during detailed design to determine a termination criteria and driving energy such that the desired capacity can be reached without damage being done to the piles, and to aid in confirming the anticipated depth of refusal.

The pile head settlement under unfactored service loads can be calculated based on 5 mm or less of pile tip displacement plus elastic shortening of the pile.

Steel H-piles driven to practical refusal will derive their uplift resistance in skin friction within overburden deposits. For the purposes of uplift resistance calculations, an average ULS skin friction of 18 kPa should be used for soils above bedrock.

Additional Design and Construction Recommendations

The following design and construction recommendations apply to driven steel H-piles:

- 1. The weight of the embedded portion of the pile should be neglected in design.
- 2. Pile spacing should be a minimum of 2.5 pile diameters measured centre to centre. No reduction in pile capacity is required for the group effects provided the piles are driven to refusal on very dense till or bedrock.
- 3. The piles must be structurally designed to withstand the design loads, handling stresses, and driving stresses.
- 4. All piles should be fitted with hard-bite driving tips to help protect the pile tip during installation and to prevent sliding of pile tips during driving on sloping bedrock. The driving tip must be designed to withstand driving stresses and long-term design load cases.

Additional installation recommendations apply to driven steel H-piles

- 1. Piles should be driven to refusal on very dense till or bedrock. Pile installation should be completed carefully near refusal to avoid overdriving of the piles, which could lead to pile damage or misalignment. Refusal can generally be considered to be three consecutive sets of 25 mm or less of permanent set (pile displacement) with 12 blows of the hammer, provided that a driving system capable of producing the required delivered energy to the pile per blow is used. Pile damage may result from driving to three consecutive sets if sudden pile refusal is observed (i.e. on bedrock). In this case, the driving criteria may be modified as directed by TREK's geotechnical engineer.
- 2. A pile driving system (i.e. pile-driving hammer) capable of delivering 30 kJ of energy to the pile head should be specified for driving steel piles. Commonly used piling hammers such as the Pileco D19-42, ICE 19v2 or Junttan HHK 5A would be capable of delivering sufficient energy, if they are properly maintained. It should be noted that delivered energy is a function of the rated energy and the efficiency of the driving system and can be considered to be the net energy transferred to the pile head. The delivered energy should not be taken directly as the rated energy.
- 3. The pile-driving hammer should have the capability of adjusting the fuel setting or stroke to deliver higher energy to the pile during driving if the energy is not sufficient to drive the pile to bedrock. The driving system should also have the capability of adjusting the fuel setting or stroke to deliver lower energy to prevent pile damage upon sudden refusal.
- 4. The Contractor should be required to submit a proposed driving system for approval a minimum of 7 days prior to the start of pile driving. The pile driving system should be capable of installing the piles to the required capacity within specified allowable driving stresses.
- 5. A driveability analysis (i.e. wave equation analysis) should be performed by TREK during detailed design, as well as prior to construction on the proposed driving system to:
 - a. establish a preliminary driving criteria (i.e. practical refusal criteria),
 - b. determine the required developed energy to drive the piles to required capacity, and
 - c. Assess the driving stresses and their potential impact on the structural integrity of the pile.
- 6. Driving stresses in the pile should not exceed 90% of the yield stress of the pile material.
- 7. All piles driven within 5 pile diameters of one another should be monitored for pile heave and where heave is observed, all piles should be checked and piles exhibiting heave should be re-driven to one set of the specified refusal criteria.
- 8. Pile verticality (plumbness) should be measured on all piles after practical refusal has been achieved to check if verticality is within the limits of the structural design. It is common local practice to specify a maximum acceptable percentage that the pile can be out of vertical plumbness (e.g. 2% out of plumb) or out of the specified batter.
- 9. Existing structures within close proximity of the proposed construction area should be monitored for heave, vibrations, and damage during pile driving. Pre-boring adjacent to sensitive structures can be considered to minimize the stresses and vibrations in the structures due to pile driving. TREK should be contacted to review and approve the pre-boring procedure, as it may affect other aspects of the foundation design.

- 10. Inspection of all driven H-piles should be performed by TREK geotechnical personnel to confirm that the refusal criteria have been met and to record that pile installation has been completed according to the design.
- 11. Any piles damaged, out of plumb an excessive amount or reaching premature refusal may need to be replaced. The structural designer will have to assess non-conforming piles to determine if they are acceptable. PDA testing with CAPWAP analysis is recommended to confirm the pile capacity achieved, in particular for any piles that are suspected to not meet the design capacity or to be damaged if a structural solution is not possible.

5.3 Lateral Loads

The soil response (subgrade reaction) to lateral loads can be modeled in a simplified manner that assumes the soil around a pile can be simulated by a series of horizontal springs for the preliminary design of pile foundations. The soil behaviour can be estimated using an equivalent spring constant referred to as the lateral subgrade reaction modulus (k_s). Table 8 provides the recommended subgrade reaction modulus for the lateral load analysis. The majority of lateral resistance will typically be offered by the upper 5 to 10 m of soil, depending on the relative stiffness of the pile and soil units. If pre-boring is required to aid in alignment of the piles or to reduce driving effects on adjacent structures, pre-bore holes should have a diameter at least 50 mm smaller than the pile to ensure compliance with the surrounding soil. If pre-bore holes are larger than the pile, the void space between the pile and the soil should be in-filled with sand. If in-filling is not completed, the depth of the pre-bore should be neglected from lateral pile resistance calculations.

Soil	Approximate Elevation (m)	K₅ (kN/m³)
Clay (Fill)	Above 233.5	4020 / d
Silty Clay	230.5 to 233.5	3080 / d
Silt Till	232 to 219	4400 z / d
Sand Till	219 to 215	11000 z / d

Table 8. Recommended Values for Lateral Sub-grade Reaction Modulus (Ks)

Notes: d = pile *diameter,* z = depth *below ground surface*

As part of detailed design, a more rigorous lateral pile analysis that incorporates the material and section properties of the pile, applied loads, final lateral deflection criteria and a more realistic elastic-plastic model of the soil response to loading should be carried out by TREK to confirm the lateral load capacity of the piles.

5.4 Foundation Concrete

All foundation concrete should be designed by a qualified structural engineer for the anticipated axial (compression and uplift), lateral, and bending loads from the structure. Based on local experience gathered through previous work in Winnipeg, the degree of exposure for concrete subjected to sulphate attack is classified as severe according to Table 3, CSA A23.1-09 (Concrete Materials and Methods of Concrete Construction). Accordingly, all concrete in contact with the native soil should be made with high sulphate-resistant cement (HS or HSb). Furthermore, the concrete should have a minimum specified 56-day compressive strength of 32 MPa and have a maximum water to cement ratio of 0.45 in accordance with Table 2, CSA A23.1-09 for concrete with severe sulphate exposure (S2). Concrete that may be exposed to freezing and thawing should be adequately air entrained to improve freeze-thaw durability in accordance with Table 4, CSA A23.1-09.

5.5 Foundation Inspection Requirements

In accordance with Section 4.2.2.3 Field Review of the NBCC (2015), the designer or other suitably qualified person shall carry out a field review on:

- a) continuous basis during:
 - i. the construction of all deep foundation units with all pertinent information recorded for each *foundation unit*,
 - ii. during the installation and removal of retaining structures and related backfilling operations,
 - iii. during the placement of engineered fills that are to be used to support the *foundation units*, and
- b) as-required, unless otherwise directed by the *authority having jurisdiction*,
 - i. in the construction of all *shallow foundation units*, and
 - ii. in excavating, dewatering and other related works

In accordance with Engineers and Geoscientists of Manitoba, a Professional Engineer or delegated staff responsible to them must perform site reviews for the work presented in the documents they've sealed.

For conformance with the NBCC and EGM requirements, TREK should be retained on a full-time basis to observe and document the installation of all pile foundations, shoring or engineered fills supporting the structure, and on an as-required basis for other components such as subgrade inspections and compaction testing. TREK is familiar with the geotechnical conditions present and the underlying design assumptions of our foundation recommendations. TREK is therefore solely qualified to evaluate any design modifications deemed to be necessary should altered subsurface conditions be encountered.

6.0 Lateral Earth Pressure

The magnitude of lateral earth pressures from retained soil against buried structures will depend on the backfill material type, method of placing and compacting the backfill and the magnitude of horizontal deflection of the retaining wall after the backfill is placed. Cohesive soils should not be used as backfill against buried walls as these soils could generate excessive lateral earth pressures from swelling.

An active pressure coefficient (K_a) of 0.3 should be used to calculate lateral loads from free draining granular soils against retaining structures which are free to translate horizontally by at least 0.2 percent of the retaining wall height. For retaining structures which are not free to translate, an at-rest earth pressure coefficient (K_o) of 0.5 should be used. Surcharge loading should also be included in the earth pressure distribution to account for surface loads, based on the appropriate earth pressure coefficient.

Over-compaction of the backfill soils adjacent to buried walls may result in earth pressures that are considerably higher than those predicted in design. Compaction of the granular fills within about 1 m of the vertical walls should be conducted with a light hand operated vibrating plate compactor and the number of compaction passes should be limited to achieve a maximum of 92% of Standard Proctor Maximum Dry Density (SPMDD). Compensation for any settlement can be made in the final grading by placing additional fill adjacent to the structure and to provide positive drainage away from the structure. Backfill compacted in this manner (lightly) will ultimately settle by a maximum of about 2 to 4% of the fill depth. Beyond the 1 m offset, the granular fill should be compacted to at least 98% SPMDD in an unfrozen state in lifts not exceeding 200 mm loose thickness.

Lateral earth pressures from surcharge loads (if applicable), or for heavy compaction equipment (if used) should be accounted for in design. If drainage is not provided at the base of the reservoir, the buoyant soil unit weight should be used and the water (hydrostatic) pressure added assuming a water level coincident with the ground surface. Backfill materials and compaction methods should be reviewed during final design.

7.0 Temporary Excavations

Excavations must be carried out in compliance with the appropriate regulations under the Manitoba Workplace Safety and Health Act. Any open-cut excavation greater than 3 m deep must be designed and sealed by a professional engineer and reviewed by the geotechnical engineer of record (TREK). If space is limited or the stability of adjacent structures may be endangered by an excavation, a shoring system may be required to prevent damage to, or movement of, any part of adjacent structures, and the creation of a hazard to workers and the public.

Excavation stability is the responsibility of the Contractor for the duration of construction. Excavations should be monitored regularly and flattened as necessary to maintain stability recognizing that excavation stability is time and weather dependent. Excavated slopes should be covered with polyethylene sheets to prevent wetting and drying.

Stockpiles of excavated material and heavy equipment should be kept away from the edge of any excavation by a distance equal to or greater than the depth of excavation. Dewatering measures should

be completed as necessary to maintain a dry excavation and permit proper completion of the work. If seepage is encountered, it should be collected and pumped out of the excavation. If saturated silts or sands are encountered, shoring or slope flattening may be required. To prevent wet silts and sands from entering the excavation, gravel buttressing could be used in conjunction with sump pits for dewatering. Surface water should be diverted away from the excavation and the excavation should be backfilled as soon as possible following construction.

TREK recommends that inspections of any open excavations be carried out once a day for the length of time the excavation remains open. Daily inspections may be performed by qualified on-site personnel.

8.0 Design Reviews

TREK should be involved in the following as part of detailed design:

- 1. Plans for the structure arrangement, roadway elevations, foundations, channel slope geometry, retaining walls and general grading should be reviewed to confirm conformance with the assumptions noted herein. If significant deviations are noted, updated slope stability analysis or design recommendations may be required.
- 2. Anticipated temporary excavations for the structure construction should be reviewed to confirm feasibility and/or whether shoring will be required.
- 3. Impacts of the works on existing underground utilities (e.g. surcharge loading and deformation) should be assessed once foundation loads and structure geometries are established.
- 4. Specifications for foundations, site development (incl. temporary access of creek bank slopes), slope stabilization works and riprap should be prepared or reviewed by TREK.

9.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield Ltd. (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

0035 079 00

Morrison Hershfield

Sherwin Road over Omands Creek Culvert Replacement

SCALE = 1 : 150

(279mm x 432mm)

Sherwin Road over Omands Creek Culvert Replacement

PLAN AND SECTION

Sherwin Road over Omands Creek Culvert Replacement

0035 079 00

Morrison Hershfield

PLAN AND SECTION

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classif	fication C	riteria		ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than 4; $C_{C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and		$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve size	5 #4	o #10	to #40	200
sieve size	vels of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve nbols*	Not meeting all gradation requirements for GW	Not meeting all gradation requirements for GW				#10	#401	#500	¥
s No. 200	Gra than half o	vith fines sciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	Atterberg limits below "A" line or P.I. less than 4 between 4 and 7 are between 4 and						+	
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle ilows: W, SP SM, SC ts requirin	Atterberg limits above "A line or P.I. greater than 7	berg limits above "A" or P.I. greater than 7				Ľ	, 8	25	
Coarse-Gr naterial is	action	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fo sw, GP, S GM, GC, thine case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 UU tO 4 7		.075 to 0.4	c / N.N >
n half the r	nds of coarse fr an 4 75 mi	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Sal Sal Saller th	vith fines sciable of fines)	SM		Silty sands, sand-silt mixtures	le percent of on perc rained soil than 5 per than 12 per than 12 per than 2 percent.	0 0					0		100	Clay
	(More	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1						Sand	Mediu	Fine Citt or	oll oi
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity							-	Ľ	
. 200 sieve	ts and Cla	Liquid limit sss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	TM Sieve	> 12 in 2 in to 12	2	3/4 in. to 3 #4 to 3/4	15 2 14
soils er than No	Si		OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%) 00 (%)		CH		rticle Siz	ASI	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Pa	m	300 200	222	to 75	P 10
Fine the materi	ts and Cla	Liquid limi ater than (СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F
than half	N	gre	OH		Organic clays of medium to high plasticity, organic silts		ML OR OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class	sification Limit a	Strong co and often	lour or odour, fibrous texture	Mate	ואומוכ	Bould	Grave	Coarse	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Test	blow count (N) of a cor	nesive soil can be related to its c	consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

EXPLANATION OF ROCK CLASSIFICATION

(Canadian Foundation Engineering Manual, 4th Edition, 2006)

Grade*	Term	Uniaxial Comp. Strength (MPa)	Point Load Index (MPa)	Field Estimate of Strength	Examples
R6	Extremely strong	>250	>10	Specimen can only be chipped with a geological hammer	Fresh basalt, chert, diabase, gneiss, granite, quartzite
R5	Very strong	100-250	4-10	Specimen requires many blows of a geological hammer to fracture it	Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, peridotite, rhyolite, tuff
R4	Strong	50-100	2-4	Specimen requires more than one blow of a geological hammer to fracture it	Limestone, marble, sandstone, schist
R3	Medium Strong	25-50	1-2	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single blow from a geological hammer	Concrete, phyllite, schist, siltstone
R2	Weak	5-25	***	Can be peeled with a pocket knife with difficulty, shallow indentation made by a firm blow with the point of a geological hammer	Chalk, claystone, potash, marl, siltstone, shale, rocksalt
R1	Very weak	1-5	***	Crumbles under firm blows with point of a geological hammer, can be peeled with a pocket knife	Highly weathered or altered rock, shale
R0	Extremely weak	0.25-1	***	Indented by thumbnail	Stiff fault gouge

* Grade according to ISRM (1981).

** All rock types exhibit a broad range of uniaxial comprehensive strengths reflecting heterogeneity in composition and anisotropy in structure. Strong rocks are characterized by well-interlocked crystal fabric and few voids.

*** Rocks with a uniaxial compressive strength below 25 MPa are likely to yield highly ambiguous results under point load testing.

UE		EL	iШ	ILHL														
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	16 0 0	17 Part 20 PL 20 20	Aulk Ui (kN/m 18 icle Si 40 MC 40	nit Wt 19 ze (% 60 L 60	20 21) 80 100 L 80 100	0 5	Undra Strei △ T ● Poo ∑ ○ Fie	ained ngth (est Ty orvan cket P Q Qu Qu 2 eld Va	Shear kPa) <u>⊃e</u> .e ∆ 'en. ₽ ⊠ ne ○ 50 2(00 250
	22.5 23.0 23.5			the core axis below 22.1 m. - cherty dolomite and minor subhorizontal fractures below 22.95 m.		C156	66											
209.6	24.0 24.5 25.0			- dolomite with subhorizontal thin clay seams at 25.05 m. - white to pink, hard and minor vugs below 25.2 m.		C157	86											
				 END OF TEST HOLE AT 25.4 m IN DOLOMITE BEDROCK. Not seepage observed. No sloughing observed. Switched to HWT casing and HQ coring below 12.6 m. SP19-14 installed in TH19-14A located approx. 1 m South-west of the test hole. Test hole backfilled with bentonite chips and auger cuttings. Test hole top sealed with asphalt cold patch. 														

╞					-	,		-		_ D	lk I loit	۱۸/+	1			
	Elevation (m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	16 1 0 2	□ Bu (k 7 18 Particl 0 40 PL PL	ik Unit N/m ³) 3 19 e Size 0 60 MC ■	20 2 (%) 80 10 LL	0	Undra Stre ∆T Poo O Fie	ained S ngth (k est Typ orvane cket Pe I Qu X eld Var	hear Pa) e e en. Φ le O
ļ			1.1.0.			0			0 2	0 40) 60	80 10	00	50 10	00 15	0 200 250
		- 10.5 -11.0-		- compact below 10.7 m.		G116 SS117		17	•					•		
		-11.5- 12.0- - 12 5-				<u>G118</u> SS119		15	•				- Q			
6		-13.0- - 13.5-		- no clay, no plasticity and year dense below 13.7 m		<u>G120</u>			•					~ •		
ECHNICAL.GDI 11/7/1	219.8	-14.0 - 14.5 - 15.0		- trace limestone gravel at 13.7 m.		SS121 G122		53	•							
9-00.GPJ IREK GEOI	218.6	-15.5- - 16.0-		SANDY SILT (TILL) - brown - damp, very dense - no to low plasticity	X	SS123		68	•							
JS CREEK 0_A_JSB 0035-07		-16.5 -17.0 - - - - - - - - - - - - - - - - - - -		SANDY SILT - trace gravel - light brown - wet, very dense - no plasticity		G124 SS125		105	•							
RUAD BRIDGE OVER UMAN	216.8	-18.5 		SAND (TILL) - silty, trace gravel - brown - moist, very dense - no plasticity		G126 SS127 C128		142 / (24mm)								
9 SHERWIN	214.6	-20.0		SAND - poorly graded, fine grained, trace to some gravel, brown, wet, very loose, no plasticity - limestone cobble at 20.3 m.		SS129 C130		51 / 137mm	•							
URFACE LOG LOGS 2019-09-0				 END OF TEST HOLE AT 20.5 m IN SAND. Notes: 1) Power auger refusal at 18.4 m in SAND (TILL). 2) Switched to HWT casing and HQ coring below 18.4 m. 3) Seepage observed at 15.0 m in SILT (TILL) and below 16.5 m in SANDY SILT. 3) No sloughing observed. 4) Test hole backfilled with bentonite chips and auger cuttings. 5) Test hole top sealed with asphalt cold patch. 												
20B-2	Logge	ed By:	Jash	an Bhullar Reviewed By: Nelson Ferreira			_	Projec	t En	ginee	r: _M	ichael \	/an H	elden		

Appendix A

Slope Stability Modelling Results

าm x 432mm)

(279n

1:200

SCALE:

culvert).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Back analysis (North Bank)

0035 079 00 Sherwin Road over Omand's Creek Slope Stability Analysis - Back Analysis Section Located 42 m East of C.L of Sherwin Road GWL= Ground surface (fully saturated bank) SWL= 232.6 m

Color	Name	Model	Unit Weight (kN/m³)	Cohesion' (kPa)	Phi' (°)
	CLAY(FILL)	Mohr-Coulomb	17.5	2	20
	CLAY (RESIDUAL)	Mohr-Coulomb	17.5	2	12
	CLAY	Mohr-Coulomb	17.5	5	17
	TILL	Bedrock (Impenetrable)			

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M002B- Back Analysis(42 m East of centerline of existing culvert).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Back analysis (South Bank)

SAVED: 06/11/2019 10:01:59 AM

x 432mm)

E

(279n

1:200

SCALE:

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M003B- Single Span (channel base 6m).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Single Span Bridge with Rip Rap (North Bank)

SAVED: 06/11/2019 10:01:59 AM

Tabloid (279mm x 432n

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M003B- Single Span (channel base 6m).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Single Span Bridge with Rip Rap (South Bank)

432n Tabloid (279mm

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M006D- Single Span (channel base 6m- Shear Key).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Figure A-5

Single Span Bridge with shear key at channel (North Bank)

0035 079 00

Sherwin Road over Omand's Creek Slope Stability Analysis - Single Span Bridge (Channel base 6 m) with 3H:1 Slopes Section Located 42 m East of C.L of Sherwin Road- Shear Key GWL= Ground surface (fully saturated bank) SWL= 232.6 m

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M006D- Single Span (channel base 6m- Shear Key).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Figure A-6

Single Span Bridge with shear key at channel (South Bank)

0035 079 00 Sherwin Road over Omand's Creek Slope Stability Analysis - Box Culvert (Channel base 9 m) with 3H: 1/ Slopes Section Located 42 m East of C.L of Sherwin Road - Rip Rap at Base of Channel GWL= Ground surface (fully saturated bank) SWL= 232.6 m Unit Color Name Model Weight (kPa) (kN/m³) CLAY(FILL) Mohr-Coulomb 17.5 CLAY Mohr-Coulomb 17.5 (RESIDUAL) CLAY Mohr-Coulomb 17.5 TILL Bedrock (Impenetrable) **RIP RAP** Mohr-Coulomb 19 CLAY(NEW Mohr-Coulomb 17.5 FILL) FS= 0.91 North 240 239 TH19-14 (SP19-14) 238 237 CLAY(NEW FILL) Tension Crack **Tension Crack** 236 235 Distance (m) 3 3 SWL=232.6 m 234 CLAY(FILL) 233 232 9 m 231 CLAY 230 229 228 227 226 TILL 225 20 30 50 0 10 40 Elevation (m)

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M007D- Box culvert with rip Rap (Channel Base 9 m).gsz

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

2

2

5

0

2

Box culvert with rip rap at channel (North Bank)

0035 079 00

Sherwin Road over Omand's Creek Slope Stability Analysis - Box Culvert (Channel base 9 m) with 3H:1 Slopes Section Located 42 m East of C.L of Sherwin Road - Rip Rap at Base of Channel GWL= Ground surface (fully saturated bank) SWL= 232.6 m

m).gsz

1m x 432mm)

(279m

1:200

SCALE:

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Box culvert with rip rap at channel (South Bank)

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M010D- Box culvert (Channel Base 9 m- Shear Key).gsz

432n Tabloid (279mm

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Box culvert with shear key (North Bank)

0035 079 00

Sherwin Road over Omand's Creek Slope Stability Analysis - Box Culvert (Channel base 9 m) with 3H:1 Slopes Section Located 42 m East of C.L of Sherwin Road - Shear Key GWL= Ground surface (fully saturated bank) SWL= 232.6 m

FILE PATH: Z:\Projects\0035 Morrison Hershfield\0035 079 00 Sherwin Road Bridge over Omands Creek\2 Design\2.7 Modelling\Geostudio Model\M010D- Box culvert (Channel Base 9 m- Shear Key).gsz

im x 432mm)

(279n

1:200

SCALE:

0035 079 00

Morrison Hershfield Sherwin Road over Omand's Creek

Box culvert with shear key (South Bank)

Appendix B

Laboratory Testing Results

ECHNICAL Quality Engineering | Valued Relationships

Date	October 4, 2019			
То	Jashan Bhullar, TREK Geotechnical			
From	Angela Fidler-Kliewer, TREK Geotechnical			
Project No.	0035-079-00			
Project	Project Sherwin Road Bridge Over Omands Creek			
Subject	Laboratory Testing Results – Lab Req. R19-210			
Distribution	Michael Van Helden			

Attached are the laboratory testing results for the above noted project. The testing included moisture content determinations, particle size distribution (hydrometer method) tests, Atterberg limits and unconfined compression tests with related testing on Shelby tube samples.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

Prepared By: SA Reviewed By: AFK Checked By: NJF
--

LABORATORY REQUISITION

	CLIENT PROJECT NAME		Morrison Her	shfield						F	PROJE	CT NO:	0035	0035-079-00 Jashan Bhullar		
			Sherwin Roa	d Bridge (Over O	mano	ds Cre	ek		F	IELD 1		Jasha			
	TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS			Soil Description/Comments		
Ī	TH19-01	G47	1.0 - 1.5		\times	-								Po. Tu		
	TH19-01	G48	2.0 - 2.5		X											
	TH19-01	G49	3.0 - 3.5		\mathbf{X}	,										
Ī	TH19-01	G50	4.0 - 4.3		\mathbf{X}									τ.		
	TH19-01	G51	4.3 - 4.5		\mathbf{X}									τ.		
_	TH19-01	G52	5.0 - 5.5		X											
2/9/1	TH19-01	G53	6.0 - 6.5		X								_			
E I	TH19-01	G54	9.5 - 10.0		X											
ALG	TH19-02	G55	1.0 - 1.5		\aleph											
Ŭ Į	TH19-02	G56	2.0 - 2.5		\mathbf{X}											
СШ Ц	TH19-02	G57	3.0 - 3.5		\mathbf{X}		X	\mathbf{X}						Clay Back Pill T.		
U U U	TH19-02	G58	4.0 - 4.5		\mathbf{X}									T.		
ЖЦ	TH19-02	G59	5.0 - 5.5		X									τ.		
L ¹	TH19-02	G60	6.0 - 6.5		X									τ.		
00-0	TH19-02	G61	9.5 - 10.0		\mathbf{X}									Tu		
20-51	TH19-03	G39	1.0 - 1.5		\mathbf{X}											
Ю Я	TH19-03	G40	2.0 - 2.5		X									T		
	TH19-03	G41	3.0 - 3.5		\mathbf{X}									Tu		
n Yi	TH19-03	G42	4.0 - 4.5		\mathbf{X}									Tu		
	TH19-03	G43	5.0 - 5.5		X											
NDN	TH19-03	G44	6.0 - 6.5		X											
	TH19-03	G45	8.0 - 8.5		\mathbf{X}											
	TH19-03	G46	9.5 - 10.0		\mathbf{X}											
5	TH19-04	G62	1.0 - 1.5		\mathbf{X}									Τ.,		
	TH19-04	G63	2.0 - 2.5		\mathbf{X}									E.		
S	TH19-04	G64	3.0 - 3.5		X									τ		
	TH19-04	G65	4.0 - 4.5		X									Tu		
	TH19-04	G66	5.0 - 5.5	ł	X									Tu		
2020	TH19-04	G67	6.0 - 6.5		\mathbf{X}									T.		
-00-0	TH19-04	G68	8.0 - 8.5		X									TJ		
	TH19-04	G69	10.5 - 11.0		\mathbf{X}											
3	TH19-05	G31	1.0 - 1.5		\mathbf{X}											
	TH19-05	G32	2.0 - 2.5		X											
	TH19-05	G33	3.0 - 3.5		\mathbf{X}									TV		
Ì	TH19-05	G34	4.0 - 4.5		X											
	REQUESTE	D BY:	Jashan Bhu	ullar 2 - 2019	F } C	REPO DATE	RT TO): JIRED	M	۷ŀ	t			REQUISITION NO.		
	COMMENT	COMMENTS:														

.

•

LABORATORY REQUISITION

	CLIENT PROJECT NAME		Morrison Hers	shfield						P	ROJE	CT NO:	0035	0035-079-00		
			Sherwin Road	mand	s Cree	ek		F	IELD .	TECHNICIAN:	Jasha	Jashan Bhullar				
	TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS			Soil Description/Comments		
	TH19-05	G35	5.0 - 5.5		\times									Tu		
-	TH19-05	G36	6.0 - 6.5		\bigtriangledown									TV		
	TH19-05	G37	8.0 - 8.5		\mathbf{X}									TV		
	TH19-05	G38	9.5 - 10.0		\bowtie									Tu		
	TH19-06	G70	1.0 - 1.5		$\mathbf{ imes}$									Tu		
л	TH19-06	G71	2.0 - 2.5		\succ									Tu		
2/9/1	TH19-06	G72	3.0 - 3.5		\bowtie									Tu		
DT 1	TH19-06	G73	4.0 - 4.5		\bowtie									T.		
SAL.G	TH19-06	G74	5.0 - 5.5		\bowtie									Ρρ Τυ		
HNIC	TH19-06	G75	6.0 - 6.5		\ge									Pp. TV		
OTEC	TH19-06	G76	9.5 - 10.0		\bowtie									Pp, Tu		
K GE	TH19-07	G24	1.0 - 1.5		\ge									Pp, Tu		
TRE	TH19-07	G25	2.0 - 2.5		X									Pp, Tu		
GPJ	TH19-07	G26	3.0 - 3.5		X									τυ		
20-00	TH19-07	G27	4.0 - 4.5		\ge									υT		
035-0	TH19-07	G28	5.0 - 5.5		X											
ISB 0	TH19-07	G29	6.0 - 6.5		X											
<pre></pre>	TH19-07	G30	9.5 - 10.0		\mathbf{X}	-								TV		
<u>اللہ</u>	TH19-08	G77	1.0 - 1.5		\sim									vī		
SCR	TH19-08	G78	2.0 - 2.5		$\boldsymbol{\mathcal{S}}$											
AAND	TH19-08	G79	3.0 - 3.5		\bigcirc											
R O	TH19-08	G80	4.0 - 4.5		$\langle \rangle$								_			
NO E	TH19-08	G81	5.0 - 5.5		X											
IDGE	TH19-08	G82 #	6.0 - 6.5		\bigotimes								_	77		
D BR	TH19-08	G83	9.5 - 10.0		\diamond			_					_			
ROA	TH19-09	G16	1.0 - 1.5		\diamond									<u>t</u> ,		
RWIN	TH10.00	G17	2.0 - 2.5		\bigcirc								_			
SHE	TH19-09	G10	3.0 - 3.5		\diamond									<u>T</u> 5		
60-60	TH10.00	G19 	4.0-4.5		\diamond											
2019-	TH10-00	G21	5.0-5.5		\Rightarrow											
ogs	TH10-00	622	80.95		\supset						-					
JN L(TH10.00	622	0.0-0.0		\bigcirc									1J T		
SITIO	TH19-09	G23	9.5 - 10.0		${\rightarrow}$								_			
EQUI	TH10_10	091	20.25		\Rightarrow									\v		
RYR	1113-10	G92	2.0 - 2.5													
DRATO	REQUESTE	D BY:	Jashan Bhu	llar	F									REQUISITION NO.		
LABC	COMMENT	S.		2017	L	AIE	REQU	INED	•				-			
TREK	COMMENT													PAGE 2 OF 5		

1

V

LABORATORY REQUISITION

CLIENT	3	Morrison Hers	shfield						P	ROJE	CT NO:	0035-0	0035-079-00			
PROJECT	PROJECT NAME		d Bridge C	Over O	mand	ls Cre	<u>e</u> k		F	IELD -	TECHNICIAN:	Jashar	Jashan Bhullar			
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS			S	oil Description/Comments		
TH19-10	G93	3.0 - 3.5		$\mathbf{ imes}$												
TH19-10	G94	4.0 - 4.5		\bowtie					-			·	77			
TH19-10	G95	5.0 - 5.5		\times									Tu			
TH19-10	G96	6.0 - 6.5		\succ									٠			
TH19-10	G97	9.5 - 10.0		\ge									Tu			
TH19-11	G09	1.0 - 1.5		\bowtie									Tu			
န် TH19-11	G10	2.3 - 3.0		\ge												
TH19-11	G11	3.5 - 4.0		\times									Tu			
TH19-11	G12	4.5 - 5.0		\ge									7			
TH19-11	G13	5.5 - 6.0		\ge									Ty			
TH19-11	G14	6.5 - 7.0		\mathbf{X}												
Ю TH19-11	G15	9.5 - 10.0		\mathbf{X}									•			
표 TH19-12	G84	1.0 - 1.5		\times									TV			
ਜ਼ੂ TH19-12	G85	2.0 - 2.5		\times												
6 TH19-12	G86_	3.0 - 3.5		\times		\succ	\times					Tu	15114			
Cg TH19-12	G87	4.0 - 4.5		\succ									Tu			
8 TH19-12	G88	5.0 - 5.5		\bowtie												
Ч TH19-12	G89	6.0 - 6.5		\times												
o ኸ TH19-12	G90	9.5 - 10.0		X									TV			
光 TH19-13	G01	1.0 - 1.6		\mathbf{X}					_							
TH19-13.	G02	2.0 - 2.6		\succ		\times	\mathbf{X}						Oxbany	Clay.		
TH19-13	G03	3.0 - 3.6		\times									TU PO) 3		
H19-13	G04	4.0 - 4.5		\mathbf{X}									TU. Po	Too (at.		
嵌 TH19-13	G05	5.0 - 5.5		\mathbf{X}									Tu			
诺 TH19-13.	G06	6.0 - 6.5		\times												
TH19-13	G07	8.0 - 8.5		\succ									1			
TH19-13	G08	9.5 - 10.0		\times												
뜦 TH19-14 B	G131	1.0 - 1.5		\times												
တို့ TH19-14 B	G132	2.0 - 2.5		\ge												
ğ TH19-14 B	G133	3.0 - 3.5		\geq												
സ്റ്റ് TH19-14 B	G134	4.0 - 4.5		\times												
Ğ ТН19-14 В	T135	5.0 - 7.0								X						
5 TH19-14 B	G136	7.0 - 7.5		\ge												
2 TH19-14 B	G137	9.0 - 9.5		\times												
ਦੋ TH19-14 B	G138	9.5 - 10.0		\succ												
	D BY: ON DATE:	Jashan Bhu	llar	F	REPO ATE	rt to Requ): /IRED:						REQUISITIO	DN NO.		
	S:									_						
۲ L													PAGE 3 O	F 5		

1

LABORATORY REQUISITION

	CLIENT		Morrison He	rshfield	PROJECT NO:								ю:	_	0035	-079-00
	PROJECT	ad Bridge C	Over O	mand	s Cree	ek		FIELD TECHNICIAN: _Jash						shan Bhullar		
				1	т	1		1	1		T	-	-11			
	TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS					Soil Description/Comments
	TH19-14 B	G139	12.5 - 13.0		\mathbf{X}											
\rightarrow	TH19-14 B	T140	15.0 - 17.0		\bigwedge						X					
	TH19-14 B	G141	17.0 - 17.5		X			X								
1	TH19-14 B	G142	19.0 - 19.5		\mathbf{X}											
V	TH19-14 B	SS143	20.0 - 21.5		\ge											
<u>6</u>	TH19-14 B	G144	22.0 - 22.5		\mathbf{X}											
12/9/1	TH19-14 B	G145	24.0 - 24.5		X											
GDT	TH19-14 B	G146	27.0 - 27.5		$\left \right>$											
ICAL.	TH19-14 B	SS147	30.0 - 30.6		\leq											
CHN	TH19-14 B	G148	35.0 - 35.5		\sim											
EOTE	TU40 44 B	SS149	40.0 - 40.9		X											
U N	TH10 14 P	0150	43.9 - 45.6													
J TF	TH19-14 B	SS152	60.6 - 61.5		\bigcirc											
00.GF	TH19-14 B	C153	63.0 - 63.5		\frown									_		
-620-5	TH19-14 B	C154	63.5 - 68.3				_									٩
3 003	TH19-14 B	C155	68.3 - 73.5													
A_JSF	TH19-14 B	C156	73.5 - 78.5				_				_ المراج					
- O XI	TH19-14 B	C157	78.5 - 83.6													
CREE	TH19-15	G98	0.7 - 1.0		X											
SON	TH19-15	G99	1.0 - 1.5		\times											
N OMA	TH19-15	G100	2.0 - 2.5		X											
OVEF	TH19-15	G101	3.0 - 3.5		\mathbf{X}											TU
DGE	TH19-15	G102	4.0 - 4.5		X				_							TV
∠ III	TH19-15	G103	5.0 - 5.5		X		X									
ROA	TH19-15	G104	6.0 - 6.5		X											
RWIN	TH19-15	G105	9.0 - 9.5		\langle											
潘	TH19-15	1106	10.0 - 12.0		\rightarrow						X					
1 60	TH19-15	G10/	12.0 - 12.5		\Diamond		Y	×								
2019	TH19-15	SS109	15.0 - 16.8		\bigcirc		\rightarrow									
-065	TH19-15	G110	19.0 - 19.5		\Rightarrow						_					
I NOI	TH19-15	SS111	20.0 - 21.3		\Rightarrow						-					
UISITI	TH19-15	G112	24.0 - 24.5													7.100
REQ	TH19-15	SS113	25.0 - 25.9		X							_				
ORY	REQUEST		Jashan Rh	ullar 🗸	`					L	[REQUISITION NO.
ORAT	REQUISITI		Seat-12	- 19	r		REGU									
<pre>(LAB)</pre>	COMMENT	S:			_ `									_	-	
TRE														_		PAGE 4 OF 5

LABORATORY REQUISITION

	CLIENT		Morrison Hershfield					P	PROJECT NO:0033			0035-	079-00			
	PROJECT	NAME	Sherwin Road	d Bridge C	Over O	mand	s Cree	ək		F	IELD -	TECHNIC	IAN:	Jasha	n Bhullar	
															,	
	TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (ft)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS					Soil Description/Comments
	TH19-15	G114	29.0 - 29.5		\mathbf{x}	-									寸	
	TH19-15	SS115	30.0 - 31.2		$\mathbf{\nabla}$											
	TH19-15	G116	34.0 - 34.5		X											
8	TH19-15	SS117	35.0 - 36.3		X											
	TH19-15	G118	39.0 - 39.5		\mathbf{X}											
	TH19-15	SS119	40.0 - 41.1		Ń											
2/9/19	TH19-15	G120	44.0 - 44.5		\mathbf{X}										T.,	
JT 12	TH19-15	SS121	45.0 - 46.2		N											
AL.GE	TH19-15	G122	49.0 - 49.5		Ń								+		Tu	
INIC/	TH19-15	SS123	50.0 - 50.9		X											
TECH	TH19-15	G124	54.0 - 55.0		X								-		7.,	
GEO	TH19-15	SS125	55.0 - 55.9		X							_				
TREK	TH19-15	G126	59.0 - 60.0		X											
G	TH19-15	SS127	60.0 - 60.6		$\mathbf{\mathbf{X}}$								-			
9-00.(TH19-15	C128	60.0 - 60.6													
35-07	TH19-15	SS129	65.0 - 66.0		\mathbf{X}											
B 000	TH19-15	C130	66.0 - 67.0			_				_						
UISITION LOGS 2019-09-09 SHERVMN ROAD BRIDGE OVER OMANDS CREEK 0_A																
REK LABORATORY REC	REQUESTE REQUISITIC COMMENTS	D BY: DN DATE: S:	Jashan Bhul Sept 12	lar 19	R	EPOF ATE I	RT TO REQU	: IRED:						-	REQUIS	
FL													_		PAGE 5	

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-01	TH19-01	TH19-01	TH19-01	TH19-01	TH19-01
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.3	1.3 - 1.4	1.5 - 1.7
Sample #	G47	G48	G49	G50	G51	G52
Tare ID	H38	F131	H61	N74	Z80	AB35
Mass of tare	8.4	8.4	8.4	8.6	8.6	6.9
Mass wet + tare	265.2	189.6	228.2	214.2	202.4	176.2
Mass dry + tare	219.6	148.2	172.8	155.8	147.6	127.2
Mass water	45.6	41.4	55.4	58.4	54.8	49.0
Mass dry soil	211.2	139.8	164.4	147.2	139.0	120.3
Moisture %	21.6%	29.6%	33.7%	39.7%	39.4%	40.7%

-						
Test Hole	TH19-01	TH19-01	TH19-02	TH19-02	TH19-02	TH19-02
Depth (m)	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4
Sample #	G53	G54	G55	G56	G57	G58
Tare ID	F103	E110	Z57	F150	A30	D56
Mass of tare	8.8	8.6	8.6	8.2	8.2	8.8
Mass wet + tare	207.8	193.4	191.2	179.8	452.2	182.8
Mass dry + tare	146.8	128.0	149.2	132.8	330.2	136.2
Mass water	61.0	65.4	42.0	47.0	122.0	46.6
Mass dry soil	138.0	119.4	140.6	124.6	322.0	127.4
Moisture %	44.2%	54.8%	29.9%	37.7%	37.9%	36.6%

Test Hole	TH19-02	TH19-02	TH19-02	TH19-03	TH19-03	TH19-03
Depth (m)	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1
Sample #	G59	G60	G61	G39	G40	G41
Tare ID	P30	W02	F63	Z90	K19	E133
Mass of tare	8.6	8.4	8.6	8.4	8.4	8.4
Mass wet + tare	214.0	177.0	182.4	205.8	217.6	271.6
Mass dry + tare	153.0	129.4	125.4	173.0	180.0	202.8
Mass water	61.0	47.6	57.0	32.8	37.6	68.8
Mass dry soil	144.4	121.0	116.8	164.6	171.6	194.4
Moisture %	42.2%	39.3%	48.8%	19.9%	21.9%	35.4%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-03	TH19-03	TH19-03	TH19-03	TH19-03	TH19-04
Depth (m)	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.4 - 2.6	2.9 - 3.0	0.3 - 0.5
Sample #	G42	G43	G44	G45	G46	G62
Tare ID	F73	D9	E36	C27	AB32	H31
Mass of tare	8.6	8.6	8.4	8.4	6.8	8.6
Mass wet + tare	233.2	166.0	222.6	165.0	123.0	247.4
Mass dry + tare	193.4	137.2	180.0	116.2	83.4	207.8
Mass water	39.8	28.8	42.6	48.8	39.6	39.6
Mass dry soil	184.8	128.6	171.6	107.8	76.6	199.2
Moisture %	21.5%	22.4%	24.8%	45.3%	51.7%	19.9%

-						
Test Hole	TH19-04	TH19-04	TH19-04	TH19-04	TH19-04	TH19-04
Depth (m)	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.4 - 2.6
Sample #	G63	G64	G65	G66	G67	G68
Tare ID	W28	AA07	N45	W65	P33	AA20
Mass of tare	8.6	6.6	8.6	8.4	8.6	6.6
Mass wet + tare	279.4	228.2	166.6	216.8	185.0	166.4
Mass dry + tare	225.0	177.0	125.8	167.2	142.4	110.6
Mass water	54.4	51.2	40.8	49.6	42.6	55.8
Mass dry soil	216.4	170.4	117.2	158.8	133.8	104.0
Moisture %	25.1%	30.0%	34.8%	31.2%	31.8%	53.7%

Test Hole	TH19-04	TH19-05	TH19-05	TH19-05	TH19-05	TH19-05
Depth (m)	3.2 - 3.4	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7
Sample #	G69	G31	G32	G33	G34	G35
Tare ID	AB06	F41	N12	W23	E109	AB03
Mass of tare	7.0	8.4	8.6	8.6	8.4	6.8
Mass wet + tare	163.6	212.8	248.4	212.4	157.0	174.0
Mass dry + tare	113.8	167.2	194.2	160.2	121.4	126.4
Mass water	49.8	45.6	54.2	52.2	35.6	47.6
Mass dry soil	106.8	158.8	185.6	151.6	113.0	119.6
Moisture %	46.6%	28.7%	29.2%	34.4%	31.5%	39.8%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-05	TH19-05	TH19-05	TH19-06	TH19-06	TH19-06
Depth (m)	1.8 - 2.0	2.4 - 2.6	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1
Sample #	G36	G37	G38	G70	G71	G72
Tare ID	H70	E85	N48	N79	F154	E25
Mass of tare	8.8	8.4	8.6	8.6	8.6	8.8
Mass wet + tare	209.0	204.4	152.2	162.4	188.6	182.6
Mass dry + tare	154.0	152.8	111.8	131.6	146.4	138.4
Mass water	55.0	51.6	40.4	30.8	42.2	44.2
Mass dry soil	145.2	144.4	103.2	123.0	137.8	129.6
Moisture %	37.9%	35.7%	39.1%	25.0%	30.6%	34.1%

-						
Test Hole	TH19-06	TH19-06	TH19-06	TH19-06	TH19-07	TH19-07
Depth (m)	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8
Sample #	G73	G74	G75	G76	G24	G25
Tare ID	F148	W07	D18	F109	AB20	W25
Mass of tare	8.4	8.6	8.6	8.8	7.0	8.4
Mass wet + tare	168.8	228.0	235.2	187.4	163.8	201.6
Mass dry + tare	131.8	178.4	188.8	128.8	128.8	152.8
Mass water	37.0	49.6	46.4	58.6	35.0	48.8
Mass dry soil	123.4	169.8	180.2	120.0	121.8	144.4
Moisture %	30.0%	29.2%	25.7%	48.8%	28.7%	33.8%

Test Hole	TH19-07	TH19-07	TH19-07	TH19-07	TH19-07	TH19-08
Depth (m)	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5
Sample #	G26	G27	G28	G29	G30	G77
Tare ID	AC02	AB30	E61	К9	H65	Z12
Mass of tare	6.6	6.8	8.6	8.6	8.6	8.6
Mass wet + tare	196.0	235.0	198.6	175.4	178.2	195.0
Mass dry + tare	148.2	173.0	146.8	122.0	123.8	147.8
Mass water	47.8	62.0	51.8	53.4	54.4	47.2
Mass dry soil	141.6	166.2	138.2	113.4	115.2	139.2
Moisture %	33.8%	37.3%	37.5%	47.1%	47.2%	33.9%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-08	TH19-08	TH19-08	TH19-08	TH19-08	TH19-08
Depth (m)	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0
Sample #	G78	G79	G80	G81	G82	G83
Tare ID	K28	K2	AC04	F77	F112	H44
Mass of tare	8.6	8.4	7	8.6	8.2	8.4
Mass wet + tare	158.6	182.2	190.2	158.6	188.2	162.6
Mass dry + tare	118.2	134.8	139.0	115.0	132.6	109.4
Mass water	40.4	47.4	51.2	43.6	55.6	53.2
Mass dry soil	109.6	126.4	132.0	106.4	124.4	101.0
Moisture %	36.9%	37.5%	38.8%	41.0%	44.7%	52.7%

-						
Test Hole	TH19-09	TH19-09	TH19-09	TH19-09	TH19-09	TH19-09
Depth (m)	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0
Sample #	G16	G17	G18	G19	G20	G21
Tare ID	H34	D17	K35	W32	AB27	GH57
Mass of tare	8.8	8.6	8.4	8.4	6.6	8.6
Mass wet + tare	231.6	161.0	222.4	139.6	167.6	189.8
Mass dry + tare	178.0	123.6	166.8	101.2	116.6	125.6
Mass water	53.6	37.4	55.6	38.4	51.0	64.2
Mass dry soil	169.2	115.0	158.4	92.8	110.0	117.0
Moisture %	31.7%	32.5%	35.1%	41.4%	46.4%	54.9%

Test Hole	TH19-09	TH19-09	TH19-10	TH19-10	TH19-10	TH19-10
Depth (m)	2.4 - 2.6	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4
Sample #	G22	G23	G91	G92	G93	G94
Tare ID	H46	N07	D30	N53	F99	A100
Mass of tare	8.6	8.6	8.2	8.2	8.4	8.4
Mass wet + tare	196.8	177.0	188.6	155.2	164.8	158.6
Mass dry + tare	132.0	121.6	141.4	116.4	124.2	116.8
Mass water	64.8	55.4	47.2	38.8	40.6	41.8
Mass dry soil	123.4	113.0	133.2	108.2	115.8	108.4
Moisture %	52.5%	49.0%	35.4%	35.9%	35.1%	38.6%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-10	TH19-10	TH19-10	TH19-11	TH19-11	TH19-11
Depth (m)	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5	0.7 - 0.9	1.1 - 1.2
Sample #	G95	G96	G97	G09	G10	G11
Tare ID	E80	Z114	H50	F13	F127	Z78
Mass of tare	8.4	8.6	8.6	8.8	8.4	9
Mass wet + tare	215.6	163.6	170.8	209.6	185.8	182.4
Mass dry + tare	153.8	114.6	122.6	160.8	135.8	134.0
Mass water	61.8	49.0	48.2	48.8	50.0	48.4
Mass dry soil	145.4	106.0	114.0	152.0	127.4	125.0
Moisture %	42.5%	46.2%	42.3%	32.1%	39.2%	38.7%

-						
Test Hole	TH19-11	TH19-11	TH19-11	TH19-11	TH19-12	TH19-12
Depth (m)	1.4 - 1.5	1.7 - 1.8	2.0 - 2.1	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8
Sample #	G12	G13	G14	G15	G84	G85
Tare ID	H17	Z61	D48	Z91	W87	AB98
Mass of tare	8.4	10	8.8	8.6	9	7
Mass wet + tare	200.6	194.4	200.6	207.2	205.6	199.6
Mass dry + tare	147.4	134.0	135.2	151.0	157.4	153.8
Mass water	53.2	60.4	65.4	56.2	48.2	45.8
Mass dry soil	139.0	124.0	126.4	142.4	148.4	146.8
Moisture %	38.3%	48.7%	51.7%	39.5%	32.5%	31.2%

Test Hole	TH19-12	TH19-12	TH19-12	TH19-12	TH19-12	TH19-13
Depth (m)	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.9 - 3.0	0.3 - 0.5
Sample #	G86	G87	G88	G89	G90	G01
Tare ID	E40	Z31	AA18	E34	Z33	E24
Mass of tare	8.6	8.4	6.8	8.4	8.6	8.6
Mass wet + tare	478.8	196.6	167.0	155.0	146.6	159.8
Mass dry + tare	349.4	144.4	122.2	114.0	99.6	118.6
Mass water	129.4	52.2	44.8	41.0	47.0	41.2
Mass dry soil	340.8	136.0	115.4	105.6	91.0	110.0
Moisture %	38.0%	38.4%	38.8%	38.8%	51.6%	37.5%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-13	TH19-13	TH19-13	TH19-13	TH19-13	TH19-13
Depth (m)	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.4 - 2.6
Sample #	G02	G03	G04	G05	G06	G07
Tare ID	W57	AB74	AB67	AB56	W39	D1
Mass of tare	8.8	6.8	7.2	6.8	8.4	8.4
Mass wet + tare	456.6	251.6	234.2	232.4	215.2	194.6
Mass dry + tare	337.0	206.6	191.6	188.6	157.6	131.4
Mass water	119.6	45.0	42.6	43.8	57.6	63.2
Mass dry soil	328.2	199.8	184.4	181.8	149.2	123.0
Moisture %	36.4%	22.5%	23.1%	24.1%	38.6%	51.4%

-						
Test Hole	TH19-13	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14
Depth (m)	2.9 - 3.0	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1	1.2 - 1.4	2.1 - 2.3
Sample #	G08	G131	G132	G133	G134	G136
Tare ID	AB42	A20	A615	Z89	W98	F87
Mass of tare	8.4	6.8	8.8	7	8.4	8.6
Mass wet + tare	164.8	177.4	248.9	220.6	217.6	178.6
Mass dry + tare	110.8	136.6	200.6	170.6	183.8	131.4
Mass water	54.0	40.8	48.3	50.0	33.8	47.2
Mass dry soil	102.4	129.8	191.8	163.6	175.4	122.8
Moisture %	52.7%	31.4%	25.2%	30.6%	19.3%	38.4%

Test Hole	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14
Depth (m)	2.7 - 2.9	2.9 - 3.0	3.8 - 4.0	5.2 - 5.3	5.8 - 5.9	6.1 - 6.6
Sample #	G137	G138	G139	G141	G142	SS143
Tare ID	W88	H66	P36	AB68	D2	D5
Mass of tare	8.6	8.4	8.4	8.4	6.6	8.4
Mass wet + tare	226.6	286	197.4	487.6	280.2	247.6
Mass dry + tare	168.9	238.4	153	418.2	253	229.2
Mass water	57.7	47.6	44.4	69.4	27.2	18.4
Mass dry soil	160.3	230.0	144.6	409.8	246.4	220.8
Moisture %	36.0%	20.7%	30.7%	16.9%	11.0%	8.3%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14	TH19-14
Depth (m)	6.7 - 6.9	7.3 - 7.5	8.2 - 8.4	9.1 - 9.3	10.7 - 10.8	12.2 - 12.5
Sample #	G144	G145	G146	SS147	G148	SS149
Tare ID	D5	H47	N68	F69	H55	W48
Mass of tare	8.2	8.3	8.5	8.5	8.4	8
Mass wet + tare	233.7	211.4	198.9	174.5	187.7	171
Mass dry + tare	207.0	189.6	178.8	162.2	168.0	160.6
Mass water	26.7	21.8	20.1	12.3	19.7	10.4
Mass dry soil	198.8	181.3	170.3	153.7	159.6	152.6
Moisture %	13.4%	12.0%	11.8%	8.0%	12.3%	6.8%

Test Hole	TH19-14	TH19-14	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	15.4 - 15.8	18.5 - 18.7	0.2 - 0.3	0.3 - 0.5	0.6 - 0.8	0.9 - 1.1
Sample #	SS151	SS152	G98	G99	G100	G101
Tare ID	AA17	W77	P09	Z63	W105	E79
Mass of tare	6.6	8.4	8.4	8.5	8.4	8.4
Mass wet + tare	196.6	165.7	175.9	198.8	182.8	259.2
Mass dry + tare	184.2	153.4	158.2	160.6	143.6	214.8
Mass water	12.4	12.3	17.7	38.2	39.2	44.4
Mass dry soil	177.6	145.0	149.8	152.1	135.2	206.4
Moisture %	7.0%	8.5%	11.8%	25.1%	29.0%	21.5%

Test Hole	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	1.2 - 1.4	1.5 - 1.7	1.8 - 2.0	2.7 - 2.9	3.7 - 3.8	4.3 - 4.4
Sample #	G102	G103	G104	G105	G107	G108
Tare ID	Z140	AA21	F451	E59	AA22	E44
Mass of tare	8.8	6.7	8.2	8.5	7.2	8.7
Mass wet + tare	180.3	359.4	188.9	207.4	479.6	330.8
Mass dry + tare	137.6	265	137.4	175	421	288
Mass water	42.7	94.4	51.5	32.4	58.6	42.8
Mass dry soil	128.8	258.3	129.2	166.5	413.8	279.3
Moisture %	33.2%	36.5%	39.9%	19.5%	14.2%	15.3%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Test Hole	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	4.6 - 5.1	5.8 - 5.9	6.1 - 6.5	7.3 - 7.5	7.6 - 7.9	8.8 - 9.0
Sample #	SS109	G110	SS111	G112	SS113	G114
Tare ID	E1	P22	K37	Z09	D38	AB78
Mass of tare	8.4	8.6	8.6	8.3	8.5	6.7
Mass wet + tare	187.4	252.4	189.3	194.8	175	254.6
Mass dry + tare	170.4	228.6	173.4	177.8	164.2	229
Mass water	17.0	23.8	15.9	17.0	10.8	25.6
Mass dry soil	162.0	220.0	164.8	169.5	155.7	222.3
Moisture %	10.5%	10.8%	9.6%	10.0%	6.9%	11.5%

-						
Test Hole	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	9.1 - 9.5	10.4 - 10.5	10.7 - 11.1	11.9 - 12.0	12.2 - 12.5	13.4 - 13.6
Sample #	SS115	G116	G117	G118	SS119	G120
Tare ID	B31	N112	AC38	Z101	F7	Z36
Mass of tare	8.6	8.4	6.8	8.8	8.5	8.6
Mass wet + tare	226	333.5	322.4	278.3	253.8	282.8
Mass dry + tare	209.4	306.8	296.2	255.4	236.2	258.4
Mass water	16.6	26.7	26.2	22.9	17.6	24.4
Mass dry soil	200.8	298.4	289.4	246.6	227.7	249.8
Moisture %	8.3%	8.9%	9.1%	9.3%	7.7%	9.8%

Test Hole	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15	TH19-15
Depth (m)	0.5 - 14.1	14.9 - 15.1	15.2 - 15.5	16.5 - 16.8	16.8 - 17.0	18.0 - 18.3
Sample #	SS121	G122	G123	G124	SS125	G126
Tare ID	K20	P36	W67	W102	N111	Z01
Mass of tare	8.6	8.6	8.1	8.2	8.7	8.5
Mass wet + tare	200.2	214.2	228.5	638.7	364.8	428.4
Mass dry + tare	189	198	211.9	570.6	335.8	383.8
Mass water	11.2	16.2	16.6	68.1	29.0	44.6
Mass dry soil	180.4	189.4	203.8	562.4	327.1	375.3
Moisture %	6.2%	8.6%	8.1%	12.1%	8.9%	11.9%

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek
Sample Date	05-Sep-19
Test Date	13-Sep-19

Technician AD

Tost Holo	TU10.15	TU10 15		
Test Hole	1019-15	1019-10		
Depth (m)	18.3 - 18.5	19.8 - 20.1		
Sample #	SS127	SS129		
Tare ID	AB17	D28		
Mass of tare	6.7	8.5		
Mass wet + tare	293.6	212.4		
Mass dry + tare	271.6	187		
Mass water	22.0	25.4		
Mass dry soil	264.9	178.5		
Moisture %	8.3%	14.2%		

Project No. Client Project	0035-079-00 Morrison Hershfield Sherwin Road Bridge Over Omands Creek		CERTIFIED BY Caradian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-13		
Sample #	G02		
Depth (m)	0.6 - 0.8	Gravel	0.0%
Sample Date	5-Sep-19	Sand	3.0%
Test Date	17-Sep-19	Silt	24.3%
Technician	NM	Clay	72.7%

Project No. 0035-079-00 Client Morrison Hershfield Project Sherwin Road Bridge Over Omands Creek	dependent Laboratories isted on www.ccil.com
Test Hole TH19-02	
Sample # G57	
Depth (m) 0.9 - 1.1 Gravel 0.1%	
Sample Date5-Sep-19Sand5.7%	
Test Date 17-Sep-19 Silt 30.79	6
TechnicianNMClay63.5°	%

55.94

0.0012

Project No. Client Project	0035-079-00 Morrison Hershfield Sherwin Road Bridge Over Omands Creek	CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com		
Test Hole	TH19-08			
Sample #	G79			
Depth (m)	0.9 - 1.1	Gravel	0.0%	
Sample Date	30-Sep-19	Sand	2.0%	
Test Date	2-Oct-19	Silt	24.7%	
Technician	KG	Clay	73.3%	

Gravel		Sa	Ind	Silt and Clay		
Particle Size (mm) Percent Passing		Particle Size (mm) Percent Passing		Particle Size (mm)	Percent Passing	
50.0	100.00	4.75	100.00	0.0750	98.00	
37.5	100.00	2.00	100.00	0.0541	93.50	
25.0	100.00	0.850	100.00	0.0394	87.25	
19.0	100.00	0.425	99.78	0.0280	86.62	
12.5	100.00	0.180	99.06	0.0178	85.06	
9.50	100.00	0.150	98.96	0.0141	84.51	
4.75	100.00	0.075	98.00	0.0103	83.88	
				0.0073	82.95	
				0.0052	81.53	
				0.0037	78.48	
				0.0026	74.56	
				0.0019	73.15	
				0.0011	67.08	

Client Morrison Hershfield Project Sherwin Road Bridge Over Omands Creek	
Test Hole TH19-12	,
Sample # G86	
Depth (m) 0.9 - 1.1 Gravel 0.0%	
Sample Date5-Sep-19Sand2.9%	
Test Date 17-Sep-19 Silt 35.5%	
TechnicianNMClay61.6%	

Project No. Client Project	0035-079-00 Morrison Hershfield Sherwin Road Bridge Over Omands Creek		CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-15		
Sample #	G107		
Depth (m)	3.7 - 3.8	Gravel	1.6%
Sample Date	5-Sep-19	Sand	26.9%
Test Date	17-Sep-19	Silt	49.7%
Technician	AD	Clay	21.7%

19.28

0.0013

Project No. Client Project	0035-079-00 Morrison Hershfield Sherwin Road Bridge Over Omands Creek	CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com	
Test Hole	TH19-15		
Sample #	G112		
Depth (m)	7.3 - 7.5	Gravel	3.8%
Sample Date	5-Sep-19	Sand	30.4%
Test Date	17-Sep-19	Silt	54.9%
Technician	AD	Clay	11.0%

Gravel		Sa	ind	Silt and Clay		
Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	Particle Size (mm)	Percent Passing	
50.0	100.00	4.75	96.22	0.0750	65.86	
37.5	100.00	2.00	92.76	0.0610	56.19	
25.0	100.00	0.850	89.41	0.0443	49.81	
19.0	100.00	0.425	86.29	0.0320	44.30	
12.5	100.00	0.180	79.12	0.0208	36.76	
9.50	100.00	0.150	76.49	0.0166	32.99	
4.75	96.22	0.075	65.86	0.0123	28.93	
				0.0088	25.74	
				0.0063	21.68	
				0.0045	16.99	
				0.0032	14.27	
				0.0023	11.85	
				0.0013	9.21	

Project No. Client Project	0035-079-00 Morrison Hershfield Sherwin Road Bridge Over Omands Creek		Certified By Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH19-15		
Sample #	G124		
Depth (m)	16.5 - 16.8	Gravel	29.8%
Sample Date	5-Sep-19	Sand	26.4%
Test Date	17-Sep-19	Silt	33.0%
Technician	HS	Clay	10.9%

9.24

0.0013

Project No.0035-079-00ClientMorrison HershfieldProjectSherwin Road Bridge Over Omands Creek	anadian Council of Independent Laboratories r specific tests as listed on www.ccil.com
Test Hole TH19-14	
Sample # G141	
Depth (m) 5.2 - 5.3 Gravel	4.1%
Sample Date 5-Sep-19 Sand	23.9%
Test Date17-Sep-19Silt	46.9%
Technician AD Clay	25.1%

25.88 22.34

0.0022

0.0013

Proiect No.	0035-079-00				CERTIFIED BY	
Client	Morrison Hershfie	ld				- i 💉 🛛
Project	Sherwin Road Brid	dge Over Omands	Creek		Canadian Council	of Independent Laboratorias
, Test Hole	TH10-13				For specific tests	as listed on www.ccil.com
Sample #	C02					
Denth (m)	06-08					
Sample Date	<u>5-Sen-19</u>				Liquid Limit	77
Test Date	17-Sen-19				Plastic Limit	24
Technician					Plasticity Index	53
rechnician	110					
Liquid Limi	it			1		
Trial #		1	2	3		
Number of B	Blows (N)	15	28	31		
Mass Wet So	oil + Tare (g)	32.388	35.481	33.896		
Mass Dry So	oil + Tare (g)	24.189	26.167	25.460		
Mass Tare (g	g)	14.075	14.109	14.282		
Mass Water	(g)	8.199	9.314	8.436		
Mass Dry So	oil (g)	10.114	12.058	11.178		
Moisture Co	ntent (%)	81.066	77.243	75.470		
80 70 70 40 30 20 10 10 0	Plasticity Chart fo smaller than 0.42	or solid fraction w 5 mm	vith particles	NH or O 60 70 nit (%)	Line 	100 110

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.117	14.134			
Mass Wet Soil + Tare (g)	20.393	22.867			
Mass Dry Soil + Tare (g)	19.173	21.156			
Mass Water (g)	1.220	1.711			
Mass Dry Soil (g)	5.056	7.022			
Moisture Content (%)	24.130	24.366			

Project No. Client Project	0035-079-00 Morrison Hershfie Sherwin Road Bri	ld dge Over Omands	Creek		Caradian Council	
Test Hole Sample # Depth (m)	TH19-13 G03 0.9 - 1.1				For specific tests	as listed on www.ccil.com
Sample Date	30-Sep-19				Liquid Limit	29
Test Date	02-Oct-19				Plastic Limit	17
Technician	KG				Plasticity Index	12
Liquid Limit						
Trial #		1	2	3		
Number of Blo	ws (N)	15	27	34		
Mass Wet Soil	+ Tare (g)	24.586	22.779	22.161		
Mass Dry Soil	+ Tare (g)	22.079	20.866	20.468		
Mass Tare (g)		14.107	14.141	14.313		
Mass Water (g)	2.507	1.913	1.693		
Mass Dry Soil	(g)	7.972	6.725	6.155		
Moisture Cont	ent (%)	31.448	28.446	27.506		
80 70 60 50 50 40 40 50 50 10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	Plasticity Chart for smaller than 0.42s	or solid fraction w 5 mm	ith particles		Line "A" Line 1 80 90	100 110
				it (70)		

Plastic Limit					
Trial #	1	2	3	4	5
Mass Tare (g)	14.229	14.092			
Mass Wet Soil + Tare (g)	20.191	20.674			
Mass Dry Soil + Tare (g)	19.338	19.746			
Mass Water (g)	0.853	0.928			
Mass Dry Soil (g)	5.109	5.654			
Moisture Content (%)	16.696	16.413			

Project N Client Project Test Hole	lo.	0035-079-00 Morrison Hershfie Sherwin Road Brid TH19-02	ld dge Over Omands	Creek				CERTIFIED BY Canadian Council For specific tests	of Independent Laboratories sas listed on www.ccil.com
Sample #	E .	G57		-					
Depth (m)	0.9 - 1.1		-					
Sample D	Date	5-Sep-19		-			Liqui	d Limit	74
Test Date	•	17-Sep-19		-			Plasti	c Limit	19
Technicia	an	DS		-			Plasti	city Index	55
Liquid L	.imit								
Trial #			1	2		3			
Number of	of Blow	s (N)	15	23		35			
Mass We	t Soil +	Tare (g)	23.209	23.3	52	22.608			
Mass Dry	/ Soil +	Tare (g)	19.202	19.4	68	19.120			
Mass Tar	'e (g)		14.024	14.2	63	14.203			
Mass Wa	ter (g)	<u></u>	4.007	3.88	4	3.488			
Maisture	/ Soll (g)	5.178	5.20	15	4.917			
woisture	Conten	t (%)	11.360	74.0	21	70.938			
Plasticity Index (%)	80 70 60 50 - 40 - 30 - 20 - 10 - 0 0	Plasticity Chart for smaller than 0.42 CL-ML 10 20	or solid fraction w 5 mm	vith particle	es	CH CH MH 0 60 70	or OH	A" Line 90	100 110
				Liqu					

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.212	14.126			
Mass Wet Soil + Tare (g)	23.852	23.503			
Mass Dry Soil + Tare (g)	22.347	22.019			
Mass Water (g)	1.505	1.484			
Mass Dry Soil (g)	8.135	7.893			
Moisture Content (%)	18.500	18.801			

Project No.	0035-079-00				CERTIFIED BY	
Client	Morrison Hershfie	eld				- i ¥
Project	Sherwin Road Br	idge Over Omands	Creek			
					Canadian Council For specific tests	of Independent Laboratories as listed on www.ccil.com
Test Hole	1H19-08					
Sample #	<u>G79</u>					
Depth (m)	0.9 - 1.1					
Sample Date	30-Sep-19				Liquid Limit	82
Test Date	03-Oct-19				Plastic Limit	23
Technician	NM				Plasticity Index	59
Liquid Limi	t					
Trial #		1	2	3		
Number of B	lows (N)	17	25	34		
Mass Wet So	oil + Tare (g)	24.996	24.591	24.446		
Mass Dry So	il + Tare (g)	20.038	19.762	19.961		
Mass Tare (g	1)	14.205	13.865	14.315		
Mass Water	(g)	4.958	4.829	4.485		
Mass Dry So	il (g)	5.833	5.897	5.646		
Moisture Co	ntent (%)	84.999	81.889	79.437		
80 70 60 50 40 30 20 10 0	Plasticity Chart for smaller than 0.42	or solid fraction w 25 mm	rith particles		Line "A" Line 1 80 90	100 110

Plastic Limit					
Trial #	1	2	3	4	5
Mass Tare (g)	14.084	14.117			
Mass Wet Soil + Tare (g)	20.378	19.916			
Mass Dry Soil + Tare (g)	19.215	18.834			
Mass Water (g)	1.163	1.082			
Mass Dry Soil (g)	5.131	4.717			
Moisture Content (%)	22.666	22.938			

Project No. Client Project Test Hole Sample # Depth (m)	0035-079-00 Morrison Hershfiel Sherwin Road Bric TH19-12 G86 0.9 - 1.1	d Ige Over Omands	Creek		CERTIFIED B Canadian Council For specific test	of Independent Laboratories s as listed on www.ccil.com
Sample Date	5-Sep-19				Liquid Limit	72
Test Date	17-Sep-19				Plastic Limit	18
Technician	DS				Plasticity Index	54
Liquid Limit						
Trial #		1	2	3		
Number of Blow	/s (N)	17	26	34		
Mass Wet Soil +	- Tare (g)	23.670	23.155	22.767		
Mass Dry Soil +	Tare (g)	19.579	19.392	19.116		
Mass Tare (g)		14.041	14.108	13.890		
Mass Water (g)		4.091	3.763	3.651		
Mass Dry Soil (g	g)	5.538	5.284	5.226		
Moisture Contei	nt (%)	73.871	71.215	69.862		
80 70 60 40 40 40 40 40 40 40 40 40 40 40 40 40	Plasticity Chart fo smaller than 0.425	r solid fraction w	ith particles	CH CH MH or 60 70 imit (%)	0H 80 90	100 110
			•			

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.119	14.217			
Mass Wet Soil + Tare (g)	20.035	19.312			
Mass Dry Soil + Tare (g)	19.139	18.540			
Mass Water (g)	0.896	0.772			
Mass Dry Soil (g)	5.020	4.323			
Moisture Content (%)	17.849	17.858			

Project No. Client Project Test Hole Sample # Depth (m)	0035-079-00 Morrison Hershfiel Sherwin Road Brid TH19-15 G103 1.5 - 1.7	d dge Over Omands	Creek		CERTIFIED BY Canadian Council For specific tests	of Independent Laboratories as listed on www.ccil.com
Sample Date	5-Sep-19				Liquid Limit	87
Test Date	17-Sep-19				Plastic Limit	23
recrimician	00				Flashicity muck	04
Liquid Limit						
Trial #		1	2	3		
Number of Blo	ows (N)	16	24	35		
Mass Wet Soi	l + Tare (g)	21.576	21.554	20.860		
Mass Dry Soil	+ Tare (g)	17.958	18.108	17.798		
Mass Tare (g)		13.979	14.159	14.133		
Mass Water (]) (m)	3.018	3.446	3.062		
Mass Dry Soli Moisture Con	(9) tent (%)	90 927	87 263	83 547		
		00.021	07.200	00.0 17		
 80 - 70 - 60 - 50 - 60 - 60 - 60 - 70 -<th>Plasticity Chart for smaller than 0.423</th><th>or solid fraction w 5 mm</th><th>ith particles</th><th></th><th>Line A" Line H 80 90</th><th>100 110</th>	Plasticity Chart for smaller than 0.423	or solid fraction w 5 mm	ith particles		Line A" Line H 80 90	100 110
			•	. ,		

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.996	13.990			
Mass Wet Soil + Tare (g)	19.882	21.385			
Mass Dry Soil + Tare (g)	18.777	20.008			
Mass Water (g)	1.105	1.377			
Mass Dry Soil (g)	4.781	6.018			
Moisture Content (%)	23.112	22.881			

Project N Client Project Test Hole Sample # Depth (m	lo. e #	0035-079-00 Morrison Hershfie Sherwin Road Bri TH19-15 G107 3.7 - 3.8	eld dge Over Omands	Creek		Canadian Council For specific tests	of Independent Laboratories s as listed on www.ccil.com
Sample D	Date	05-Sep-19		-		Liquid Limit	25
Test Date	9	17-Sep-19		-		Plastic Limit	12
rechnicia	an	KG		-		Plasticity Index	13
Liquid L	.imit		-	-	-		1
Trial #			1	2	3		
Number	of Blow	/s (N)	15	20	31		
Mass We	et Soil +	Tare (g)	23.524	23.011	25.130		
Mass Dry	/ Soil +	Tare (g)	21.629	21.227	22.989		
Mass Tar	re (g)		14.290	14.216	14.300		
Mass Wa	iter (g)	,	1.895	1.784	2.141		
Mass Dry		<u>)</u>	7.339	7.011	8.689		
Moisture	Conte	nt (%)	25.821	25.446	24.640		
Plasticity Index (%)	80 70 60 50 40 30 20 10 0 0	Plasticity Chart for smaller than 0.42	or solid fraction w 5 mm	vith particles	Cth Cth MH or O	Line "A" Line H 80 90	100 110
					111 (70)		

Plastic Limit					
Trial #	1	2	3	4	5
Mass Tare (g)	14.112	14.228			
Mass Wet Soil + Tare (g)	22.504	21.996			
Mass Dry Soil + Tare (g)	21.575	21.139			
Mass Water (g)	0.929	0.857			
Mass Dry Soil (g)	7.463	6.911			
Moisture Content (%)	12.448	12.401			

Project No. Client Project Test Hole Sample #	0035-079-00 Morrison Hershfie Sherwin Road Br TH19-15 G108	eld idge Over Omands	Creek		CERTIFIED BY Canadian Council of For specific tests of	fIndependent Laboratories as listed on www.ccil.com
Deptn (m) Sample Date	4.3 - 4.4				Liquid Limit	20
Sample Date	17-Sep-19				Elquiu Linnit	29
Technician	KG				Plasticity Index	17
recimician					T lasticity much	
Liquid Limit	t					
Trial #		1	2	3		
Number of B	lows (N)	16	20	29		
Mass Wet So	oil + Tare (g)	23.463	25.589	25.670		
Mass Dry So	il + Tare (g)	21.329	22.958	23.133		
Mass Tare (g)	14.187	14.037	14.198		
Mass Water ((g)	2.134	2.631	2.537		
Mass Dry So	il (g)	7.142	8.921	8.935		
Moisture Cor	ntent (%)	29.880	29.492	28.394		
80 70 60 50 40 30 20 10 0	Plasticity Chart for smaller than 0.42	or solid fraction w 5 mm	ith particles	CH MH or O	Line	100 110
			Liquid Lim	it (%)		

Plastic Limit					
Trial #	1	2	3	4	5
Mass Tare (g)	14.113	14.090			
Mass Wet Soil + Tare (g)	25.127	24.305			
Mass Dry Soil + Tare (g)	23.916	23.191			
Mass Water (g)	1.211	1.114			
Mass Dry Soil (g)	9.803	9.101			
Moisture Content (%)	12.353	12.240			

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek
Test Hole	TH19-15
Sample #	T106
Depth (m)	3.0 - 3.7
Sample Date	11-Sep-19
Test Date	16-Sep-19
Technician	HS

Tube Extraction

Recovery (mm) 720

Bottom - 3.8 m		3.51 m	.51 m 3.3		3.33 m 3.1		^{15 m} Top - 3 m	
	Кеер		Qu		Moisture Content	Ň	/isual	
			Bulk		TV/PP			
	260 mm		180 mm		180 mm	1()0 mm	
Visual Classi	fication			Moisture C	ontent			
Material	CLAY (TILL)			Tare ID			AB61	
Composition	silty			Mass tare (g)		6.8	
trace gravel (<10	0 mm diam.)			Mass wet + t	are (g)		378.3	
trace sand				Mass dry + t	are (g)		332.8	
trace silt inclusio	ons (<10 mm diam.)			Moisture %			14.0%	
				Unit Weigh	nt			
				Bulk Weight	(g)		1314.0	
Color	grey							
Moisture	moist			Length (mm)) 1		140.50	
Consistency	very stiff				2		140.07	
Plasticity	intermediate plastici	ty			3		140.10	
Structure	-				4		140.08	
Gradation	-			Average Len	gth (m)		0.140	
Torvane				Diam. (mm)	1		71.17	
Reading		0.60			2		71.87	
Vane Size (s,m,	.l)	S			3		72.05	
Undrained Shea	ar Strength (kPa)	147.1			4		71.37	
				Average Dia	meter (m)		0.072	
Pocket Pener	trometer							
Reading	1	2.20		Volume (m ³)			5.65E-04	
	2	2.40		Bulk Unit We	eight (kN/m ³)		22.8	
	3	2.80		Bulk Unit We	eight (pcf)		145.3	
	Average	2.47		Dry Unit Wei	ght (kN/m³)		20.0	
Undrained Shea	ar Strength (kPa)	121.0		Dry Unit Wei	ght (pcf)		127.5	

50°

Project No. Client Project	0035-079-00 Morrison Hers Sherwin Road	hfield I Bridge Over Or	nands Creek				
Test Hole Sample # Depth (m) Sample Date	TH19-15 T106 3.0 - 3.7 11-Sep-19				Unconfine	d Strength	ksf
Test Date Technician	16-Sep-19 HS				Max q _u Max S _u	184.9 92.4	3.9 1.9
Specimen D	Data						
Description	CLAY (TILL) - very stiff, inter	silty, trace grav mediate plastici	el (<10 mm diar y	n.), trace sand, ti	race silt inclusic	ons (<10 mm diam.)	, grey, moist,
Length Diameter L/D Ratio	140.2 71.6 2.0	(mm) (mm) (m ²)		Moisture % Bulk Unit Wt. Dry Unit Wt.	14% 22.8 20.0	(kN/m ³) (kN/m ³)	
Load Rate	1.00	(m) (%/min)		Plastic Limit Plasticity Index	-		
Undrained S	Shear Streng	gth Tests					
Torvane				Pocket Pene	trometer		
Reading	Undrained S	Shear Strength		Reading	Undrained	Shear Strength	
tsf	kPa	ksf		tsf	kPa	ksf	
0.60 Vane Size	147.1	3.07		2.20	107.9 117.7	2.25	
s				2.80	137.3	2.40	
			Average	2.47	121.0	2.53	
Failure Geo	metrv						
Sketch:	•			Photo:	Protect C Protect C Location C Hole No. I Depth Technican	1212 1212 <td< th=""><th></th></td<>	

Unconfined Compressive Strength ASTM D2166

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004028	0.0	0.00	0.00
10	14	0.2540	0.18	0.004035	53.2	13.18	6.59
20	25	0.5080	0.36	0.004043	95.3	23.57	11.79
30	35	0.7620	0.54	0.004050	133.6	32.98	16.49
40	45	1.0160	0.72	0.004057	171.9	42.36	21.18
50	55	1.2700	0.91	0.004065	209.9	51.63	25.82
60	66	1.5240	1.09	0.004072	251.4	61.74	30.87
70	76	1.7780	1.27	0.004080	289.1	70.87	35.44
80	87	2.0320	1.45	0.004087	330.3	80.81	40.40
90	97	2.2860	1.63	0.004095	367.7	89.79	44.90
100	107	2.5400	1.81	0.004102	403.6	98.39	49.19
110	116	2.7940	1.99	0.004110	435.4	105.94	52.97
120	126	3.0480	2.17	0.004118	470.9	114.35	57.18
130	134	3.3020	2.36	0.004125	500.2	121.26	60.63
140	140	3.5560	2.54	0.004133	522.2	126.36	63.18
150	147	3.8100	2.72	0.004141	547.9	132.32	66.16
160	154	4.0640	2.90	0.004148	572.9	138.10	69.05
170	159	4.3180	3.08	0.004156	590.4	142.05	71.02
180	165	4.5720	3.26	0.004164	611.3	146.82	73.41
190	169	4.8260	3.44	0.004172	625.3	149.90	74.95
200	174	5.0800	3.62	0.004180	642.8	153.80	76.90
210	178	5.3340	3.80	0.004187	657.1	156.91	78.46
220	182	5.5880	3.99	0.004195	671.4	160.03	80.02
230	185	5.8420	4.17	0.004203	682.1	162.29	81.14

Project No.0035-079-00ClientMorrison HershfieldProjectSherwin Road Bridge Over Omands Creek

Unconfined Compression Test Data (cont'd)

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear Stress,
Dial Reading	Dial Reading	(mm)	(%)	(m²)	(N)	Stress, q _u (kPa)	S _u (kPa)
240	188	6.0960	4.35	0.004211	692.9	164.54	82.27
250	192	6.3500	4.53	0.004219	707.2	167.62	83.81
260	195	6.6040	4.71	0.004227	718.0	169.85	84.92
270	197	6.8580	4.89	0.004235	725.1	171.22	85.61
280	199	7.1120	5.07	0.004243	732.3	172.58	86.29
290	202	7.3660	5.25	0.004251	743.0	174.77	87.38
300	204	7.6200	5.44	0.004260	750.2	176.11	88.05
310	206	7.8740	5.62	0.004268	757.3	177.44	88.72
320	208	8.1280	5.80	0.004276	764.4	178.77	89.38
330	209	8.3820	5.98	0.004284	768.0	179.26	89.63
340	211	8.6360	6.16	0.004293	775.1	180.57	90.29
350	212	8.8900	6.34	0.004301	778.7	181.05	90.53
360	214	9.1440	6.52	0.004309	785.8	182.36	91.18
370	215	9.3980	6.70	0.004318	789.4	182.83	91.41
380	216	9.6520	6.89	0.004326	792.9	183.30	91.65
390	216	9.9060	7.07	0.004334	792.9	182.94	91.47
400	218	10.1600	7.25	0.004343	800.1	184.22	92.11
410	218	10.4140	7.43	0.004351	800.1	183.86	91.93
420	218	10.6680	7.61	0.004360	800.1	183.50	91.75
430	219	10.9220	7.79	0.004368	803.6	183.96	91.98
440	220	11.1760	7.97	0.004377	807.2	184.41	92.21
450	221	11.4300	8.15	0.004386	810.7	184.86	92.43
460	221	11.6840	8.33	0.004394	810.7	184.50	92.25
470	221	11.9380	8.52	0.004403	810.7	184.13	92.07
480	221	12.1920	8.70	0.004412	810.7	183.77	91.88
490	221	12.4460	8.88	0.004421	810.7	183.40	91.70
500	221	12.7000	9.06	0.004429	810.7	183.04	91.52
510	221	12.9540	9.24	0.004438	810.7	182.67	91.34
520	220	13.2080	9.42	0.004447	807.2	181.51	90.75
530	220	13.4620	9.60	0.004456	807.2	181.15	90.57
540	220	13.7160	9.78	0.004465	807.2	180.78	90.39
550	219	13.9700	9.97	0.004474	803.6	179.62	89.81
560	219	14.2240	10.15	0.004483	803.6	179.26	89.63
570	218	14.4780	10.33	0.004492	800.1	178.11	89.05
580	216	14.7320	10.51	0.004501	792.9	176.16	88.08
590	215	14.9860	10.69	0.004510	789.4	175.02	87.51
600	215	15.2400	10.87	0.004519	789.4	174.66	87.33
620	214	15.7480	11.23	0.004538	785.8	173.17	86.58
640	212	16.2560	11.60	0.004556	778.7	170.89	85.45
660	210	16.7640	11.96	0.004575	771.5	168.64	84.32
680	208	17.2720	12.32	0.004594	764.4	166.39	83.19
700	205	17.7800	12.68	0.004613	753.7	163.38	81.69

Reading

1

2

3

Undrained Shear Strength

Average

www.trekgeotechnical.ca Viv. L exgedectifical ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0035-079-00								
Client	Morrison Her	shfield							
Project	Sherwin Road	d Bridge (Over Omano	l Creek					
Test Hole	TH19-14B								
Sample #	T135								
Depth (m)	1.5 - 2.1								
Sample Date	11-Sep-19								
Test Date	13-Sep-19								
Technician	HS .								
Tube Extraction	on								
Recovery (mm)	580	_				_			
D // 04	A	1.9	6 m			в ,	1.64 m	-	
Bottom - 2.1 m		1.0	0 111					То	p - 1.5 m
	Visual							Moisture	
				N	/isual			Content	
Moist	ure Content								
								FF/IV	
14	0 mm (A)				320 mm (B)			120 mm (B)	
	anting		-	•		Maiatura Car	40.04	n	
	cation		В	A	_	Moisture Cor	itent	В	A
Material		CLAY (F	FILL)	SILT (TILL)	_	Tare ID		AB81	A16
Composition		silty		clayey	_	Mass tare (g)		6.8	8.4
		trace gra	avel (<						
		50mm d	iam.), trace	trace gravel (<		Mass wet + tar	e (q)	301.9	286.4
		silt inclu	sions (< 15	15 mm diam.)			(3)		
		mm diar	n.)		_				
		trace sa	nd, trace						
		organics	s, trace	trace sand		Mass dry + tare	e (g)	217.6	246
		oxidatio	า		_			40.00/	47.00/
					_	Moisture %		40.0%	17.0%
Color		arev		brown		Unit Weight			
Moisture		moist		moist	_	Bulk Weight (g)	-	-
Consistency		stiff		firm	_		,		-
·····,		intermed	diata	intermediate	_				
Plasticity		nlasticity	/	nlasticity		Length (mm)	1	-	-
		plasticity	/	plasticity	_		•		
-					_		2	-	-
Structure			-	-	_		3	-	-
					_		4	-	
Gradation			-	-		Average Lengt	h (m)	-	
Torvane			в	Δ		Diam (mm)	1	_	_
Reading			0.8	-			2		-
Vana Siza (e m l	`		m	_					
Undrained Chas	/ r Strongth		78.5	-	(kPa)		1		
onuramed Silea	Strength		10.0		(Kra)		+ +		
Pocket Penetr	ometer	А		В		Average Diame		-	-

1.500

1.400

1.700

1.533

75.2

-

-

-

-

-

Volume (m³) Bulk Unit Weight (kN/m³) Bulk Unit Weight (pcf) Dry Unit Weight (kN/m³) (kPa) Dry Unit Weight (pcf)

TREK	UCT	Split-	Т	13	5
			1	of	1

-

-

-

-

-

_

-

-

-

-

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek
Test Hole	TH19-14
Sample #	T140
Depth (m)	4.6 - 5.2
Sample Date	11-Sep-19
Test Date	16-Sep-19
Technician	HS

Tube Extraction

Recovery (mm) 590

Bottom - 5.2 m		4.87 m	2	1.70 m 4	.62 m Top - 4.6 m
	Кеер		Qu	TV/PP Visual	Moisture Content
			Bunk		
	295 mm		165 mm	80 mm	50 mm
Visual Classif	ication		Moisture Content		
Material	CLAY (TILL)		Tare ID		A28
Composition	silty		Mass tare (g)		6.5
trace sand (<5 m	m diam.)		Mass wet + tare (g)		300.5
trace silt inclusion	n (<5 mm diam.)		Mass dry + tare (g)		225.1
			Moisture %		34.5%
			Unit Weight		
			Bulk Weight (g)		1159.7
Color	grey				
Moisture	moist		Length (mm) 1		147.89
Consistency	firm to stiff		2		147.82
Plasticity	high plasticity		3		148.05
Structure	-		4		147.55
Gradation	-		Average Length (m)		0.148
Torvane			Diam. (mm) 1		72.85
Reading		0.40	2		72.86
Vane Size (s,m,I)	m	3		72.95
Undrained Shea	r Strength (kPa)	39.2	4		72.77
	- · · · <u>-</u>		Average Diameter (m)		0.073
Pocket Penet	rometer				
Reading	1	0.70	Volume (m ³)		6.16E-04
	2	0.80	Bulk Unit Weight (kN/	m ³)	18.5
	3	0.70	Bulk Unit Weight (pcf)		117.5
	Average	0.73	Dry Unit Weight (kN/m	ı ³)	13.7
Undrained Shea	r Strength (kPa)	36.0	Dry Unit Weight (pcf)		87.3

Project No. Client	0035-079-00 Morrison Her	shfield					
Project	Sherwin Roa	d Bridge Over Oma	ands Creek				
Test Hole	TH19-14						
Sample #	T140						
Depth (m)	4.6 - 5.2				Unconfine	ed Strength	
Sample Date	11-Sep-19					kPa	ksf
Test Date	16-Sep-19				Max q _u	93.7	2.0
Technician	HS				Max S _u	46.8	1.0
Specimen E	Data						
Description	CLAY (TILL) plasticity	- silty, trace sand (\cdot	<5 mm diam.)	, trace silt inclusi	on (<5 mm dia	am.), grey, moist, firn	n to stiff, high
Length	147.8	(mm)		Moisture %	34%		
Diameter	72.9	(mm)		Bulk Unit Wt.	18.5	(kN/m ³)	
L/D Ratio	2.0	()		Dry Unit Wt.	13.7	(kN/m^3)	
Initial Area	0.00417	(m ²)		Liquid Limit	-	(
Load Rate	1.00	(%/min)		Plastic Limit	-		
		· · · ·		Plasticity Index	-		
Undrained \$	Shear Stren	gth Tests					
Torvane		•		Pocket Pene	trometer		
trace coarse	s Undrained	Shear Strength		Reading	Undraine	d Shear Strength	
trace silt inclu	u kPa	ksf		tsf	kPa	ksf	
0.40	39.2	0.82		0.70	34.3	0.72	
Vane Size				0.80	39.2	0.82	
m				0.70	34.3	0.72	
			Average	0.73	36.0	0.75	
Failure Geo	metry						
Sketch:				Photo:		-	
					EESTEE	1712 BL James Greet Winningen, Minister R3H BL3 THI 204 075 0433 Fax: 204 075 0435 THI 204 075 0433 Fax: 204 075 0435	
					Location Hole N	NO. THI9-14B Sample No. T140	
					Dept	th 15'-17'	
	35° /						
	_/						
							and a the second

Unconfined Compressive Strength ASTM D2166

Project No.	0035-079-00
Client	Morrison Hershfield
Project	Sherwin Road Bridge Over Omands Creek

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004169	0.0	0.00	0.00
10	5	0.2540	0.17	0.004176	18.7	4.49	2.24
20	10	0.5080	0.34	0.004183	37.9	9.05	4.53
30	16	0.7620	0.52	0.004191	60.8	14.52	7.26
40	24	1.0160	0.69	0.004198	91.5	21.79	10.89
50	33	1.2700	0.86	0.004205	125.9	29.94	14.97
60	42	1.5240	1.03	0.004212	160.4	38.07	19.04
70	52	1.7780	1.20	0.004220	198.6	47.05	23.53
80	62	2.0320	1.37	0.004227	236.3	55.90	27.95
90	72	2.2860	1.55	0.004235	274.1	64.72	32.36
100	82	2.5400	1.72	0.004242	311.6	73.45	36.73
110	92	2.7940	1.89	0.004249	349.0	82.12	41.06
120	100	3.0480	2.06	0.004257	378.9	89.01	44.50
130	104	3.3020	2.23	0.004264	393.0	92.17	46.08
140	106	3.5560	2.41	0.004272	400.1	93.66	46.83
150	103	3.8100	2.58	0.004279	389.5	91.02	45.51
160	99	4.0640	2.75	0.004287	375.2	87.51	43.76
170	90	4.3180	2.92	0.004295	341.5	79.52	39.76
180	82	4.5720	3.09	0.004302	311.6	72.42	36.21