Part 1 GENERAL

1.1 SUMMARY

- .1 Section Includes:
 - .1 Decommission, temporary removal, installation and recommission of process cooling equipment shown on drawings.

1.2 ACTION AND INFORMATIONAL SUBMITTALS

- .1 Submit submittals in accordance with Section 21 05 01.
- .2 Product Data:
 - .1 Submit manufacturer's instructions, printed product literature and data sheets for cooling equipment and include product characteristics, performance criteria, physical size, finish and limitations.
- .3 Shop Drawings:
 - .1 Submit diagrams of field installation, internal wiring and piping for field assembly, with refrigerant flows, pipe sizes, pressure drops in equipment and suction lines.

1.3 QUALITY ASSURANCE

- .1 Only one split cooling system to be decommissioned at any time to maintain cooling within IT room.
- .2 Installation: performed by certified refrigeration mechanics/technician.
- .3 Installation must comply with requirements listed in manufacturer installation instructions.
- .4 Contractor shall carry costs required to ensure a factory trained representative from the equipment manufacturer does all installation checks required by manufacturer prior to equipment start-up and is involved for equipment start-up. A start-up report shall be filled out by the factory trained representative and submitted directly to the Engineer and Contractor.
- .5 System decommissioning, temporary removal, installation and recommissioning shall be performed by Global Mechanical.

Part 2 PRODUCTS

2.1 N/A

Part 3 EXECUTION

3.1 MANUFACTURER'S INSTRUCTIONS

.1 Compliance: comply with manufacturer's written recommendations or specifications, including product technical bulletins, handling, storage and installation instructions, and datasheet.

3.2 EXAMINATION

- .1 Verification of Conditions: verify conditions of substrates previously installed under other Sections or Contracts are acceptable for process cooling equipment installation in accordance with manufacturer's written instructions.
- .2 Visually inspect substrate in presence of Consultant.
- .3 Inform Consultant of unacceptable conditions immediately upon discovery.
- .4 Proceed with installation only after unacceptable conditions have been remedied and after receipt of written approval to proceed from Consultant.

3.3 INSPECTION

.1 Upon delivery, inspect components for damage or gas loss and report to Consultant in writing.

3.4 ACCESSIBILITY

.1 Provide clearance around equipment and components for observation of operation, inspection, service and maintenance without removal of any equipment, components or piping.

3.5 INSTALLATION

- .1 Provide appropriate protection apparatus.
- .2 Install systems and related controls in accordance with manufacturer installation requirements.
- .3 Locate vibration and noise isolation as indicated.
 - .1 Where units are supplied with sound attenuator, conform to manufacturer's instructions.
 - .2 Ensure adequate base or foundation.
- .4 Install disconnect switch adjacent to each unit.
- .5 Thermal expansion valves:

.1 Install in conformance with manufacturer installation requirements.

3.6 FIELD QUALITY CONTROL

- .1 Pressure and leak testing:
 - .1 Perform leak test before evacuating system.
 - .2 Meet requirements of CSA B52, but not less than gauge pressure of 2 MPa high side and 1 MPa low side.
 - .3 Use non ozone depleting gas as tracer with dry nitrogen to develop pressure.
 - .4 Compressors with refrigerant holding charge to remain isolated from system.
 - .5 Protect accessories when performing test.
 - .6 Build 35 kPa initial pressure in high and low side and add dry nitrogen to field test pressure.
 - .7 Test for leaks with detector.
 - .8 Repair leaks and retest.

3.7 CLEANING

.1 Reclaim refrigerant by pumping down through filtration system.

3.8 DEHYDRATION

- .1 Carry out work in presence of Consultant or Owner's representative.
- .2 Evacuate using two stage vacuum pump with gas ballast on second stage capable of pulling vacuum of 0.05 mm minimum.
 - .1 Fill pump with fresh dehydrated oil.
- .3 Do not use refrigerant compressors to pull vacuum.
- .4 Maintain ambient temperature of 13 degrees C minimum throughout refrigeration system for 12 hours minimum before and during dehydration.
- .5 Connect high vacuum hose or seamless copper tubing jumper lines to both high and low pressure sides.
 - .1 Line size: 6 mm minimum nominal outside diameter for units up to 70 L internal volume and 12 mm minimum nominal outside diameter for larger units.
- .6 Install thermo couple vacuum gauge to measure system pressure.
 - .1 Locate manual isolating valve between pump and gauge and take readings only with system isolated from pump.
- .7 When compressor/condensing unit has refrigerant holding charge intact, service valves to remain closed during evacuation.
 - .1 Evacuate any equipment received with dry air, wrong refrigerant, or lost holding charge.
- .8 Evacuate field installed system 3 times as follows: twice to 1.5 mm and hold for 4 hours minimum.
 - .1 Break vacuum to gauge pressure of 14 kPa each time with refrigerant.
 - .2 .Continue pumping, for final evacuation, through 12 hours minimum after reaching 0.5 mm.

- .3 After completion of final evacuation, isolate pump from system and make graphic record of rate of any increase in vacuum reading which may take place inside following hours.
- .4 Continue readings until vacuum has stabilized.
- .5 Provide Consultant with 3 copies of graphic record.
- .6 Charge through filter drier.
- .7 Use receivers or other technology to contain CFC-13 or other ozone depleting refrigerant used for triple evacuation.
- .8 If this is not possible, an alternative to triple evacuation such as vacuum evacuation should be employed.

3.9 CHARGING

- .1 Give initial charge through high side charging valve with pressure gauge and new filterdrier installed in connection to charging valve.
- .2 Charge only amount of refrigerant necessary for proper operation of refrigeration system.
 - .1 Close liquid charging valve when amount has been charged.
 - .2 Observe sight glass near receiver outlet, with system in operation, to recheck.
- .3 Re-purge charging line, when refrigerant container must be changed during charging process.
- .4 Permit low side charging only for charging small amounts in gaseous state.
- .5 Provide 3 days notice of leak testing, dehydration and charging.
- .6 Prime oil separator with operating charge of compressor oil.

3.10 START-UP AND ADJUSTMENT

- .1 Provide necessary instruments, gauges and testing equipment required.
 - .1 Adjust controls, to obtain design requirements and manufacturer's ratings.
- .2 Ensure that insulation of refrigerant piping and accessories completed.
- .3 Test and record cooling apparatus entering and leaving air temperatures, dry bulb and wet bulb.
- .4 Test and record voltage and running amperes and compare to motor nameplate data, and starter heater rating against design requirements.
 - .1 Check each phase which must be accurate to nearest 100 VA.
- .5 Ensure that refrigerant temperatures are accurate to within 0.5 degrees C of design requirements.
- .6 Set and adjust automatic control system to achieve required sequence of operations in cooperation with Consultant.
- .7 Bring equipment into operation, trial run and make up any loss of oil and refrigerant.

3.11 **PROTECTION**

- .1 Protect installed products and components from damage during construction.
- .2 Repair damage to adjacent materials caused by process cooling equipment installation.

END OF SECTION