APPENDIX 'A'

GEOTECHNICAL REPORT

Pembina Highway and Bishop Grandin Boulevard Interchange Southwest Corner Slope Failure

Slope Stability Assessment Report

Prepared for:

Cameron Ward, P. Eng. Bridge Projects Engineer City of Winnipeg, Engineering Division Public Works Department 106-1155 Pacific Avenue Winnipeg, MB, R3E 3P1

Project Number: 0015 034 00

Date: May 26, 2020 (2nd Revision)

Quality Engineering | Valued Relationships

May 26, 2020

Our File No. 0015 034 00

Mr. Cameron Ward, P. Eng. Bridge Project Engineer City of Winnipeg, Engineering Division Public Works Department 106-1155 Pacific Avenue Winnipeg, MB, R3E 3P1

RE: Pembina Highway and Bishop Grandin Boulevard Interchange Southwest Corner Slope Failure Slope Stability Assessment Report (1st Revision)

TREK Geotechnical Inc. is pleased to submit a revised Final Report for the geotechnical investigation for the above noted project. Revisions include findings of hydro-excavation for utility locations and associated changes to the report recommendations, as well as further information on the suspected triggering event.

Please contact the undersigned should you have any questions.

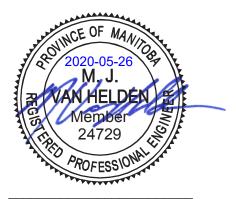
Sincerely,

TREK Geotechnical Inc. Per:

Mulle

Michael Van Helden Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.


Revision History

Revision No.	Project Engineer	Issue Date	Description
0	MVH	February 18, 2020	Final Report
1	MVH	May 18, 2020	Revised Final Report
2	MVH	May 26, 2020	Revised Final Report

Authorization Signatures

Prepared By:

Beta Taryana, El Geotechnical Engineering Intern

Michael Van Helden Ph.D., P.Eng. Senior Geotechnical Engineer

Reviewed By:

Ken Skaftfeld, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter	of Tra	nsmittal					
Revis	ion His	story and Authorization Signatures					
Exect	tive St	immary					
1.0	Intro	duction	.2				
2.0	Back	ground	.2				
3.0	Field	Program	.3				
	3.1	Site Conditions	.3				
	3.2	Site Survey	.3				
	3.3	Sub-surface Investigation	.3				
	3.4	Underground Utilities	.5				
4.0	Slope Stability Analysis						
	4.1	Numerical Model Description	6				
	4.2	Analysis Results					
5.0	Cost	Estimates	.9				
6.0	Closure						
Figur	es						
Sub-S	Surface	Logs					
Apper	ndices						

List of Tables

Table 1 - Groundwater Monitoring Results	.4
Table 2 - Slope Movement Monitoring Results	.5
Table 3 - Material Parameters used in Slope Stability Analysis	.7
Table 4 - Summary of Calculated Factors of Safety	
Table 5 - Class 3 Cost Estimate	

List of Figures

Figure 01	Existing Conditions
-----------	---------------------

Figure 02 Recommended Stabilization Works

List of Appendices

- Appendix A Existing Information
- Appendix B Site Photographs
- Appendix C Laboratory Testing Results
- Appendix D Slope Stability Analysis Results
- Appendix E Basis of Estimate Capital Cost Detail Worksheet

Executive Summary

During the week of October 14, 2019, the City of Winnipeg Public Works Department observed an instability of the south slope of the Bishop Grandin Boulevard underpass on Pembina Highway. The instability occurred after an exceptionally wet fall, with total precipitation of over 150 mm in September compared to the typical monthly total of approximately 45 mm. On October 11th, Winnipeg also experienced an unprecedented storm event with over 35 cm of snow, sleet and rain within 2 days; the instability was observed within a few days after this storm. It is likely that the accumulation of soil moisture through September combined with the October 11th storm triggered the instability.

A slope stability analysis calibrated to match observed zones of movement from monitoring instrumentation was used to develop options for remedial works. Rockfill ribs combined with a trench drain at the toe of slope form the recommended and most cost-effective alternative to address the instability. The total estimated construction cost for this alternative (excluding contingency, engineering, administration and taxes) is approximately [REDACTED]

As part of detailed design, the following work is recommended:

- 1. Confirm the availability of existing CCTV sewer inspections and perform additional inspections to confirm the condition of the land drainage sewer.
- 2. Consult with the City of Winnipeg Water and Waste Department to determine an appropriate connection location and detail to discharge the trench drain into the land drainage sewer, and confirm that the proximity of the works to the existing LDS is acceptable.
- 3. Confirm construction schedule and requirements for traffic management in consultation with Traffic Services. Construction of rockfill ribs in the summer would be favorable, when the ground is unfrozen and the effects of snow melt on surface and groundwater conditions has subsided, and when potential impacts to traffic will not be exacerbated by icy road conditions.
- 4. Confirm anticipated construction access and traffic control requirements. We anticipate the park area upslope of the failure (within the SB-EB loop) will be used for staging and laydown of equipment and materials. Otherwise, all work is expected to be completed working from the toe of slope off the roadway without major access ramps.

I.0 Introduction

This report summarizes the results of the geotechnical investigation and provides geotechnical recommendations for the design of slope stabilization works to address instabilities that occurred on the southwest corner of the interchange at Pembina Highway and Bishop Grandin Boulevard. The terms of reference of the work are included in our proposal to Mr. Cameron Ward, P.Eng. of the City of Winnipeg (COW) dated October 25, 2019. The scope of work includes a visual assessment of the existing site conditions, subsurface investigations, monitoring, and the preliminary design of slope stabilization works and associated Class 3 construction cost estimate.

2.0 Background

During the week of October 14, 2019, the City of Winnipeg Public Works Department observed a slope instability on the south slope of the Bishop Grandin Boulevard underpass of Pembina Highway, just west of the Pembina Highway bridge and just east of the SB-EB ramp onto Bishop Grandin. Photo 1 shows the instability head scarp. The site location and plan view extents of the instability are shown in Figure 01. An assessment of the existing slope instability is required, in order to identify suitable stabilization options and develop a preliminary design for stabilization works at the site.

Photo 1 (2019-10-21) Looking East at Head Scarp (Pembina Highway bridge in background)

The instability occurred after an exceptionally wet fall, with total precipitation of over 150 mm in September compared to the typical monthly total of approximately 45 mm. On October 11th, Winnipeg also experienced an unprecedented storm of over 35 cm of snow, sleet and rain within 2 days; the instability was observed within a few days after the storm. It is likely that the accumulation of soil moisture through September combined with the October 11th storm triggered the instability.

Similar instabilities have occurred on the slopes of the grade separation as follows. In 2005, two shallow, saturation-induced instabilities were repaired near the CN Letellier bridge over Bishop Grandin. The "SE Quadrant" instability was located on the south slope and approximately 50 to 100 m east of the Letellier bridge, along the EB to SB/NB ramp off Bishop Grandin. The "NW Quadrant" instability was located on the north slope approximately 15 to 70 m west of the Letellier Bridge. The repair involved fully excavating the slide mass, placement and compaction of Class C granular backfill to restore the slope, and the installation of a trench drain near the slope crest. All previous instabilities are believed to have been triggered by high degree of saturation of the slope as a result from high precipitation events and groundwater seepage. Record drawings for the stabilization works are included in Appendix A.

3.0 Field Program

3.1 Site Conditions

A site reconnaissance was completed by Brodie Blight, EI of TREK on October 21, 2019. The ground surface is grass covered and slopes from the crest (Elev. 233.3 m \pm) to the south curb of Bishop Grandin (Elev. 227.1 m \pm) at approximately 4H:1V (Horizontal to Vertical). At the time of the site visit, a 0.8 m high head scarp and various tension cracks were observed that run approximately 22 m parallel to Bishop Grandin Blvd. The head scarp (tension cracks) is located just downslope of the slope crest, while a toe bulge (upthrust zone) is present just above the slope toe, extending onto concrete paving adjacent to the roadway. The limits of the tension cracks are shown on Figure 01. Concrete (suspected to be abandoned piles) was visible at four locations within instability area. Based on the visual assessment, the slope instability does not pose an imminent risk to public or road safety. Photographs from the site reconnaissance are included in Appendix B.

3.2 Site Survey

A topographic survey was performed at the site on October 31 and November 5, 2019 by TREK. Test holes and instrumentation locations and elevations, topography and relevant site features were measured as part of the survey. Site features and contour elevations generated from the survey are shown on Figure 01 and cross-sections of the existing conditions are shown on Figure 02 and 03.

3.3 Sub-surface Investigation

A sub-surface investigation was undertaken on November 5, 2019 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test holes HA19-01 to HA19-04 were advanced using a 50 mm hand auger at the locations within the instability shown on Figure 01.

HA19-01, -02, -03 and -04 were drilled to respective depths of 3.1 m, 3.7 m, 4.5 m and 3.9 m below ground surface. A standpipe was installed in each test hole (SP-01 to -04). The standpipes consist of 25 mm diameter PVC pipes installed to the bottom of the test holes, except in HA19-01 and -02 where the standpipes were installed to approximately 0.3 m above the bottom due to squeezing of the hole.

Sub-surface soils observed during drilling were visually classified based on the Unified Soil Classification System (USCS). Samples retrieved during drilling included disturbed auger cuttings. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture contents on all samples and Atterberg limits on select samples. Laboratory testing results are included in Appendix C.

A brief description of the soil stratigraphy and groundwater conditions encountered during drilling is provided in the following sections. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole logs.

3.3.1 Soil Stratigraphy

The soil stratigraphy consists of 0.4 m of clay (fill) overlying silty clay. The clay (fill) is stiff and of high plasticity and the silty clay is generally firm and of high plasticity. A zone of soft silty clay of higher moisture content was encountered in all test holes; at 1.5 m below ground surface in upper slope test holes (HA19-01 and -03) and at 1.1 m below ground surface in lower slope test holes (HA19-02 and -04). The silty clay becomes firm to stiff below 2.1 m and 1.5 m depth in HA19-03 and -04 respectively.

3.3.2 Groundwater and Sloughing Conditions

Seepage and squeezing was observed in all test holes at depths ranging from 1.2 m to 2.4 m below ground surface. No sloughing was observed. Table 1 summarizes the measured water levels in the standpipes.

	Elevation (m)						
Date (yyyy-mm-dd)	SP-01 (HA19-01)	SP-02 (HA19-02)	SP-03 (HA19-03)	SP-04 (HA19-04)			
2019-11-05 (approximately 1 hour after installation)	229.05	225.47	228.93	227.55			
2019-11-12	228.89	227.76	229.29	227.77			
2019-11-19	228.80	227.80	229.20	228.05			
2019-12-07	228.78	227.79	229.20	227.89			
2020-02-21	228.48	227.10	228.79	227.77			
2020-04-20	228.41	226.90	228.68	227.76			

Table 1 - Groundwater Monitoring Results

The groundwater observations made during drilling are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

3.3.3 <u>Slope Movement Monitoring</u>

The standpipes were also used to monitor for shear movements. If differential shear movement (shear plane) develops within the depth of the standpipe, the relatively flexible PVC standpipe will deform with the surrounding soil, whereas a stiff steel pipe lowered within the standpipe will encounter resistance at the depth of movement, and or may be impassable for larger movements.

A galvanized steel pipe (3.3 m long) was lowered into each standpipe to detect zones of differential shear movements. Table 2 summarizes the depth to which the pipe was lowered in each standpipe for each monitoring event. Slight resistance was encountered in 1.5 m in SP-02 following the initial baseline reading, otherwise the steel pipe was lowered to the bottom of standpipe without resistance.

	Depth Lowered Below Ground (m)							
Date (yyyy-mm-dd)	SP-01 (HA19-01)	SP-02 (HA19-02) Note 1	SP-03 (HA19-03)	SP-04 (HA19-04)				
Bottom of pipe depth	2.8	3.4	4.5	3.9				
2019-11-05 (approximately 1 hour after installation)	2.8	3.4	4.5	3.9				
2019-11-12	2.8	3.4 (1.5)	4.5	3.9				
2019-11-19	2.8	3.4 (1.5)	4.5	3.9				
2019-12-07	2.8	3.4 (1.5)	4.5	3.9				
2020-02-21	1.2	3.4	0.7	1.3				
2020-04-20	1.2	3.4	0.6	1.3				

Table 2 - Slope Movement Monitoring Results

Note 1: Slight resistance encountered at 1.5 m below ground where noted.

3.4 Underground Utilities

Underground utilities present within the instability area include a 200 mm (8") high-pressure gas line running in a general north-south direction near the western edge of the instability, a 600 mm diameter land drainage sewer (LDS) running parallel to Bishop Grandin Boulevard near the toe of the instability at the north edge of the site, and street-light cable running along the slope crest and parallel to the Pembina Highway bridge along the south and east edges of the site (beyond the extent of the instability), respectively. The locations and depths of the gas line and LDS were determined by hydro-excavation at five locations as shown on Figure 01.

Manitoba Hydro was consulted regarding precautions required for construction near the gas line. A letter from Manitoba Hydro with mitigative measures required during investigations and construction is attached in Appendix A.

4.0 Slope Stability Analysis

Slope stability analysis was performed to back-analyse the pre-failure slope geometry and evaluate the existing (post-failure) geometry and slope stabilization works. Stability model methods, assumptions, parameters, results and recommendations are provided below.

4.1 Numerical Model Description

The slope stability analysis was conducted using a 2-dimensional limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2016 software package (Geo-Slope International Inc.). The slope stability model used the Morgenstern-Price method of slices with a half-sine inter-slice force function to calculate factors of safety (FS) along potential slip surfaces.

The observed instability initiates just downslope of the slope crest and exits just above the toe of slope, which is typical of near-surface saturation induced instabilities. The observed instability was likely triggered by near-surface saturation and a loss of soil suction resulting from prolonged periods of high precipitation. This type of instability is often localized in extent and can be influenced by undetected pre-existing conditions (e.g. localized zones of pre-sheared or soft soils, or discontinuous layers of permeable soils with high piezometric levels). For the purposes of the analysis a groundwater level was represented using a static piezometric line, and a zone of residual soils was included within the interpreted depth of the instability.

Cross-section 1 is located through the middle of the instability, as shown on Figure 01, and was assumed to represent a critical cross-section for analysis. The soil stratigraphy assumed in the model is based on TREK's test holes, which are shown in cross-section on Figure 01. Zones of soft clay, measured groundwater levels, and the observed zone of movement in TH19-02 are also shown in cross-section on Figure 01.

Groundwater conditions were represented in the model using a static piezometric line at a depth that approximates the groundwater level elevations observed in the standpipe piezometers. It should be noted that this groundwater level is considered representative of shallower slip surfaces (similar to the observed instability), however would be considered conservative for analysis of deep-seated (global) slip surfaces.

The material parameters assumed in the model for each soil unit are summarized in Table 3 below and represent assumed values based on local experience. A zone of residual clay was included in the model, the extent of which is based on the observed zones of soft clay, the interpreted depth of movement, and the critical slip surface geometry determined from the back-analysis case. The properties of the residual clay were adjusted along with the slight changes to the groundwater level to achieve a factor of safety of approximately 1.0 for a slip surface that closely matches the interpreted depth of movement, head scarp and toe bulge locations. It should be noted that the slip surface geometry is controlled by the extent of the assumed residual clay. Preliminary sensitivity analyses were performed to examine the impact of deeper residual clay zones and it was determined that residual clay extending deeper would result in factors of safety less than unity and slip surfaces that do not match the geometry of the observed instability.

Material	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (degrees)
Silty Clay	17.5	5	15
Residual Clay	17.5	2	12
Rockfill Ribs (2:1 ratio)	18.3	1.3	23

Table 3 - Material Parameters	used in Slope Stability Analysis	
Table J - Malenai Falamelei S	used in Slope Stability Analysis	

Design Criteria

A minimum factor of safety of 1.30 was selected for design of slope stabilization works, applied to the observed (back-analysed) slip surface, with no reduction to the stability of an overall global slip surface.

4.2 Analysis Results

The results of the analyses are summarized in Table 4 and are shown on Figures C-01 to C-10 (as referenced in Table 4) which are included in Appendix D, and are discussed in the following sections.

Stability Case	Slip Surface	Factor of Safety (Change from Baseline)	Figure No. (Appendix D)
Back-Analysis (Pre-Failure Geometry)	Critical + Observed Global	1.00 (baseline) 1.19 (baseline)	D-01
Back-Analysis (Existing / Post-Failure Geometry)	Critical + Observed Global	1.12 (+12%) 1.23 (+3%)	D-02
Rockfill Ribs (2:1 ratio) and Final Grade Restoration (4H:1V)	Observed Critical + Global	1.31 (+31%) 1.20 (+1%)	D-03

 Table 4 - Summary of Calculated Factors of Safety

4.2.1 Back-Analysis

The back-analysis was performed on both an assumed pre-failure and surveyed post-failure (existing) slope geometry. The calculated factor of safety along the critical slip surface within the zone of residual clay is 1.00 (Figure D-01) for pre-failure geometry, whereas the critical factor of safety increases to 1.12 for the post-failure geometry (Figure D-02). The factor of safety along the critical global (deep-seated) slip surface ranges from 1.19 to 1.23 for pre- and post- failure back-analyses.

4.2.2 <u>Slope Stabilization Measures</u>

Slope stabilization alternatives considered included (in order of increasing cost) drainage improvements (e.g. French drains), rockfill shear keys and rockfill ribs. Based on preliminary analyses (not reported herein), drainage improvements and rockfill shear keys are not considered adequate. Drainage improvements alone do not provide sufficient stability improvements and may be subject to clogging and reduced performance in the long-term, whereas rockfill shear keys (located in the lower toe) will not address the potential for shorter (upper-bank) translational slip surfaces from developing in the future. As such, rockfill ribs are considered the preferred alternative for slope stabilization given that

they improve stability both in the lower and mid bank areas, provide mechanical stabilization and provide drainage enhancement as a secondary benefit.

Rockfill ribs installed at a 2:1 replacement ratio in plan view (e.g. 1.5 m wide with 3.0 m clear spacing between ribs) and a base width of 8 m satisfy the design stability targets (Figure D-03). The calculated factors of safety with rockfill ribs and regrading to pre-existing grades (4H:1V) increases to 1.31 (+31%) for the observed slip surface and to 1.20 (+1%) for the critical deep-seated (global) slip surface.

4.2.3 <u>Recommendations</u>

Rockfill ribs satisfy the target factor of safety of 1.30 for the critical slip surface and provide a marginal benefit to global stability. The selected piezometric line is considered conservative for deep-seated slip surfaces, as noted previously. It should be noted that all of the observed instabilities at the grade separation were of similar geometry to the shallow instability observed at the current site; no deep-seated global instabilities have been observed at the grade separation. Since it is difficult to predict any reductions in groundwater levels associated with the rockfill ribs, the piezometric conditions considered with rockfill ribs were not changed from the back-analysis and the analysis is therefore considered to be conservative.

The recommended layout and geometry of the stabilization works is shown on Figure 02. A longitudinal trench drain at the toe of the slope is also recommended to collect any accumulated seepage within the ribs and discharge into the existing land drainage sewer. Due to the presence of the gas line, rockfill ribs on either side of the gas line were enlarged to maintain the overall target improvement to stability, and the trench drain will need to be hydro-excavated within 1 m of the gas line. The grading of the trench drain and subdrain pipe should be determined in detailed design once the outlet location is confirmed. Due to uncertainty in the depth of the slip surface, the base of the ribs should be confirmed slip surface.

As part of detailed design, the following work is recommended:

- 1. Confirm the availability of existing CCTV sewer inspections and consider performing additional inspections to confirm the condition of the land drainage sewer.
- 2. Consult with the City of Winnipeg Water and Waste Department to determine an appropriate connection location and detail to discharge the trench drain into the land drainage sewer, and to confirm the extent of the proposed stabilization works is acceptable (the rockfill ribs extend in close proximity to the existing LDS).
- 3. Confirm construction schedule and requirements for traffic management in consultation with Traffic Services. Construction of rockfill ribs in the summer would be favorable, when the ground is unfrozen and the effects of snow melt on surface and groundwater conditions has subsided, and when potential impacts to traffic will not be exacerbated by icy road conditions.

4. Confirm anticipated construction access and traffic control requirements. We anticipate the park area upslope of the failure (within the SB-EB loop) will be used for staging and laydown of equipment and materials. Otherwise, all work is expected to be completed working from the toe of slope off the roadway without major access ramps.

5.0 Cost Estimates

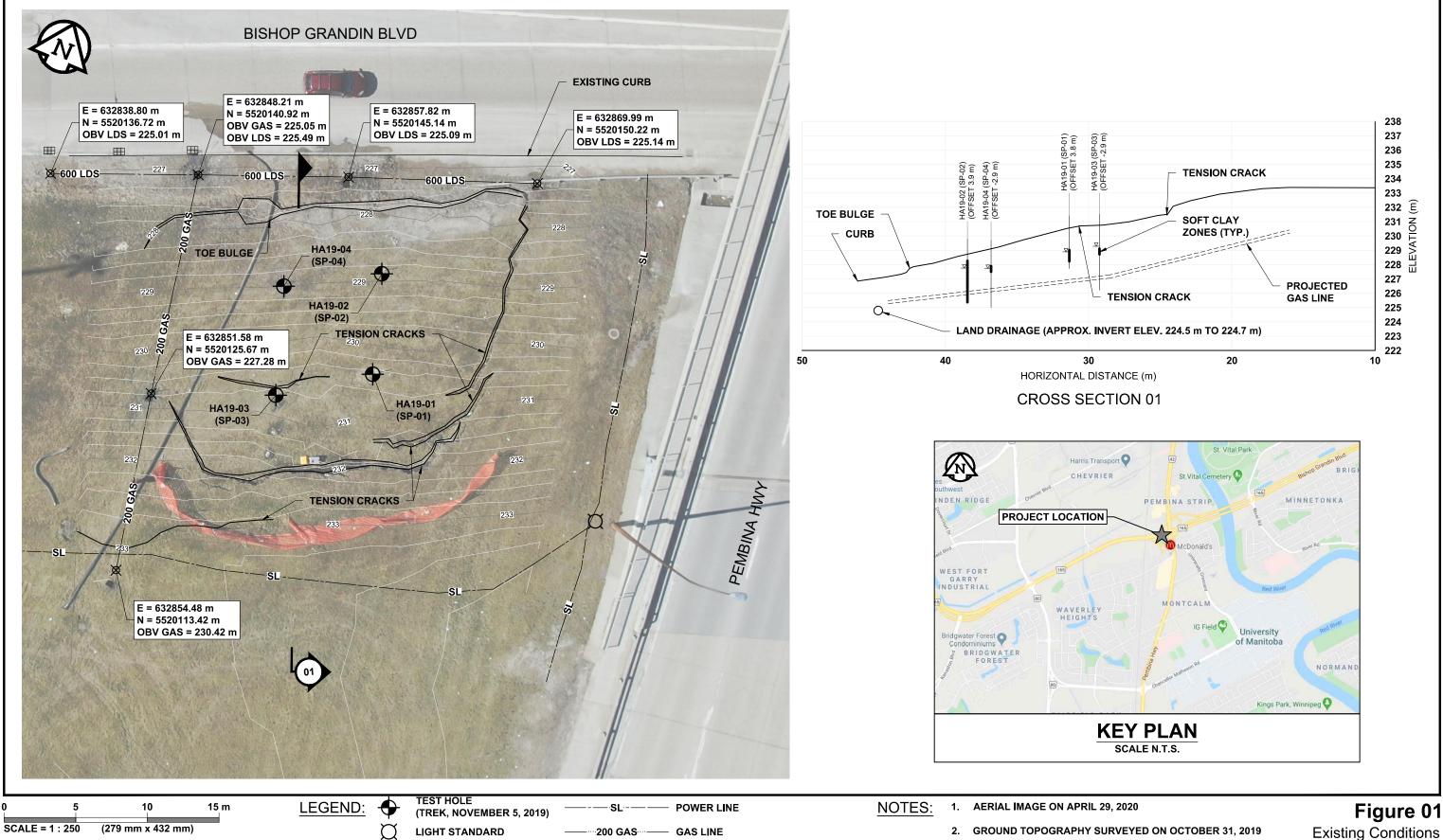
Table 5 summarizes a Class 3 cost estimate for the construction of rockfill ribs. Unit prices represent our estimate of current market prices based on recent projects. The cost estimate includes mobilization and demobilization and access development, temporary traffic control, but exclude taxes, engineering, administration costs and contingencies. As requested by Public Works, the estimated construction costs have been added to the "Basis of Estimate Capital Cost Detail" worksheet provided by the City (Appendix E). We have reviewed the City's estimates for contingencies, engineering and traffic services, and find the estimates to be reasonable.

Item	Units	Est. Qty	Unit Price	Subtotal
Mob/Demob	L.S.	1		
Site Access (incl. traffic control, remove / re-install traffic barriers)	L.S.	1		
Hydro-Excavation (for Trench Drain)	L.S.	1		
Waste Excavation (Rockfill Ribs and Trench Drain)	m³	350		
Supply and Compact Rockfill (Rockfill Ribs)	tonne	540		
Supply and Place Free Draining Granular (Trench Drain)	tonne	30		
Supply and Place Geotextile (Trench Drain)	sq.m	150		
Supply and Place Perforated Subdrain Pipe c/w Filter Sock	L.m.	40		
Regrading to Final (incl. clay cap)	m²	870		
Connection to LDS	L.S.	1		
Erosion Control Blanket	m²	870		
Topsoil and Seed	m²	870		
Class 3 Cost Estimate (excluding Contingency, Engineeri	ng and A	dministration	n Costs)	

	Table	5 -	Class	3	Cost	Estimate
--	-------	-----	-------	---	------	----------

6.0 Closure

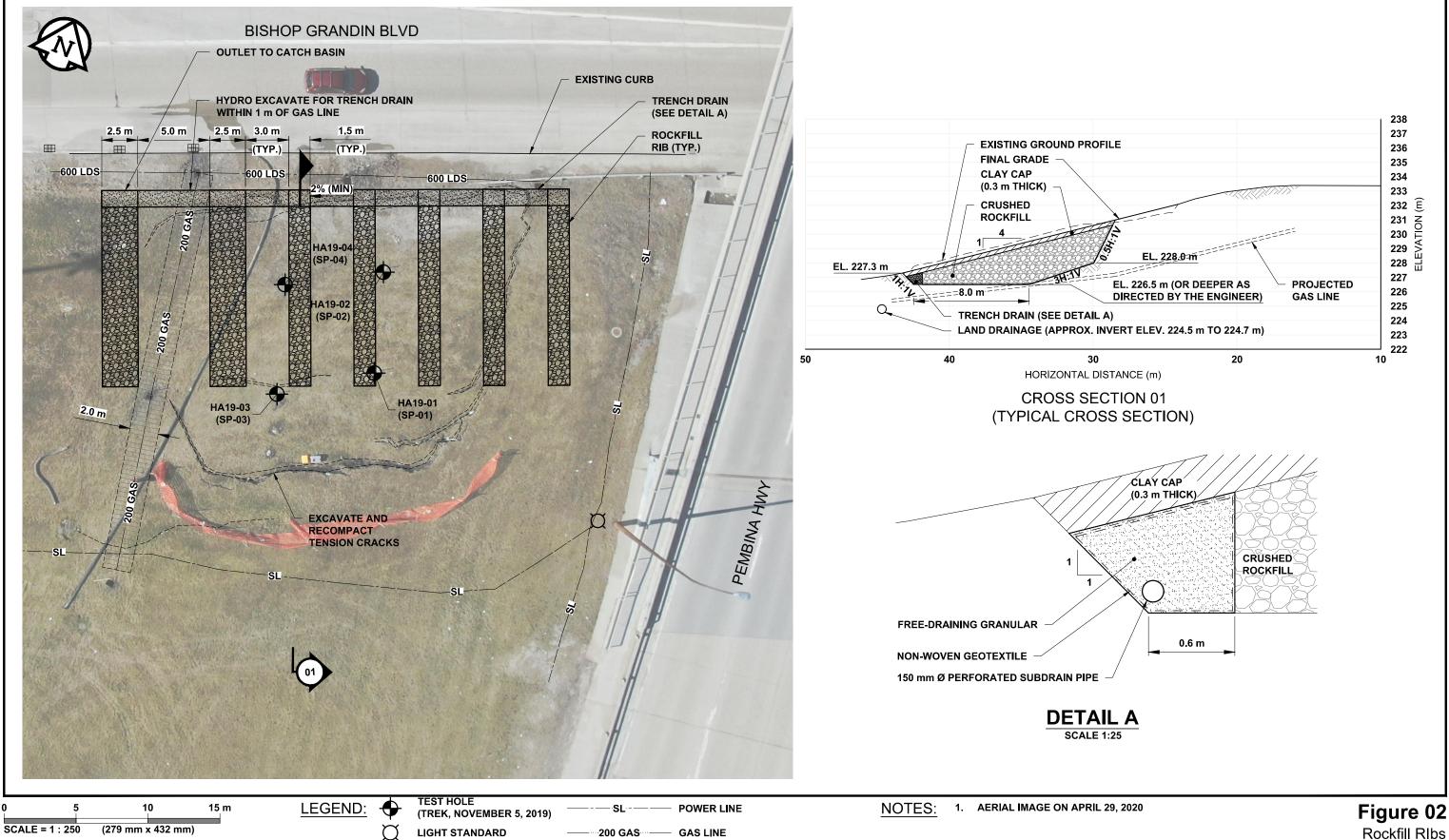
The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.


All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of the City of Winnipeg (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

---------------------- LAND DRAINAGE SEWER


 $\left| \right|$

CATCH BASIN

0015 034 00

City of Winnipeg Slope Failure Pembina and Bishop

---------------------- LAND DRAINAGE SEWER

CATCH BASIN

0015 034 00

City of Winnipeg Slope Failure Pembina and Bishop

Plan, Typical Cross Section and Detail A

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	ajor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criteria				ş				
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines	ixtures, little or no fines $C_0 = D_{10}$		^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve sizes	#10 to #4	#40 to #10	#200 to #40 / #200	< #200
sieve size)	Gravels alf of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	grain size curve, er than No. 200 sieve) ng dual symbols*	Not meeting all gradatio	on requiren	nents for GW	ە	ASTM Sieve	#10	#401	#500	¥
soils than No. 2 lore than h is larger vel with fine vunt of fine	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Particle Size	٩			+			
	GC		Clayey gravels, gravel-sand-silt mixtures	niri o nalla	Atterberg limits above "A line or P.I. greater than 7	'A"	line cases requiring use of dual symbols	Par		Ľ	, g	25			
Coarse-Gr naterial is	e fraction mm)	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve. depending on percentage of fines (fraction smaller than No. 200 s coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP Less than 12 percent GW, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 00 to 4 75	0.425 to 2.00	0.075 to 0.425	c/0.0 >
	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0			
(More thai	(More than half the Sands (More than half of coarse is smaller than 4.75 (Appreciable (Appreciable amount of fines) (Little o	SM		Silty sands, sand-silt mixtures	lemine percentages of s, pending on percentage of arse-grained soils are cla: arse than 5 percent More than 12 percent 6 to 12 percent Bord	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	Material	5				Clay	
	(More t is s Appre amount			Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols		ואומר	Sand	Medium Fine	Fine Citt or	SIIT OF CIAY	
e size)	ML s		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	Plasticity Chart			e Sizes		-	i i i			
. 200 sieve	Silts and Cla	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - 60 -	an 0.425 mm		,U LI . A LINE	e	S	> 12 in. 3 in to 12 in	2	3/4 in. to 3 in. #4 to 3/4 in.	15 2 14
soils er than No	Si	<u> </u>	OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%)		CH CH		Particle Size	ASTM:	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	- 40 - L' 40 - UIUUU 30 -				Pa	mm	> 300 75 to 300	222	19 to 75 4 75 to 19	P 10
Fine-Grained soils (More than half the material is smaller than No. 200 sieve size) ghly Silts and Clays anic (Liquid limit oils greater than 50) less than 50)	СН		Inorganic clays of high plasticity, fat clays	20-	20-		MH OR OH		L	75 1	1101	191 4 75) F		
than half	N		OH		Organic clays of medium to high plasticity, organic silts		ML or OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
(More	(More t Highly Organic Soils		Pt	<u>6 76 76</u> <u>70 77 7</u>	Peat and other highly organic soils	Von Post Class			lour or odour, fibrous texture	Material	ואומוכ	Boulders	Gravel	Coarse Fine	

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	62	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
Very loose	< 4	
Loose	4 to 10	
Compact	10 to 30	
Dense	30 to 50	
Very dense	> 50	
The Standard Penetration Test blow count (N) of a col	hesive soil can be related to its consistency as follows:	:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

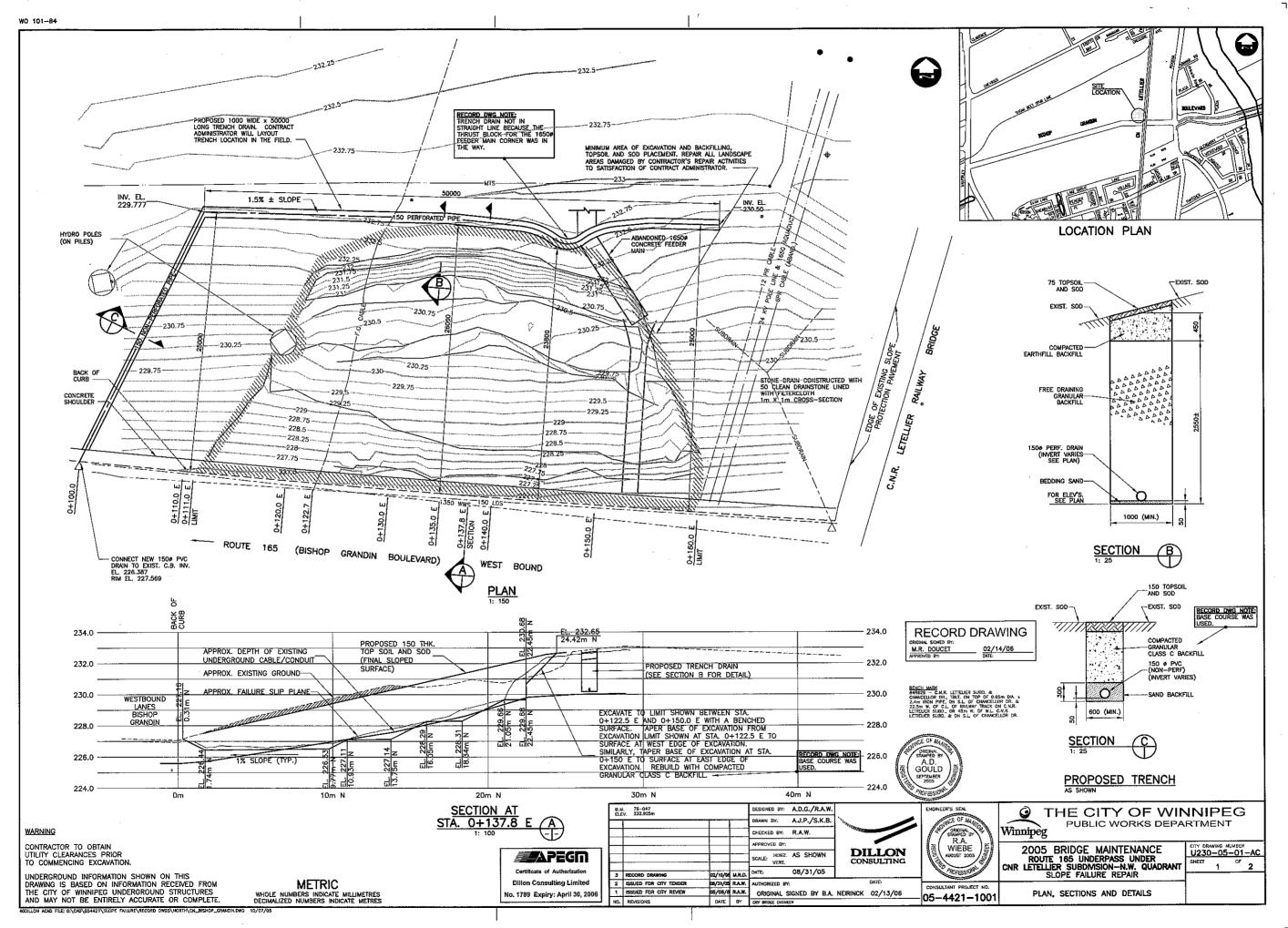
The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

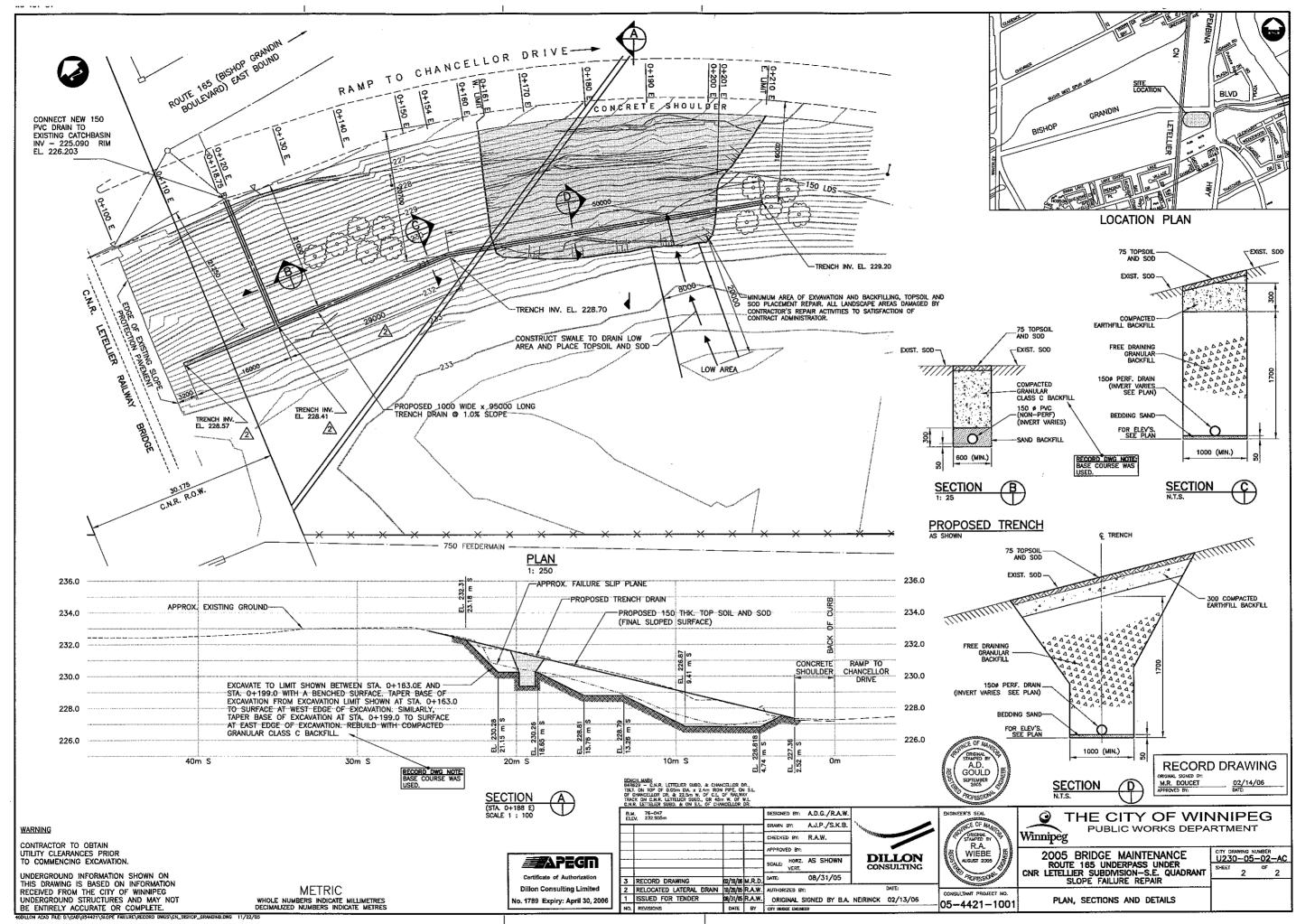
			i II	<u>IICAL</u>																
Clier	nt:	City	/ of V	Vinnipeg					Project Nur	nber:	0015	034 0	0							
Proje	ect Nam	e: <u>Slo</u>	pe Fa	ailure Pemb	ina and Bis	shop			Location:		UTM	14U, t	552013	33.463m	n N, 632	2864.	958m	E		
Cont	ractor:	TR	EK G	eotechnical	Inc.				Ground Ele	vation:	230.5	2 m								
Meth	od:	50 n	nm Ha	and Auger					Date Drilled		Nove		5, 2019	9						_
Sample Type: Grab (G) Shelby Tube (T)								Split S	poon (S	s) 🔪	Sp	lit Barı	el (SB)		Core	(C)				
	Particle			nd:	Fines			∏ Silt		and		Grav				_		oulde	re	
			-						<u> </u>		Filter Pa									
	Backfil	Legen	id:		Bentonite		Cement		Drill Cuttings		Sand			Grout			971 	ough rained :	Shoor	
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	CLAY (FIL	L) - silty, tra ootlets to 0	ace sand, t	RIAL DESCI race gravel	(<5 mm c	liam.), some o thick) at 0.3 m	rganics depth	Sample Type	G01	16 17 P 0 20 Pl	(kN/m ³ 18 1 article Siz 40 6	³) 9 20 2e (%) 60 80 ⁻ LL	100	Str A P O F	ength (<u>Fest Ty</u> Torvan ocket P X Qu B Field Va 100 15	kPa) <u>⊃e</u> e ∆ en. Ф ⊲ ne ⊖	1
	-0.5- -1.0- -1.5- -2.0-			 - dark - high CLAY - silt mm diam.) - brow - mois - high - soft to firr - soft to firr - moist below - moist below - moist below - moist below - Seepage 2. Squeezi 3. Test Hol 4. Standpig level at 1.5 	brown, bro plasticity y, trace sar, , trace oxid n plasticity n below 1.5 below 2.1 r ow 2.3 m EST HOLE e observed ng observed ng observed in below g be SP-01 ir in below g le backfilled	5 m 5 m 5 m 5 m 5 m 5 m 6 below 2. 2.8 m dept 1 stalled at 2 stalled at 3 stalled at 3	IN CLAY IN CLAY 2.1 m and 2. 1 m depth. 1 m depth. 1 m below 2.8 m below ace 5.5 hou	, moist, s m diam.), .3 m belov pletion of / ground s urs after S	tiff trace silt inclus w ground surfa	sions (< ace. dwater	5	G02 G03 G04 G05 G06								

Client			Vinnipeg	-					Project Number:	0015	034 0	00							
-			ailure Pemb	ina and Bis	shop)140. ⁻	176m I	N, 632	362.62	23m E		
· ·	actor:		Geotechnical		F				Ground Elevation:										
Metho		50 mm Ha									mber	5. 20)19						
	Sample	_		Grab (G)		St	nelby Ti	ube (T)	Split Spoon (SS	_			arrel	(SB) [Core (C)		
		Size Lege	nd:	Fines		Clay		Silt	Sand		Gra				obbles	,	,	oulders	2
					N					ilter Pa					500103				
<u> </u>	Backfill L	_egena:		Bentonite		Ceme	ent		Drill Cuttings	and				Grout ulk Unit	Wt			ugn ained S	hear
Elevation (m)	Depth (m)	Soil Symbol Standpipe			ace sand				diam.), some organics	Sample Type	Sample Number		17 1 Partic 20 4 PL	kN/m ³) 8 19 19 19 19 19 19 19 19 19 19 19 19 19 1	20 : (%)	00	Stre △ T ● Poo ○ Fie	ngth (k est Type orvane cket Pe I Qu ⊠ eld Van	Pa) ≙ ∆ n. Ф
228.5	-0.5- -1.0- -1.5- -2.0- -2.5- -3.0-		- high CLAY - silt mm diam.) - brow - mois - high - silt lamina	brown, bro plasticity y, trace sar , trace oxid rn st, firm plasticity ations (2 m vet below 1 v 1.5 m	own belo ^r nd, trace lation m thick e	w 0.2 m	<5 mm	diam.),	irm to stiff trace silt inclusions (<5 n below 0.6 m		G08 G09 G10 G11								
225.2	-3.5-										GII								
			 Squeezi Test Hol Standpip measured 	e observed ng observe le open to 3 oe SP-02 ir 2.5 hours a le backfilled	l betweer ed below 3.4 m de nstalled a after SP- d with sa	n 1.2 m a 1.2 m de pth upon at 3.4 m l 02 install nd pack	and 2.4 epth. n compl- below g led. from 3.	etion of ground s	w ground surface. drilling. surface. SP-02 was dry).2 m below ground										
Logg	ed By:	Beta Tary	ana		Re	viewed E	By: _K	en Skaf	tfeld	I	Projec	t En	ginee	er: _M	ichael	Van H	elder	1	

Client: <u>City of V</u>	Vinnipeg	Project Number:	0015 034 00
Project Name: Slope Fa	ailure Pembina and Bishop	Location:	UTM 14U, 5520129.21m N, 632859.326m E
Contractor: TREK G	eotechnical Inc.	Ground Elevation:	230.82 m
Method: 50 mm Ha	nd Auger	Date Drilled:	November 5, 2019
Sample Type:	Grab (G) Shelby Tube (T)	Split Spoon (S	S) 🔀 Split Barrel (SB) 🚺 Core (C)
Particle Size Leger	nd: Fines Clay IIII Silt	Sand	Gravel Gravel Gravel Cobbles Boulders
Backfill Legend:	Bentonite Cement		Filter Pack Sand Grout Slough Image: Strain Strain Image: Strain Strain Image: Strain Strain
Elevation (m) (m) (m) Soil Symbol	MATERIAL DESCRIPTION CLAY (FILL) - silty, trace sand, trace gravel (<5 mm and trace rootlest to 0.2 m depth	diam.), some organics	a b c (kN/m) ³ Strength (kPa) 16 17 18 19 20 21 Particle Size (%) Particle Size (%) Test Type 0 20 40 60 80 100 Mc LL PL Mc LL O Field Vane O 0 20 40 60 80 100 50 100 150 200250
	 dark brown, brown below 0.2 m depth, moist, s high plasticity CLAY - silty, trace sand, trace gravel (<5 mm diam.), mm diam.), trace oxidation brown moist, firm high plasticity silt seam (75 mm thick) at 0.6 m wet, soft below 1.7 m moist, firm below 2.1 m firm to stiff below 2.6 m 		-5 -5
-3.5- 	END OF TEST HOLE AT 4.5 m IN CLAY Notes: 1. Seepage and squeezing observed between 1.7 m surface. 2. Test Hole open to 4.5 m depth upon completion of 3. Standpipe SP-03 installed at 4.5 m below ground se level at 1.9 m below ground surface 1 hour after SP-0 4. Test Hole backfilled with sand pack from 4.5 m to 0 surface and topped with bentonite chips. ana Reviewed By: Ken Skaf	drilling. surface. Groundwater 03 installed. 0.3 m below ground	nd Project Engineer: _Michael Van Helden



Clier			ity of								Project Numb		0015								
Proje	ect Nan	1e: <u>S</u>	ope F	ailur	e Pemb	oina and Bis	hop				Location:		UTM	14U,	5520	136.331	m N, 63	2856.	.781m l	Ξ	
Cont	tractor:	Т	REK (Geote	echnica	l Inc.					Ground Eleva	ation:	228.9	99 m							
Meth	nod:	_50	mm H	and A	uger						Date Drilled:		Nove	mber	5, 20	19					
	Samp	е Тур	e:			Grab (G)		5	Shelby 7	Tube (T)	Split Spo	oon (S	S) 🕨	< s	plit Ba	arrel (SE	3)	Core	e (C)		
	Partic	e Size	Lege	end:		Fines	<u> </u>	Clay		Silt	San			Gra	avel	62	Cobble	es l	В	oulder	S
	Backfi	ll Lege	end:			Bentonite		Cen	nent		Drill Cuttings		Filter Pa Sand	ack		Gro			Slo	-	
Elevation (m)	Depth (m)	Soil Symbol	Standpipe							RIPTION			Sample Type	Sample Number		Particle S 0 40 PL M	m ³) 19 20 Size (%) 60 80 C LL	21 100 100 0	Stre	ained S ength (k est Typ Forvane ocket Pe X Qu X ield Var 00 15	(Pa) <u>≫e</u> e ∆ en. Φ
 	-0.5 			CLL - sc - w - m - m Nol 1. § sur 2. 1 3. §	anics a - dark - high AY - silt h diam.) - brow - mois - high off below et below oist, firr D OF T es: Seepag face. Fest Ho Standpi	nd trace ro brown, bro plasticity y, trace sar , trace oxid vn st, firm plasticity w 1.1 m w 1.2 m m to stiff be EST HOLE e and sque le open to 3 pe SP-04 ir	AT 3.9 m ezing obs 3.9 m dep stalled at	n IN CI served oth upot	LAY betwee betwee	en 1.2 m	trace silt inclusio	ons (<									
Log	ged By:	Bet	a Tary	/ana			Rev	viewed	I By: _∤	Ken Skal	itfeld		I	Proje	ct Eng	gineer:	Michae	el Van	Helder	1	


Appendix A

Existing Information

ſ

Ц

360 Portage Ave (18) ♦ Winnipeg, Manitoba Canada • R3C 0G8 P: (204) 360-4170 C: (204) 479-2850 E: agreaves@hydro.mb.ca

3/20/2020

MH Gas File # 2020-0062

Michael Van Helden TREK Geotechnical Inc. 1712 St. James Street Winnipeg, Manitoba R3H 0L3

Dear Michael Van Helden:

Re: Slope Failure Pembina and Bishop - Gas line location

Manitoba Hydro (Gas) has reviewed the request submitted by TREK Geotechnical for information on the 219.1 mm steel gas main impacted by the slope failure at the Bishop Grandin and Pembina interchange (south slope, west of the bridge). The following parameters shall be adhered to for investigative digs around this natural gas main. Please note that this letter is to provide information on investigative digs only and does not consider the slope failure remediation, which should be resubmitted to gasdesign@hydro.mb.ca once finalized. Please ensure that all requirements are communicated to your contractor.

1. Natural Gas Record Drawings

- Unfortunately, there is no alignment distances for this gas main available in Manitoba Hydro's eGIS system so it is difficult to determine the accuracy of both TREK's and the City of Winnipeg's survey of the main. Soft digging will need to be conducted to confirm location, as per the requirements listed below. An as-built of the gas main is attached, however.
- CAUTION: Large diameter gas main present.
- Yellow lines represent energized gas mains.
- Purple dashed lines represent abandoned gas mains.

2. Special Concerns

Upon review, it was noted that proposed investigative digs for slope stabilization works at Bishop Grandin and Pembina Hwy impact a large diameter distribution pressure 219.1 mm steel gas main. A Manitoba Hydro High Pressure Safety Watch may be required for all construction activities within 1.0 m of this gas main. All excavations within 1.0 m of any natural gas main must be completed by hand or Hydro-excavation. During construction, gas mains should not be undermined or exposed past the 3 o'clock and 9 o'clock positions on the cross section of the pipe.

Please locate any mains within 1.0 m or underneath the proposed construction, and investigate by hand or soft-digging to determine depth of cover and location in relation to both existing and proposed grades. Note that all locating and soft-digging requirements listed below are to be upheld.

For consideration in future remediation work at this location, if it is determined that a final minimum depth of cover of 900 mm for the 219.1 mm steel distribution main cannot be maintained, then relocations or lowerings may be required. Contact Andrew Greaves at <u>agreaves@hydro.mb.ca</u> or (204) 360-4170 to discuss options pertaining to lowerings or relocations. Additionally, a minimum separation of 300 mm from gas mains must be maintained for any new underground structure installations. If an underground structure must be installed with less than the minimum separation, an underground rigid foam barrier shall be placed over the main for protection. Submit plans for barrier installation to <u>GasDesign@hydro.mb.ca</u> if this is required.

3. 219.1 mm Distribution Pressure Natural Gas Main

- Proposed slope failure remediation occurs over an existing steel 219.1 mm distribution pressure natural gas main. A Manitoba Hydro Safety Watch may be required if any excavations are within 1.0 m of the 219.1 mm natural gas main.
- Contact "Click before you dig" a minimum of 2 weeks prior to any work commencing within 1.0 m of the 219.1 mm distribution pressure natural gas main to arrange for the pipeline to be properly located and marked by Manitoba Hydro personnel at ClickBeforeYouDigMB.com or Call 1-800-940-3447. Upon receiving clearances, the excavator will be provided with the phone number of the appropriate District in order to coordinate a Manitoba Hydro Safety Watch, if required.
- A minimum 900 mm of cover shall be maintained in all areas where highway rated equipment will be crossing, traveling or compacting over the 219.1 mm gas main. Vibratory compaction cannot be used over or within 1.0 m of a main.
- If highway rated equipment must cross, travel, or compact over the gas main with less than the minimum depth of cover, earth bridging or steel plates shall be placed over the main and extend a minimum of 1.0 m on either side at each crossing location. If equipment heavier than highway rated load cross the main, then submit construction plans to GasDesign@hydro.mb.ca.
- When working with less than minimum cover, a minimum 300 mm of granular material shall be bladed into place with tracked equipment offset from the pipeline. Then static compaction equipment would be allowed and built up in layers until minimum cover is achieved.
- Once the pipeline depth and location has been confirmed by hand or hydroexcavation, the safety watcher may authorize the limited use of mechanical excavation. A smooth edged bucket must be used for excavations within 1.0 m of the main.
- Subbase material shall be bladed into place as opposed to being end dumped over the 219.1 mm gas main in areas with less than the minimum cover.
- Caution must be used to ensure the integrity of the pipeline coating. Any damages to the coating must be reported to and repaired at no cost by Manitoba Hydro prior to backfilling.

4. Insufficient Cover

• Absolutely no work including concrete cutting or pavement breaking may occur over the pipeline (regardless of size) until depth of cover is determined and a safety watch is on site.

5. Rockfill Rib Installation for Slope Stabilization

- Proposed excavations for slope stabilization installations appear to be within 1.0 m of a gas main in which case will require exposure to be completed by hand or Hydro-excavation. Caution must be used when working in the vicinity of the natural gas mains at these locations.
- A minimum separation of 300 mm from gas mains must be maintained for any new underground structure installations. If an underground structure must be installed with less than the minimum separation, an underground rigid foam barrier shall be placed over the main for protection. Submit plans for barrier installation to <u>GasDesign@hydro.mb.ca</u>.

6. General:

- Please note that the requirements of Manitoba Hydro's Safe Excavation and Safety Watch guidelines shall apply. All natural gas pipelines and service lines must be properly located and marked by Manitoba Hydro personnel. This can be arranged by visiting ClickBeforeYouDigMB.com or call 1-800-940-3447. Construction operations are not to commence unless these conditions are adhered to.
- All excavations within 1.0 m of any natural gas main must be completed by hand or Hydro-excavation.
- All construction operations within the vicinity of natural gas pipelines are to take place in a manner so as not to damage or cause detriment to the integrity of the natural gas pipeline. Any damages to the coating must be reported to and repaired at no cost by Manitoba Hydro prior to backfilling.

Manitoba Hydro believes that there should be no problem with this work however; Manitoba Hydro makes no representations or warranties in that regard.

Please note that all construction drawings requiring review or approval must be mailed to Gas Design, 360 Portage Ave (18) Winnipeg, Manitoba, R3C 0G8. If you wish to send construction drawings electronically, they may be sent to <u>GasDesign@hydro.mb.ca</u>.

If you have any questions or comments, please contact the undersigned.

Page 4

Regards,

Andrew Greaves, P.Eng. Gas Design Engineer – City of Winnipeg Manitoba Hydro - Gas Design 360 Portage Ave (18), Wpg. MB., R3C 0G8 P: (204) 360-4170 C: (204) 479-2850 Email: <u>agreaves@hydro.mb.ca</u>

AG/DF

Cc: Larry Tole, Gas Distribution MTCE – Sutherland Ave, Manitoba Hydro Robert Morrison, Damage Prevention – Sutherland Ave, Manitoba Hydro Aaron Dueck, District Service Worker – Henlow Bay, Manitoba Hydro Brian Jensen, Gas Distribution MTCE – Sutherland Ave, Manitoba Hydro Aldo Garofalo, Gas Distribution MTCE – Sutherland Ave, Manitoba Hydro

Appendix B

Site Photographs

IMG_6923

IMG_6926

IMG_6924

IMG_6927

IMG_7244

IMG_7245

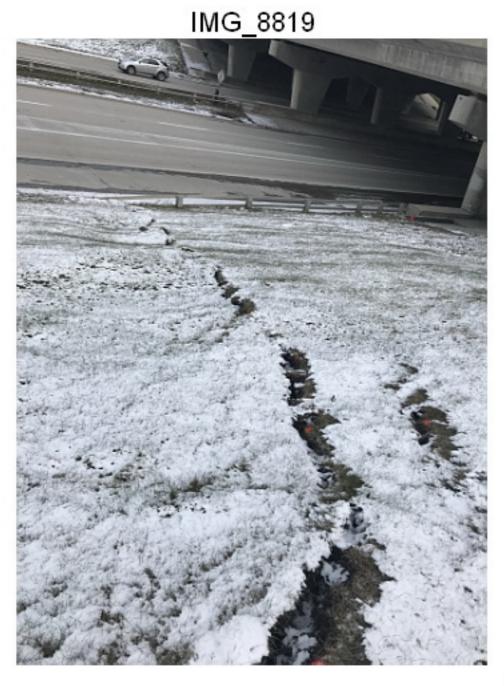
IMG_7248

3/8

IMG_7246

IMG_7252

IMG_7250


IMG_8808

IMG_8817

IMG_8820

6/8

IMG_8822

IMG_8823

7/8

Photo 1. Looking west, hydro-excavation preparation

Photo 2. Looking west, hydro-excavation at the toe

Photo 3. Land drainage sewer (LDS), obvert at 2.0 m below surface

Photo 4. Looking west, hydro-excavation at the toe, east of instability area

Photo 5. Looking east, hydro-excavation at the cress

Photo 6. High pressure gas line at the cress, obvert at 2.7 m below surface

Photo 7. Looking west, hydro-excavation at mid bank

Photo 8. Aerial photograph of site condition during hydro-excavation work

Appendix C Laboratory Testing Results

GEOTECHNICAL Quality Engineering | Valued Relationships

Date	November 19, 2019
То	Beta Taryana, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0015-034-00
Project	Slope Failure Pembina and Bishop
Subject	Laboratory Testing Results – Lab Req. R19-254
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. This report includes moisture content determinations and Atterberg limits.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

Prepared By: SB Reviewed By: AFK Checked By: NJF
--

Lab Requisition

TREK GEOTECHNICAL 1712 St. James Street Winnipeg, Manitoba R3H 0L3 T 204.975.9433 F 204.975.9435

F	PROJECT:	Slope F	Failure F	Pembina	and	Bish	эр		_	Ρ	ROJE		NO:	001	5 034 00
	CLIENT:	City of	Winnipe	eg					FIE	LD T	ECHI	NICIA	N: .	Beta	a Taryana
TEST HOLE NUMBER	SAMPLE NUMBER	Sample Start Depth (ft)	Sample End Depth (ft)		MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS				Soil Description/ Comments
HA19-01 HA19-01 HA19-01 HA19-01 HA19-01	G01 G02 G03 G04 G05	0.0 0.5 1.0 2.0 5.0	0.5 1.0 1.3 3.0 6.0		XXXXX										CLAY (FILL) CLAY SILT SEAM CLAY CLAY
HA19-01	G06	7.0	8.0												CLAY
HA19-02 HA19-02 HA19-02 HA19-02	G07 G08 G09 G10 G11	0.0 2.0 5.0 7.0 10.0	0.5 3.0 6.0 8.0 11.0												CLAY (FILL) CLAY CLAY CLAY CLAY
REQUE	STED BY:							Micha							REQUISITION NO. R19-254
	MMENTS:	110 13,	2019		DAT		2001	RED:	NOV	20, 2	2019			9	SHEET 1 OF 1

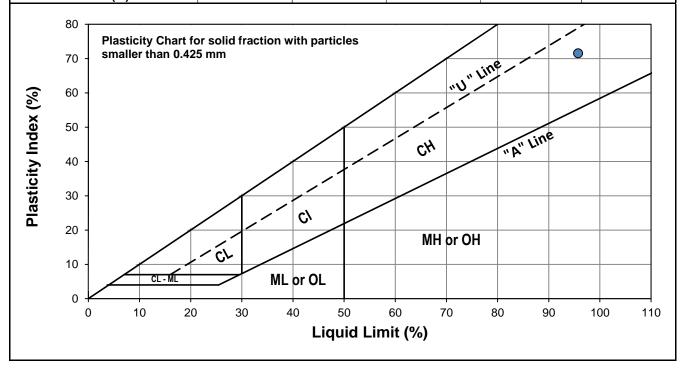
Www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0015-034-00
Client	City of Winnipeg
Project	Slope Failure Pembina and Bishop

Sample Date05-Nov-19Test Date13-Nov-19TechnicianSB

Test Hole	HA19-01	HA19-01	HA19-01	HA19-01	HA19-01	HA19-01
Depth (m)	0.0 - 0.2	0.2 - 0.3	0.3 - 0.4	0.6 - 0.9	1.5 - 1.8	2.1 - 2.4
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	P11	N03	A51	E136	E92	A36
Mass of tare	8.4	8.5	8.7	8.3	8.6	8.3
Mass wet + tare	183.1	147.2	149.4	376.3	155.7	156.4
Mass dry + tare	139.9	106.7	112.3	254.7	99.8	97.1
Mass water	43.2	40.5	37.1	121.6	55.9	59.3
Mass dry soil	131.5	98.2	103.6	246.4	91.2	88.8
Moisture %	32.9%	41.2%	35.8%	49.4%	61.3%	66.8%

Test Hole	HA19-02	HA19-02	HA19-02	HA19-02	HA19-02	
Depth (m)	0.0 - 0.2	0.6 - 0.9	1.5 - 1.8	2.1 - 2.4	3.0 - 3.4	
Sample #	G07	G08	G09	G10	G11	
Tare ID	D45	Z25	N12	Z18	H67	
Mass of tare	8.6	8.4	8.9	8.9	8.5	
Mass wet + tare	170.8	363.0	176.7	164.3	155.9	
Mass dry + tare	130.0	242.6	114.1	106.6	106.7	
Mass water	40.8	120.4	62.6	57.7	49.2	
Mass dry soil	121.4	234.2	105.2	97.7	98.2	
Moisture %	33.6%	51.4%	59.5%	59.1%	50.1%	


www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0015-034-00
Client	City of Winnipeg
Project	Slope Failure Pembina and Bishop
Test Hole	HA19-01
Sample #	G04
Depth (m)	0.6 - 0.9
Sample Date	05-Nov-19
Test Date	18-Nov-19
Technician	SB

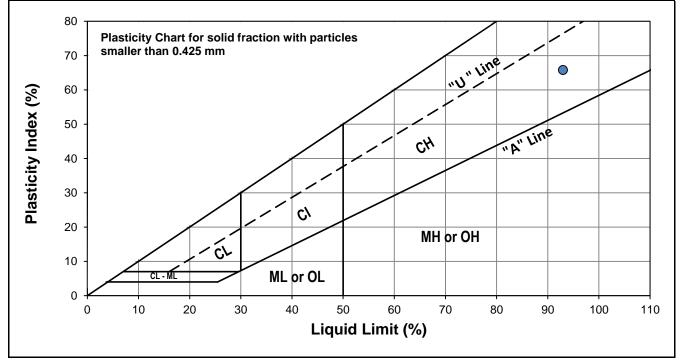
		-	-
Canadian	Council of Ind	dependent	Laboratories

Liquid Limit	96
Plastic Limit	24
Plasticity Index	72

Liquid Limit Trial # 1 2 3 Number of Blows (N) 22 27 33 Mass Wet Soil + Tare (g) 20.677 20.477 21.378 Mass Dry Soil + Tare (g) 17.371 17.427 17.890 14.210 Mass Tare (g) 13.972 14.119 Mass Water (g) 3.306 3.050 3.488 Mass Dry Soil (g) 3.399 3.217 3.771 Moisture Content (%) 97.264 94.809 92.495

Plastic Limit					
Trial #	1	2	3	4	5
Mass Tare (g)	14.096	14.172			
Mass Wet Soil + Tare (g)	20.658	21.470			
Mass Dry Soil + Tare (g)	19.370	20.056			
Mass Water (g)	1.288	1.414			
Mass Dry Soil (g)	5.274	5.884			
Moisture Content (%)	24.422	24.031			

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

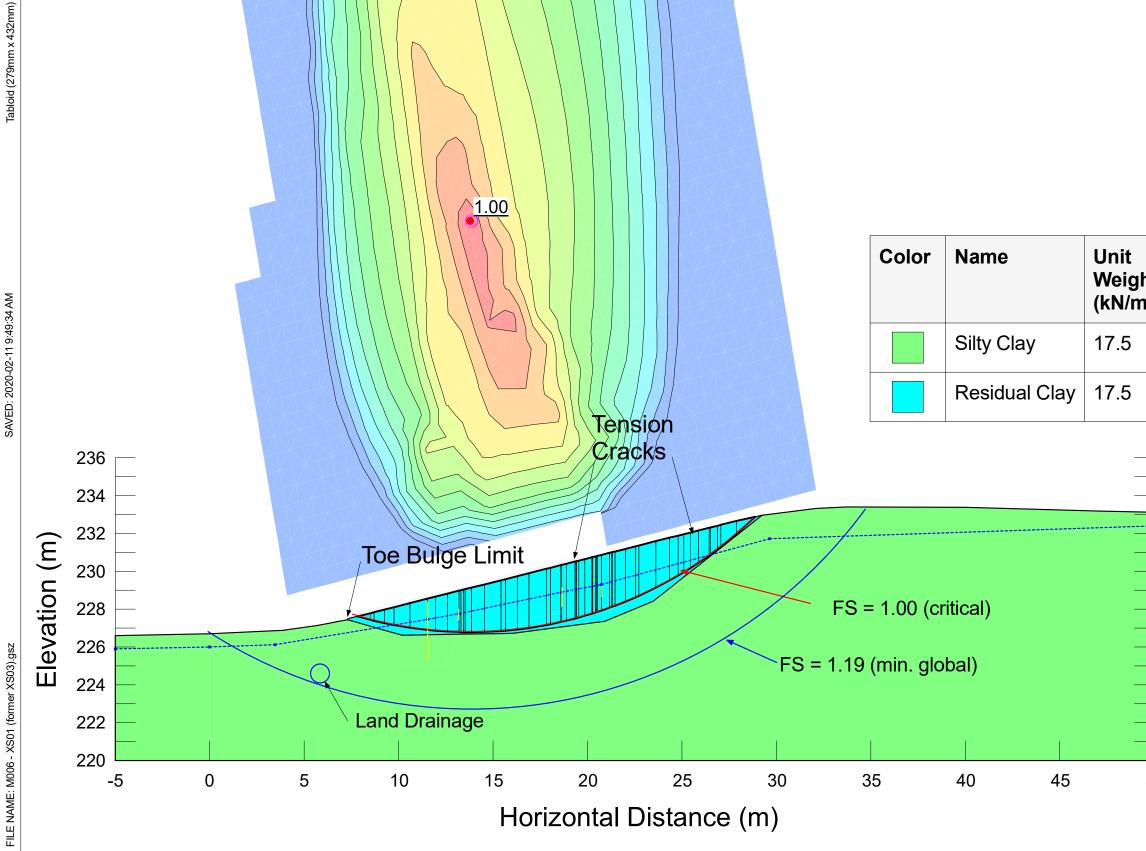

Project No. Client Project	0015-034-00 City of Winnipeg Slope Failure Pembina and Bishop
Test Hole	HA19-02
Sample #	G08
Depth (m)	0.6 - 0.9
Sample Date	05-Nov-19
Test Date	15-Nov-19
Technician	SB

		-	-
Canadian	Council of Ind	dependent	Laboratories

Liquid Limit	93
Plastic Limit	27
Plasticity Index	66

Liquid Limit

Trial #	1	2	3	
Number of Blows (N)	19	28	35	
Mass Wet Soil + Tare (g)	21.538	20.423	21.956	
Mass Dry Soil + Tare (g)	17.930	17.391	18.158	
Mass Tare (g)	14.157	14.093	13.923	
Mass Water (g)	3.608	3.032	3.798	
Mass Dry Soil (g)	3.773	3.298	4.235	
Moisture Content (%)	95.627	91.935	89.681	


Trial #	1	2	3	4	5
Mass Tare (g)	14.283	13.875			
Mass Wet Soil + Tare (g)	22.830	19.989			
Mass Dry Soil + Tare (g)	21.006	18.680			
Mass Water (g)	1.824	1.309			
Mass Dry Soil (g)	6.723	4.805			
Moisture Content (%)	27.131	27.242			

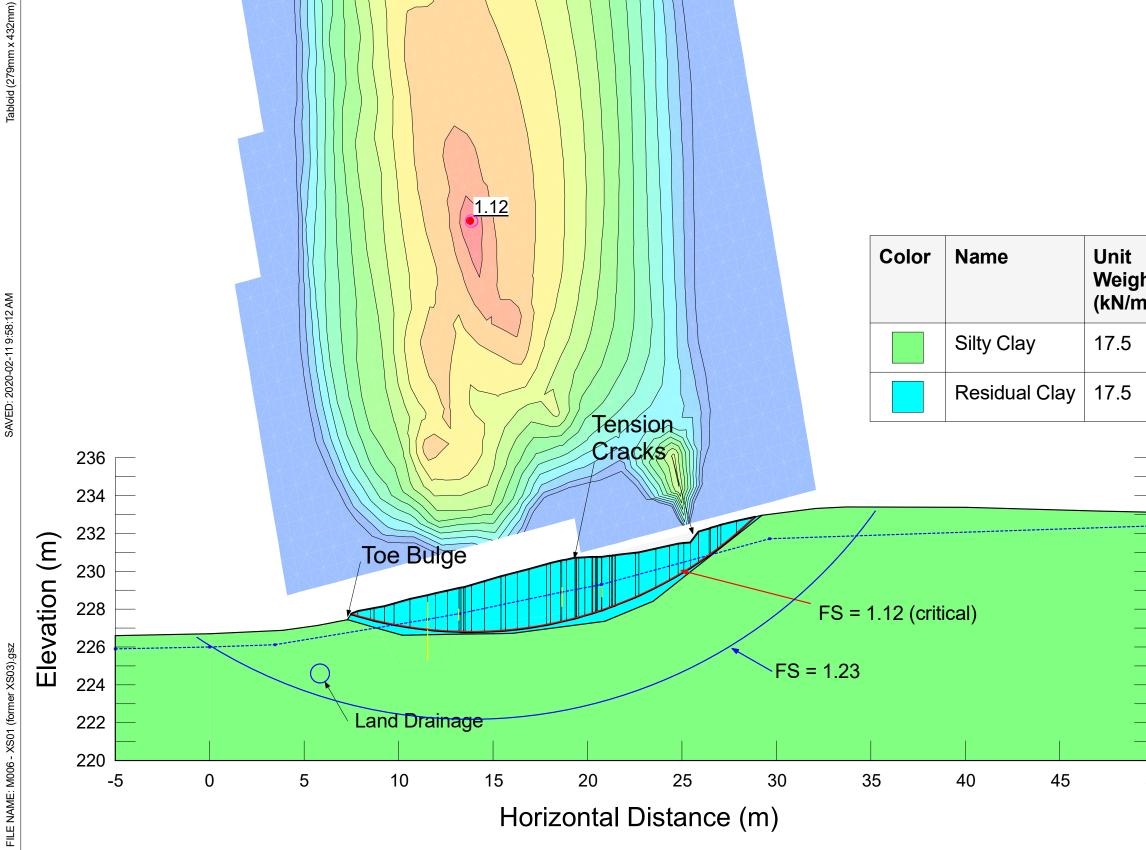
Appendix D

Slope Stability Analysis Results

SCALE: 1:200 (279mm x 432mm)

0015 034 00 City of Winnipeg

Slope Failure Southwest Corner of Pembina Hwy. and Bishop Grandin Blvd. Interchange


ht 1³)	Cohesion' (kPa)	Phi' (°)
	5	15
	2	12

	236	Factor of Safety
	234	1.00 - 1.05 1.05 - 1.10
	232	1.10 - 1.15 1.15 - 1.20
	230	☐ 1.20 - 1.25 ☐ 1.25 - 1.30
	228	 1.30 - 1.35 1.35 - 1.40
	226	 1.40 - 1.45 1.45 - 1.50
	224	 □ 1.50 - 1.55 □ 1.55 - 1.60
	222	_ ≥ 1.60
5	220 0	
J	U	

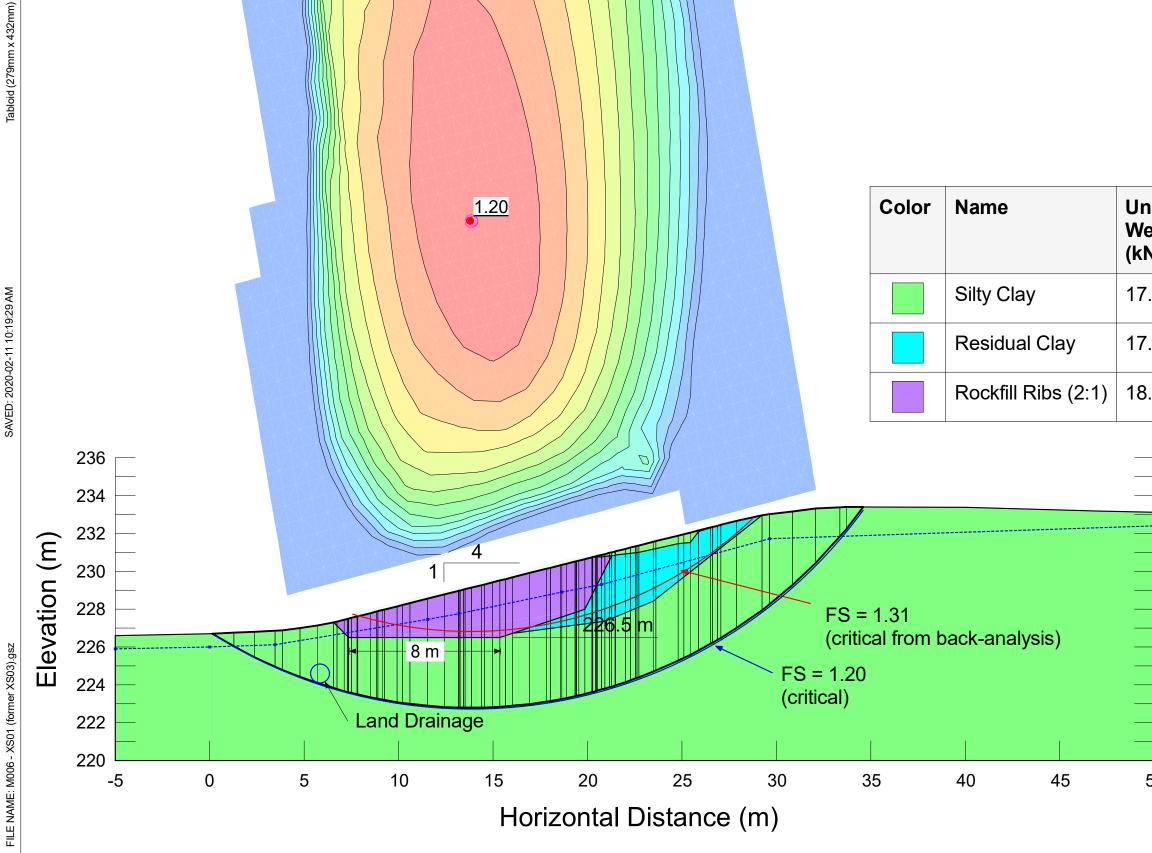
Figure D-01

Cross-Section 01 Back-Analysis (Pre-Failure Conditions)

SCALE: 1:200 (279mm x 432mm)

0015 034 00 City of Winnipeg

Slope Failure Southwest Corner of Pembina Hwy. and Bishop Grandin Blvd. Interchange


ht 1³)	Cohesion' (kPa)	Phi' (°)
	5	15
	2	12

	236	Factor of Safety
	234	1.12 - 1.17 1.17 - 1.22
	232	1.22 - 1.27 1.27 - 1.32
	230	1.32 - 1.37 1.37 - 1.42
	228	 1.42 - 1.47 1.47 - 1.52
	226	 1.52 - 1.57 1.57 - 1.62
	224	□ 1.62 - 1.67□ 1.67 - 1.72
	222	■ ≥ 1.72
	220	
5	0	

Figure D-02

Cross-Section 01 Back-Analysis (Existing Conditions)

SCALE: 1:200 (279mm x 432mm)

0015 034 00 City of Winnipeg

Slope Failure Southwest Corner of Pembina Hwy. and Bishop Grandin Blvd. Interchange

nit /eight ːN/m³)	Cohesion' (kPa)	Phi' (°)
7.5	5	15
7.5	2	12
3.3	1.3	23

	236	Factor of Safety
	234	 1.20 - 1.25 1.25 - 1.30
	232	1.30 - 1.35 1.35 - 1.40
	230	1.40 - 1.45 1.45 - 1.50
	228	1.50 - 1.55 1.55 - 1.60
	226	 1.60 - 1.65 1.65 - 1.70
	224	 1.70 - 1.75 1.75 - 1.80
	222	■ ≥ 1.80
_	220	
5	0	

Figure D-03 Cross-Section 01 Rockfill Ribs

Appendix E

Basis of Estimate Capital Detail Worksheet