

Quality Engineering | Valued Relationships

AECOM

MacLean Regional Pumping Station Cooling Upgrades Geotechnical Report (Revised)

Prepared for:
Brad Peterson, P.Eng., LEED AP
Operations Manager, Buildings + Places, Winnipeg
AECOM
99 Commerce Drive, Winnipeg, MB
R3P 0Y7

Project Number: 0013 040 00

Date: February 2, 2022

Quality Engineering | Valued Relationships

February 2, 2022

Our File No. 0013 040 00

Brad Peterson, P.Eng., LEED AP Operations Manager, Buildings + Places, Winnipeg AECOM 99 Commerce Drive, Winnipeg, MB R3P 0Y7

RE: MacLean Regional Pumping Station Cooling Upgrades – Geotechnical Report (Revised)

TREK Geotechnical Inc. is pleased to submit our revised report for the geotechnical investigation for the above noted project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Hellon

Ryan Belbas, M.Sc., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description			
0	RVR	November 12, 2022	Final Report			
1	NM	February 2, 2022	Revision 1			

Authorization Signatures

Prepared By:

Nuno nerdoncy

Nuno Mendonça, P.Eng. Geotechnical Engineer

Reviewed By:

Ryan Belbas, M.Sc., P.Eng. Senior Geotechnical Engineer

Breat Key ber:

Kent Bannister, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introd	uction	1
2.0	Backg	round	1
3.0	Field I	Program	1
	3.1	Sub-surface Investigation	1
4.0	Found	ation Recommendations	2
	4.1	Limit States Design	3
	4.2	Mat Foundations	4
	4.3	Friction Piles	4
	4.4	Adfreeze Effects	6
	4.5	Negative Skin Friction and Dragload	6
	4.6	Foundation Concrete	6
	4.7	Pile Caps and Grade Beams	7
	4.8	Foundation Inspection Requirements	7
5.0	Tempo	orary Excavations	7
6.0	Site D	rainage	8
7.0	Closu	re	8
Figure			

Test Hole Log

Appendices

List of Tables

Table 1	ULS Resistance Factors for Foundations (NBCC, 2010)	3
Table 2	ULS and SLS Resistances for Friction Piles	5

List of Figures

Figure 01 Test Hole Location Plan

List of Appendices

Appendix A Laboratory Testing Results

I.0 Introduction

This report summarizes the results of a geotechnical investigation completed by TREK Geotechnical Inc. (TREK) for the proposed cooling system upgrades at the MacLean Regional Pumping Station (RPS) located at 875 Lagimodiere Blvd. in Winnipeg, Manitoba. The terms of reference for the investigation are included in our proposal to Brad Peterson of AECOM dated April 28, 2021. The scope of work includes a sub-surface investigation, laboratory testing and provision of foundation recommendations.

2.0 Background

The City of Winnipeg's regional water distribution system consists of three regional pumping stations (MacLean RPS, McPhillips RPS, and Hurst RPS) and two booster pumping stations (Deacon BPS and Taché BPS). The Deacon BPS station pumps the treated water from the Winnipeg Drinking Water Treatment Plant in Dugald, MB to the three RPS reservoirs located within Winnipeg. The RPSs and BPSs are critical infrastructure for the City and the failure of any of the pumping systems at these facilities has the potential to disrupt the City's residential, commercial, industrial, and fire protection water supplies. The MacLean, McPhillips, and Hurst RPSs as well as the Deacon BPS require cooling upgrades which will consist of exterior new air-cooled chillers and condensers. Based on equipment drawings provided by AECOM, the chiller and condenser are relatively light. The operating weight of the chiller is 33 kN (7,400 lbs) and the condenser is 32 kN (7,150 lbs). This report provides geotechnical recommendations for new foundations for the cooling equipment at the MacLean RPS which was constructed in 1964. The existing chiller is supported by a grade-supported mat foundation which is the preferred foundation alternative to support the new chillers and condensers.

3.0 Field Program

3.1 Sub-surface Investigation

A sub-surface investigation was completed at the MacLean RPS on October 5th, 2021 under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Two test holes (TH21-01A and -01B) were drilled and sampled to a depth of 6.7 m and 12.2 m below ground surface, respectively, within the vicinity of the coolant upgrades, at the locations shown on Figure 01. Power auger refusal occurred in TH21-01A at 6.7 m depth on an unknown obstruction, the drill rig was subsequently moved 3.2 m east and 2.6 m north to re-drill (TH21-01B). The test hole locations were selected to avoid critical buried infrastructure based on discussion during an on-site meeting with Jeff Brooks, Project Manager for the City of Winnipeg on October 1, 2021. The test holes were drilled by Paddock Drilling Ltd. using a Ranger 24 track-mounted drill rig equipped with 125 mm solid stem augers. The test holes were backfilled with auger cuttings and bentonite chips.

Sub-surface soils encountered during drilling were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting) samples were taken at regular intervals and relatively undisturbed (Shelby tube) samples were collected at select depths. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory

testing consisted of water content determination on all samples as well as bulk unit weight measurements and unconfined compression tests on select Shelby tube samples.

The test hole locations were determined by measuring offsets to the existing RPS building. The test hole elevations were surveyed using a rod and level relative to a temporary benchmark assigned an arbitrary elevation of 100.0 m. The temporary benchmark selected for this project was the top of the concrete slab located near the exit on the east side of the RPS building; its location is shown on Figure 01. The test hole elevations and offsets from the RPS building are provided on the test hole logs. The test hole logs also include a description of the soil units encountered and other pertinent information such as groundwater and sloughing conditions, and a summary of the laboratory testing results. Laboratory test results are included in Appendix A.

3.1.1 <u>Soil Stratigraphy</u>

A brief description of the soil units encountered during drilling is provided below. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the attached test hole log.

The stratigraphy at the test hole locations generally consists of 25 mm of clay topsoil, overlying clay fill and native silty clay which was present to the depth of exploration (12.2 m below grade). The clay fill is 6.1 m thick in TH21-01A and 6.7 m thick in TH21-01B. It is of high plasticity, moist, and stiff to very stiff becoming stiff with depth. The native silty clay is of high plasticity, moist and firm to stiff becoming soft to firm with depth. A 0.6 m layer of sand fill was encountered in TH21-01A at 5.5 to 6.1 m depth. Glacial till deposits are anticipated to be situated approximately 12 to 15 m below ground surface based on published geology maps of Winnipeg.

3.1.2 Groundwater Conditions

Seepage and sloughing were not observed during drilling. Squeezing of the test holes was observed within the clay fill between 3.0 and 6.1 m depth. Both test holes were open and dry to their full depth immediately after drilling and removal of the augers.

The groundwater observations made during drilling are short-term and should not be considered reflective of (static) groundwater levels at the site which would require monitoring over an extended period to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

4.0 Foundation Recommendations

Cast-in-place concrete (CIPC) friction piles are considered to be the most suitable foundation to support the proposed cooling equipment based on the observed sub-surface and anticipated loading conditions. Shallow foundations are also a suitable foundation alternative provided seasonal movements associated with freeze/thaw and moisture and volume changes of the underlying clay fill soils can be tolerated. Design and construction parameters for CIPC friction piles and grade-supported mat foundations are provided in this section and are based on Limit States Design in accordance with National Building Code of Canada (NBCC 2010).

TREK anticipates that the clay fill at the site was placed during original construction of the RPS in 1964 and, as such, consolidation settlement of the fill and the underlying native clay is assumed to be complete. In this regard, movements of a new mat foundation will likely be associated with seasonal volumetric changes within the bearing soils as described in more detail below.

4.1 Limit States Design

Limit States Design recommendations for shallow and deep foundations in accordance with the National Building Code of Canada (NBCC, 2010) are provided below. Limit States Design requires consideration of distinct loading scenarios comparing the structural loads to the foundation bearing capacity using resistance and load factors that are based on reliability criteria. Two general design scenarios are evaluated corresponding to the serviceability and ultimate capacity requirements.

The **Ultimate Limit State (ULS)** is concerned with ensuring that the maximum structural loads do not exceed the nominal (ultimate) capacity of the foundation units. The ULS foundation bearing capacity is obtained by multiplying the nominal (ultimate) bearing capacity by a resistance factor (reduction factor), which is then compared to the factored (increased) structural loads. The ULS bearing capacity must be greater or equal to the maximum factored load to provide an adequate margin of safety. Table 1 summarizes the resistance factors that can be used for the design of shallow and deep foundations as per the NBCC (2010) depending upon the method of analysis and verification testing completed during construction.

The **Service Limit State (SLS)** is concerned with limiting deformation or settlement of the foundation under service loading conditions such that the integrity of the structure will not be impacted. The Service Limit State should generally be analysed by calculating the settlement resulting from applied service loads and comparing this to the settlement tolerance of the structure. However, the settlement tolerance of the structure is typically not yet defined at the preliminary design stage. As such, SLS bearing capacities are often provided that are developed on the basis of limiting settlement to 25 mm or less. A more detailed settlement analysis should be conducted to refine the estimated settlement and/or adjust the SLS capacity if a more stringent settlement tolerance is required or if large groups of piles are used.

Resistance to Vertical Loads for Shallow Foundations (Analysis Methods)	Resistance Factor			
Semi-empirical analysis using laboratory and in-situ test data	0.5			
Bearing Resistance to Axial Load for Deep Foundations (Analysis Methods)	Resistance Factor			
Semi-empirical analysis using laboratory and in-situ test data	0.4			
Analysis using static loading test results	0.6			
Uplift resistance by semi-empirical analysis.	0.3			
Uplift resistance using loading test results.	0.4			

Table 1. ULS Resistance Factors for Foundations (NBCC, 2010)

4.2 Mat Foundations

Grade-supported mat foundations (mats) are a suitable foundation provided seasonal movements associated with freeze/thaw and moisture and volume changes of the underlying clay fill soils can be tolerated. A piled foundation will be required if seasonal movements cannot be tolerated. Mats bearing on stiff clay fill can be designed based on a Factored ULS bearing resistance of 125 kPa and a SLS bearing resistance of 85 kPa. The SLS bearing resistances are based on limiting settlement to 25 mm or less and the factored ULS bearing resistances were calculated using a resistance factor of 0.5.

Shallow foundations are subject to vertical movements associated with moisture and volume changes of the underlying clay fill soil. Although difficult to predict, these movements (total and differential) could be in the order of 50 mm or more. In this regard, flexible pipe connections will likely be required to accommodate these movements. It should be understood that seasonal movements are independent of displacement required to mobilize bearing capacity.

The clay fill soils at the site are also highly frost susceptible, which refers to the propensity of the soil to grow ice lenses and heave during freezing. Insulation such as Styrofoam Highload could be incorporated into the design of foundations to provide frost protection to an equivalent depth of 2.4 m for protection against seasonal frost related (i.e. freeze/thaw) movements. An insulation manufacturer or supplier should be contacted to verify the insulation design.

Additional Design Recommendations:

1. Mats should be designed by a structural engineer to resist axial, lateral, and bending loads from the structure as well as forces induced from seasonal movements (i.e. shrinkage/swelling and frost-related movements) of the bearing soils.

Additional Construction Recommendations:

- 1. Organics, debris, and all other deleterious materials should be removed such that the bearing surfaces consist of stiff clay fill.
- 2. Excavations for mats should be completed by an excavator equipped with a smooth-bladed bucket operating from the edge of the excavation.
- 3. After excavation, the clay fill bearing surface should be scarified, moisture conditioned and compacted to a minimum of 95% of the Standard Proctor Maximum Dry Density (SPMDD).
- 4. The bearing surfaces should be protected from freezing, drying, and inundation with water at all times. If any of these conditions occur, the disturbed material should be removed in its entirety and the clay fill bearing surface should be recompacted to 95% of the SPMDD. If groundwater seepage is encountered, it should be controlled and removed from the bearing surface, such that concrete is placed under dry conditions.
- 5. Final bearing surfaces should be inspected and documented by TREK prior to concrete placement to verify the adequacy of the bearing surface and proper installation of the foundation.

4.3 Friction Piles

Cast-in-place concrete friction piles will derive a majority of their resistance in shaft friction (adhesion) with a relatively small contribution from end bearing. Table 2 provides the recommended axial

(compressive and uplift) unit resistances for shaft adhesion and end bearing. Piles designed based on the SLS resistances provided in Table 2 are expected to exhibit less than 10 mm of settlement at the pile toe. Elastic shortening of the pile should be added to the tip displacement to calculate the pile head settlement.

Dila Danth Dalam Enistina Cita		Factored ULS Unit Resistance (kPa)							
Grade	Resistance	Compre φ = 0	$\begin{array}{c} \text{Uplift} \\ \phi = 0.3 \end{array}$						
(iii approx.)	(KFd)	Shaft Adhesion	End Bearing ⁽¹⁾	Shaft Adhesion					
0 to 2.4	-	-	-	-					
2.4 to 8.5	12	14	-	11					
8.5 to 12	7	8	55	6					

Table 2. ULS and SLS Resistances for Friction Piles

1. For piles with a diameter of less than 1.0 m. If larger pile diameters are required TREK should be contacted to provide revised end bearing values.

Additional Design Recommendations:

- 1. The weight of the embedded portion of the pile may be neglected.
- 2. Piles should be designed with a maximum depth of 12 m below existing site grade to avoid penetration into the underlying silt till and to protect against heaving at the base of the pile shaft. In the event the silt till is encountered at shallower depths, the pile design may have to be re-evaluated by the structural engineer.
- 3. Piles should have a minimum spacing of 3 pile diameters measured centre to centre. If a closer spacing is required, TREK should be contacted to provide an efficiency (reduction) factor to account for potential group effects.
- 4. Piles require steel reinforcement designed by a structural engineer for the anticipated axial (compression and tension), lateral and bending loads induced from the structure. Piles subject to frost jacking forces should be reinforced for their entire length.

Additional Installation Recommendations:

- 1. Temporary steel casings (sleeves) should be available and used if sloughing of the pile hole occurs and/or to control groundwater seepage, if encountered. Care should be taken in removing sleeves to prevent sloughing (necking) of the shaft walls and a reduction in the cross-sectional area of the pile.
- 2. Concrete should be placed in one continuous operation immediately after the completion of drilling the pile hole to avoid potential construction problems such as sloughing or caving of the pile hole and groundwater seepage. Concrete placed by free-fall methods should be poured under dry conditions. If groundwater is encountered, it should be controlled or removed. If water cannot be controlled or removed, the concrete should be placed using tremie methods.
- 3. Concrete placed by free-fall methods should be directed through the middle of the pile shaft and steel reinforcing cage to prevent striking of the drilled shaft walls to protect against soil contamination of the concrete.

4.4 Adfreeze Effects

Concrete piles, pile caps, grade beams and walls subjected to freezing conditions should be designed to resist ad-freeze and uplift forces related to frost action acting along the vertical face of the member within the depth of frost penetration (2.4 m). In this regard, concrete piles, pile caps, grade beams and walls may be subject to an ad-freeze bond stress of 65 kPa within the depth of frost penetration. Ad-freeze forces will be resisted by structural dead loads and uplift resistance provided by the length of the pile below the depth of frost penetration. The following design recommendations apply to piles subject to ad-freeze forces:

- 1. An ad-freeze bond stress of 65 kPa within the depth of frost penetration (2.4 m).
- 2. A load factor (α) of 1.2 may be used in the calculation of ad-freezing forces.
- 3. A reduction factor of 0.8 may be used in calculation of the geotechnical resistance for the factored ULS condition with an ultimate (nominal) uplift resistance of 35 kPa between 2.4 and 8.5 m depth and 20 kPa below.
- 4. Resistance to ad-freezing within the depth of frost penetration (2.4 m) should be neglected.
- 5. Structural dead loads should be added to the resistance.
- 6. The calculated geotechnical resistance plus the structural dead loads must be greater than the factored ad-freezing forces.
- 7. Piles subject to ad-freezing forces should be a minimum of 8.0 m or as calculated by the method above, whichever is greater.
- 8. Measures such as flat lying rigid polystyrene insulation could be considered to reduce frost penetration depths and thereby ad-freezing and uplift forces.

4.5 Negative Skin Friction and Dragload

It is possible that the existing fill at the site is still undergoing settlement from its original placement which could result in development of negative skin friction along pile shafts causing dragload and excessive settlement (downdrag) of new CIPC friction piles. However, TREK suspects that the existing fill has been in place since construction of the RPS in 1964 and, therefore, the risk of additional settlement of the fill and pile downdrag is considered to be low and pile settlement is expected to be less than 25 mm. Should this not be the case, TREK should be contacted to evaluate the potential effects of negative skin friction.

4.6 Foundation Concrete

All foundation concrete should be designed by a structural engineer for the anticipated axial (compression and uplift), lateral, and bending loads from the structure. Based on local experience gathered through previous work in Winnipeg, the degree of exposure for concrete subjected to sulphate attack is classified as severe according to Table 3, CSA A23.1-14 (Concrete Materials and Methods of Concrete Construction). Accordingly, all concrete in contact with the native soil should be made with high sulphate-resistant cement (HS or HSb). Furthermore, the concrete should have a minimum specified 56-day compressive strength of 32 MPa and have a maximum water to cement ratio of 0.45 in accordance with Table 2, CSA A23.1-14 for concrete with severe sulphate exposure (S2).

Concrete that may be exposed to freezing and thawing should be adequately air entrained to improve freeze-thaw durability in accordance with Table 4, CSA A23.1-14.

4.7 Pile Caps and Grade Beams

A minimum void of 150 mm should be provided underneath all pile caps and grade beams to accommodate volumetric changes in the underlying sub-grade soils (i.e. swelling, shrinkage, and thermal expansion and contraction in unheated areas). Void forms should be used under pile caps and grade beams and should be capable of deforming a minimum of 150 mm without transferring any stress to the structure. Excavations for pile caps and grade beams should be backfilled with non-frost susceptible granular fill compacted to a minimum of 95% of the Standard Proctor Maximum Dry Density (SPMDD).

4.8 Foundation Inspection Requirements

In accordance with Section 4.2.2.3 Field Review of the NBCC (2010) states that the designer or other suitably qualified person shall carry out a field review on:

- a) continuous basis during:
 - i. the construction of all deep foundation units with all pertinent information recorded for each *foundation unit*,
 - iii. during the placement of engineered fills that are to be used to support the foundation units,
- b) on an as-required basis for the construction of shallow foundation units and in excavating, dewatering and other related works.

In consideration of the above and relative to this particular project, TREK is familiar with the geotechnical conditions and the basis for the foundation recommendations and can provide any design modifications deemed to be necessary should unexpected sub-surface conditions be encountered. TREK, as the geotechnical engineer of record, should be retained to observe the installation of any foundation elements.

5.0 Temporary Excavations

Excavations must be carried out in compliance with the appropriate regulations under the Manitoba Workplace Safety and Health Act. Any open-cut excavation greater than 3 m deep must be designed and sealed by a professional engineer and reviewed by the geotechnical engineer of record (TREK). If space is limited or the stability of adjacent structures may be endangered by an excavation, a shoring system may be required to prevent damage to, or movement of, any part of adjacent structures, and the creation of a hazard to workers and the public.

Excavation stability is the responsibility of the Contractor for the duration of construction. Excavations should be monitored regularly and flattened as necessary to maintain stability recognizing that excavation stability is time and weather dependent. Excavated slopes should be covered with polyethylene sheets to prevent wetting and drying.

Stockpiles of excavated material and heavy equipment should be kept away from the edge of any excavation by a distance equal to or greater than the depth of excavation. Dewatering measures should be completed as necessary to maintain a dry excavation and permit proper completion of the work. If seepage is encountered, it should be collected and pumped out of the excavation. If saturated silts or sands are encountered, shoring or slope flattening may be required. To prevent wet silts and sands from entering the excavation, gravel buttressing could be used in conjunction with sump pits for dewatering. Surface water should be diverted away from the excavation and the excavation should be backfilled as soon as possible following construction.

6.0 Site Drainage

Drainage adjacent to the slab should promote runoff away from the structure. A minimum gradient of about 2% should be used for both landscaped and paved areas and maintained throughout the life of the structures.

7.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If subsurface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of AECOM (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figure

0013 040 00 AECOM MacLean Regional Pumping Station - Cooling Upgrades

10 15 20 25 m 5 SCALE = 1 : 600 (216 mm x 279 mm)

0

Figure 01 **Test Hole Location Plan**

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOT

1. Classifications are based on the United Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.

2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.

3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	lajor Divisions USCS Classi- fication Symbols Typical Names Laboratory Classification Criteria					riteria		ş							
	raction	gravel no fines)	GW		Well-graded gravels, gravel-sand mixtures, little or no fines		$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 4;} C _c = <u> </u>	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		ieve size	5 #4	o #10	to #40	200
sieve size	vels of coarse f	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	urve, 200 sieve nbols*	Not meeting all gradatio	on requiren	nents for GW	ە	STM S	#10	#401	#500	¥
s No. 200	Gra than half o	vith fines sciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	r than No. g dual syn	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	ticle Siz	٩			+	
ained soils larger thar	(More	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	wel from g ion smalle ilows: W, SP SM, SC ts requirin	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Par		Ľ	, 8	25	
Coarse-Gr naterial is	action	sands no fines)	SW	*****	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fo sw, GP, S GM, GC, thine case	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	^{n 6;} C _c =	$\frac{(D_{30})^2}{(10 \times D_{60})^2}$ between 1 and 3		шш	2 UU tO 4 7		.075 to 0.4	c / N.N >
n half the r	nds of coarse fr an 4 75 mi	Clean (Little or	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sa entage of 1 s are class cent srcent	Not meeting all gradatio	on requiren	nents for SW				. 0	0	
(More thai	Salier th	vith fines sciable of fines)	SM		Silty sands, sand-silt mixtures	le percent of on perc rained soil than 5 per than 12 per than 12 per than 2 percent.	Atterberg limits below "A line or P.I. less than 4	'A"	Above "A" line with P.I. between 4 and 7 are border-	lai	5			100	Clay
	(More	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determir dependir coarse-g Less More 6 to 1	Atterberg limits above "A line or P.I. greater than 7	'A" 7	line cases requiring use of dual symbols	Mate	ואומר	Sand	Mediu	Fine Citt or	oll oi
e size)	, As		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity	/ Chart			e Sizes		-	i i i	
. 200 sieve	ts and Cla	Enclose Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays							TM Sieve	> 12 in 2 in to 12	2	3/4 in. to 3 #4 to 3/4	15 2 14		
soils er than No	Si	<u> </u>	OL	==	Organic silts and organic silty clays of low plasticity	- 00 (%) 00 (%)		CH CH		rticle Siz	ASI	+	_		_
e-Grained al is small	ski	t 50)	MH		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Pa	m	300 200	222	to 75	P 10
Fine the materi	ts and Cla	Liquid limi ater than (СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		L	75 1		191 4 75) F
than half	N	gre	OH		Organic clays of medium to high plasticity, organic silts		ML OR OL 16 20 30 40 50 LIQUID LI	60 70 _IMIT (%)	80 90 100 110		5	ers	3_		-
Peat and other highly organic soils Von Post Classification Limit				Strong co and often	lour or odour, fibrous texture	Mate	ואומוכ	Bould	Grave	Coarse					

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	63	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength
- VW Vibrating Wire Piezometer
- SI Slope Inclinometer

- ☑ Water Level at Time of Drilling
- ▼ Water Level at End of Drilling
- ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE			
and	and CLAY	35 to 50 percent			
"y" or "ey"	clayey, silty	20 to 35 percent			
some	some silt	10 to 20 percent			
trace	trace gravel	1 to 10 percent			

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

	<u>Descriptive Terms</u>	<u>SPT (N) (Blows/300 mm)</u>	
	Very loose	< 4	
	Loose	4 to 10	
	Compact	10 to 30	
	Dense	30 to 50	
	Very dense	> 50	
The Standard Penetration Test	blow count (N) of a cor	nesive soil can be related to its c	consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Sub-Surface Log

Test Hole TH21-01A (MacLean RPS)

1 of 2

Clien	t:	AE	COM						Project I	Number:	0013	0013 040 00								_	
Project Nar Contractor Method: Samp		e: <u>Wi</u>	nnipeg RF	PS Co	oling Upgra	ades			Location	า:	875 L	875 Lagimodier Blvd; 24.7m S and 11.7m E of NE corner o									
Conti	Contractor:		or: Paddock Drilling Ltd.						Ground	Elevation:	99.60) m Ex	kistin	g Gro	und (l	ocal da	tum)				
Meth	od:	_125	mm Solid S	tem Au	gers Ranger 2	4 Track Mour	nt		Date Dri	lled:	Octo	oer 5,	202	1							
	Sample	Type:			Grab (G)	Sh	elby Tube (T)	Spli	it Spoon (\$	SS) / SI	эт 🚺		Split I	Barrel	(SB) / I	_PT		Cor	e (C)	
	Particle	Size l	egend:		Fines	c c	lay	Silt	•••••	Sand		Gra	vel	5	2 C	obbles		В	oulde	ers	
												er		B	ulk Unit kN/m³)	Wt		Undr	ained	Shear	
uo		lodn									Type	qmu	16	17 Ì	8 19	20 2	21	<u></u>	est Ty	pe	
evati (m)	(m)	Syr				MATERI	AL DES	CRIPTION			ble	le N	0	Рапіс 20 4	0 60	(%) 80 10	00	 ● Pc	Forvar ocket F	ne ∆ Pen. ∎	J
ш										Sam	dme		PL	мс	LL	_	l O Fi	⊠ Qu I ield Va	⊠ ane O		
		~~~~										ů	0 :	20 4	0 60	80 10	0 0	50 1	00 1	50 2	0 250
99.6	ŧ		ORGANIC moist, low	J CLA / plast	icity, friable	IL) - silty, tr :	ace sar	d, trace rootle	ets, dark bro	own, dry to		G01		•							
			CLAY (FII	LL) - s	ilty, trace s	and, trace	gravel, t	race silt inclus	sions (<20 r	mm diam.)	,										
	-0.5-		race siit i bro'	amina wn	illons (<3 n	im tnick), ti	race roo														
	Ē		- moi - hial	ist, ve h plas	ry stiff ticity																
	FR		- frial	ble to	0.3 m							G02		•					2	•	
	-1.0-																				
	ŧ											C03							•		
	1.5€ 											005									
	$ + \frac{1}{2} $																				
	ŧ., ŧ																				
	E 3																				
	╞╶╬																			•	
			trace silt	inclu	sions (<15	mm diam )	moist	stiff helow 2 4	m												
				mora		inin diam.y	, molot,														
	-3.0-											G04			•			40			
	ĒŽ																				
	-3.5-																	_			
	EX		- mottled	brown	and grey b	elow 3.7 n	า											•			
	ŧ ₹				0,																
	-4.0-																				<u> </u>
	ŧ į																	_			
	E  k																				
	-4.5- E											G05		-				۹ <u>۵</u> ۲			
	⊧ -≹																	-		-	<u> </u>
	ŧ ∄											G06		•					•		
94.1	-5.5-			11)			2000 675														
			bro	ur) - s wn	some clay,	uace siit, ti	ace gra	vel													
	ŧ ¥		- moi - noc	ist orly ar:	aded																
	FR	$\times$	P90	, 91																	

				<b>REK</b> Sub-Surface L	те: O <b>G</b>	st H	lole TH2	1-01A (M	acLean RPS) 2 of 2
	iE	OT	EC	HNICAL					
Elevation	(m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION	Sample Type	Sample Number	Bulk (kN 16 17 18 Particle 0 20 40 PL M 0 20 40	Unit Wt /m ³ ) 19 20 21 - Size (%) 60 80 100 C LL 60 80 100 0	Undrained Shear <u>Strength (kPa)</u> <u>Test Type</u> △ Torvane △ ♥ Pocket Pen. ♥ ⊠ Qu ⊠ ○ Field Vane ○ 0 50 100 150 200250
	93.5 92.9	-6.5-		CLAY (FILL) - silty, trace sand, trace silt inclusions (<5 mm diam.) - dark brown - moist, firm to stiff - high plasticity END OF TEST HOLE AT 6.7 m IN CLAY		G07 G08			•
IRFACE LOG LOGS 2021-10-25 WINNIPEG RPS DRILLING 0_B_RB 0013-040-00.GPJ TREK.GDT 11/10/21				Notes: 1. Power auger refusal encountered at 6.7 m depth. 2. Seepage or sloughing not observed. 3. Squeezing observed in clay (fill) between 3.0 and 6.1 m depth during drilling. 5. Test hole backfilled with auger cuttings to 3.0 m depth and bentonite chips surface.	ng. s to				
L SUB-SI	ogge	ed By:	Rein	hardt Van Rensburg Reviewed By: Kent Bannister	F	Projec	ct Engineer:	Ryan Belba	S

		• -	0014							Basis of Neural and	0.04		10.0										
lien	:: ot Norr		COM	26 Cooling	llnaro	doo				Project Number:	001	<u>130</u>	<u>40 0</u>	U	Dud		1	and 1	4.0r				—
roje			nnipeg KF	<u>'S Cooling  </u>	Upgra	des				Location:	<u>8/3</u>	<u>ь га</u>	gime n Ev	iating	Biva;	ZZ.	<u>im 5</u> (loop	dotu	<u>4.9n</u>	<u>n e o</u>	TINE	corn	<u>ie</u> r (
Jorth/	actor.	_ <u></u> 124	mm Solid S	tom Augers R	anger 2/	1 Track I	Mount			Date Drilled:	. <u>99.</u> Oct		$\frac{11 \pm x}{x 5}$	2021	1 610	unu	(100a	li uatui	<u>11)</u>				—
	Samnl	- <u>- 120</u> A Type		Gra	ah (G)	TIACKI	Nount	Shelby	Tube (T)	Split Spoon (	<u></u> /	SPI	r 🔳		Solit F	Sarre	I (SE	8) / I P	т Г		Core		
	Particl	e Size	Leaend	Fin		V///		<u>спою</u> ,	∏ Silt	Sand	•		Grav	/el	- ۲۵	त्र त	Cobb			Bo		rs	
		0.20	2090			<u> </u>	<u>a</u> e.e.,			<u>r</u> a	<u>لما</u>		5.4			ulk Un	it Wt			Undra	ined §	Shear	r
	~	lodr										ype	qur	16 1	7 ł	KIN/M 8 1	9 2	20 21		Strer Te	<u>igth (k</u> st Tyr	<u>(Pa)</u> be	
(m)	(m)	Syn				MATE	ERIAL DE	ESCRIF	PTION		.	ble	e N	0 2	Partic 0 4	le Siz 06	:е(%) Ю ғ	30 100	,		orvane ket P	 e ∆ en. ✿	,
Ш		Soil										sam	Idme		PL	MC				⊂ ⊠ O Fi∈	]Qu⊠ eld Var	₫ ne O	
													ő	0 2	0 4	0 6	ο ε	30 100 (	) 5(	0 10	0 15	50 20	00 2
99.5			ORGANIC moist, low	CLAY (TC plasticity, f	PSOII riable	L) - silt	y, trace s	and, tra	ace rootlet	ts, dark brown, dry to	D												
			CLAY (FIL	L) - silty, tr	ace sa	and, tra	ace grave	el, trace	silt inclus	ions (<20 mm diam.	),												
	-0.5-		- bro	wn	( •0 m		(), 1000 1	0011010	10 0.1 m														-
			- high	n plasticity																			
			- frial	ble to 0.3 m	1																		
	1.0																						
																							-
	-1.5-																						_
	: :																						
	-2.0-																						-
																							_
	-25-		- trace silt	inclusions	(<15 n	om dia	m) mois	et etiff k	pelow 2.4	m													
	2.5		- trace sit		(101	iiii ula	m.), moie	sı, sun ı	JEIOW 2.4														
																							-
	-3.0-																						-
	-3.5-																						-
			- mottled I	brown and g	grey be	elow 3	.7 m																-
	-4.0-																						
	-4.5-																						-
	-0.0-																						
																							-
	-5.5-																						_
		$\bigotimes$																					

			<b>REK</b> Sub-Surface Log	Te	st H	lole	e TH2	:1-01E	3 (Ma	зсLе	an F	<b>2</b> of	<b>3)</b> 12
Elevation (m)	Depth (m)	Soil Symbol	MATERIAL DESCRIPTION	Sample Type	Sample Number	16 0 0	Bulk (kN 17 18 Particle 20 40 PL 0 20 40	Unit Wt √m ³ ) 19 20 Size (%) 60 80 MC LL 60 80	) 21 ) 100 ) 100 0	Unc St • F 01 50	Jrained rength ( <u>Test Ty</u> ∆ Torvar ² ocket F ⊠ Qu I Field Va 100 1	Shear [kPa) pe ne △ Pen. ■ ane ○ 50 2	•
93.5	-6.5- -7.0- -7.5- -7.5- -8.0- -9.0- -9.5-		CLAY - silty, trace silt inclusions (<5 mm diam.) - dark brown - moist, firm to stiff - high plasticity - grey below 6.7 m - soft to firm below 8.4 m		G09 T10 G11								
DG LOGS 2021-10-25 WINNIPEG RPS DRILLING 0_B_RB 0013-040-00.GPJ TREK.GDT 11/10/ 28 5.28	-10.0		<ul> <li>trace silt inclusions (&lt;35 mm diam.) below 11.0 m</li> <li>END OF TEST HOLE AT 12.2 m IN CLAY Notes:</li> <li>Seepage or sloughing not observed.</li> <li>Squeezing observed in clay (fill) between 3.0 and 6.1 m depth during drilling.</li> <li>Test hole open to 12.2 m depth and dry immediately after drilling.</li> <li>Test hole backfilled with auger cuttings to 3.0 m depth and bentonite chips to surface.</li> </ul>		G12 G13					7			
SUB-SURFACE I	ed By:	: <u>Reir</u>	hardt Van Rensburg Reviewed By: _Kent Bannister		Proje	ct Er	ngineer:	Ryan	Belba	3			



Appendix A

Laboratory Testing



Www.trekgeotechnical.ca I712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0013-040-00
Client	AECOM
Project	Winnipeg RPS- MacLean RPS
Sample Date	05-Oct-21

Sample Date	05-00l-21
Test Date	07-Oct-21
Technician	DJ

Test Hole	TH21-01	TH21-01	TH21-01	TH21-01	TH21-01	TH21-01
Depth (m)	0.0 - 0.2	0.8 - 0.9	1.4 - 1.5	2.9 - 3.0	4.4 - 4.6	5.2 - 5.3
Sample #	G01	G02	G03	G04	G05	G06
Tare ID	AB67	K33	Z68	P14	F88	D12
Mass of tare	7.0	8.6	8.6	8.7	8.4	8.4
Mass wet + tare	211.9	243.7	275.6	269.8	223.2	265.2
Mass dry + tare	170.8	192.6	215.4	192.9	167.3	203.3
Mass water	41.1	51.1	60.2	76.9	55.9	61.9
Mass dry soil	163.8	184.0	206.8	184.2	158.9	194.9
Moisture %	25.1%	27.8%	29.1%	41.7%	35.2%	31.8%

Test Hole	TH21-01	TH21-01	TH21-01	TH21-01	TH21-01	TH21-01
Depth (m)	5.9 - 6.1	6.4 - 6.6	7.2 - 7.3	9.0 - 9.1	10.5 - 10.7	12.0 - 12.2
Sample #	G07	G08	G09	G11	G12	G13
Tare ID	N75	E121	W91	E33	E69	H67
Mass of tare	8.6	8.4	8.6	8.5	8.7	8.7
Mass wet + tare	210.7	231.7	234.1	236.7	264.4	245.0
Mass dry + tare	168.6	169.9	167.3	151.3	188.5	158.2
Mass water	42.1	61.8	66.8	85.4	75.9	86.8
Mass dry soil	160.0	161.5	158.7	142.8	179.8	149.5
Moisture %	26.3%	38.3%	42.1%	59.8%	42.2%	58.1%

RPS

Project No. Client Project	0013-040-00 AECOM Winnipeg RPS- MacLean
Test Hole	TH21-01
Sample #	T10
Depth (m)	7.6 - 8.2
Sample Date	05-Oct-21
Test Date	09-Oct-21
Technician	DJ

#### Tube Extraction

Recovery (mm)	550					
8.22 m Bottom - 8.2 m		8.12 m		7.94 m	7.77 m <b>Top - 7.7 m</b>	
Toss 30 mm	Moisture Content PP/TV Visual 100 mm		Keep 180 mm	Qu Bulk 170 mm	Toss 70 mm	
Visual Classi	fication		Moi	sture Content		
Material	CLAY		Tare	) ID	N04	
Composition silty			Mas	s tare (g)	8.6	
trace silt inclusions (<10.0 mm diam.)			Mass wet + tare (g)		267	
trace gravel (<10.0 mm diam.)			Mas	s dry + tare (g)	188.6	
· · · · ·			Mois	sture %	43.6%	

Color	dark grey
Moisture	moist
Consistency	firm
Plasticity	high plasticity
Structure	-
Gradation	-

#### Torvane

Reading	0.48
Vane Size (s,m,l)	m
Undrained Shear Strength (kPa)	47.1

0.00

#### Pocket Penetrometer Reading 1

Reading	1	0.90
	2	0.90
	3	0.85
	Average	0.88
Undrained	Shear Strength (kPa)	43.3

Moisture Con	tent	
Tare ID		N04
Mass tare (g)		8.6
Mass wet + tare	e (g)	267
Mass dry + tare	(g)	188.6
Moisture %		43.6%
Unit Weight		
Bulk Weight (g)		1139.0
Length (mm)	1	149.83
	2	149.67
	3	149.20
	4	149.76
Average Length	n (m)	0.150
Diam. (mm)	1	71.95
	2	72.58
	3	72.87
	4	72.60
Average Diame	ter (m)	0.073
Volume (m ³ )		6.18E-04
<b>Bulk Unit Weigl</b>	nt (kN/m³)	18.1
<b>Bulk Unit Weigl</b>	nt (pcf)	115.1
Dry Unit Weight	t (kN/m³)	12.6
<b>Dry Unit Weight</b>	80.2	



Project No. Client Project	0013-040-00 AECOM Winnipeg RPS	S- MacLean RPS							
Test Hole	TH21-01								
Sample #	T10								
Depth (m)	7.6 - 8.2				Unconfined Strength				
Sample Date	5-Oct-21					kPa	ksf		
Test Date	9-Oct-21				Max q _u	95.7	2.0		
Technician	DJ				Max S _u	47.8	1.0		
Specimen D	lata								
Description	CLAY - silty, t plasticity	race silt inclusions	(<10.0 mm di	am.), trace grave	l (<10.0 mm c	liam.), dark grey, mo	bist, firm, high		
Length	149.6	(mm)		Moisture %	44%				
Diameter	72.5	(mm)		Bulk Unit Wt.	18.1	(kN/m ³ )			
L/D Ratio	2.1	· · ·		Dry Unit Wt.	12.6	$(kN/m^3)$			
Initial Area	0.00413	(m ² )		Liquid Limit	-				
Load Rate	1.00	(%/min)		Plastic Limit	-				
				Plasticity Index	-				
Undrained §	Shear Streng	gth Tests							
Torvane				Pocket Penet	rometer				
trace silt inclu Undrained Shear Strength				Reading	Undraine	rained Shear Strength			
trace gravel («	kPa	ksf		tsf	kPa	ksf			
0.48	47.1	0.98		0.90	44.1	0.92			
Vane Size				0.90	44.1	0.92			
m				0.85	41.7	0.87			
			Average	0.88	43.3	0.90			
Failure Geo	metry								
Sketch:	ž			Photo:					
				1					





www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Unconfined Compressive Strength ASTM D2166

Project No.	0013-040-00
Client	AECOM
Project	Winnipeg RPS- MacLean RPS

#### Unconfined Compression Test Graph



#### Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.07	0.0000	0.00	0.004128	0.0	0.00	0.00
10	0.62	0.2540	0.17	0.004135	27.7	6.70	3.35
20	1.22	0.5080	0.34	0.004142	58.0	13.99	7.00
30	1.74	0.7620	0.51	0.004149	84.2	20.29	10.14
40	2.17	1.0160	0.68	0.004156	105.8	25.47	12.73
50	2.54	1.2700	0.85	0.004164	124.5	29.90	14.95
60	2.90	1.5240	1.02	0.004171	142.6	34.20	17.10
70	3.23	1.7780	1.19	0.004178	159.3	38.12	19.06
80	3.51	2.0320	1.36	0.004185	173.4	41.43	20.71
90	3.79	2.2860	1.53	0.004192	187.5	44.72	22.36
100	4.04	2.5400	1.70	0.004200	200.1	47.65	23.82
110	4.29	2.7940	1.87	0.004207	212.7	50.56	25.28
120	4.50	3.0480	2.04	0.004214	223.3	52.99	26.49
130	4.75	3.3020	2.21	0.004221	235.9	55.88	27.94
140	4.95	3.5560	2.38	0.004229	246.0	58.17	29.08
150	5.15	3.8100	2.55	0.004236	256.0	60.44	30.22
160	5.37	4.0640	2.72	0.004244	267.1	62.95	31.48
170	5.58	4.3180	2.89	0.004251	277.7	65.33	32.67
180	5.82	4.5720	3.06	0.004258	289.8	68.06	34.03
190	6.05	4.8260	3.23	0.004266	301.4	70.66	35.33
200	6.24	5.0800	3.40	0.004273	311.0	72.77	36.39
210	6.43	5.3340	3.57	0.004281	320.6	74.88	37.44
220	6.66	5.5880	3.73	0.004288	332.2	77.45	38.73
230	6.81	5.8420	3.90	0.004296	339.7	79.08	39.54



www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.0013-040-00ClientAECOMProjectWinnipeg RPS- MacLean RPS

#### Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	6.98	6.0960	4.07	0.004304	348.3	80.93	40.46
250	7.12	6.3500	4.24	0.004311	355.3	82.42	41.21
260	7.31	6.6040	4.41	0.004319	364.9	84.49	42.25
270	7.47	6.8580	4.58	0.004327	373.0	86.21	43.10
280	7.61	7.1120	4.75	0.004334	380.0	87.68	43.84
290	7.76	7.3660	4.92	0.004342	387.6	89.27	44.63
300	7.87	7.6200	5.09	0.004350	393.1	90.38	45.19
310	7.95	7.8740	5.26	0.004358	397.2	91.15	45.57
320	8.05	8.1280	5.43	0.004365	402.2	92.14	46.07
330	8.13	8.3820	5.60	0.004373	406.2	92.89	46.45
340	8.23	8.6360	5.77	0.004381	411.3	93.88	46.94
350	8.29	8.8900	5.94	0.004389	414.3	94.40	47.20
360	8.34	9.1440	6.11	0.004397	416.8	94.80	47.40
370	8.40	9.3980	6.28	0.004405	419.9	95.31	47.66
380	8.43	9.6520	6.45	0.004413	421.4	95.48	47.74
390	8.46	9.9060	6.62	0.004421	422.9	95.65	47.83
400	8.46	10.1600	6.79	0.004429	422.9	95.48	47.74
410	8.45	10.4140	6.96	0.004437	422.4	95.19	47.60
420	8.41	10.6680	7.13	0.004445	420.4	94.57	47.28
430	8.34	10.9220	7.30	0.004453	416.8	93.60	46.80
440	8.25	11.1760	7.47	0.004462	412.3	92.41	46.21
450	8.15	11.4300	7.64	0.004470	407.3	91.11	45.56
460	8.03	11.6840	7.81	0.004478	401.2	89.60	44.80
470	7.84	11.9380	7.98	0.004486	391.6	87.30	43.65