# APPENDIX A GEOTECHNICAL DATA REPORT



#### CITY OF WINNIPEG

# CentrePort South Regional Water & Wastewater Servicing Geotechnical Data Report

Revision: KGS Group Project: Final Rev 0 23-0107-009

Date: Client Project: March 8, 2024 122-2023

PREPARED BY:

Kelly Fordyce, P.Eng.

Geotechnical Engineer

K.D.
FORDYCE
Member
36388

APPROVED BY:

Dami Adedapo, Ph.D., P.Eng.

Geotechnical Department Head / Principal

## TABLE OF CONTENTS

| 1.0 INTRODUCTION                             | 1  |
|----------------------------------------------|----|
| 1.1 General                                  | 1  |
| 1.2 Purpose of Report                        | 2  |
| 1.3 Report Limitations                       | 2  |
| 2.0 BACKGROUND INFORMATION                   | 3  |
| 2.1 Previous Geotechnical Investigations     | 3  |
| 2.1.1 1988 Geotechnical Investigation.       | 3  |
| 2.1.2 2009 Geotechnical Investigation        | 4  |
| 2.1.3 2019 Geotechnical Investigation.       | 5  |
| 2.2 Regional Geologic Setting                | 8  |
| 3.0 SCOPE OF 2023/2024 INVESTIGATION PROGRAM | 10 |
| 3.1 General                                  | 10 |
| 3.2 Borehole Drilling and Soil Sampling      | 10 |
| 3.3 Groundwater Monitoring                   | 12 |
| 3.4 Geophysical Seismic Refraction Survey    | 14 |
| 3.5 Laboratory Testing                       | 14 |
| 3.6 Well Pump Testing                        | 14 |
| 4.0 SUBSURFACE CONDITIONS                    | 16 |
| 4.1 Overburden                               | 16 |
| 4.1.1 Fill                                   | 16 |
| 4.1.2 Glaciolacustrine Clay                  | 18 |
| 4.1.3 Glacial Till Deposit                   | 22 |
| 4.1.4 Bedrock                                | 25 |
| 4.2 Well Pump Test Results                   | 28 |
| 4.3 Groundwater                              | 29 |
| 5.0 REFERENCES                               | 30 |

#### List of Tables

- Table 1-1: Phase 1A Contracts
- Table 2-1: Select 1988 Boreholes in Project Area
- Table 2-2: Select 2009 Boreholes in Project Area
- Table 2-3: 2009 Groundwater Monitoring Data
- Table 2-4: 2019 Boreholes in Project Area
- Table 2-5: 2019/2020 Groundwater Monitoring Data
- Table 3-1: Summary of 2023 Borehole and 2024 Test Pit Locations
- Table 3-2: Groundwater Monitoring Data
- Table 4-1: Clay Fill Project Area
- Table 4-2: Summary of Laboratory and Field Test Results for Clay Fill
- Table 4-3: Glaciolacustrine Deposits Project Area
- Table 4-4: Summary of Laboratory and Field Test Results for Glaciolacustrine Clay
- Table 4-5: Glacial Till Project Area
- Table 4-6: Summary of Laboratory Test Results for Glacial Till
- Table 4-7: CERCHAR Abrasiveness Index Results
- Table 4-8: Pumping Test Drawdown Results
- Table 4-9: Transmissivity and Storativity Calculations from Pumping Test

# List of Figures

- Figure 1: Geotechnical Data Location Plan
- Figure 2: Feeder Main Alignment
- Figure 3: Interceptor Alignment
- Figure 4: Force Main Alignment 01
- Figure 5: Force Main Alignment 02
- Figure 6: Force Main Alignment 03
- Figure 4-1: Undrained Shear Strength with Elevation for Clay Fill
- Figure 4-2: Undrained Shear Strength with Elevation for Glaciolacustrine Clay
- Figure 4-3: Moisture Content of Overburden with Elevation



Figure 4-4: Stickiness Potential of Cohesive Soil

Figure 4-5: Unconfined Compressive Strength with Elevation for Glacial Till

Figure 4-6: Uncorrected SPT Values with Elevation for Glacial Till

Figure 4-7: Bedrock RQD with Elevation

Figure 4-8: Histogram of Distribution of RQD within Boreholes

Figure 4-9: Bedrock Total Core Recovery with Elevation

Figure 4-10: UCS of Bedrock with Elevation

# List of Appendices

Appendix A: 2019/2020 KGS Group Preliminary Geotechnical Investigation Report

Appendix B: 2023/2024 KGS Group Borehole/Test Pit Logs Logs

Appendix C: 2023/2024 Select Drilling Photos

Appendix D: 2023 Laboratory Testing Results

Appendix E: 2009 Consolidation Testing Results

Appendix F: 2023 Frontier Geoscience Seismic Refraction Survey Report

Appendix G: 2023 KGS Group Hydrogeological Assessment Memo



#### STATEMENT OF LIMITATIONS AND CONDITIONS

#### Limitations

This report has been prepared for City of Winnipeg in accordance with the agreement between KGS Group and City of Winnipeg (the "Agreement"). This report represents KGS Group's professional judgment and exercising due care consistent with the preparation of similar reports. The information, data, recommendations and conclusions in this report are subject to the constraints and limitations in the Agreement and the qualifications in this report. This report must be read as a whole, and sections or parts should not be read out of context.

This report is based on information made available to KGS Group by City of Winnipeg. Unless stated otherwise, KGS Group has not verified the accuracy, completeness or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith. KGS Group shall not be responsible for conditions/issues it was not authorized or able to investigate or which were beyond the scope of its work. The information and conclusions provided in this report apply only as they existed at the time of KGS Group's work.

#### Third Party Use of Report

Any use a third party makes of this report or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

#### Geotechnical Investigation Statement of Limitations

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at the site at the time of drilling. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, KGS Group should be notified in order that the recommendations can be reviewed and modified if necessary.



#### 1.0 INTRODUCTION

#### 1.1 General

KGS Group was retained by the City of Winnipeg Water and Waste Department to perform geotechnical investigations to facilitate the detailed design and construction of regional water and wastewater infrastructure to support future industrial and residential developments within CentrePort South.

CentrePort Canada is North America's largest tri-modal port shared between the City of Winnipeg and the RM of Rosser. The goal of this project is to bring regional water and wastewater infrastructure to the southern portions of Centreport Canada (CentrePort South) located within the City of Winnipeg. These lands will ultimately result in an additional 1,457 hectares of serviced lands planned for commercial and residential development. The Phase 1A plan addresses the limited water demand and wastewater generation during years 1 to 5. Phase 1A involves four separate contracts described in Table 1-1 in order of priority.

TABLE 1-1: PHASE 1A CONTRACTS

| Priority | Phase 1A Contracts                                                    | Rationale                                                                                                                                                                          |
|----------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | Interceptor & Intake Sewers (Contract 3)                              | Provides connection points for wastewater collection permitting development of commercial and industrial lands.                                                                    |
| 2        | 750 mm Feeder Main, Silver<br>to Offtake Structure 3<br>(Contract 4A) | Provides central location to permit initial development of both residential and commercial lands. Feeder Main to be extended further north in future once development warrants it. |
| 3        | Force Main<br>(Contract 2A)                                           | Installation of a single force main to support initial development. Future force main to be designed and constructed when wastewater generation warrants it.                       |
| 4        | By-Pass Lift Station<br>(Contract 1A)                                 | Small station to support initial development until wastewater levels are actually generated. Infrastructure to be repurposed as part of future full build-out station.             |

The purpose of our investigation was to identify the subsurface soil, bedrock, and groundwater conditions along the alignments of the proposed works. This factual report contains a description of the geotechnical investigations program performed by KGS Group and our findings. This GDR should be read in conjunction with the Geotechnical Baseline Report(s) (GBR) prepared by KGS Group for the Project.

# 1.2 Purpose of Report

This report summarizes the geotechnical conditions observed along the alignments of the proposed pipeline infrastructure within the entire project area and provides geotechnical considerations that would form part of the basis of design for the Work. This report includes geotechnical data collected at the project site and summary of encountered subsurface conditions along the alignments.

# 1.3 Report Limitations

This report has been prepared for the exclusive use of the City of Winnipeg for the specific application to the proposed CentrePort South Regional Water and Wastewater Servicing project. It has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty, express or implied, is made.

The geotechnical data presented in this report are based on the observations and test results obtained from field investigation programs completed between 1988 and 2024. The information provided in this report and the contract documents indicate soil and bedrock conditions and water levels only at specific locations and times, and only to the depths penetrated. Subsurface conditions and water levels at other locations may differ from conditions occurring at these explored locations. Also, the passage of time may result in a change in conditions at these locations. KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of subsurface data, without KGS Group's express written authorization.



#### 2.0 BACKGROUND INFORMATION

# 2.1 Previous Geotechnical Investigations

A review of available geotechnical information pertinent to the project was conducted and presented in this report, including the 1998 UMA Engineering Ltd. investigations, and investigation programs completed by KGS Group in 2009 and 2019. The boreholes from the previous investigations were considered and incorporated in the development of the site stratigraphy and the associated figures. The results of these geotechnical investigations are summarized below.

#### 2.1.1 1988 GEOTECHNICAL INVESTIGATION

In 1988, UMA Engineering Ltd. completed a geotechnical investigation for Genstar Development Co. in the CentrePort South region. The geotechnical investigation was completed along two (2) proposed sewer alignments leading to and within the land parcel proposed for development. The investigation consisted of geotechnical drilling, piezometer installation, and single channel hammer seismic survey. A total of 74 boreholes were advanced to auger refusal along the proposed sewer alignments at approximately 200 m spacing. Additionally, approximately 200 hammer seismic spreads were laid out on a 200 m grid to estimate the depth to till and bedrock on the western portion of the site.

The boreholes in Table 2-1 were drilled along the proposed pipe alignments for the Centreport South project and were used to develop the soil profiles.

TABLE 2-1: SELECT 1988 BOREHOLES IN PROJECT AREA

| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| G-88-32        | 5532399      | 623852      | 239.44                                     | 6.10                             |                                                |
| G-88-40        | 5530812      | 623754      | 236.94                                     | 9.91                             |                                                |
| G-88-46        |              |             | 238.15                                     | 8.23                             |                                                |
| G-88-50        | 5530581      | 623734      | 237.59                                     | 8.64                             |                                                |
| G-88-62        | 5534084      | 624819      | 239.76                                     | 6.40                             |                                                |
| G-88-68        | 5532561      | 623848      | 240.19                                     | 3.65                             |                                                |
| G-88-71        | 5533141      | 623773      | 239.44                                     | 4.27                             |                                                |
| G-88-P3        | 5529985      | 622588      | 238.55                                     | 23.77                            | 222.09                                         |
| G-88-P8        | 5534095      | 624858      | 239.56                                     | 18.29                            | 231.06                                         |
| G-88-P9        | 5534102      | 626431      | 240.45                                     | 18.29                            | 225.97                                         |



| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| G-88-S1        | 5530166      | 623409      | 237.17                                     | 4.42                             | 232.87                                         |
| G-88-S3        | 5529509      | 623268      | 236.95                                     | 4.21                             | 232.96                                         |
| G-88-S7        | 5530174      | 622685      | 237.17                                     | 11.89                            | 228.18                                         |
| G-88-S13       | 5529776      | 622081      | 237.17                                     | 10.67                            | 226.68                                         |

The 1988 borehole logs are included in the 2019 KGS Group Geotechnical Report in Appendix A. The location of the boreholes within the vicinity of the site are shown on Figure 1. Details of the geotechnical investigation are outlined in the report titled "Sewer Alignment Investigation and Property Investigation Lands North of Saskatchewan Ave", dated December 1988.

#### 2.1.2 2009 GEOTECHNICAL INVESTIGATION

In 2009, KGS Group completed a geotechnical investigation for MMM Group Ltd. for the construction of CentrePort Canada Way (CCW). Boreholes were drilled at the CCW and Provincial Trunk Highway (PTH) 101 interchange and at the CCW crossing over the Canadian Pacific Kansas City (CPKC) mainline near Inkster Boulevard. The boreholes in Table 2-2 were drilled along the proposed pipe alignments for the CentrePort South project and were used to develop the soil profiles.

TABLE 2-2: SELECT 2009 BOREHOLES IN PROJECT AREA

| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| TH09-20        | 5533717      | 624309      | 238.46                                     | 9.14                             | 232.98                                         |
| TH09-21        | 5533684      | 624275      | 238.99                                     | 11.05                            | 233.65                                         |
| TH09-22        | 5533532      | 624113      | 239.28                                     | 6.55                             |                                                |
| TH09-23        | 5533770      | 624364      | 237.34                                     | 7.62                             | 232.77                                         |
| TH09-24        | 5533797      | 624389      | 238.12                                     | 18.23                            | 232.79                                         |
| TH09-25        | 5533919      | 624517      | 238.02                                     | 6.55                             |                                                |

The 2009 borehole logs are included in the 2019 KGS Group Geotechnical Report in Appendix A and the locations are shown on Figure 1. Details of the geotechnical investigation are outlined in the report titled "CentrePort Canada Way Geotechnical Investigation Phase 1 Report", dated July 2009.



A total of two (2) pneumatic and four (4) standpipes were installed in the clay, till, and bedrock units during the 2009 investigations for the boreholes located within the CentrePort South project area. Two pneumatic piezometers were installed in the clay, two standpipes installed in the till, and two standpipes installed in the bedrock. The installation details of the piezometers are shown on the borehole logs in Appendix A. Groundwater monitoring data for the 2009 instrumentation is summarized in Table 2-3.

TABLE 2-3: 2009 GROUNDWATER MONITORING DATA

| Borehole ID             | TH09-20     | TH09-20(2)  | TH09-20(2) | TH09-23     | TH09-23(2)  | TH09-23(2) |
|-------------------------|-------------|-------------|------------|-------------|-------------|------------|
| Ground Elevation<br>(m) | 238.46      | 238.44      | 238.44     | 237.34      | 237.39      | 237.39     |
| Piezometer No.          | Standpipe 1 | Standpipe 2 | 32314      | Standpipe 1 | Standpipe 2 | 32315      |
| Tip Elevation (m)       | 229.36      | 233.44      | 234.44     | 229.74      | 232.79      | 234.39     |
| Monitoring Zone         | Bedrock     | Till        | Clay       | Bedrock     | Till        | Clay       |

#### **Groundwater Elevation Monitoring Data**

| Date       |        |        |        |        |        |        |
|------------|--------|--------|--------|--------|--------|--------|
| 2009-05-08 | 236.67 | 237.18 | 235.71 |        |        |        |
| 2009-05-25 | 236.65 | 237.60 | 239.22 | 236.77 | 237.77 | 235.51 |
| 2009-05-29 | 236.64 | 237.68 |        | 236.75 | 237.81 |        |
| 2009-06-09 | 236.58 | 237.77 | 239.29 | 236.77 | 237.89 | 237.90 |

As part of the laboratory testing program for this project, a total of six (6) one-dimensional consolidation (oedometer) tests were performed on select samples of the clay overburden to determine representative deformation properties of the material for use in estimating the anticipated settlements under embankment loads. Testing results from the relevant boreholes within the CentrePort South project area are included in Appendix E.

#### 2.1.3 2019 GEOTECHNICAL INVESTIGATION

In 2019, KGS Group completed a geotechnical investigation for the City of Winnipeg as part of the preliminary design phase for the CentrePort South region. Due to the variable soil conditions with till and bedrock observed outcrop at the surface in some locations, seismic refraction surveys were completed in addition to conventional borehole drilling. A total of 36 boreholes were advanced to bedrock between September 2019 and February 2020 to investigate the subsurface stratigraphic conditions. The drilling was completed using a track-mounted sonic drill rig to provide full drilling recovery of the clay and till. The locations of the boreholes are shown on Figure 1.



Clay samples were tested with a field Torvane to evaluate consistency and estimate the undrained shear strength of cohesive soils. Pocket penetrometers were used to evaluate the consistency of the till. A diagnostic laboratory program was not performed as part of this project.

The boreholes in Table 2-4 were drilled along the proposed pipe alignments for the Centreport South project and were used to develop the soil profiles.

TABLE 2-4: 2019 BOREHOLES IN PROJECT AREA

| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| TH19-01        | 5530427.04   | 623766.69   | 238.75                                     | 14.63                            | 224.27                                         |
| TH19-02        | 5530706.00   | 623776.19   | 238.19                                     | 13.72                            | 226.00                                         |
| TH19-03        | 5530934.92   | 623782.92   | 238.41                                     | 9.60                             | 228.96                                         |
| TH19-04        | 5531169.14   | 623790.12   | 238.39                                     | 10.67                            | 228.63                                         |
| TH19-05        | 5531557.79   | 623802.42   | 238.97                                     | 7.77                             | 231.35                                         |
| TH19-06        | 5531769.09   | 623809.13   | 239.37                                     | 10.67                            | 229.62                                         |
| TH19-07        | 5532001.74   | 623815.91   | 239.66                                     | 4.72                             | 235.09                                         |
| TH19-08        | 5532179.49   | 623820.81   | 240.03                                     | 4.57                             | 235.52                                         |
| TH19-09        | 5532489.28   | 623831.30   | 241.01                                     | 4.42                             | 236.74                                         |
| TH19-10        | 5532671.52   | 623801.35   | 241.24                                     | 7.92                             | 233.47                                         |
| TH19-14        | 5534076.22   | 624802.28   | 239.90                                     | 9.14                             | 231.21                                         |
| TH19-15        | 5534084.99   | 624968.52   | 239.66                                     | 11.89                            | 228.08                                         |
| TH19-16        | 5534089.93   | 625160.45   | 240.07                                     | 9.14                             | 231.23                                         |
| TH19-17        | 5534092.93   | 625284.88   | 240.18                                     | 7.92                             | 232.41                                         |
| TH19-18        | 5534128.16   | 625626.02   | 239.60                                     | 7.62                             | 232.29                                         |
| TH19-19        | 5534129.01   | 625786.32   | 239.46                                     | 4.57                             | 235.04                                         |
| TH19-20        | 5534113.91   | 625935.76   | 239.48                                     | 7.16                             | 232.62                                         |
| TH19-21        | 5534123.38   | 626090.00   | 239.63                                     | 11.43                            | 228.51                                         |
| TH19-22        | 5534126      | 626254      | 240.78                                     | 2.90                             |                                                |
| TH19-23        | 5534133      | 626546      | 238.98                                     | 13.26                            | 226.03                                         |



| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| TH19-24        | 5534137.26   | 626754.97   | 237.41                                     | 13.11                            | 224.45                                         |
| TH19-25        | 5534142.21   | 626886.53   | 236.66                                     | 9.60                             | 227.21                                         |
| TH20-01        | 5528369      | 624632      | 237.78                                     | 7.92                             | 230.16                                         |
| TH20-02        | 5528377      | 624389      | 238.62                                     | 7.77                             | 231.15                                         |
| TH20-03        | 5528389.90   | 624024.30   | 240.09                                     | 3.05                             | 237.35                                         |
| TH20-04        | 5528382.07   | 623724.35   | 239.95                                     | 5.79                             | 234.46                                         |
| TH20-05        | 5528600      | 623708      | 239.76                                     | 9.14                             | 231.23                                         |
| TH20-06        | 5528940.52   | 623733.94   | 239.98                                     | 9.14                             | 231.14                                         |
| TH20-07        | 5529234      | 623750      | 240.62                                     | 4.27                             | 236.66                                         |
| TH20-08        | 5529566.66   | 623701.15   | 240.58                                     | 6.40                             | 234.33                                         |
| TH20-09        | 5529742.84   | 623534.88   | 239.94                                     | 5.79                             | 234.45                                         |
| TH20-10        | 5529859.34   | 623401.36   | 239.80                                     | 5.49                             | 234.47                                         |
| TH20-11        | 5530037.66   | 623085.45   | 239.67                                     | 10.36                            | 229.61                                         |
| TH20-12        | 5530152.99   | 622811.01   | 239.70                                     | 12.50                            | 228.12                                         |
| TH20-13        | 5529862.39   | 622450.60   | 239.23                                     | 15.54                            | 223.99                                         |
| TH20-14        | 5530123.73   | 623582.28   | 239.37                                     | 9.30                             | 230.38                                         |

The 2019 borehole logs are included in Appendix A. The location of the boreholes within the vicinity of the site are shown on Figure 1. Details of the geotechnical investigation are outlined in the KGS Group report titled "Airport Area West Regional Water and Wastewater Servicing Preliminary Engineering, 2019/2020 Preliminary Geotechnical Investigation Report", dated March 2020, included as Appendix A.

A total of five standpipes were installed along the proposed alignment during the 2019/2020 geotechnical investigation. Two standpipes were installed in the bedrock and three standpipes were installed in the till. The installation details of the piezometers are shown on the borehole logs in Appendix A. Groundwater monitoring data for the 2019/2020 instrumentation is summarized in Table 2-5.



**Borehole ID** TH19-04 TH19-18 TH20-12 Approx. Station (m) 0+850 5+250 10+500 **Ground Elevation (m)** 239.7 238.39 239.60 Piezometer No. Standpipe 1 Standpipe 2 Standpipe 1 Standpipe 1 Standpipe 2 Tip Elevation (m) 230.34 228.14 233.08 235.82 228.01 Till **Monitoring Zone** Bedrock Till Till **Bedrock Groundwater Elevation Monitoring Data Date** 2019-10-28 236.44 236.33 238.42

TABLE 2-5: 2019/2020 GROUNDWATER MONITORING DATA

#### Notes:

2020-02-28

1) Stationing based on figures contained in the 2019 KGS Group Geotechnical Report (Appendix A)

236.41

2) The 2019/2020 instrumentation were unable to be located in 2023/2024 to obtain recent readings.

236.11

KGS Group retained the services of Frontier Geoscience Inc. to perform seismic refraction surveys along the proposed pipeline alignments. The primary objective of the geophysical survey was to obtain estimates of the depths to till and bedrock along the proposed alignment of the pipelines. The location of the seismic lines is shown on Figure 1. The results of the seismic refraction survey are included in the 2019 KGS Group Geotechnical Report in Appendix A.

237.01

Dry

233.41

#### **Cobbles and Boulders**

As part of the 2019/2020 drilling investigation, cobbles were encountered in the clay deposit near the till interface in some boreholes. Cobbles were observed within the silt till in a majority of the boreholes as indicated on the borehole logs. Based on previous works completed by the City of Winnipeg in the vicinity of this project, it is understood that installation of the new pipelines near the clay/till interface and within the till may encounter substantial quantities of cobbles and boulders. Zones with increased cobbles and boulders were identified as part of the geophysical investigation and were observed at Stations 3+140 to 3+250, 8+820 to 8+950, 9+000 to 9+030, 9+270 to 9+320, and 9+500 to 9+540 (refer to station ranges in Appendix A).

# 2.2 Regional Geologic Setting

The geology in Winnipeg generally consists of carbonate sedimentary bedrock overlaying Precambrian era granite and gneiss. The sedimentary rock consists of alternating layers of limestone, and dolomite and to a lesser extent shale. The proposed pipelines will encounter the Stony Mountain Formation. In the Stony Mountain Formation, the basal Gunn member consists of greyish-red to purplish- and reddish-grey, fossiliferous, calcareous shale with interbeds of relatively clean, fossiliferous limestone. It is overlain by yellowish- to reddish-grey fossiliferous, argillaceous dolomite of the Penitentiary member. These two units together compose the lower Stony Mountain Formation.



The surface of the bedrock is usually highly fractured and disturbed, often mixed with gravels and sands. Geological maps for Winnipeg indicate karst topography caused from dissolution of the soluble rock, and a heavily fractured upper bedrock layer. The karst topography is typically infilled with mixtures of silt, sand and gravel till soils.

During the last glacial advance and retreat, Winnipeg's glacial till was deposited by ice masses.

Glaciolacustrine deposits suspended in glacial lakes confined by ice masses settled to overlie the tills.

Additional information on the regional geology can be found in the Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba (Reference 4).



#### 3.0 SCOPE OF 2023/2024 INVESTIGATION PROGRAM

#### 3.1 General

This section provides a summary of the 2023/2024 field investigation program, instrumentation installation and monitoring, and laboratory test results; as well as a description of the subsurface conditions encountered at the project site.

The 2023/2024 geotechnical and geophysical investigations were completed to determine the subsurface conditions along the proposed water and wastewater pipeline alignments, and within the footprint of the proposed lift station. The results of the investigation program are presented in this Geotechnical Data Report.

# 3.2 Borehole Drilling and Soil Sampling

The borehole drilling and sampling program was completed by KGS Group from September 25 to November 22, 2023 over multiple field work mobilizations. A total of twenty (20) boreholes were advanced to at least power auger refusal, with seven (7) of the boreholes being advanced into bedrock. The boreholes were completed to investigate the subsurface stratigraphic conditions within the project area and evaluate the suitability of the till and bedrock for trenchless construction methodologies that are anticipated to be utilized for the various construction contracts and at specific road/railway crossing locations. Two pumping wells, PW23-01 and PW23-02, were advanced in the footprint of the future lift station. The locations of the 2023 boreholes are shown in plan on Figure 1 and a summary of the locations is presented in Table 3-1.

Maple Leaf Drilling of Winnipeg, Manitoba provided the drilling services using a track-mounted drill rig equipped with 125 mm solid stem augers, casing advancer, and HQ coring. The drilling was completed under the supervision and direction of KGS Group personnel. Soil samples were collected at intervals of 1.5 m (5 ft.) or at any changes in soil strata encountered during drilling. The soil samples were visually inspected for material type and classified according to the Modified Unified Soil Classification System (USCS).

Standard Penetration Tests (SPTs) were completed in the glacial till to evaluate the in-situ density. Clay samples were tested with a field Torvane to evaluate the consistency and estimate the undrained shear strengths of cohesive soils. Glacial till samples were tested with a Pocket Penetrometer to estimate the unconfined compressive strength of non-cohesive soils. Upon completion of drilling, the boreholes were examined for indications of sloughing and seepage and then backfilled. Borehole log records incorporating field observations, and field test results are provided in Appendix B. Photographs of the soil and bedrock samples are included in Appendix C.

A test pit excavation and sampling program was completed by KGS Group from February 21 to 22, 2024. A total of two (2) test pits were advanced to refusal on the bedrock surface. The test pits were completed to confirm the depth to bedrock and evaluate the composition of the glacial till on either side of the proposed trenchless crossing of Saskatchewan Avenue and the Canadian Pacific Kansas City Railway (CPKC) right-of-way. Excavation services were provided by J Con Civil Ltd. of Winnipeg, Manitoba using a rubber-tire excavator. Soil samples were collected at changes in soil strata and were visually classified according to the



USCS. Upon completion of excavation, the test pit was examined for indicates of sloughing and seepage and then backfilled.

TABLE 3-1: SUMMARY OF 2023 BOREHOLE AND 2024 TEST PIT LOCATIONS

| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| TP24-01        | 5529179      | 623763      | 239.97                                     | 5.3                              | 234.87                                         |
| TP24-02        | 5529137      | 623772      | 240.64                                     | 4.6                              | 236.04                                         |
| PW23-01        | 5530157      | 623136      | 238.91                                     | 22.30                            |                                                |
| PW23-02        | 5530127      | 623154      | 238.77                                     | 22.30                            |                                                |
| TH23-01        | 5530113      | 623145      | 240.20                                     | 22.50                            | 229.08                                         |
| TH23-03        | 5528181      | 623558      | 237.80                                     | 7.07                             |                                                |
| TH23-04        | 5528361      | 623519      | 237.80                                     | 7.39                             |                                                |
| TH23-05        | 5528557      | 623549      | 239.33                                     | 4.27                             |                                                |
| TH23-06        | 5528836      | 623547      | 239.10                                     | 6.78                             |                                                |
| TH23-07        | 5529083      | 623587      | 239.10                                     | 5.49                             |                                                |
| TH23-08        | 5529096      | 623757      | 239.40                                     | 9.45                             | 234.37                                         |
| TH23-09        | 5529183      | 623764      | 240.00                                     | 9.75                             | 233.52                                         |
| TH23-11        | 5529997      | 623757      | 237.50                                     | 7.85                             |                                                |
| TH23-12        | 5530219      | 623766      | 237.80                                     | 7.62                             |                                                |
| TH23-17        | 5533655      | 624430      | 237.67                                     | 12.60                            | 233.28                                         |
| TH23-18        | 5533695      | 624469      | 238.01                                     | 12.62                            | 233.16                                         |
| TH23-19        | 5533941      | 624602      | 238.74                                     | 7.32                             |                                                |
| TH23-20        | 5534056      | 624724      | 238.81                                     | 8.11                             |                                                |
| TH23-21        | 5534214      | 624686      | 238.92                                     | 8.08                             |                                                |
| TH23-22        | 5534319      | 625352      | 239.74                                     | 7.32                             |                                                |
| TH23-23        | 5534208      | 625352      | 238.81                                     | 6.25                             |                                                |
| TH23-24        | 5529982      | 622695      | 238.26                                     | 12.37                            |                                                |



| Borehole<br>ID | Northing (m) | Easting (m) | Approx.<br>Ground Surface<br>Elevation (m) | Approx.<br>Borehole<br>Depth (m) | Approx.<br>Bedrock<br>Contact<br>Elevation (m) |
|----------------|--------------|-------------|--------------------------------------------|----------------------------------|------------------------------------------------|
| TH23-25        | 5530062      | 622907      | 239.06                                     | 14.07                            | 227.94                                         |
| TH23-26        | 5529971      | 623340      | 239.09                                     | 15.62                            | 232.69                                         |

#### Notes:

- 1) Ground surface elevations for boreholes were established from City of Winnipeg LiDAR data. Ground surface elevations for test pits were established using survey grade GPS.
- 2) Top of bedrock elevation is reported where bedrock was confirmed during drilling/test pitting.

# 3.3 Groundwater Monitoring

A total of three (3) vibrating wire piezometers and five (5) standpipes piezometers were installed at the project site. The standpipes were installed within the bedrock and the vibrating wire piezometers were installed in the overlying glacial till. Based on the results of the drilling, the standpipe in TH23-24 is likely installed within a zone of cobbles/boulders or highly weathered bedrock. Table 3-2 summarizes the installation details and the piezometer monitoring completed to date. The installation details of the piezometers are shown on the 2023 borehole log records provided in Appendix B.



KGS: 23-0107-009 | March 2024

TABLE 3-2: GROUNDWATER MONITORING DATA

| Borehole ID          | TH1            | L9-04       | TH19-18     | TH          | 20-12       | PW23-01   | PW23-02         | TH2            | 3-01        | TH23-09     | TH23-18     | т        | H23-24           | TH2      | 3-25        |
|----------------------|----------------|-------------|-------------|-------------|-------------|-----------|-----------------|----------------|-------------|-------------|-------------|----------|------------------|----------|-------------|
| Ground Elevation (m) | 23             | 8.39        | 239.60      | 23          | 9.70        | 238.77    | 238.91          | 240            | 0.20        | 240.00      | 238.01      | 2        | 238.26           | 239      | 9.06        |
| Piezometer No.       | Standpipe<br>1 | Standpipe 2 | Standpipe 1 | Standpipe 1 | Standpipe 2 | Pump Well | Pump Well       | VW171370       | Standpipe 1 | Standpipe 1 | Standpipe 1 | VW164950 | Standpipe 1      | VW163297 | Standpipe 1 |
| Tip Elevation (m)    | 230.34         | 228.14      | 233.08      | 235.82      | 228.01      | 216.52    | 216.66          | 231.67         | 218.76      | 230.86      | 225.82      | 228.81   | 226.07           | 229.00   | 225.50      |
| Monitoring Zone      | Till           | Bedrock     | Till        | Till        | Bedrock     | Bedrock   | Bedrock         | Till           | Bedrock     | Bedrock     | Bedrock     | Till     | Cobbles/Boulders | Till     | Bedrock     |
|                      |                |             |             |             |             | Ground    | dwater Elevatio | n Monitoring D | ata         |             |             |          |                  |          |             |
| Date                 |                |             |             |             |             |           |                 |                |             |             |             |          |                  |          |             |
| 2019-10-28           | 236.44         | 235.33      | 238.42      |             |             |           |                 |                |             |             |             |          |                  |          |             |
| 2020-02-28           | 236.41         | 236.11      | 237.01      | Dry         | 233.41      |           |                 |                |             |             |             |          |                  |          |             |
| 2023-11-14           |                |             |             |             |             |           |                 | 233.21         | 233.21      | 232.60      |             |          |                  |          |             |
| 2023-11-20           |                |             |             |             |             | 230.28    | 233.42          |                | 233.18      | 232.60      | 237.06      |          | 236.33           |          | 233.63      |
| 2023-12-01           |                |             |             |             |             |           |                 | 233.31         | 233.01      |             | 236.99      | 233.63   | 235.93           | 233.64   | 233.61      |
| 2023-12-13           |                |             |             |             |             |           |                 | 233.32         | 233.09      | 232.60      | 237.16      | 233.63   | 235.71           | 233.64   | 233.51      |
| 2024-01-17           |                |             |             |             |             |           |                 | 233.21         | 233.08      | 232.57      | 237.41      | 233.47   | 235.11           | 233.62   | 233.52      |

#### Notes:

- 1) Instrumentation casings for the 2019/2020 instrumentation were unable to be located during instrumentation readings in 2023/2024.
- 2) Additional instrumentation readings are recommended to be collected during spring and summer conditions to determine seasonal fluctuations of groundwater.

# 3.4 Geophysical Seismic Refraction Survey

KGS Group retained the services of Frontier Geoscience Inc. to complete seismic refraction surveys along a portion of the preferred force main alignments for the interceptor sewer and feeder main contracts. The seismic refraction surveys were completed from October 31 to November 3, 2023. The objective of the geophysical survey was to obtain estimates of the depth to glacial till and bedrock along the preferred alignments as noted. The locations of the 2023 seismic lines are shown on Figure 1 and the results of the seismic refraction survey are included in the Seismic Refraction Survey Report included in Appendix F. The interpreted profiles of the glacial till and bedrock surfaces are also included on the respective Contract Drawings.

# 3.5 Laboratory Testing

Laboratory testing was performed on select soil and bedrock samples for use in the characterization of the subsurface.

Laboratory testing was completed on representative soil samples including:

- Moisture content;
- · Particle size distribution; and
- Atterberg Limit.

Laboratory testing on the bedrock samples was completed to determine the following mechanical properties:

- Uniaxial Compressive Strength.
- CERCHAR Testing (rock abrasivity).

All laboratory testing was performed at a Canadian Council of Independent Laboratories (CCIL) certified laboratory in general accordance with ASTM International standards.

The 2023 laboratory test results are summarized in Section 4.0 and included in Appendix D.

# 3.6 Well Pump Testing

KGS Group completed drilling a 125 mm diameter PVC test well (PW23-02) on November 14, 2023. Drilling services were provided by licensed water well driller Maple Leaf Drilling Ltd., under KGS Group supervision. The borehole was completed using a Canterra CT 250 truck-mounted rig using mud rotary drilling techniques in the overburden and to set the PVC casing into the bedrock. Open hole rotary drilling was used to bore an open hole into the bedrock beneath the casing. The casing was grouted in place, as per the Provincial water well installation guidelines. The location of PW23-02 is shown on Figure 1 and a summary log is included in Appendix B. Pump test well PW23-01 was initially installed at the site, but due to low preliminary yield (<1 USgpm), a second pump test well (PW23-02) was installed to facilitate the pump test.

A pumping test of PW23-02 was conducted on November 20, 2023, to quantify the hydraulic characteristics of the carbonate bedrock aquifer at the test well site, and to monitor the aquifer response to pumping in the piezometers installed in borehole TH23-01 and in PW23-01. A 2-hour pumping test was conducted on



PW23-02 on November 20, 2023, starting a 15:00 and ending at 17:00. Recovery, following the cessation of pumping, was measured for an additional half hour, until 17:30.

The pump test memorandum is included as Appendix G.



#### 4.0 SUBSURFACE CONDITIONS

The stratigraphy at the site is described in this section and is based on the exploratory boreholes, seismic refraction surveys, and our understanding of the site geology. Borehole logs from the 1988, 2009, and 2019/2020 geotechnical investigations along the proposed project alignments are provided in the 2019 KGS Group Geotechnical Report in Appendix A. The borehole and test pit logs from the 2023/2024 geotechnical investigations are provided in Appendix B.

In general, the stratigraphy consists of fill overlying clay, silt till, and bedrock. The following sections describe the soil and the bedrock encountered during the geotechnical drilling investigation. Fencelines showing soil profiles along the proposed alignment are shown on Figures 2 to 6. The approximate till surface is shown on the fenceline and is generally interpolated between boreholes. The seismic refraction survey results are overlain on the fencelines where survey data exists. The seismic refraction data indicates that there is variability in the till and bedrock elevations between the boreholes.

#### 4.1 Overburden

The overburden deposits encountered at the project site generally consist of fill over glaciolacustrine clay, glacial silt till deposit, and underlain by the carbonate bedrock. Variable layers of fill and occasional silt were observed in the boreholes within the Upper Complex Zone.

The Upper Complex Zone in Winnipeg generally consists of stratified clays, and silts with variable amounts of organics, granular and fill material. This zone has high soil variability. The base of the Complex Zone is typically defined by the base of the silt layer. The silt interlayers in the Complex Zones can vary from 100 mm to up to 3 m in thickness and are typically approximately 1 m. Typically the silt is tan in colour, soft in consistency, of no to low plasticity and may have a perched groundwater table. The moisture content of the silt ranges from 20 to 35% and the unit weight is within the range of 18.8 to 20.4 kN/m³ (Reference 4).

#### 4.1.1 FILL

In the project area, topsoil or fill was generally encountered above the glaciolacustrine clay deposit. For boreholes drilled on or adjacent to roadways, a layer of granular fill was observed.

The granular fill was fine to coarse grained gravel and was described as brown in colour, damp, loose to compact in density, contained some fine to coarse grained sand, and trace silt, and trace clay.

The clay fill was mottled brown to grey, damp, firm to stiff, low to high plasticity, contained trace to some fine to coarse grained gravel, trace to some fine to coarse grained sand, some organics, and trace rootlets.

The extent of the clay fill identified in the project area is outlined in Table 4-1 below.

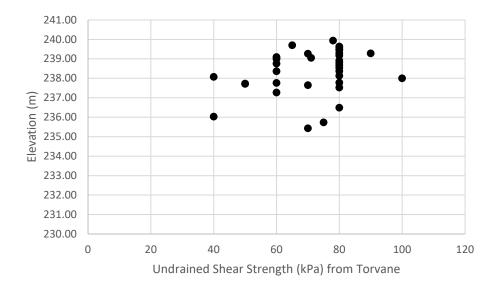


TABLE 4-1: CLAY FILL - PROJECT AREA

| Location     | Profile              | Clay Fill        |  |
|--------------|----------------------|------------------|--|
| Project Area | Elevation at Top (m) | 235.89 to 241.24 |  |
|              | Thickness (m)        | 0.15 m to 2.44 m |  |

A summary of the laboratory material testing results on the clay fill from the KGS Group 2023/2024 geotechnical investigations and the background geotechnical investigations are summarized in Table 4-2.

TABLE 4-2: SUMMARY OF LABORATORY AND FIELD TEST RESULTS FOR CLAY FILL


| Laboratory Test                                                | Clay Fill |
|----------------------------------------------------------------|-----------|
| Moisture Content (%)                                           | 42 to 43  |
| Undrained Shear Strength (kPa) – Torvane                       | 40 to 100 |
| Unconfined Compressive Strength (kPa) – Pocket<br>Penetrometer | 350       |

#### Notes:

1) Unconfined Compressive Strength is based on one pocket penetrometer test.

Values of undrained shear strength (Su) with elevation for the clay fill as estimated from a field Torvane during the KGS Group 2023 investigation and background geotechnical investigations throughout the project site are summarized in Figure 4-1.

FIGURE 4-1: UNDRAINED SHEAR STRENGTH WITH ELEVATION FOR CLAY FILL



#### 4.1.2 GLACIOLACUSTRINE CLAY

The glaciolacustrine clay deposit in the Winnipeg region is typically 9 to 12 m thick. In decreasing occurrence, typically the predominant mineral composition of the lacustrine clay generally consists of montmorillonite (a member of the smectite family), illite, kaolinite and some mica (Graham and Shields 1985). The clay deposit changes from brown to grey (sometimes referred to as blue clay) at depths of approximately 4.6 to 7.6 m. Within this depth range, the brown and grey clays often appear mottled, making it sometimes difficult to observe a discrete contact between the two colours. It is believed the colour change is due to the oxidation of the brown clay (Graham and Shields 1985).

The brown clay is typically stiff in consistency and of a high plasticity. The brown clay is highly fissured with the frequency of fissures decreasing with depth. White gypsum pockets and veins are typically observed within the brown clay, often filling in the fissures. The lower grey clay is firm to stiff in consistency and of intermediate to high plasticity. Fine to coarse grained gravel and boulders are found occasionally in the grey clay, near the till interface.

The glaciolacustrine clay typically contains trace to some silt nodules. These non-plastic, non-clay materials generally occur throughout the clay deposit as varves, veins, seams, inclusions or pockets that are typically less than a centimeter in diameter. The tendency for horizontal orientation of the varves, veins, and seams introduces a visible macrostructure to the clay and are a contributing cause for the observed anisotropy in horizontal permeability and strength of the deposit. Quigley (1968) offers the explanation that frozen silt lumps were rafted into glacial Lake Agassiz by icebergs and dropped into the clays as frozen lumps. Baracos (1977) provided a more likely explanation, considering the sharply defined boundaries of the inclusions, that they were deposited not frozen but as cemented or lithified material which subsequently disintegrated into silt.

Typical moisture content in the glaciolacustrine clay ranges from 40 to 60%. Atterberg Limit tests within the brown and grey clay has shown the brown clay is typically more plastic than the underlying grey clay. Liquid Limits in the brown clay typically range from 80 to 110% and the Plastic Index from 60 to 80%. Liquid Limits in the grey clay typically range from 65 to 95% and the Plastic Index ranges from 40 to 65%. Unconfined compressive strengths usually range from 70 to 100 kPa within the brown clay. Measured values within the upper brown clay are variable due to fissures. Typically, the unconfined compressive strengths generally yield a lower bound to undrained shear strengths (Reference 4).

Undrained shear strengths measured from unconfined compression tests are generally higher within the upper clay zone (~ top 2 to 3 m), typically in the order of 70 to 100 kPa. Below a depth of about 4 to 5 metres, strengths typically decrease approximately uniformly with increasing depth. As the underlying till layer is approached, strengths are typically in the order of 40 kPa but may be as low as 25 kPa. The higher undrained shear strengths with the upper brown clay and lower shear strengths at depth near the till is caused by weathering near the ground surface and decreasing over consolidation ratios to approximately normally consolidated conditions near the bottom of the deposit. They may also reflect artesian ground water conditions (and therefore low vertical effective stresses).

Effective shear strength parameters of the brown and grey clay obtained from consolidated undrained compression triaxial strength testing of a large number of relatively undisturbed samples yielded intact peak strength of c' = 19.6 kPa and  $\phi' = 20.5^{\circ}$  and c' = 29.8 kPa and  $\phi' = 15.8^{\circ}$ , respectively. While the effective large



strain shear strength parameter for the brown and grey clay were c' = 14.5 kPa and  $\phi' = 13.3^{\circ}$  and c' = 7.7 kPa and  $\phi' = 15.7^{\circ}$ , respectively (Reference 4). The effective shear strength parameters typically used by local geotechnical engineers in Winnipeg for slope stability analysis are c' = 5 kPa and  $\phi' = 14^{\circ}$  for both clays.

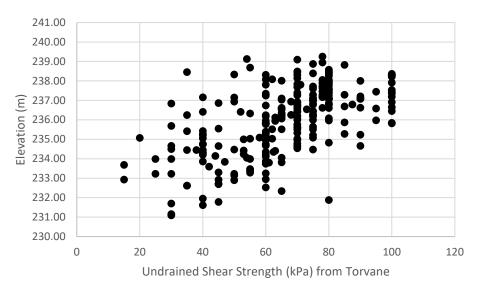
XRD analysis was not completed on the clay deposit as part of the 2023 geotechnical investigations. Testing results from another tunnelling site in Winnipeg indicated that the quartz content of the clay samples ranged from 16.1 to 20.2%, the clinochlore content ranged from 13.3 to 17.0%, the muscovite content ranged from 15.4 to 29.3%, the calcite content ranged from 0.6 to 4.5%, the dolomite content ranged from 4.2 to 9.7%, and the smecite content ranged from 28.6 to 37.1%.

In the project area, the thickness of the glaciolacustrine clay deposit is generally less than the majority of the Winnipeg region, with glacial till and bedrock outcrop observed at surface in some areas. The extent of the glaciolacustrine deposits identified in KGS Group's 2023/2024 geotechnical investigations and the background geotechnical investigations is outlined in Table 4-3 below.

TABLE 4-3: GLACIOLACUSTRINE DEPOSITS - PROJECT AREA

| Location     | Profile              | Glaciolacustrine Clay |  |
|--------------|----------------------|-----------------------|--|
| Project Area | Elevation at Top (m) | 235.13 to 240.45      |  |
|              | Thickness (m)        | 0.30 to 7.01          |  |

A summary of the laboratory material testing results on the glaciolacustrine clay from the KGS Group 2023 geotechnical investigations and the background geotechnical investigations are summarized in Table 4-4.


TABLE 4-4: SUMMARY OF LABORATORY AND FIELD TEST RESULTS FOR GLACIOLACUSTRINE CLAY

| Laboratory Test                                             | Glaciolacustrine Clay |
|-------------------------------------------------------------|-----------------------|
| Moisture Content (%)                                        | 18 to 57              |
| Atterberg – Plastic Limit (%)                               | 16 to 29              |
| Atterberg – Liquid Limit (%)                                | 49 to 95              |
| Plasticity Index (%)                                        | 27 to 66              |
| Grain Size – Gravel (%)                                     | 0                     |
| Grain Size – Sand (%)                                       | 1 to 13               |
| Grain Size – Silt (%)                                       | 3 to 32               |
| Grain Size - Clay (%)                                       | 53 to 97              |
| Undrained Shear Strength (kPa) – Torvane                    | 15 to 100             |
| Unconfined Compressive Strength (kPa) – Pocket Penetrometer | 75 to 450             |



Values of undrained shear strength (Su) with elevation for the glaciolacustrine clay as estimated from a field Torvane during the KGS Group 2023 investigation and background geotechnical investigations throughout the project site are summarized in Figure 4-2.

FIGURE 4-2: UNDRAINED SHEAR STRENGTH WITH ELEVATION FOR GLACIOLACUSTRINE CLAY



#### 4.1.2.1 Swelling Potential of Clay Deposit

The swelling potential of a clay soil can be categorized based on the plasticity and percentage of clay sized particles (Figure 12.8, Canadian Foundation Engineering Manual, 5<sup>th</sup> Edition). The swelling potential of clay is highest when a sample has a high percentage of clay size particles and high plasticity index. Clay minerals accounts for between 67 and 81 % of the total composition of the Lake Agassiz clay in Winnipeg. The clays' size fractions typically consist of up to 75 % montmorillonite, 10 % illite, and 10 % kaolinite and approximately 5% quartz mineral. Over-consolidation ratio of the clay is generally less than 2.

The clay in the project area is classified to have a very high potential severity of an expansive soil based on the laboratory testing completed and is subject to considerable volume change with change in moisture content. Volumetric increases are usually in the 2% range with swelling pressure generally less than 75 kPa.

The variability of moisture content in the overburden with elevation in the project area is shown in Figure 4-3.



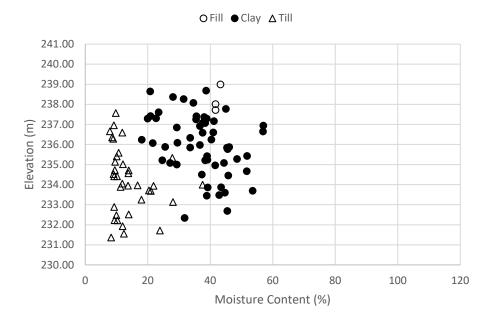



FIGURE 4-3: MOISTURE CONTENT OF OVERBURDEN WITH ELEVATION

#### 4.1.2.2 Stickiness Potential and Clogging Risks

The clay and silt till deposit present at the site has a tendency to develop sticky behaviour (adhesion of cohesive material to each other or to a metal surface). This stickiness may result in the clogging and blockage of trenchless construction equipment including cutterhead, tooling, work chamber, screw conveyors, muck carts, conveyors, slurry lines, or prevent the shield advancement due to excessive friction.

The potential for clogging while tunnelling through the clay and glacial till formations was evaluated using the chart suggested by Hollmann and Thewes (2013). Atterberg Limits (Liquid limit, Plastic limit, and natural moisture content) of cohesive samples tested in the Laboratory and their Plasticity Indices were plotted on Figure 4-4 to determine the corresponding clogging potential of the clay and glacial till. It should be noted that the Hollman and Thewes chart was developed from data collected from fluid supported trenchless shield drives, but are assumed to be applicable to other tunnelling methods.



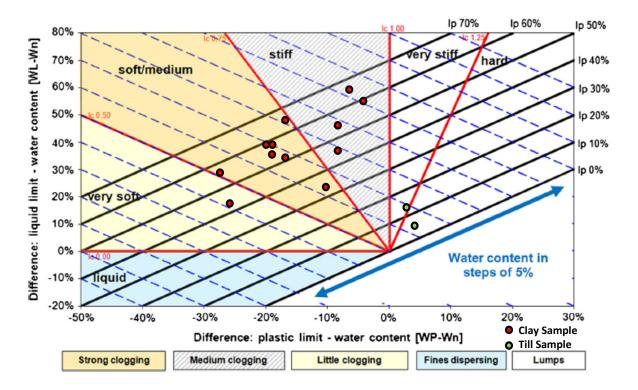



FIGURE 4-4: STICKINESS POTENTIAL OF COHESIVE SOIL

#### 4.1.3 GLACIAL TILL DEPOSIT

The glaciolacustrine clays are underlain by glacial silty tills. Based on the borehole drilling and test pits, glacial silt till was encountered at elevations ranging from 230.7 to 239.5 m within the project area. The glacial till ranged in thickness from 0.4 to 13.6 m. The glacial till may include a transition zone of till lenses in clay and clay inclusions in the till. The composition of the till is variable. The till is of varying consistency with the dense to very dense portions of the deposits being a basal till (hardpan). The upper horizon of the till deposit may be frequently loose and considerably softer, and water bearing like an ablation till (putty till). The upper ablation till typically may have water contents ranging from 10 - 15% while the denser basal till will typically have water contents in the range of 7 - 10%. The upper tills contain more clay, and have a slightly higher plasticity than the lower tills with high silt contain. Unconfined compressive strengths ranging from 3.4 - 3.6 MPa have been reported for very dense tills with a moisture content of about 5% (Reference 4). Young's moduli typically range from 170 to 240 MPa (Reference 4). The tills are highly variable in terms of thickness, density and cobble/boulder content. Pockets of non-combustible gas, often under pressure are occasionally encountered in the till layer (Reference 3).

The uncorrected Standard Penetration Test blow counts ranged from 5 to greater than 50 blows/0.3 m, classifying the material as loose to very dense throughout the project area.

In KGS Group's experience and as observed during this program, zones of cobbles and/or boulders have been encountered within the till deposits such as those at this site. The composition of the boulders will contain granite with diameters up to 600 mm based on previous experience in Winnipeg. The percent volume of boulders per total volume of glacial till excavated is estimated to be up to 6%. The boulder frequency



observed during the 2024 test pitting investigation was approximately 2 to 4 boulders (greater than 300 mm diameter) per cubic meter of glacial till excavated. These zones can cause difficulties during construction and should be anticipated within the deposits in the project area. Photos of boulders encountered during the test pitting investigation are provided in Appendix C.

The extent of the glacial till deposit identified in KGS Group's 2023/2024 geotechnical investigations and the background geotechnical investigation is outlined in Table 4-5 below.

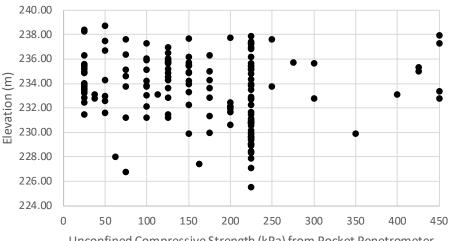
TABLE 4-5: GLACIAL TILL - PROJECT AREA

| Location     | Profile              | Glacial Till     |  |
|--------------|----------------------|------------------|--|
| Project Area | Elevation at Top (m) | 230.16 to 239.54 |  |
|              | Thickness (m)        | 0.40 to 13.56    |  |

Notes:

1) Thickness is based only on boreholes where the bedrock elevation was confirmed.

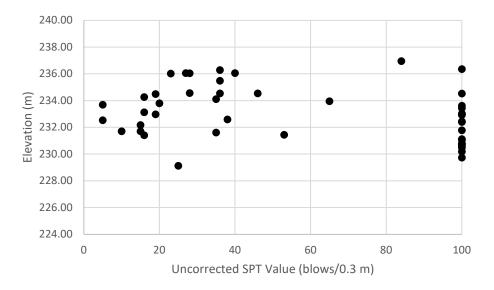
A summary of the laboratory material testing results on the glacial till deposits from the KGS Group 2023 geotechnical investigations and the background geotechnical investigations are summarized in Table 4-6.


TABLE 4-6: SUMMARY OF LABORATORY TEST RESULTS FOR GLACIAL TILL

| Laboratory Test                                             | Glacial Till |
|-------------------------------------------------------------|--------------|
| Moisture Content (%)                                        | 8 to 28      |
| Atterberg – Plastic Limit (%)                               | 14 to 16     |
| Atterberg – Liquid Limit (%)                                | 21 to 27     |
| Plasticity Index (%)                                        | 5 to 13      |
| Grain Size – Gravel (%)                                     | 0 to 25      |
| Grain Size – Sand (%)                                       | 1 to 37      |
| Grain Size – Silt (%)                                       | 15 to 81     |
| Grain Size - Clay (%)                                       | 10 to 84     |
| Uncorrected Standard Penetration Test – Blow Count          | 5 to >100    |
| Unconfined Compressive Strength (kPa) – Pocket Penetrometer | 25 to 450    |

Values of unconfined compressive strength (Cu) with elevation for the glacial till deposit as estimated from a pocket penetrometer during the KGS Group 2023 investigation and background geotechnical investigations throughout the project site are summarized in Figure 4-5.




FIGURE 4-5: UNCONFINED COMPRESSIVE STRENGTH WITH ELEVATION FOR GLACIAL TILL



 $\label{thm:confined} Unconfined\ Compressive\ Strength\ (kPa)\ from\ Pocket\ Penetrometer$ 

Uncorrected Standard Penetration Test (SPT) blow count values (blows/0.3 m) with elevation for the glacial till encountered during the KGS Group 2023 investigation and background geotechnical investigations throughout the project site are summarized in Figure 4-6.

FIGURE 4-6: UNCORRECTED SPT VALUES WITH ELEVATION FOR GLACIAL TILL



Notes:

1) Values of 100 indicate early refusal of the split spoon during SPT.



#### 4.1.4 BEDROCK

The carbonate bedrock within the project area belongs to the Gunn and Penitentiary members of the Stony Mountain Formation. The Gunn and Penitentiary members typically include the lowest strength rock in the Winnipeg region with compressive strengths in the order of 25 to 30 MPa. The Young's modulus (E) generally ranges from 15 to 25 GPa for the stronger rocks in the Winnipeg area, and as low as 4 GPa for the weaker rocks (Reference 4).

Bedrock was cored in seven (7) boreholes during the 2023 KGS Group investigation and within forty-seven (47) boreholes during previous geotechnical investigations. Based on the borehole drilling and test pitting, bedrock was encountered below the silt till at elevations ranging from 222.1 to 237.4 m. The estimated bedrock elevation from the 2019 seismic refraction survey ranged from approximate El. 223 m to 238.5 m along Sturgeon Road and ranged from approximate El. 225 m to 235 m along the northern portion of CentrePort Canada Way (CCW). The estimated bedrock elevation from the 2023 seismic refraction survey ranged from approximate El. 221 m to 231 m on the south side of Sturgeon Access and ranged from approximate El. 225.5 m to 232 m on the north side of Sturgeon Access. The seismic refraction survey results are generally consistent with observations from the drilling. The seismic refraction lines from the 2019 and 2023 surveys are shown on Figure 1.

The bedrock consists of argillaceous limestone to calcareous shale and occasionally overlain by argillaceous dolomite. The dolomite was observed in boreholes/test pits TH23-08, TH23-09, TH23-26, TP24-01, and TP24-02. The measured RQD of the bedrock with elevation is shown in Figure 4-7 below, and a histogram with the RQD distribution is shown on Figure 4-8.

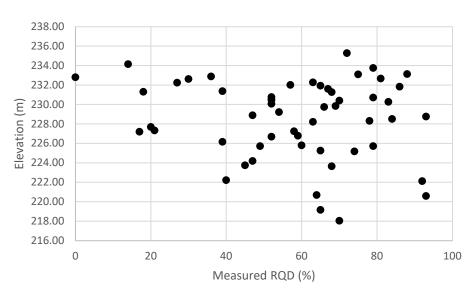



FIGURE 4-7: BEDROCK RQD WITH ELEVATION



30 47% 25 20 Frequency 15 19% 17% 10 11% 5 6% 0 Very Poor (0-25) Good (76-90) Excellent (91-100) Poor (26-50) Fair (51-75) **RQD** Designation

FIGURE 4-8: HISTOGRAM OF DISTRIBUTION OF RQD WITHIN BOREHOLES

Total Core Recovery (TCR) is the total length of the bedrock core recovered and is expressed as the percentage of actual length of the core run (typically 1.5 m). A summary of the TCR values is provided in Figure 4-9.

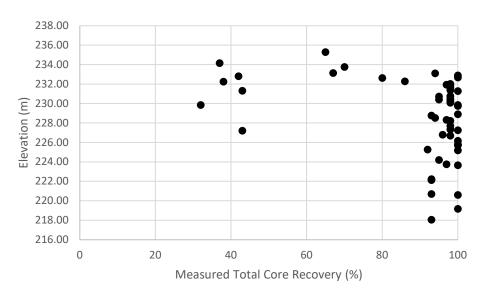



FIGURE 4-9: BEDROCK TOTAL CORE RECOVERY WITH ELEVATION

Uniaxial compressive strength testing was completed on bedrock samples from boreholes TH23-01, TH23-08, TH23-17, TH23-18, TH23-25, and TH23-26. The results for compressive strength testing are summarized in Figure 4-10.



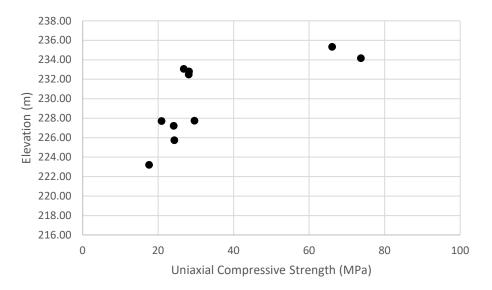



FIGURE 4-10: UCS OF BEDROCK WITH ELEVATION

CERCHAR laboratory testing was completed in accordance with ASTM D7625-22 to determine the CERCHAR Abrasiveness Index (CAI) of the bedrock in order to evaluate the wear on cutting tool components for common trenchless construction techniques (e.g. tunnel boring machine). The results of the CERCHAR testing are summarized in Table 4-7 and a detailed report is provided in Appendix D.

Borehole Sample Sample ASTM Description CAI ID Depth (m) Elevation (m) Classification < Very Low TH23-17 5.18 232.49 0.301 Abrasiveness Very Low TH23-18 5.49 232.52 0.445 Abrasiveness Argillaceous Limestone / Calcareous Shale Very Low TH23-25 227.48 0.525 11.58 Abrasiveness < Very Low TH23-26 10.97 228.12 0.278 Abrasiveness

TABLE 4-7: CERCHAR ABRASIVENESS INDEX RESULTS

#### 4.1.4.1 Excavatability/Rippability of Bedrock

Excavation of bedrock will be required at temporary shaft locations and open-cut trenching. Rippability of bedrock was assessed using the Kirsten method (Kirsten 1988; ASTM STP 984). Rippability indices for bedrock were estimated using the factors provided in Kirsten (1988) at the elevations where UCS data was collected for the bedrock. The Rippability index for bedrock within the CentrePort project area varied from 260 to 6500, indicating a hard to extremely hard ripping classification.



# 4.2 Well Pump Test Results

A summary of measured response to pumping during the 2-hour pumping test are shown in Table 4-8. The pumping test data was analyzed using the Cooper Jacob (1946) method (both time and distance drawdown) method and the hydraulic parameters inferred from the data are shown in Table 4-9.

TABLE 4-8: PUMPING TEST DRAWDOWN RESULTS

| Test Hole | Instrument<br>Type | Tip Depth<br>(m bgs) | Monitored<br>Zone | Distance from<br>Pumping Well<br>(m) | Static Water<br>Level<br>(m below TOC) | GW<br>Elevation<br>(masl) | End of Test<br>Drawdown<br>(m) |
|-----------|--------------------|----------------------|-------------------|--------------------------------------|----------------------------------------|---------------------------|--------------------------------|
| PW23-02   | Standpipe          | 11.73                | Bedrock           | -                                    | 6.096                                  | 233.424                   | 5.57                           |
| TH23-01   | Standpipe          | 21.4                 | Bedrock           | ~ 13                                 | 7.930                                  | 233.147                   | 0.077                          |
| TH23-01   | Vibrating<br>wire  | 9.1                  | Silt Till         | ~ 13                                 | 7.840                                  | 233.28                    | None                           |
| PW23-01   | Standpipe          | 12.95                | Bedrock           | ~ 35                                 | 9.069                                  | 230.281                   | None                           |

TABLE 4-9: TRANSMISSIVITY AND STORATIVITY CALCULATIONS FROM PUMPING TEST

| Data from the<br>Well  | Data Type                            | Method              | Transmissivity<br>(m²/day) | Storativity |
|------------------------|--------------------------------------|---------------------|----------------------------|-------------|
| PW23-02                | Residual Drawdown vs<br>Elapsed Time | Cooper-Jacob (1946) | 1.47                       | -           |
| PW23-02 and<br>TH23-01 | Distance-Drawdown                    | Cooper-Jacob (1946) | 2.9                        | 0.0032      |
|                        | Average Transmissivity (n            | 2.18                |                            |             |

In general, the aquifer was inferred to have an approximate transmissivity of 2.18 m²/day (<500 USgpd/ft), based on the results of the 2-hour, single pumping well test, and the data from the responding observation wells. The drawdown observations from the bedrock monitoring wells (TH23-01, PW23-01) did not show appreciable fracture connectivity to the pumping well. Drawdowns in the limestone aquifer were small but detectable in pumping well PW23-02 and in observation well TH23-01; however, no drawdown was observed in PW23-01. The storativity was inferred to be at 0.0032. It was observed that PW23-02 recovered back to the static groundwater level within the first 10 minutes of the recovery period following pump shutoff.

Radius of influence calculations were not performed; however, it was noted from the drawdown versus time data for TH23-01 that the maximum drawdown at this well location was 0.077 m. It is estimated that assumed that the radius of influence of pumping at 8 USgpm was approximately 13 m.



Details of the pump test assessment are included in Appendix G

### 4.3 Groundwater

Groundwater level monitoring data is presented in Table 3-2.

Potentially difficult groundwater inflows were noted in several boreholes from the 2023 geotechnical investigation and background geotechnical investigations. End of drilling observations are included on the borehole logs in Appendix A and B. After completion of drilling, at least 1.0 m of water was observed in the following boreholes within five minutes:

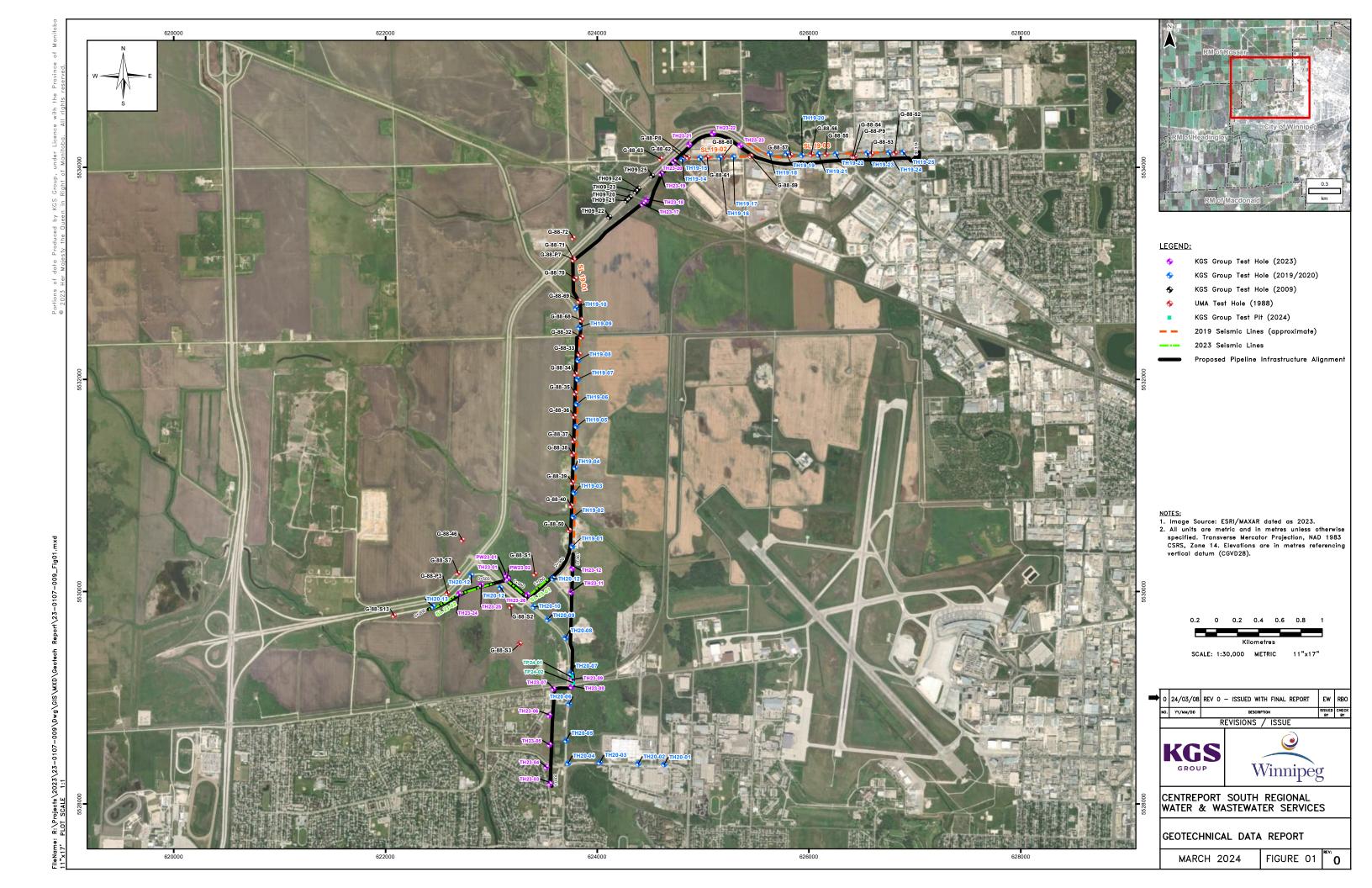
• G-88-32, G-88-33, G-88-34, G-88-37, G-88-38, TH23-01, TH23-21, TH23-22, TH23-23, TH23-24, TH23-25.

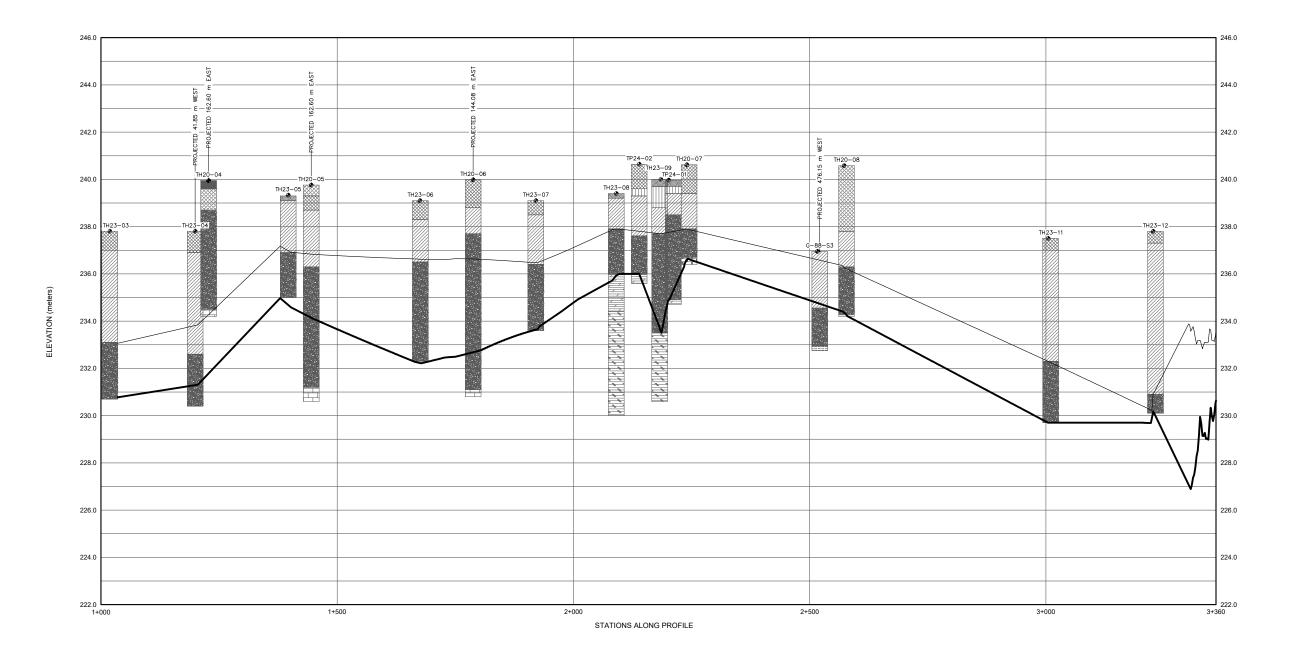
Water seepage was observed in eleven additional boreholes:

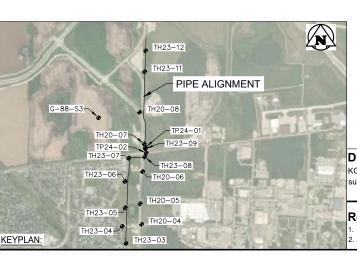
• G-88-40, G-88-50, G-88-55 to G-88-60, G-88-63, TH09-20, and TH09-22, TH23-20.

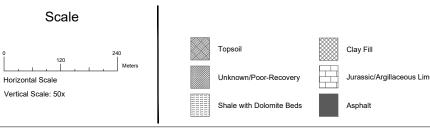
Groundwater levels observed in the 2019/2020 borehole immediately upon the completion of drilling included on the borehole logs may not be representative, as water was used during the sonic drilling program.

In KGS Group's experience, zones of cobbles, boulders, and/or granular layers are known to exist within till deposits. These zones should be expected to be water bearing.





#### 5.0 REFERENCES


- 1. KGS Group (2020). Airport Area West Regional Water and Wastewater Servicing Preliminary Engineering, 2019/2020 Preliminary Geotechnical Investigation Report, Final Version 02. March 2020.
- 2. UMA Engineering Ltd. (1988). Sewer Alignment Investigation and Property Investigation, Lands North of Saskatchewan Ave. December 1988.
- 3. KGS Group (2009). Centre Port Canada Way Geotechnical Investigation, Phase 1 Report, Final. July 2009.
- 4. Department of Geological Engineering, the University of Manitoba, (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 5. Frontier Geoscience Inc. (2020). Seismic Refraction Survey Report, Winnipeg Richardson International Airport, Winnipeg, MB, Final. February 2020.
- 6. Frontier Geoscience Inc. (2024). Seismic Refraction Survey Report, CentrePort Regional S&W Servicing Project, Winnipeg, MB, Final. January 2024.
- 7. KGS Group, Acres Engineering, UMA Engineering (2004). Appendix B, Floodway Channel Pre-Design, Floodway Expansion Project, Project Definition and Environmental Assessment, Preliminary Engineering Report.




## FIGURES









#### Lithology Graphics Organic Soil Organic Clay Till Surface Bedrock Surface (See Note 2) (See Note 2)

## KGS

Disclaimer:

KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of subsurface data.

#### References:

. Frontier Geoscience Inc. (2024). Seismic Refraction Survey Report, CentrePort Regional S&W Servicing Project, Winnipeg, MB, Final. January 2024. 2. Frontier Geoscience Inc. (2020). Seismic Refraction Survey Report, Winnipeg Richardson International Airport, Winnipeg, MB, Final. February 2020.

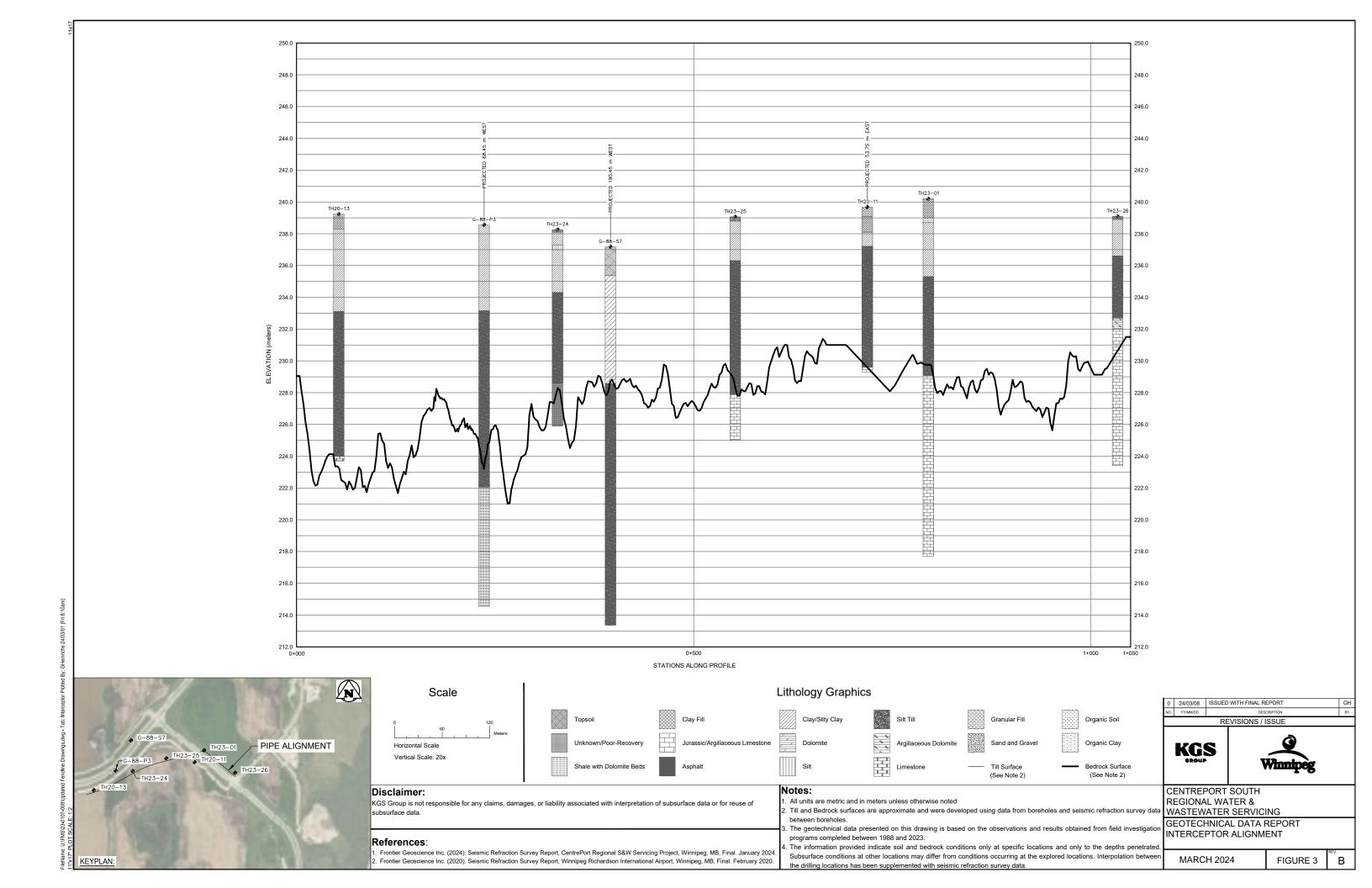
All units are metric and in meters unless otherwise noted

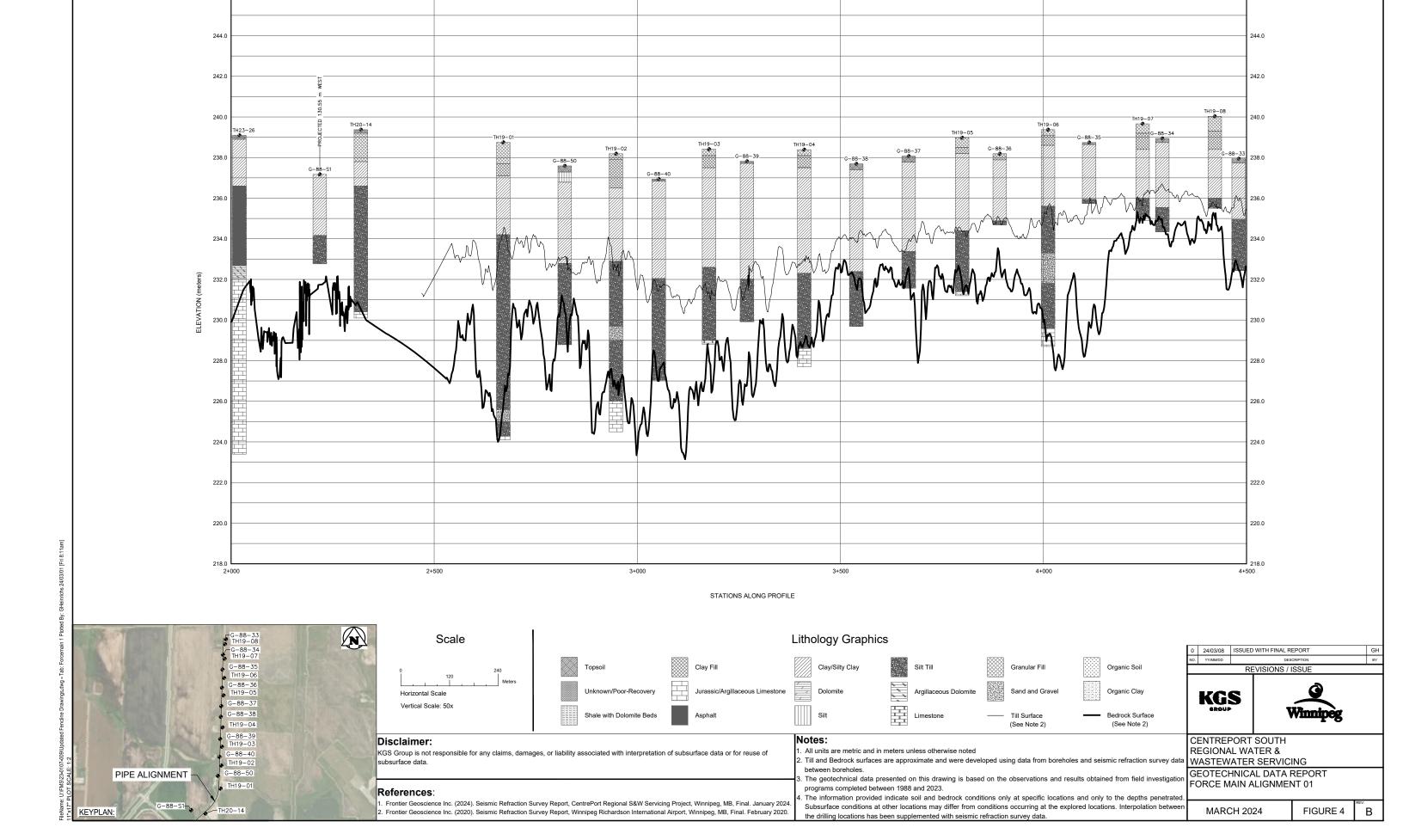
Notes:

2. Till and Bedrock surfaces are approximate and were developed using data from boreholes and seismic refraction survey data between boreholes.

. The geotechnical data presented on this drawing is based on the observations and results obtained from field investigation programs completed between 1988 and 2023.

The information provided indicate soil and bedrock conditions only at specific locations and only to the depths penetrated Subsurface conditions at other locations may differ from conditions occurring at the explored locations. Interpolation between the drilling locations has been supplemented with seismic refraction survey data.


CENTREPORT SOUTH REGIONAL WATER & WASTEWATER SERVICING GEOTECHNICAL DATA REPORT FEEDER MAIN ALIGNMENT


0 24/03/08 ISSUED WITH FINAL REPORT

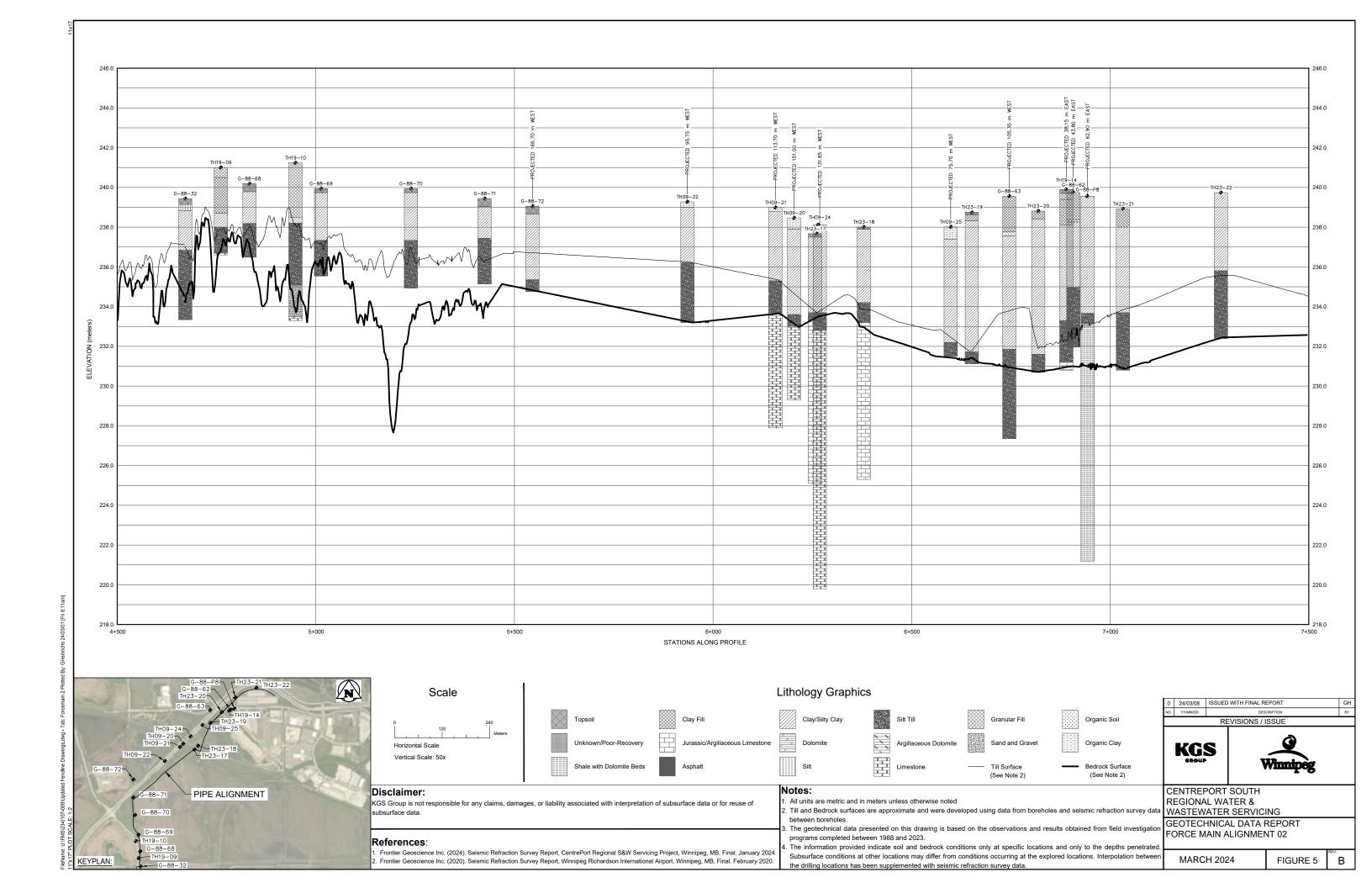

MARCH 2024

FIGURE 2

В







244.0 244.0 242.0 242.0 240.0 240.0 238.0 238.0 236.0 236.0 234.0 232.0 232.0 230.0 230.0 228.0 228.0 226.0 226.0 224.0 222.0 222.0 220.0 220.0 218.0 9+000 7+500 9+400 STATIONS ALONG PROFILE Lithology Graphics Scale 0 24/03/08 ISSUED WITH FINAL REPORT Organic Soil Organic Clay Horizontal Scale KGS Vertical Scale: 50x Bedrock Surface (See Note 2) (See Note 2) Notes: CENTREPORT SOUTH Disclaimer: REGIONAL WATER & KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of . All units are metric and in meters unless otherwise noted Till and Bedrock surfaces are approximate and were developed using data from boreholes and seismic refraction survey data WASTEWATER SERVICING subsurface data. GEOTECHNICAL DATA REPORT . The geotechnical data presented on this drawing is based on the observations and results obtained from field investigati FORCE MAIN ALIGNMENT 03 PIPE ALIGNMENT programs completed between 1988 and 2023. References: . The information provided indicate soil and bedrock conditions only at specific locations and only to the depths penetrated . Frontier Geoscience Inc. (2024). Seismic Refraction Survey Report, CentrePort Regional S&W Servicing Project, Winnipeg, MB, Final. January 2024. Subsurface conditions at other locations may differ from conditions occurring at the explored locations. Interpolation between В MARCH 2024 FIGURE 6 Frontier Geoscience Inc. (2020). Seismic Refraction Survey Report, Winnipeg Richardson International Airport, Winnipeg, MB, Final. February 2020. the drilling locations has been supplemented with seismic refraction survey data.

### **APPENDIX A**

2019/2020 KGS Group Preliminary Geotechnical Investigation Report



#### CITY OF WINNIPEG

# Airport Area West Regional Water and Wastewater Servicing Preliminary Engineering 2019/2020 Preliminary Geotechnical Investigation Report

Final:

Version 02

City of Winnipeg RFP No.:

289-2019

KGS Group Project:

19-0107-009

Date:

March 27, 2020

Prepared by:

**Jacqueline MacLennan**, P.Eng. Geotechnical Engineer

Approved by:

Dami Adedapo, Ph.D., P.Eng.

Geotechnical Department Head/Associate Principal

#### TABLE OF CONTENTS

| 1.0 INTRODUCTION                         | 1 |
|------------------------------------------|---|
| 1.1 Investigation Objectives             | 1 |
| 2.0 PREVIOUS GEOTECHNICAL INVESTIGATIONS | 2 |
| 2.1 1988 Geotechnical Investigation      | 2 |
| 2.2 2009 Geotechnical Investigation      | 2 |
| 3.0 REGIONAL GEOLOGICAL SETTING          | 3 |
| 4.0 2019 FIELD INVESTIGATION PROGRAM     | 4 |
| 4.1 Test Hole Drilling and Soil Sampling | 4 |
| 4.2 Groundwater Monitoring               | 5 |
| 4.3 Geophysical Investigation            | 5 |
| 5.0 FIELD INVESTIGATION RESULTS          | 6 |
| 5.1 Subsurface Characterization          | 6 |
| 5.1.1 Topsoil                            | 6 |
| 5.1.2 fill                               | 6 |
| 5.1.3 Clay(CH)                           | 6 |
| 5.1.4 Silt Till                          | 7 |
| 5.1.5 Bedrock                            | 7 |
| 5.2 Groundwater Monitoring               | 7 |
| 6.0 UNDERSTANDING OF THE PROPOSED WORK   | 9 |
| 7.0 CONSTRUCTION CONSIDERATIONS1         | 0 |

| 7.1 Presence of Cobbles and Boulders | 10 |
|--------------------------------------|----|
| 7.2 Groundwater                      | 10 |
| 7.3 Potential Soft Ground Conditions | 10 |
| 7.4 Rail Crossing                    | 10 |
| 8.0 RECOMMENDATIONS                  | 12 |
| 9.0 CLOSURE                          |    |

#### List of Tables

Table 1: Groundwater Monitoring Results

#### List of Figures

Figure 1: Test Hole Locations

Figure 2: Sturgeon Road Fenceline

Figure 3: CentrePort Canada Way Fenceline

Figure 4: Inkster Boulevard Fenceline

Figure 5: South Sturgeon Road

#### List of Appendices

Appendix A: 1988 Test Hole Logs

Appendix B: 2009 Test Hole Logs

Appendix C: 2019/2020 Test Hole and Photograph Logs

Appendix D: Seismic Refraction Survey Report



#### STATEMENT OF LIMITATIONS AND CONDITIONS

#### Limitations

This report has been prepared for City of Winnipeg in accordance with the agreement between KGS Group and City of Winnipeg (the "Agreement"). This report represents KGS Group's professional judgment and exercising due care consistent with the preparation of similar reports. The information, data, recommendations and conclusions in this report are subject to the constraints and limitations in the Agreement and the qualifications in this report. This report must be read as a whole and sections or parts should not be read out of context.

This report is based on information made available to KGS Group by City of Winnipeg and unless stated otherwise, KGS Group has not verified the accuracy, completeness or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith. KGS Group shall not be responsible for conditions/issues it was not authorized or able to investigate or which were beyond the scope of its work. The information and conclusions provided in this report apply only as they existed at the time of KGS Group's work.

#### Third Party Use of Report

Any use a third party makes of this report or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

#### Geotechnical Investigation Statement of Limitations

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at the site at the time of drilling. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, KGS Group should be notified in order that the recommendations can be reviewed and modified if necessary.



#### 1.0 INTRODUCTION

KGS Group was retained by the City of Winnipeg Water and Waste Department to complete a preliminary engineering assessment for the Airport Area West Regional Water and Wastewater Servicing. The overall goal of the project is to develop a Class 3 cost estimate to determine the extent of the regional infrastructure required to support the proposed industrial and residential developments within the approximately 1,460 Ha of unserviced City lands (located within the AAW site). As part of our scope of services, KGS Group completed geotechnical investigations to facilitate the preliminary design of the water and wastewater systems.

#### 1.1 Investigation Objectives

The objectives of the investigations were to review and collect available geotechnical information for the site, and complete additional investigations to gain a better understanding of the soil along the proposed infrastructure route for the purpose of cost estimates, risk assessment and general groundwater conditions along the planned regional routes at a preliminary level.



#### 2.0 PREVIOUS GEOTECHNICAL INVESTIGATIONS

A number of geotechnical investigations have been completed in the area, which include a geotechnical drilling and seismic survey investigation for Genstar Developments in 1988 and a geotechnical investigation completed by KGS Group in 2009 for the CentrePort Canada Way development. The test holes from the previous geotechnical investigations were considered and incorporated in the development of the site stratigraphy and the associated figures. The results of these geotechnical investigations are summarized below.

#### 2.1 1988 Geotechnical Investigation

In 1988 UMA Engineering Ltd. completed a geotechnical investigation for Genstar Development Co. in the Airport Area West region. The geotechnical investigation was completed along two (2) proposed sewer alignments leading to and within the land parcel proposed for development. The investigation consisted of geotechnical drilling, piezometer installation and single channel hammer seismic survey. A total of 74 test holes were advanced to auger refusal along the proposed sewer alignments at approximately 200 m spacing. Additionally, approximately 200 hammer seismic spreads were laid out on a 200 m grid to estimate the depth to till and bedrock on the western portion of the site.

The following test holes were drilled along the proposed pipe alignment and were used to develop of the soil profiles: G-88-32 to G-88-40, G-88-46G-88-50, G-88-52 to G-88-62, G-88-68 to G-88-71, G-88-P3, G-88-P8, G-88-P9, G-88-S1 to G-88-S3, G-88-S7 and G-88-S13. These 1988 test hole logs are included in Appendix A. The location of the test holes within the vicinity of the site are shown on Figure 1. Details of the geotechnical investigations are outlined in the report titled "Sewer Alignment Investigation and Property Investigation Lands North of Saskatchewan Ave", dated December 1988.

#### 2.2 2009 Geotechnical Investigation

In 2009 KGS Group completed a geotechnical investigation for MMM Group Ltd. for the construction of CentrePort Canada Way (CCW). Test holes were drilled at the CCW and PTH 101 interchange and at the CCW crossing over the CP mainline near Inkster Boulevard. The following test holes were drilled along the proposed pipe alignment and were used in the development of the soil profiles: TH09-20 to TH09-25. These test hole logs are included in Appendix B and the locations are shown on Figure 1. Details of the geotechnical investigation are outlined in the report titled "CentrePort Canada Way Geotechnical Investigation Phase 1 Report", dated July 2009.



#### 3.0 REGIONAL GEOLOGICAL SETTING

Winnipeg geology consisted of carbonate sedimentary bedrock overlaying Precambrian era granite and gneiss. The sedimentary rock consists of limestone, dolomite and to a lesser extent shale. Local geological maps indicate karst topography caused from dissolution of the soluble rock, and a heavily fractured upper bedrock layer. The karst topography is typically infilled with mixtures of silt, sand and gravel till soils.

During the last glacial advance and retreat, Winnipeg's glacial till was deposited by ice masses.

Glaciolacustrine deposits suspended in glacial lakes confined by ice masses settled to overlie the tills.

Additional information on the regional geology can be found in the Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba.



#### 4.0 2019/2020 FIELD INVESTIGATION PROGRAM

The geotechnical field investigation program was developed to meet the objectives stated in Section 1.1 of this report. Based on projects previously completed in the region, variable soil conditions have been identified. Bedrock, till, sand, clay and silt are known to exist at differing elevations, with till and bedrock observed outcrop at the surface in some locations. Seismic refraction was selected in addition to conventional test hole drilling to provide a continuous profile and assist with identifying obstacles and anomalies along the proposed pipe alignment.

#### 4.1 Test Hole Drilling and Soil Sampling

The test hole drilling and sampling programs were completed by KGS Group from September 23 to 28, 2019, and February 3 to 6, 20202. A total of 36 test holes were advanced to bedrock to investigate the subsurface stratigraphic conditions. The information obtained from the site investigations in conjunction with the previous completed investigations was used to developed profiles to facilitate the preliminary design of the water and wastewater lines for the Airport Area West region.

Paddock Drilling of Brandon, Manitoba provided the drilling services using a track mounted sonic drill rig. The sonic drilling approach allowed for full recovery of the clay and till, even through difficult drilling conditions. Soil samples were collected at intervals of 1.5 m (5 ft.) or at changes in soil strata encountered during drilling. The soil samples were visually inspected for material type and classified according to the Modified Unified Soil Classification System (USCS).

Test holes TH19-01 to TH19-10 were drilled on the east shoulder of Sturgeon Road. Test holes TH19-14 to TH19-17 were drilled on the north shoulder of the service road south of Inkster Boulevard (Red Fife Road). Test holes TH19-18 to TH19-22 were drilled on the south shoulder of the service road north of Inkster Boulevard (Park Royale Way) and test holes TH19-23 to TH19-25 were drilled on the north shoulder of Inkster Boulevard between Oak Point highway and Brookside Boulevard. Test holes TH20-01 to TH20-04 were drilled on Murray Park Road and test holes TH20-05 to TH20-10 and TH20-14 were drilled on the east shoulder of Sturgeon Road. Test holes TH20-11 to TH20-13 were drilled on the shoulder of Summit Road, the access road south of CentrePort Canada Way. Test holes were not drilled along the portion of the alignment on the previous Sturgeon Road alignment and along CentrePort Canada Way. Test holes were not drilled along the old Sturgeon Road due to wet ground conditions. The locations of the test holes are shown on Figure 1.

Clay samples were tested with a field Torvane to evaluate consistency and estimate undrained shear strengths of cohesive soils. Pocket penetrometers were used to evaluate the consistency of the till. Upon completion of drilling, the test holes were examined for indications of sloughing and seepage, and then backfilled. Detailed test hole log summary reports incorporating field observations, and field test results are provided in Appendix C. Photographs of the soil samples are included in Appendix C.



#### 4.2 Groundwater Monitoring

A total of five standpipes were installed along the proposed alignment during the 2019/2020 geotechnical investigation. Two standpipes were installed in the bedrock and three standpipes were installed in the till. The installation details of the piezometers are shown on the test hole logs in Appendix C.

#### 4.3 Geophysical Investigation

KGS Group retained the services of Frontier Geoscience Inc to perform seismic refraction surveys along the proposed pipeline alignment from October 1 to 10, 2019. The primary objective of the geophysical survey was to obtain estimates of the depths to till and bedrock along the proposed alignment of the water and wastewater pipelines. The locations of the seismic lines are shown on Figure 1. The results of the seismic refraction survey are included in the Survey Report included in Appendix D.



#### 5.0 FIELD INVESTIGATION RESULTS

#### 5.1 Subsurface Characterization

The stratigraphy at the site is described in this section is based on the exploratory test holes, seismic refraction survey and our understanding of the site geology. Test hole logs from the 1988, 2009, and 2019/2020 geotechnical investigations along the proposed alignment are provided in Appendices A, B and C, respectively.

The approximate stratigraphic boundaries shown on the test hole logs were inferred from soil sampled during the drilling. The engineering characteristics of the subsurface materials are described in the following sub-sections. The soil classification is based on visual examination.

In general, the stratigraphy consists of granular fill overlying clay, silt till and bedrock. The following sections describe the soil and the bedrock encountered during the geotechnical drilling investigation. Fencelines showing soil profiles along the proposed alignment are shown on Figures 2 to 5. The approximate till surface is shown on the fenceline, interpolation between boreholes, however the seismic refraction survey results, included in Appendix D should be consulted for the till and bedrock surface in between boreholes. The seismic refraction survey shows there is variability in the till and bedrock elevations between the boreholes.

#### 5.1.1 TOPSOIL

Topsoil was encountered from existing ground surface to depths of 0.1 to 0.2 m in test holes TH19-14, TH19-25 and TH20-14. The topsoil was black in colour and damp at the time of drilling.

#### 5.1.2 PAVEMENT STRUCTURE

Test holes TH20-01 to TH20-04, TH20-09 and TH20-10 were drilled on the edge of the road surface, through the pavement structure. The asphalt was less than 0.3 m thick and was founded on granular base material.

#### 5.1.3 FILL

A layer of granular fill was encountered in all of the 2019 and 2020 test holes with the exception of TH20-06 and TH20-07. The granular fill varies in thickness from 0.2 to 2.7 m. The granular fill was fine to coarse grained gravel and was described as brown in colour, damp, loose to compact in density, contained some fine to coarse grained sand, and trace silt and trace clay.

Clay fill was encountered below the granular fill in all 2019 and 2020 test holes with the exception of TH19-10, TH19-19, TH19-20, TH19-21, TH19-22, TH20-01, TH20-04, TH20-08, TH20-09, TH20-10, and TH20-14. The clay fill varied in thickness from 0.3 to 2.4 m. The clay fill was mottled brown to grey, damp, firm to stiff, low to high plasticity, contained trace to some fine to coarse grained gravel, trace to some fine to coarse grained sand, some organics and trace rootlets.

#### 5.1.4 CLAY(CH)

High plasticity clay was encountered in all test holes with exception of TH19-23 at various depths ranging from 0.9 to 3 m below grade. The clay was typically mottled brown to grey in colour, damp to moist, stiff to



firm in consistency and of high plasticity. In general, the consistency of the clay decreased with depth. The material contained trace to some silt nodules. The thickness of the clay deposit ranged from XX to YY m. Fine to coarse grained gravel and boulders were encountered in the grey clay near the till interface. The undrained shear strength of the clay deposit, as determined using a field Torvane on disturbed samples, ranged from 30 to 80 kPa, generally decreasing with depth.

Trace to with silt till inclusions were noted in the clay, increasing in frequency with depth in 23 of the 29, 1988 test holes, or approximately 40% of the test holes for that investigation.

#### 5.1.5 SILT TILL

Glacial silt till was encountered below the high plasticity clay at depths ranging from 0.9 to 9.1 m below existing ground surface. Shallow till was encountered at a depth of 2.0 m near Station 6+520, and at depths ranging from 0.9 to 2.0 m near Station 0+900 and from Stations 9+120 to 9+420. The silt till was tan in colour, damp to wet, loose to very dense and contained trace to some fine to coarse grained gravel and some fine to coarse grained sand, and trace cobbles. Boulders and cobbles are commonly found within till and should be anticipated within the deposits at the project site.

#### **Cobbles and Boulders**

As part of the 2019/2020 drilling investigation cobbles were encountered in the clay deposit near the till interface in some test holes. Cobbles were observed within the silt till in majority of the test holes as indicated on the test hole logs. Based on previous works completed by the City of Winnipeg in the vicinity of this project, it is understood that installation of the water and sewer pipes near the clay/till interface and within the till will encounter significant quantities of cobbles and boulders. Zones with increased cobbles and boulders were identified as part of the geophysical investigation and were observed at Stations 3+140 to 3+250, 8+820 to 8+950, 9+000 to 9+030, 9+270 to 9+320, and 9+500 to 9+540.

In KGS Group's experience and as observed during this drilling program, sporadic irregular zones or cobbles and/or boulders have been encountered within the till deposits such as those at this site. These zones can cause difficulties during construction.

#### 5.1.6 BEDROCK

Bedrock was encountered below the silt till at depths ranging from 2.7 to 15.3 m below grade. The bedrock consisted of limestone, was pink to red in color in all test holes with exception of test holes TH19-03, TH19-07, TH19-09, TH19-10, TH19-19, TH19-22, TH19-23, TH19-25, TH20-03, TH20-06 to TH20-10 and TH20-13 where it was noted to be white to yellow, weak, and broken.

Shale bedrock was observed in test hole G-88-P8 and G-88-P9 from the 1988 investigation. The shale was observed at depths ranging from 8.5 to 14.5 m and was described as red to brown in colour, soft and contained dolomite layers.

#### 5.2 Groundwater Monitoring

Five standpipe piezometers were installed as part of the 2019/2020 geotechnical investigation. The installation details for the standpipes are included on the test hole logs included in Appendix C. Since



installation, groundwater monitoring has been completed twice. Measured groundwater levels are listed below in Table 1.

TABLE 1: GROUNDWATER MONITORING RESULTS

| Test Hole ID         | TH19        | 9-04        | TH19-18     | TH20-12     |             |  |  |
|----------------------|-------------|-------------|-------------|-------------|-------------|--|--|
| Approx. Station (m)  | 0+8         | 350         | 5+250       | 10+500      |             |  |  |
| Ground Elevation (m) | 238         | .39         | 239.60      | 239.7       |             |  |  |
| Piezometer No.       | Standpipe 1 | Standpipe 2 | Standpipe 1 | Standpipe 1 | Standpipe 2 |  |  |
| Tip Elevation (m)    | 230.34      | 0.00        | 230.34      | 235. 4      | 227.0       |  |  |
| Monitoring Zone      | Till        | Bedrock     | Till        | Till        | Bedrock     |  |  |
| Date                 |             |             |             |             |             |  |  |
| Oct-28-2019          | 236.44      | 236.33      | 236.44      | -           | -           |  |  |
| Feb-28-2020          | 235.25      | 236.57      | 237.09      | Dry         | 233.56      |  |  |



#### 6.0 UNDERSTANDING OF THE PROPOSED WORK

The goal of this scope of services is to develop a Class 3 cost estimate to determine the extent of the regional infrastructure required to support the future industrial and residential developments within the approximately 1,460 Ha of unserviced City land. The key components of the regional infrastructure needed to support the future development include a sewage lift station to collect the gravity flows; feeder mains to meet the domestic and fire water demands; and sewage force mains to direct the effluent to the City's Inkster interceptor sewer.

At the time of this report, the proposed location of the lift station is at the intersection of CentrePort Canada Way and the Sturgeon Access road. The pipe sizes had been estimated and minimum grades had been applied to several of the longer branches within the network to determine the overall drop from the most extreme limits of the AAW lands to the proposed lift station location. Using this approach, it was determined that the required invert elevation at the station is approximately 226.50 m, or a depth of approximately 12.0 m below the existing ground surface. The total depth of excavation increases to approximately 15.4 m when considering the required station sump, slab thickness, and mud slab.

Wastewater flows from the AAW lands are to be directed from the wastewater lift station to the 1350mm diameter Inkster Interceptor at Inkster and Brookside Boulevard via force mains. The alignment of the force main extends from the location of the lift station (identified previously) and travels east and north along Sturgeon Road to the north limit of the AAW and City lands. The force main then continues north along the east side of Sturgeon Road within the RM of Rosser to the north terminus of Sturgeon Road at CentrePort Canada Way, where a future interchange is planned to be constructed by the Province of Manitoba. The force main then travels northeast along the south side Centerport Canada Way across both the Canadian Pacific rail line and Canadian National rail lines. Finally, the alignment extends due east through the historic Inkster Boulevard extension (within Rosser) towards CentrePort Canada Way, where it continues along CentrePort Canada Way until it terminates at the Inkster interceptor sewer. The alignment is assumed to be on the east side of the Sturgeon Road and the south side of CentrePort Canada Way to avoid the Cartier Water Supply line located on the west side of Sturgeon Road and north side of CentrePort Canada Way. The current design includes two (2) 500 mm force mains, with a burial depth of approximately 2.5 m. The proposed installation method for the pipes will be likely be open cut with minimal trenchless installation at select locations where open cut is not feasible, e.g. under the Canadian Pacific rail line and Canadian National rail lines.

Feeder mains are required to provide domestic and fire protection flows to the future development within the AAW project site. For the estimate, feeder mains are considered to be water pipes 600 mm in diameter or larger. The feeder mains for this project are located south of the geotechnical investigation and were not considered as part of the scope of this investigation.



#### 7.0 CONSTRUCTION CONSIDERATIONS

#### 7.1 Presence of Cobbles and Boulders

As discussed in Section 5.2.3 and confirmed through the seismic refraction survey, there are cobbles and boulders within the silt till and in the clay near the silt till interface. The till contains cobbles and boulders and underground utility installations extending to the clay/till interface, or within the till will encounter cobbles and boulders. Zones within the silt till with increased cobbles and boulders were noted in the seismic refraction survey and are marked on the profiles with a dashed purple line. These zones were noted from the seismic survey at approximate at Stations 3+140 to 3+250, 8+820 to 8+950, 9+000 to 9+030, 9+270 to 9+320, and 9+500 to 9+540. Construction methodologies selected for the work should give due consideration to presence of cobbles and boulders.

#### 7.2 Groundwater

Potentially difficult groundwater inflows were noted in several of the test holes during drilling. After completion of drilling, 1.0 to 2.1 m of water was observed in the following five test holes within five minutes, G-88-32, G-88-33, G-88-34, G-88-37 and G-88-38, Stations 4+120 to 4+220 and 4+870 to 5+220. Water seepage was observed in eleven additional test holes from Stations 3+370 to 3+620, 6+520 to 7+170, and 7+720 to 7+920. (G-88-40, G-88-50, G-88-55 to G-88-60, G-88-63, TH09-20, and TH09-22).

Groundwater levels observed in the 2019/2020 test hole logs immediately upon the completion of drilling included on the test hole may not be representative, as water was used during the sonic drilling progress. As part of the geotechnical investigation, five standpipes were installed within the silt till and bedrock. The piezometers have been monitored twice since September and the measured groundwater levels are shown on Table 1.

In KGS Group's experience, zones of cobbles, boulders and/or granular layers are known to exist within till deposits. These zones should be expected to be water bearing, which may cause difficulties with open cut or trenchless pipe installation methods.

#### 7.3 Potential Soft Ground Conditions

At the time of the geotechnical investigations, soft ground conditions were encountered from Station 5+500 to 6+000, along the old alignment of Sturgeon Road. Due to the soft ground conditions, geotechnical drilling could not be completed. Depending on the alignment of the pipelines, soft ground conditions should be expected during construction. Selected construction methodologies should consider potential soft ground conditions and the required mitigation measures.

#### 7.4 Rail Crossing

The current alignment of the force mains crosses the both the Canadian Pacific rail line and Canadian National rail lines. As part of the CentrePort Canada Way development, KGS Group completed a geotechnical



investigation on either side of the rails. Trenchless installation methods will be required for the pipe installations at these crossings. Additional geotechnical investigations may be required by either Canadian Pacific rail line and Canadian National rail lines as part of the utility crossing permit application.

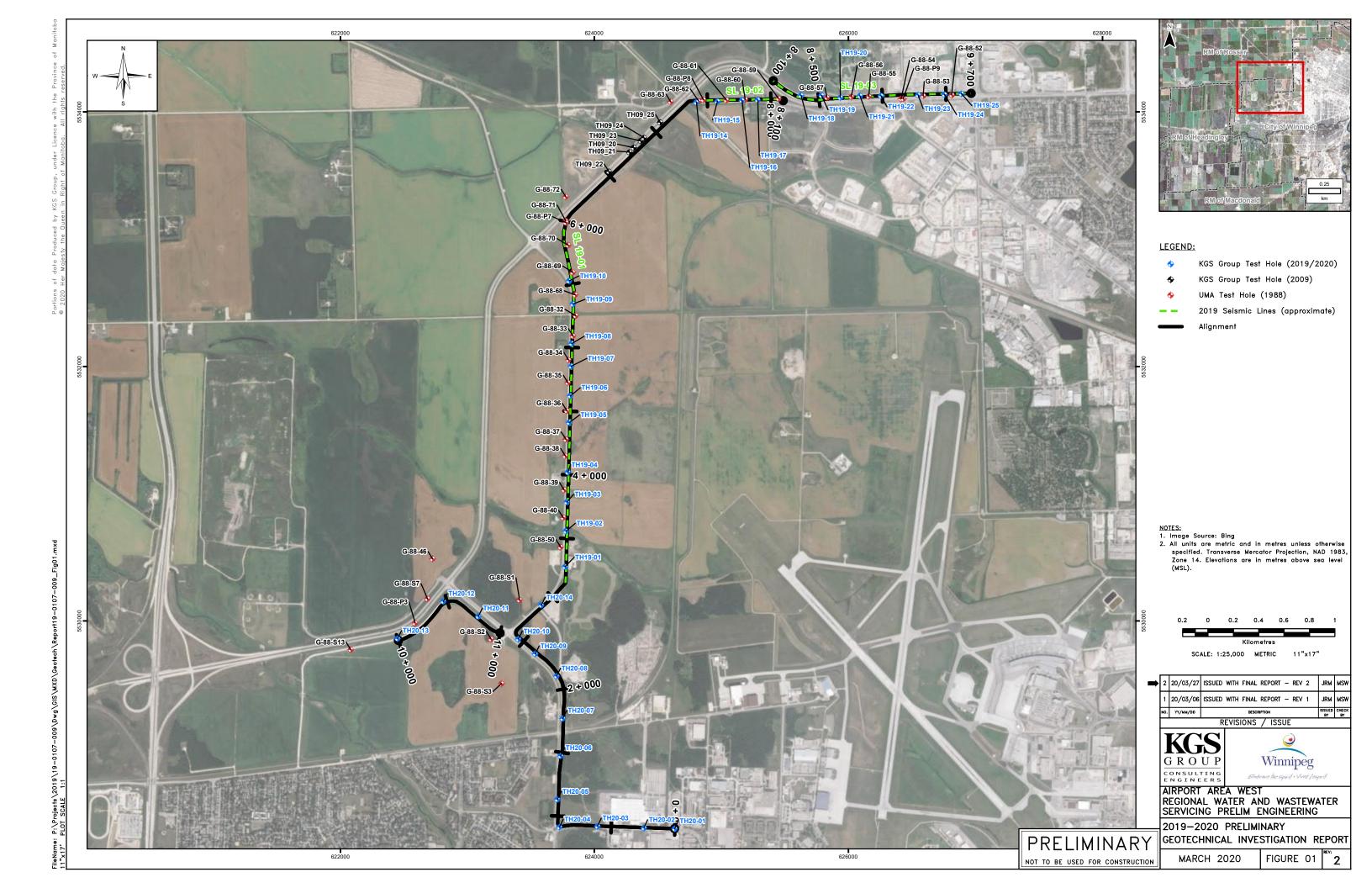
#### 7.5 Variable Ground Conditions

Based on the geotechnical drilling investigation and seismic refraction survey, there is variability in the till and bedrock surface along the proposed pipe alignments. The invert of the proposed pipes will likely be designed through multiple soil strata including clay, till with cobbles and boulders and potentially bedrock. If the pipes are installed using trenchless technologies, the equipment will need to be designed to excavate different soil strata.



#### 8.0 RECOMMENDATIONS

The preliminary geotechnical investigation completed for this project consisted of advancing 36 test holes using sonic drilling methods and seismic refraction along the majority of the proposed alignment. Geotechnical investigations were not completed along the portion of the alignment on CentrePort Canada Way. It is recommended additional geotechnical investigations be completed along this stretch of the route from Station 5+500 to 7+300 in next design phase.




#### 9.0 CLOSURE

The geotechnical investigation conducted by KGS Group describes the overburden deposits and bedrock stratigraphy along the proposed alignment based on the information from the 1988, 2009 and 2019/2020 test hole data and seismic refraction survey. This report presented the geotechnical engineer's best judgement of the subsurface and ground conditions anticipated to be encountered across the project site. In order to develop the fencelines, it was necessary to interpolate between test holes. While the actual conditions encountered in the field are expected to be within the range of the conditions discussed in this document, the spatial variability of subsurface conditions that could be encountered may be more complex than the simplified interpretation presented in this report.



## FIGURES



## APPENDIX A

1988 Test Hole Logs

| NOR                                            | TH OF SASKATCHE            | WAN                   |          | SUBTERRA                     | NEAN LTD.                | <del> </del>    |             |                                              | BADTUALD W     | C 60                                  | 00               |
|------------------------------------------------|----------------------------|-----------------------|----------|------------------------------|--------------------------|-----------------|-------------|----------------------------------------------|----------------|---------------------------------------|------------------|
|                                                | STAR DEVELOPMEN            |                       |          |                              |                          |                 |             |                                              | BOREHOLE No. O |                                       |                  |
| <del></del>                                    | ect engineer: t            |                       |          |                              |                          |                 |             |                                              | ELEVATION 23   |                                       | -01              |
| SAM                                            | PLE TYPE 🗟 GR              |                       | SHIP     | BY TUBE D                    | STURBZI)                 | NO RECOVERY     | " - ]       |                                              | ORE BAFRE      | MESSESSEE (IE)                        | ******           |
| 1_                                             | ▲ BLAK DED 251T<br>1.4 1.8 | 7 (1/m3) ▲<br>2.2 2.5 |          |                              |                          |                 | T           | <u>""                                   </u> | 1              | I HERELEY                             | -1116            |
| €                                              | SHEAR STREM<br>100 200     | ਗਮ (kPa) ■<br>300 ±00 | 1        |                              | SOIL                     |                 | SAMPLE TYPE | 웆                                            | ٨              | her                                   |                  |
| DEPTH                                          | PLASTIC M.C                |                       | USC      |                              |                          |                 | L.          | 별                                            | 01             | 'lifi'                                | Œ                |
| H                                              | TOOL BU                    | LIQUID                |          | DE                           | SCRIPT                   | ION             |             | SAMPLE                                       | com            | ments                                 | DEFTH            |
| -0.0                                           | 40 80                      | 120 163               |          |                              |                          | <b>-</b> -      | ী           | 2/5                                          |                |                                       |                  |
|                                                |                            |                       |          | TOPSOIL                      |                          |                 | +           | -                                            |                | · · · · · · · · · · · · · · · · · · · | -   0.0          |
|                                                |                            |                       | <b>!</b> | SILT-DFY, TAN                |                          |                 | ַן ו        |                                              | 1              |                                       | <b>†</b>         |
| -10                                            |                            |                       |          | CLAY-SOME SILT<br>-SOME TILL | INCLUSIONS               |                 |             |                                              |                |                                       |                  |
| <u> </u>                                       |                            |                       | N        | -BROWN                       | MCEDSICIES               |                 |             |                                              | •              |                                       | -                |
|                                                |                            |                       |          | -ARM                         |                          |                 |             |                                              |                |                                       | 5.0              |
| 20                                             |                            |                       |          |                              |                          |                 |             |                                              | ]              |                                       | +                |
| <b>-</b>                                       |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | Ė                |
| -3.0                                           |                            |                       |          | TILL-SILT WITH O             | RANULAR (SA              | ND TO           | 7           |                                              |                |                                       | Ĺ                |
| ""                                             |                            |                       | MA MA    | BOULDER<br>-WET TO PA        | ?S)( <b>3</b>            | · ·•            |             |                                              |                |                                       | -10.0            |
| <b> </b>                                       |                            |                       | N N      | -#ETTER WI                   | l (EST<br>M DEDTH        |                 |             |                                              |                |                                       | -                |
| 4,0                                            |                            |                       |          | -UTILE CLAY                  | (                        |                 |             |                                              |                |                                       | <u> </u>         |
|                                                |                            |                       | 썴        | -TAN                         |                          |                 |             | İ                                            |                |                                       |                  |
|                                                |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | -15.0            |
| -50                                            |                            |                       | FA.      |                              |                          |                 |             | ļ                                            |                |                                       | -                |
| }                                              |                            |                       | ļģ.      |                              |                          |                 |             |                                              |                |                                       | -                |
| 60                                             |                            |                       | M        | -WATER SEE                   | PAGE                     |                 |             |                                              |                |                                       | į –              |
| ["                                             |                            |                       |          | AUDEE MEDIEA                 |                          |                 | 4           | ļ                                            |                |                                       | 20.0             |
| }                                              |                            |                       |          | AUGER REFUSAL<br>NOTE: APPRO | 20 5.09<br>)Y 1 6.0F W∧T | ER IN THE HOLE  |             | ĺ                                            |                |                                       | -                |
| -7.0                                           |                            |                       |          | in 5                         | MIN.                     | C ( 34 )        |             | - [                                          |                |                                       | -                |
| L                                              |                            |                       |          | NO SLO                       | DUCHING                  |                 |             | į                                            |                |                                       | <b>†</b>         |
|                                                |                            |                       | ]        |                              |                          | •               |             |                                              |                |                                       | 25.0             |
| ₩.0                                            |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | -                |
| -                                              |                            |                       |          |                              |                          |                 |             | ł                                            |                |                                       | }                |
| 9.0                                            |                            |                       | }        |                              |                          |                 |             |                                              |                |                                       | -                |
| ""                                             |                            |                       |          |                              |                          |                 | İÌ          | - 1                                          |                |                                       | -30.C            |
| <b> </b> -                                     |                            |                       |          |                              |                          |                 |             | İ                                            |                |                                       | -30.0            |
| 100                                            |                            |                       |          |                              |                          |                 |             | Ì                                            |                |                                       | -                |
| <u> </u>                                       |                            |                       |          |                              |                          |                 |             | ļ                                            |                |                                       | +                |
| ] ]                                            |                            | : : : :               |          |                              |                          |                 |             |                                              |                |                                       | -<br>-35.0       |
| 710                                            |                            |                       |          |                              |                          |                 |             | -                                            |                |                                       | -                |
| -                                              |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | <b> </b> -       |
| -12.0                                          |                            |                       |          |                              |                          |                 |             | ļ                                            |                |                                       | +                |
| 1240                                           |                            |                       |          |                              |                          |                 |             | ļ                                            |                |                                       | <u> </u>         |
| -                                              |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | H0.0             |
| -13.0                                          |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | -                |
|                                                |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | ├                |
|                                                |                            |                       |          |                              |                          |                 |             |                                              |                |                                       | <u> </u>         |
| 140 1                                          | TTLEA                      | D-n-i-                |          | 7 . 7                        |                          |                 |             | $\perp$                                      |                |                                       | 45.0             |
| UMA Engineering Ltd. COM<br>Winnipeg, Manitoba |                            |                       |          |                              |                          | PLETION DEPTH * | * m         |                                              | COMPLE         | TE.                                   |                  |
|                                                | W11                        | mipeg,                | Mani     | oba                          | LOG                      | CED BY TH       |             | D                                            | TG NO.         | Page 1                                | <del>र्ज</del> 1 |

\*\*

| NORTH OF SASKATCHERAN                    |                | SUBTERRANEAN LTD.                       |                                        |             | BOREHOLE No. (    | - 90 - 22    |
|------------------------------------------|----------------|-----------------------------------------|----------------------------------------|-------------|-------------------|--------------|
| GENETAR DEVELOPMENTS LTD.                |                |                                         | ······································ |             | Project No: 06 -0 |              |
| PROJECT ENGINEER: TW                     |                |                                         |                                        |             | ELEVATION 237.93  |              |
| SAMPLE TYPE GRAB SAMPLE                  | SHELBY TUB     | E MISTURNED                             | NO RECOVERY                            |             | <u> </u>          | WPE INC-TYPE |
| ▲ B.U. ODISTY (Vm3) ▲<br>1.4 1.5 22 2.5  |                | <u> </u>                                | <u></u>                                |             | , with minute     | HT5716-1175  |
| E SHEAR STRENGTH (LPG) B 100 200 300 400 | ļ              | EQ11                                    |                                        |             | ۵.,               | _ ا          |
| 100 200 300 400                          | USC            | SOIL                                    |                                        |             | t Other           |              |
| PLISTIC NC UQUID                         | 7.0            | DESCRIPT                                | MON                                    | SAMPLE TYPE | commer            | eta eta      |
| 40 00 400                                | 1              | DIDUIGI                                 | 1014                                   | 3           | commen            | 一            |
| 0,0 40 80 120 160                        | 12 JOPS        | CHL                                     |                                        |             |                   |              |
| •                                        | CLAY-          | -SOME SILT                              |                                        | 7           | 1                 | -            |
| 10                                       | - 12           | SOME TILL INCLUSIONS                    |                                        | 11          | -                 | -            |
|                                          | - 19           | (MORE WITH DEPTH)<br>BROWN TO DARK BROW | าม                                     |             | }                 | <u> </u>     |
|                                          | - 12           | STIFF                                   | 14                                     |             |                   | 1.,          |
| 20                                       | Ø              |                                         |                                        |             | j                 | 5.0          |
|                                          | N .            |                                         |                                        |             | }                 |              |
|                                          | <b>(</b> )     |                                         |                                        |             | 1                 | }-           |
| 3.0                                      |                |                                         |                                        |             |                   | }            |
|                                          | å πu⊸          | WITH SILT                               |                                        | 7           |                   | -10.0        |
|                                          | ₩ -            | SOME GRANULAR (SAND                     | ) to boulders)                         |             |                   | ľ            |
| 4.0                                      |                | grey<br>Red brown limestone             | WATER DEADISM                          |             |                   | Γ            |
|                                          | NA .           | - (SAME RED BROWN LI                    | MESTONE TO                             |             |                   | -            |
|                                          | light<br>Table | REFUSAL)                                |                                        |             |                   | -15.0        |
| 50                                       | H              |                                         |                                        |             |                   | ļ            |
|                                          | XI             |                                         |                                        |             |                   | <u> </u>     |
| 50                                       | AUGER          | REFUSAL @ 5.54                          |                                        | ۱           |                   | Ĺ            |
| 50                                       | N N            | OTE: WATER ROSE APPR                    | OX. 2.1 IN 5 MIN                       |             |                   | 20.0         |
|                                          |                | NO SLOUGHING                            |                                        |             |                   | -            |
| 7.0                                      |                |                                         |                                        |             |                   | }            |
|                                          |                |                                         |                                        |             |                   | -            |
|                                          |                |                                         |                                        |             |                   | Las a        |
| B.O                                      |                |                                         |                                        |             |                   | 25.0         |
|                                          |                |                                         |                                        |             |                   | -            |
|                                          |                |                                         |                                        |             |                   | Ļ            |
| ).0                                      |                |                                         |                                        |             |                   | +            |
|                                          |                |                                         |                                        |             | ĺ                 | 30.0         |
|                                          |                |                                         |                                        |             |                   |              |
| 00                                       |                |                                         | •                                      |             | ]                 | Ĺ            |
|                                          |                |                                         |                                        |             |                   | -            |
| 10                                       | }              |                                         |                                        |             |                   | -35.0        |
|                                          |                |                                         |                                        |             |                   | F            |
|                                          |                |                                         |                                        |             | 1                 | r            |
| 2.0                                      |                |                                         |                                        |             |                   |              |
|                                          |                |                                         |                                        |             |                   | 40.0         |
| 1 1 1 1 1 1 1 1 1                        |                |                                         |                                        |             |                   | }            |
| 3.0                                      |                |                                         |                                        |             |                   | +            |
|                                          |                |                                         |                                        |             |                   | +            |
|                                          |                |                                         |                                        |             | 1                 | -            |
| THE D                                    | - I            | 1                                       |                                        | Ц_          |                   | 45.0         |
| UMA Engine                               | ering Lt       |                                         | MPLETION DEPTE *                       | * 121       | COMPLETE          |              |
| Winnipeg,                                |                |                                         |                                        |             | DWG NO.           |              |

| NORT           | H OF RASKATCH                                 | ETAN                         | ····                                         |                                         |                 | SUBTERRANEAN I                               | TD           | <del></del>    |              |           | Definition to an                | 0.00        | \ <del>'</del>   |
|----------------|-----------------------------------------------|------------------------------|----------------------------------------------|-----------------------------------------|-----------------|----------------------------------------------|--------------|----------------|--------------|-----------|---------------------------------|-------------|------------------|
|                | TAR DEVELOPM                                  |                              | ,                                            |                                         |                 | DOD THE REAL PROPERTY I                      | 11111        |                |              |           | BOREHOLE No.                    |             |                  |
|                | ECT ENGINEER:                                 |                              |                                              |                                         |                 |                                              |              | <del></del>    |              |           | Project No: 08<br>ELEVATION 239 |             | -01              |
| SAMI           | LE TYPE 🥳 G                                   |                              |                                              | SHIT                                    | BY TUR          | Z DISTURSI                                   | D.           | NO RECOVERY    |              |           | OFE BARRET                      | MENTAL TOR  |                  |
|                | ▲ 834% DONE<br>1.4 1.8                        | (t/m3)<br>2.2                | 5                                            |                                         |                 |                                              |              |                | <del>'</del> | Ţ <u></u> | O. L. Dakara.                   | WHANTIE-    | TIPE             |
| E              | ■ 5HEAR 5TH                                   | <b>₩</b> ♥ĨĦ (k₽a)<br>300 40 |                                              |                                         | •               | Si                                           | OIL          |                | SAMPLE TYPE  | (⊋        | Oth                             |             |                  |
| DEPTH          | PLASTIC M                                     |                              |                                              | USC                                     |                 |                                              |              |                | <u> </u>     | 벌         | ULI.                            | iei.        |                  |
| 吕              |                                               | · .                          | acud<br>i                                    |                                         |                 | DESCF                                        | ≀IPTI        | ON             | Ē            | SAMPLE    | comm                            | ents        | <b>DEPTH (#)</b> |
| 0.0            | 40 60                                         | 120 18                       | <u>a .</u>                                   | - · · · · · · · · · · · · · · · · · · · | 70.75           |                                              |              |                | 775          | 2         |                                 |             | ļ                |
| L              |                                               |                              |                                              |                                         | LTOPS(<br>CLAY- | XL<br>-SOME SILT                             |              |                | _4           |           |                                 |             | 100              |
|                |                                               | : : :                        | :                                            |                                         | _               | BROWN                                        |              |                |              |           |                                 |             |                  |
| -10            |                                               |                              |                                              |                                         | -               | FIRM                                         |              |                |              |           |                                 |             | F                |
| -              |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | <b> </b>         |
| <u>-</u> 20    |                                               | . : : :                      | :                                            |                                         |                 |                                              |              |                |              | }         |                                 |             | -5.0             |
|                |                                               |                              | •                                            |                                         | _               | BROWN TO GRAY                                |              |                |              |           |                                 |             |                  |
| _              |                                               |                              |                                              |                                         | -:              | SOME TILL INCLUS                             | SIONS        |                |              |           |                                 |             | -                |
| -3.0           | <u> </u>                                      |                              |                                              |                                         | -               | UTTLE SILT                                   |              |                |              |           |                                 |             | -                |
| -              |                                               |                              |                                              | K                                       | T-1 -           | 71 T 117                                     |              |                | _            |           |                                 |             | 10.0             |
| 1.5            |                                               |                              |                                              | NA NA                                   | HLL-;           | SILT WITH GRANUL<br>BOULDERS)                | AR (SAN      | D TO           |              |           |                                 |             |                  |
| -4.Ū           |                                               |                              |                                              |                                         | -               | SOME CLAY                                    |              |                |              |           |                                 |             | ĥ.               |
| <u> </u>       |                                               |                              |                                              | <u> </u>                                |                 | AN A LE                                      |              |                | ╛            |           |                                 |             | -                |
| -50            |                                               |                              |                                              |                                         | AUGER<br>NO     | REFUSAL @ 4.5<br>IE: WATER SEEPA             | /<br>GE FRON | 1 4 26 TO 4 57 |              |           |                                 |             | -15.0            |
| _              |                                               |                              | }                                            |                                         |                 | 1.4 OF WATER                                 | IN HOLE      | IN 4-5 MIN     |              |           |                                 |             | -                |
|                |                                               |                              |                                              |                                         |                 | NO SLOUGHING                                 | ;            |                |              |           |                                 |             | -                |
| -50            |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | 20.0             |
| -              |                                               | ···                          |                                              |                                         |                 |                                              |              |                |              | ]         |                                 |             | -<br>-           |
| -7.0           |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | }                |
|                |                                               |                              | :                                            |                                         |                 |                                              |              |                |              | ŀ         |                                 |             | }                |
|                | : : : : :                                     |                              | : 1                                          |                                         |                 |                                              |              |                |              |           |                                 |             | 25.0             |
| -8.0           |                                               |                              | <del>:</del> {                               |                                         |                 |                                              |              |                |              |           |                                 |             | -                |
| -              |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | -                |
| - <b>9</b> .0  |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | t                |
|                |                                               |                              |                                              |                                         |                 |                                              |              |                |              | Ì         |                                 |             | 30.0             |
| _              |                                               |                              |                                              |                                         |                 |                                              |              |                |              | 1         |                                 |             | -                |
| -100           |                                               |                              |                                              |                                         |                 |                                              |              |                | 1            | 1         |                                 |             | -                |
| -              |                                               |                              |                                              |                                         |                 |                                              |              |                | 11           | ı         |                                 |             | -                |
| -110  <br>-110 |                                               |                              |                                              |                                         |                 |                                              |              |                |              | İ         |                                 |             | -35.0            |
|                |                                               |                              |                                              |                                         |                 |                                              |              |                |              | -         |                                 |             |                  |
| -              |                                               | ··········                   | ····                                         |                                         |                 |                                              |              |                |              | - 1       |                                 |             | _                |
| -12.0          |                                               |                              |                                              |                                         |                 |                                              |              |                |              | -         |                                 | Ţ           | - !              |
| -              |                                               |                              |                                              |                                         |                 |                                              |              |                |              |           |                                 |             | <b>-4</b> 0.0    |
| ا مدن          |                                               |                              |                                              |                                         |                 |                                              |              |                | 1 [          | ]         |                                 |             | -                |
| -13.0          |                                               |                              |                                              |                                         |                 |                                              |              |                |              | Ì         |                                 | [           | _                |
| -              |                                               |                              |                                              |                                         |                 |                                              |              |                | +1           |           |                                 |             | -                |
| 448.           | <u>: : : : : : : : : : : : : : : : : : : </u> |                              | <u>:                                    </u> |                                         | <del></del>     | ····                                         |              |                | 1            |           |                                 | }           | 45.0             |
|                | UM                                            | A Eng                        | gine                                         | ering                                   | g Lta           | l.                                           | COMP         | LETION DEFTH   | * 10         |           | COMPLET                         | <del></del> |                  |
|                | W                                             | innip                        | eg,                                          | Mani                                    | <u>to</u> ba    | <u>.                                    </u> | LOGG         | ED BY TH       | · · · · ·    | D         | WG NO.                          | Page 1 of   |                  |
|                |                                               |                              |                                              |                                         |                 |                                              |              | ~              |              | 1_        |                                 | ري ماهما    |                  |

| NOR              | H OF SASKA       | TOHERAN                 |                        | ·              | 190                | PTERRANEAN LTD            |                                           | <del></del> |               |                                               | DODUMENT W.                   | 0 00 7                  | <del></del> |
|------------------|------------------|-------------------------|------------------------|----------------|--------------------|---------------------------|-------------------------------------------|-------------|---------------|-----------------------------------------------|-------------------------------|-------------------------|-------------|
| GEN              | STAR DEVELO      | PNENTS I                | LTD.                   |                | - 1                | Tributation, PID          | <u>*</u>                                  |             |               |                                               | BOREHOLF No. Project No: 06 - |                         |             |
|                  | ect engine       |                         |                        | ·              |                    |                           |                                           |             |               |                                               | ELEVATION 235.6               |                         | -61         |
| SAM              | PLE TYPE         | GRAB SA                 | MPLE                   | SHELR          | Y TUBE             | X DISTURBED               | N                                         | O EECOVERY  | 7             |                                               |                               | MINETERS—               | <b>TVD#</b> |
| _                | 1.4 1            | 10 69 TT (L/n<br>20 2.2 | n3).▲<br>2.6           |                |                    |                           |                                           |             | ΤĬ            | - بي                                          | l i                           |                         | 1172        |
| E                | ■ 5HEAR<br>100 2 | 5TREHOTH (1<br>30 300   | (Pa) <b>II</b><br>∡(n) |                |                    | S01                       | T.                                        |             | E             | 윷                                             | Othe                          | or.                     | £           |
| DEPTH            | PLASTIC          | H.C                     | LIQUED                 | USC            |                    |                           |                                           |             |               | 븼                                             |                               | 71                      | E           |
| =                | <del> </del>     | -                       |                        | Ì              |                    | DESCRI                    | PTION                                     |             | WIPLE TYPE    | SAMPLE                                        | comme                         | ents                    | DEPTH (#)   |
| 0.0              | 40 8             | 0 120                   | 163                    |                | (Alex Soli         |                           | <u>.                                 </u> |             | 10            |                                               |                               |                         |             |
| -                |                  |                         |                        | <b>(8</b> )    | TOPSOIL<br>CLAY-SC | IME SILT                  |                                           |             | 1             |                                               |                               |                         | 100         |
| 10               |                  |                         |                        |                | -50)<br>-BR        | ME TILL INCLUSIO          | NS                                        |             |               |                                               |                               |                         | -           |
| Γ''              |                  |                         |                        | 8              |                    | M TO STIFF                |                                           |             |               |                                               |                               |                         | <b> </b>    |
| <u> </u>         |                  |                         |                        | <b>1</b>       |                    |                           |                                           |             |               |                                               |                               |                         | 5.0         |
| -20              |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | L""         |
| <u> </u>         |                  |                         |                        | N              |                    |                           |                                           |             |               |                                               |                               |                         | -           |
| -3.0             |                  |                         |                        | <b>K4</b>      |                    |                           | <del> </del>                              |             |               |                                               |                               |                         |             |
| -J.U             |                  |                         | : :                    | M              | HLL-SILT<br>Ri     | WITH GRANULAR<br>DULDERS) | (SAND TO                                  | I           |               |                                               |                               |                         | -10.0       |
| -                |                  |                         |                        | {  }           | -\$0)              | ME CLAY                   |                                           | - 1         |               |                                               |                               |                         | -           |
| 4.0              |                  |                         |                        |                | AAT —<br>RIGHRIU   | <br>EFUSAL @ 3.05 (       | <b>ሃ</b> ብ <b>ኮ</b> ለጭ                    |             |               |                                               |                               |                         | <u> </u>    |
| -                |                  |                         |                        |                | NOTE:              | NO SLOUGHING              | an room                                   |             |               |                                               |                               |                         | F           |
| -50              |                  |                         |                        |                |                    | NO WATER                  |                                           |             |               |                                               |                               |                         | -15.0       |
| F3.0             |                  |                         |                        | . []           |                    |                           |                                           |             |               |                                               |                               |                         | <u> </u>    |
| -                |                  |                         |                        |                |                    |                           |                                           |             |               | Į                                             |                               |                         |             |
| -50              |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | -           |
|                  |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | -20.0       |
|                  |                  |                         |                        |                |                    | •                         |                                           |             |               | ĺ                                             |                               |                         |             |
| 7.0              |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         |             |
| -                |                  |                         |                        | 11             |                    |                           |                                           |             |               |                                               |                               |                         | -           |
| <del>-8</del> .0 |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | 25.0        |
| Ĺ                |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | Γ.          |
|                  |                  |                         | : : }                  |                |                    |                           |                                           |             |               | -                                             |                               |                         | _           |
| <b>-9,</b> 0     |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | 70.0        |
| -                |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               | ļ                       | -30.0<br>   |
| -100             |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | -           |
| _                |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | -           |
|                  |                  |                         |                        |                |                    |                           |                                           |             |               | }                                             |                               |                         | -<br>-35.0  |
| -110             |                  |                         |                        |                |                    |                           |                                           |             |               | -                                             |                               |                         | -           |
| -                |                  |                         |                        |                |                    |                           |                                           | İ           |               |                                               |                               | ļ                       | -           |
| -12.0            |                  |                         |                        |                |                    |                           |                                           |             |               |                                               |                               |                         | _           |
| _                |                  |                         |                        |                |                    |                           |                                           | 1           |               |                                               |                               | [                       | -<br>-+3.0  |
|                  |                  |                         |                        |                |                    |                           |                                           | ļ           |               |                                               |                               | }                       | -           |
| -13.0            |                  |                         |                        |                |                    |                           |                                           | ļ           |               |                                               |                               | ţ                       | -           |
| -                |                  |                         |                        |                |                    |                           |                                           | ļ           |               |                                               |                               |                         | _           |
| 440              | 1 1 1 1          | : : :                   | <u> </u>               |                |                    |                           |                                           | İ           | Ì             | ļ                                             |                               |                         | 45.0        |
|                  | Ī                | JMA E                   | ngine                  | ering<br>Manit | Ltd.               |                           | COMPLETIO                                 | N DEPIH *.  | , <b>2</b> 22 |                                               | COMPLETE                      |                         |             |
|                  | <u> </u>         | Winn:                   | ipeg,                  | Manit          | oba                | ]                         | LOGGED BY                                 | <del></del> |               | D                                             | FG NO.                        | Page 1 of               | · 1         |
|                  |                  |                         |                        |                |                    |                           |                                           |             |               | <u>ت</u> ــــــــــــــــــــــــــــــــــــ | ·· - • • · · ·                | i⊜wA <sub>a</sub> ⊨ ryi | '           |

**黎** 

| NOR                | TH OF SASK    | ATCHERA                                       | ν .                                   | ····         | 5           | DIERRANEAN LT         | 3          | · · · · · · · · · · · · · · · · · · ·  |               | _              | DADWIALD A                 | 0.00            | <del>- 23</del> |
|--------------------|---------------|-----------------------------------------------|---------------------------------------|--------------|-------------|-----------------------|------------|----------------------------------------|---------------|----------------|----------------------------|-----------------|-----------------|
|                    | STAR DEVEL    |                                               | LTD.                                  |              |             |                       |            |                                        |               |                | BOREHOLE N                 | <u>5. G−88-</u> | <u>-36</u>      |
|                    | ject engin    |                                               |                                       |              |             |                       | · · · ·    |                                        |               |                | Project No: (              | 0 -0895-26      | 8-01            |
| SAM                | FLE TYPE      | CRAB S                                        | SAMPLE                                | SHOLE        | TUBE        | MISTURBED             | H          | EECOVERY                               | _             |                | ELEVATION 23<br>ORE BARRET |                 |                 |
| ]_                 | # 6.15<br>1.4 | CONSTITUTE                                    | (fix) 🛦                               |              |             | <u></u>               |            | ALCO ILLE                              | <del></del> [ | <u>, i i i</u> | ORE DERREIL                | MINERIN         | E-TYPE          |
| (E                 | ■ SHEAR       | CO-BIT: (1,<br>1,8 2,2<br>5THENOTH<br>200 300 | (k1ºe) ■                              | 1            |             | S0                    | ŧτ         |                                        | 7             | £              |                            |                 |                 |
| DE PIN             | 1             |                                               |                                       | usc          |             |                       |            |                                        |               | m              | } Ot                       | her             |                 |
| 出                  | PLASTIC       | H.C                                           | UQUID                                 | }            |             | DESCRI                | PTION      |                                        | SAIPLE TYPE   | SAMPLE         | com                        | ments           | перти (н)       |
| <del>  0.0</del> - | 40            | 80 120                                        | 180                                   |              |             | 220011                | * 11011    |                                        | 3             | හි             | 0011                       | THETITA         |                 |
| 10.0               |               | : : :                                         | 1 1 1                                 |              | TUPSCIL     |                       |            | ·                                      | +             | -              |                            | ····            | - 6.0           |
| <del> -</del>      |               |                                               |                                       |              | CLAY-50     | ME SILT               |            | ·· · · · · · · · · · · · · · · · · · · | 1             |                |                            |                 | <b>-</b>        |
| -10                |               |                                               | : ; :                                 | N            | –LT         | TLE TILL INCLUSI      | ONS        |                                        |               |                | ļ                          |                 | F               |
| _                  |               |                                               |                                       |              | -8R         | ORE WITH DEPTH<br>OWN | )          |                                        |               |                |                            |                 |                 |
| ļ                  |               |                                               |                                       |              | -ST         | řř.                   |            |                                        |               |                |                            |                 | 5.0             |
| 20                 |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 | -               |
| -                  |               | <u> </u>                                      | : : : : : : : : : : : : : : : : : : : |              |             |                       |            |                                        |               | ;              |                            |                 | -               |
| -3.0               |               |                                               | <u> </u>                              | N            |             |                       |            |                                        |               |                |                            |                 |                 |
| -U.U               |               |                                               | : : :                                 |              |             |                       |            |                                        |               |                |                            |                 | 19.0            |
| -                  |               |                                               |                                       |              | HLL-SILT    | WITH GRANULA          | OF DIAZZ   |                                        |               |                |                            |                 | - 2.00          |
| <b>-4,0</b>        |               |                                               |                                       |              | E<br>} −GR£ | (OULDERS)             |            | <i></i>                                |               |                |                            |                 | -               |
|                    |               |                                               |                                       |              | AUGER P     | FUSAL & 3,51          |            |                                        |               | ĺ              |                            |                 | F               |
|                    |               |                                               |                                       |              | NOTE        | : NO WATER            |            |                                        |               |                |                            |                 | -15.0           |
| - <b>5</b> 0       |               | · · · · · · · · · · · · · · · · · · ·         | ·                                     |              |             | NO SLOUGHING          |            |                                        |               | - }            |                            |                 | -               |
| _                  | ļ <u>.</u>    | : : :<br>••••••••                             |                                       |              |             |                       |            |                                        |               |                |                            |                 | -               |
| -6 Q               |               |                                               | : : :                                 |              |             |                       |            |                                        |               | İ              |                            |                 | -               |
| -00                |               | · · · · · · · · · · · · · · · · · · ·         |                                       |              |             |                       |            |                                        |               |                |                            |                 | -20.0           |
| -                  |               |                                               |                                       |              |             |                       |            |                                        |               | Ì              |                            |                 | -20.0           |
| -7.0               |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 | ļ.              |
|                    |               |                                               |                                       |              |             |                       |            |                                        |               | Ì              |                            |                 | -               |
| •                  |               | -                                             |                                       |              |             |                       |            | <b>!</b>                               | ł             |                |                            |                 | <u> </u>        |
| 8,0                |               |                                               |                                       |              |             |                       |            |                                        | -             |                |                            |                 | 25.0            |
| -                  |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 | -               |
| 4.0                |               |                                               |                                       |              |             |                       |            | İ                                      |               | 1              |                            |                 | +               |
| <del>9</del> .0    |               |                                               | **********                            |              |             |                       |            |                                        |               |                |                            |                 | <u> </u>        |
| •                  |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 | <b>-3</b> 0.0   |
| 108                |               |                                               |                                       |              |             |                       |            | -                                      |               |                |                            |                 |                 |
| -                  |               |                                               | : : 1                                 |              |             |                       |            | ļ                                      |               |                |                            |                 | -               |
| •                  |               |                                               |                                       |              |             |                       |            | }                                      |               |                |                            |                 |                 |
| 110                |               |                                               |                                       |              |             |                       |            | ,                                      |               |                |                            |                 | -35.0           |
| . ,                |               |                                               |                                       |              |             |                       |            | ĺ                                      |               |                |                            |                 | [ ]             |
|                    |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 | - 1             |
| 12.0               |               |                                               |                                       |              |             |                       |            | 1                                      |               | Ì              |                            |                 | -               |
|                    |               |                                               |                                       |              |             |                       |            | İ                                      | ļ             |                |                            |                 | 40.0            |
| 13.0               |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 |                 |
|                    |               |                                               | : :                                   | ]            |             |                       |            | į                                      |               |                |                            |                 |                 |
| Ì                  |               |                                               |                                       |              |             |                       |            |                                        |               |                |                            |                 |                 |
| 140                |               | * : : :                                       | _:                                    |              | <u></u>     |                       |            |                                        |               |                |                            |                 | 45.0            |
|                    | Ì             | UMA E                                         | Ingine                                | ering        | Ltd.        |                       | COMPLETION | DEPTH *.*                              | 111           |                | COMPLE                     | ī <u>s</u>      | <del></del>     |
|                    | <b>-</b>      | Winn                                          | ipeg,                                 | <u>Manit</u> | oba         |                       | LOGGED BY  |                                        |               | n              | TG NO.                     | Page 1          |                 |
|                    |               |                                               |                                       |              |             | <del></del>           |            |                                        |               |                | » 4 MV.                    | Lede            | WI [            |

| NORTH                  | OF SASKATCHEWAN                                                                                                    |            | SUBTERRANEAN LTD.                                                           | •                      |             |           | BOREHOLE No. G-88      | 3-37                  |
|------------------------|--------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|------------------------|-------------|-----------|------------------------|-----------------------|
|                        | ar developments ltd.                                                                                               |            |                                                                             |                        |             |           | Project No: 06 -0899-2 |                       |
|                        | CT ENGINEER: TW                                                                                                    |            |                                                                             |                        |             |           | ELEVATION 237.990 (m)  |                       |
| SAMPI                  | E TYPE TO GRAB SAMPLE                                                                                              | SHELEY TUE | Z X DESTURBIZO                                                              | NO RECOVERY            |             | <u></u>   | ORE BARREL WIFEL       | NE-TYPE               |
| ОЕРТН (м)              | A BLAN DENSTY (L/m3) A 1.4 1.8 2.2 2.5  SHEAR STRENGTH (LFC) III 106 200 300 400  PLASTIC M.C LIQUID 40 80 120 160 | USC        | SOIL<br>DESCRIP                                                             |                        | SAMPLE TYPE | SAMPLE NO |                        | (#)                   |
| 0.0                    |                                                                                                                    | [:] TOPS   | CIL                                                                         |                        | $\top$      |           |                        | <del>-   &amp;0</del> |
| -1 O                   |                                                                                                                    |            | -SOME SILT<br>-LITTLE TILL INCLUSION<br>-BROWN<br>-STIFF                    | S                      |             |           |                        | 5.0                   |
| -20<br>-               |                                                                                                                    |            |                                                                             |                        |             |           |                        | -                     |
| -3.0                   |                                                                                                                    |            |                                                                             |                        |             |           |                        | -13.0                 |
| <b>-4.</b> 0 i         |                                                                                                                    |            |                                                                             |                        |             |           |                        | -<br>-15.0            |
| <b>.</b> 50            |                                                                                                                    |            | -SILT WITH GRANULAR (<br>BOULDERS)<br>-LITTLE CLAY                          | (SAND TO               |             |           |                        | -<br> -<br> -         |
| -60<br>-               |                                                                                                                    |            | -TAN/GREY<br>-WATER SEEPAGE                                                 |                        |             |           |                        | 20.0                  |
| -7. <b>0</b><br>-      |                                                                                                                    | AUG!<br>N  | TR REFUSAL & 6.55<br>OTE: WATER APPROX. 1<br>APPROX. 5 MIN.<br>NO SLOUGHING | M IN HOLE IN           |             |           |                        | -25.0                 |
| <del>-8</del> ,0<br>-  |                                                                                                                    |            |                                                                             |                        |             |           |                        |                       |
| <del>-\$</del> .0<br>- |                                                                                                                    |            |                                                                             |                        | 1           |           |                        | -30.0                 |
| -100<br>-              |                                                                                                                    |            |                                                                             |                        |             |           |                        | 1                     |
| -11 C                  |                                                                                                                    |            |                                                                             |                        |             |           |                        | -35.<br>-             |
| -12.0                  |                                                                                                                    |            |                                                                             |                        |             |           |                        | 40.                   |
| -<br>-13.0<br>-        |                                                                                                                    |            |                                                                             |                        |             |           |                        | <del> </del>          |
|                        |                                                                                                                    |            |                                                                             |                        | j           |           |                        | 45.                   |
| 1+0                    | UMA Engir                                                                                                          | neering I  | td.                                                                         | COMPLETION DEPTH       | * *         | <b>II</b> | COMPLETE               |                       |
|                        | Winnipeg                                                                                                           | Manital    | ba                                                                          | LOGGED BY TH DWG NO. P |             |           |                        | age 1 of 1            |

| NORT                                         | H OF SASKATCHERAN                                                                                    |            | SUBTERRANEAN LTD                                                                                                                                                     |                                                                   |             |           | BOREHOLE No.   | G-88-        | 00                               |
|----------------------------------------------|------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------|-----------|----------------|--------------|----------------------------------|
| GENS.                                        | TAR DEVELOPMENTS LTD.                                                                                |            |                                                                                                                                                                      |                                                                   |             | _         | Project No: 06 |              |                                  |
| PROJE                                        | COT ENGINEER: TW                                                                                     |            |                                                                                                                                                                      |                                                                   |             |           | ELEVATION 23   |              | -01                              |
| SAMP                                         | LE TYPE 👼 GEAR SAMPLE                                                                                | SHELBY TUR | E DISTURBED                                                                                                                                                          | NO ELCOVERY                                                       |             |           | PE BARREL      | WEST DE      | Pi/mr                            |
| ОЕРТН (т)                                    | # BUUL CENSTY (1/m3) # 1.4 1.8 2.2 2.6 # 5HEAR STRENSTH (1/m3) # 100 200 300 400 PLASTIC M.C. LIQUID | USC        | SOI<br>DESCRII                                                                                                                                                       | L                                                                 | SAMPLE TYPE | SAMPLE NO | Oti            | her<br>nents | DEPTH (#)                        |
| 0,0                                          | 40 80 120 180                                                                                        |            |                                                                                                                                                                      |                                                                   | S           | -         |                |              |                                  |
| -1 0<br>-2 0<br>-3.0<br>-4.0<br>-5 0<br>-7.0 |                                                                                                      | TILL       | SILT WITH GRANULAR BOULDERS) WET TO PAT TEST FR CLAY SMALL WATER BEARIN MATER SEEPAGE (FROM MATER BEARING LAYER REFUSAL & 8.08 OTE: WATER ROSE A 5 MIN. NO SLOUGHING | (SAND TO<br>IG LAYER @ 5.50<br>DM 7.6 TO 7.9)<br>R (7.62 TO 7.93) |             |           |                |              | -15.0<br>-15.0<br>-25.0<br>-30.0 |
| 100                                          |                                                                                                      |            |                                                                                                                                                                      |                                                                   |             |           |                |              | <del> </del>                     |
| 110                                          |                                                                                                      |            |                                                                                                                                                                      |                                                                   |             |           |                |              | - <b>35.</b> 0                   |
| 12.0                                         |                                                                                                      |            |                                                                                                                                                                      |                                                                   |             |           |                |              | 40.0                             |
| 13.0                                         |                                                                                                      |            |                                                                                                                                                                      |                                                                   |             |           |                |              | -                                |
| 40-                                          | 773.56 47                                                                                            |            |                                                                                                                                                                      |                                                                   |             |           |                |              | 450                              |
|                                              | UMA Engin                                                                                            | eering Lto | <b>1.</b>                                                                                                                                                            | COMPLETION DEPTH 4                                                | .* m        |           | COMPLE         | 72           |                                  |
|                                              | Winnipeg.                                                                                            | Manitoba   | ì l                                                                                                                                                                  | LOGGED BY TH                                                      | -           | D         | TG NO.         | Page 1       | ref 1                            |

.

|                   | H OF SASKATCHE                                      |                                       |                                        |             | SUPTERRANEAN LTD                     |                    |            |        | BOREHOLE No.     | <u>C_66_9</u> | 6                 |
|-------------------|-----------------------------------------------------|---------------------------------------|----------------------------------------|-------------|--------------------------------------|--------------------|------------|--------|------------------|---------------|-------------------|
|                   | TAR DEVELOPMEN                                      |                                       | D.                                     |             |                                      |                    |            |        | Project No: 68 - |               |                   |
|                   | ECT ENGINEER: T                                     |                                       | ·-···                                  |             |                                      |                    |            |        | ELEVATION 237.7  |               |                   |
| SAME              | IN TYPE GR                                          | 48 SAM                                | PLE                                    | SHET.       | BY TUBE DISTURBED                    | NO RECOVERY        |            |        | COPE BARRET      | WIFE IN E-1   | YPE               |
| €                 | ▲ BALK CONST<br>1.4 1.5<br>■ 5HEAR STREW<br>106 200 | 2.2                                   | 2.5                                    |             |                                      |                    | بيا        |        |                  |               |                   |
| <del> </del>      | 106 200                                             | 300 P                                 | a) <b>3</b><br>400                     | HOO         | S01                                  | IL .               | WAPLE TYPE | 욷      | Othe             | r.            | $\equiv$          |
| HE A HE           | PLASTIC M.C                                         |                                       | LIQUED                                 | USC         | DESCRI                               | DTION              | PIE        | SAMPLE |                  |               | DEPTH (H)         |
| 1                 | 40 80                                               | 120 1                                 | <del> </del>                           |             | DESCRI                               | FIION              | <b>F</b>   | द्ध    | comme            | nts           |                   |
| <del>5.0</del>    | 10 00                                               | 120                                   |                                        | 77          | JOPSCIL                              |                    | _          | -      |                  |               | 20                |
| +                 |                                                     |                                       |                                        |             | CLAY-SOME CLAY                       |                    | 1          |        |                  |               | -                 |
| -10               |                                                     | . <u></u>                             |                                        |             | -BROWN<br>-SOME TILL INCLUSIO        | NS .               |            |        |                  |               | <u> </u>          |
| _                 |                                                     |                                       |                                        |             | -STIFF                               | 1 ( )              |            | Ì      |                  |               |                   |
|                   |                                                     |                                       |                                        |             |                                      |                    |            |        |                  |               | 5.0               |
| -20               |                                                     | ·•····                                |                                        |             |                                      |                    | İ          |        |                  |               | -                 |
| <b> </b> -        |                                                     |                                       |                                        |             |                                      |                    | ļ          |        |                  |               | -                 |
| 3.0               |                                                     |                                       |                                        | <b></b>     |                                      |                    |            |        |                  |               | -                 |
|                   |                                                     |                                       |                                        | <i>(</i> 2) |                                      |                    |            |        | ļ                | ļ             | -10.0             |
|                   |                                                     |                                       |                                        | <b>8</b>    |                                      |                    |            |        |                  |               | _                 |
| 4.0               |                                                     | · · · · · · ·                         | ::                                     |             |                                      |                    |            |        |                  | ļ             | -                 |
| - 1               |                                                     | ·                                     |                                        | <b>X</b>    |                                      |                    |            |        |                  | į             | -                 |
| -50               |                                                     |                                       |                                        |             |                                      |                    |            |        | <u>.</u>         |               | -15.0             |
|                   |                                                     |                                       |                                        |             |                                      |                    |            |        | -                |               | -                 |
|                   |                                                     |                                       | ······································ |             |                                      |                    |            |        |                  |               | <del>-</del>      |
| -50 J             | <del>- </del>                                       | · [                                   | <del>}</del> {                         | M           | TILL-SILT WITH GRANULAR              | (SAND TO           | 7          |        |                  |               | _                 |
| - 1               |                                                     | <u>;</u> ;                            |                                        | l M         | BOULDERS)<br>-DAMP                   | •                  |            |        |                  |               | -20.0<br>-        |
| -7.0              |                                                     | : :                                   | : ; }                                  |             | -TAN/GREY                            |                    |            |        |                  | <br>          | _                 |
|                   |                                                     | : :                                   |                                        | N N         | -WATER SEEPAGE                       |                    |            |        |                  | }             | -                 |
| <u> </u>          |                                                     | : :                                   |                                        | M           |                                      |                    |            |        |                  |               | -<br>-25.0        |
| - <b>5</b> .0     |                                                     | <u></u>                               |                                        |             | AUGER REFUSAL @ 7.93                 |                    | -          |        |                  | }             | -                 |
| -                 |                                                     | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |                                        |             | NOTE: TRACE OF WATER                 | IN HOLE            |            |        |                  | ŀ             | •                 |
| 7.0               | · · · · · · · · · · · · · · · · · · ·               | <u> </u>                              |                                        |             | NOTE: TRACE OF WATER<br>NO SLOUGHING | _                  |            |        |                  | ţ             | <del>-</del><br>- |
|                   |                                                     |                                       |                                        |             |                                      |                    |            | i      |                  | <u> </u>      | -30.0             |
|                   |                                                     |                                       |                                        |             |                                      |                    |            |        |                  | ŀ             | -                 |
| -100              |                                                     |                                       |                                        |             |                                      |                    |            |        |                  | ļ             | <u>-</u>          |
| - 1               |                                                     |                                       | <u> </u>                               |             |                                      | -                  |            |        |                  | [             |                   |
| 110               |                                                     | : ; ;                                 |                                        |             | •                                    |                    |            | i      |                  | Ĥ             | 35.0              |
| [ ]               |                                                     |                                       |                                        |             |                                      |                    |            |        |                  |               | -                 |
|                   | * * * * * *                                         |                                       | i i                                    |             |                                      |                    |            |        |                  | -             | - ;               |
| -12.0             | ····                                                | (                                     |                                        |             |                                      |                    |            |        |                  | }             | •                 |
| <u> </u>          |                                                     |                                       |                                        |             |                                      |                    |            | ļ      |                  |               | 40.0              |
| -13.0             |                                                     |                                       |                                        |             |                                      |                    |            |        |                  |               | .                 |
|                   |                                                     |                                       |                                        |             |                                      |                    |            |        |                  | -             | .                 |
|                   |                                                     |                                       |                                        |             |                                      |                    |            |        |                  | <u> </u>      | ,                 |
| <del>  148L</del> | IIM                                                 | Fn                                    | gir                                    |             | K+1 v                                | ON OTHER PROPERTY. |            |        |                  |               | 45.0              |
|                   | Wie                                                 | n Biz                                 | zea<br>remit                           | Nev;        | g Ltd.<br>toba                       | COMPLETION DEPTH   |            |        | COMPLETE         | <del></del>   |                   |
| <u> </u>          | 77 1.                                               |                                       | <u> </u>                               | nigili      | wba                                  | LOGGED BY TH       |            | 1      | DWG NO.          | Page 1 of     | 1                 |

|              | H OF SASKATCHERAN                                                                  |        | SUPTERFANEAN LTI                       | ) <u>.                                    </u> |               | BOREHOI         | 1 No. G-88     | _40           |
|--------------|------------------------------------------------------------------------------------|--------|----------------------------------------|------------------------------------------------|---------------|-----------------|----------------|---------------|
|              | TAR DEVELOPMENTS LTD.                                                              |        |                                        |                                                | <del></del> - |                 | No: 08 -0898-2 |               |
|              | ECT ENGINEER: TW                                                                   | T"7    |                                        |                                                |               |                 | )¥ 237,020 (m) |               |
| Sener        | FLE TYPE TO GRAB SAMPLE                                                            | SHID   | BY TUBE X DISTURBED                    | NO RECOVERY                                    |               | CORE BARE       | FI. WIFELL     | NE-TYPE       |
| E            | ▲ BULK DENSITE (L/m3) ▲ 1.4 1.8 2.2 2.5 ■ SHEAR STITEMENT (L/Pe) ■ 100 200 300 400 | _      | 9.5                                    |                                                | إبرا          |                 |                |               |
|              | 100 200 300 400                                                                    | usc    | SO.                                    | IL.                                            | 连             | 윤               | Other          | $\equiv$      |
| DEPTH        | PLASTIC NLC LIQU                                                                   | ه کان  | DESCRI                                 | PTION                                          | SMIPLE TYPE   | SAMPLE          | comments       | DEPTH (#)     |
| 0.0          | 40 80 120 180                                                                      |        | DE00141                                | 1 11011                                        | 3             | क्ष '           | ommenta        | 25            |
| 1            |                                                                                    | 7      | NOPSOIL                                |                                                | A +           |                 |                | as            |
|              |                                                                                    |        | CLAY-SOME SILT<br>-BROWN               |                                                |               |                 |                | Ė             |
| 10           |                                                                                    | { 8    | -TR TILL INCLUSIONS                    |                                                |               | ļ               |                | -             |
| -            |                                                                                    |        | (MORE WITH DEPTH<br>-STIFF             | }                                              |               |                 |                | F             |
| -20          |                                                                                    |        |                                        |                                                |               |                 |                | 5.0           |
|              |                                                                                    |        |                                        |                                                |               |                 |                | -             |
|              |                                                                                    |        | . TD (いかけい) する ちゃっ                     | V 64 XV                                        |               |                 |                | <b> </b>      |
| -3.0         |                                                                                    |        | -transition to gre                     | r CLAY                                         |               |                 |                | -10.0         |
| }            |                                                                                    | //     |                                        |                                                |               |                 |                |               |
| <b>-4.</b> 0 |                                                                                    |        |                                        |                                                |               |                 |                | <del> -</del> |
| -            |                                                                                    |        |                                        |                                                |               |                 |                | F             |
| -E0          |                                                                                    |        |                                        |                                                |               | ļ               |                | -15.0         |
|              |                                                                                    |        | TILL—SILT WITH GRANULAR<br>BOULDERS)   | (SAND TO                                       | ٦             |                 |                | F             |
| -            |                                                                                    |        | -TR CLAY                               |                                                |               |                 |                | F             |
| -60          |                                                                                    |        | -WET TO PAT TEST<br>-TAN               |                                                |               |                 |                | ŀ             |
| -            |                                                                                    |        | -DENSE                                 |                                                |               |                 |                | 20.0          |
| -7.0         |                                                                                    |        |                                        |                                                |               |                 |                |               |
| "."          |                                                                                    |        |                                        |                                                |               |                 |                | -             |
| •            |                                                                                    |        |                                        |                                                |               |                 |                | 25.0          |
| <b>⊣9,</b> 0 |                                                                                    |        |                                        |                                                |               |                 |                | -             |
| -            |                                                                                    |        |                                        |                                                |               | }               |                | <b> </b>      |
| <b>-9.0</b>  | · · · · · · · · · · · · · · · · · · ·                                              |        |                                        |                                                |               |                 |                | [             |
|              |                                                                                    |        |                                        |                                                |               |                 |                | 30.0          |
| ا ۔ ۔ ا      |                                                                                    |        | _WATED CETTAGE                         |                                                |               |                 |                | <u> </u>      |
| -100         |                                                                                    | "   T  | -WATER SEEPAGE<br>AUGER REFUSAL Ø 9.91 |                                                | 1             |                 |                | F             |
| -            |                                                                                    | {      | NOTE: TR WATER IN H                    | DLE                                            |               |                 |                | -             |
| -110         |                                                                                    |        | NO SLOUGHING                           |                                                |               |                 |                | <b>~35</b> .0 |
| -            |                                                                                    |        |                                        |                                                |               |                 |                | -             |
| -12.0        |                                                                                    | ] ]    |                                        |                                                |               |                 |                | }             |
| 12.0         |                                                                                    | 7 ]    |                                        |                                                |               | 1               |                | +0.0          |
| -            |                                                                                    |        |                                        |                                                |               |                 |                | -             |
| -13.0        |                                                                                    | -{     |                                        |                                                |               |                 |                | <b>-</b>      |
| -            |                                                                                    | .      |                                        |                                                |               |                 |                | Į į           |
| 140          | <u>_::::::::::::::::::::::::::::::::::::</u>                                       |        |                                        |                                                |               |                 |                | 45.0          |
|              | UMA Engi                                                                           | neerin | g Ltd.                                 | COMPLETION DEPTH *                             | .* 20         | CO              | MPLETE         |               |
|              | Winnipeg                                                                           | , Mani | toba                                   | LOGGED BY TH                                   | ····          | DWG NO.         |                | 1 of 1        |
|              |                                                                                    |        | · · · · · · · · · · · · · · · · · · ·  | 1                                              |               | ) = · = · · · · | علامه ا        | +             |

**发展** 

|                   |                          |                                        | ripeg,       |                                      |                                      | LOGGED BY TH     |             | DWG                                              | NO.                  | Page 1        | of 1          |
|-------------------|--------------------------|----------------------------------------|--------------|--------------------------------------|--------------------------------------|------------------|-------------|--------------------------------------------------|----------------------|---------------|---------------|
| •                 |                          | UMA I                                  | Engin        | eerin                                | g Ltd.                               | COMPLETION DEPTH | *.* m       | 1                                                | COMPLE               | TIS           | <del></del> - |
| <del>. 40</del> - |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | 450           |
| -13.0<br>-        |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | Ł             |
| . 11.0            |                          | <del>;</del>                           |              |                                      |                                      |                  |             |                                                  |                      |               | -             |
| 12.0              |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | 40.0          |
|                   |                          | ;;;;;                                  |              |                                      |                                      |                  |             |                                                  |                      |               | F             |
| 110               |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               |               |
|                   |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | -35.0         |
| 100               |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | +             |
|                   |                          |                                        |              |                                      | SOME SLOUGHING                       | FROM 5.5 TO 7.3  |             |                                                  |                      |               | -30.0         |
| <b>5.</b> 0       |                          | · · · · · · · · · · · · · · · · · · ·  |              |                                      | NOTE: WATER SEEPAGE<br>TILL LAYER    |                  | -           |                                                  |                      |               |               |
|                   |                          |                                        |              | <u> </u>                             | AUGER REFUSAL 4 8,23                 |                  | +           |                                                  |                      |               | E             |
| <b>9</b> ,0       |                          |                                        |              |                                      | DRIER -DENSE                         | E OMARI MAR      |             |                                                  |                      |               | 25.0          |
| 7.0               | , , ,                    |                                        |              |                                      | -TILL BECOMING MOR                   | F CANBY AND      |             |                                                  |                      |               | _             |
| 7.0               |                          |                                        |              | 3                                    | -LAYER OF BOULDER                    | 5 3.49 IV 6./]   |             |                                                  |                      |               | -             |
| 5 O               |                          |                                        |              |                                      | -IMM/GRET<br>-IMM/GRET               |                  |             |                                                  |                      |               | 20.0          |
|                   |                          |                                        |              |                                      | TILL—SILT WITH GRANULAR<br>BOULDERS) | OT CINAZ)        |             |                                                  |                      |               | -             |
| 5 0               |                          |                                        |              |                                      | THE SET WEST SECTION                 | (C) (A) (C)      |             |                                                  |                      |               | -15,          |
|                   |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | Ē.,           |
| <b>4</b> ,0       |                          |                                        |              |                                      |                                      |                  |             | ļ                                                |                      |               | F             |
| 3.0               |                          | 4                                      |              |                                      |                                      |                  |             |                                                  |                      |               | -10.          |
|                   |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               |               |
| 20                |                          |                                        |              |                                      |                                      |                  |             |                                                  |                      |               | E             |
|                   |                          |                                        |              |                                      | -Brown<br>-Stiff                     |                  |             |                                                  |                      |               | -5.0          |
| 10                |                          |                                        |              |                                      | CLAY-SOME SILT<br>-TILL INCLUSIONS   |                  |             |                                                  |                      |               |               |
| <del>0.0</del>    | 1 1 1                    | SV 123                                 | 18G          |                                      | 10PSOIL                              |                  | ++          | <del>                                     </del> |                      |               | 0.0           |
|                   | PLASTIC +0               | M.C<br>80 120                          | UQUID        |                                      | DESCRI                               | PTION            | dias        | SAMPLE                                           | comn                 | nents         |               |
| DEPTH (m)         | 100 2                    | 10 300                                 | #LINI        | USC                                  | 50                                   |                  | SAMPLE TYPE | 울 <br>빛                                          | Oth                  | ner           | перти (н)     |
|                   | ▲ B.J.s.<br>1.4          | DENSITY (L/r<br>1.8 2.2<br>STRENGTH (I | n3) ▲<br>2.6 |                                      | <u></u>                              |                  | 1. 1        | <del>-</del>                                     | DARRIEL              | Anathier-     | TYPE          |
|                   | LE TYPE                  | े क्षिया हा                            | MPLE         | Shoo                                 | ET TUBE DESTURBED                    | NO EXCOVERY      |             |                                                  | FATION 238<br>BARRYA | 150 (m)       | <b>4</b> /100 |
|                   | TAR DEVELO<br>BOT ENGINE |                                        | LTD.         | ···································· |                                      |                  |             | Proj                                             | ect No: 06           | -0899-266     |               |
| مكذا لهيدي        |                          |                                        |              |                                      | SUBTERPANEAN LTD                     | <u>r</u>         |             | 11000                                            | EHOLF No.            | <u>G-88-4</u> | +17           |

| NOR             | TH OF BASE    | ATCHEVA                                           | N .                                    |               | 5             | UBTERRANEAN LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rd.          |                                        | <u>.</u> .  |          | PACTUALD H.                     | C 00     | En                                           |
|-----------------|---------------|---------------------------------------------------|----------------------------------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|-------------|----------|---------------------------------|----------|----------------------------------------------|
| GEN!            | TAR DEVEL     | OPMENTS                                           | LTD.                                   |               |               | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |              |                                        |             |          | Project No. 04                  |          |                                              |
|                 | ECT ENGIN     |                                                   |                                        | ·· <u>·</u> · |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          | Project No: 08<br>ELEVATION 237 |          | -VI                                          |
| SAM             | PLE TYPE      | GRAB S                                            | HAPLE                                  | SHI           | BY TUHE       | DISTURBED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )            | NO RECOVERY                            | <u> </u>    | <u> </u> |                                 |          |                                              |
|                 | ▲ BUD         | DB-657: (t)<br>1.8 22<br>8 5185967:H -<br>200 300 | m3; A                                  |               |               | K-2 12 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | - and and others                       |             |          | VIVE DARKEL                     | MINE INC | -TYPE                                        |
| €               | <b>■ SHEA</b> | F STEENSTH                                        | 2.6<br>(b³c) ■                         |               |               | פר                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \TT          |                                        |             | 욷        | ļ <u></u>                       |          |                                              |
|                 | 100           | 200 300                                           | 40)                                    | USC           |               | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )IL          |                                        | <u></u>     | щ        | 0 է ի                           | er       | <b>E</b>                                     |
| DEPTH           | PLASTIC       | KC                                                | BQUD                                   | 120           |               | DESCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TPT          | ΛN                                     | SAMPLE TYPE | SAMPLE   | comm                            | ionta    | DEPTH (#)                                    |
|                 | 40            | 80 120                                            | 160                                    |               |               | DESCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 11        | 011                                    | 3           | F        | Comm                            | ETTE     | 빌                                            |
| <del>-0.0</del> |               |                                                   |                                        |               | TOPSOIL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u></u> .                              | +           |          | <u> </u>                        | <u> </u> | - 45                                         |
| -               |               |                                                   | · <u>·</u> ·········                   |               | SILT-LI       | TILE CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | ······································ | -           |          |                                 |          | }                                            |
| -1 0            |               |                                                   | <u> </u>                               |               | ነ -01         | RY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                                        | Я           |          |                                 |          |                                              |
|                 |               |                                                   |                                        |               | -1/<br>CLAY-5 | OME SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                        |             |          |                                 |          |                                              |
| _               |               |                                                   |                                        |               | -B            | ROWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                                        |             |          | ļ<br>                           |          | -5.0                                         |
| -2 0            |               |                                                   |                                        | <b>6</b>      | -51           | NFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                        |             |          |                                 |          | -                                            |
| -               |               |                                                   |                                        | (A)           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | -                                            |
| 7.4             |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          |                                              |
| 3.0             |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | -10.0                                        |
| -               |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | }                                            |
| <b>4</b> ,0     |               | : : :                                             | : : <u> </u>                           |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             | :        |                                 |          | +                                            |
|                 |               | : : :                                             |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          | •                               |          | -                                            |
| •               |               | ······································            |                                        | 1/2           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | 15.0                                         |
| -50             |               |                                                   |                                        | 12            | TILL-SIL      | T WITH SAND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D GRAV       | 91                                     | 7           |          |                                 |          | 1350                                         |
| -               |               |                                                   |                                        | 溢             | -50           | OME COBBLES AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND BOUL      | LDERS                                  |             |          |                                 |          | -                                            |
|                 |               |                                                   |                                        | X             | -5:<br>-TR    | DME WATER SEEP<br>CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AGE          |                                        |             |          |                                 |          | <b>-</b>                                     |
| -60             |               | •                                                 | !                                      | RA            | Gř            | REY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                        |             |          |                                 |          | 20.0                                         |
| •               |               | 4                                                 |                                        | TX.           | -SA           | indy layer (dri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er thai      | ABOVE)                                 | }           |          |                                 |          | -                                            |
| -7.0            |               |                                                   |                                        | T M           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | -                                            |
|                 |               | : : :                                             | : : :                                  |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | }                                            |
| •               |               | · · · · · · · · · · · · · · · · · · ·             |                                        | - 18          | -BE           | COMING MORE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENSE         |                                        |             | i        |                                 |          | <u> </u>                                     |
| <del>9</del> ,0 |               |                                                   |                                        | - PA          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | 25.0                                         |
|                 |               |                                                   |                                        | N/A           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | -                                            |
| _               |               | -                                                 |                                        | S S           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | -                                            |
| 9.0             |               | ······································            |                                        |               | AUGER F       | REFUSAL 4 8.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | <u> </u>                               |             |          |                                 |          | }                                            |
|                 |               |                                                   |                                        |               | NOTE          | : Some Sloughi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ING IN (     | JPPER PART                             |             |          |                                 |          | 30.0                                         |
| 100             |               |                                                   |                                        |               |               | OF TILL LAYE<br>SOME WATER SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EK<br>EEPARF | IN LIPPER DART                         |             | }        |                                 |          | 1                                            |
|                 |               |                                                   |                                        |               |               | OF TILL LAYE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ER Z         | IN UPPER PART                          |             |          |                                 |          | -                                            |
| •               |               | : : : :                                           |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | F                                            |
| 110             |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             | ĺ        |                                 |          | -35.0                                        |
|                 |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          |                                              |
|                 |               |                                                   | : :                                    |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             | ļ        |                                 |          | -                                            |
| 12.0            |               | ••                                                |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             | ]        |                                 |          | }                                            |
|                 |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | 40.0                                         |
| ח ודו           |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | Ľ                                            |
| 3.0             |               |                                                   |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             | j        |                                 |          | Ĺ.                                           |
|                 |               | ······································            |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        | 1           |          |                                 |          | -                                            |
| 140             |               | <u>: : : : : : : : : : : : : : : : : : : </u>     |                                        |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |             |          |                                 |          | 450                                          |
|                 |               | UMA I                                             | Engine                                 | erin          | g Ltd.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COM          | LETION DEPTH *                         | .* m        |          | COMPLET                         | E        | <u>.                                    </u> |
|                 |               | Winn                                              | nipeg,                                 | Mani          | toba          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOGG         | ED BY TH                               |             | 1        | OWG NO.                         | Page 1   | ~f 1                                         |
|                 |               |                                                   | —————————————————————————————————————— |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |                                        |             |          | 100                             | Lode 1   | VI (                                         |

· --

| NORT:    | H OF RASKA | TCHEVAN                                           | ī                                     |              |                   | SUBTERPANEAN LTD                           | <u></u>                               |             |              |            | ROPEROLE A  | ic. G-88   | 50                   |
|----------|------------|---------------------------------------------------|---------------------------------------|--------------|-------------------|--------------------------------------------|---------------------------------------|-------------|--------------|------------|-------------|------------|----------------------|
|          | TAR DEVELO |                                                   | LTD.                                  |              |                   |                                            | · · · · · · · · · · · · · · · · · · · |             |              | 1          |             | 06 -0899-2 |                      |
|          | CT ENGINE  |                                                   |                                       |              |                   |                                            |                                       | ····        |              | $\dashv$   | ELEVATION 2 |            | 00-01                |
| SAMP     | LE TYPE    | GRAB S                                            | MPLE                                  | SHEE         | ET TUE            | E METURBED                                 | E NO                                  | RECOVERY    |              |            | ORE BAFREL  | WIFELE     | NE PUDD              |
|          | A BUUK     | DENSOY (t/                                        | ni3) <b>≜</b>                         |              |                   |                                            |                                       |             | ┬ <u>-</u>   | <u>۳۲۰</u> |             | TE PRESE   | W-IIFE               |
| E        | ■ SHEAP    | ODNSTIY (t/)<br>1.8 2.2<br>51162HOTH (<br>500 300 | kPo 🖩                                 |              |                   | S01                                        | T                                     |             |              | 엹          | ,           | u1         | 1                    |
| <b>∓</b> | 1          |                                                   | 1                                     | USC          |                   | וטנו                                       | .L.                                   |             |              | Ш          | ١ '         | ther       | ±                    |
| DEPTH    | PLASTIC    | N.C                                               | UQUID                                 |              |                   | DESCRI                                     | PTION                                 |             | SAMPLE TYPE  | SAMPLE     | con         | nments     | 0ЕРТН (#)            |
| 0.0      | 40         | 80 120                                            | 180                                   |              |                   |                                            |                                       |             | (A)          | Z)         | }           |            |                      |
| ,        |            |                                                   |                                       | 7            | -(10PS)<br>-FILL- | ) L                                        |                                       |             | 7            |            |             | ·          | <del>-   0.0</del> - |
| -        |            |                                                   |                                       |              |                   | SILT                                       |                                       |             | d l          |            |             |            | Ĺ                    |
| -10      |            | <u></u>                                           | · · · · · · · · · · · · · · · · · · · |              | } -:              | SOME FI GRAVEL                             |                                       |             | Ħ            |            |             |            | F                    |
| .        |            |                                                   |                                       | (N           |                   | Brown<br>-Organic (Roots)                  |                                       |             | []           |            |             |            | -                    |
|          | : : :      |                                                   |                                       |              | 100               | BLACK                                      |                                       |             |              |            |             |            | <b> -</b> 5.0        |
| 20       |            |                                                   |                                       |              | CLAY-             | -SOME SILT                                 |                                       |             |              |            | Í           |            | r                    |
| .        | <u></u>    | <del> </del>                                      | <u></u>                               | <b>N</b>     |                   | BROWN<br>STIFF                             |                                       |             |              |            |             |            | Ţ                    |
| 3.0      |            |                                                   |                                       |              |                   | TILL INCLUSIONS                            |                                       |             |              | 1          |             |            | -                    |
| 3.0      |            | : : :                                             |                                       |              |                   |                                            |                                       |             |              |            |             |            | -10.0                |
| -        |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | <b> </b>             |
| 4.0      |            |                                                   |                                       | N            |                   |                                            |                                       |             |              |            |             |            | <u> </u>             |
| .        | : : :      | : : :                                             |                                       |              |                   |                                            |                                       |             |              |            |             |            | Į.                   |
|          |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | -15.0                |
| 50       |            | ····                                              |                                       |              |                   |                                            |                                       |             |              |            |             |            | F                    |
| .        |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | +                    |
| 60       |            |                                                   |                                       | N            |                   |                                            |                                       |             |              |            |             |            | Ľ                    |
| , i      |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,           |                                       |              | جستور<br>رحم      | SOME COBBLES                               | ···                                   |             | ,            |            | 1           |            | 20,0                 |
| · [      |            |                                                   |                                       | W            | HT-2              | ALT WITH CRANULAR<br>BOULDERS)             | (SAND TO                              | <del></del> |              |            |             |            | -                    |
| 7.6      |            |                                                   |                                       | M            | -                 | BOULDERS)                                  |                                       |             |              |            |             |            | <b>-</b>             |
| .        | : : :      |                                                   |                                       | Ä            |                   | DAMP<br>TAN                                |                                       |             | }            |            |             |            | ļ                    |
|          | : : :      |                                                   |                                       |              |                   | 3) W T                                     |                                       |             | 1            |            |             |            | 25.0                 |
| 8,0 1    |            | ;;;;<br>; ; ; ; ;                                 |                                       | 썱            |                   |                                            |                                       |             |              |            |             |            | F                    |
| .        |            | ;; <u>;</u>                                       |                                       | 씱            |                   |                                            |                                       |             |              |            |             |            | <u> </u>             |
| 9.0      |            |                                                   |                                       | $\mathbb{R}$ |                   |                                            |                                       |             |              |            |             |            |                      |
| *.*      |            |                                                   |                                       | M            |                   |                                            |                                       |             |              | ł          |             |            | -30.0                |
| ŀ        |            |                                                   |                                       | , A          |                   |                                            |                                       |             |              |            |             |            | -                    |
| 100      |            |                                                   |                                       | M            | IDAFE             | DCT-101-101-101-101-101-101-101-101-101-10 | ·                                     |             | 4            |            |             |            | -                    |
|          |            |                                                   |                                       |              | AUGER<br>NOT      | REFUSAL © 9.91<br>TE: NO SLOUGHING         |                                       |             |              |            |             |            | +                    |
|          |            |                                                   |                                       |              | (10)              | NO WATER SEEPA                             | GE                                    |             |              |            |             |            | 35.0                 |
| 110      |            |                                                   |                                       |              |                   | ,                                          |                                       |             |              |            |             |            | -                    |
|          | -          |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | -                    |
| 12.0     |            |                                                   |                                       |              |                   |                                            |                                       |             | 11           | 1          |             |            | -                    |
| ; Z.U    |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | 42.2                 |
| ŀ        |            | } <u>-</u>                                        |                                       |              |                   |                                            |                                       |             |              |            |             |            | <b>H</b> 0.0         |
| 13.0     |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | Ì-                   |
|          |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | -                    |
| 1        |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            | <u> </u>             |
| 40.      |            | 17364 7                                           | : : <u> </u>                          |              | F *               |                                            | li                                    |             |              |            |             |            | 45.0                 |
|          |            | UMA I                                             | Engin                                 | erm          | g Ltd             | <b>a.</b>                                  | COMPLETIC                             | N DEPTH *   | . <b>*</b> m |            | COMP        | KIK        |                      |
|          |            | WIDD                                              | ipeg,                                 | Mani         | tobe              | <u> </u>                                   | LOGGED BY                             | TH          |              | _ []       | OFG NO.     | Page       | 1 of 1               |
|          |            |                                                   |                                       |              |                   |                                            |                                       |             |              |            |             |            |                      |

| NORI             | TH OF SASKATCHEWAN                        |          | SUBTERRANEAN LI                            | D.                 |            |             | BOREHOLE No. G-88-        | 50                                    |
|------------------|-------------------------------------------|----------|--------------------------------------------|--------------------|------------|-------------|---------------------------|---------------------------------------|
| GEN5             | MAR DEVELOPMENTS LTD.                     |          |                                            |                    |            |             | Project No: 06 -0898-268- |                                       |
|                  | ECT ENGINEER: TW                          |          |                                            |                    |            |             | ELEVATION 239.010 (m)     | · · · · · · · · · · · · · · · · · · · |
| SAMI             | PLE TYPE GRAB SAMPLE                      | SHILE    | TUBE DISTURBED                             | NO RECOVERY        |            | П           | OFE BARKEL WIFELDIE       | TVUR                                  |
|                  | ▲ BAJK DDASTY (1/m3) ▲<br>1.4 1.8 2.2 2.6 |          |                                            |                    |            | <u>ш,</u>   | U HILLEY                  | 1172                                  |
| Ê                | SHEAR STRENGTH (KPa)                      |          | פר                                         | IL                 |            | 웆           | Other                     | 10                                    |
| Ε .              |                                           | USC      | שנ                                         | /1L                | SMPLE TYPE | Ы           | Other                     | DEPTH (#)                             |
| DEPTH            | PLASTIC M.C LIQUID                        |          | DESCR                                      | IPTION             | 트          | SAMPLE      | comments                  | E                                     |
|                  | 40 80 120 160                             |          |                                            | 11041              | 35         | Č           |                           | =                                     |
| 0.0              |                                           |          | 10PSGL                                     |                    | 7          | -           |                           | 0.0                                   |
| -                |                                           |          | TILL-MIXTURE OF CLAY                       | AND SILT           | -          |             | }                         | <b>†</b>                              |
| -10              |                                           | NA NA    | -CONCRETE AND AS<br>TILL-SILT WITH GRANULA | MALI<br>R (CAND TO | -          |             |                           | Ė                                     |
|                  |                                           | M        | BOULDERS)                                  | W (SAM) IO         |            |             |                           | _                                     |
| -                |                                           |          | DAMP                                       |                    |            |             | <b>!</b>                  | 5.0                                   |
| -20              |                                           | N N      | -TAN                                       |                    |            |             |                           | +                                     |
| L                |                                           | i Xi     |                                            |                    |            |             |                           | -                                     |
|                  |                                           |          |                                            |                    |            |             |                           | Į                                     |
| <b>-3</b> .0     |                                           | <b>M</b> |                                            |                    |            |             |                           | F10.0                                 |
| -                |                                           |          | AUGER REFUSAL @ 3,28                       |                    | -          |             |                           | -                                     |
| 4.6              |                                           |          | NOTE: NO SLOUGHIN                          |                    |            |             |                           | }                                     |
| <b>-4</b> ,0     |                                           |          | NO SEEPAGE                                 |                    |            |             |                           | +                                     |
| -                |                                           |          |                                            |                    |            |             |                           | <b> </b>                              |
| -50              |                                           |          |                                            |                    |            |             |                           | 15.0                                  |
|                  |                                           |          |                                            |                    |            |             |                           | -                                     |
| -                |                                           |          |                                            |                    |            |             |                           | -                                     |
| -6 O             |                                           |          |                                            |                    |            |             |                           | -                                     |
| _                |                                           |          |                                            |                    |            |             |                           | 20.0                                  |
|                  |                                           |          |                                            |                    |            |             |                           |                                       |
| -7.0             |                                           |          |                                            |                    |            |             |                           | -                                     |
| -                |                                           |          |                                            |                    |            |             |                           | }                                     |
| -8.Q             |                                           |          |                                            |                    |            |             |                           | -25.0                                 |
| <b>₩</b>         |                                           |          |                                            |                    |            |             |                           |                                       |
| -                |                                           |          |                                            |                    | 11         |             |                           | -                                     |
| <del>-9</del> .0 |                                           | 11       |                                            |                    |            |             |                           | -                                     |
| _                |                                           |          |                                            |                    |            |             |                           | 30.0                                  |
|                  |                                           |          |                                            |                    |            |             |                           | <u> </u>                              |
| -100             |                                           |          |                                            |                    |            |             |                           |                                       |
| -                |                                           |          |                                            |                    |            |             |                           | -                                     |
| -110             |                                           |          |                                            |                    |            |             |                           | -35.0                                 |
| 3 ( U            |                                           | [        |                                            |                    |            |             | 1                         | -                                     |
| -                |                                           |          |                                            |                    |            |             |                           |                                       |
| -12.0            |                                           |          |                                            |                    |            |             | ŀ                         | 1                                     |
| _                |                                           |          |                                            |                    |            |             |                           | 40.0                                  |
| -                |                                           | 11       |                                            |                    |            |             |                           | <b>†</b>                              |
| -1 3.Q           |                                           | 11       |                                            |                    |            |             |                           |                                       |
| <del>-</del>     |                                           |          |                                            |                    |            |             |                           |                                       |
|                  |                                           |          |                                            |                    |            |             |                           | 450                                   |
| 140-             | UMA Engin                                 | eerine   | - Ita                                      | COMPLETION DEPTH   | * * **     | . <u></u> . | COMPLETE                  | Т                                     |
|                  | Winnipeg,                                 | Manie    | aho                                        |                    | . 1        | - 7         |                           |                                       |
|                  | minipek,                                  | Promi    | ννα                                        | LOGGED BY TH       |            |             | DWG NO. Page 1            | of 1                                  |

. 2

| NORTH            | H OF SASKA   | TCHERAN                                           |              |              | İsi            | UBTERRANEAN LTD                  | <del></del>  |             |                     | 1      | BOREHOLE N  | 6 C_99      | <u>-54</u>  |
|------------------|--------------|---------------------------------------------------|--------------|--------------|----------------|----------------------------------|--------------|-------------|---------------------|--------|-------------|-------------|-------------|
|                  | TAR DEVELA   |                                                   | TD.          |              |                |                                  |              | ··          | •                   |        | Project No: |             |             |
| PROJE            | CT ENGINE    | ER: TW                                            |              |              | <del></del>    |                                  |              |             |                     |        | ELEVATION 2 |             | <u>~ ₹1</u> |
| SAME             | LE TYPE      | GRAH SA                                           | MPLE.        | SHE          | LET TUBE       | DISTUERED                        |              | NO EECGVERY |                     |        | ORE BARRET  | WIFELIN     | E-TYPE      |
|                  | ▲ BAUX       | COSTT (L/n                                        | ال).<br>امرا |              |                |                                  |              |             |                     |        | 1           |             | 1           |
| ОЕРТН (т.)       | ■ SHEAR      | DD-SITT (L/m<br>1.8 2.2<br>5!#EHGTH (k<br>800 300 | Po ■         |              |                | S0:                              | IT.          |             | SAMPLE TYPE         | 윺      |             | ther        | €           |
| Ħ                | PLASTIC      | M.C                                               |              | USC          |                |                                  |              |             | <u> </u>            | 긆      |             |             | DEPTH (#)   |
| E E              |              | #LL                                               | (            |              |                | DESCRI                           | PTIO.        | N           | 1                   | SAMPLE | con         | ments       |             |
| 0.0              | 40           | 80 120                                            | 180          |              | <del></del>    |                                  | 7 b b        |             | \ <u>\(\sigma\)</u> |        | <u> </u>    |             | 0.0         |
| L                |              | : : : :                                           | <b>:</b> :   |              |                | XTURE OF SILT AN<br>OME GRANULAR | ID CLAY      |             | 1                   |        |             |             | - 10.0      |
| 1                | : : :        |                                                   | : :          |              | -S(            | OME ASPHALT AND                  | CONC         |             |                     |        |             |             | -           |
| -10              |              |                                                   | <u></u>      | { <b>[</b> 0 | - DI           | ₹Y<br>RO∰N                       |              |             |                     |        |             |             | F           |
| -                |              |                                                   |              |              | TILL-SIL       | T WITH GRANULAR                  | ₹            |             | 1                   |        |             |             | 5.0         |
| -20              |              |                                                   | : ::         |              |                | OME CLAY                         |              |             |                     |        |             |             | -           |
|                  |              |                                                   |              | 🔯            | GRAVEL         | -CLEAN FINE                      |              |             | 1                   | 1      |             |             | +           |
|                  |              |                                                   | : :          |              | 700 00         | 9.0. <b>25</b> 1.1.0             |              |             | $\dashv$            |        | ļ           |             |             |
| -3.0             |              |                                                   |              | l k          | TILL-GR<br>-WI | AVELLT<br>TH SILT                |              |             |                     |        |             |             | -10.0       |
| -                |              | <u> </u>                                          |              |              | WI             | TH COBBLES AND                   | BOULDE       | 75          |                     |        |             |             | -           |
| -4.Ū             |              | : : : :                                           |              |              | - DA<br>- DS   | RMP<br>ENSE                      |              |             |                     |        | 1           |             | <u> </u>    |
| 7.4              |              | : : : :                                           | : :          |              | ]              |                                  |              |             |                     |        |             |             |             |
|                  |              |                                                   | <b>:</b>     |              | 1              |                                  |              |             |                     |        |             |             | -15.0       |
| -50              |              | .iiii                                             |              | l li         | 1              |                                  |              |             |                     |        |             |             | }           |
| -                |              |                                                   | ;;           |              | AUGER          | REFUSAL 4 5.18                   |              |             | -                   |        |             |             | -           |
|                  |              |                                                   |              |              | TOM            | E: NO SLOUGHING<br>NO SEEPAGE    | ;            |             |                     |        |             |             |             |
| <b>⊢</b> 50      |              | *****                                             | ••••         |              |                | NO SEEPAGE                       |              |             |                     |        |             |             | 20.0        |
| -                |              |                                                   | ••••         |              |                |                                  |              |             |                     |        |             |             | -           |
| 7.0              |              |                                                   |              |              |                |                                  |              |             |                     |        |             |             | Į           |
|                  | : : :        | <u>: : : :</u>                                    | : :          |              |                |                                  |              |             |                     |        |             |             |             |
|                  |              | : : : :                                           | : :          |              |                |                                  |              |             |                     |        |             |             | 25.0        |
| <del>-8</del> ,0 |              |                                                   | ···•         |              |                |                                  |              |             |                     |        |             |             | -           |
| -                |              |                                                   |              |              |                |                                  |              |             |                     |        |             |             |             |
| 3.0              |              |                                                   | : :<br>      |              |                |                                  |              |             |                     | Ì      |             |             | -           |
|                  |              | : : : :                                           |              |              |                |                                  |              |             |                     |        |             |             | 30.0        |
| 「                |              |                                                   | : :          |              |                |                                  |              |             |                     |        |             |             | Ė           |
| -100             |              |                                                   |              |              | 1              |                                  |              |             |                     |        |             |             |             |
| -                |              | : : : : : : : : : : : : : : : : : : :             |              |              |                |                                  |              |             |                     |        |             |             | - 1         |
| -110             |              |                                                   |              |              |                |                                  |              |             |                     |        |             |             | -35.0       |
|                  |              | :                                                 |              |              |                |                                  |              |             |                     |        |             |             | E           |
|                  |              |                                                   |              |              |                |                                  |              |             |                     |        |             |             | -           |
| -12.0            | <b> </b>     | <u> </u>                                          |              |              |                |                                  |              |             |                     |        |             |             | <u> </u>    |
| - !              | } <u>;</u> ; | <u> </u>                                          |              |              |                |                                  |              |             |                     |        |             |             | H0.0        |
| -13.0            |              |                                                   |              |              |                |                                  |              |             |                     |        |             |             | -           |
| 1 \$7.53         |              |                                                   | : :          |              | •              |                                  |              |             | 1                   |        |             |             | ŀ           |
| <u> </u>         |              | · · · · · · · ·                                   |              |              |                |                                  |              |             |                     |        |             |             | 45 ^        |
| 145              | <u> </u>     | 1736A F                                           |              |              | 1              |                                  | 1            |             |                     |        | <u> </u>    |             | 45.0        |
|                  |              | UMA I                                             | ingle.       | eerir        | ig req         | L•                               | <u> </u>     | FIION DEPTE | *.* I               | ,      | СОМР        | <del></del> |             |
| <u>L</u>         |              | #1DD                                              | upeg,        | Man          | <u>utoba</u>   |                                  | LOGGED BY TH |             |                     |        | DWG NO.     | Page        | 1 र्ज 1     |

|                 | OF SASKA                       |                                              |                                  |                     | SUPTERRANEAN LT                                       | ),                   |          |          | BOREHOLE No.   | G-88-5  | 5                                     |
|-----------------|--------------------------------|----------------------------------------------|----------------------------------|---------------------|-------------------------------------------------------|----------------------|----------|----------|----------------|---------|---------------------------------------|
|                 | AR DEVELO                      |                                              | LTD.                             |                     |                                                       |                      |          |          | Project No: 08 |         | 01                                    |
|                 | CT ENGINE                      |                                              |                                  |                     |                                                       |                      |          |          | ELEVATION 240  |         |                                       |
| SAMPI           | E TYPE                         | GRAB S                                       | MOPLE                            | SHID.               | EN LICHE 🔀 DIELENE                                    | HO RECOVER           | <b>!</b> | 1 0      | OPE BARBEL     | ARETOE- | YPE                                   |
| Ê               | # 5000<br>1.4<br>■ 5000<br>100 | DELSTI (L/<br>1.0 2.2<br>5THENCTH<br>200 300 | 11/3/ ▲<br>2.5<br>(kPa) ■<br>400 |                     | SO                                                    | IL                   | F.       | 2        |                | ier     | <b>E</b>                              |
| DEPTH           | PLASTIC                        | N.C                                          | DOUD                             | USC                 | DESCR                                                 |                      | SEPE     | SAMPLE   | comm           | ents    | (#) HLJ30                             |
| <del>6.0</del>  | 40                             | 80 120<br>: : :                              | 163                              | Į.                  | FILL—CLAY WITH GRANUL<br>—LITTLE ASPHALT AN           |                      |          |          |                | ·       | a.o-                                  |
| -1 ()           |                                |                                              |                                  |                     | -TR ORGANICS<br>-DK BROWN                             | o some               |          |          |                |         | -                                     |
|                 |                                |                                              |                                  | 7                   | LAYER OF BLACK ORGAN<br>CLAY-WITH SILT                | i¢\$                 |          |          |                |         | 5.0                                   |
| -20             |                                |                                              |                                  |                     | -Brown<br>-Stiff<br>-With till inclusio               | ons                  |          |          |                |         | <u>-</u>                              |
| 3.0             |                                |                                              |                                  |                     | (MORE WITH DEF                                        | PTH)                 |          |          |                |         | 10.0                                  |
| 4.0             |                                |                                              |                                  |                     | TILL-SILT WITH GRANULA                                | R                    |          |          |                |         | -                                     |
| 50              |                                |                                              |                                  |                     | - WATER SEEPAGE<br>- TAN<br>- SOME COBBLES AN         |                      |          |          |                |         | -<br>-15.0                            |
|                 |                                |                                              |                                  |                     | -REDDISH LIMESTON                                     | E BOOLDENS           |          |          |                |         | -                                     |
| -6 O<br>-       |                                |                                              |                                  |                     | -WATER SEEPAGE                                        |                      |          |          |                |         | 20.0                                  |
| 7.0             |                                |                                              |                                  |                     | -BECOMING MORE E                                      | DENSE                |          |          |                |         |                                       |
| <del>8</del> ,0 |                                |                                              |                                  |                     | ILIAPR SPECIAL A TAT                                  |                      | _        |          |                |         | 25.                                   |
| •               |                                |                                              |                                  |                     | AUGER REFUSAL @ 7.93<br>NOTE: NO SLOUGH<br>SOME WATER | NG<br>SEEPAGE @ 5.79 | -        |          |                |         | <del>L</del>                          |
| 9. <del>0</del> |                                |                                              |                                  |                     |                                                       |                      |          |          |                |         | -30.                                  |
| 40 O            |                                |                                              |                                  |                     |                                                       |                      |          |          |                |         | <b>———</b>                            |
| 110             |                                |                                              |                                  |                     |                                                       |                      |          |          |                |         | 35.                                   |
| 19.4            |                                |                                              |                                  | الماسان يومزيدوناها |                                                       |                      |          |          |                |         | <u> </u>                              |
| 12,0            |                                |                                              |                                  |                     |                                                       |                      |          |          |                |         | <b>4</b> 0.                           |
| 13.0            |                                |                                              |                                  |                     |                                                       |                      |          |          |                |         | -<br> -<br> -                         |
| 140             |                                | TIMA                                         | Dn min                           |                     | m [+]                                                 | CONTRACTOR PROPERTY  | ****     | <u> </u> | - According    |         | 45                                    |
|                 |                                | UMA<br>W                                     | ringii                           | reern               | ig Ltd.                                               | COMPLETION DEP       | 121 *.*  | m        | COMPL          |         | · · · · · · · · · · · · · · · · · · · |
|                 |                                | #1D                                          | nipeg                            | <u>, Man</u>        | itoda                                                 | LOGGED HT TH         |          |          | DWG NO.        | Page 1  | of 1                                  |

-

|               | H OF SASK |                                        |                                        |              |             | SUBTERRANGAN LTD              | ·              |          | •           |             | BOREHOLE !                                         | io G-  | <u>88–58</u>     |
|---------------|-----------|----------------------------------------|----------------------------------------|--------------|-------------|-------------------------------|----------------|----------|-------------|-------------|----------------------------------------------------|--------|------------------|
|               | TAR DEVEL |                                        | LTD.                                   |              |             |                               |                |          |             |             | Project No:                                        |        |                  |
|               | CT ENGIN  |                                        |                                        |              |             |                               | · <del>·</del> |          |             |             | ELEVATION :                                        |        |                  |
| SAMP          | LE TYPE   | GRAB S                                 | AMPLE                                  | SHEET.       | et Tube     | X DISTURBED                   | NO NO          | RECOVERY | П           |             | RE BARREL                                          |        | ZLDŒ-TYP         |
|               | 450       | 0950 7(/<br>1.6 2.2<br>1.5 2.2         | m3) 🛦 :                                |              |             |                               |                |          | T-7         | <u>ا ر.</u> |                                                    |        |                  |
| Ê             | # SHEA    | STEWER !                               | (Krs) #                                |              |             | S01                           | T              |          | 7           | 皇           | 1                                                  | ther   | -                |
| <b>፰</b>      | 100       | 200 300                                | #Uú                                    | USC          |             | וטנו                          | لللا           |          |             | 빌           | `                                                  | mer.   |                  |
| DEPTH         | PLASTIC   | N.C                                    | DÇUD                                   |              |             | DESCRI                        | PTION          |          | SMAPLE TYPE | SAMPLE      | con                                                | aments |                  |
| 0,0           | 40        | 80 120                                 | 163                                    |              |             | ~ <b></b>                     |                |          | 8           | 25          |                                                    |        | i                |
| 0,0           |           |                                        | : : :                                  | Į.           | FILL-C      | FANULAR WITH CLA              | Y AND SILT     |          | ++          | -           |                                                    |        | - 10             |
| •             |           |                                        |                                        | H            |             | ir asphalt<br>ir Boards/Const | MATEDIAI C     |          |             |             |                                                    |        | <b> </b>         |
| 10            |           |                                        | <u> </u>                               | <del> </del> | •           | ar banday danat               | mm) LI (ML)    |          |             | l           |                                                    |        |                  |
|               |           |                                        |                                        | M            |             |                               |                |          |             | İ           |                                                    |        | -                |
| -             |           |                                        |                                        |              | LAYER       | BLACK OGANICS MI              | XED WITH CL    | ΑY       |             |             |                                                    |        | - 5              |
| 20            |           |                                        |                                        |              |             | WITH SILT<br>Erown            |                |          |             |             |                                                    |        | +                |
|               |           |                                        |                                        |              |             | TIFF                          |                |          |             | -           |                                                    |        |                  |
| 7 A           |           | : : :                                  |                                        | N N          |             | ILL INCLUSIONS                | ıt.            |          |             |             |                                                    |        |                  |
| 3.0           |           |                                        |                                        |              |             | (MORE WITH DEPTH              | 1)             |          |             | ļ           |                                                    |        | -11              |
|               |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | F                |
| 4,Ū           |           |                                        |                                        |              | Till C      | ILT WITH GRANULAR             |                | ·        | 4           | }           |                                                    |        | +                |
|               |           |                                        |                                        | K            | <b>−</b> ¥  | YATER SEEPAGE                 |                |          |             |             |                                                    |        | Ę                |
|               |           |                                        | : ; ;                                  | H            | <b>1</b> -( | REY                           |                |          | 4           | 1           |                                                    |        | Ļ <sub>1</sub> ; |
| .0            |           |                                        |                                        |              |             | REDDISH LIMESTONE<br>JENSE    |                | ı        |             | İ           |                                                    |        | -                |
|               | : : :<br> |                                        |                                        |              | AUGER       | REFUSAL @ 4.57                |                |          |             | Ì           |                                                    |        | <b>†</b>         |
|               |           | : : :                                  |                                        |              | NOT         | E: NO SLOUGHING               | EDADE.         |          |             |             |                                                    |        |                  |
| 60            |           |                                        |                                        |              |             | Some Water Sei                | LFAGE          |          |             | ļ           |                                                    |        | -20              |
|               |           |                                        | ······································ |              |             |                               |                |          |             |             |                                                    |        | -                |
| 7,0           |           |                                        |                                        |              |             |                               |                |          |             | ļ           |                                                    |        | 1                |
|               |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | <u></u>          |
|               |           |                                        | ; ; ; ;                                |              |             |                               |                |          |             | 1           |                                                    |        | <u>[_2</u>       |
| <b>8</b> ,0   |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | -                |
|               |           |                                        |                                        | ] [          |             |                               |                |          |             |             |                                                    |        | }                |
| , ,           |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | F                |
| 9.0           |           | 1 1 1                                  |                                        |              |             |                               |                |          |             | j           |                                                    |        | -30              |
|               |           | · · · · · · · · · · · · · · · · · · ·  |                                        |              |             |                               |                |          |             |             |                                                    |        | -                |
| 100           |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | F                |
|               |           |                                        |                                        |              |             |                               |                |          |             | }           |                                                    |        | <b> </b>         |
| ĺ             |           | : : :                                  |                                        |              |             |                               |                |          |             |             |                                                    |        | -35              |
| 110           |           |                                        | <u> </u>                               |              |             |                               |                |          |             | ļ           |                                                    |        | ļ. ~             |
|               |           |                                        |                                        |              |             |                               |                |          |             | }           |                                                    |        | F                |
| ا ۾ ا         |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | <b> </b>         |
| 2.0           |           |                                        |                                        |              |             |                               |                |          |             | -           |                                                    |        | 40               |
| ł             |           |                                        | <u> </u>                               |              |             |                               |                |          |             |             |                                                    |        | L,               |
| 13.0          |           |                                        | : : : ]                                |              |             |                               |                |          |             |             |                                                    |        | -                |
|               |           |                                        |                                        |              |             |                               |                |          |             |             |                                                    |        | F                |
|               | : : :     | ······································ |                                        |              |             |                               |                |          |             |             |                                                    |        | 45               |
| 14 <u>0</u> ] | <u> </u>  | TIMA                                   | Transier                               |              | T £         | 4                             |                |          |             |             | <del>""   .                                 </del> |        |                  |
|               |           | UMA.                                   | Engin                                  | eerm         | g Lu        | 1.                            | COMPLETIO      |          | .* m        |             | COME                                               | LETE   | <u> </u>         |
|               |           | #101                                   | nipeg,                                 | Mani         | toba        | Į.                            | LOGGED BY      | TH       |             | ľ           | WG NO.                                             | }      | Page 1 of 1      |

| <del></del>      | H OF SASKATCHEWAN                                                               |                | SUPTERRANEAN LTD.                        |                  |               | BOREHOLE No. G-    | -88-57      |
|------------------|---------------------------------------------------------------------------------|----------------|------------------------------------------|------------------|---------------|--------------------|-------------|
|                  | TAR DEVELOPMENTS LTD.                                                           |                |                                          |                  |               | Project No: 06 -06 |             |
|                  | ect engineer: tw                                                                | ,              |                                          |                  |               | ELEVATION 239,720  | (Ic.)       |
| SAMP             | LE TYPE GRAE SAMPLE                                                             | SHEERY T       | UBLE 🔀 DISTURBED                         | HO RECOVERY      |               | CORE BARRET.       | PT: DE-TYPE |
|                  | 1.4 1.5 2.2 2.5                                                                 |                |                                          |                  |               |                    |             |
| Ê                | ▲ GULL DE STI (1/m3) ▲ 1,4 1.8 2.2 2.6 ■ SHEAR STRENGTH (4F0) ■ 100 230 300 400 |                | SOII                                     | _                |               | Other              | €           |
| DEFTIH           | PLASTIC MC UQUID                                                                | USC            |                                          |                  |               |                    | 8 (H)       |
| DE               |                                                                                 |                | DESCRIP                                  | TION             | SOMPLE TYPE   | comment            | 8 ] 🖺       |
| 0.0              | 40 80 120 180                                                                   | DOM: 1011      |                                          | <u> </u>         | 10,           |                    |             |
| _                |                                                                                 | KA FILL        | -CLAY<br>-Some granular and              | SILT             |               |                    |             |
|                  |                                                                                 | NA PA          | -BROWN                                   | 2.21             |               |                    | -           |
| -10              |                                                                                 |                |                                          |                  |               |                    | -           |
| -                |                                                                                 | <u> </u>       |                                          |                  |               |                    | †<br>+5.(   |
| -20              |                                                                                 |                | <u>ER BLACK ORGANIC CLA</u>              | Y                | 4             |                    | - A         |
| - "              |                                                                                 | N CT           | Y-MTH SILT<br>-Brown                     |                  |               |                    | -           |
| -                | ······································                                          |                | -STIFF                                   |                  |               |                    | <b> </b>    |
| -3.0             |                                                                                 | <i>V</i> .     | -TILL INCLUSIONS                         | 3                |               |                    | -<br> -10   |
| . :              |                                                                                 |                | (MORE WITH DEPTH                         | )                |               |                    | F-10        |
|                  |                                                                                 |                |                                          |                  |               |                    | ļ-          |
| <b>-4</b> ,0     |                                                                                 |                |                                          |                  |               |                    | ŀ           |
| -                |                                                                                 | M TILL         | -SILT WITH GRANULAR (                    | SAND TO          | <u> </u>      |                    | ļ.,         |
| - <b>5</b> 0     |                                                                                 |                | -GREY BOULDERS)                          | •                |               |                    | -15<br>-    |
| <b>-</b>         |                                                                                 | M              | -TR WATER SEEPAGE                        |                  |               |                    | -           |
| <del>-</del>     |                                                                                 | Į.             |                                          |                  |               |                    | +           |
| -60              |                                                                                 |                |                                          |                  |               |                    | -20         |
| _ :              |                                                                                 | l li           | -TILL BECOMING MORE                      | NEWEL            |               |                    |             |
| _7 ^ '           |                                                                                 |                | -DRIER                                   | DENGE            |               |                    | -           |
| -7.8             |                                                                                 |                | -REDDISH LIMESTONE                       |                  | Л 📗           |                    | <u> </u>    |
| -                |                                                                                 | AUK            | ER REFUSAL OF 7.01<br>NOTE: NO SLOUGHING |                  |               |                    | <u> </u>    |
| -5.0             |                                                                                 |                | TR WATER SEEP                            | rce              |               |                    | -25<br>-    |
|                  |                                                                                 |                |                                          |                  |               |                    | -           |
| -                |                                                                                 |                |                                          |                  |               |                    | -           |
| <del>-5</del> .0 |                                                                                 |                |                                          |                  |               |                    | -30<br>-30  |
| -                |                                                                                 |                |                                          |                  |               |                    | [~          |
| -100             |                                                                                 |                |                                          |                  |               |                    | +           |
| ,00              |                                                                                 |                |                                          |                  |               |                    | +           |
| •                |                                                                                 |                |                                          |                  |               |                    | 35          |
| 110              |                                                                                 |                |                                          |                  |               |                    | F~          |
| _                |                                                                                 |                |                                          |                  |               |                    | }           |
|                  |                                                                                 |                |                                          |                  |               |                    | <b>†</b>    |
| 12.0             |                                                                                 |                |                                          |                  |               |                    | -40         |
| -                |                                                                                 |                |                                          |                  |               |                    | -           |
| -13.0            |                                                                                 |                |                                          |                  |               |                    | -           |
| _                |                                                                                 |                |                                          |                  |               |                    |             |
|                  |                                                                                 |                |                                          |                  |               |                    | -<br> -45   |
| 140              | IIMA Provin                                                                     | aanina         | 1+3                                      | OUTS! BEON POSE. | 1             | 1                  |             |
|                  | UMA Engin                                                                       |                |                                          | COMPLETION DEPTH | - <u>- 10</u> | COMPLETE           |             |
|                  | Winnipeg,                                                                       | <u> manito</u> | Da                                       | logged by th     |               | DWG NO.            | Page 1 of 1 |

\*

| NORTH            | OF SASKATCHE WAN                          | <del>,</del>  | SUPTERPANEAN LTD.                   | · · · · · · · · · · · · · · · · · · · |               | BOREHOLE N  | io. G-88-5    | 58        |
|------------------|-------------------------------------------|---------------|-------------------------------------|---------------------------------------|---------------|-------------|---------------|-----------|
|                  | VAR DEVELOPMENTS LTD.                     | · · ·         |                                     |                                       |               |             | 06 -0696-266- |           |
|                  | CT ENGINEER: TW                           |               |                                     |                                       |               | ELEVATION 2 |               | -         |
| SAMP             | LE TYPE 😂 GRAB SAMPLE                     | SHILEY TUB    | E DISTURBED                         | NO RECOVERY                           |               | CORE BARREL | WEELDE-       | TYPE      |
| _ :              | ▲ BULK DENSTY (t/m3) ▲<br>1.4 1.6 2.2 2.6 |               |                                     |                                       | T T           | 1           |               | T         |
| €                | ■ SHEAR STRENGTH (KPa)                    | . [           | SOII                                |                                       | SAMPLE TYPE   |             | ther          | 12        |
| Ξ                | 100 200 300 400                           | USC           | 0011                                | ı                                     |               |             | , CTI-CT      | H =       |
| DEPTH            | PLASTIC N.C LIQUID                        |               | DESCRIP                             | TION                                  | SAMPLE        | con         | nments        | 0ЕРТН (#) |
| 0.0              | 40 80 120 180                             | į į           |                                     |                                       | 30            | i           |               | -         |
| Δ,Ψ              |                                           |               | CLAY AND SILT                       |                                       | +             |             |               | 0.0       |
| -                |                                           |               | SOME GRANULAR<br>TR ASPHALT AND CON | ıc                                    |               |             |               |           |
| -10              |                                           | <b>1</b> 39 - | -BROWN                              | 10                                    |               | ļ           |               |           |
|                  |                                           | <b>M</b>      |                                     |                                       |               |             |               | ŀ         |
|                  |                                           | JAYE!         | OF BLACK ORGANIC                    | CLAY                                  | 7             | }           |               | 5.0       |
| -20              |                                           |               | -WITH SILT<br>-BROWN                |                                       |               |             |               | <b>†</b>  |
| -                |                                           | - 12          | STIFF                               |                                       |               |             |               | Ţ.        |
| -3.0             |                                           | · Ø -         | TILL INCLUSIONS                     |                                       |               |             |               | }         |
| 3.0              |                                           | <b>%</b>      | (MORE WITH DEPTH)                   |                                       |               |             |               | 10.0      |
| -                |                                           | Ø             |                                     |                                       |               |             |               | <u> </u>  |
| <b>-4</b> .0     |                                           |               |                                     |                                       |               |             |               |           |
|                  |                                           | N             |                                     |                                       |               |             |               | -         |
|                  |                                           | N TILL-       | SILT WITH GRANULAR                  |                                       | -             |             |               | 15.0      |
| 50               |                                           | - ₩ -         | GREY                                |                                       |               |             |               | <b>†</b>  |
| -                |                                           |               | TR CLAY<br>WATER SEEPAGE            |                                       |               |             |               |           |
| -6 Q             |                                           | M I           | BECOMING DRIER AND                  | MORE DENSE                            |               |             |               | -         |
| - 7              |                                           |               |                                     |                                       |               |             |               | 20.0      |
| -                |                                           |               | R REFUSAL @ 6.40                    | <u> </u>                              | 7             |             |               |           |
| -7.0             |                                           |               | NOTE: NO SLOUGHING                  | En lac                                |               | }           |               | [         |
| _                |                                           |               | SOME WATER SE                       | EMAGE                                 |               |             |               | -         |
|                  |                                           |               |                                     |                                       |               | •           |               | 25.0      |
| <b>-8</b> ,0     |                                           |               |                                     |                                       |               |             |               |           |
| - }              |                                           |               |                                     |                                       |               |             |               | [         |
| <del>-9</del> .0 |                                           |               |                                     |                                       |               |             |               | -         |
|                  |                                           |               |                                     |                                       |               |             |               | -30.0     |
| -                |                                           |               |                                     |                                       |               |             |               |           |
| -100             |                                           |               |                                     |                                       |               |             |               | [         |
| -                |                                           |               |                                     |                                       |               | 1           |               | -         |
|                  |                                           |               |                                     |                                       |               |             |               | 35.0      |
| 110              |                                           |               |                                     |                                       |               |             |               | <b>†</b>  |
|                  |                                           |               |                                     |                                       |               |             |               |           |
| 12.0             |                                           |               |                                     |                                       |               |             |               | }         |
| _                |                                           |               |                                     |                                       | ,             |             |               | 40.0      |
| _                |                                           |               |                                     |                                       |               |             |               |           |
| -13.0            |                                           |               |                                     |                                       |               |             |               |           |
| -                |                                           |               |                                     |                                       |               | 1           |               | -         |
| مین              |                                           |               |                                     |                                       |               |             |               | 450       |
| .+               | UMA Engin                                 | eering Lt     | d.                                  | COMPLETION DEPTH                      | - <del></del> | COMP        | LETE          | !         |
|                  | Winnipeg,                                 | Manitob       | a                                   | LOGGED BY TH                          | <u> </u>      | DWG NO.     | Page 1        | nf 1      |
|                  | 412210                                    | DIGHT (OD     | 1.4                                 |                                       |               | DEG HU.     | Leade :       | Of I      |

|                 | OF RASKA                             |                                              |                             | ·         | SUI                                 | MERRANEAN LTD.                               |                |                |     | I         | PORTHOLE N  | r≎. G−8        | 8-59                                    |
|-----------------|--------------------------------------|----------------------------------------------|-----------------------------|-----------|-------------------------------------|----------------------------------------------|----------------|----------------|-----|-----------|-------------|----------------|-----------------------------------------|
|                 | AR DEVELO                            |                                              | TD.                         |           |                                     |                                              |                |                |     |           | Project No: |                |                                         |
|                 | OT ENGINE                            |                                              |                             |           | <u> </u>                            |                                              |                |                |     | I         | ELEVATION 2 | 39.750 (m      | )                                       |
| SAME            | LE TYPE                              | GRAB SAL                                     | KPLE                        | ि सम्बद्ध | TUBE                                | MSTCRBED                                     | NO E           | ECOVERY        |     | ] დ       | PE BARREL   | WIPE WIPE      | LEGE-TYPE                               |
| 0ЕРТН (м)       | 1.4 1<br># 5HEAR<br>100 2<br>PLASTIC | DESTY (L/m) 1.8 2.2  STRENGTH (M 20 300  M.C | 26<br>Pa iii<br>403<br>UQUD | USC       |                                     | SOII<br>DESCRIP                              |                |                |     | SAMPLE NO |             | ther<br>nments | neoru (#)                               |
| 0.0             | 40 (                                 | BO 120                                       | 183                         |           |                                     |                                              |                |                | 75  | 2         |             |                |                                         |
| -<br>-1 ()<br>- |                                      |                                              |                             |           | -SON<br>-TR:<br>-BR(                |                                              |                | *              |     |           |             | ,              | - 64<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -20<br>-        |                                      |                                              |                             |           | LAYER BL<br>CLAY—WIT<br>BRC<br>STIF | <u>ack Organic Cla</u><br>H silt<br>Jyn<br>F | r <sup>r</sup> | /              |     |           | •           |                | -                                       |
| -3.0<br>-       |                                      |                                              |                             |           |                                     | . Inclusions<br>(More with Dept              | ዝ}             |                |     |           |             |                | -10                                     |
| -4,0<br>-       |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | -<br>-<br>-<br>-15                      |
| -\$0<br>-       |                                      |                                              |                             |           | Dil out                             | WITH ABJURN S                                | (0.4 k/c. ===  |                |     |           |             |                | -<br> -<br> -                           |
| -60<br>-        |                                      |                                              |                             |           | –⊺R<br>–⊺R ¹                        | WATER SEEPAGE                                | 10 UM42        |                |     |           |             |                | -20                                     |
| 7.0             |                                      |                                              |                             |           | AUGER R                             | ER SEEPAGE<br>FUSAL & 7.01<br>: NO SLOUGHING |                | /              |     |           |             |                | 25                                      |
| <b>8</b> ,0     |                                      |                                              |                             |           |                                     | WATER SEEPAGE                                | FROM LAYER     | ₹ <b>6</b> .09 |     |           |             |                | <b>F</b>                                |
| 9.0             |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | 30                                      |
| 100             |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | -35                                     |
| 110             |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | -<br> -<br> -                           |
| 12.0            |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | - <del>1</del> 0                        |
| 13.0            |                                      |                                              |                             |           |                                     |                                              |                |                |     |           |             |                | -<br>-<br>-45                           |
| 440             |                                      | TIMA E                                       |                             | 0025      | , I + J                             |                                              | 001077         | , Dinama       |     |           | T==:-       |                |                                         |
|                 |                                      | UMA E                                        | :-<br>រកឥរព                 | ccimi     | g atta.                             | <b>}</b>                                     | COMPLETION     |                | - m |           |             | LETE           |                                         |
|                 |                                      | Winn                                         | ipeg,                       | Mani      | toba                                | į,                                           | logged by      | TH             |     | Į         | DWG NO.     | P              | age 1 of 1                              |

|                     | i of saskatchev               |        |           | SUBTERPANEAN LTD.                                         |                  |                                              | BOREHOLE No   | G-88-60                     |
|---------------------|-------------------------------|--------|-----------|-----------------------------------------------------------|------------------|----------------------------------------------|---------------|-----------------------------|
|                     | AR DEVELOPMENT                | S LTD. |           |                                                           |                  |                                              | Project No: 0 | 6 -0698-2 <del>66-</del> 01 |
|                     | CT ENGINEER: TW               |        |           |                                                           |                  |                                              | ELEVATION 24  | (0.000 (m)                  |
| SAMP.               | LE TYPE GRAI                  |        | SHELEY TO | NHT X DELLERED                                            | NO RECOVERY      |                                              | COPE BARREL   | MIRELINE-TYPE               |
| ~                   | ▲ BAK CĐĐTI<br>1.4 1.8 2      | 2 2.5  |           |                                                           | _                | البوا                                        | ~[            |                             |
| Œ.                  | ■ 5HEAR STRENCT<br>100 200 30 | 0 400  | usc       | SOI                                                       | L                | III                                          | <u>≧</u> 04   | ther 🗦                      |
| DEPTH               | PLASTIC N.C                   | LIQUID | USC       | DESCRIF                                                   | PTION            | SAMPLE                                       | eom           | ther Ements                 |
| 0.0                 | 42 80 12                      | 10 160 | स्थ्र हा। | -CLAY                                                     |                  | N.                                           |               |                             |
| .                   |                               |        |           | -SOME GRANULAR                                            |                  |                                              |               | -<br> -                     |
| 10                  |                               |        |           | -BRO#N                                                    |                  |                                              |               | -<br> -                     |
| -                   |                               |        |           | EP BLACK CLAY MIXED                                       | WITH ORGANICS    | 7                                            |               | 5.4                         |
| 20                  |                               |        |           | HEROWN<br>-STIFF                                          |                  |                                              |               | +                           |
| -3.0                |                               |        |           | -TILL INCLUSIONS (MORE WITH DEPTH)                        | )                |                                              |               | <u> </u>                    |
| -                   |                               |        |           |                                                           |                  |                                              |               | +10<br>-                    |
| <b>4.0</b>          |                               |        |           |                                                           |                  |                                              |               | [                           |
| 30                  |                               |        | N TILL    | .—SANDY<br>—SOME SILT                                     |                  |                                              |               | -15.                        |
|                     |                               |        |           | -TR WATER SEEPAGE<br>-LAYERED (SAND AND                   | SILT)            |                                              |               | Ē.                          |
| -50                 |                               |        |           | -TR CLAY<br>-SOME GRANULAR AND                            | COBBLES          |                                              |               | 20                          |
| -                   |                               |        |           | -DENSER THAN ABOVE<br>-WATER SEEPAGE<br>ER REFUSAL & 5.40 |                  | 4                                            |               |                             |
| -7.0                |                               |        |           | NOTE: NO SLOUGHING<br>SOME WATER SE                       | EPAGE            |                                              |               |                             |
| <del>.5</del> .0    |                               |        |           |                                                           |                  |                                              |               | -25.                        |
| -                   |                               |        |           |                                                           |                  |                                              |               | -                           |
| <del>0</del> .0     |                               |        |           |                                                           |                  |                                              |               | -30.                        |
| 100                 |                               |        |           |                                                           |                  |                                              |               | <b>-</b>                    |
|                     |                               |        |           |                                                           |                  |                                              |               | <u></u>                     |
| 110                 |                               |        |           |                                                           |                  |                                              |               | -35                         |
| 10.0                |                               |        |           |                                                           |                  |                                              |               | F                           |
| 12.0                |                               |        |           |                                                           |                  |                                              |               | <u>-</u> 40.                |
| 13.0                |                               |        |           |                                                           |                  |                                              | <b>,</b>      |                             |
| .                   |                               |        |           |                                                           |                  |                                              |               | -45                         |
| <del>14 0 - 1</del> | UMA                           | Engin  | eering l  | Ltd.                                                      | COMPLETION DEPTH | <u>↓                                    </u> | COMPL         | <u> </u>                    |
|                     |                               |        | Manito    |                                                           | LOGGED BY TH     |                                              | DWG NO.       | Page 1 of 1                 |

| NORT                 | H OF SASKA    | TCHEWAN                                  | · · · · · · · · · · · · · · · · · · · | ······           | g                                       | URTERRANEAN L                          | PA          |                                       |                    |            | DADERIAND N  | · 0 00                | 6.4                |
|----------------------|---------------|------------------------------------------|---------------------------------------|------------------|-----------------------------------------|----------------------------------------|-------------|---------------------------------------|--------------------|------------|--------------|-----------------------|--------------------|
| ·                    | TAR DEVELO    |                                          |                                       |                  |                                         | oramicajira i                          | i v.        |                                       |                    |            |              | © G−88<br>06 -0699-26 |                    |
|                      | ect engine    | ***                                      |                                       |                  |                                         | ·-···································· |             |                                       |                    |            | ELEVATION 2  |                       | 96-01              |
| SAMI                 | LE TYPE       | GRAF S                                   | MPLE                                  | SHOTE            | TURE                                    | MINITURE                               | D =         | NO RECOVERY                           | П                  |            | RE BAFRE     | ABATT                 | A STATE            |
|                      | A BUU         | (i/i                                     | m3).▲                                 |                  | ******                                  | <u> </u>                               | ·           | ,                                     | <del>-      </del> | <u>ل</u> ل | ,            | ( NET TIME            | E-11PE             |
| E                    | ■ 5HEAP       | 00-6011 ((/)<br>.8 2.2<br>जाम्हासूनुम् ( | kPa).≣                                | 1                |                                         | 27                                     | )IL         |                                       | E                  | 오          | C            | ther                  | <b>-</b>           |
| 百                    | 190 2         | 200 300                                  | 400                                   | USC              |                                         | 2/                                     | 31L2        |                                       |                    |            | U            | ner                   | 0EPTH (#)          |
| DEPTH                | PLASTIC       | M.C                                      | TIOUE                                 |                  |                                         | DESCR                                  | PTIO        | N                                     | SAPIE              | SAMPLE     | con          | ments                 |                    |
| 0.0                  | 40 8          | 0 120                                    | 160                                   |                  |                                         |                                        |             | <b>4</b> 7                            | 3                  | 575        |              |                       |                    |
| 0.0                  |               |                                          | : : :                                 |                  |                                         | AY AND SILT                            | <del></del> |                                       | 1-                 |            | <del> </del> |                       | <del>  0.0 -</del> |
| <u> </u> -           |               |                                          | <u> </u>                              | { <del>}</del> } |                                         | OME GRANULAR<br>ROWN                   |             |                                       |                    |            |              |                       | F                  |
| 10                   |               | : : :                                    |                                       | R9               | -61                                     | WHN                                    |             |                                       |                    | -          |              |                       |                    |
|                      |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            | ,            |                       | -                  |
| [                    |               |                                          | 1 1 1                                 |                  | LAYER E                                 | LACK CLAY AND                          | ORGANICS    | ····                                  | 亅                  | - 1        |              |                       | 5.0                |
| -20                  |               |                                          |                                       |                  | CLAY-W                                  | TH SILT                                |             |                                       | 71                 | }          |              |                       | ~                  |
| <br> -               |               | : : : : : : : : : : : : : : : : : : :    | : : :                                 |                  | -Br<br>-ST                              | ;ee<br>}0#N                            |             |                                       |                    |            |              |                       | -                  |
| ]                    |               |                                          |                                       |                  | , ن                                     | " '                                    |             |                                       |                    |            | •            |                       |                    |
| -3.0                 |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | -10.0              |
| -                    |               |                                          | · · · · · · · · · · · · · · · · · · · |                  |                                         |                                        |             |                                       |                    |            |              |                       | F                  |
| 4.0                  |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | <b> </b>           |
| 121                  |               |                                          |                                       |                  | **                                      | 44000 Dr. 70 00                        |             |                                       | 11                 | -          |              |                       | Ė                  |
| -                    |               | ](()<br>[                                |                                       |                  | - IK<br>-TI                             | ANSITION TO GR<br>IL INCLUSIONS        | EY CLAY     |                                       |                    | ļ          |              |                       | -15.0              |
| -50                  |               |                                          |                                       |                  | • • • • • • • • • • • • • • • • • • • • | (MORE WITH D                           | EPTH)       |                                       |                    | - [        |              |                       | -                  |
|                      |               |                                          |                                       |                  | TILL -SAI                               | NDY SILT                               | <del></del> | · · · · · · · · · · · · · · · · · · · | <del> </del>       |            |              |                       | -                  |
|                      |               |                                          |                                       |                  | -50                                     | HE GRANULAR                            |             |                                       |                    | l          |              |                       | -                  |
| <b>-</b> 60          | <u> </u>      |                                          |                                       | l M              |                                         | CLAY                                   |             |                                       |                    |            |              |                       | -20.0              |
| -                    |               |                                          |                                       |                  | ~# <i>F</i>                             | ITER SEEPAGE                           |             |                                       |                    | İ          |              |                       | -                  |
| -7.0                 |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | -                  |
| 7.0                  |               |                                          |                                       | 1 13             |                                         |                                        |             |                                       |                    | ĺ          |              |                       | -                  |
| -                    |               |                                          |                                       |                  | -00                                     | BBLES AND BO                           | HITLEDE     |                                       |                    | 1          |              |                       | -                  |
| <del>. ()</del> , () |               |                                          |                                       |                  | AUGER F                                 | REFUSAL @ 7.7                          | )<br>DEDENO |                                       | <b>1</b>           | -          |              |                       | 25.0               |
|                      |               |                                          |                                       |                  | NO                                      | TE: HOLE START                         | ing to sli  | DUGH                                  |                    |            |              |                       | ŀ                  |
| _                    |               |                                          |                                       |                  |                                         | WATER IN HO                            | )LE         |                                       |                    |            |              |                       | -                  |
| <del>-3</del> .0     |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | <u> </u>           |
| _                    | <b></b>       |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | 30.0               |
| -100                 |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | <u> </u>           |
| -10 Q                |               | : ;                                      |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | -                  |
| <del>-</del>         |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | <b> </b>           |
| -110                 |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    | -          |              |                       | -35.0              |
| -                    |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       |                    |
| ~                    |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | -                  |
| -12.0                | <u> </u>      |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | -                  |
| _                    |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | 40.0               |
|                      |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       |                    |
| -13.0                |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       |                    |
| -                    | ] <del></del> |                                          |                                       | 1                |                                         |                                        |             |                                       |                    |            |              |                       | -                  |
| 445.                 |               |                                          |                                       |                  |                                         |                                        |             |                                       |                    |            |              |                       | 45.0               |
|                      | 1             | UMA I                                    | Engin                                 | eering           | Ltd                                     |                                        | COMPL       | ETION DEPTH                           | *.* m              | 1          | COMP         | LETE                  | 1                  |
|                      |               | Winn                                     | ipeg.                                 | Mani             | toba                                    |                                        |             | BY TH                                 |                    | 7          | WG NO.       | <del> </del>          | 1 of 1             |
|                      |               |                                          |                                       |                  | ~ ~ ~ W                                 |                                        |             |                                       |                    |            | ma MV.       | Leak                  |                    |

(A)

|                   |                | ATCHEWAN                                    |                       |               | SUBTERFANEAN LTD.                     |                  |          | BORTHOLE No. | G-88-6     | 2         |
|-------------------|----------------|---------------------------------------------|-----------------------|---------------|---------------------------------------|------------------|----------|--------------|------------|-----------|
|                   | AR DEVEL       |                                             | LTD.                  |               |                                       |                  |          | <u> </u>     | -0896-266- | 01        |
|                   | CT ENGINE      |                                             |                       |               |                                       |                  |          | ELEVATION 23 | 9.890 (m)  |           |
| SAMP.             | LE TYPE        | CHAIL S                                     | MPLE                  | SHD:          | BY TUBE X DISTURBED                   | NO RECOVERY      |          | CORE BARREL  | WIPELINE-1 | YPE       |
| ~                 |                | 00/57) (U<br>1.8 2.2<br>5TRENGTH<br>200 300 | M3/ ▲<br>2.6          |               |                                       |                  |          | 1            |            |           |
| Œ                 | # SHEAR<br>100 | 200 300                                     | (kPe) <b>2</b><br>400 | ]             | SOII                                  | _,               | E 2      | 1 1/16       | her        | $\equiv$  |
| DEPTH             | PLASTIC        | MC                                          | LIQUID                | USC           | DESCRIF                               |                  | SAMPLE   | comi         | nents      | ОЕРТИ (#) |
| 0.0               | 40             | 80 120                                      | 183                   | 100           | FILL-CLAY AND SILT                    | 11011            | 13. N    |              |            |           |
| -                 |                |                                             |                       | <b>1</b>      | -SOME GRANULAR<br>-BROWN              |                  |          |              |            |           |
| -1 0              |                |                                             |                       |               | - DROWN                               |                  |          |              |            | -         |
| -                 |                |                                             |                       | 7             | LAYER BLACK CLAY WITH D               | RCANICS          | 7        |              |            | 5.0       |
| -20               |                |                                             |                       |               | CLAY-SOME SILT<br>-BROWN              |                  |          |              |            | -         |
| -                 |                | · · · · · · · · · · · · · · · · · · ·       | <del></del>           |               | -STIFF -TILL INCLUSIONS               |                  |          |              |            | <u> </u>  |
| -3.0<br>-         |                |                                             |                       |               | (MORE WITH DEPTH)                     |                  |          |              |            | 10.0      |
| <b>-4</b> .0      |                |                                             |                       |               | -TILL POCKETS TO .3                   | DIA              |          |              |            | L         |
| -                 |                |                                             |                       |               |                                       |                  |          |              |            | -15.0     |
| -50               |                |                                             |                       |               | TILL—SANDY SILT                       |                  | $\dashv$ |              |            | -         |
| •                 |                |                                             | : : :<br>             |               | -SOME GRANULAR<br>-WATER SEEPAGE IN T | HE SANDY TILL    |          |              |            | F         |
| -6 D              |                | ·•                                          | <u> </u>              |               | -MORE WATER SEEPAG                    | E WITH DEPTH     |          |              |            | 20.0      |
| •                 |                |                                             |                       |               |                                       |                  |          |              |            | -         |
| <del>-</del> 7.0  |                |                                             |                       |               |                                       |                  |          |              |            | -         |
| <del>-8</del> ,0  |                |                                             |                       |               | AUGER REFUSAL @ 7.77                  |                  |          |              |            | -25.0<br> |
| -                 |                |                                             |                       |               | NOTE: WATER IN HOLE<br>NO SLOUGHING   |                  |          |              |            | -         |
| <del>.\$</del> .0 |                |                                             | <u> </u>              |               |                                       |                  |          |              |            | -30.0     |
| -                 |                |                                             |                       |               |                                       |                  |          |              |            | F         |
| -100              |                |                                             |                       |               |                                       |                  |          |              |            | F         |
|                   |                |                                             | <u> </u>              |               |                                       |                  |          |              |            | 35.0      |
| -110<br>-         |                |                                             |                       |               |                                       |                  |          |              |            | +         |
| -12.0             |                |                                             |                       |               |                                       |                  |          |              |            | +         |
| •                 |                |                                             |                       |               |                                       |                  |          |              |            | 40.0      |
| -13.0             |                |                                             |                       |               |                                       |                  |          |              |            | +         |
| -                 |                | <u></u>                                     |                       |               |                                       |                  |          |              |            | 45.0      |
| 140-              |                | IIMA                                        | Engir                 | Aprir         | ng Ltd.                               | COMPLETION DEPTH | ** =     | COMPL        | FTE        | 1         |
|                   |                | UDIA                                        | Engir                 | 74<br>1001 TT | itoba                                 | LOGGED BY TH     | -,- 111  | DWG NO.      | Page 1     |           |

[ · · ·

图

| NORTH       | OF SASKATCHEWAN                             |                                               | SUBTERRANEAN LTD.                       |                  |             | $\neg$                                       | BOREHOLE No. G-     | -68-63       |
|-------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------|------------------|-------------|----------------------------------------------|---------------------|--------------|
| GENSI       | ar developments ltd.                        |                                               |                                         |                  |             |                                              | Project No: 06 -089 |              |
|             | CT ENGINEER: TW                             |                                               |                                         |                  |             |                                              | ELEVATION 239.620   | (m)          |
| SAMP:       | ID TYPE GEAR SAMPLE                         | SEPLEY TO                                     | BE XINSTURBED                           | NO RECOVERY      |             |                                              | ORE BAFREL   W      | FELLOR-TYPE  |
| _           | ▲ BULK DENSTY (1/m3) ▲<br>1.4 3.6 2.2 2.5   |                                               |                                         |                  | اننا        | _                                            |                     |              |
| (E)         | # 5HEAR 5TRENCTH (LPG) #<br>100 200 300 400 | 1                                             | SOII                                    | ı                | E           | 웆                                            | Other               | <b>E</b>     |
| ОЕРТН       |                                             | USC                                           |                                         |                  |             | SAMPLE                                       | 1                   | -   ∓        |
| DEF         | PLASTIC N.C LIQUID                          | ]                                             | DESCRIP                                 | TION             | SAMPLE TYPE | 3                                            | comment             | .s   🖺       |
| 0.0         | 40 80 120 160                               |                                               | B. N. D. E. V.                          |                  | ľ           |                                              |                     | - 0.0        |
|             |                                             |                                               | -CLAY AND SILT<br>-SOME GRANULAR        |                  | 11          |                                              | ļ                   | ļ ļ          |
|             |                                             |                                               | -BROWN                                  |                  |             |                                              | ,                   | -            |
| -10         |                                             | { <b>   </b>   <b> </b>   <b> </b>   <b> </b> |                                         |                  |             |                                              |                     | F            |
| _           |                                             |                                               |                                         |                  |             |                                              | ŀ                   | 5.0          |
| Ì           |                                             |                                               |                                         |                  | -           |                                              |                     |              |
| -20         |                                             | <b>Z</b>                                      | er of Black Organic<br>-roots           | MAJERIAL ,       | 1           |                                              |                     | - i          |
| ŀ           |                                             | ₹ ZCA                                         | Y-SOME SILT                             |                  |             |                                              |                     | F 1          |
| <br> -3.0   |                                             |                                               | -BRO₩N<br>-STIFF                        |                  |             |                                              |                     | -10.0        |
|             |                                             |                                               | -21114                                  |                  |             |                                              | ļ                   | - 1000       |
|             |                                             | i 183                                         | -TILL INCLUSIONS                        |                  |             |                                              |                     | <b> </b>     |
| 4.0         |                                             | <b>1 1 2 3</b>                                | - HEE INCECTIONS                        |                  |             |                                              |                     | -            |
| ļ.          |                                             |                                               |                                         |                  |             |                                              |                     |              |
|             |                                             | N                                             |                                         |                  |             |                                              |                     | -15.0<br>-   |
| -50         |                                             | i K                                           | TO MOSTON TO COM                        | ALAV             |             |                                              |                     | <u> </u>     |
| -           |                                             | { <b>[</b> 2]                                 | -TRANSITION TO GRAY<br>-TILL INCLUSIONS | CLAT             |             |                                              |                     | <del> </del> |
| -60         |                                             |                                               | -FIRM                                   |                  | -           |                                              | 1                   | <b>-</b>     |
| "           |                                             |                                               |                                         |                  | 1           |                                              |                     | -20.0        |
| <b>†</b>    |                                             |                                               | -BECOMING SOFTER W                      | NH DEPTH         |             |                                              | ļ                   |              |
| 7.0         |                                             |                                               |                                         |                  |             |                                              |                     | -            |
|             |                                             |                                               |                                         |                  | İ           |                                              | ]                   | <b>-</b>     |
|             |                                             |                                               | -SILT WITH CLAY                         |                  | 4           |                                              |                     | 25.0         |
| <b>8</b> ,0 |                                             |                                               | -SOME GRANULAR                          |                  |             |                                              |                     | Ĺ            |
| -           |                                             |                                               | -TR COBBLES                             |                  |             |                                              |                     | -            |
| 3.0         |                                             |                                               | -GREY                                   |                  |             |                                              |                     | F            |
| "           |                                             |                                               |                                         |                  |             |                                              |                     | -30.0        |
|             |                                             | 1 183                                         |                                         |                  |             |                                              |                     |              |
| 100         |                                             |                                               |                                         |                  |             |                                              | 1                   | -            |
|             |                                             | .[ 🕅                                          |                                         |                  |             |                                              |                     | -            |
|             |                                             |                                               | -TAN/YELLOW LIMESTO                     | DNE              |             |                                              |                     | -35.0        |
| 110<br>     |                                             |                                               |                                         |                  |             |                                              |                     |              |
| -           |                                             |                                               | -GRANULAR GREENISH                      | CÓI OD           |             | 1                                            |                     | ļ.           |
| 12.0        |                                             |                                               | -GENERAL PREFITION                      | COLUR            |             |                                              |                     | -            |
|             |                                             | FNI                                           | OF HOLF @ 1220 BM                       | GREY TILL        | 1           |                                              | 1                   | +0.0         |
|             |                                             | ] ] [] [14)                                   | O OF HOLE @ 12,20 IN NOTE: NO SLOUGHING | GISET THE        |             |                                              |                     |              |
| -13.0       |                                             | -{                                            | TR WATER SEEPA                          | NGE              |             |                                              |                     | -            |
| -           |                                             | .] ]                                          |                                         |                  |             |                                              |                     | F            |
|             |                                             |                                               |                                         |                  |             |                                              |                     | 45.0         |
| 140         | UMA Engi                                    | neering                                       | Ltd.                                    | COMPLETION DEPTH | * * 1       | <u>.                                    </u> | COMPLETE            |              |
| 1           | Winnipeg                                    | Manita                                        | <br>iha                                 | LOGGED BY TH     |             |                                              | DWG NO.             | Page 1 of 1  |
| <u> </u>    | ուրուիջե                                    | , 11011111                                    | NU                                      | 1200000 01 111   |             |                                              | 1200 101            | Linda, Calif |

|                      | OF BASKATCHEWAN                                                                                       |                      | SUBTERRANEAN LTD.                                         |                  |             |           | BOREHOLE No   |               |                      |
|----------------------|-------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------|------------------|-------------|-----------|---------------|---------------|----------------------|
|                      | AR DEVELOPMENTS LTD.                                                                                  |                      |                                                           |                  |             |           | Project No: 9 |               | -01                  |
|                      | OT ENGINEER: TW                                                                                       |                      |                                                           |                  |             |           | ELEVATION 24  |               |                      |
| AMPL                 | D TYPE GRAB SAMPLE                                                                                    | SHELBY TU            | BE SELLEBED                                               | NO RECOVERY      |             | U.        | ORE BARREL    | MINETUS.      | -TYPE                |
| DEPTH (m)            | ▲ B.J.J. PENSTIT (L/m3) ▲ 1.4 1.8 22 2.5 ■ 5HEAR STRENGTH (LPC) ■ 100 200 380 400  PLASTIC N.C LIQUID | USC                  | SOII<br>DESCRIF                                           |                  | SAMPLE TYPE | SAMPLE NO | Com           | ther<br>ments | DEPTH (#)            |
| - 1                  | 40 80 120 180                                                                                         |                      | DDCCIMI                                                   | 11011            | ী           | 1/2       | 1             |               |                      |
| 0:0                  | Te 60 (20 Mg                                                                                          | TOP                  | SOL                                                       |                  | 1           |           |               |               | <del>-   0.0 -</del> |
| 10                   |                                                                                                       | ا ا                  | Y-SOME SILT<br>-Brown<br>-Stiff<br>-Small till inclusion  | NS               |             |           |               |               | -                    |
| 20                   |                                                                                                       |                      | -SILT WITH GRANULAR<br>-SOME CLAY                         |                  |             |           |               |               | 4_4.4.               |
| -3.0                 |                                                                                                       |                      | -Some Cobbles and<br>-Wet to pay test<br>-Tan             | BOULDERS         |             |           |               |               | 10.0                 |
| 4.0                  |                                                                                                       | AUG                  | GER REFUSAL & 3.65<br>NOTE: NO SLOUGHING<br>NO WATER SEEP | AGE              |             |           |               |               | -15.0                |
| 50                   |                                                                                                       |                      |                                                           |                  |             |           |               |               | <u> </u>             |
| -60                  |                                                                                                       |                      |                                                           |                  |             |           |               |               | 20,0                 |
| -<br>-7.0            |                                                                                                       |                      |                                                           |                  |             |           |               |               | E                    |
| -                    |                                                                                                       |                      |                                                           |                  |             |           |               |               | 25.0                 |
| - <b>79</b> ,0<br>-  |                                                                                                       |                      |                                                           |                  |             |           |               |               |                      |
| <del>-9</del> .0<br> |                                                                                                       |                      |                                                           |                  |             |           |               |               | 30.4                 |
| -100                 |                                                                                                       |                      |                                                           |                  |             |           |               |               | -<br> -<br> -        |
| -110                 |                                                                                                       |                      |                                                           |                  |             |           |               |               | -35,0<br> -<br> -    |
| -12.0                |                                                                                                       |                      |                                                           |                  |             |           |               |               | 40.                  |
| -13.0                |                                                                                                       |                      |                                                           |                  |             |           |               |               | -<br>-<br>-          |
| 140                  | <u> </u>                                                                                              |                      | 7.3                                                       | <u> </u>         |             |           | <u> </u>      |               |                      |
| 1                    | UMA Engi                                                                                              | neering<br>g. Manite | Lta.                                                      | COMPLETION DEPTI | 1 *.*       | m         | COM           | PLETTS        |                      |

|                      | OF BASKATCHEWAN                                                                                            |                                               | 57                | PTERRANEAN LTD.                                                  |            |                    |             |               | ა <u>G−88−(</u> |           |
|----------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------|------------------------------------------------------------------|------------|--------------------|-------------|---------------|-----------------|-----------|
|                      | AR DEVELOPMENTS LTD.                                                                                       |                                               |                   | ·                                                                |            |                    |             |               | 08 -0898-288-   | 01        |
|                      | CT ENGINEER: TN                                                                                            |                                               |                   |                                                                  | ····       |                    |             | ELEVATION 2   |                 |           |
| WFI.                 | LE TYPE GEAR SAMPLE                                                                                        | SHEET .                                       | TUBE              |                                                                  | HO EE      | COVERY             | Щ.          | COPIE BAFFEEL | ALT DA          | TYPE      |
| DEFTTH (m)           | ▲ BULK DECESTY (1/19.3) ▲ 1.4 1.5 2.2 2.6  ■ SHEAR STRENGTR (1/19.3) ■ 100 200 300 400  PLASTIC M.C LIQUID | USC                                           |                   | SOII<br>DESCRIF                                                  |            |                    | SAMPLE TYPE |               | oments          | 0EPTH (#) |
| 0.0                  | 40 80 120 180                                                                                              |                                               | TATOS PAR         |                                                                  |            |                    |             | <u> </u>      |                 | 40        |
| 10                   |                                                                                                            |                                               | · – TII.<br>– DF  | HE GRANULAR<br>L INCLUSIONS                                      |            | <u> </u>           |             |               |                 | 1 1 1 50  |
| 3.0<br>4.0           |                                                                                                            |                                               | −50<br>−D{<br>−TA | T WITH GRANULAR<br>OME COBBLES<br>INSE<br>IN<br>MESTONE BECOMING | 3 YELLOW   |                    |             |               |                 |           |
| 50<br>60             |                                                                                                            |                                               |                   | REFUSAL & 4.42<br>ITE: NO SLOUGHING<br>TR WATER ON A             | uger tip   |                    |             |               |                 | -15       |
| 7.0                  |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | -25       |
| <b>.</b> 9,0         |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | 1         |
| <del>9</del> .0      |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | 30        |
| 160                  |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | -35       |
| 110                  |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 |           |
| -12.8<br>-           |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | -<br>-    |
| -13.0<br>-           |                                                                                                            |                                               |                   |                                                                  |            |                    |             |               |                 | 1 4 4 4   |
| <del>-14 û -</del> - | TIMA Empi                                                                                                  | <u>                                      </u> | <u>~ 1+-</u>      | <del> </del>                                                     | COMPLETION | ा <b>ग</b> रूक्य । | <br>* #     | 1001          | PUSIE           |           |
|                      | UMA Engi                                                                                                   | neerm<br>z, <u>Man</u>                        | ខ្ពស់ប            | ı.                                                               | LOGGED BY  |                    |             | DWG NO.       | Page            |           |

-

| NORTH O       | OF SASKATCHETAN                             |                                       | SUBTERPANEAN LTD.            |                                     |               |                                               | BOREEOLE No.     | ۳ <u>۵۵</u> ۳ | 70                  |
|---------------|---------------------------------------------|---------------------------------------|------------------------------|-------------------------------------|---------------|-----------------------------------------------|------------------|---------------|---------------------|
| GENETAR       | PETELOPNENTS LTD.                           | <del></del>                           | TTT THE CENTER OF BIRTH      | <del></del>                         |               |                                               | Project No: 06 - |               |                     |
| PROJECT       | ENGINEER: TW                                |                                       |                              | <u>.</u>                            |               |                                               | ELEVATION 246.00 |               | 61                  |
| SAMPLE        | TYPE GRAE SAMPLE                            | SHELEY TU                             | E MISTURBED                  | NO RECOVERY                         |               | 11 6                                          |                  | WIRELINE-1    | D.COV               |
|               | ▲ B.M.C. POSITY (1/m3) ▲<br>1.4 1.8 2.2 2.5 |                                       |                              | E=                                  | 7             | <u>                                      </u> | O'E MEAL         | HINSTINE-1    | TYPE                |
| 食厂            | 置 SHEAR STRENGTH (紀句) 畫                     | 1 1                                   | SOII                         |                                     | 냁             | 운                                             | A11-             | _             | =                   |
|               | 100 200 300 400                             | usc                                   |                              |                                     | T.            | ᄪ                                             | Other            | ŗ             | =                   |
| E I           | EASTIC N.C LIQUID                           |                                       | DESCRIP                      | TION                                | WAPLE TYPE    | SAMPLE<br>TAMPLE                              | comme            | nts           | DEPTH (A)           |
| 0.0           | 40 80 120 160                               | }                                     |                              |                                     | 35            | 23                                            |                  | # <b>-</b>    | =                   |
|               |                                             | 77-101-5                              | GL                           |                                     | <del>/-</del> | -                                             |                  |               | 2.6                 |
|               |                                             |                                       | -AND SILT<br>-MIX WITH TILL  |                                     |               |                                               |                  |               | t                   |
| -10           |                                             | - //                                  | -DRY                         |                                     |               |                                               |                  |               |                     |
|               |                                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -LT BROWN<br>-SOME SILT      |                                     | 4             |                                               |                  |               | ļ.                  |
|               |                                             |                                       |                              |                                     |               | Į                                             | }                |               | -5,0                |
| -20           |                                             | · (2) -                               | -STIFF                       |                                     |               |                                               | 1                |               | <b>†</b>            |
| <u> </u>      |                                             |                                       | -TILL INCLUSIONS             |                                     |               |                                               |                  |               |                     |
| -3.0          |                                             |                                       | SILT WITH GRANULAR           |                                     | 7             |                                               |                  |               | L                   |
|               |                                             | 83 -                                  | -SOME CLAT                   | 341 11 0000                         |               |                                               |                  |               | -10.0               |
| <b> </b>      |                                             | RA                                    | -SOME COBBLES AND I<br>-DAMP | DULUEK?                             |               |                                               |                  |               | <b> </b>            |
| 4.0           |                                             | l A                                   |                              |                                     |               |                                               |                  |               | Ĺ                   |
| <u> </u>      |                                             | [                                     |                              |                                     |               |                                               | ]                | -             | <u> </u>            |
|               |                                             | 1 189                                 |                              |                                     |               |                                               | ļ                |               | -15.0               |
| 50            |                                             | { Ph −                                | -SAND LAYER                  |                                     | 4             |                                               | İ                |               | -                   |
| }   <u>i</u>  |                                             | XUGE                                  | R REFUSAL @ 5.03             |                                     |               |                                               |                  |               | -                   |
| 60            |                                             | }     1                               | OTE: COBBLES AND BOME        | DULDERS SLOUGHED<br>WITHDRAWAL DIFF |               |                                               | }                |               |                     |
|               |                                             |                                       | TR WATER ON TIP              | OF AUGER                            |               |                                               | <u> </u>         |               | 20.0                |
| <b>i</b>      |                                             | {                                     |                              |                                     |               |                                               |                  |               | -                   |
| 7.0           |                                             | [                                     |                              |                                     |               |                                               |                  |               | -                   |
|               |                                             |                                       |                              |                                     |               |                                               |                  | ļ             |                     |
| . :           |                                             |                                       |                              |                                     |               |                                               |                  |               | <b>-25</b> .0       |
| <b>-8.0</b>   |                                             |                                       |                              |                                     |               |                                               |                  |               | _                   |
| <u> </u>      |                                             |                                       |                              |                                     |               |                                               |                  | ì             | -                   |
| -8,0          |                                             |                                       |                              |                                     |               |                                               | i                | ļ             |                     |
| ***           |                                             |                                       |                              |                                     |               |                                               | ]                |               | -30.0               |
| -             |                                             |                                       |                              |                                     |               |                                               |                  | ļ             |                     |
| -100          |                                             |                                       |                              |                                     |               |                                               |                  | ł             | -                   |
| <u> </u>      |                                             |                                       |                              |                                     |               |                                               |                  |               | _                   |
| :             |                                             |                                       |                              |                                     |               |                                               |                  |               | -35,0               |
| -110          |                                             |                                       |                              |                                     |               | ;                                             |                  |               |                     |
| _             |                                             |                                       |                              |                                     |               | ;                                             |                  |               | -                   |
| -12.0         |                                             |                                       |                              |                                     | $  \  $       |                                               |                  | ŀ             | -                   |
| 12.0          |                                             |                                       |                              |                                     | $  \  $       |                                               |                  | Į             | -<br>- <b>4</b> 0.0 |
| -             |                                             |                                       |                              |                                     | 1 1           |                                               |                  |               | -                   |
| -13.0         |                                             |                                       |                              |                                     |               |                                               |                  | }             | -                   |
|               |                                             |                                       |                              |                                     | } }           | į                                             |                  | }             | -                   |
|               |                                             |                                       |                              |                                     |               | ļ                                             |                  | Ì             | -<br>-450           |
| 140           | HMA Drain                                   | coming 14                             | .a                           | V1.777.77                           | $\coprod$     |                                               | ·                |               | +10                 |
|               | UMA Engin                                   | ecring M                              | AI.                          | COMPLETION DEPTH *                  | .* II         | - ,                                           | COMPLETE         | <del>,</del>  |                     |
| <del></del> . | Winnipeg,                                   | manitod                               | 8 []                         | OGGED BY TH                         |               |                                               | DWG NO.          | Page 1 of     | f 1                 |

| NORTH                | OF BASKA              | ATCHEVAN                                        | ĭ                |              | SUBTERRANEAN LTD.                             |                     | _               | BOREHOLE No. G     | -88-71              |
|----------------------|-----------------------|-------------------------------------------------|------------------|--------------|-----------------------------------------------|---------------------|-----------------|--------------------|---------------------|
|                      | ar develo             |                                                 | LTD.             |              |                                               |                     |                 | Project No: 06 -01 |                     |
|                      | CT ENGINE             |                                                 |                  |              |                                               | -                   |                 | ELEVATION 239.530  | (m)                 |
| SAMP                 | LE TYPE               |                                                 |                  | SEDE         | BY TUBE 🔀 DISTURBED                           | NO RECOVERY         |                 | CORPE BARRET       | WUZLINZ-TYPE        |
| т (т)                | 1.4<br>E SHEAR<br>100 | TO 6517 (L/<br>1.8 2.2<br>519ENGTH 6<br>200 300 | 2.6              | USC          | SOII                                          |                     | <del>⊢</del> ∮. | € Other            | ts:                 |
| ОЕРТИ                | PLASTIC               | M.C                                             | TECOLO           |              | DESCRIF                                       | TION                |                 | commen             | ts B                |
| 0.0                  | <u> 40</u>            | 80 120<br>: : :                                 | 1 <del>8</del> 3 | 1,1          | TOPSOIL                                       |                     | -               |                    |                     |
| -<br>-10             |                       |                                                 |                  |              | CLAY-SOME SILT -BROWN -STIFF -TILL INCLUSIONS |                     |                 |                    | -<br> -<br> -<br> - |
| -20                  |                       |                                                 |                  |              |                                               |                     |                 |                    | <u>-5.</u> 0        |
|                      |                       |                                                 |                  |              | TILL—SILT WITH CLAY<br>—SOME GRANULAR<br>—TAN | ļ                   |                 |                    | r<br>E              |
| -3.0                 |                       |                                                 |                  |              | -DAMP TO WET (BECO<br>DEPTH                   | )                   |                 |                    | 10.0                |
| <b>-4</b> .0         |                       |                                                 |                  |              | -BECOMING SOFTER (F                           | PUTTY LIKE)         |                 |                    | -                   |
| -                    |                       |                                                 |                  |              | AUGER REFUSAL & 4.27<br>NOTE: NO SLOUGHING    |                     |                 |                    | -1 <b>5.</b> 0      |
| -50<br>-             |                       |                                                 |                  |              | TR WATER ON AL                                | IGER TIP            |                 |                    | F                   |
| -60                  |                       |                                                 |                  |              |                                               |                     |                 |                    | -20.0               |
| -                    |                       |                                                 |                  |              |                                               | !                   |                 |                    | -                   |
| -7.0<br>-            |                       |                                                 |                  |              |                                               |                     |                 |                    | <u> -</u>           |
| <b>8</b> ,0          |                       |                                                 |                  |              |                                               |                     |                 |                    | <b>-25.</b> 0       |
|                      |                       |                                                 |                  |              | TO CALL THE STREET                            |                     |                 |                    |                     |
| <del>-9</del> .0<br> |                       |                                                 |                  |              |                                               |                     |                 |                    | -30.0               |
| -100                 |                       |                                                 |                  |              |                                               |                     |                 |                    | -                   |
| -110                 | 1 1 1                 |                                                 |                  |              |                                               |                     |                 |                    | 35.0                |
|                      |                       |                                                 |                  |              |                                               |                     |                 |                    |                     |
| -12.0                |                       |                                                 |                  |              |                                               |                     |                 |                    | 40.0                |
| -13.0<br>-           |                       |                                                 |                  |              |                                               | :                   |                 |                    |                     |
| 14.9                 |                       | TILLA                                           | Day and          |              | 1+3                                           | CONTRACT PROPERTY   |                 | - Annual Inc.      | 450                 |
|                      |                       | UMA                                             | ringii           | reeli        | ig Ltd.                                       | COMPLETION DEPTH *. | * 111           | <del></del>        |                     |
| [                    |                       | Win                                             | nipeg            | <u>, Man</u> | utoba                                         | LOGGED BY TH        |                 | DWG NO.            | Page 1 of 1         |

15.75 . 1. .

| <del></del>       | h of saska |                                                  |       |           | SUI                               | STERRANEAN LTD.                               |                 |             |                                         |             | o. G-88-      |                     |
|-------------------|------------|--------------------------------------------------|-------|-----------|-----------------------------------|-----------------------------------------------|-----------------|-------------|-----------------------------------------|-------------|---------------|---------------------|
|                   | TAR DEVELO |                                                  | LTD.  |           |                                   |                                               |                 |             |                                         | <del></del> | 06 -0899-266  | -01                 |
|                   | CI ENGINE  |                                                  |       | T2        |                                   | . N. A                                        | ···             |             |                                         | ELEVATION 2 |               |                     |
| SAME              | LE TYPE    | क्षा स्टब्स्ट १५५<br>व्याप्त स्था                | MPLE  | SHE       | ey Tube                           | <b>⊠</b> DELLERED                             | HO RECOVER      | <u> </u>    | Щ:                                      | ORE BARRET  | Alexandr      | -TYPE               |
| ОЕРТН ⟨пп⟩        | PLASTIC    | DELST (L/) 1.0 2.2 5THENGTH (L) 00 300  M.C. 120 | поле  | USC       |                                   | SOII<br>DESCRIP                               |                 | CAMBIE TYPE | 11.1                                    | com         | ther<br>ments | рерти (#)           |
| <del>0.0</del>    |            |                                                  | : : : |           | TOPSOIL                           |                                               |                 | $\dashv$    | +                                       |             |               | <del>-   ao -</del> |
| -1 O              |            |                                                  |       |           | CLAY—WIT<br>—BRY<br>—STII         | )\N                                           |                 |             |                                         |             |               | 5.0                 |
| -20<br>-          |            |                                                  |       |           | -TiLL                             | . Inclusions                                  |                 |             |                                         |             |               | -<br>-<br>-         |
| -3.0              |            |                                                  |       |           | TH - 201                          | WITH GRANULAR                                 |                 |             |                                         |             |               | 10.0                |
| 4,0               |            |                                                  |       |           | -\$01<br>- <u>\$01</u><br>AUGER R | HE CLAY<br>TER (PUTTY LIKE)<br>EFUSAL (1 4.27 |                 |             |                                         |             |               | 15.0                |
| -50<br>-          |            |                                                  |       |           | NO.                               | E: NO SLOUGHING<br>NO WATER SEEP              | 'AGE            |             |                                         |             |               | <u> </u>            |
| -6 û              |            |                                                  |       |           |                                   |                                               |                 |             |                                         |             |               | 20.0                |
| -7.0<br>-         |            |                                                  |       |           |                                   |                                               |                 |             |                                         |             |               | -25.0               |
| -8.0<br>-         |            |                                                  |       |           |                                   |                                               |                 |             |                                         |             |               | -                   |
| - <del>0</del> .0 |            |                                                  |       | <br> <br> |                                   |                                               |                 |             |                                         |             |               | -300.0<br>-         |
| -100              |            |                                                  |       |           |                                   |                                               |                 |             |                                         |             |               | -<br> -<br> -       |
| -110              |            | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;            |       |           |                                   |                                               |                 |             |                                         |             |               | -35.0<br>-          |
| -12.0             |            |                                                  |       |           |                                   |                                               |                 |             |                                         |             |               | 40.0                |
| -13.0             |            |                                                  |       |           |                                   |                                               |                 |             | *************************************** |             |               | -                   |
| 14.0              |            | <u>:</u>                                         |       | 1_        |                                   |                                               |                 |             |                                         |             |               | 45.0                |
|                   |            | UMA                                              | Engir | eerir     | ig Ltd.                           |                                               | COMPLETION DEPT | H * *       | m.                                      | СОМР        | LETE          | ····                |
|                   |            | Win                                              | กากคร | Man       | itoba                             |                                               | LOGGED BY TH    |             |                                         | DWG NO.     | Page          | 1 of 1              |

溪潭

| PROJECT ENGINEER: TW  SAMPLE TYPE FOR GRAD SAMPLE SHEEL  A BLUE COSTO (L/m3) A  A BLUE COSTO (L/m3) A  B SHEER STREWTH (LPC) III  100 800 800 400 USC  USC | S01                                 | MO RECOVERY                                    |             | roject No: 98 –<br>LEVATION 237.1 | 70 (m)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|-------------|-----------------------------------|--------------------|
| SAMPLE TYPE GRAD SAMPLE SIDE.  A B.U. OBESTY (VM3) A  1.4 1.5 2.2 2.6  E SHEAR SIDE.NCH (APC) III                                                          | S0)                                 |                                                | E           | EVATION 237.1                     | 70 (m)             |
| ▲ B.U. CRETT (VIS) ▲ 1.4 1.8 2.2 2.6  ■ SHEAT STRENGTH (KPG) ■                                                                                             | S0)                                 |                                                |             |                                   |                    |
| E SHEAN STHENSTH (NPC)                                                                                                                                     |                                     |                                                | <del></del> | ا شاختن تعدد ت                    | MEGLING-TYPE       |
| E SHEAN STHENSTH (NPC)                                                                                                                                     |                                     | 15                                             | .1 1        |                                   |                    |
|                                                                                                                                                            |                                     | T ls                                           | 티오          | Othe.                             | .   <del>2</del>   |
|                                                                                                                                                            | וומטסתו                             | <u> </u>                                       | 피벨          | Othe.                             | ·   =              |
| FLASTIC N.C LIQUID USC                                                                                                                                     | しょうしんけん しんりゅうしんけん                   | PTION 5                                        | SAMPLE NO   | comme                             | r (#)              |
| 42 92 485 405                                                                                                                                              |                                     | . 11011                                        | 8 3 3 L     | 07                                | =                  |
| 0.0 120 160                                                                                                                                                | CLAY-BROWN                          |                                                |             |                                   |                    |
| 1.0                                                                                                                                                        |                                     | }                                              |             |                                   |                    |
|                                                                                                                                                            |                                     |                                                |             |                                   | È                  |
| 2.0                                                                                                                                                        |                                     | ļ                                              |             |                                   | -5.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 3.6                                                                                                                                                        |                                     |                                                |             |                                   | Ė                  |
|                                                                                                                                                            | TILL-SILT WITH GRANULAR             |                                                |             |                                   | -10.0              |
| 40                                                                                                                                                         | 0.27                                |                                                | 1           |                                   | F                  |
|                                                                                                                                                            | CHAIR DOLOUGE NEW O                 | DDI E                                          |             |                                   | ţ                  |
| 50                                                                                                                                                         | SHALE-DOLOMITE, RED-PL              | KHTF'                                          |             |                                   | -15.0              |
|                                                                                                                                                            | HARD, BUFF<br>END OF HOLE & 4.42 IN | SHALE                                          |             |                                   | F                  |
| 60                                                                                                                                                         |                                     | }                                              |             |                                   | ļ.                 |
|                                                                                                                                                            |                                     |                                                |             |                                   | <b></b>            |
| 7.0                                                                                                                                                        |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | ‡                  |
| 8.0                                                                                                                                                        |                                     | -                                              |             |                                   | <del>[</del> 250   |
|                                                                                                                                                            |                                     |                                                |             |                                   | ŗ                  |
| 8.0                                                                                                                                                        |                                     |                                                |             |                                   | Ė                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>[</del> 30.0  |
| 10.0                                                                                                                                                       |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | Į.                 |
| 410                                                                                                                                                        |                                     |                                                |             |                                   | 35.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 120                                                                                                                                                        |                                     |                                                |             |                                   | ‡                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>[4</del> 0.0  |
| 430                                                                                                                                                        |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <u> </u>           |
| 44,0                                                                                                                                                       |                                     |                                                |             |                                   | 45.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 15.0                                                                                                                                                       |                                     |                                                |             |                                   | ļ                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>  5</del> 0.0 |
| 16.0                                                                                                                                                       |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | ļ:                 |
| 17.0                                                                                                                                                       |                                     |                                                |             |                                   | <del>[</del> 55.0  |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 180                                                                                                                                                        |                                     |                                                |             |                                   | <u> </u>           |
|                                                                                                                                                            |                                     |                                                |             |                                   | 0.0                |
| 190                                                                                                                                                        |                                     | Ì                                              |             |                                   | <u> </u>           |
|                                                                                                                                                            |                                     |                                                |             |                                   | <u> </u>           |
| 200                                                                                                                                                        |                                     | <u>,                                      </u> |             | <u></u>                           | -65.0              |
| UMA Engineerin                                                                                                                                             | g Ltd.                              | COMPLETION DEPTH *.*                           | <u> </u>    | COMPLETE                          | ·                  |
| Winnipeg, Mani                                                                                                                                             | <u>toba</u>                         | LOGGED BY TH                                   | Di          | IG NO.                            | Pog∉ 1 of 1        |

(§

|                   | h of sask |                                         |                                        |                 | FRIESEN DRIL    | LERS LTD.    |                |              |        | BOREHOLE N  | ∘. G–8      | 8-S2           |
|-------------------|-----------|-----------------------------------------|----------------------------------------|-----------------|-----------------|--------------|----------------|--------------|--------|-------------|-------------|----------------|
|                   | TAR DEVEL |                                         | LTD.                                   |                 |                 |              |                |              |        | Project No. |             |                |
|                   | ECT ENGIN |                                         |                                        |                 |                 |              |                |              |        | ELEVATION 2 | 37.170 (m   | }              |
| S.MI              | LE TYPE   | GRAB SI                                 | MPLE                                   | ZHELEY          | TUBE DESTO      | REED         | NO EECOVERY    |              |        | OPE BARREL  |             | LEGE-TYPE      |
| _                 | 1.4       | (1月 22<br>1月 22                         | m3).⊾<br>7.6                           |                 |                 |              |                |              |        | }           |             |                |
| DEPTH (m)         | ■ 5rtEA   | R 519ENCIH (<br>200 - 300               | KPe} ■                                 |                 |                 | SOIL         |                | JFE.         | 웆      | l           | ther        | ₽              |
| ∓                 |           | · <del>-</del>                          |                                        | USC             |                 |              |                |              | 취      |             |             | рерти (#)      |
| JE P              | PLASTIC   | FC.                                     | nond                                   |                 | DES             | CRIPT        | ION            | JI HE        | SAMPLE | con         | ments       | 🖺              |
|                   | 40        | 80 120                                  | 180                                    | -               |                 |              |                | 5.           | 5      |             |             |                |
| <del>-0,0</del> - |           |                                         | : : :                                  | N               | LAY-WITH PERSIE | S AND STO    | NES            | 1-1          |        |             | <del></del> |                |
|                   |           |                                         | iii                                    | N N             |                 |              |                |              |        |             |             | Ţ              |
| -1.0              | : : :     | : : :                                   | : : :                                  |                 |                 |              |                |              |        | İ           |             | Ė              |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 5.0            |
| -2.0              |           |                                         | iii                                    | 1               |                 |              |                |              |        |             |             | ļ              |
| _                 |           |                                         |                                        | XX T            | ILL-SILT        |              |                | 7            |        |             |             | -              |
| -3.0              |           | •••••                                   |                                        | $\mathbb{R}$    |                 |              |                |              |        |             |             | F10.0          |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        | }           |             | Ļ              |
| <del>-4</del> 0   |           |                                         | <del>    </del>                        | ήE              | HALE-DOLOMITE   |              |                | <del>/</del> |        | •           |             | +              |
| -                 |           |                                         |                                        |                 | NO OF HOLE @ 3. | 99 IN SHA    | E              |              |        | }           |             | F15.0          |
| -5 0              |           |                                         |                                        |                 |                 |              |                | 1            |        |             |             | E              |
| -                 |           | ••••••                                  | }\<br>                                 |                 |                 |              |                | li           |        |             |             | F              |
| -6 0              |           | ••••••••••••••••••••••••••••••••••••••• | ::                                     |                 |                 |              |                |              |        |             |             | 20.0           |
| -                 |           |                                         | !                                      |                 |                 |              |                |              |        | -           |             | E              |
| -7,0              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 75.0           |
| <del>-8</del> ,0  | •         |                                         |                                        |                 |                 |              |                |              |        |             |             | E              |
| _                 |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | F              |
| -¥.0              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | F30.0          |
| <b>-</b>          |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -10.0             |           | 1 1 1                                   |                                        |                 |                 |              |                |              |        |             |             | F              |
| <b>-</b>          |           |                                         | ::: <u></u>                            |                 |                 |              |                |              |        |             |             | 35.0           |
| -110              |           | <u></u>                                 | :                                      |                 |                 |              |                |              |        |             |             | -              |
| _                 |           |                                         | : : :                                  |                 |                 |              |                |              |        |             |             | F              |
| -120              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 40.0           |
| <b>-</b>          |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -130              | ···       |                                         | !                                      |                 |                 |              |                |              |        |             |             | F              |
| -                 |           |                                         | <u></u>                                |                 |                 |              |                |              |        | {           |             | 45.0           |
| -14.0             |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| <b>-</b>          |           | ······································  | ::::;{<br>: : :                        |                 |                 |              |                |              |        |             |             | ļ.             |
| -15.0             | : : :     |                                         | : : :                                  |                 |                 |              |                |              |        |             |             | -<br>-50.0     |
| -                 |           |                                         | !···:                                  |                 |                 |              |                |              |        |             |             | -              |
| -16.0             |           |                                         |                                        |                 |                 |              |                |              |        |             |             | ļ              |
| -<br>4- ·         |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | 55.0           |
| -17.0             |           | ······································  |                                        |                 |                 |              |                |              |        | 1           |             |                |
| -                 |           |                                         | : : :                                  |                 |                 |              |                | 1            |        |             |             | F              |
| -120              |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | -60.0          |
| -                 |           |                                         | ; ; ;                                  |                 |                 |              |                |              |        | 1           |             | -              |
| -190              |           |                                         |                                        |                 |                 |              |                | ]            |        |             |             | ļ.             |
| -                 | 1         | ······································  | ······································ |                 |                 |              |                |              |        |             |             | - <b>65</b> .0 |
| - <u>70 0</u>     | <u> </u>  | TIMA                                    | Frair                                  | Aprina          | T+A             | Im           | MELETION DEPTH | * *          | •      | l month     | गराष        | <b>H03.0</b>   |
|                   |           | W:                                      | ningiti                                | eering<br>Manit | utu.            | <del> </del> |                | . 11         |        |             |             | <del></del>    |
|                   |           | # 1IiI                                  | mbeg,                                  | manit           | ODA             | 110          | GGED BY TH     |              |        | DAC NO.     | P           | aqa 1 of t     |

| NORT      | TH OF SASKATCHEVAN                        |               | F                 | RIESEN DRILLERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LTD.          | ··· ,                                  |     |               | BOREHOL     | P.No. C      | CO o     | (11)               |
|-----------|-------------------------------------------|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|-----|---------------|-------------|--------------|----------|--------------------|
| GEN5      | STAR DEVELOPMENTS LTD.                    | ·             | <u> </u>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ······································ |     |               | Project N   |              |          |                    |
| PROJ      | ECT ENGINEER. TW                          |               |                   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>   | ····                                   | _   |               | ELEVATIO    |              |          | -01                |
| SAMI      | PLE TYPE GRAB SUMPLE                      | SHYLE         | TUBE              | DISTURBED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No            | ELCOVERY                               |     | 1116          | ORE BAFRE   |              | ARETHE-  | ******             |
|           | ▲ BULK DO STY (1/m3) ▲<br>1.4 1.5 22 2.5  | 1             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | T-\ | <u>، رينا</u> | 1           | <u>. 181</u> | SECTION. | TIPE               |
| DEFTH (m) | ■ SHEAR STIRENCTH (KPG) ■ 100 200 300 400 | 1 1           |                   | S0:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TT            |                                        | 111 | 웆             |             | Other        |          | æ                  |
| €         | PLASTIC M.C BOUID                         | USC           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | 1   | 늴             |             | 061161       |          |                    |
| 8         | PLASTIC N.C LIQUID                        |               |                   | DESCRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PTION         |                                        |     | SAMPLE        | C           | ommen        | ts       | оеетн (#)          |
| 0.0       | 40 80 120 183                             | - 7           | <del>FINOLO</del> | National Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |               | <del></del>                            | S   |               | <u> </u>    |              |          |                    |
| -         |                                           |               | VIAI T            | WITH TILE INCEUSIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NS            |                                        | ,   |               |             |              |          | <del>  0.0 -</del> |
| -1,0      |                                           | \ X           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | 1   |               |             |              |          | _                  |
| -         |                                           | l M           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               | į           |              |          | 5.0                |
| -2.0      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               | ŀ           |              |          | -3.5               |
| -         |                                           | <del>[4</del> | THI_CI            | LT WITH GRANULAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1             |                                        |     |               | -           |              |          | ļ.                 |
| -3.0      |                                           |               | FILL OF           | CI MILL GIVATOUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                        |     |               |             |              |          | 10.0               |
| <u> </u>  |                                           | NA NA         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | F10.5              |
| 40        |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | <b> </b>           |
| F         |                                           |               | SHALE-            | DOLOMITE<br>HÖLE 🍎 4,20 IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONCE         |                                        |     |               |             |              |          | 15.0               |
| 50        |                                           |               | ENC. OF           | 11011 & 4,20 IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SHALL         |                                        |     |               |             |              |          | Fian               |
|           |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               | ļ           |              |          | ļ.                 |
| +€0       |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        | İ   |               |             |              |          | 20.0               |
| <u></u>   |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               | ļ           |              |          | -20.0              |
| -7,0      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | ŗ                  |
| <b>.</b>  |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | -<br>-25.0         |
| 6.0       |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | -                  |
| <b>T</b>  |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               | i<br>       |              |          | F                  |
| 9.0       |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | -30.0              |
| 10.0      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          |                    |
| 10.0      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ,                                      |     | i             |             |              |          | F                  |
| H110      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | 35.0               |
| ļ         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | <u></u>            |
| -120      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | -                  |
| -         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | 40.0               |
| [-13 Q    |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          |                    |
| F         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | :                                      |     |               |             |              |          | Ľ.                 |
| -14.0     |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ļ                                      |     |               |             |              |          | 45.0               |
| F         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | F                  |
| 15.0      |                                           | 11            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | Ļ.                 |
| -         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | 50.0               |
| -16.8     |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     | -             |             |              |          | F                  |
| -         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | <u></u>            |
| 17.0      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | 55.0               |
| -         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     | -             |             |              |          | F                  |
| -120      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ļ                                      |     |               |             |              |          | ļ                  |
| -         |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | 60.0               |
| -190      |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     |               |             |              |          | F                  |
| <b> </b>  |                                           |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |     | İ             |             |              |          | F                  |
| 20.0      | IIMA Progin                               | Agrine        | , 14.7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTENT MOREO | N December 4                           |     |               | 1           |              |          | <b>-85.0</b>       |
| 1         | UMA Engin<br>Winnipeg,                    | ceimif        | ( LUI<br>i - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COMPLETIO     |                                        | В   |               | <del></del> | MPLETE       |          | <u></u>            |
| L         | #Innipeg,                                 | Mani'         | toda              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOGGED BA     | TH                                     |     |               | DWG NO.     |              | Page 1   | of 1               |

|              | TH OF SASKATCHEVAN                           |       | ]       | FRIESEN DRILLERS                  | LEID.           |           | BOREHOLE No.            | G-88-S7           |
|--------------|----------------------------------------------|-------|---------|-----------------------------------|-----------------|-----------|-------------------------|-------------------|
|              | STAR DEVELOPMENTS LTD.                       |       |         |                                   | <u> </u>        |           | Project No: 06 -        |                   |
|              | ect engineer: Tw                             |       |         |                                   |                 |           | ELEVATION 237.1         |                   |
| DAM          | PLE TIPE GRAB SAMPLE                         | SHLD. | BY TURE | X DESTURBED                       | NO RECOV        | DAY       |                         | ALT:THE-JALE      |
| 1~           | ▲ BLUK DENSYT (Um3) ▲<br>1.4 1.8 2.2 2.6     | ŀ     |         |                                   | •               |           |                         | 7                 |
| (E)          | ■ SHEAR STREINGTH (KPa) ■<br>100 200 300 460 | 1100  |         | S0.                               | IL              |           | € Othe                  | r E               |
| DEFTH        | PLASTIC N.C LIQUED                           | USC   |         | חשפפטו                            | DMICAI          |           | <b>₫</b>  <br><b>ਫ਼</b> | ≝                 |
| =            | l                                            | ,     |         | DESCRI                            | FHUN            | SOMPLE    | ξ comme                 | nts   造           |
| 0.0          | 40 80 120 180                                | 10    | TOPSO   | 1                                 |                 |           |                         | 0.0               |
| <b> </b>     |                                              |       | (0) 00  | -                                 |                 |           |                         | <b>-~</b> ~       |
| -1.0         |                                              |       | CLAY-)  | WITH THE PACKETS                  |                 |           | ļ                       | F                 |
| 2.0          |                                              |       | -S      | WITH TILL POCKETS<br>OME GRANULAR |                 |           | ļ                       | F <sub>5.0</sub>  |
|              |                                              |       |         |                                   |                 |           |                         | Ė                 |
| -3.0         |                                              | N N   |         |                                   |                 |           |                         | <u> </u>          |
| +            |                                              |       |         |                                   |                 |           |                         | 10.0              |
| <b>+</b> 0   |                                              | 1     |         |                                   |                 |           |                         | _                 |
| †            |                                              |       | TILL-SI | LT WITH GRANULAR                  |                 |           |                         | F                 |
| -50          |                                              | M     |         |                                   | •               |           |                         | -15.0             |
| ļ.,          |                                              | T I   |         |                                   |                 | i I       |                         | -                 |
| 60           |                                              | M M   |         |                                   |                 |           |                         | 200               |
| -7, <b>0</b> |                                              | M     |         |                                   |                 |           |                         |                   |
| Ĺ'''Ŧ        |                                              |       |         |                                   |                 |           |                         | E                 |
| 8.0          |                                              |       |         |                                   |                 |           |                         | -25.0             |
| -            |                                              |       |         |                                   |                 |           |                         | F                 |
| 3.0          |                                              |       |         |                                   |                 |           |                         | <u> </u>          |
| <b> </b>     |                                              |       | GRAVEL  | -LITTLE WATER                     |                 |           |                         | -300              |
| -10.0<br>    |                                              | PA PA |         |                                   |                 |           |                         | <u> </u>          |
| -110         |                                              | Į.    |         |                                   |                 |           |                         | 35.0              |
| - 1          |                                              | N.    |         |                                   |                 |           |                         | E                 |
| -120         |                                              | 料     |         |                                   |                 |           | <br>                    | F                 |
| -            |                                              | ]     | end of  | HOLE @ 11.89 IN                   | GRAVEL          |           | <b>!</b>                | F43.0             |
| -130         |                                              |       |         |                                   |                 |           |                         | Į.                |
| <u> </u>     |                                              |       |         |                                   |                 |           |                         | <u> </u>          |
| -14.0        |                                              |       |         |                                   |                 |           |                         | 48.0              |
| _<br>1 = ^   |                                              |       |         |                                   |                 |           |                         | ŧ                 |
| -15,0        |                                              |       |         |                                   |                 |           |                         | Ena               |
| -16.0        |                                              |       |         |                                   |                 |           |                         | -50.0             |
| _            |                                              |       |         |                                   |                 |           |                         | F                 |
| -17.0        |                                              |       |         |                                   |                 |           |                         | 55.0              |
| -            |                                              |       |         |                                   |                 |           |                         | <u> </u>          |
| -12:0        |                                              |       |         |                                   |                 |           |                         | <u>L</u> .        |
| <b>-</b>     |                                              | i I   |         |                                   |                 |           |                         | <del>[6</del> 0.0 |
| -198         |                                              |       |         |                                   |                 |           |                         | F                 |
| -<br>20-0    |                                              |       |         |                                   |                 |           |                         | <b> </b>          |
| ***          | UMA Engine                                   | erina | r [ta   | ·····                             | COMPLETION DEPT | TH * * ** | L COMM RES              | <b>−85.0</b>      |
|              | Winnipeg,                                    | Mani  | ohe     | •                                 | LOGGED BY TH    |           | COMPLETE                | 10                |
| <del></del>  | · · · · · · · · · · · · · · · · · · ·        |       | vvva    |                                   | TOWNSON DI IN   |           | DRG NO.                 | Poge 1 of 1       |

\*\*\*

| Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0   | 3-513             | BOREHOLE No. G-88-       | BORI   |              | FRIESEN DRILLERS LTD.   |            |                      | Skatchetan                            |            |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|--------|--------------|-------------------------|------------|----------------------|---------------------------------------|------------|------------------|
| FACTOR   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   CANADA   C   |                   | Project No: 08-0899-266- | Proje  |              |                         |            | TD.                  |                                       |            |                  |
| ### SECOND   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   1982   198 |                   |                          |        |              |                         |            |                      |                                       |            |                  |
| SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL      | PIE-TYPE          | ORE BAREAL VIRELEGE      | CORE P | ZRY          | MO ESCOVER              | SEELEY TUE | MPLE                 | r 🚝 Grab sai                          | PLE TIPE   | Self.            |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                          |        |              | _                       |            | 2.5                  | 1.5 2.2                               | 1.4        | ~                |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | €                 | Other                    |        | 2            | SOIL                    | 1100       | (βα) <b>≣</b><br>405 | 200 200                               | 100        | - <u>E</u> -     |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                 |                          | 벌벌     | 1            |                         | USC        | LICHRO               | MC                                    | FLASTIC    | Ė                |
| -1.0 -1.0 -2.0 -3.6 -4.0 -5.0 -5.0 -6.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DEPTH (ft)        | comments                 | 3 3    |              | DESURIPTION             | ļ          |                      |                                       | l          | 끮                |
| -1.0 -2.0 -3.0 -4.0 -5.0 -5.0 -7.4 -5.0 -7.4 -5.0 -7.4 -7.5 -7.4 -7.5 -7.5 -7.6 -7.6 -7.6 -7.7 -7.6 -7.7 -7.6 -7.7 -7.6 -7.7 -7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                          | 05     |              |                         |            | 183                  | <u>80 120</u>                         | 42         | 0.0              |
| -10   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT   TILL-SILT    |                   |                          |        |              | -DAURN                  | O CLAT     |                      |                                       |            | -                |
| -3.6 -4.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                 |                          |        | ł            |                         |            |                      |                                       |            | -1.0             |
| -3.6 -4.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -5.0              |                          |        |              |                         | 8          |                      |                                       |            | -                |
| -10.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -17.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E <sub>w</sub>    |                          |        | İ            |                         | <b>1</b>   |                      |                                       | 1          | -2.0             |
| -10.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -17.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> -</u>         |                          |        |              |                         | <b>1</b> 2 |                      | بالمراجب فيستفيدوا                    | }          | -                |
| -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>          |                          |        |              |                         |            |                      |                                       |            | -3.0             |
| -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> -10.0    |                          |        |              |                         |            |                      |                                       |            | -                |
| -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ţ                 |                          |        |              |                         | <b>W</b>   |                      |                                       | -          | <b>-</b> 4 0     |
| -10.0 -10.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -16.0 -17.0 -18.0 -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                 |                          |        |              |                         | Ø          |                      | ·,,                                   |            | -                |
| -7.0 -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del> 15.0 |                          |        |              |                         | <b>Ø</b>   |                      |                                       |            | -5.0             |
| -7.0 -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | È                 |                          |        |              |                         | <b>8</b>   |                      |                                       | 1-1-1-1    | _                |
| -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -16.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0              |                          |        |              |                         | <b>6</b>   |                      |                                       |            | -£ 0             |
| -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -16.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                          |        |              |                         | <b>6</b>   |                      |                                       |            | -                |
| -5.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -18.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ţ                 |                          | _      |              |                         | 2          |                      |                                       |            | -7. <b>Q</b>     |
| GRAVEL  10.0  11.0  13.0  14.0  15.0  18.0  18.0  19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.0              |                          |        | ļ            | SILT                    | M IIII-    |                      |                                       |            | -                |
| 110   First E-DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F***              |                          | -      |              | I                       | ( <u>)</u> |                      | ·                                     | 1 : : :    | <del>-5</del> .0 |
| 110   First E-DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                 |                          |        | Ì            | L                       | GRAV.      |                      |                                       | ; ; ;      | -                |
| 110   First E-DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320               |                          |        |              |                         |            |                      |                                       |            | -૪.ઇ             |
| 110   First E-DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                          |        | {            |                         |            |                      |                                       |            | -18 n            |
| 13.0 -14.0 -15.0 -17.0 -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                 |                          |        | Ì            |                         |            | : :                  | : : : : :                             |            | _ 10.0           |
| -12.0 OF HOLE <b>6</b> 10.67 IN SHALE -13.0 -14.0 -15.0 -17.0 -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.0              |                          | 4      | <del> </del> | -DOLOMITE               | TSH4U      |                      |                                       |            | -! i n           |
| -14.0<br>-15.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ė                 |                          |        | _            | F HOLE O 10.67 IN SHALE | END (      |                      | 1 1 1 1 1                             |            | _                |
| -13.0<br>-15.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                 |                          |        |              |                         |            |                      |                                       |            | -120             |
| -15.0<br>-16.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0              |                          |        |              |                         |            |                      |                                       |            | -                |
| -15.0<br>-16.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                 |                          |        |              |                         |            |                      |                                       |            | -130             |
| -15.0<br>-16.0<br>-17.0<br>-18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ė                 |                          |        | ļ            |                         |            |                      |                                       | ļ <u>i</u> | -                |
| -15.0<br>-16.0<br>-17.0<br>-18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.0              |                          |        | -            |                         |            | ;                    | ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | J          | -14.0            |
| -18.0<br>-18.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F                 |                          |        |              |                         | į į        |                      | ļ                                     |            | -                |
| -18.0<br>-18.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ŀ                 |                          |        |              |                         |            |                      |                                       | <u> </u>   | -15.0            |
| -17.0<br>-180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>-5</b> 0.0     |                          |        |              |                         |            |                      |                                       |            | -                |
| -17.0<br>-180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ.                |                          |        | -            |                         |            |                      |                                       |            | -16.0            |
| -180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ļ                 |                          |        | -            |                         |            |                      |                                       |            | -                |
| -190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -55.0             |                          |        |              |                         |            |                      | <u> </u>                              | ļ          | -17.0            |
| -190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                 |                          |        |              |                         |            |                      |                                       |            | - }              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ                 |                          |        |              |                         |            |                      |                                       |            | -180             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.0              |                          |        |              |                         |            |                      |                                       |            | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                 |                          |        |              |                         |            |                      |                                       |            | -190             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ‡               |                          |        |              |                         |            |                      |                                       | ····       | • }              |
| TIME Transport Assistant LAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>−65.0</b>      | <del></del>              |        |              |                         | T          |                      | TINE TO                               |            | <del>20 0</del>  |
| UMA Engineering Ltd.   COMPLETION DEPTH * * m   COMPLETE   Winnipeg, Manitoba   Logged by TH   DWG NO.   Pope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | COMPLETE                 | .* m   | TH *.* 1     | COMPLETION DEPTH        | eering Li  | тпан                 | UMA E                                 |            |                  |
| Winnipeg, Manitoba Logged By TH DWG NO. Poge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e 1 of 1          | OMG NO. Poge 1           | DEG 1  |              | LOGGED BY TH            | Manitob    | ipeg,                | Winn:                                 |            |                  |

|                     | OF BASKATCHEWAN                                                  |         | FRIESEN DRILLERS LIT                                              |                       | BOREHOLE N           | ∘. G-88-P3                                  |
|---------------------|------------------------------------------------------------------|---------|-------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------|
|                     | AR DEVELOPMENTS LTD.                                             |         |                                                                   |                       | <del>-</del>         | 0 <del>0 -0898-286-</del> 01                |
|                     | KT ENGINEER: TW                                                  |         |                                                                   |                       | ELEVATION 2          |                                             |
| SelMI.              | LE TYPE GRAE SAMPLE  A BULK DOESTY (1/m3) A                      | SHE     | ET TUBE XBUT PA                                                   | NO RECOVERY           | CORE BARREL          | WINCLINE-TYPE                               |
| (m)                 | 1.4 1.8 2.2 2.6<br># SHEAR STRENGTH (19°6) #<br>10.0 200 500 400 | USA     | SOIL                                                              | JUL                   | <b>ଛ</b> 0           | ther $\equiv$                               |
| DEFTH               | PLASTIC N.C 110                                                  | USC     | DESCRIP                                                           | TION                  | See com              | ther Emments                                |
| -0.0                | 40 80 120 180                                                    | 7       | CLAY-BROWN                                                        | <i>σ</i> ,            |                      | # Zkin 6.0                                  |
| -<br>-10            |                                                                  |         | CO.I-Chowly                                                       |                       | FIEZOMETE<br>BEDROCK | WELL DETAILS                                |
| 2.0                 |                                                                  |         |                                                                   |                       | * -                  | <del>  5.</del> 0<br> -                     |
| -3.0<br>-           |                                                                  |         |                                                                   |                       | :                    | E<br>10.0                                   |
| -40<br><br>-50      |                                                                  |         | -TILL POCKETS                                                     |                       |                      | F<br>F15.0                                  |
| 5.0<br>6.0          |                                                                  |         | 1                                                                 |                       | ₹₩/1.2               | 32,435 N                                    |
| -<br>-7.0           |                                                                  |         | (SAND TO BOULDERS<br>-GRAVEL (6.21 - 9.15)<br>LOST DRILL WATER IN | )<br>ITO CRAVEL       | TILL PIEZO           | METER 11 20.0 NEZOMETER TIP 25.0 WELL 725.0 |
| -<br>-80            |                                                                  |         | (No return)                                                       |                       | BEDROOK              | WELL F25.0                                  |
| 9.0                 |                                                                  |         |                                                                   |                       | :                    | 30.0                                        |
| -10.0<br>-          |                                                                  |         |                                                                   |                       |                      | -35.0                                       |
| -110<br>-<br>-123   |                                                                  |         |                                                                   |                       |                      | -<br>-<br>-                                 |
| -<br>-1 <b>3</b> .0 |                                                                  |         |                                                                   |                       | -                    |                                             |
| -<br>-14.0          |                                                                  |         |                                                                   |                       |                      | 450                                         |
| -150<br>-           |                                                                  | ·····ş  | •                                                                 |                       | NOTE: WATE           | ER LEVELS AS E<br>0 \88                     |
| -1 <i>6.</i> 0      |                                                                  |         |                                                                   |                       |                      | <u></u>                                     |
| 17.0                |                                                                  |         | -PURPLE                                                           | BEDS                  | -220 56 B            | HEELC<br>NOT WELL CASING                    |
| 180<br>190          |                                                                  |         | -SOFT<br>-SANDY                                                   |                       | 220.00 8             | 600<br>-600<br>-                            |
| 20.0                |                                                                  |         |                                                                   |                       |                      | 65.0                                        |
| 21.0                |                                                                  |         |                                                                   |                       |                      |                                             |
| 220                 |                                                                  |         |                                                                   |                       |                      | <del>[</del> 70.0                           |
| 23.0                |                                                                  |         |                                                                   |                       |                      | F75.0                                       |
| -24.0<br>-<br>      |                                                                  |         |                                                                   |                       |                      | Esso                                        |
| 230-                | UMA En                                                           | ineerii | ig Ltd.                                                           | OMPLETION DEPTH *.* m | COMP                 | LETE                                        |
| ·····               | Winnip                                                           | eg, Man | itoba                                                             | OGGED BY TH           | DWG NO.              | Page 1 of 1                                 |

\*

|             | Minnines.                                   | Mani    | toba                                        | LOGGED BY TH       |             | DRG NO.                 | Page 1 of                           |                     |
|-------------|---------------------------------------------|---------|---------------------------------------------|--------------------|-------------|-------------------------|-------------------------------------|---------------------|
|             | UMA Engine<br>Winnipeg,                     | ering   | ttd.                                        | COMPLEMON DUDIE *: | <b>1</b> 22 | <b>टामा</b> ड           | <u> </u>                            | •                   |
| 5 <u>0</u>  | 777.5                                       |         |                                             |                    |             |                         | <u> </u>                            | 60.08               |
| 4.0         |                                             |         |                                             |                    |             |                         | Ė                                   | -                   |
| 3.0         |                                             |         |                                             |                    |             |                         | <u> -</u>                           | -<br>-75.0          |
| 20          |                                             |         |                                             |                    |             |                         | <u>-</u>                            | 70.0                |
| 1,0         |                                             |         |                                             |                    |             |                         | F                                   | -                   |
| 0.0         |                                             |         |                                             |                    |             |                         | <u> </u>                            | <b>65.</b> 0        |
| 96          |                                             |         | END OF HOLE @ 18.29 IN                      | SHALE              |             |                         |                                     | -60.0<br>-          |
| 80          |                                             |         | CND OF HOLE A STATE                         |                    |             |                         | h<br>L                              | -<br>-<br>-<br>-    |
| 7.0         |                                             |         |                                             |                    |             |                         |                                     | -55.0               |
| 6.0         |                                             | 開       |                                             |                    |             |                         | }<br>[                              | - · · · · ·         |
| 50          |                                             |         |                                             |                    |             |                         |                                     | -<br>- <b>5</b> 0.0 |
| 4.0         |                                             | i i     |                                             |                    |             | NOTE: WATER             | PLEVELS AS                          | 450                 |
| 3.0         |                                             |         |                                             |                    |             |                         |                                     | E                   |
| 120         |                                             |         |                                             |                    |             |                         | ļ                                   | E-10.0              |
| 110         |                                             |         |                                             |                    |             |                         |                                     | -35.0<br> -<br> -   |
| 10,0        |                                             |         | 551 1                                       |                    |             |                         |                                     | <u> </u>            |
| ¥.0<br>10.0 |                                             |         | -DOLOMITE LAYERS                            |                    |             |                         |                                     | <b>30</b> .0        |
| 0 &<br>     |                                             | 13<br>M | SHALE-RED BROWN                             |                    |             | 1                       | OT WELL CASING                      | F25.0               |
|             |                                             |         | ,                                           |                    |             | 1                       | CONCRETE THE                        | -<br>-25.0          |
| 7.0         |                                             |         | TILL—SILT WITH GRANULAR<br>(SAND TO BOULDER | (5)                |             | TILL PIEZOM             | 4.06 IN                             | 23.0                |
| 5.0         |                                             | 8       |                                             |                    |             | BETAROCK W              | ELL<br>ELL                          | <u> </u>            |
| 30          |                                             |         |                                             |                    |             | W WA 1 27               | 15 58 IN                            | -15.0               |
| 40          |                                             |         |                                             |                    |             |                         |                                     | F10.0               |
| 3.0         |                                             |         |                                             |                    |             |                         |                                     | -                   |
| ·<br>·2.0   |                                             |         |                                             |                    |             |                         |                                     | F5.0                |
| -<br>-1 0   |                                             |         | CLAY-BROWN                                  |                    |             | PIEZOMETER<br>BEDROCK V | rand<br>Æll details                 | <del>  40</del>     |
| -0,0        | 40 80 120 183                               | 172     |                                             | - 11VII            | 3 3         |                         |                                     | _                   |
| DEPTH       | PLASTIC M.C UQUID                           | USC     | DESCRI                                      | PTION              | Sample      | com:                    | ments                               | DEPTH (H)           |
| (E)         | . SHEAR STRENGTH (GFE) #<br>100 200 300 400 | ttaa    | SO                                          | IL                 | F F         | <u>≩</u> Ot             | her                                 | €                   |
|             | ▲ B.C.C DD-Sch (L/h3) ▲                     | S surr  | ET TURE X DESTURBED                         | NO ELCOVERY        | 1 T         | CORE BARRYI             | ALCTUE-1                            | TYPE                |
|             | COT ENGINEER: TW                            | Z SEE   | ET TUBE X DESTURBED                         |                    |             | ELEVATION 24            | 0.470 (m)                           |                     |
|             | TAR DEVELOPMENTS LTD.                       |         |                                             |                    |             | <del></del>             | <u>19 -08%-266-</u><br>19 -08%-266- |                     |
|             | H OF SASKATCHEWAN                           |         | FRIESEN DRILLERS                            | MD.                |             | BOREHOLE No             | G-88-F                              | 00                  |

|                 | H OF SASKATCHEWAN                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FRIESEN DRILLERS       | LTD.               |      |                 | BOREHOLE No. G-                    | 88-P9              |
|-----------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------|-----------------|------------------------------------|--------------------|
|                 | TAR DEVELOPMENTS LTD.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 | Project No: 00 -089                |                    |
|                 | CT ENGINEER: TW                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 | <b>ELEVATION 239.540 (</b>         |                    |
| DOMP.           | TIPE SE GRAS SAMPLE  A BALK DO STY (L/m3) A | SHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BY TUBE 🔀 DISTURBED    | NO RECOVERY        | -    |                 |                                    | ELICE-TYPE         |
| <b> </b> ~      | 1 14 12 77 76                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      | Π_              |                                    |                    |
| (m)             | # SHEAR STRENGTH (KPe) # 100 200 300 400    | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S0                     | IL                 | 7    | 운               | Other                              | Ì⊋                 |
| ЭЕРТН           | PLASTIC M.C LIQUID                          | USC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                    | ۳    | 泄               |                                    |                    |
| 🛱               | t                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRI                 | PTION              | HE S | SAMPLE          | comments                           | DEPTH (#)          |
| 0.0             | 40 80 120 160                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLAY-FILL              |                    | S    |                 |                                    | 1                  |
| -10             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLA! - FILL            |                    |      | ļ               | PIEZOHETER AND<br>BEDROCK WELL DE  | - <del>  0.0</del> |
| F. 1            |                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TILL-SILT WITH GRANULA | •                  | -    |                 | DEDITION WELL DE                   | WE F               |
| 2.0             |                                             | - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (SAND TO BOULDE        | (S)                |      |                 | 1                                  | 5.0                |
| -3.0            |                                             | T I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | •                  |      |                 |                                    | Ė.                 |
| - 1             |                                             | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |                        |                    |      |                 |                                    | -10.0              |
| <b>-</b> 40     |                                             | 썴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      | ļ               | <u> </u>                           | <b>F</b>           |
| -30             |                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      |                 |                                    | E<br>15.0          |
| -               |                                             | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                    |      |                 |                                    | F1370              |
| <b>-6.</b> 0 ∤  |                                             | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                    |      |                 |                                    | <b>L</b>           |
| -7.0            |                                             | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                    |      |                 | ¥/L 233,195 II<br>TILL PIEZOMETER  | y = 20.0           |
| -'''            |                                             | 增                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      |                 | TILL PIEZOMETER                    | F                  |
| - <b>8</b> 0    |                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      |                 |                                    | <b>-25.</b> 0      |
| 9.0             |                                             | - 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -DENSE FINE TILL TO    | 9.76               |      |                 |                                    | E                  |
|                 |                                             | - R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                    |      |                 | • • • • • • • • •                  |                    |
| -10.0 -         |                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      |                 | -229.75 PIEZOMETI                  | ER TIP             |
| -<br>-110       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 |                                    | F                  |
|                 |                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      | ļ               | - W/L 007 678 4                    | . F35.0            |
| 120             |                                             | - ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -GRANITIC COBBLES      |                    |      |                 | #_/L 227,832 #<br>BEDROCK WELL     | 4                  |
| -13.0           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 |                                    | <del>[ 1</del> 0.0 |
| - }.            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | ۱, ا |                 |                                    | F                  |
| -14.0           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 | -225.22 BOT WELL                   | CLEN FIELD         |
| -150            |                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHALE-DOLOMITE LAYERS  |                    |      |                 | -220.22 DOT WELL                   | CASING             |
| • 1             |                                             | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -SOFT                  |                    |      |                 | NOTE: WATER LEVEL                  | S AS 150.0         |
| 16.0            |                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                      |                    |      |                 | NOTE: WATER LEVEL<br>OF NOV. 30\88 |                    |
| 17.0            |                                             | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      | Ī               |                                    | <u> </u>           |
|                 |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 |                                    | 55.0               |
| 180 -           |                                             | 썴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                    |      | 1               |                                    | E                  |
| 180             |                                             | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | END OF HOLE 9 18.29 IN | SHALE              |      |                 |                                    | €0.0               |
| .               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                      | –                  |      |                 |                                    | Ę                  |
| 20.0            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ,                  |      | - 1             |                                    | 65.0               |
| 21.0            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 |                                    | F                  |
| ·               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    |      |                 |                                    | 70.0               |
| 22 0            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                      |                    | Į    |                 |                                    | E                  |
| 23.0            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ļ                  |      |                 |                                    | <b>_</b>           |
| ļ               |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                    | -    |                 |                                    | 75.0               |
| 24.0            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | i                  | ļ    |                 |                                    | -                  |
| <sub>25 0</sub> |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ļ                  |      |                 |                                    | <del>-8</del> 0.0  |
|                 | UMA Engine                                  | ering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Ltd.                 | COMPLETION DEPTH . |      |                 | COVER                              | <u>.</u>           |
|                 | UMA Engine<br>Winnipeg,                     | Mani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | roha                   | LOGGED BY TH       | 411  | <del>- T-</del> | COMPLETE                           |                    |
|                 |                                             | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w va                   | TOWNS BI JH        |      | L               | F NO.                              | oge 1 of 1         |

| PROJECT ENGINEER: TW  SAMPLE TYPE FOR GRAD SAMPLE SHEEL  A BLUE COSTO (L/m3) A  A BLUE COSTO (L/m3) A  B SHEER STREWTH (LPC) III  100 800 800 400 USC  USC | S01                                 | MO RECOVERY                                    |             | roject No: 98 –<br>LEVATION 237.1 | 70 (m)             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------|-------------|-----------------------------------|--------------------|
| SAMPLE TYPE GRAD SAMPLE SIDE.  A B.U. OBESTY (VM3) A  1.4 1.5 2.2 2.6  E SHEAR SIDE.NCH (APC) III                                                          | S0)                                 |                                                | E           | EVATION 237.1                     | 70 (m)             |
| ▲ B.U. CRETT (VIS) ▲ 1.4 1.8 2.2 2.6  ■ SHEAT STRENGTH (KPG) ■                                                                                             | S0)                                 |                                                |             |                                   |                    |
| E SHEAN STHENSTH (NPC)                                                                                                                                     |                                     |                                                | <del></del> | ا شاختن تعدد ت                    | MEGLING-TYPE       |
| E SHEAN STHENSTH (NPC)                                                                                                                                     |                                     | 15                                             | .1 1        |                                   |                    |
|                                                                                                                                                            |                                     | T ls                                           | 티오          | Othe.                             | .   <del>2</del>   |
|                                                                                                                                                            | וומטסתו                             | <u> </u>                                       | 피벨          | Othe.                             | ·   =              |
| FLASTIC N.C LIQUID USC                                                                                                                                     | しょうしんけん しんりゅうしんけん                   | PTION 5                                        | SAMPLE NO   | comme                             | r (#)              |
| 42 92 485 405                                                                                                                                              |                                     | . 11011                                        | 8 3 3 L     | 07                                | =                  |
| 0.0 120 160                                                                                                                                                | CLAY-BROWN                          |                                                |             |                                   |                    |
| 1.0                                                                                                                                                        |                                     | }                                              |             |                                   |                    |
|                                                                                                                                                            |                                     |                                                |             |                                   | È                  |
| 2.0                                                                                                                                                        |                                     | ļ                                              |             |                                   | -5.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 3.6                                                                                                                                                        |                                     |                                                |             |                                   | Ė                  |
|                                                                                                                                                            | TILL-SILT WITH GRANULAR             |                                                |             |                                   | -10.0              |
| 40                                                                                                                                                         | 0.27                                |                                                | 1           |                                   | F                  |
|                                                                                                                                                            | CHAIR DOLOUGE NEW O                 | DDI E                                          |             |                                   | ţ                  |
| 50                                                                                                                                                         | SHALE-DOLOMITE, RED-PL              | KHTF'                                          |             |                                   | -15.0              |
|                                                                                                                                                            | HARD, BUFF<br>END OF HOLE & 4.42 IN | SHALE                                          |             |                                   | F                  |
| 60                                                                                                                                                         |                                     | }                                              |             |                                   | ļ.                 |
|                                                                                                                                                            |                                     |                                                |             |                                   | <b></b>            |
| 7.0                                                                                                                                                        |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | ‡                  |
| 8.0                                                                                                                                                        |                                     | -                                              |             |                                   | <del>[</del> 250   |
|                                                                                                                                                            |                                     |                                                |             |                                   | ŗ                  |
| 8.0                                                                                                                                                        |                                     |                                                |             |                                   | Ė                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>[</del> 30.0  |
| 10.0                                                                                                                                                       |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | Į.                 |
| 410                                                                                                                                                        |                                     |                                                |             |                                   | 35.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 120                                                                                                                                                        |                                     |                                                |             |                                   | ‡                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>[4</del> 0.0  |
| 430                                                                                                                                                        |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <u> </u>           |
| 44,0                                                                                                                                                       |                                     |                                                |             |                                   | 45.0               |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 15.0                                                                                                                                                       |                                     |                                                |             |                                   | ļ                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | <del>  5</del> 0.0 |
| 16.0                                                                                                                                                       |                                     |                                                |             |                                   | F                  |
|                                                                                                                                                            |                                     |                                                |             |                                   | ļ:                 |
| 17.0                                                                                                                                                       |                                     |                                                |             |                                   | <del>[</del> 55.0  |
|                                                                                                                                                            |                                     |                                                |             |                                   | F                  |
| 180                                                                                                                                                        |                                     |                                                |             |                                   | <u> </u>           |
|                                                                                                                                                            |                                     |                                                |             |                                   | 0.0                |
| 190                                                                                                                                                        |                                     | Ì                                              |             |                                   | <u> </u>           |
|                                                                                                                                                            |                                     |                                                |             |                                   | <u> </u>           |
| 200                                                                                                                                                        |                                     | <u>,                                      </u> |             | <u></u>                           | -65.0              |
| UMA Engineerin                                                                                                                                             | g Ltd.                              | COMPLETION DEPTH *.*                           | <u> </u>    | COMPLETE                          | ·                  |
| Winnipeg, Mani                                                                                                                                             | <u>toba</u>                         | LOGGED BY TH                                   | Di          | IG NO.                            | Pog∉ 1 of 1        |

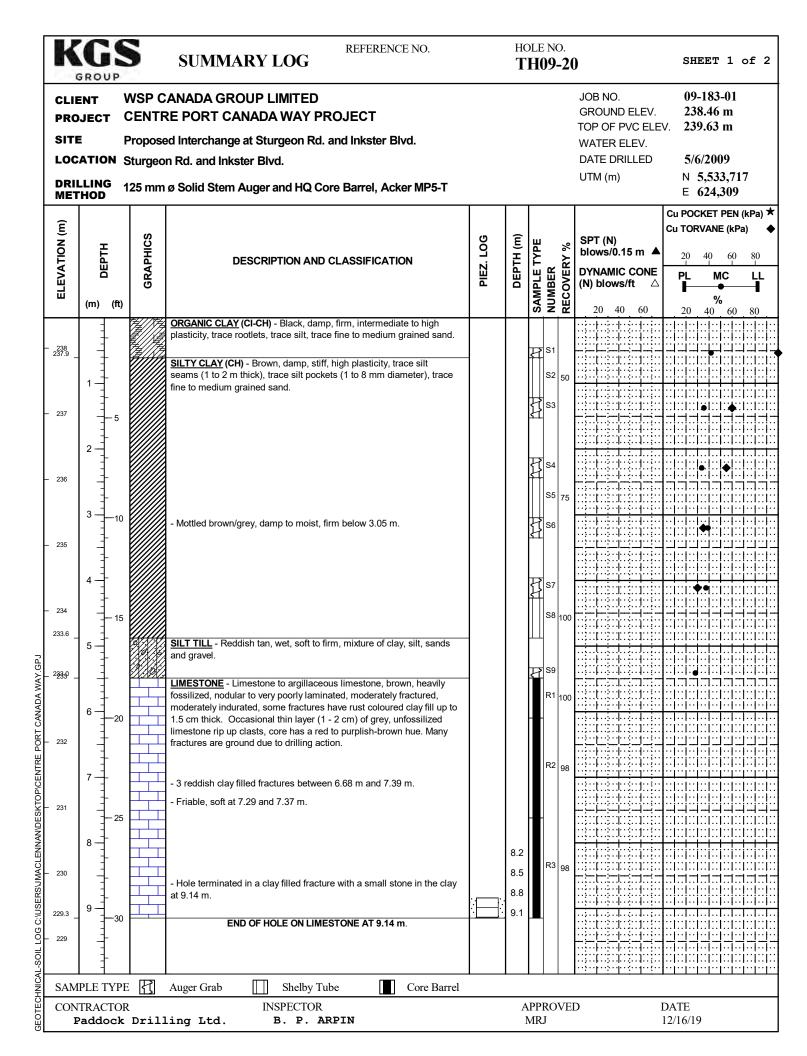
(§

|                   | h of sask |                                         |                                        |                 | FRIESEN DRIL    | LERS LTD.    |                |              |        | BOREHOLE N  | ∘. G–8      | 8-S2           |
|-------------------|-----------|-----------------------------------------|----------------------------------------|-----------------|-----------------|--------------|----------------|--------------|--------|-------------|-------------|----------------|
|                   | TAR DEVEL |                                         | LTD.                                   |                 |                 |              |                |              |        | Project No. |             |                |
|                   | ECT ENGIN |                                         |                                        |                 |                 |              |                |              |        | ELEVATION 2 | 37.170 (m   | }              |
| S.MI              | LE TYPE   | GRAB SI                                 | MPLE                                   | ZHELEY          | TUBE DESTO      | REED         | NO EECOVERY    |              |        | OPE BARREL  |             | LEGE-TYPE      |
| _                 | 1.4       | (1月 22<br>1月 22                         | m3).⊾<br>7.6                           |                 |                 |              |                |              |        | }           |             |                |
| DEPTH (m)         | ■ 5rtEA   | R 519ENCIH (<br>200 - 300               | KP® ■                                  |                 |                 | SOIL         |                | JFE.         | 웆      | l           | ther        | ₽              |
| ∓                 |           | · <del>-</del>                          |                                        | USC             |                 |              |                |              | 취      |             |             | рерти (#)      |
| JE P              | PLASTIC   | FC.                                     | nond                                   |                 | DES             | CRIPT        | ION            | JI HE        | SAMPLE | con         | ments       | 🖺              |
|                   | 40        | 80 120                                  | 180                                    | -               |                 |              |                | 5.           | 5      |             |             |                |
| <del>-0,0</del> - |           |                                         | : : :                                  | N               | LAY-WITH PERSIE | S AND STO    | NES            | 1-1          |        |             | <del></del> |                |
|                   |           |                                         | iii                                    | N N             |                 |              |                |              |        |             |             | Ţ              |
| -1.0              | : : :     | : : :                                   | : : :                                  |                 |                 |              |                |              |        | İ           |             | Ė              |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 5.0            |
| -2.0              |           |                                         | iii                                    | 1               |                 |              |                |              |        |             |             | ļ              |
| _                 |           |                                         |                                        | XX T            | ILL-SILT        |              |                | 7            |        |             |             | -              |
| -3.0              |           | •••••                                   |                                        | $\mathbb{R}$    |                 |              |                |              |        |             |             | F10.0          |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        | }           |             | Ļ              |
| <del>-4</del> 0   |           |                                         | <del>    </del>                        | ήE              | HALE-DOLOMITE   |              |                | <del>/</del> |        | •           |             | +              |
| -                 |           |                                         |                                        |                 | NO OF HOLE @ 3. | 99 IN SHA    | E              |              |        | }           |             | F15.0          |
| -5 0              |           |                                         |                                        |                 |                 |              |                | 1            |        |             |             | E              |
| -                 |           | ••••••                                  |                                        |                 |                 |              |                | li           |        |             |             | F              |
| -6 0              |           | ••••••••••••••••••••••••••••••••••••••• | ::                                     |                 |                 |              |                |              |        |             |             | 20.0           |
| -                 |           |                                         | !                                      |                 |                 |              |                |              |        | 1           |             | E              |
| -7,0              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -                 |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 75.0           |
| <del>-8</del> ,0  | •         |                                         |                                        |                 |                 |              |                |              |        |             |             | E              |
| _                 |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | F              |
| -¥.0              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | F30.0          |
| <b>-</b>          |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -10.0             |           | 1 1 1                                   |                                        |                 |                 |              |                |              |        |             |             | F              |
| <b>-</b>          |           |                                         | ::: <u></u>                            |                 |                 |              |                |              |        |             |             | 35.0           |
| -110              |           | <u></u>                                 | :                                      |                 |                 |              |                |              |        |             |             | -              |
| _                 |           |                                         | : : :                                  |                 |                 |              |                |              |        |             |             | F              |
| -120              |           |                                         |                                        |                 |                 |              |                |              |        |             |             | 40.0           |
| <b>-</b>          |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| -130              | ···       |                                         | !                                      |                 |                 |              |                |              |        |             |             | F              |
| -                 |           |                                         | <u></u>                                |                 |                 |              |                |              |        | {           |             | 45.0           |
| -14.0             |           |                                         |                                        |                 |                 |              |                |              |        |             |             | -              |
| <b>-</b>          |           | ······································  | ::::;{<br>: : :                        |                 |                 |              |                |              |        |             |             | ļ.             |
| -15.0             | : : :     |                                         | : : :                                  |                 |                 |              |                |              |        |             |             | -<br>-50.0     |
| -                 |           |                                         | !···:                                  |                 |                 |              |                |              |        |             |             | -              |
| -16.0             |           |                                         |                                        |                 |                 |              |                |              |        |             |             | ļ              |
| -<br>4- ·         |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | 55.0           |
| -17.0             |           | ······································  |                                        |                 |                 |              |                |              |        | 1           |             |                |
| -                 |           |                                         | : : :                                  |                 |                 |              |                | 1            |        |             |             | F              |
| -120              |           |                                         |                                        |                 |                 |              |                |              |        | 1           |             | -60.0          |
| -                 |           |                                         | ; ; ;                                  |                 |                 |              |                |              |        | 1           |             | -              |
| -190              |           |                                         |                                        |                 |                 |              |                | ]            |        |             |             | ļ.             |
| -                 | 1         | ······································  | ······································ |                 |                 |              |                |              |        |             |             | - <b>65</b> .0 |
| - <u>70 0</u>     | <u> </u>  | TIMA                                    | Frair                                  | Aprina          | T+A             | Im           | MELETION DEPTH | * *          | •      | l month     | गराष        | <b>H03.0</b>   |
|                   |           | W:                                      | ningiti                                | eering<br>Manit | utu.            | <del> </del> |                | . 11         |        |             |             | <del></del>    |
|                   |           | # 1IiI                                  | mbeg,                                  | manit           | ODA             | 110          | GGED BY TH     |              |        | DAC NO.     | P           | aqa 1 of t     |

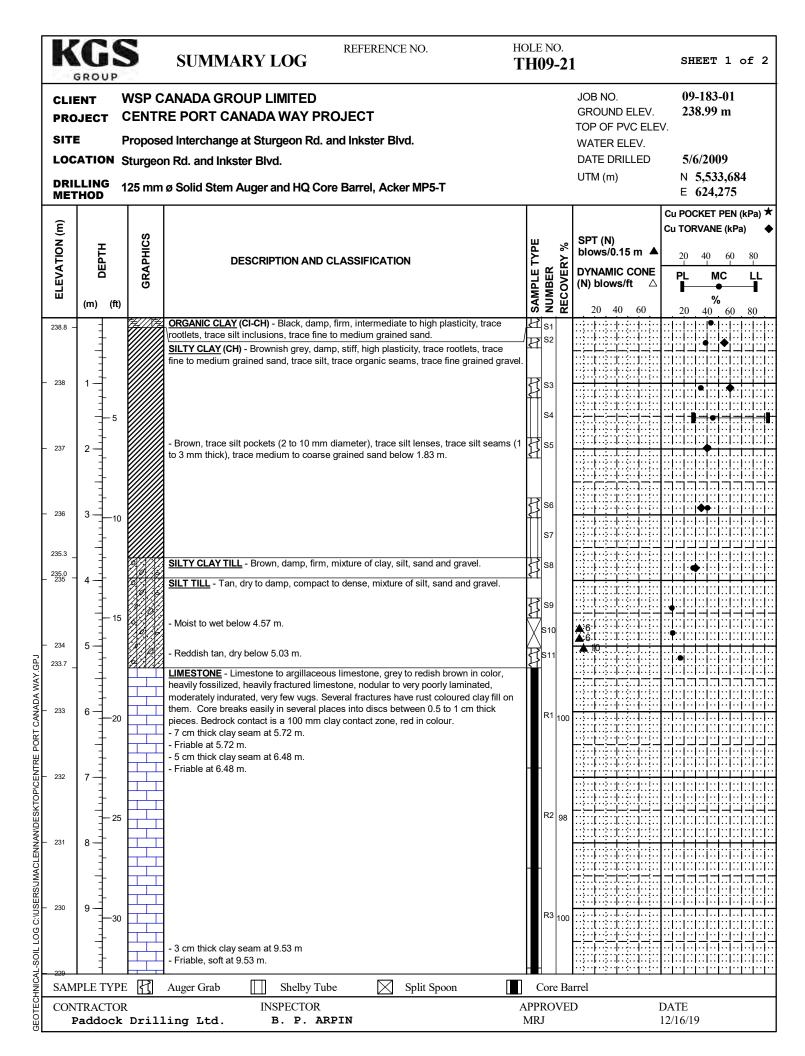
| NORT       | TH OF SASKATCHERAN                            |                                       | F                   | RIESEN DRILLERS   | <del>110</del> . |             | _   | _        | BOREHOLE    | No C   | 60 60             |               |
|------------|-----------------------------------------------|---------------------------------------|---------------------|-------------------|------------------|-------------|-----|----------|-------------|--------|-------------------|---------------|
| GEN:       | STAR DEVELOPMENTS LTD.                        | ·                                     | 1                   |                   |                  |             |     |          | Project No: |        |                   |               |
|            | ECT ENGINEER. TH                              | · · · · · · · · · · · · · · · · · · · |                     |                   | ,                |             | _   |          | ELEVATION   |        |                   |               |
| SAMI       | PLE TYPE GRAB SAMPLE                          | SHILE                                 | TUBE                | X DISTURBED       | □ NO             | ELCOVERY    | 7   | Πc       | ORE BAFRET  |        | TLUE-TYP          | <del></del> - |
|            | ▲ B.U. DO &T) (1/m3) ▲<br>1.4 1.5 22 2.6      |                                       |                     |                   |                  |             | T   | <u> </u> |             |        |                   |               |
| DEPTH (m)  | ■ 5HEAR STITENOTH (XP4) ■<br>108 200 3(4) 400 | 1                                     |                     | S01               | IT.              |             | 呈   | 웆        |             | Other  | 3                 | ₽             |
| €          | PLASTIC N.C DQUID                             | USC                                   |                     |                   |                  |             | ٠., | 늴        |             | 561161 |                   | E             |
|            | PLASTIC N.C LIQUID                            |                                       |                     | DESCRI            | PTION            |             |     | SAMPLE   | cor         | nments |                   | UEPIH (#)     |
| 0.0        | 40 80 120 189                                 | <u> </u>                              | -1 2 <del>0 0</del> |                   |                  |             | S   |          |             |        | 1                 |               |
| -          |                                               | N,                                    | JLAT-R              | ATH TILL INCLUSIO | NS               |             |     |          |             |        |                   | <del>()</del> |
| -1,0       |                                               | N N                                   |                     |                   |                  |             | ]   |          |             |        | <u> </u>          |               |
| -          |                                               |                                       |                     |                   |                  |             |     |          | •           |        | 5.                | ٨             |
| -2.0       |                                               |                                       |                     |                   |                  |             |     |          |             |        | -                 | •             |
| <b>-</b> . |                                               | Ž i                                   | TILL-SI             | T WITH GRANULAR   | <u> </u>         | <del></del> |     |          |             |        | F                 |               |
| -3.0       |                                               | 83                                    |                     |                   | 1                |             |     |          |             |        | <u> -</u> 10      | 0.0           |
| Ť.,        |                                               | RA .                                  |                     |                   |                  |             |     |          |             |        | E                 |               |
| 10         |                                               |                                       | HALF-               | DOLOMITE          | ····             |             |     |          |             |        | ŀ                 |               |
| 50         |                                               |                                       | NO OF               | HOLE @ 4.20 IN    | SHALE            | <i>-</i>    |     |          |             |        | - <sub>15</sub>   | LQ.           |
|            |                                               |                                       |                     |                   |                  |             |     |          |             |        |                   |               |
| Εo         |                                               |                                       |                     |                   |                  |             |     |          |             |        | <u> </u>          |               |
| -          |                                               |                                       |                     |                   |                  |             |     |          |             |        | <u>[</u> 20       | ),Ó           |
| -7,0       |                                               |                                       |                     |                   |                  |             |     |          |             |        | F                 |               |
| -          |                                               |                                       |                     |                   |                  |             |     |          |             |        | F                 |               |
| 6.0        |                                               |                                       |                     |                   |                  |             |     |          |             |        | -25               | rO.           |
| }          |                                               |                                       |                     |                   |                  |             |     |          |             |        | E                 |               |
| 9.0        |                                               |                                       |                     |                   |                  |             |     |          |             |        | -30               |               |
| <b>-</b>   |                                               |                                       |                     |                   |                  |             |     | :        |             |        | F~                | ,0            |
| 10.0       |                                               |                                       |                     |                   |                  |             |     |          |             |        | F                 |               |
| 110        |                                               |                                       |                     |                   |                  |             |     |          |             |        | -35.              | 0             |
| [''        |                                               |                                       |                     |                   |                  |             |     |          |             |        | -                 |               |
| -120       |                                               |                                       |                     |                   |                  |             |     |          |             |        | -                 |               |
| -          |                                               |                                       |                     |                   |                  |             |     |          | •           |        | <del>-4</del> 0.  | .0            |
| [-:30      |                                               |                                       |                     |                   |                  |             |     |          |             |        | -                 |               |
| F          |                                               |                                       |                     |                   |                  |             |     |          |             |        | Ė.                |               |
| -14.0      |                                               |                                       |                     |                   |                  |             |     | i        |             |        | 45.               | Ċ.            |
| ŀ          |                                               |                                       |                     |                   |                  | [           |     |          |             |        | +                 |               |
| 15.0       |                                               |                                       |                     |                   |                  |             |     |          |             |        | F                 |               |
| <b>-</b>   |                                               |                                       |                     |                   |                  | 1           | ļ   |          |             |        | <del>  5</del> 0. | .0            |
| 16.8       |                                               |                                       |                     |                   |                  |             | -   | Ī        |             |        | E                 |               |
| <u>ا</u>   |                                               |                                       |                     |                   |                  | 1           |     | ŀ        |             |        | -                 | _             |
| 17.0       |                                               |                                       |                     |                   |                  |             |     |          |             |        | -55<br>-          | Ų             |
| 120        |                                               |                                       |                     |                   |                  |             | -   |          |             |        | ļ.                |               |
|            |                                               |                                       |                     |                   |                  | }           | ŀ   |          |             |        | ₩.                | .0            |
| -190       |                                               |                                       |                     |                   |                  |             | f   | Ì        |             |        | -                 |               |
| <u> </u>   |                                               |                                       |                     |                   |                  |             |     | -        |             |        | <b>.</b>          |               |
| 200-       |                                               |                                       |                     |                   |                  |             |     | _ ]      |             |        | <b>-e</b> 5.      | .0            |
|            | UMA Engin<br>Winnipeg,                        | eering                                | Ltd                 | •                 | COMPLETION       | N DEFTH *!  | п   |          | COM         | LETE   |                   |               |
| <u> </u>   | Winnipeg,                                     | Manit                                 | oba                 |                   | LOGGED BY        | TH          |     | 1        | DWG NO.     |        | Page 1 of 1       | _             |

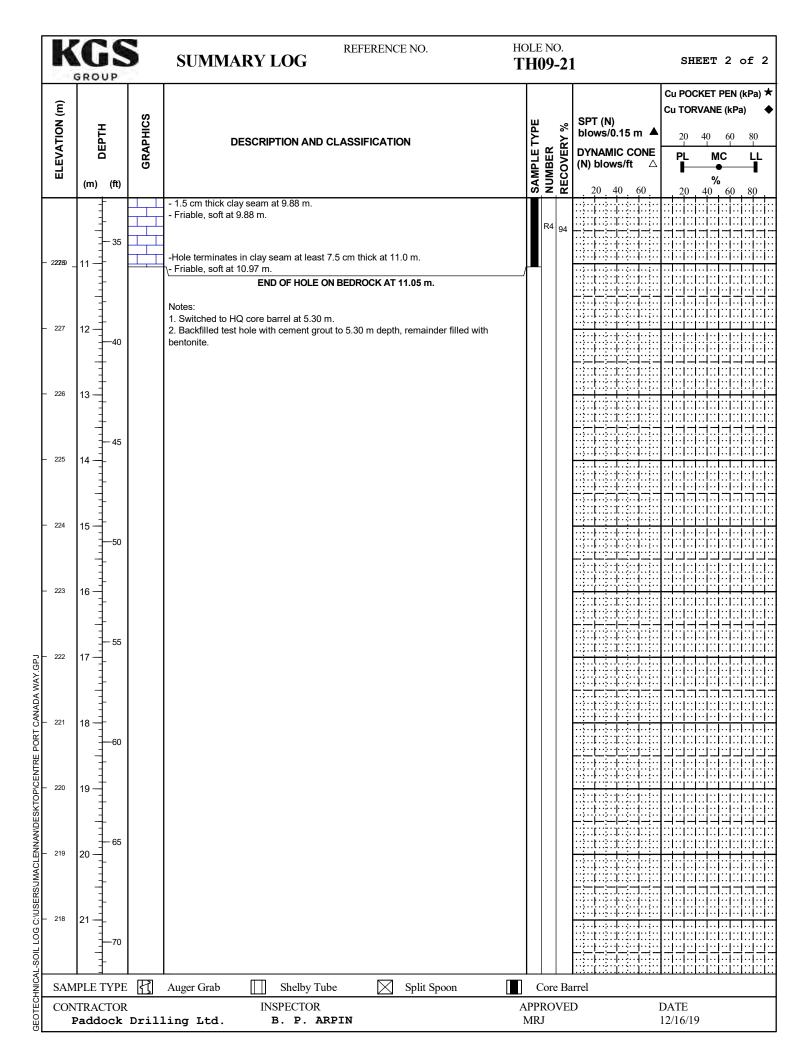
|              | TH OF SASKATCHEVAN                           |                |         | FRIESEN DRILLERS                  | LTD.                                  | <u> </u>    |            | BOREHOLE No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G-88-S7            |
|--------------|----------------------------------------------|----------------|---------|-----------------------------------|---------------------------------------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|              | STAR DEVELOPMENTS LTD.                       |                |         |                                   |                                       |             |            | Project No: 06 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|              | ect engineer: Tw                             | -              |         |                                   |                                       |             |            | ELEVATION 237.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| DAM          | PLE TIPE GRAB SAMPLE                         | SHIP.          | BY TURE | X DESTURBED                       | NO REC                                | OVERY       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALT: DE-IALE       |
| 1~           | ▲ BLUK DENSYT (Um3) ▲<br>1.4 1.8 2.2 2.6     | <u> </u>       |         |                                   |                                       |             | <u>. I</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  |
| (E)          | ■ SHEAR STREINGTH (KPa) ■<br>100 200 300 460 | 1100           |         | SO                                | IL                                    |             | =  ≘       | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 主                  |
| DEFTH        | PLASTIC N.C LIQUED                           | USC            |         | חשפפשו                            | DITANT                                | 1           | 네블         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #                  |
| =            | l                                            | ,              |         | DESCRI                            | PHON                                  | 1 0497      | SAPE.      | comme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nts   🖺            |
| 0.0          | 40 80 120 180                                | 11.            | TOPSO   |                                   |                                       |             | 1_         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                |
| <b> </b>     |                                              |                | (0) 00  | •                                 |                                       | -           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>-~</b> ~        |
| -1.0         |                                              |                | CLAY-   | WITH THE PACKETS                  |                                       | <del></del> |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                  |
| 2.0          |                                              |                | -5      | MTTH TILL POCKETS<br>OME GRANULAR |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <sub>5.0</sub>   |
|              |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ė                  |
| -3.0         |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>           |
| -            |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0               |
| <b>+</b> 0   |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                  |
| †            |                                              |                | TILL-S  | ILT WITH GRANULAR                 | <br>{                                 |             | }          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F.                 |
| -50          |                                              | M              |         |                                   | `                                     |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del> -15.0 |
| ļ.,          |                                              | T I            |         |                                   |                                       | Ì           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>F</b>           |
| <b>-6</b> 0  |                                              | <b>13</b>      |         |                                   |                                       | <u> </u>    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 200                |
| -7, <b>0</b> |                                              | 対              |         |                                   |                                       | -           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
| Ĺ'''Ŧ        |                                              | M              |         |                                   |                                       | -           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                  |
| 8.0          |                                              | $\mathbb{R}$   |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -25.0              |
| -            |                                              |                |         |                                   |                                       |             |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                  |
| 3.0          |                                              |                | ···     |                                   |                                       |             |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                  |
| <b> </b>     |                                              |                | GRAVEL  | -LITTLE WATER                     |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -30.0              |
| -10.0<br>    |                                              | R <sub>2</sub> |         |                                   |                                       |             |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>           |
| -110         |                                              | - R            |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.0               |
| - 1          |                                              | N.             |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E                  |
| -120         |                                              | 洋              |         |                                   | · · · · · · · · · · · · · · · · · · · |             |            | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F                  |
| -            |                                              |                | end of  | HOLE @ 11.89 IN                   | GRAVEL                                |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0               |
| -130         |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                  |
| <u> </u>     |                                              |                |         |                                   |                                       | į           | [          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>           |
| -14.0        |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -45.0              |
| _<br>1 = ^   |                                              |                |         |                                   |                                       | [           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ŧ                  |
| -15,0        |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fena               |
| -16.0        |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -50.0              |
| _            |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>F</b>           |
| -17.0        |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55.0               |
| -            |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ļ.                 |
| -12:0        |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>L             |
| <b>-</b>     |                                              | į Į            |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F60.0              |
| -198         |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                  |
| -<br>20-0    |                                              |                |         |                                   |                                       |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b> </b>           |
| ***          | UMA Engine                                   | erino          | r [.ta  |                                   | COMPLETION DI                         |             |            | CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF | <b>-€</b> 5.0      |
|              | Winnipeg,                                    | Mani           | ohe     | ••                                | LOGGED BY TH                          |             |            | COMPLETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| <del>-</del> | · · · · · · · · · · · · · · · · · · ·        | ar William     | vvva    |                                   | TANGED BI 1H                          |             |            | DRG NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Poge 1 of 1        |

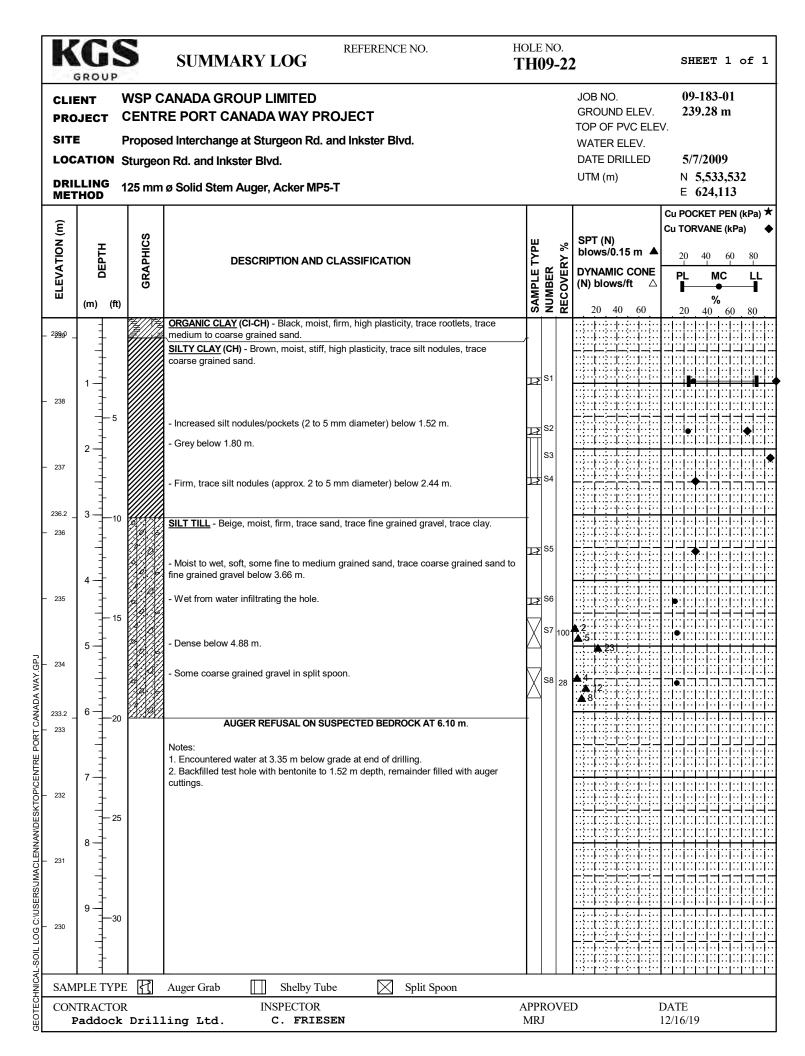
\*\*\*

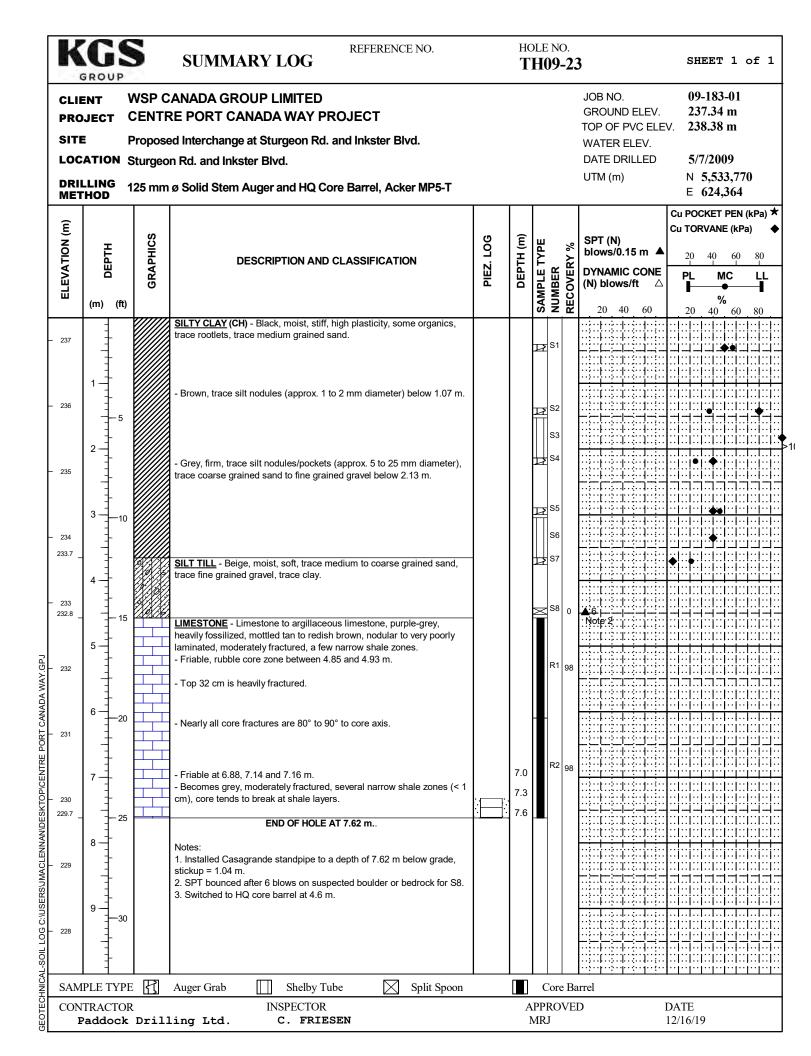

| Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0866-281   Project No. 66-0   | 8-S13                    | BOREHOLE No. G-88-9      |      |             | FRIESEN DRILLERS LT         |                |                                        | CATCHETAN                               |             |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------|-------------|-----------------------------|----------------|----------------------------------------|-----------------------------------------|-------------|------------------|
| FRANCIS   LANGELLE   TO   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LANGE   LA   |                          | Project No: 06-0899-266- |      |             |                             |                | JD.                                    |                                         |             |                  |
| ### SOIL DESCRIPTION    SOIL DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DESCRIPTION   Soil DES |                          |                          |      |             |                             |                |                                        |                                         |             |                  |
| SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL   SOIL      | LIE-TYPE                 | ORE BARRET WIRELING      |      | NO PECOVERY | E 🔀 DISTURBED               | SHELBY TUB     | MPLE                                   | GRAB SA                                 | LE TIPE     | Self.            |
| 10   CLAY-BRUAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                          |      |             |                             |                | 2.5                                    | 1.8 2.2                                 | 1.4         | ~                |
| 11.0  2.0  3.6  3.6  4.0  5.0  5.0  6.0  6.0  6.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11. | €                        | Other                    |      |             | SOIL                        | Maa            | ĴG) █<br>400                           | n 200 - 200<br>200 - 200                | 5HE4<br>100 | -<br>-           |
| 11.0  2.0  3.6  3.6  4.0  5.0  5.0  6.0  6.0  6.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11.0  11. |                          |                          | 벨뿔   |             |                             | usc            | AICHRO                                 | MC                                      | PLASTIC     | Ė                |
| -1.0 -1.0 -2.0 -3.6 -4.0 -5.0 -5.0 -5.0 -6.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEPTIH (#)               | comments                 | 3 3  | ION         | DESURIP                     | į              | —————————————————————————————————————— |                                         | <b>I</b>    | 2                |
| -1.0 -2.0 -3.0 -4.0 -5.0 -5.0 -6.0 -7.4 -5.0 -7.4 -5.0 -7.4 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10 -7.10  | ļ                        |                          | 05   |             |                             |                | 183                                    | <u>80 120</u>                           | 40          | 0.0              |
| -10   TILL-SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-   9.0</del><br> - |                          |      |             | -BRUNN                      | CLAT-          |                                        |                                         |             | -                |
| -3.6 -4.0 -5.0 -7.0 -10.0 -11.0 -11.0 -12.0 -13.0 -15.0 -15.0 -17.0 -18.0 -18.0 -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                        |                          | }    |             |                             | <b>V</b>       |                                        |                                         |             | -1.0             |
| -3.6 -4.0 -5.0 -7.0 -6.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -5.0                     |                          |      |             |                             | <i>(</i> )     |                                        |                                         |             | -                |
| -10.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -17.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ew.                      |                          |      |             |                             | <b>6</b>       |                                        |                                         |             | -2.0             |
| -10.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -17.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> -</u>                |                          |      |             |                             | <b>Ø</b>       |                                        |                                         |             | -                |
| -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                        |                          |      |             |                             | <b>1</b> 2     |                                        |                                         |             | -3.0             |
| -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -10.0<br> -              |                          |      |             |                             | <b>8</b>       |                                        |                                         |             | -                |
| -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ.                       |                          |      |             |                             | <b>1</b> 0     |                                        |                                         |             | <b>→</b> 0       |
| -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150                      |                          |      |             |                             | <b>%</b>       |                                        |                                         |             | -                |
| -7.0 -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -15.0<br>-               |                          |      |             |                             | 0              |                                        |                                         |             | -50              |
| -7.0 -5.0 -5.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                 |                          |      |             |                             | <b>6</b>       |                                        |                                         |             | -                |
| -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -16.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                     |                          |      |             |                             | <b>1</b> 2     |                                        |                                         |             | -60              |
| -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -16.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _20.0                    |                          |      |             |                             | 8              |                                        |                                         |             | -                |
| -5.0 -10.0 -11.0 -12.0 -13.0 -14.0 -15.0 -18.0 -18.0 -19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ė                        |                          | _    |             |                             | <b>/</b>       |                                        |                                         |             | -7.Q             |
| GRAVEL  10.0  11.0  SHALE—DOLOMITE END OF HOLE <b>1</b> 10.67 IN SHALE  12.0  13.0  14.0  -15.0  -18.0  -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -25.0                    |                          |      |             | SILT                        | M urr-         |                                        |                                         |             | -                |
| 110   First E DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                        |                          | _    |             |                             | (X)            |                                        |                                         |             | <del>-5</del> .0 |
| 110   First E DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F                        |                          |      |             | .E                          | GRAVI          |                                        |                                         | ; ; ;       |                  |
| 110   First E DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320                      |                          |      |             |                             |                |                                        |                                         |             | –૪.ઇ             |
| 110   First E DOLOMITE END OF HOLE & 10.67 IN SHALE   120   130   14.0   15.0   15.0   17.0   18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                        |                          |      |             |                             |                |                                        | *************************************** |             | _1a.n            |
| 13.0 -14.0 -15.0 -17.0 -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                        |                          | ]    |             |                             | <b>5</b>       |                                        |                                         |             | _ 10.0           |
| 13.0 OF HOLE <b>6</b> 10.67 IN SHALE  13.0  15.0  16.0  18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.0                     |                          | 7    | ,           | -DOLOMITE                   | TSH4LE         |                                        | : : : :                                 |             | -110             |
| -14.0<br>-15.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ė                        |                          |      | ALE         | OF HOLE <b>0</b> 10.67 IN S | END (          |                                        |                                         |             | _                |
| -14.0<br>-15.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                        |                          | 11   |             |                             |                |                                        |                                         |             | -120             |
| -15.0<br>-16.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F40.0                    |                          |      |             |                             |                |                                        |                                         |             | -                |
| -15.0<br>-16.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ì                        |                          |      |             |                             |                |                                        |                                         |             | -130             |
| -15.0<br>-16.0<br>-17.0<br>-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ė                        |                          |      |             |                             |                |                                        |                                         | ;;          | -                |
| -15.0<br>-16.0<br>-17.0<br>-18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F45.0                    |                          |      |             |                             |                |                                        |                                         |             | -14.0            |
| -17.0<br>-18.0<br>-19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ.                       |                          |      |             |                             |                | ;;                                     |                                         |             | -                |
| -17.0<br>-18.0<br>-19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ł                        |                          |      |             |                             |                |                                        |                                         |             | -15.0            |
| -17.0<br>-180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>5</b> 0.0             |                          |      |             |                             |                |                                        | <u></u>                                 |             | -                |
| -17.0<br>-180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F                        |                          |      |             |                             |                |                                        |                                         |             | -16.0            |
| -180<br>-190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ļ                        |                          |      |             |                             |                |                                        |                                         |             | -                |
| -190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -55.0                    |                          |      |             |                             |                |                                        |                                         |             | -17.0            |
| -190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                        |                          |      |             |                             |                |                                        |                                         |             | - {              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ                        |                          |      |             |                             |                |                                        |                                         |             | -180             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>-6</del> 0.0        |                          |      |             |                             |                |                                        |                                         |             | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                        |                          |      |             |                             |                |                                        |                                         |             | -190             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 📙                      | -                        |      |             |                             |                |                                        |                                         | ·           | -                |
| TIME Transfer Assistant LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -65.0                    | <del></del>              |      |             | 3                           | A A min or T A | -<br>                                  | TIME TO                                 | •           | 76.6 I           |
| UMA Engineering Ltd.   COMPLETION DEPTH *.* m   COMPLETE   Winnipeg, Manitoba   LOGGED BY TH   DWG NO.   Pope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | COMPLETE                 | .* m |             | a. [c                       | eering Lt      | 'nВП                                   | UMAK                                    |             |                  |
| Winnipeg, Manitoba Logged By TH DWG NO. Poge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ye 1 of 1                | OMG NO. Poge 1           |      | GGED BY TH  | ]1                          | Manitoba       | ipeg,                                  | Vinni                                   |             |                  |

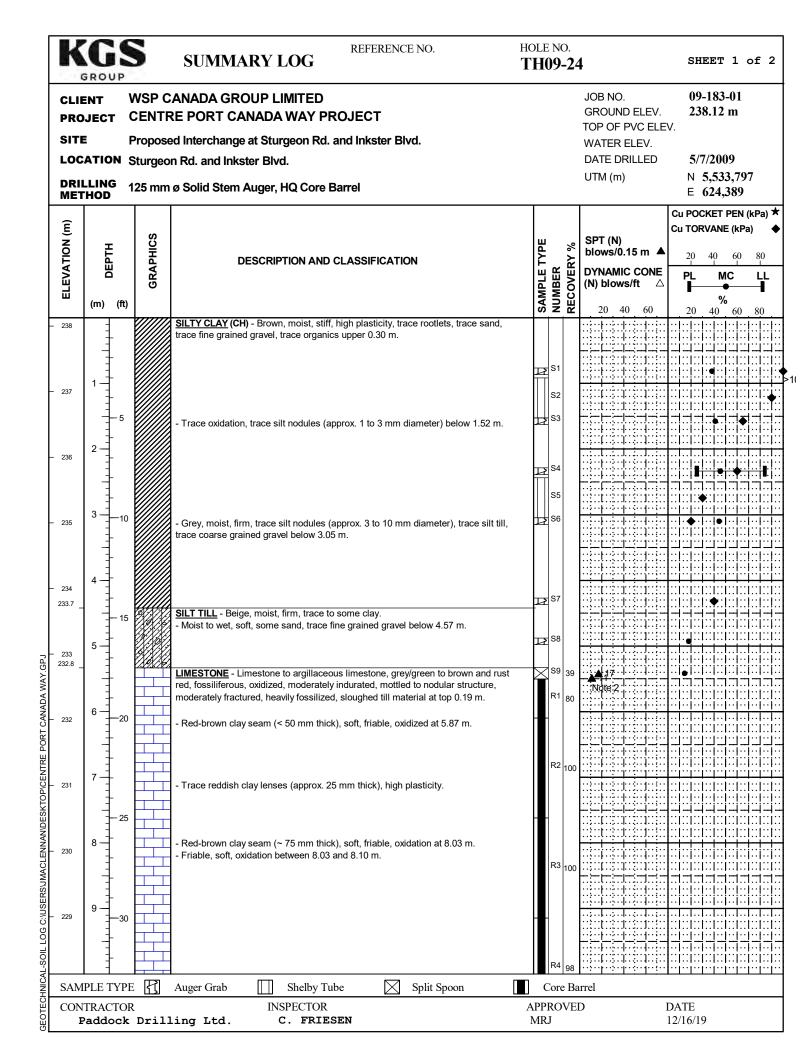
|                              | OF SASKATCHEWAN                                         |         |                   | PRIESEN DRILLERS LI                                            | D.               |                     | BORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOLE No. G-8                                                   | 3-P3                   |
|------------------------------|---------------------------------------------------------|---------|-------------------|----------------------------------------------------------------|------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------|
|                              | AR DEVELOPMENTS LTD                                     |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ct No: 06 -0898-:                                              | <del>996</del> -91     |
|                              | CT ENGINEER: TW                                         | - 7     | <u> </u>          |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TION 235.550 (m)                                               |                        |
| SelMI.                       | LE TYPE GRAF SAMP                                       |         | וטד אַיַּבּישׁנּצ | er 🔀 Predered                                                  | NO RECOVER       |                     | CORE BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TERET ALLES                                                    | NE-TYPE                |
| (m)                          | 1.4 1.8 2.2 2<br>SHEAR STRENGTH (KFe)<br>K.0 200 500 40 | 5       | 0                 | SOII                                                           |                  | J. J.               | €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other                                                          | €                      |
| DEFTH                        | PLASTIC N.C 1                                           | icuo US | <sup>L</sup>      | DESCRIF                                                        | TION             | SAMPLE TYPE         | SWMP LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | comments                                                       | ОЕРТН (#)              |
| -0.0                         | 40 80 120 16                                            | XI      | TANKS             | -BROWN                                                         |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | - 0.0                  |
| -<br>-10                     |                                                         |         |                   | -OHUMA                                                         |                  |                     | BEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OMETER AND<br>ROCK WELL DETAI                                  | LS E                   |
| 2.0                          |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -5.0<br>-              |
| -3.0<br>-                    |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | 10.0                   |
| -40<br><br>-50               |                                                         |         |                   | -TILL POCKETS                                                  |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -<br>-15.0             |
| -<br>6.0                     |                                                         |         | ∯ ∏LL-            | -SILT WITH GRANULAR                                            | <u> </u>         |                     | - \{\bar{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_{\cut_}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | )/L 232.435 N                                                  | 20.0                   |
| 7.0                          |                                                         |         |                   | sand to Boulder)<br>Gravel (6.21 - 9.15)<br>Lost Drill Water 1 | ()<br>NTO GRAVEL |                     | -23<br>- <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PIEZÖMETER<br>12.00 FIEZOMETER<br>1W/L 231.315 IN<br>ROCK WELL | <u>-</u>               |
| 80                           |                                                         |         |                   | (NO RETURN)                                                    |                  |                     | BEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RÓCK WELL                                                      | <b>-25.</b> 0<br>E     |
| 9,0                          |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | 30.0                   |
| -10.0<br>-<br>-110           |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -35.0                  |
| -<br>-123                    |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | F                      |
| -<br>-13.0                   |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | <del>-4</del> 3.0      |
| 14.0                         |                                                         |         | No.               |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |                        |
| 150                          |                                                         |         | SHAI              |                                                                |                  |                     | OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E: WATER LEVELS<br>NOV 30 \88                                  | AS  <br>  <b>5</b> 0.0 |
| -1 <i>6.</i> 0<br>-<br>-17.0 |                                                         |         | XX SHAL           | E-WITH THIN DOLOMIT                                            | E BEDS           | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -<br>-55.0             |
| -180                         |                                                         |         |                   | -PURPLE<br>-SOFT<br>-SANDY                                     |                  |                     | -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.56 BOT WELL C                                               | ASING                  |
| -190                         |                                                         |         | 855.55 F          | -SANUT                                                         |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -60.0<br>-             |
| 20.5                         |                                                         |         | ***               |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | <b>-65.</b> 0          |
| 21.0<br>-<br>                |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | 70.0                   |
| 23.0                         |                                                         |         |                   |                                                                |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | -75.0                  |
| -<br>-24.0                   |                                                         |         | <b>A</b>          |                                                                | <u> </u>         | $\dashv \mathbb{I}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                | Ę                      |
| 25.0                         | UMA En                                                  | ginee   | ring L            | td                                                             | COMPLETION DEPTH | ** ***              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPLETE                                                       | 80.0                   |
|                              | Winni                                                   | SHIP    | anital            | V4.                                                            | LOGGED BY TH     | 123                 | DWG 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                       | ge 1 of 1              |

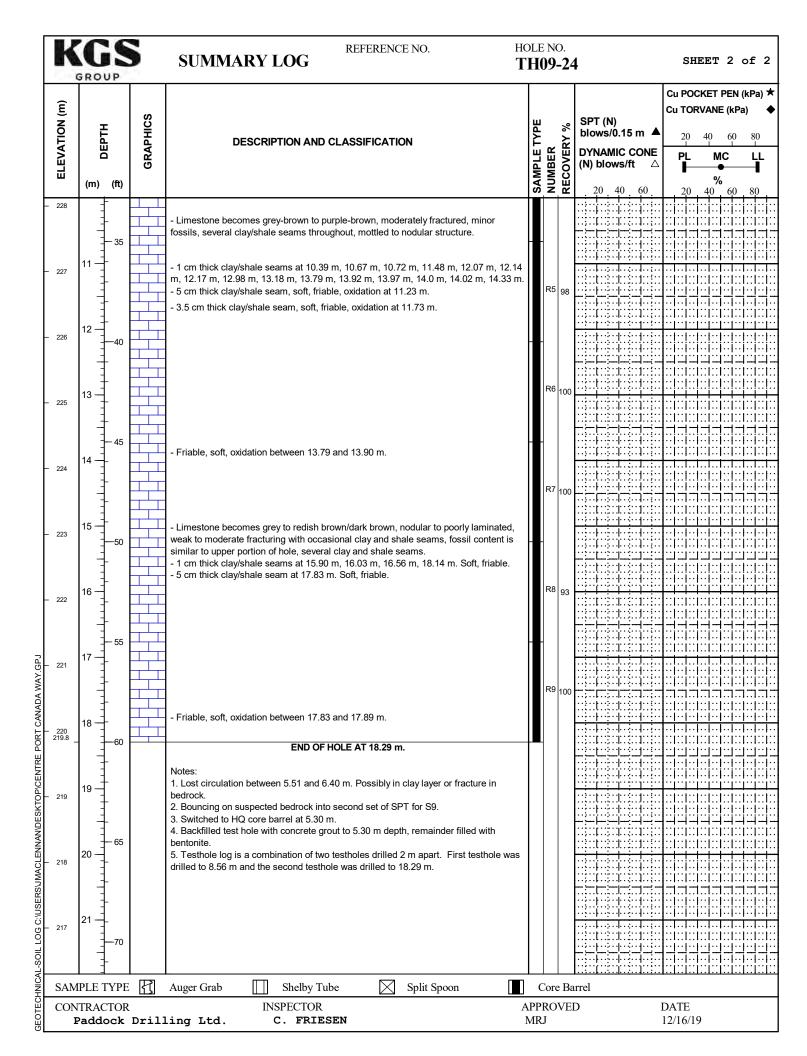

\*

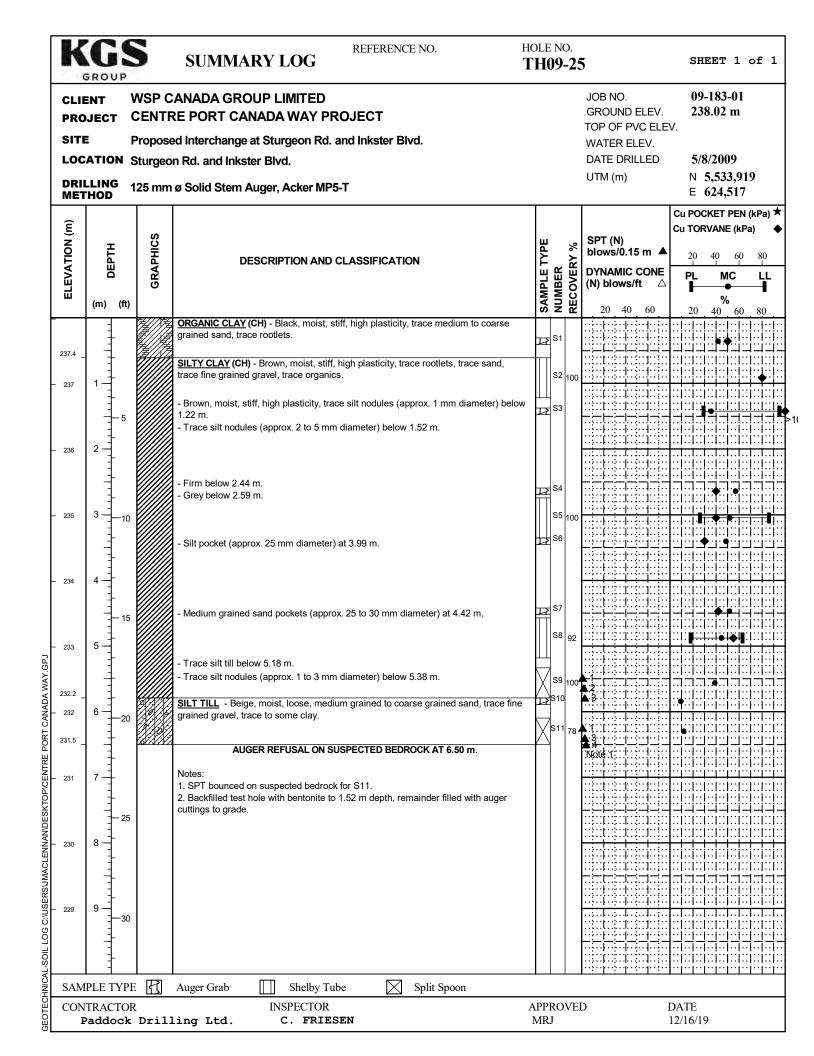

## **APPENDIX B**


2009 Test Hole Logs



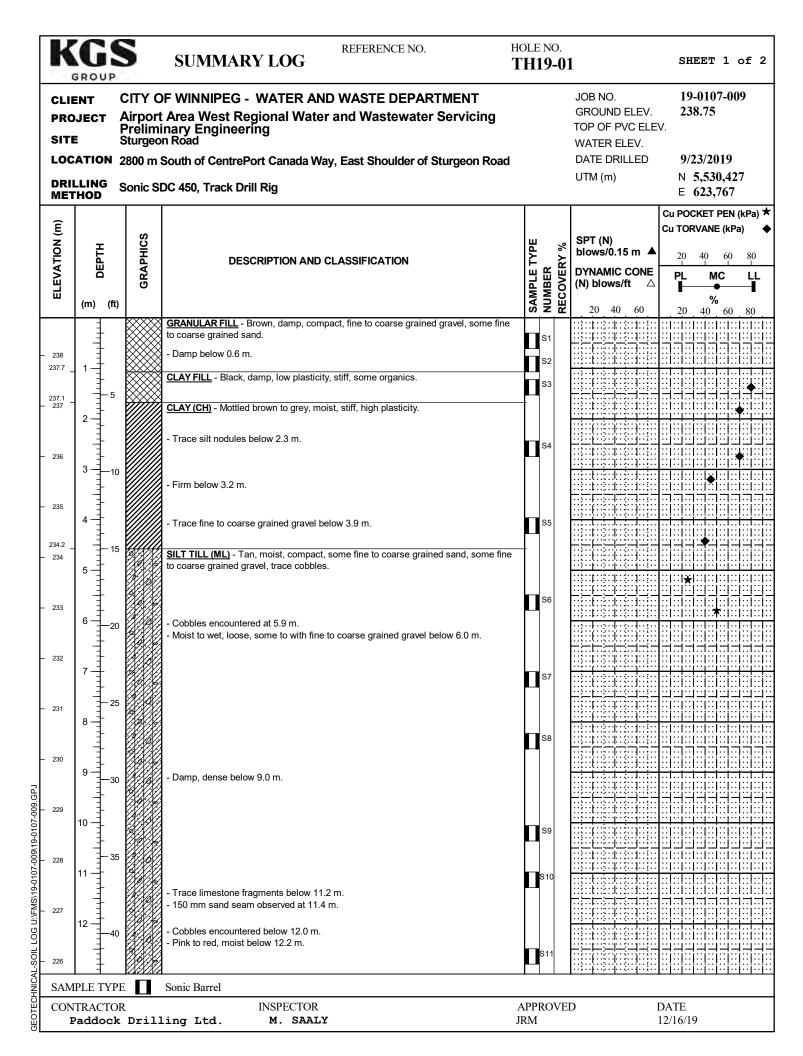


|               | GROUP    |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  | Cu POCKET PEN (k  |
|---------------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------------------------------|--------------------------------------------------|-------------------|
| ELEVATION (m) | (m) (ft) | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                      | PIEZ. LOG | DEPTH (m) | SAMPLE TYPE<br>NUMBER<br>RECOVERY % | SPT (N) blows/0.15 m   DYNAMIC CONE (N) blows/ft | 20 40 60<br>PL MC |
| 228           |          |          | Notes:  1. Solid stem auger refusal at 5.49 below grade.  2. Water infiltration between 4.88 and 5.49 m.  3. Switched to HQ core barrel at 5.49 m.  4. Installed a 25 mm diameter standpipe with Casagrande tip to a depth of 9.14 m below grade, stickup = 1.17 m. |           |           | Ø Z Œ                               | 20 40 60                                         | 20 40 60          |
| 227           | 12 —     |          | S. C. T. III Solow grade, chorap                                                                                                                                                                                                                                    |           |           |                                     |                                                  |                   |
| 226           | 13 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 225           | 14 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 224           | 15 — 50  |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 223           | 16 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 222           | 17 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 221           | 18 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 220           | 19 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 219           | 20 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 218           | 21 —     |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |
| 217           |          |          |                                                                                                                                                                                                                                                                     |           |           |                                     |                                                  |                   |

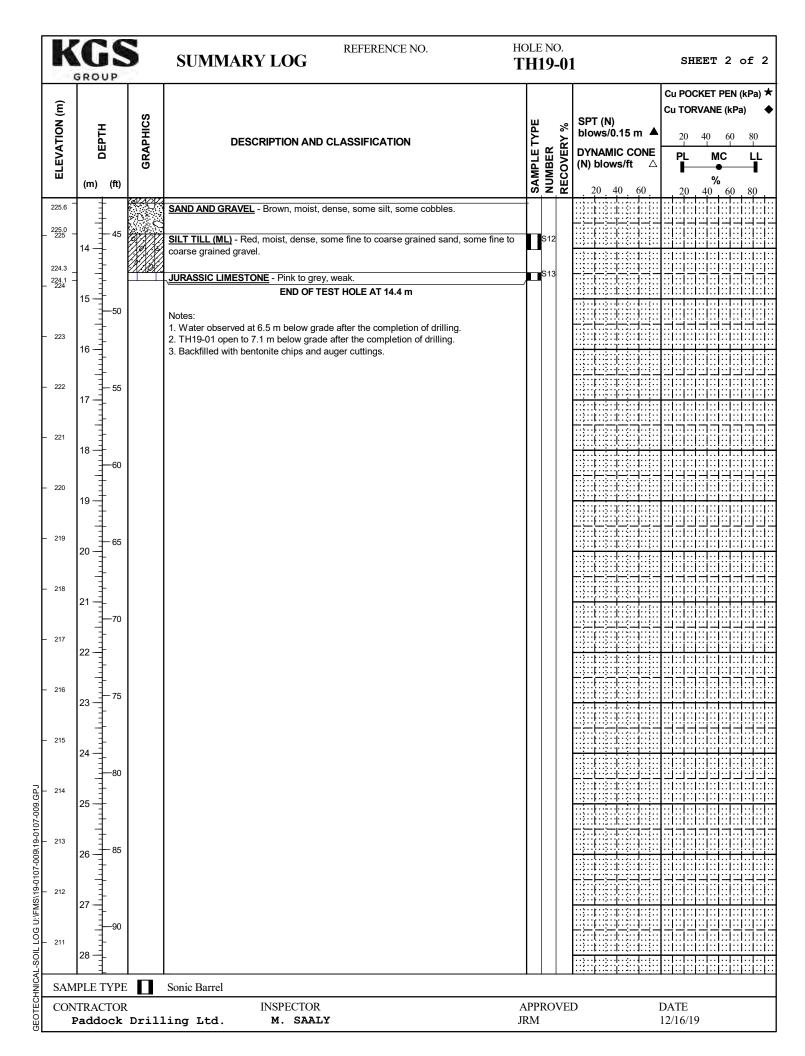


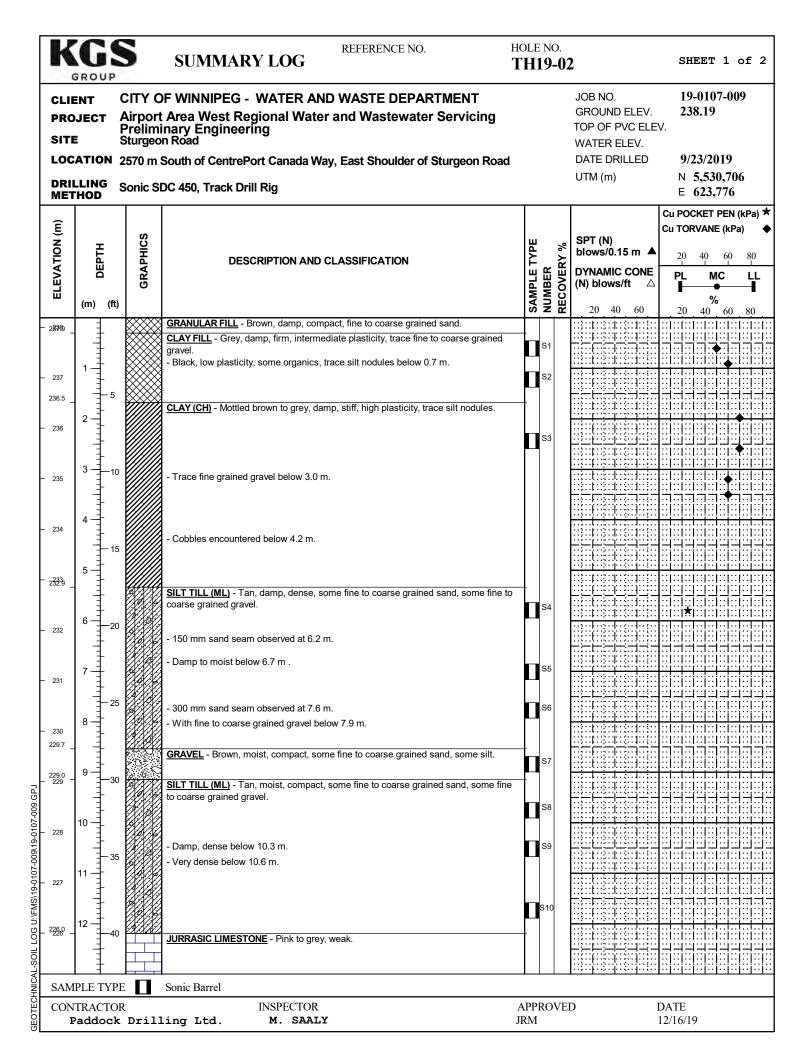



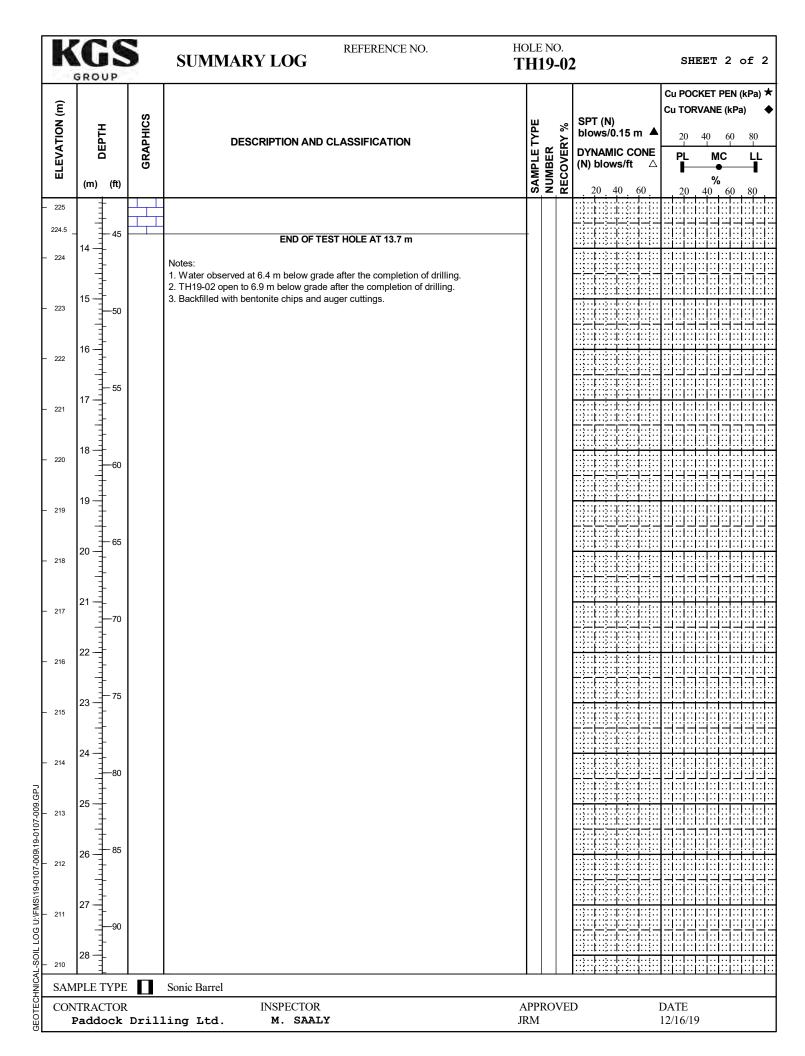


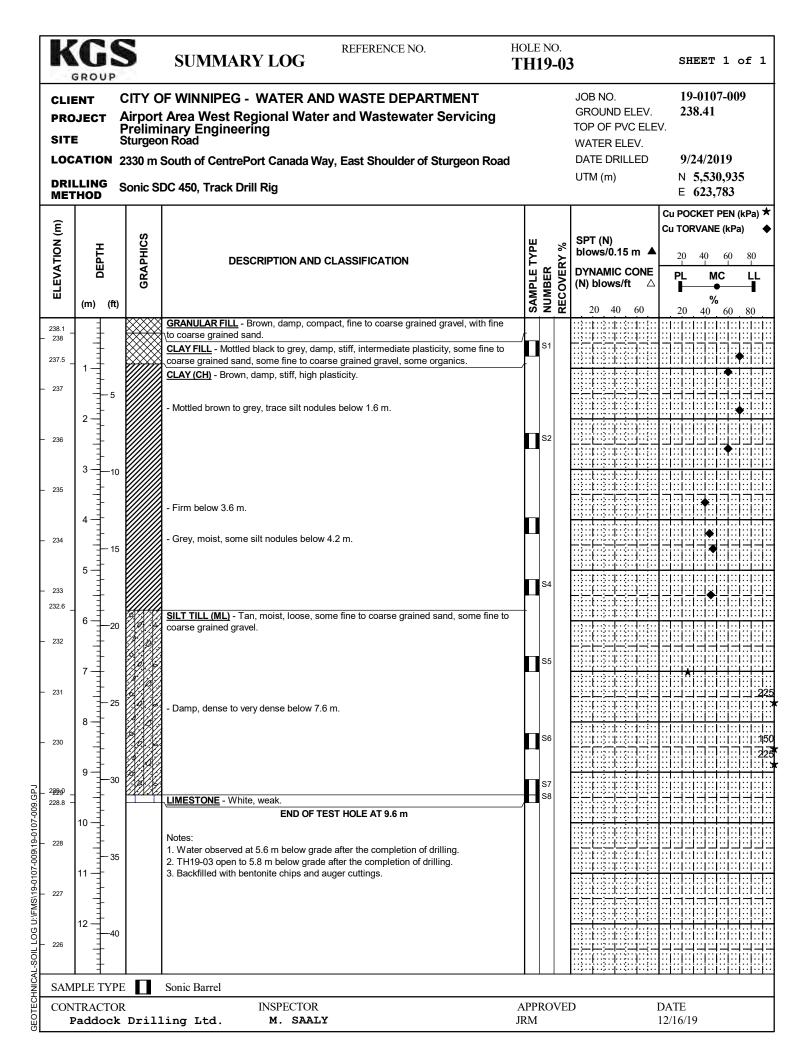


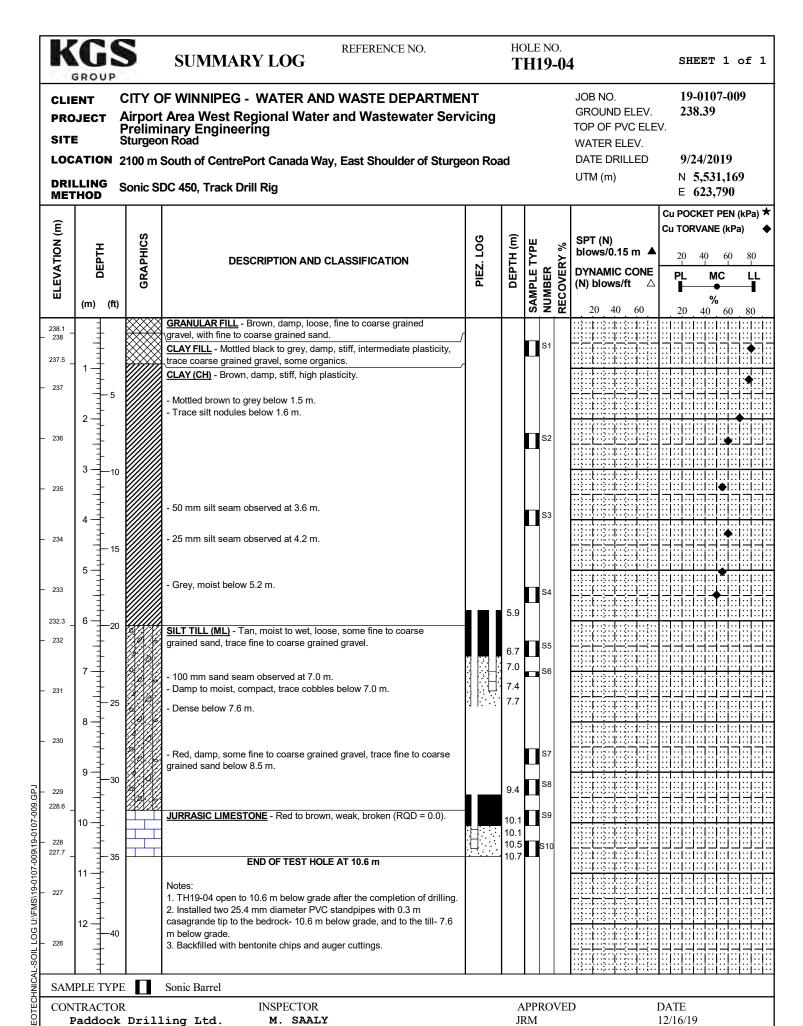



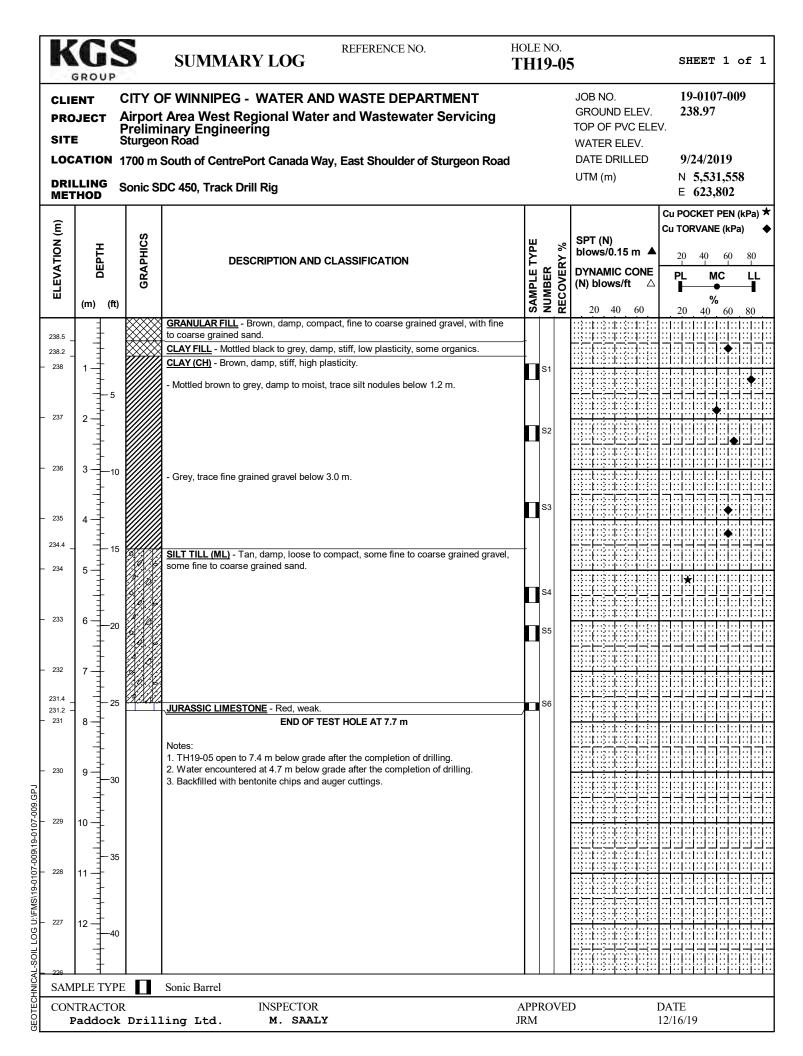



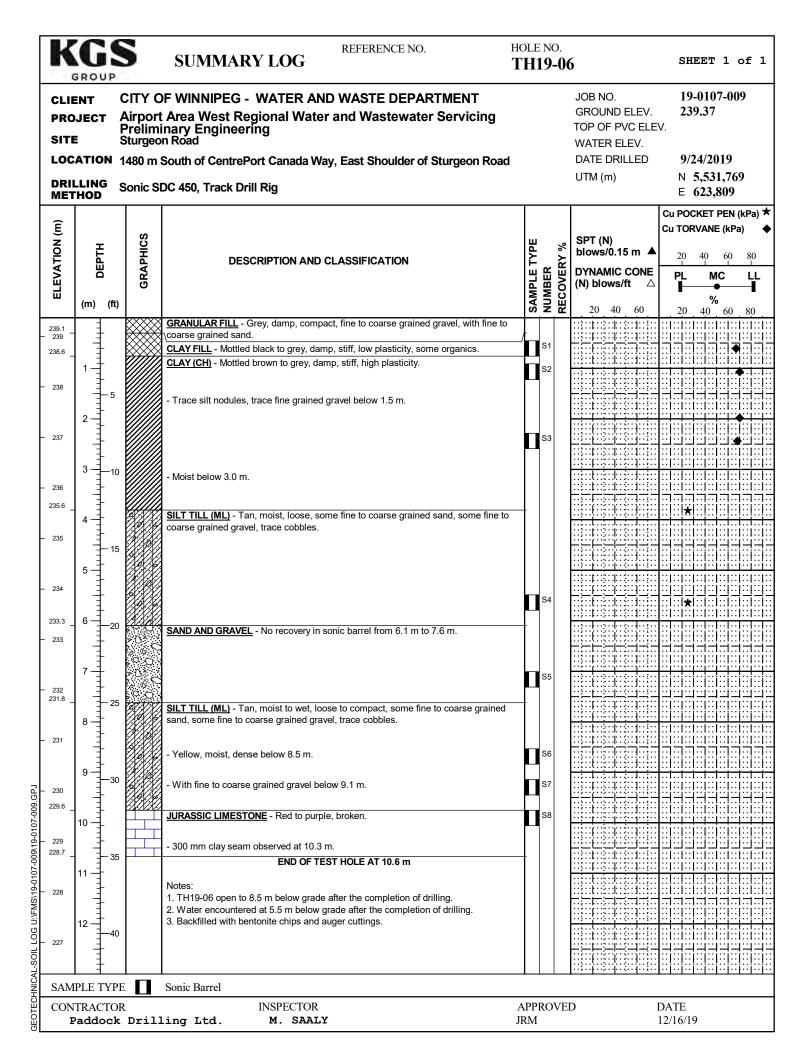



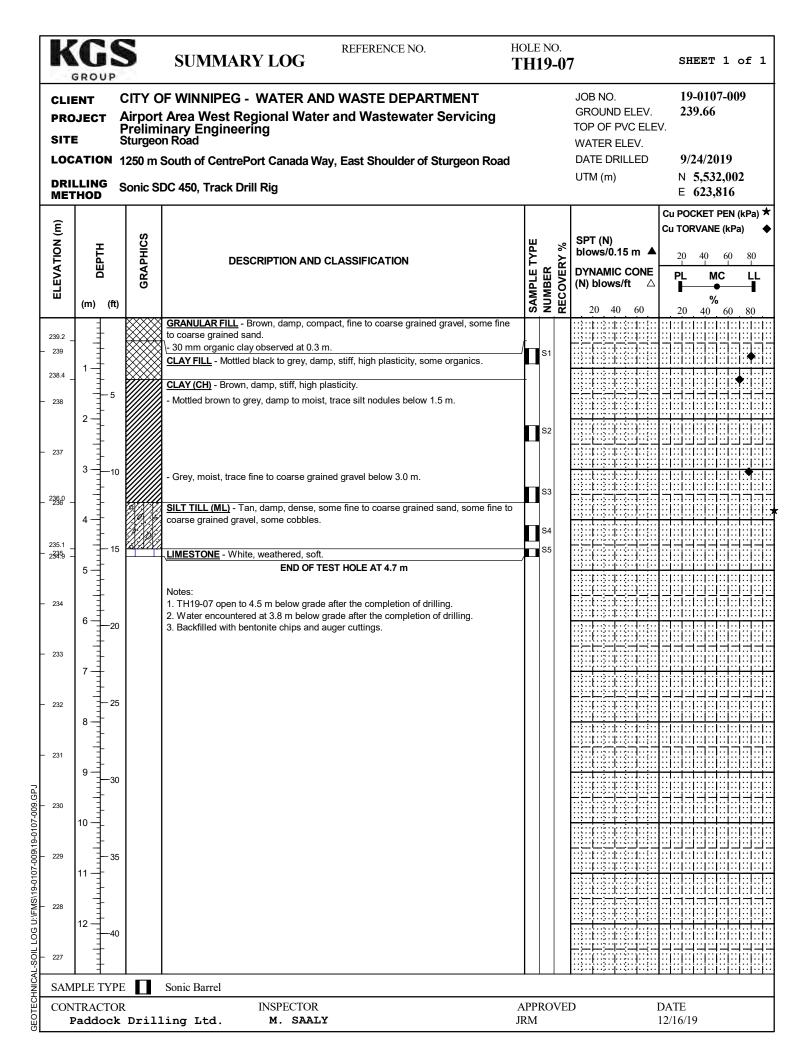


## APPENDIX C

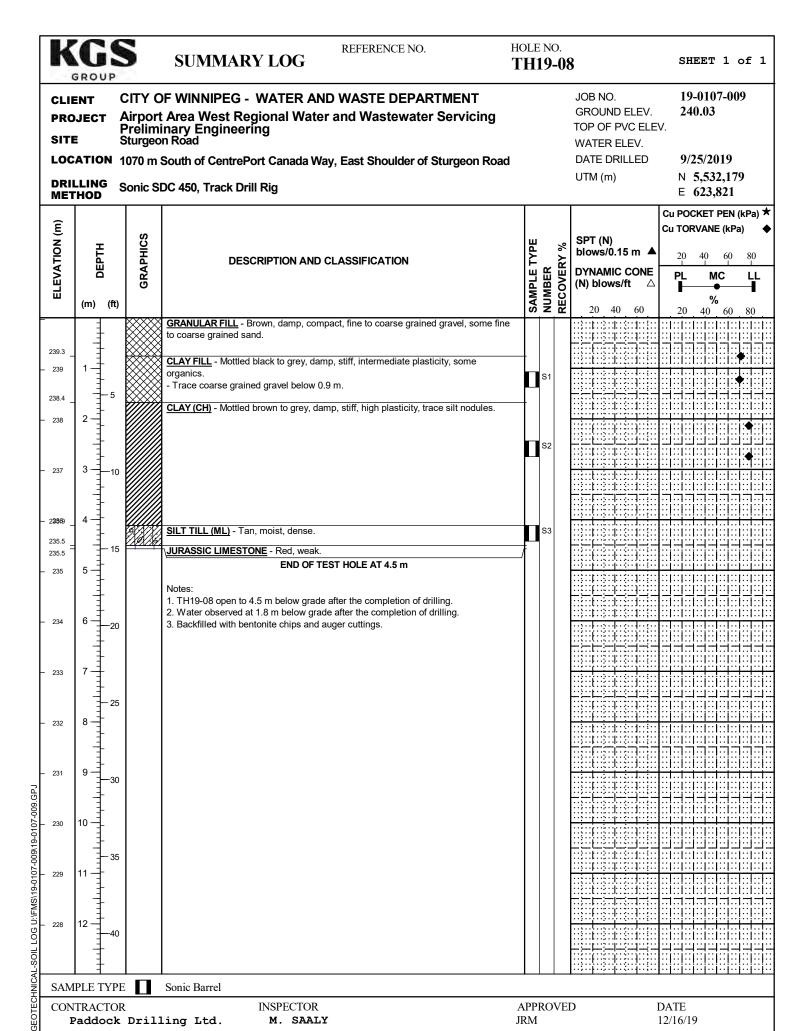

2019/2020 Test Hole and Photograph Logs

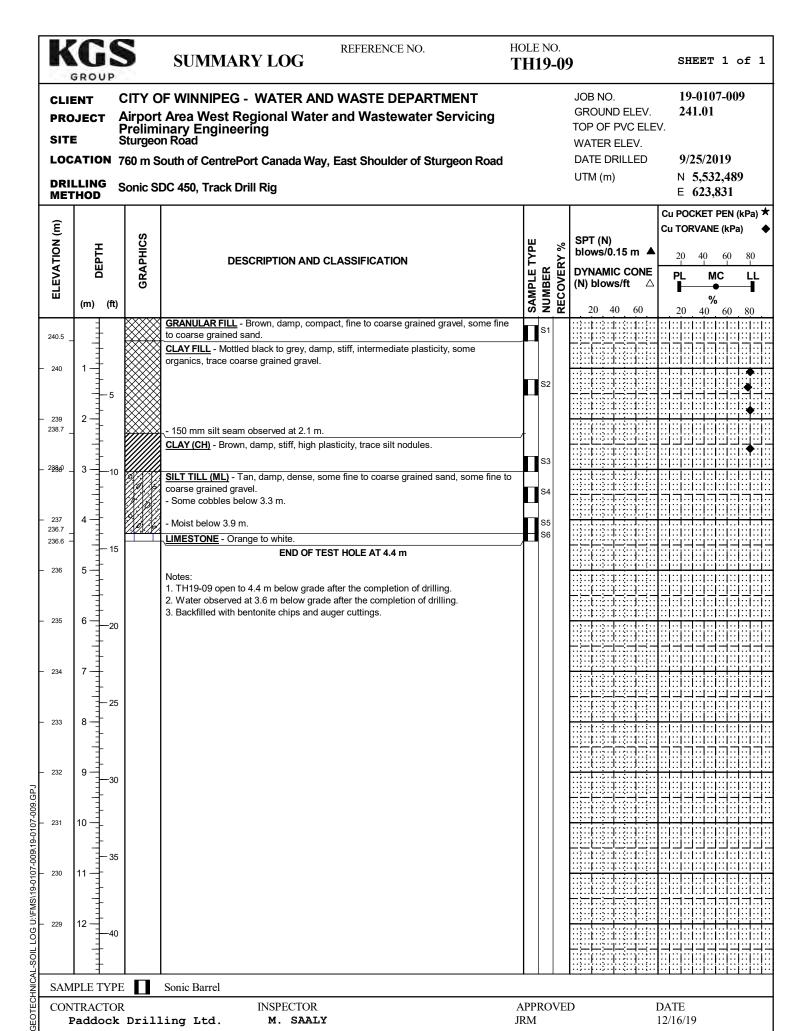


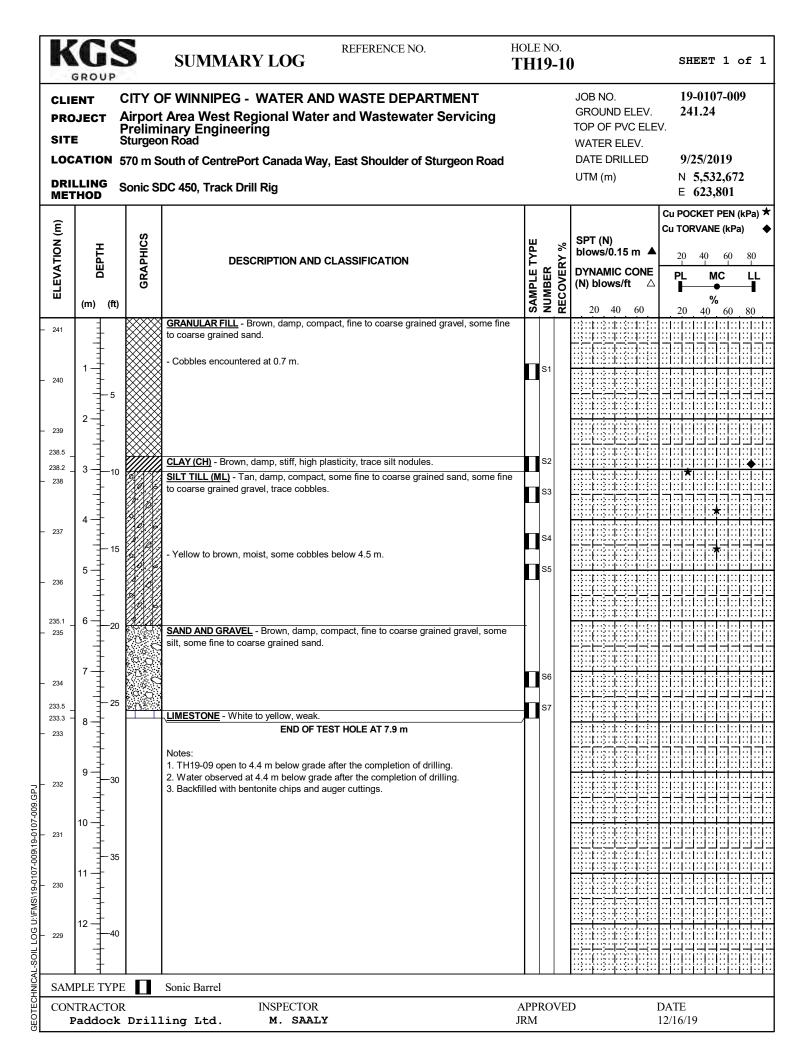



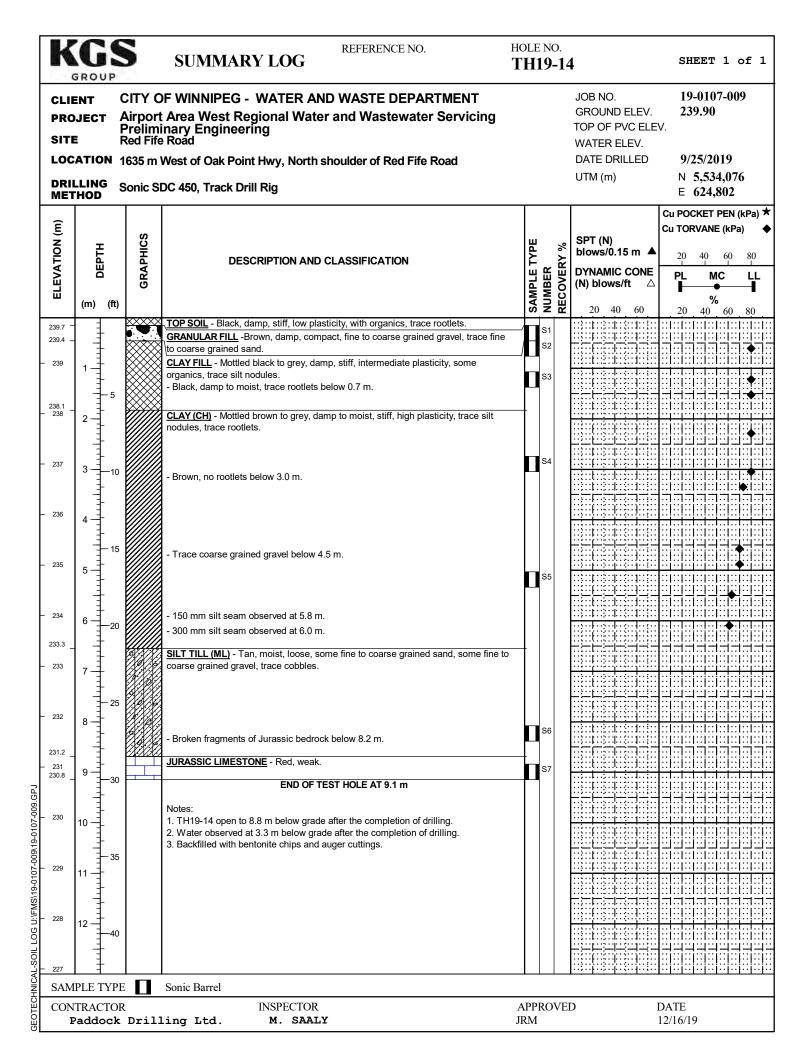


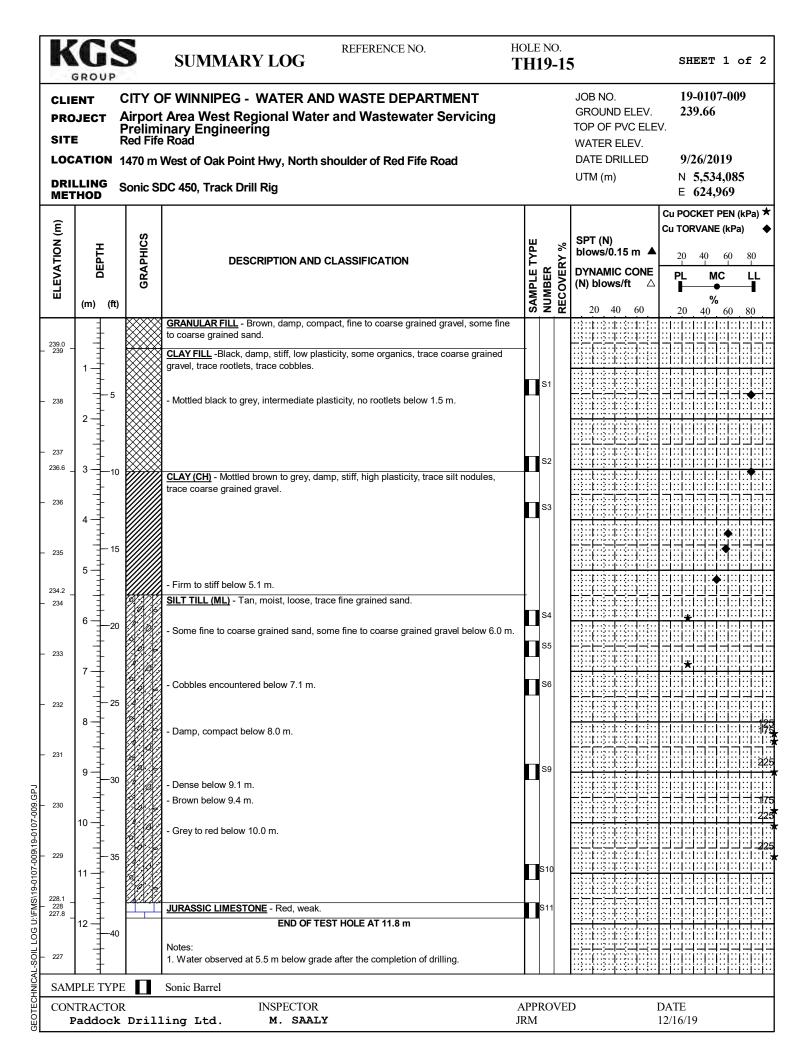




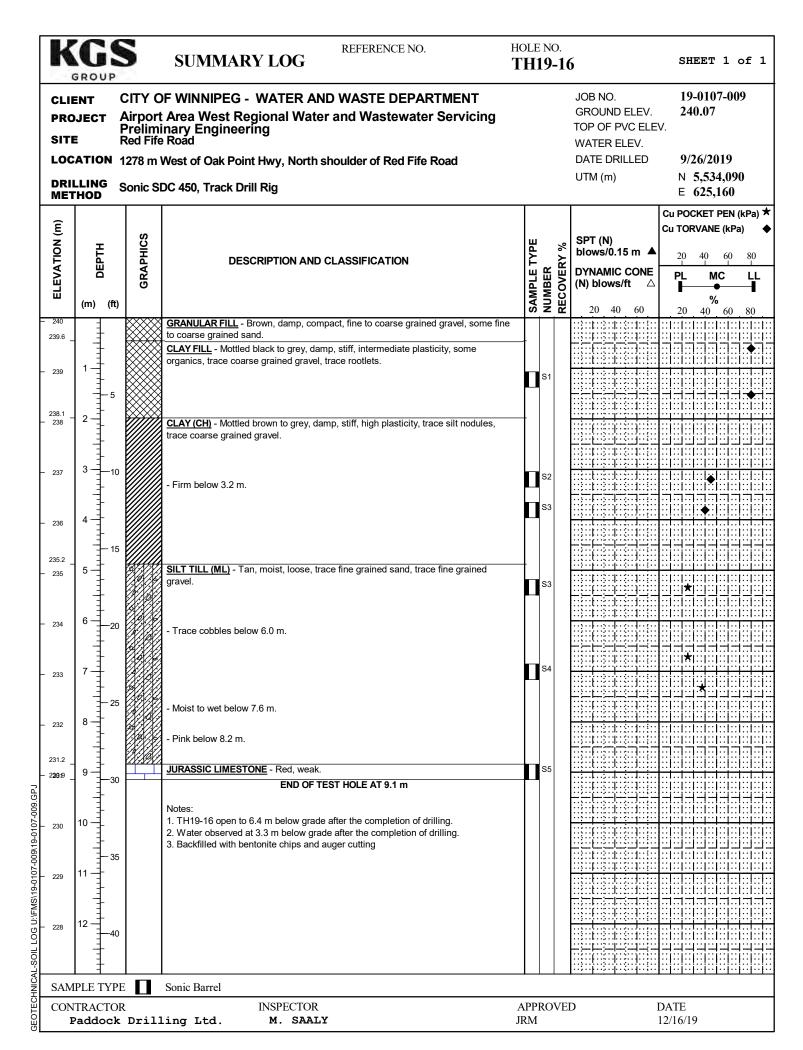


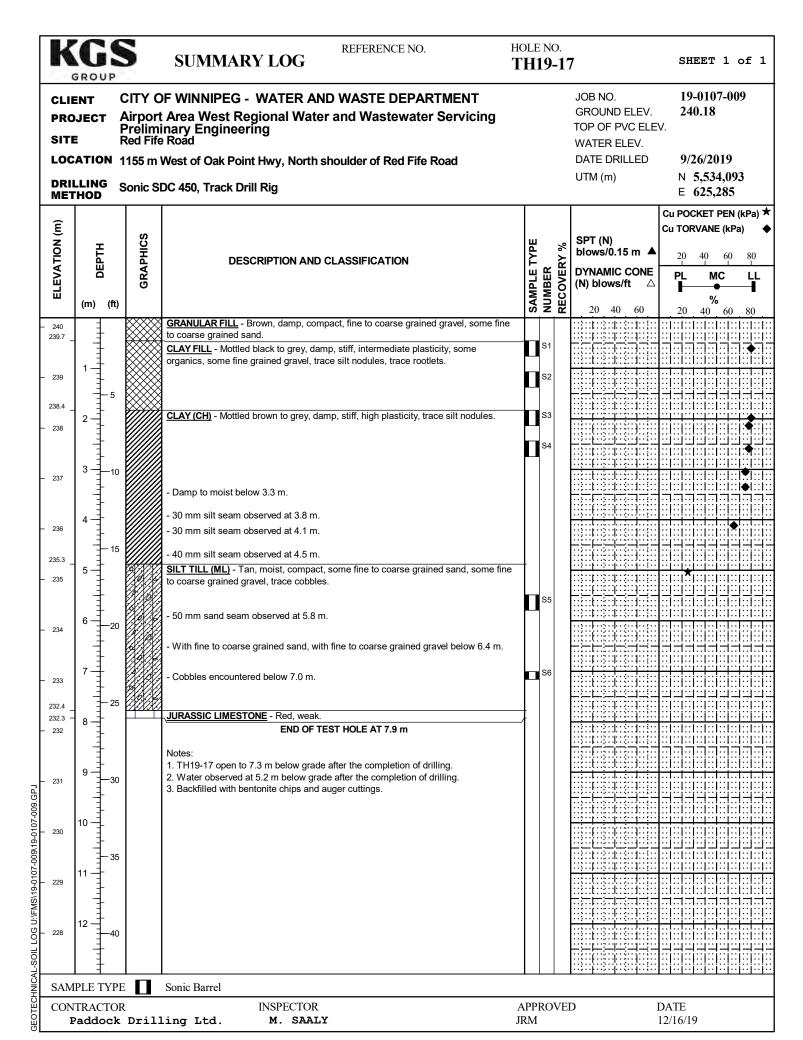



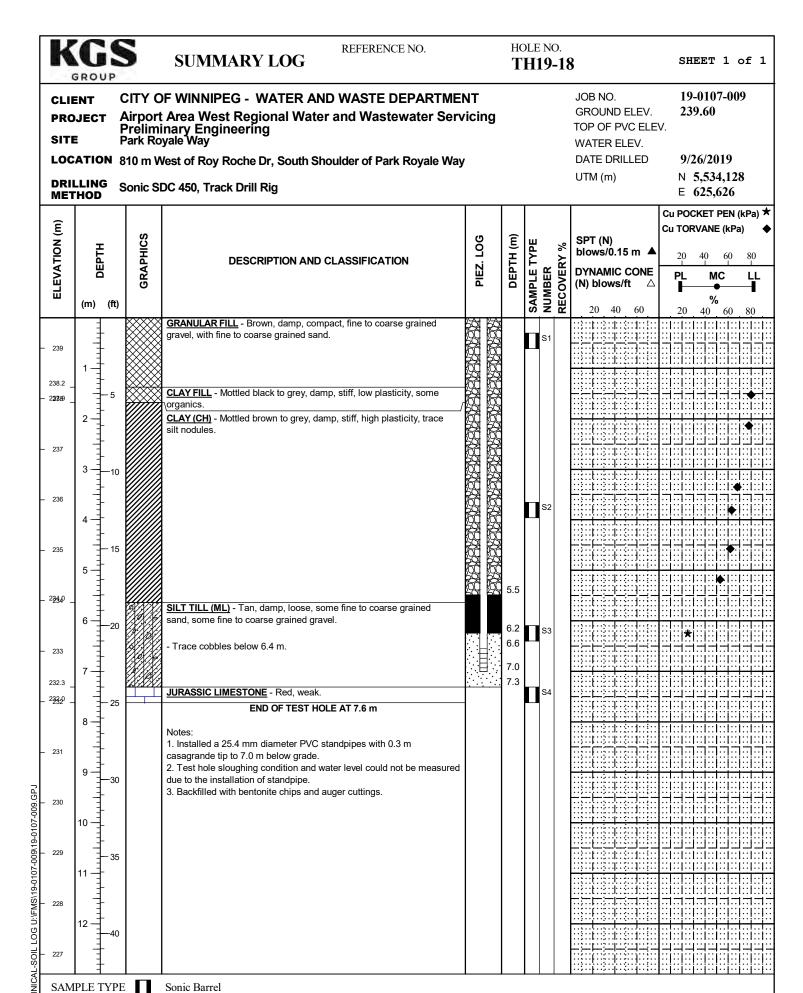


JRM


12/16/19

Paddock Drilling Ltd.


M. SAALY






| ION (m)       | TH                   | HICS     |                                                                                                                                                                                                          | /PE     | %                    | SPT (N)<br>blows/0.15 m                   | Cu POCKET PEN (kF<br>Cu TORVANE (kPa) |
|---------------|----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|-------------------------------------------|---------------------------------------|
| ELEVATION (m) | ELEVATION  (a) DEPTH | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                           | AMPLE T | NUMBER<br>RECOVERY % | DYNAMIC CONE (N) blows/ft \( \triangle \) | PI MC                                 |
| 226           | -45                  |          | Test hole sloughing condition could not be measured due to the drillers broken rod which fell in the test hole after the completion of drilling.     Backfilled with bentonite chips and auger cuttings. | S I     |                      | 20 40 60                                  | 20 40 60 8                            |
| 225           | 15 —                 |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 224           | 16 —                 |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 223           |                      |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 222           | 18 -                 |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 221           | 19 —                 |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 220           | 20 - 65              |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 219           | 21                   |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 218           | 22 — 70   22 — 1     |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 217           | 23 —                 |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 216           | 24                   |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 215           | 25                   |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 214           | 26 - 85              |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 213           | 27 — 90              |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |
| 212           | 28                   |          |                                                                                                                                                                                                          |         |                      |                                           |                                       |



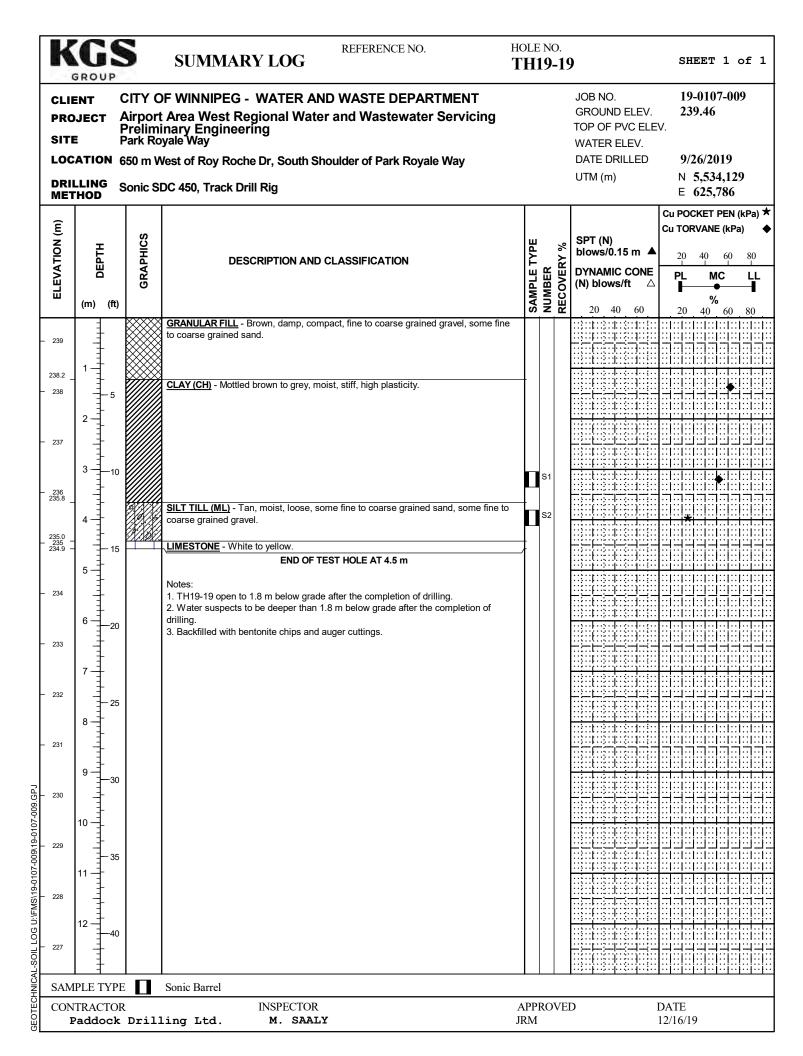


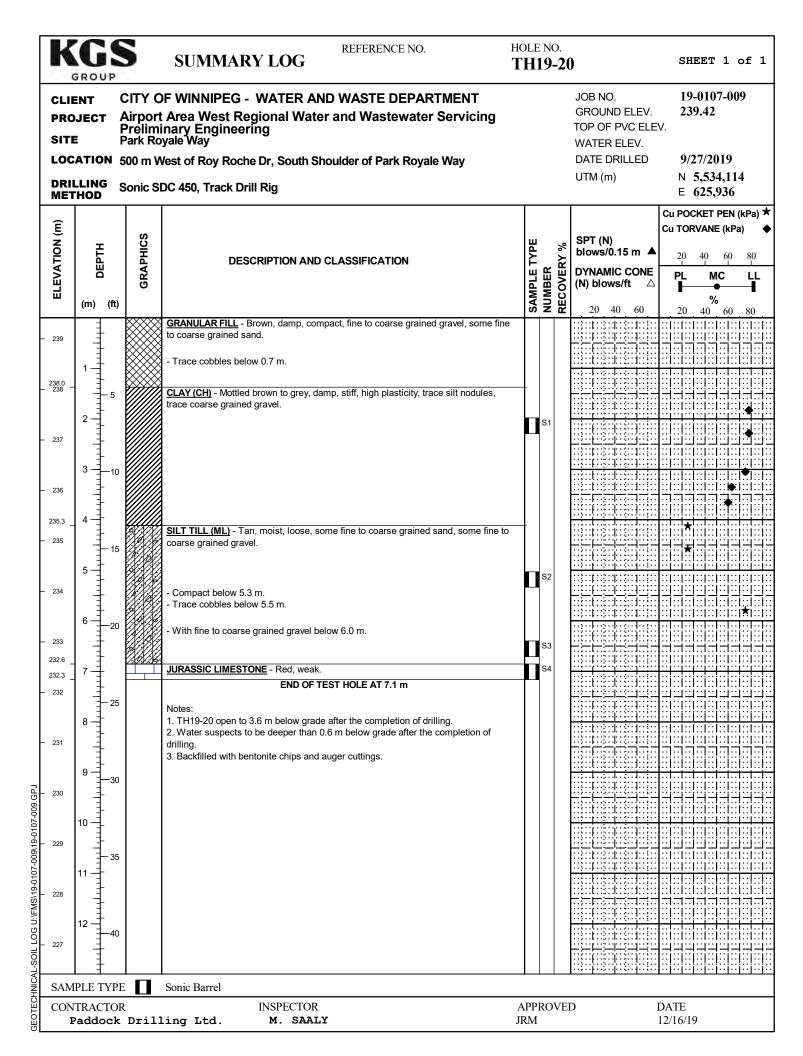


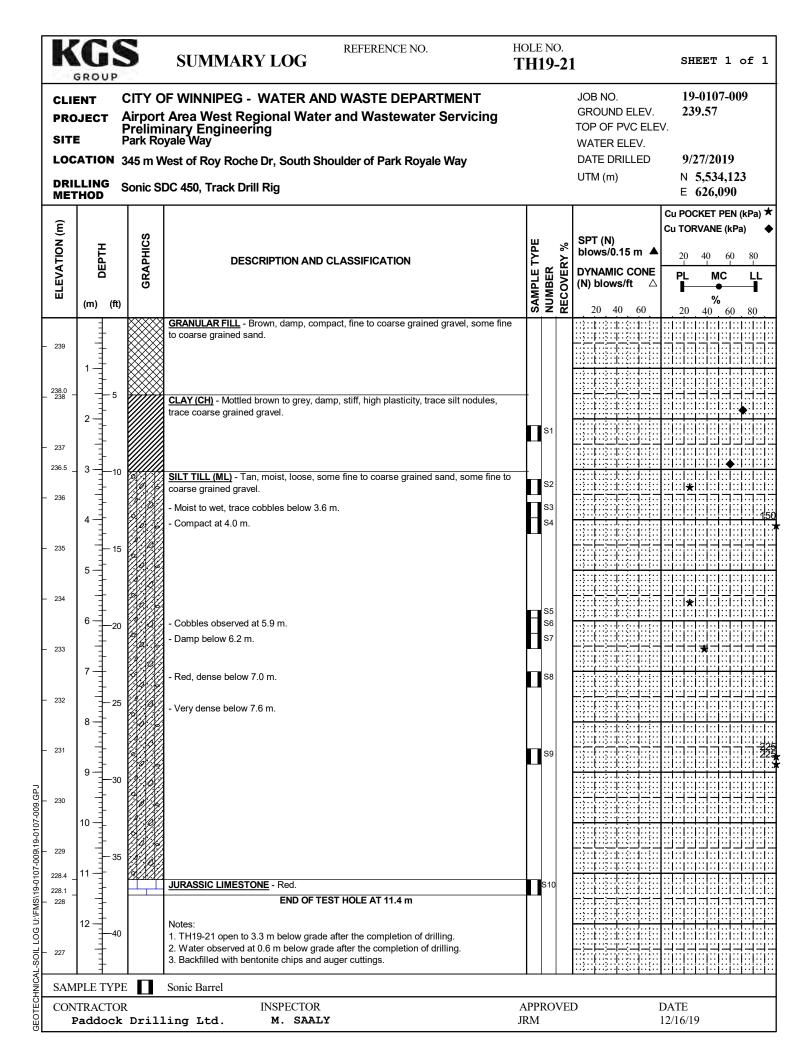
**APPROVED** 

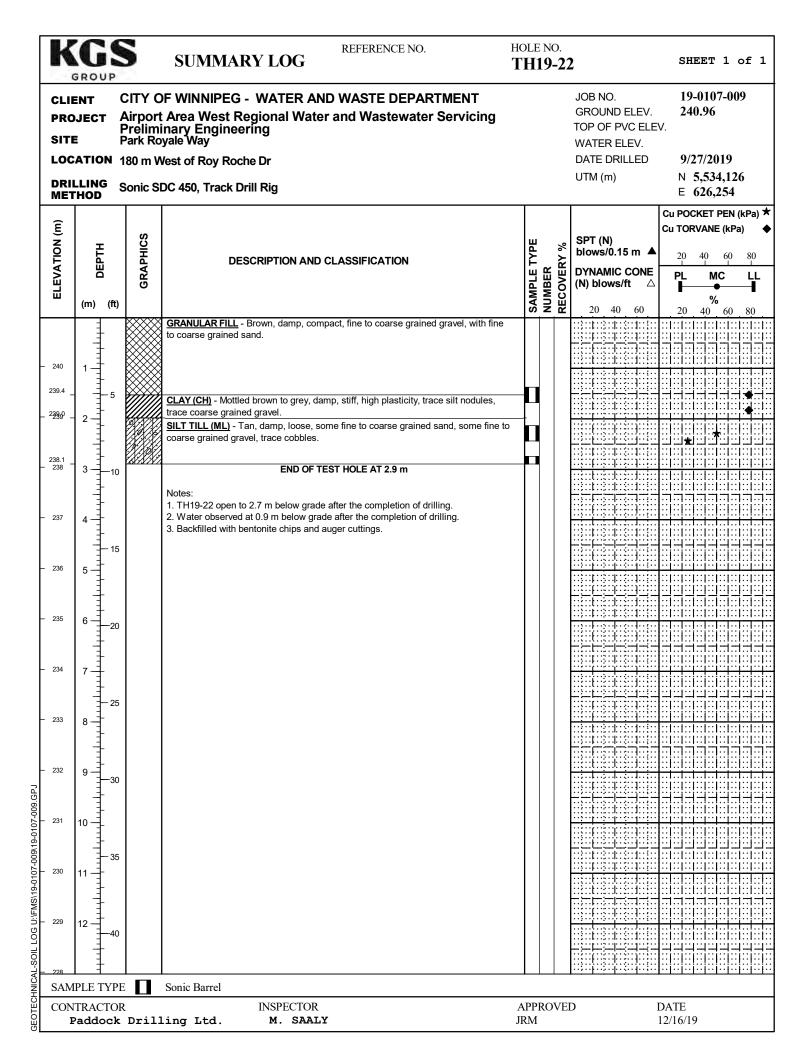
JRM

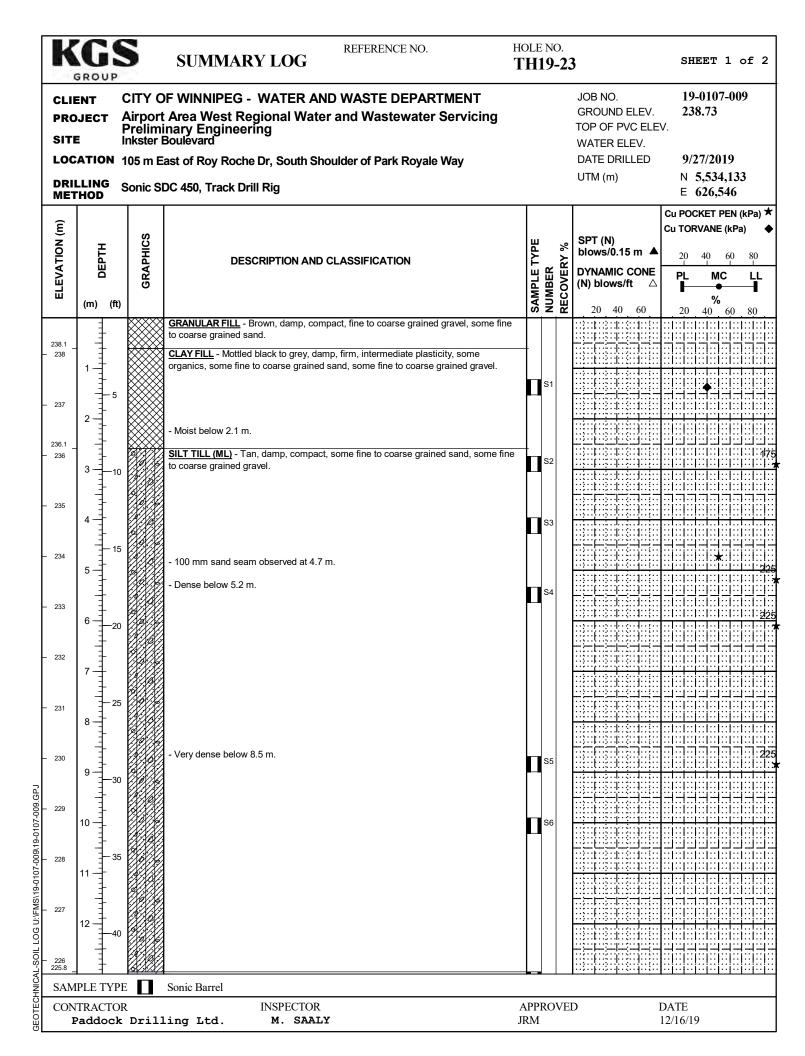
DATE

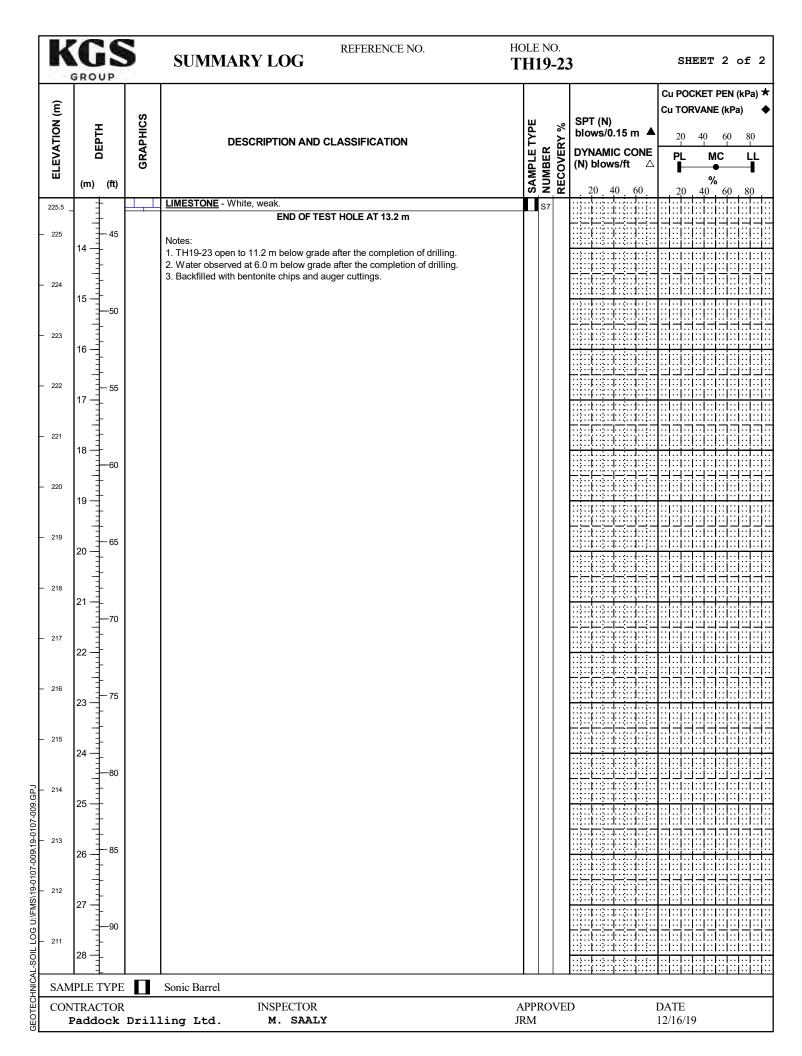

12/16/19

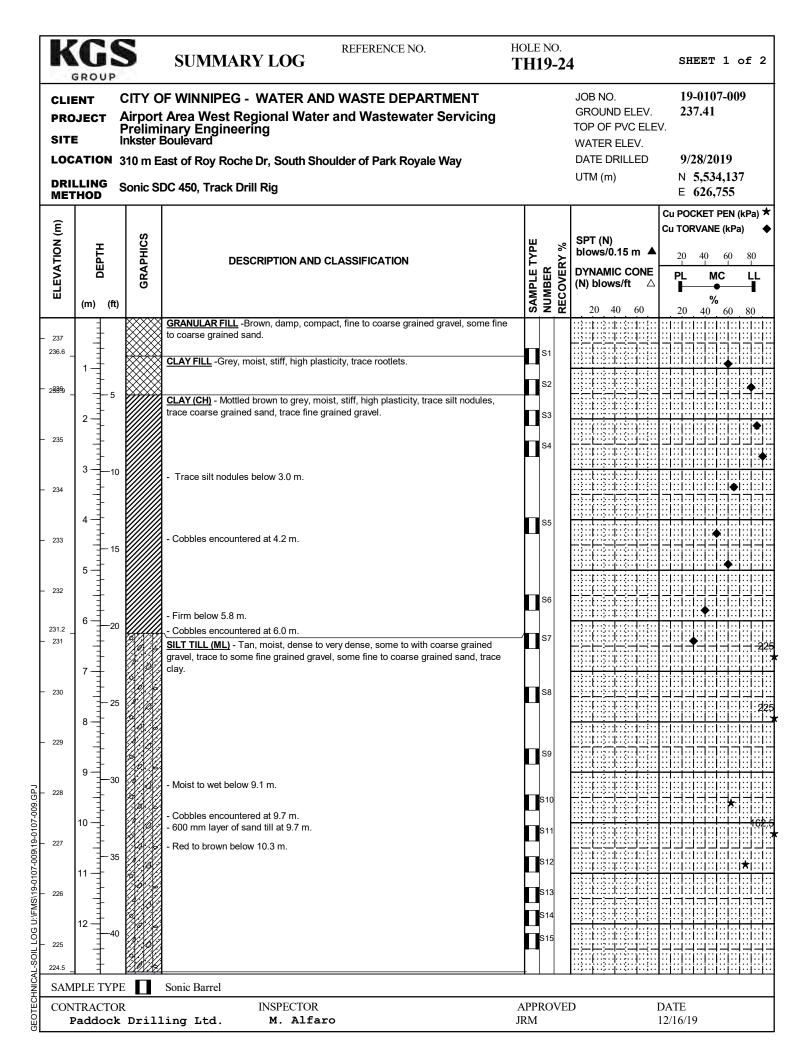

INSPECTOR


M. SAALY

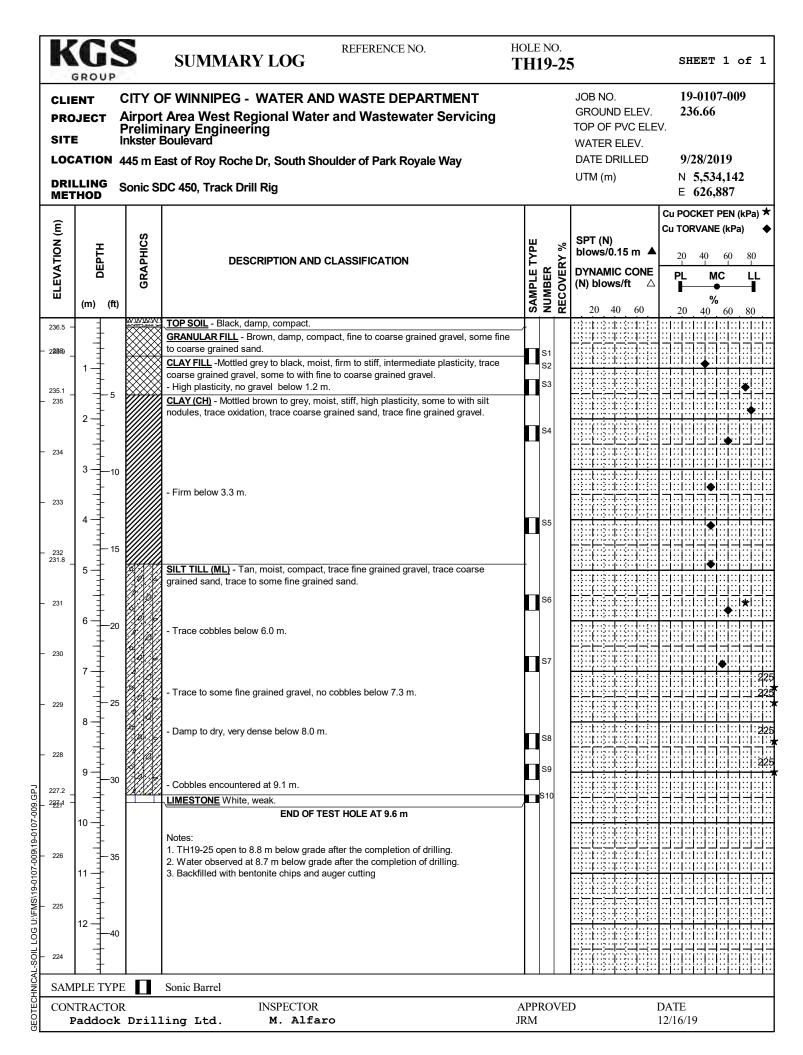

CONTRACTOR

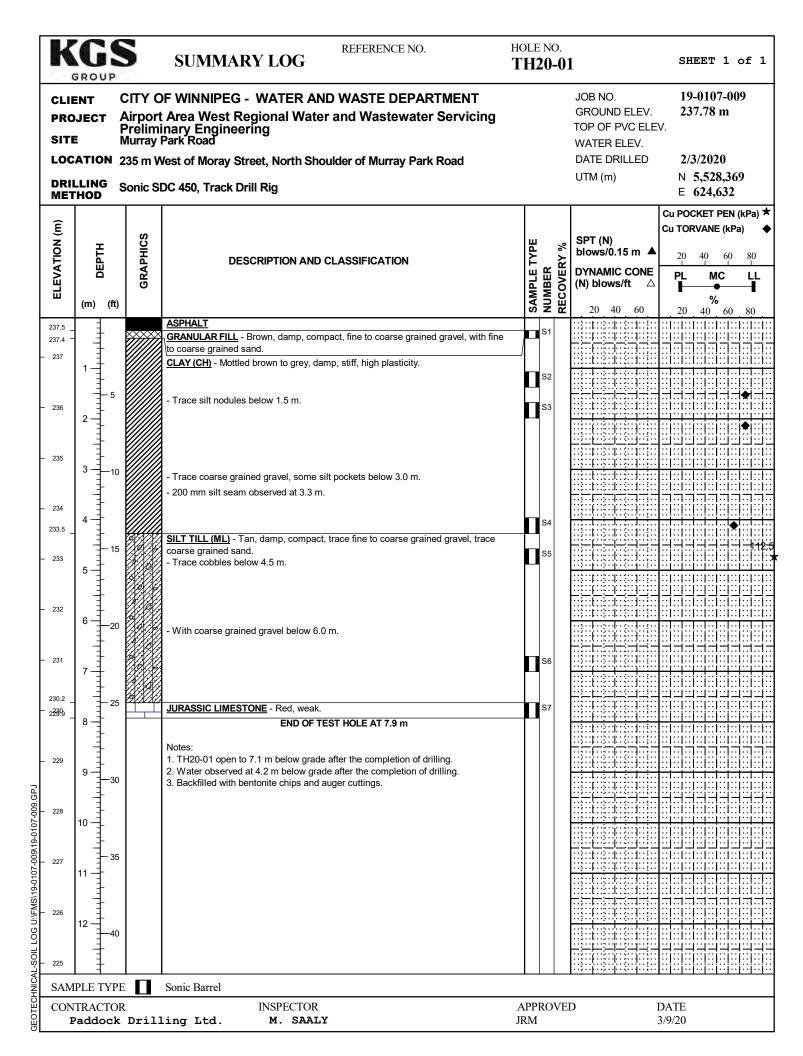

Paddock Drilling Ltd.

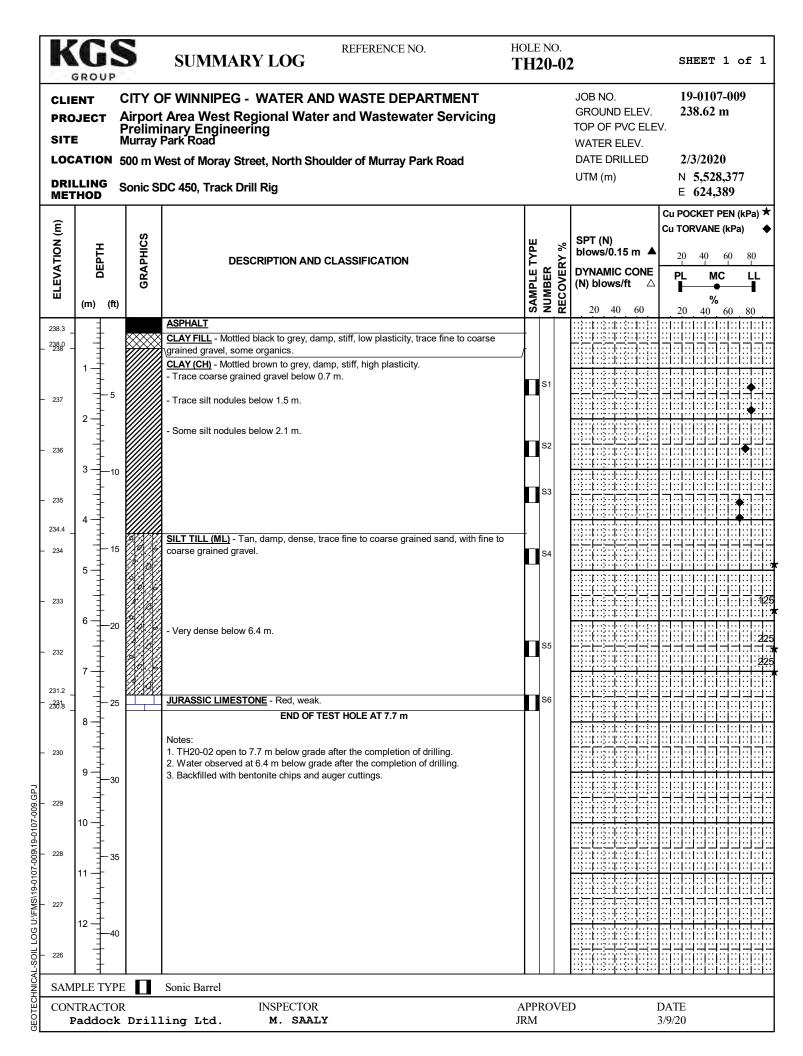


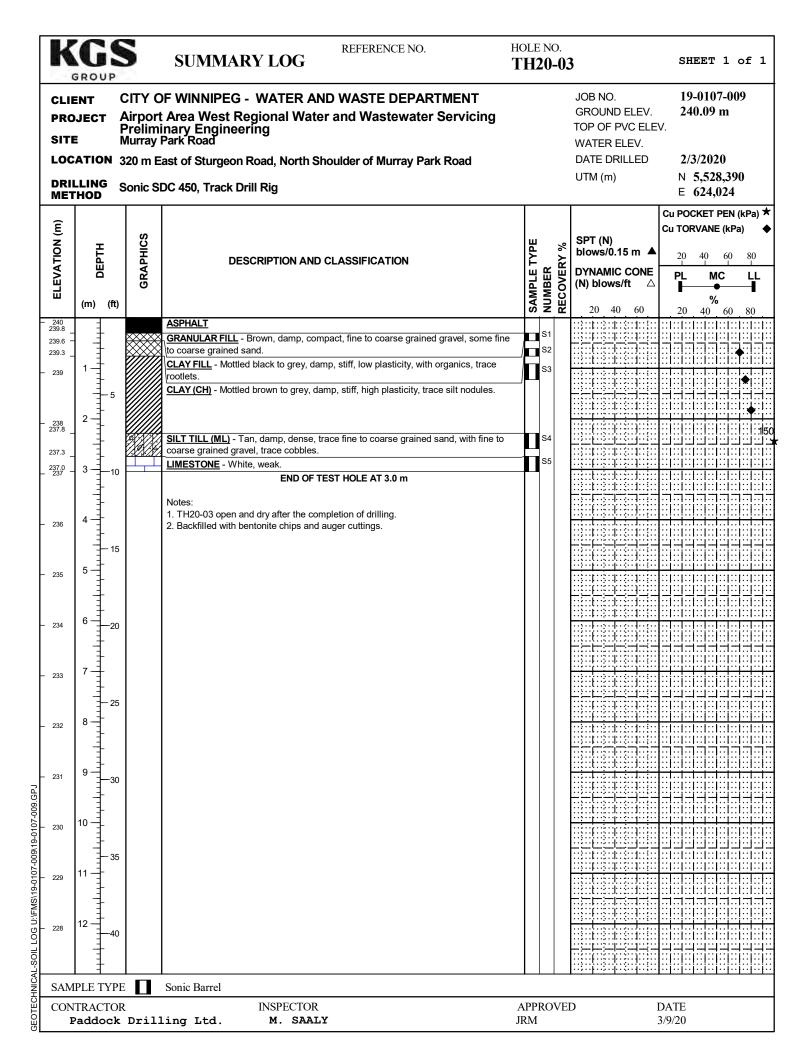



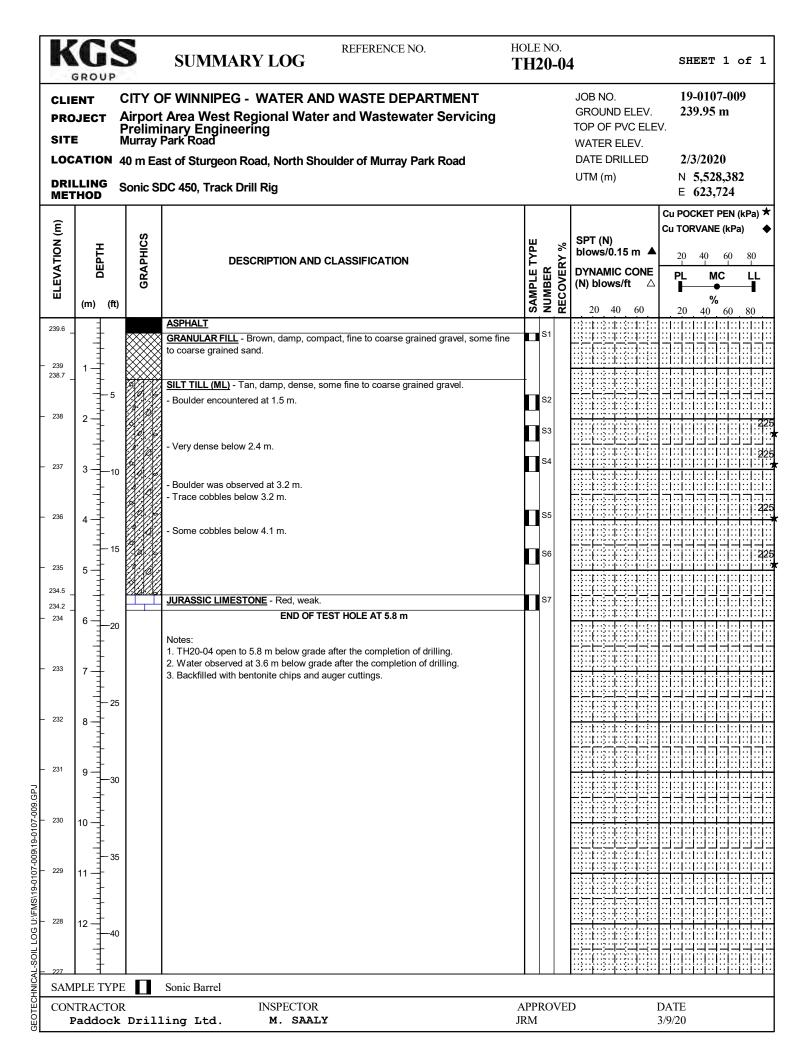


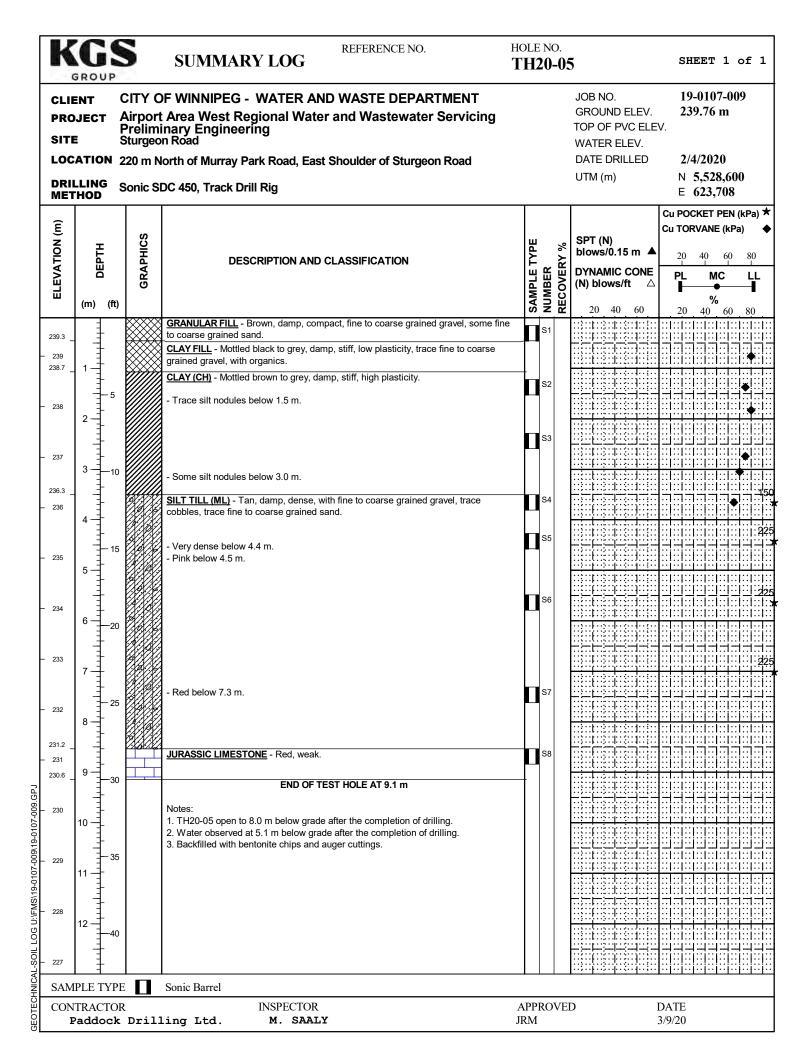



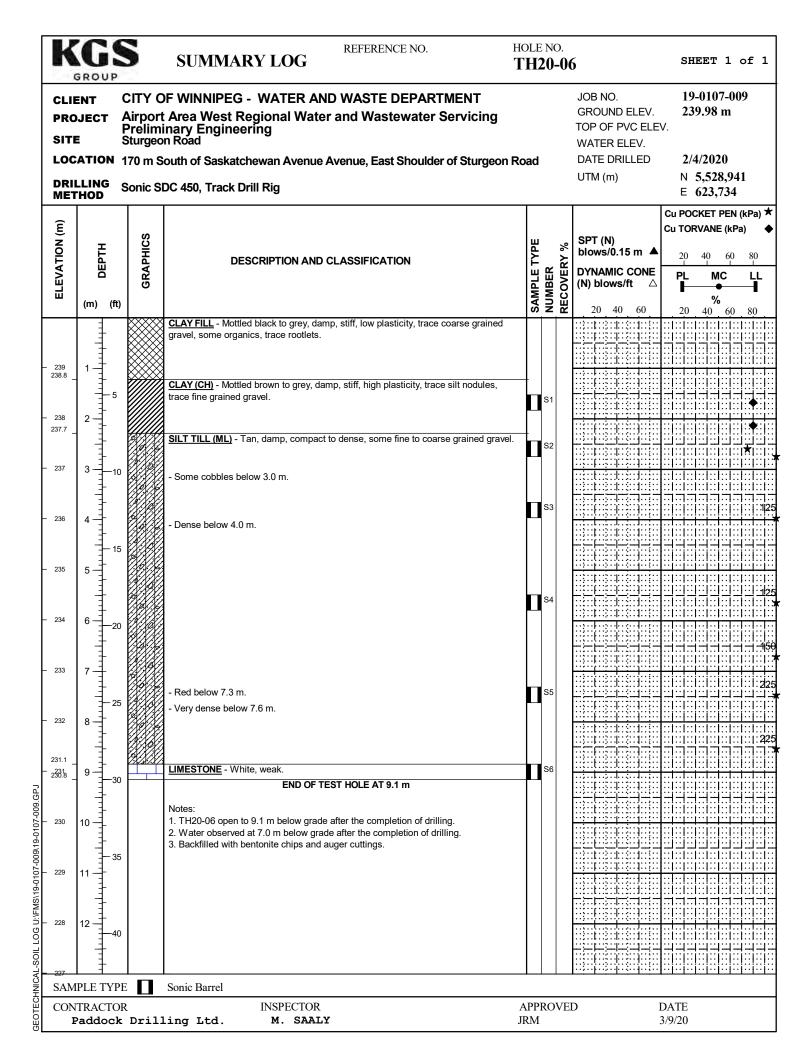



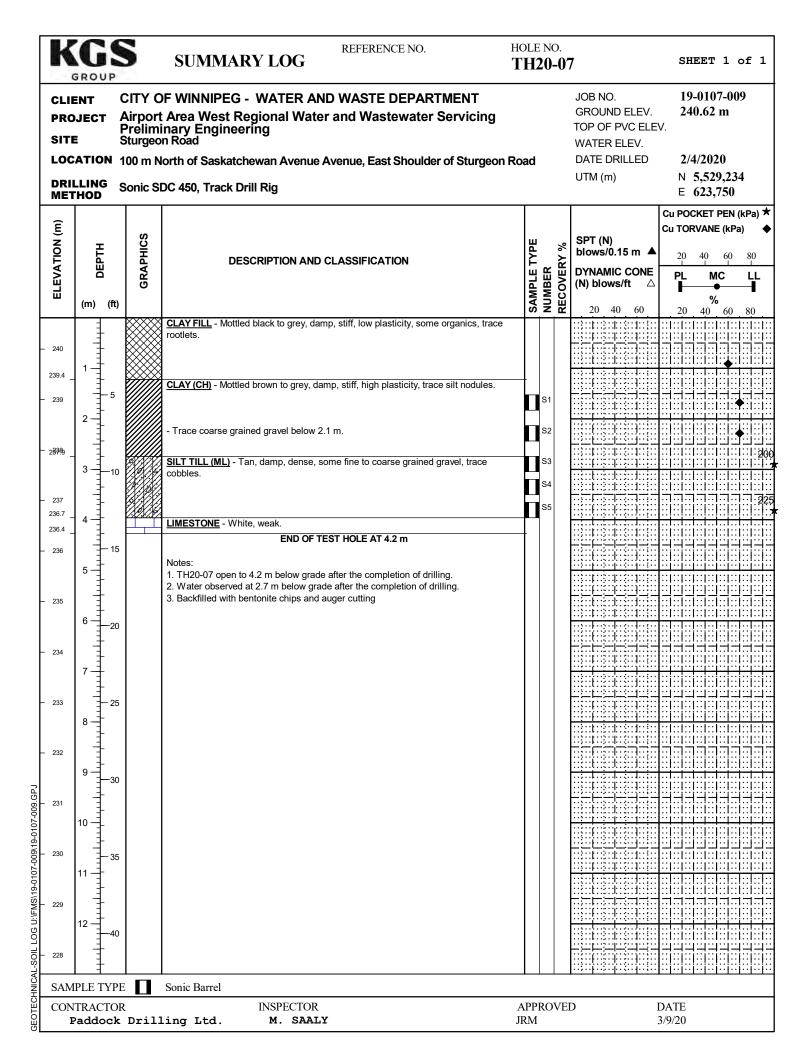



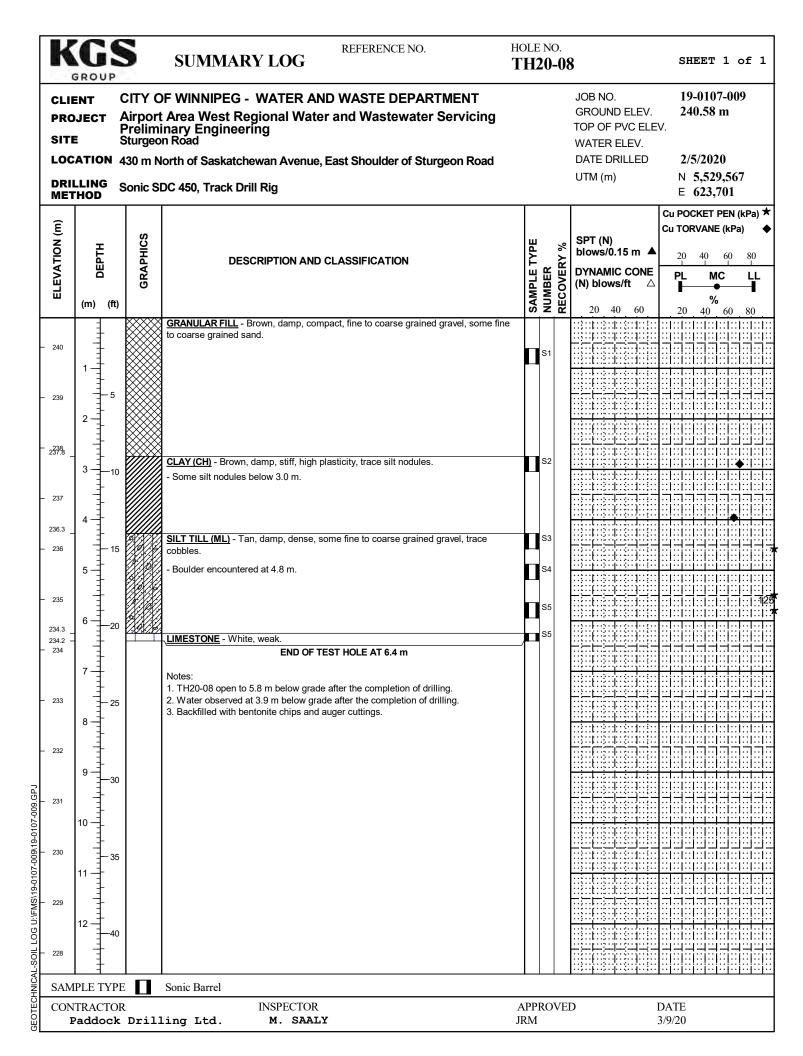



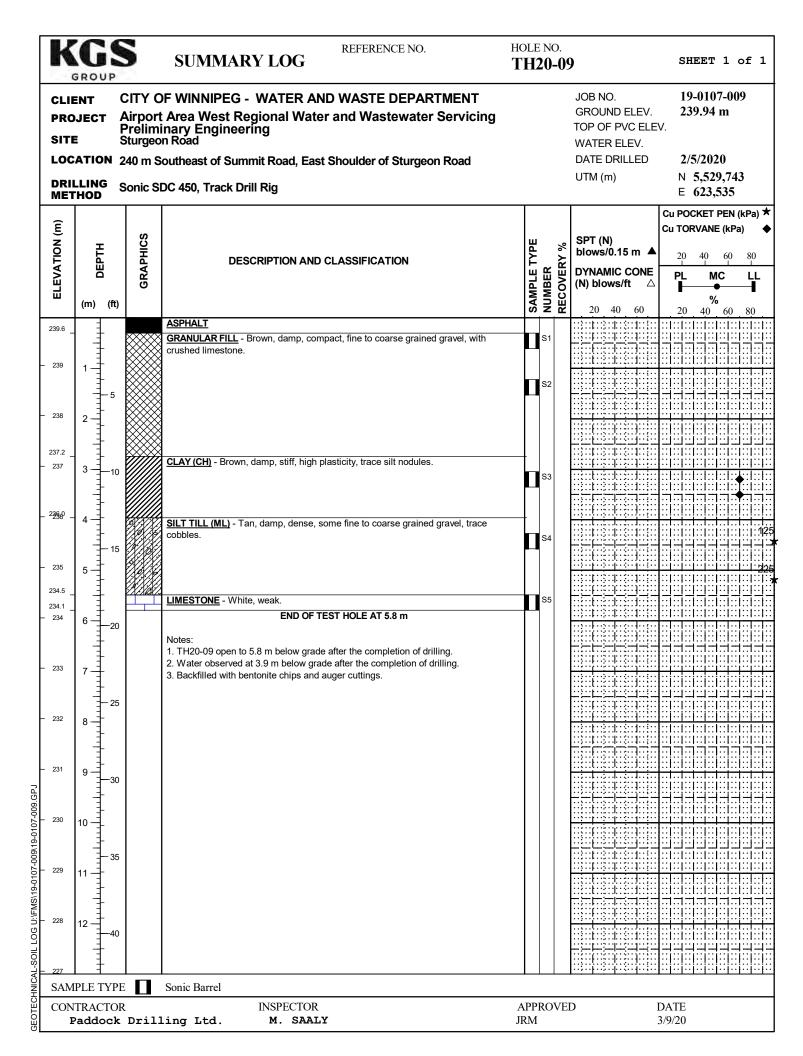


| (m)           |             | s        |                                                                                                                               |                                     | SP              | T /A                                             | n.                                     |                                        |              |                 | CKET<br>RVANE                |                                     |                           |
|---------------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|--------------------------------------------------|----------------------------------------|----------------------------------------|--------------|-----------------|------------------------------|-------------------------------------|---------------------------|
| ELEVATION (m) | рертн       | PHIC     | DESCRIPTION AND CLASSIFICATION                                                                                                | IYPE                                | blo             | ws.                                              | 0.15                                   | m 🔺                                    |              | 20              | 40                           | 60                                  | 80                        |
| EVA           | DE          | GRAPHICS |                                                                                                                               | PLE '                               | DYI<br>(N)      | NAI<br>blo                                       | VIIC C                                 | ONE<br>t △                             |              | PL              | М                            | IC                                  | Ļ                         |
| ш             | (m) (ft)    |          |                                                                                                                               | SAMPLE TYPE<br>NUMBER<br>RECOVERY % |                 | 20 .                                             | 40                                     | 60                                     |              | 20              | <b>%</b>                     | 60                                  | . 80                      |
| 224.3         | 1           |          | LIMESTONE Red, weak.  END OF TEST HOLE AT 13.2 m                                                                              |                                     | ;               | <del>.i:</del><br>:::::                          |                                        | <del>- j</del><br>: 1: : ! :           | ::::         | <del></del>     | <del>  </del><br> ::: ::     | <u> </u>                            | <del>I î</del><br>I : : I |
| 224           | 45          |          |                                                                                                                               |                                     |                 | <br>                                             |                                        | <del>- </del>                          |              |                 |                              |                                     | <del>   </del><br> ::     |
|               | 14 📑        |          | Notes: 1. TH19-24 open to 10.9 m below grade after the completion of drilling.                                                |                                     | ::;::           | · <del>  · · · ·</del>                           | <u> </u>                               | :1:::::                                | :::          | ::1::           | · ·   · ·  <br>  : :   : :   | · ·   · ·<br>  : :   : :            | :: <br> ::                |
| 223           | 1 1         |          | Water observed at 8.2 m below grade after the completion of drilling.     Backfilled with bentonite chips and auger cuttings. |                                     |                 | F                                                |                                        |                                        |              |                 |                              |                                     |                           |
|               | 15 =        |          |                                                                                                                               |                                     | :: <u>}</u> ::  | :t:::                                            | ::1::::::::::::::::::::::::::::::::::: | :1::::::<br>-1;-                       | <u>: :: </u> | ::1::<br>1      | :: :: <br>                   | :: ::<br>                           | :: <br>                   |
| 222           | <del></del> |          |                                                                                                                               |                                     |                 | f                                                |                                        |                                        |              |                 |                              |                                     | :: <br>                   |
|               | 16 —        |          |                                                                                                                               |                                     | ;               | ¦∷:                                              | :::::                                  | 1:::::                                 |              | <u>:: ::</u>    | :: :: <br>                   | :: ::<br>                           | ::: <br><del>  </del>     |
| 221           |             |          |                                                                                                                               |                                     |                 | f:::                                             |                                        |                                        |              |                 |                              |                                     |                           |
|               | 17 — 55     |          |                                                                                                                               |                                     |                 | f::;                                             |                                        | 1 : : :                                |              |                 | :: :: <br> ::                |                                     | :: <br> ::                |
| 220           | '' 📑        |          |                                                                                                                               |                                     | ::;::           | t : ::                                           |                                        | : J: : : : : : : : : : : : : : : : : : |              | ::1::           |                              | :: ::<br> :: ::                     | :: <br> ::                |
|               |             |          |                                                                                                                               |                                     | [:: <u>;</u> :: | Г.;<br>(:::                                      |                                        |                                        |              |                 |                              |                                     |                           |
| 240           | 18 — 60     |          |                                                                                                                               |                                     | <del></del>     | <del>1:</del><br>1:::                            | <del>.   . :</del><br>:  : : :         | <del>-1</del>                          |              | <del>-   </del> | l <del> </del>  <br> ::: ::: | <del> </del><br> :: ::              | <del> </del><br> ∷        |
| 219           |             |          |                                                                                                                               |                                     |                 | (-:                                              |                                        |                                        |              |                 |                              |                                     |                           |
|               | 19 🕇        |          |                                                                                                                               |                                     | ::::::          | · · · ·                                          | <u> </u>                               | 1 : : :                                | . I i        |                 | <br>                         | <br> :: ::                          | <br>                      |
| 218           |             |          |                                                                                                                               |                                     |                 |                                                  |                                        |                                        | : ::i        |                 |                              |                                     |                           |
|               | 20 = 65     |          |                                                                                                                               |                                     | :::}::          | : : :<br>                                        |                                        | 1::::::                                |              | :: ::           | :: :: <br> :: ::             | :: ::<br> :: ::                     | :: <br> ::                |
| 217           |             |          |                                                                                                                               |                                     |                 | t:::                                             | :: :::<br><del>:</del>  ::::           | : :::::::<br>-1:-::-                   |              | :: ::           | :: :: <br>                   | :: ::<br> :: ::                     |                           |
|               | 21 -        |          |                                                                                                                               |                                     | :: <u>}</u> ::  | · ; · · :                                        |                                        | 1                                      | ·I··i        | •••             | :: :: <br><del> :: :</del>   | i · · i · ·                         | :: <br>  <del>:: </del>   |
| 216           | 70          |          |                                                                                                                               |                                     |                 | l :::                                            |                                        | :::::::<br>                            |              | ::1::           | :: :: <br>                   | :: ::<br>  -                        | I::I<br>I::I              |
|               | 22 —        |          |                                                                                                                               |                                     |                 |                                                  |                                        |                                        | Ш            |                 |                              |                                     |                           |
| 215           |             |          |                                                                                                                               |                                     |                 | l:::<br>                                         |                                        | :1:::::<br>                            |              |                 | :: :: <br> :: ::             | :: ::<br> :: : <u>:</u>             | :: <br> ::                |
|               | 75          |          |                                                                                                                               |                                     |                 | l : ::                                           |                                        |                                        |              |                 |                              |                                     | :: <br> ::                |
| 214           | 23 -        |          |                                                                                                                               |                                     | ::;::           | ļ.;                                              |                                        |                                        |              |                 |                              |                                     |                           |
|               |             |          |                                                                                                                               |                                     |                 | l : :                                            | -):<br>:::::::                         | ∃≕:-<br>:1::::                         |              |                 | <br> :: ::                   | <del>         </del><br>  : :   : : | <del>   </del><br> ::     |
| 040           | 24 -        |          |                                                                                                                               |                                     | <del></del>     | <del>                                     </del> |                                        |                                        |              | :: ::           |                              |                                     |                           |
| 213           | 80          |          |                                                                                                                               |                                     |                 |                                                  |                                        |                                        |              |                 |                              | <br>                                |                           |
|               | 25 📑        |          |                                                                                                                               |                                     |                 | l                                                | -  - · · ·                             | 1 : : :                                | ##           | ::::::          |                              |                                     |                           |
| 212           |             |          |                                                                                                                               |                                     |                 |                                                  |                                        | 1                                      | H            |                 |                              |                                     | <br>                      |
|               | 26 - 85     |          |                                                                                                                               |                                     | :::             | <u>                                     </u>     | :: <u> ::::</u><br>: <u> ::::</u>      |                                        | ##           | <u>:: ::</u>    |                              |                                     | <u> :: </u>               |
| 211           |             |          |                                                                                                                               |                                     |                 | <br>                                             |                                        | -11                                    | ##           |                 | :: <br>  <del>:: </del>      |                                     |                           |
|               | 27 —        |          |                                                                                                                               |                                     | ::;::           | † : : ;<br>                                      | :::::::::::::::::::::::::::::::::::::: |                                        | ##           | <u>:: ::</u>    |                              |                                     | <u> :: </u>               |
| 210           | 90          |          |                                                                                                                               |                                     |                 | ļ                                                |                                        |                                        |              |                 |                              |                                     |                           |
|               | 28 —        |          |                                                                                                                               |                                     |                 | t : : :                                          |                                        | 11:::::                                |              | :: ::           | :: :: <br> :: ::             | :: ::<br> :: ::                     | ::: <br> :::              |
|               | <u> </u>    |          |                                                                                                                               |                                     | :::             | ¦                                                | :::::                                  | 1                                      | <u>::::</u>  | <u>:: ::</u>    |                              | :::::                               | <br> :::                  |

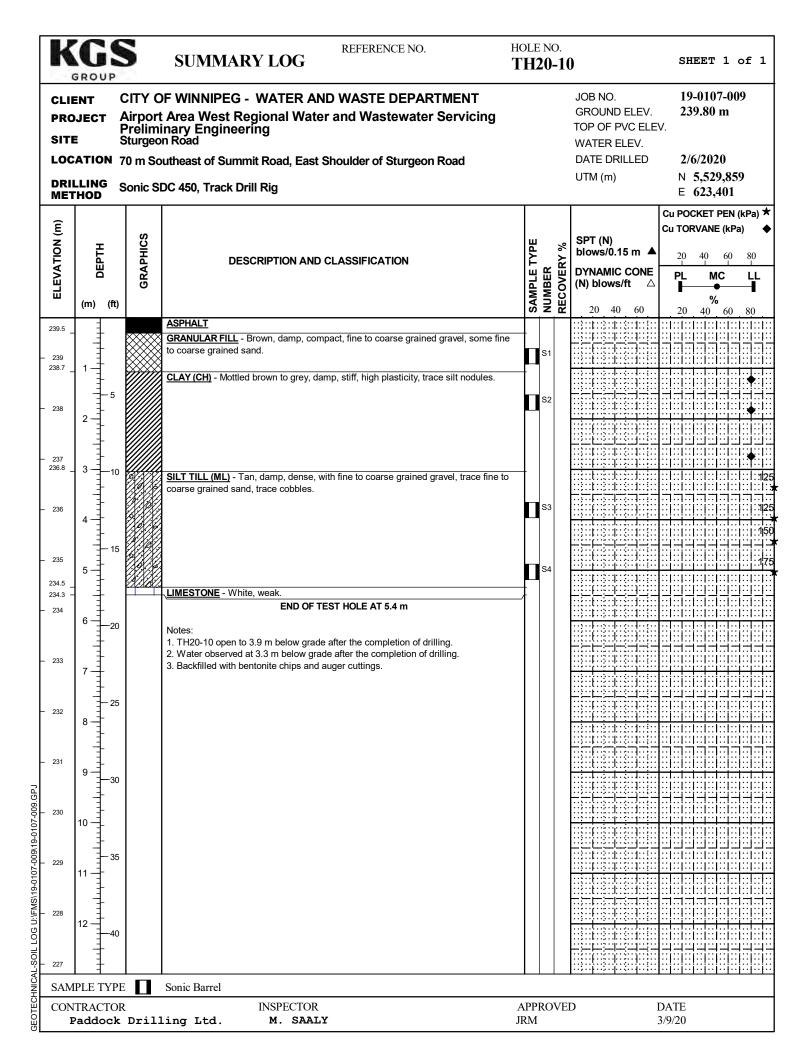


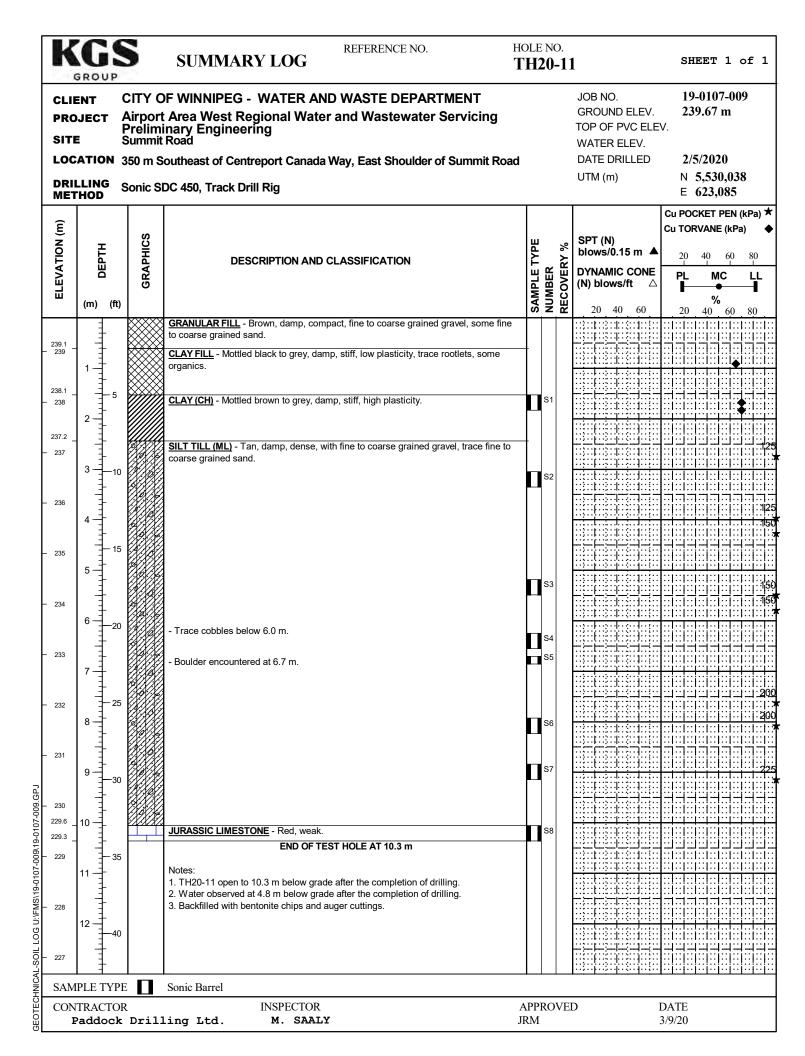



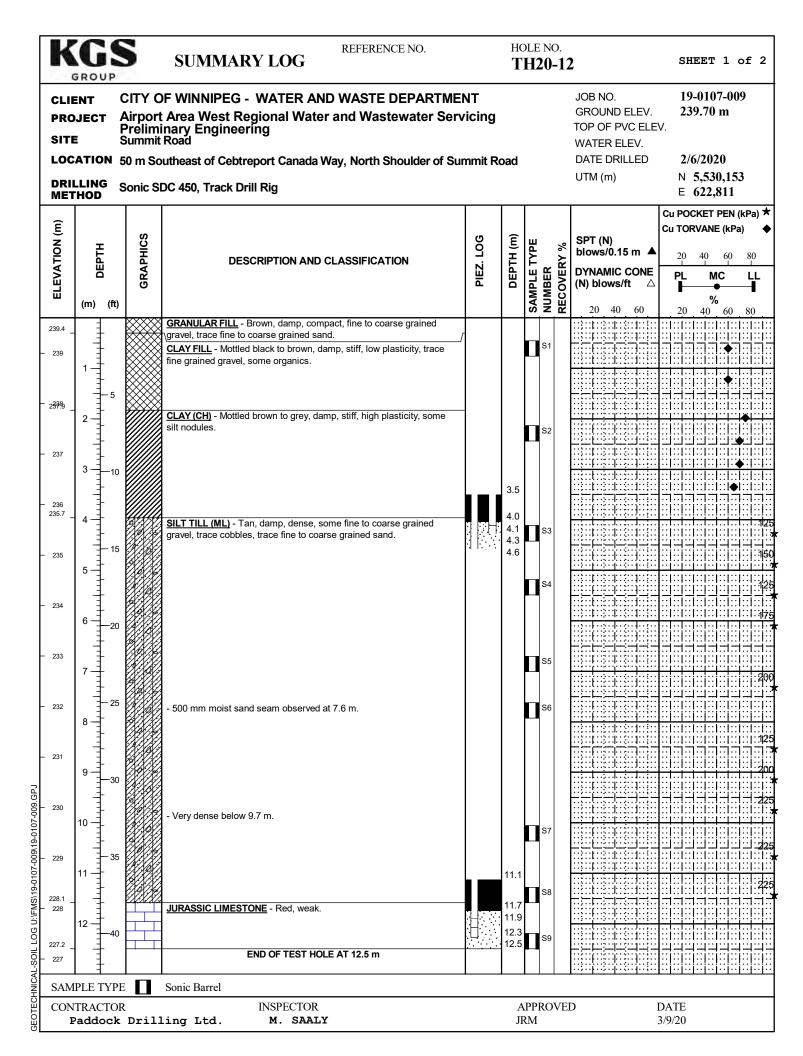



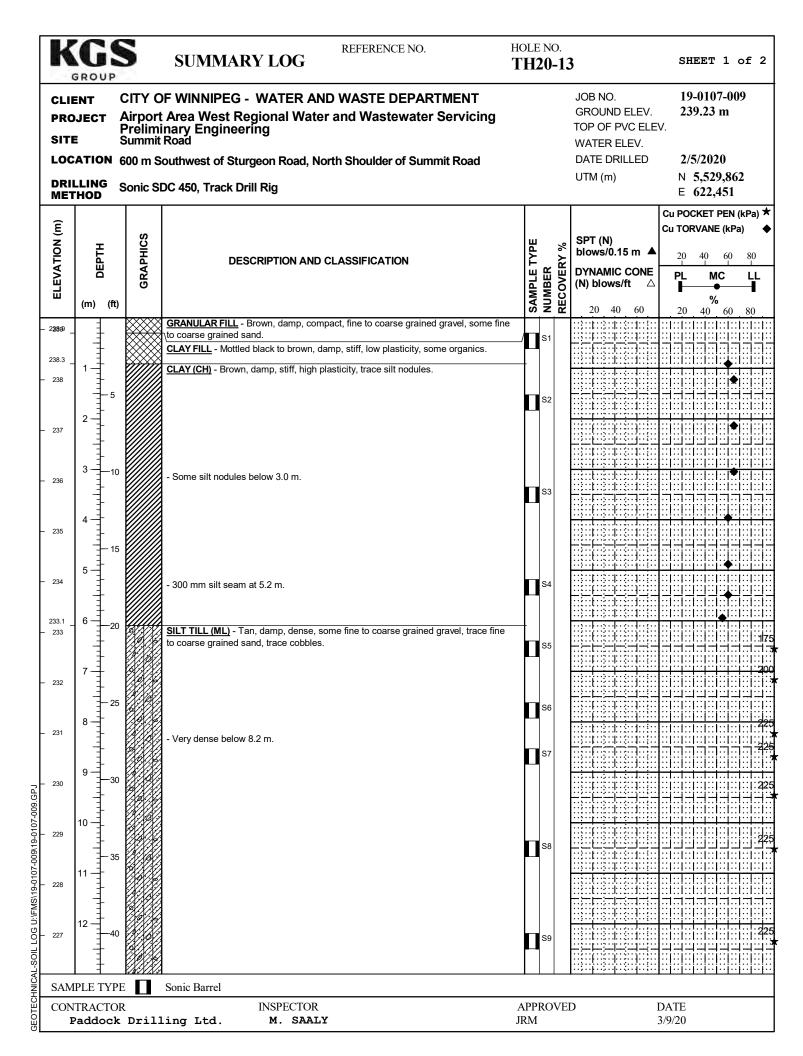



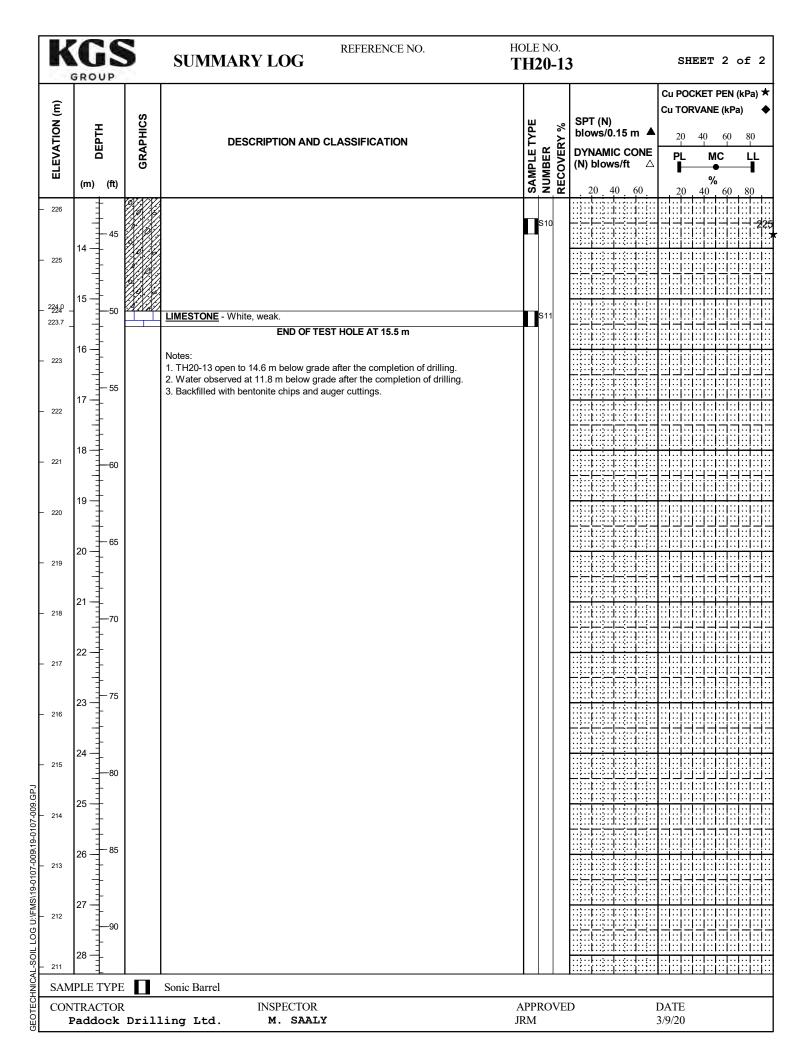



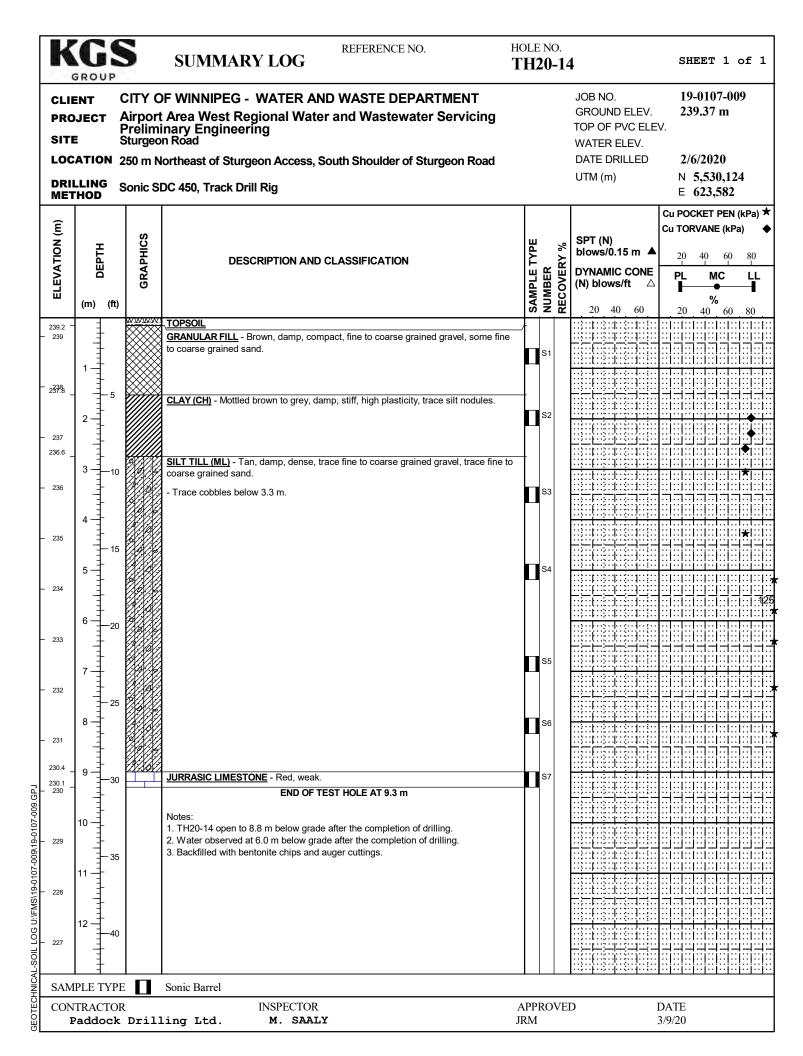







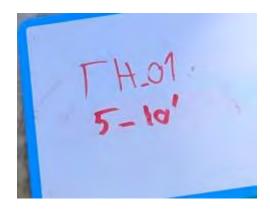

| ELEVATION (m) | (m) (ft)       | SOIL     | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                             | PIEZ. LOG | DEPTH (m) | PE %                                | SPT (N)<br>blows/0.15 m   | Cu POCKET PEN (kl<br>Cu TORVANE (kPa) |             |                                                     |  |
|---------------|----------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------------------------------|---------------------------|---------------------------------------|-------------|-----------------------------------------------------|--|
|               |                | GRAPHICS |                                                                                                                                                                                                                                                                            |           |           | SAMPLE TYPE<br>NUMBER<br>RECOVERY % | DYNAMIC CONE (N) blows/ft | 20<br>PL                              | 40 60<br>MC |                                                     |  |
|               |                | J        |                                                                                                                                                                                                                                                                            |           |           | SAMP<br>NUME<br>RECO                | 20 40 60                  | 20                                    | <b>%</b>    | . 8                                                 |  |
| 226           |                |          | Notes: 1. TH20-12 open to 12.5 m below grade after the completion of drilling. 2. Water observed at 2.9 m below grade after the completion of drilling. 3. Installed two 25.4 mm diameter PVC standpipes with 0.3 m casagrande tip installed 4.3 m and 11.8 m below grade. |           |           |                                     |                           |                                       |             | . <br>: ::<br>- <br>: ::                            |  |
| 225           | 15 — 50        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 224           | 16 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             | <br>                                                |  |
| 223           | 17 —<br>1 — 55 |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 222           | 18             |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 221           | 19 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 220           | 20 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             | : ::<br>: ::<br>: ::                                |  |
| 219           | 21 — 70        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 218           | 22 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 217           | 23 - 75        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             | :   : :<br>:   : :<br><del>:   : :</del><br>:   : : |  |
| 216           | 24 — 80        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 215           | 25 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 214           | 26 — 85        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 213           | 27 — 90        |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             |                                                     |  |
| 212           | 28 —           |          |                                                                                                                                                                                                                                                                            |           |           |                                     |                           |                                       |             | :   : :<br>-<br>-<br>-<br>-<br>-<br>-               |  |







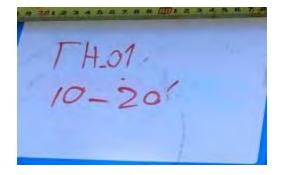
## TH19-01





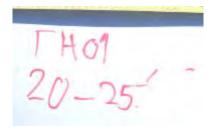






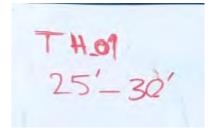










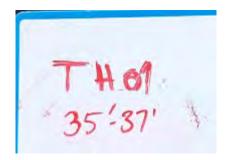






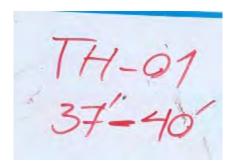




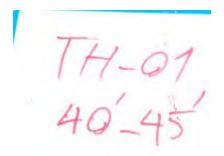





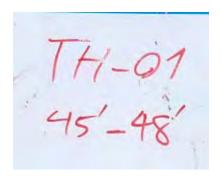


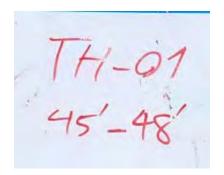




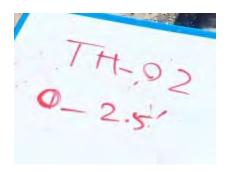


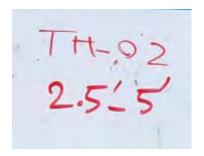




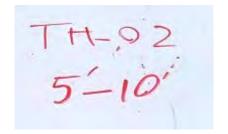


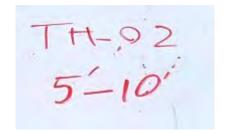




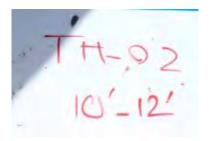


## TH19-02



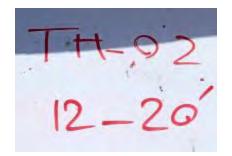






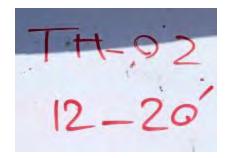





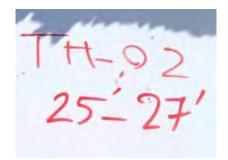







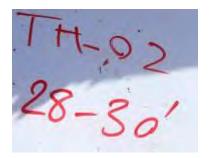





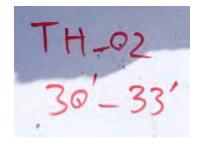





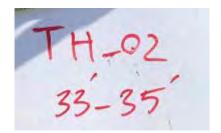


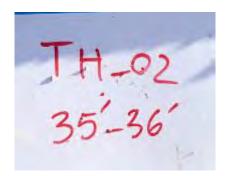


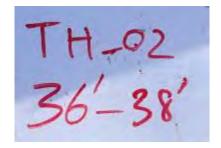


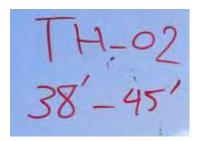


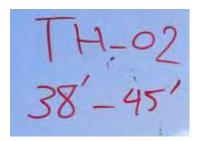




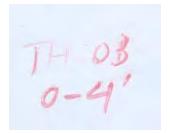


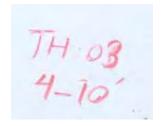




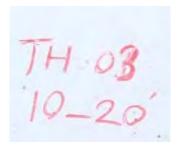


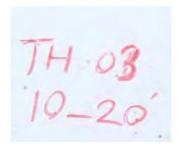


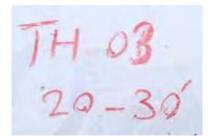




## TH19-03

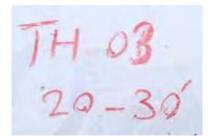








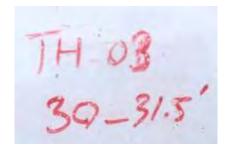









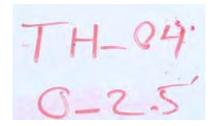


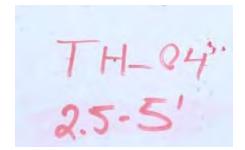






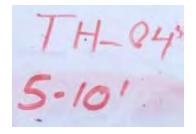





## TH19-04





















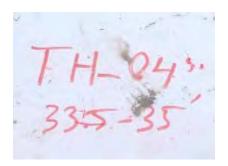










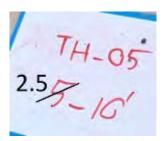





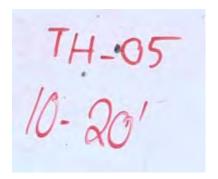








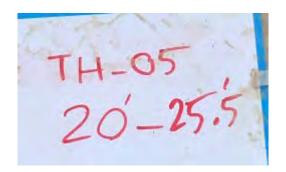




### TH-05, 0-2.5



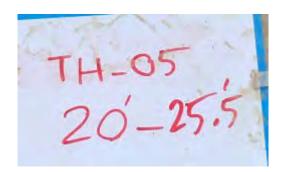






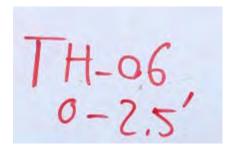




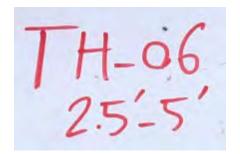




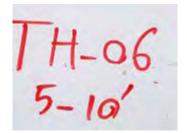





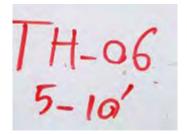


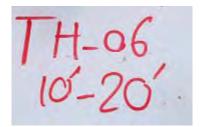






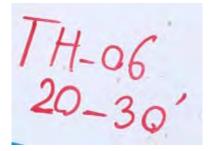












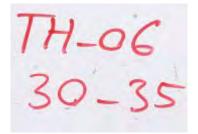








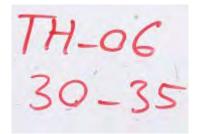


























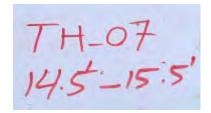
# TH-07 0-5





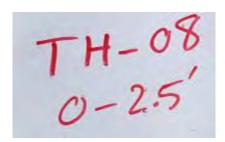


## TH-07 10-14.5

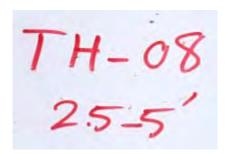




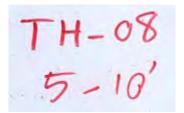


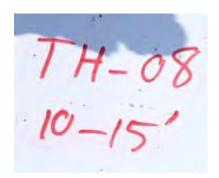




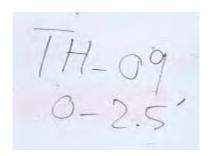





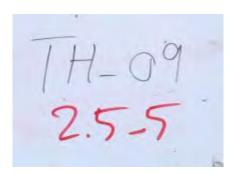





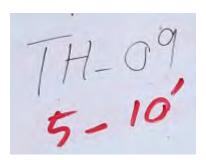




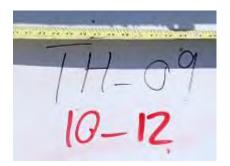





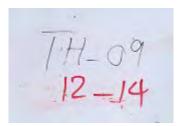







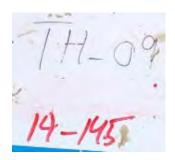








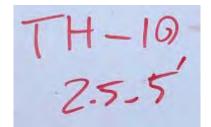






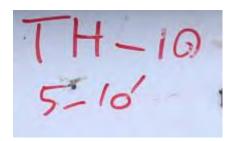




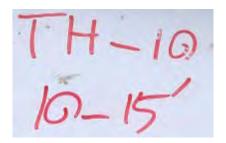



### TH19-10

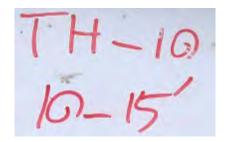

## TH-10-0-2.5'









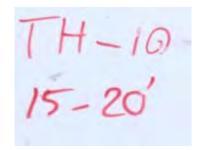











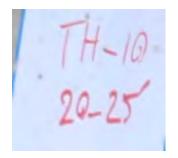





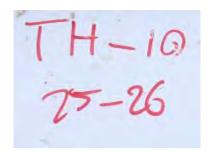






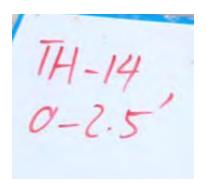


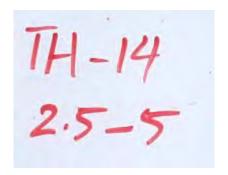




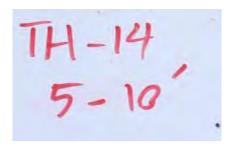


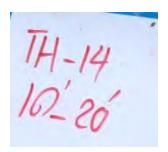




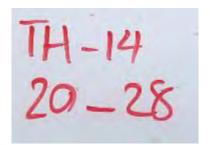


### TH19-14



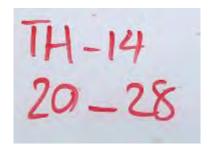




















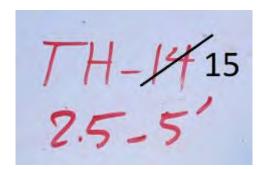



# TH-14 20-28



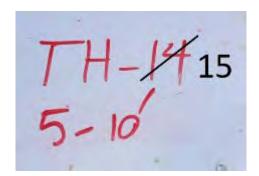




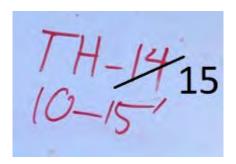

### TH-14 28-30



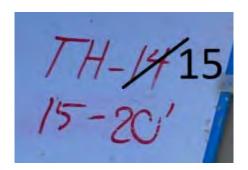





### TH19-15

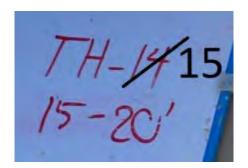




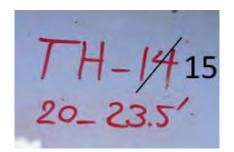




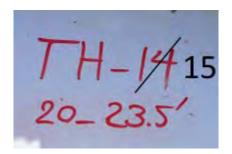




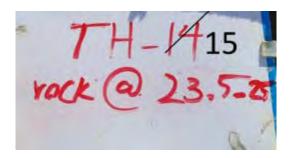




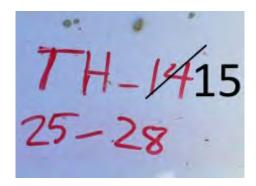









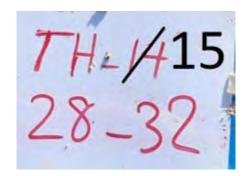





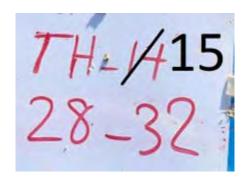






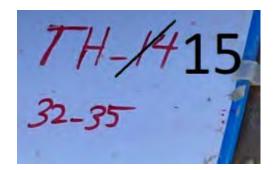





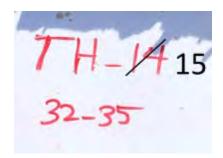













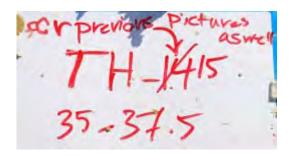










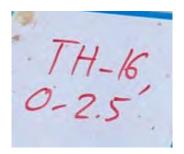




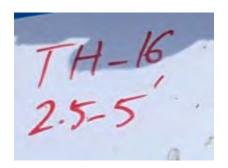






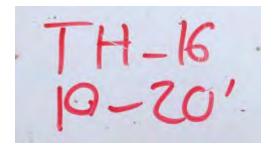


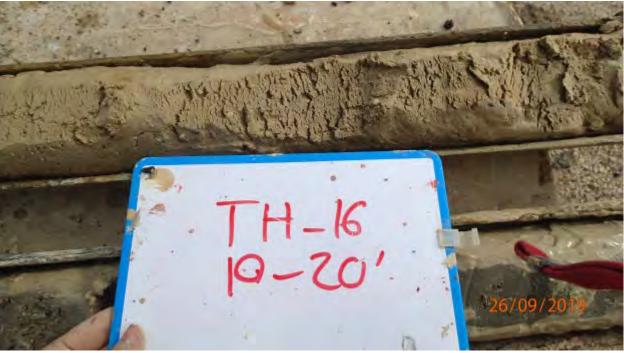



## TH19-16



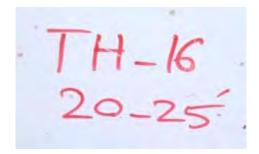






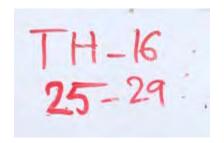








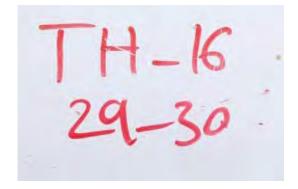







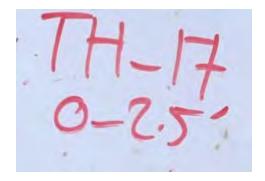




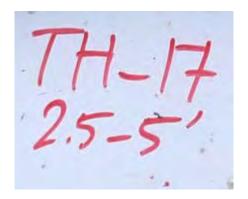





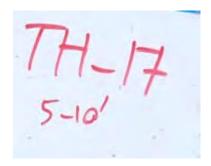








## TH19-17









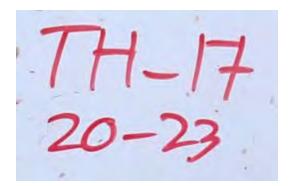








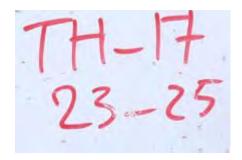










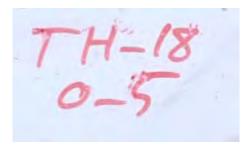




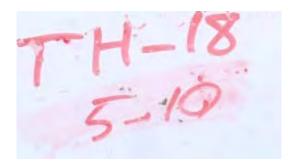




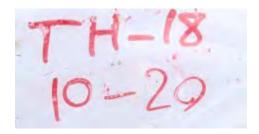






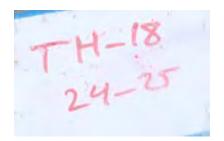


## TH19-18


























## TH19-19













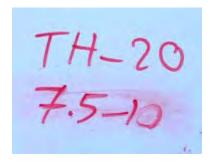




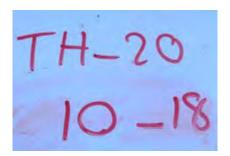




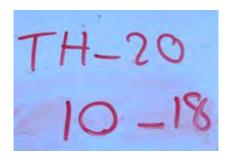



## TH19-20

## TH-20 0-2.5

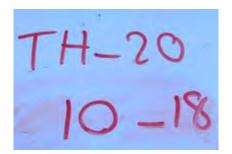



# TH-20 2.5-5

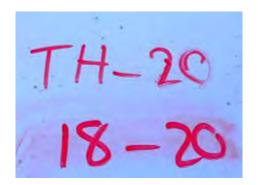




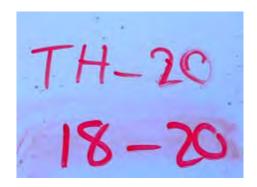


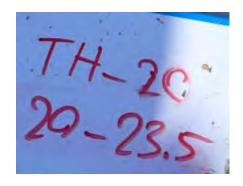










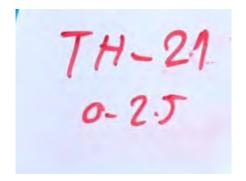




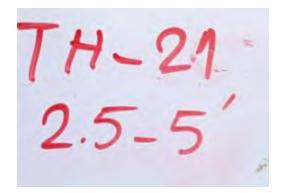




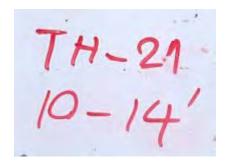


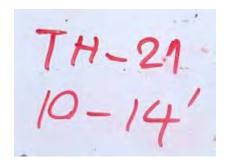






## TH19-21





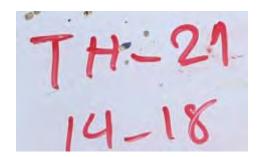






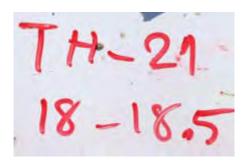




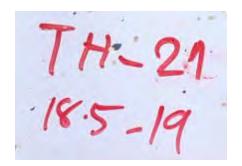




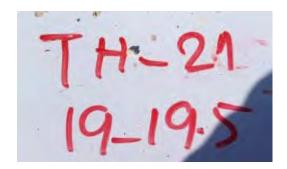







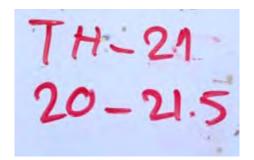






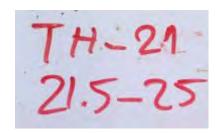


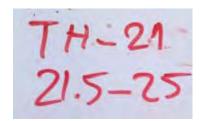




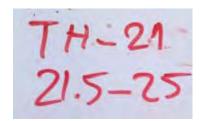




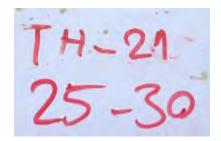





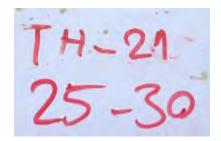







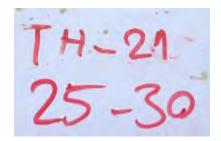





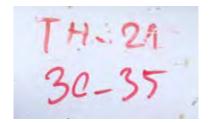




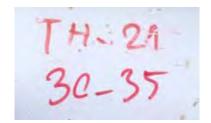







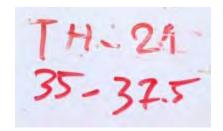







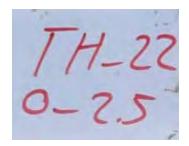




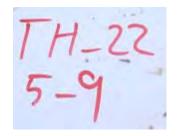








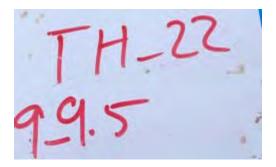




### TH19-22



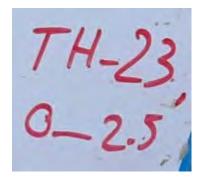






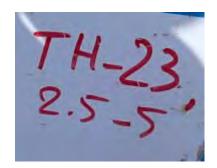




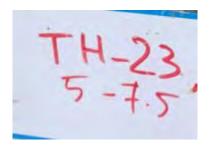




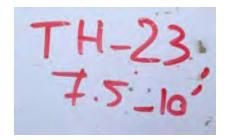




### TH19-23



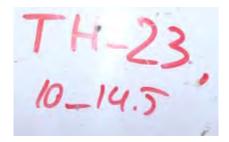




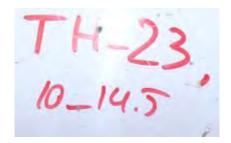







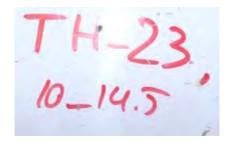





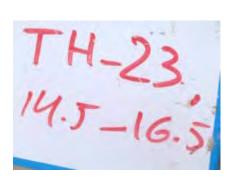





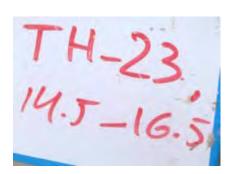


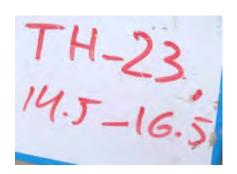




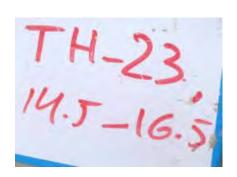





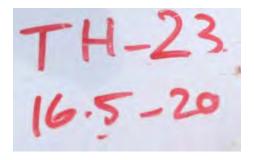





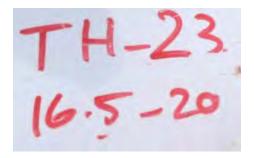




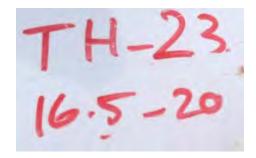







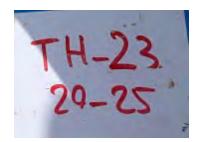






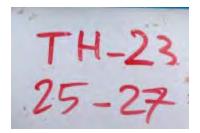




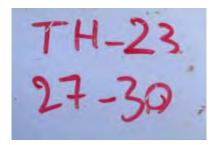








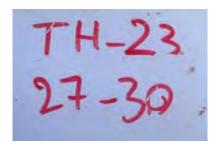














## TH-23 27-30





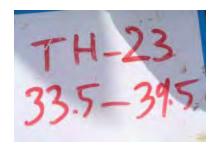




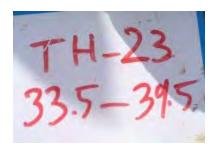


## TH-23 30-335



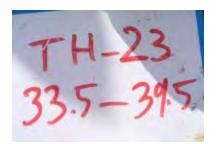

# TH-23





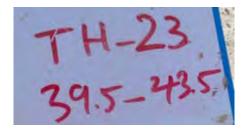

## TH-23 30-335



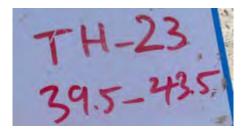






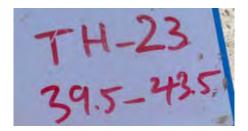






















## TH19-24

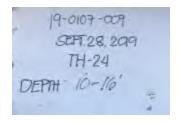
19-0107-009 SEPT.28, 2019 TH-24 DEPTH: 0-2.5





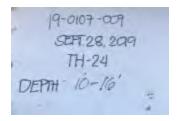
9-0107-009 SEPT.28, 2019 TH-24 DEPTH 2.5-5






19-0107-009 SEPT.28,209 TH-24 DEPTH-5'-10'




























19-0107-009 SEPT.28, 209 TH-24 DEPTH 20'-26'





19-0107-009 SEPT.28, 2019 TH-24 DEPTH 20'-26'





19-0107-009 SEPT.28, 209 TH-24 DEPTH 20'-26'



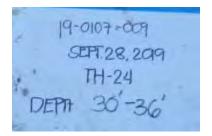


19-0107-009 SEPT.28, 209 TH-24 DEPTH 20'-26'





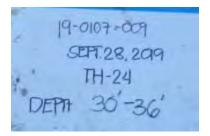



19-0107-009 SEPT.28, 2019 TH-24 DEPT 26'-30'



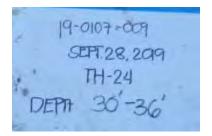


19-0107-009 SEPT.28, 2019 TH-24 DEPT 26'-30'

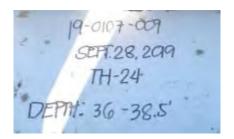








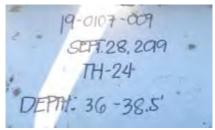









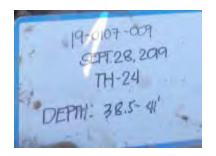


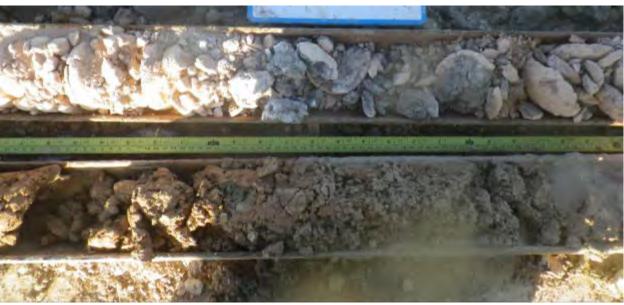






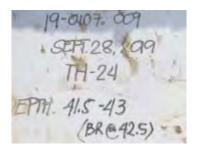








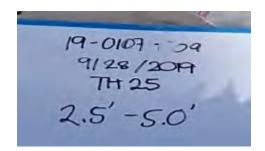






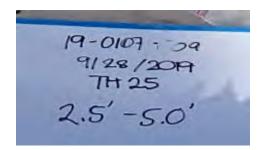





## TH19-25

19-0107 009 9128/2019 TH 25 O - 2.5'









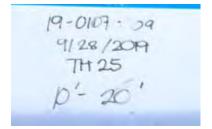









19-0107-09 9128/2019 TH 25 5.0'-10'
























19-0107:09 9128/2019 TH 25. 20'-24'







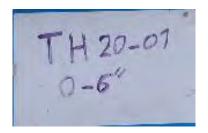
19-0107 - 29 9128/2019 TH 25 24-27.5'



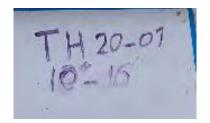




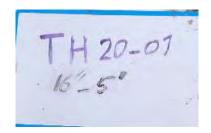



17-0107 : 39 9128/2019 TH 25 27.5-31.5'













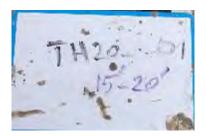
















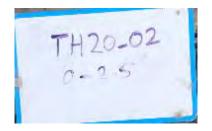






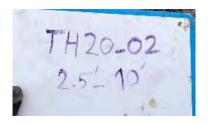




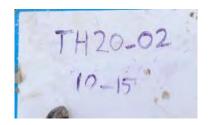




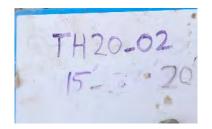






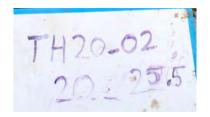




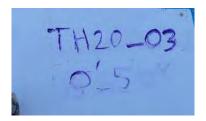




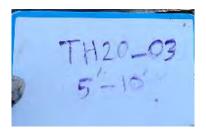





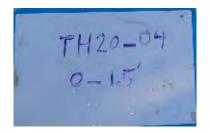




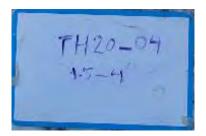





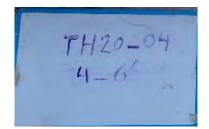





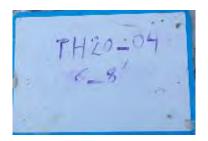




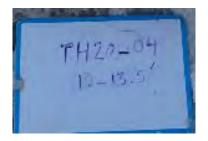










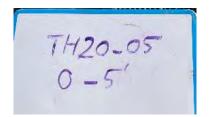






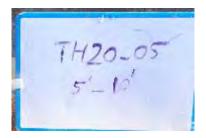




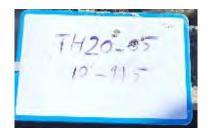





















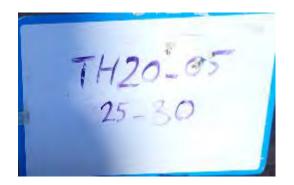






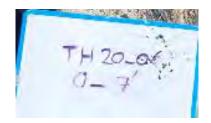




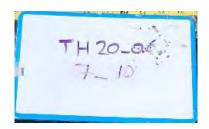
























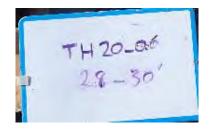






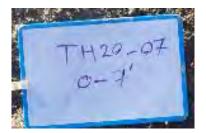




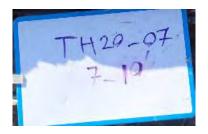






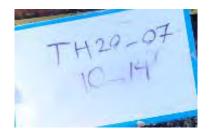





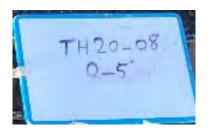




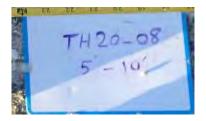







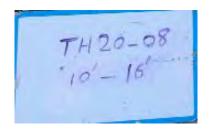





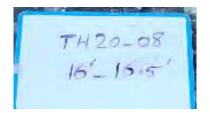




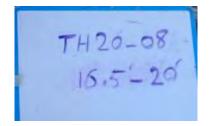







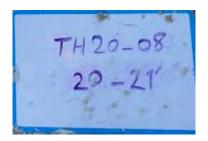





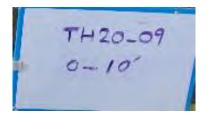




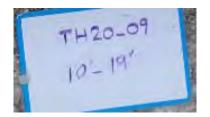




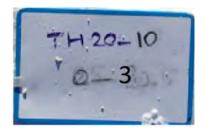
















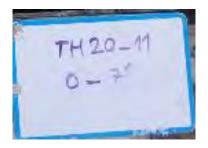




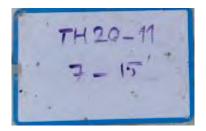






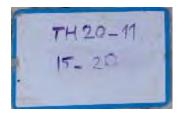





## TH20-11







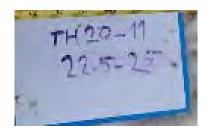






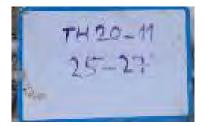


























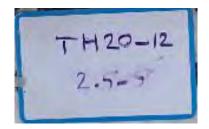






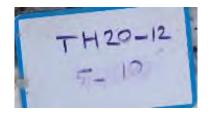




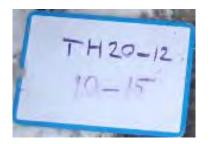

## TH20-12









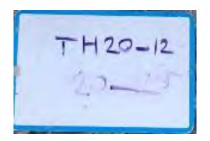






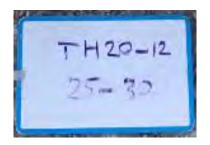




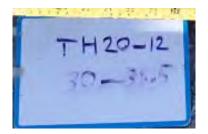




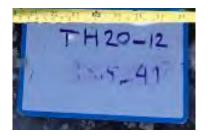






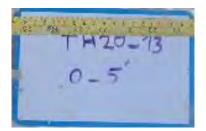


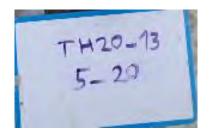










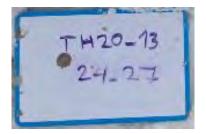

## TH20-13





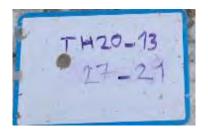










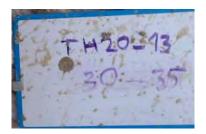








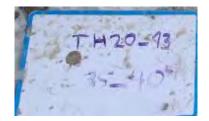


















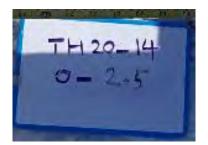










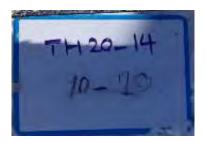




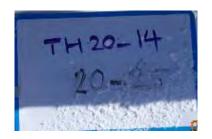



#### TH20-14



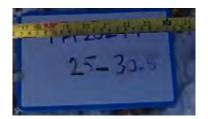

























# APPENDIX D

Seismic Refraction Survey Report

## FRONTIER GEOSCIENCES INC.

SEISMIC REFRACTION SURVEY REPORT
WINNIPEG RICHARDSON INTERNATIONAL AIRPORT
WINNIPEG, MB

Submitted to:

KGS Group

February 10, 2020

Authors:

Orgil Bayarsaikhan, B.Sc. Caitlin Gugins, P.Geo

Project: FGI-1644

### FRONTIER GEOSCIENCES INC.

#### Table of Contents

| 1. Introduction                            | 1 |
|--------------------------------------------|---|
| 2. Seismic Refraction Survey               | 2 |
| 2.1 Survey Equipment                       | 2 |
| 2.2 Survey Procedure                       | 2 |
| 2.3 Seismic Refraction Interpretive Method | 3 |
| 3. Geophysical Results                     | 4 |
| 3.1 General                                | 4 |
| 3.2 Discussion                             | 4 |
| 4. Limitations                             | 6 |

#### Illustrations

|          |                                    | Location |
|----------|------------------------------------|----------|
| igure 1  | Survey Location Plan               | Appendix |
| igure 2  | Klimpke Road Site Plan             | Appendix |
| igure 3  | Interpreted Depth Section SL19-01A | Appendix |
| igure 4  | Interpreted Depth Section SL19-01B | Appendix |
| igure 5  | Interpreted Depth Section SL19-01C | Appendix |
| igure 6  | Interpreted Depth Section SL19-01D | Appendix |
| igure 7  | Interpreted Depth Section SL19-01E | Appendix |
| igure 8  | Interpreted Depth Section SL19-01F | Appendix |
| igure 9  | Interpreted Depth Section SL19-01G | Appendix |
| igure 10 | Interpreted Depth Section SL19-01H | Appendix |
| igure 11 | Interpreted Depth Section SL19-01I | Appendix |
| igure 12 | Interpreted Depth Section SL19-01J | Appendix |
| igure 13 | Interpreted Depth Section SL19-01K | Appendix |
| igure 14 | Interpreted Depth Section SL19-01L | Appendix |
| igure 15 | Interpreted Depth Section SL19-01M | Appendix |
| igure 16 | Interpreted Depth Section SL19-01N | Appendix |
| igure 17 | Inkster Boulevard Site Plan        | Appendix |
| igure 18 | Interpreted Depth Section SL19-02A | Appendix |
| igure 19 | Interpreted Depth Section SL19-02B | Appendix |
| igure 20 | Interpreted Depth Section SL19-02C | Appendix |
| igure 21 | Interpreted Depth Section SL19-02D | Appendix |
| igure 22 | Interpreted Depth Section SL19-03A | Appendix |
| igure 23 | Interpreted Depth Section SL19-03B | Appendix |
| igure 24 | Interpreted Depth Section SL19-03C | Appendix |
| igure 25 | Interpreted Depth Section SL19-03D | Appendix |
| igure 26 | Interpreted Depth Section SL19-03E | Appendix |
| igure 27 | Interpreted Depth Section SL19-03F | Appendix |
| igure 28 | Interpreted Depth Section SL19-03G | Appendix |
| igure 29 | Interpreted Depth Section SL19-03H | Appendix |
|          |                                    |          |

#### 1. Introduction

During the period of October 1 to 10, 2019, Frontier Geosciences Inc. carried out a seismic refraction investigation for KGS Group near the Winnipeg James Armstrong Richardson International Airport, in Winnipeg, Manitoba. The survey area is located to the northwest of the airport, along Klimpke Road and Inkster Boulevard. A Survey Location Plan of the area, is shown at a scale of 1:50,000 in Figure 1.

The purpose of the geophysical survey was to determine depth to bedrock and overburden layering classification to aid in defining depth to a till layer, as well as characterizing materiel types and densities. In all three separate seismic refraction traverses were surveyed for a total of approximately 5 kilometres of detailed seismic refraction surveying. Two site plans illustrating the locations of the seismic lines are presented at a scale of 1:10,000 in Figures 2 and 17, in the Appendix.



Instrumentation Setup

#### 2. Seismic Refraction Survey

#### 2.1 Survey Equipment

The seismic refraction investigation was carried out using two Geometric Geode, 24 channel, signal enhancement seismographs and Oyo Geospace 10 Hz geophones. Geophone intervals along the multicored seismic cable were maintained at 1.5 or 2.5, metres in order to ensure high resolution data on subsurface layering. Seismic energy was provided from a shotgun seismic source firing blank, 8 gauge shotgun shells into hand-excavated shotholes and a sledgehammer striking a steel plate. Shot initiation or zero time was established by metal to metal contact of a striking hammer contacting the firing pin of the shotgun, or the hammer striking the plate.

#### 2.2 Survey Procedure

Field procedure entailed setting out two 24 channel geophone cable in a straight line and implanting the geophones. The spread was traversed with the seismic source, moving progressively down the array of geophones, with up to 9 individual shotpoints on each spread: one at either end of the spread, five at intermediate locations along the seismic cable, and one off each end of the spread to ensure adequate coverage of the basal layer. The shots were triggered individually and arrival times for each geophone were recorded digitally in the seismograph. For quality assurance, field inspection of raw data after each shot was carried out, with additional shots recorded if first arrivals were unclear. Data recorded during field surveying operations was generally of good to excellent quality.

Throughout the survey, notes were recorded regarding seismic line positions in relation to topographic and geological features. Relative elevations along the seismic lines were recorded by chain and inclinometer.

#### 2.3 Seismic Refraction Interpretive Method

The final interpretation of the seismic data was arrived at using the method of differences technique. This method utilizes the time taken to travel to a geophone from shotpoints located to either side of the geophone. Velocities are calculated as the slope of first break pick times and geophone distances. When there is a significant change in slope a new velocity is calculated and assigned to the new layer. Basal velocities are calculated by the arrivals of off-end shots, where picked arrivals are refracted from the basal layer. Each geophone is assigned a velocity and time for each layer. Using the total time, a small vertical time is computed which represents the time taken to travel from the refractor up to the ground surface. This time is then multiplied by the velocity of each overburden layer to obtain the thickness of each layer at that point. The thicknesses are splined along the seismic line to create a continuous boundary between layers.



Example of Survey Procedure

#### 3. Geophysical Results

#### 3.1 General

The seismic refraction survey area is presented in two site areas, with the interpreted results of the seismic refraction data illustrated at a 1:250 scale in each corresponding figure. The Klimpke Road Site Plan, Figure 2, shows line SL-1, with results presented in Figures 3 to 16, in the Appendix. Lines SL-2, and SL-3 are displayed in the Inkster Boulevard Site Plan, Figure 17, with corresponding results presented in Figures 18 to 29. The seismic velocity layer interfaces are marked on the seismic profile in blue, green, purple, and red. The interface line colours are not a specific velocity contour, but rather the interpreted discrete boundary above which velocities are defined within a certain range and below which velocities are within a significantly increased velocity range.

#### 3.2 Discussion

The results of the seismic refraction survey indicate the area is underlain by up to five distinct velocity layers. The surficial layer, displaying compressional wave velocities varying from 340 m/s to 450 m/s, averages approximately 1.5 metres in thickness, reaching a maximum thickness of 4 metres at station 378E on line SL19-02. This velocity layer corresponds to testhole intersections of granular and clay fill.

Underlying the fill layer is an intermediate velocity layer with an interpreted velocity range of 800 m/s to 1330 m/s. These velocities are consistent with testhole intersections of firm to stiff, clays, with trace sands and gravels. Averaging approximately 3 m in thickness, this layer thins to half a metre around station 2360N on line SL19-01 and near near station 900E on line SL19-03 and displays a maximum thickness of 5.5 metres at the end of line SL19-03.

#### FRONTIER GEOSCIENCES INC.

A deeper intermediate layer was identified with compressional wave velocities ranging from 1600 m/s to 2250 m/s. This layer thins to less than 0.5 metre along the end of line SL19-01, while reaching a maximum thickness of almost 10 metres at station 1397E on line SL19-03. This velocity range is consistent with loose to compact silt till, as well as compact sand and gravel encountered in the testholes, indicating this layer correlates with silt till in the area. Faster velocities in this range likely correspond to zones of higher compaction or density.

A third intermediate layer was also identified, with a velocity range from 2500 to 2600 m/s, is interpreted to be a denser zone within the silt till layer with possible increased cobbles and boulders. This layer is illustrated as a dashed purple line in the data, as due to the relatively high velocity and minimal thickness of this layer, it was not accurately resolvable in the data processing, described as a 'hidden' layer. In most areas where this layer is shown, testhole logs indicated presence of this layer, although it may exist in other sections of the survey area.

Underlying the intermediate layers is the interpreted basal layer with compressional wave velocities of 2500 m/s to 4500 m/s. Lower velocities in this range are most likely indicative of weathering and/or fracturing within the bedrock. The lower end of interpreted velocities most likely represents a higher level of fracturing and/or weathered bedrock, while the higher end is indicative of more competent bedrock. The basal layer closely corresponds with limestone bedrock encountered within the testholes in proximity to the seismic lines. This interpreted bedrock surface exhibits an average depth of approximately 8 metres and reaches a maximum depth of almost 16 metres at station 575N along line SL19-01, while rising to a minimum depth of 2.6 metres, at station 2155N on line SL19-01.

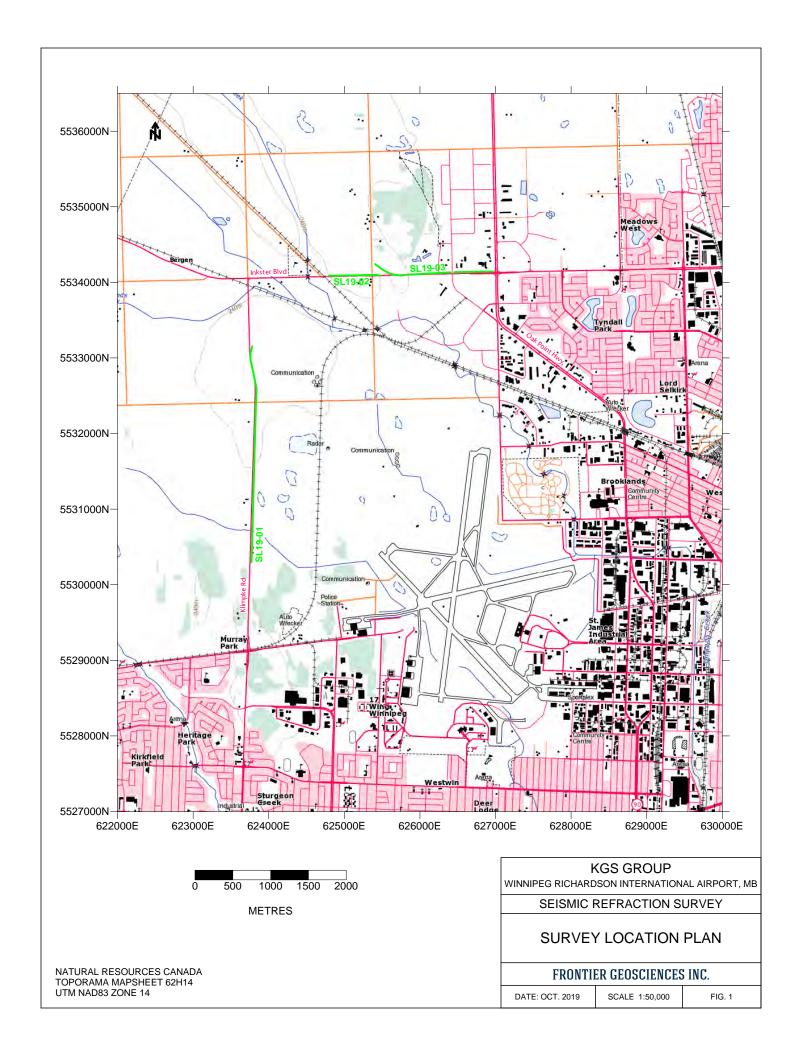
In general, seismic refraction results matched well with the nearby provided testholes logs in the area. Additionally, in some areas, updated testholes results may indicate a deeper bedrock layer than illustrated in the profiles, due to the presence of the denser 'hidden' layer described above.

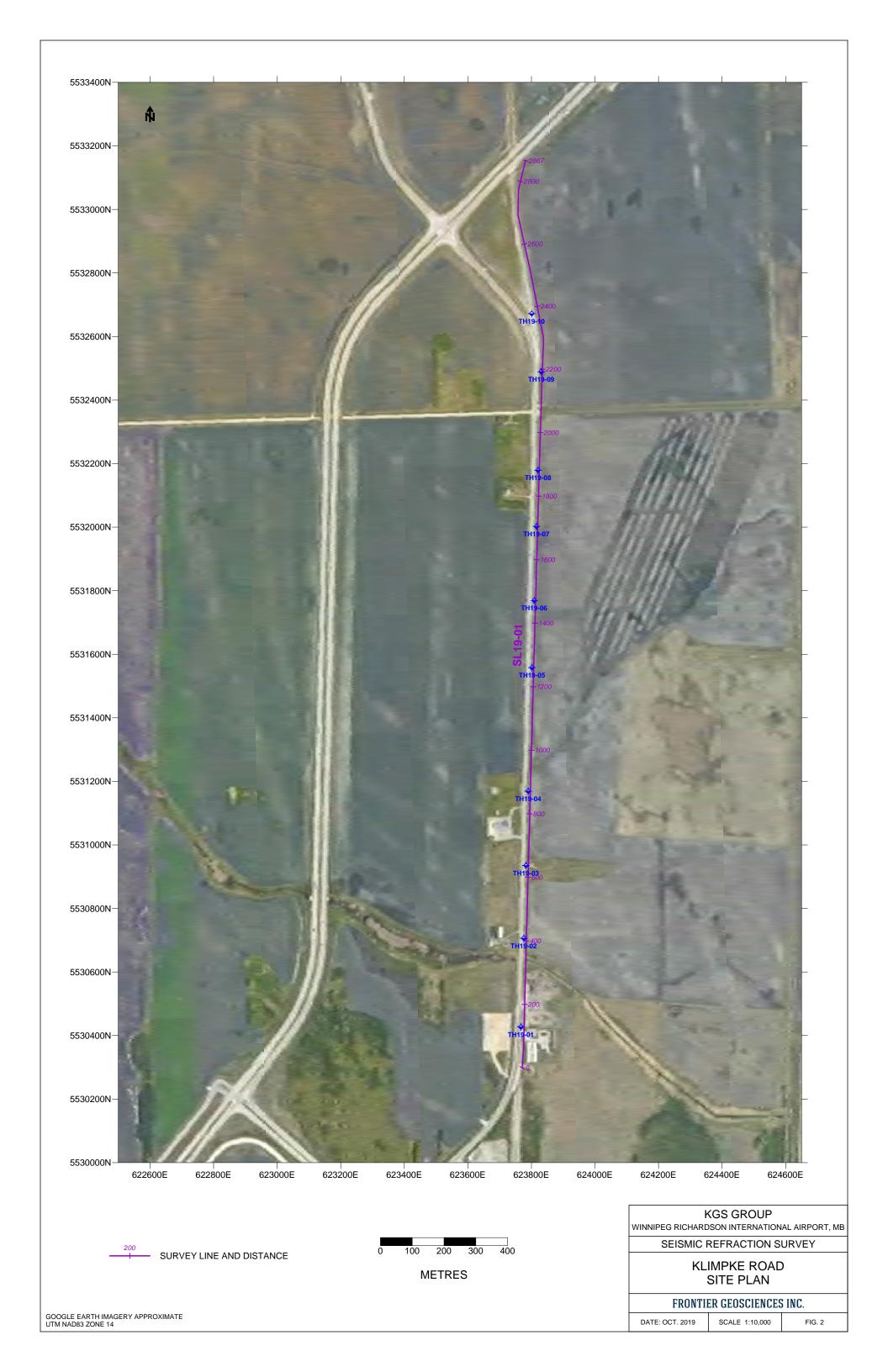
#### 4. Limitations

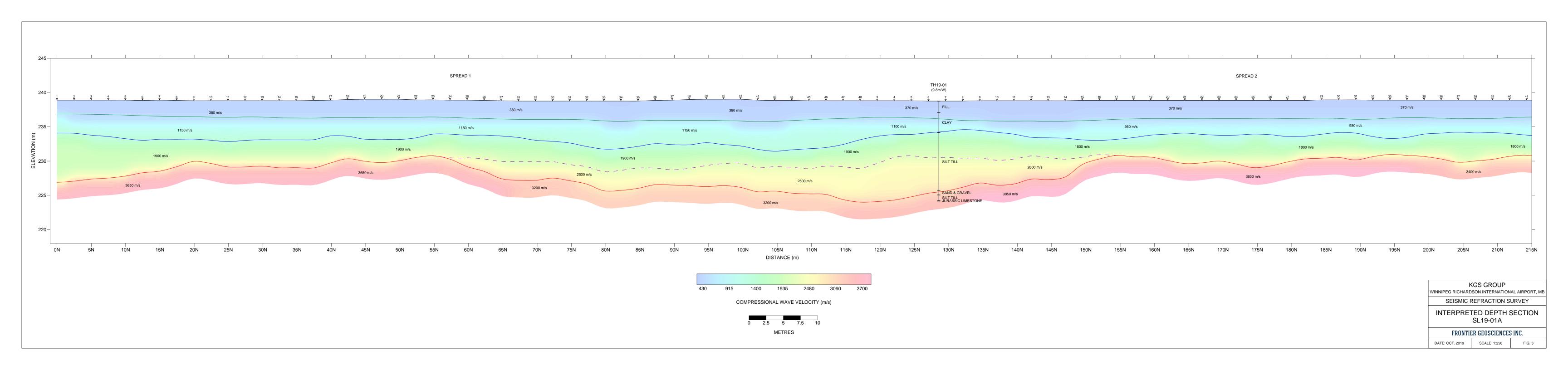
The depths to subsurface boundaries derived from seismic refraction surveys are generally accepted as accurate to within ten percent of the true depths to the boundaries, below 10 metres. Above 10 metres, the accuracy of seismic refraction data is approximately +/- 1.0 metres due mainly to the greater statistical error in determining the upper velocity layers from fewer data points. In some cases, unusual geological conditions may produce false or misleading data points with the result that computed depths to subsurface boundaries may be less accurate. In seismic refraction surveying difficulties with a 'hidden layer' or a velocity inversion may produce erroneous depths. The first condition is caused by the inability to detect the existence of a layer because of insufficient velocity contrasts or layer thicknesses. A velocity inversion exists when an underlying layer has a lower velocity than the layer directly above it. The interpreted depths shown on drawings are to the closest interface location, which may not be vertically below the measurement point if the refractor dip direction departs significantly from the survey line location. Structural discontinuities occurring on a scale less than the geophone spacing or isolated boulders would go undetected in the interpretation of the data. The seismic refraction method may not detect a narrow canyon-like feature incised into bedrock, if the canyon width is narrow relative to the depth of burial of the feature. Contour plan gridded data is only valid directly beneath seismic lines and testholes used in the gridding process, and is interpolated elsewhere. Additionally, small errors may also occur in data gridding.

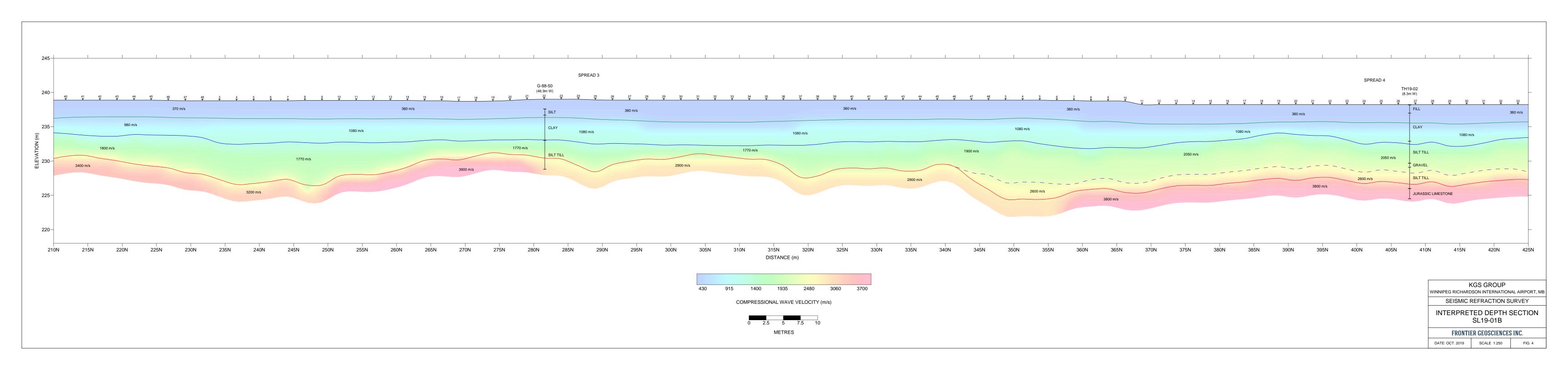
The information in this report is based upon geophysical measurements and field procedures and our interpretation of the data. The results are interpretive in nature and are considered to be a reasonably accurate representation of existing subsurface conditions within the limitations of the seismic refraction method.

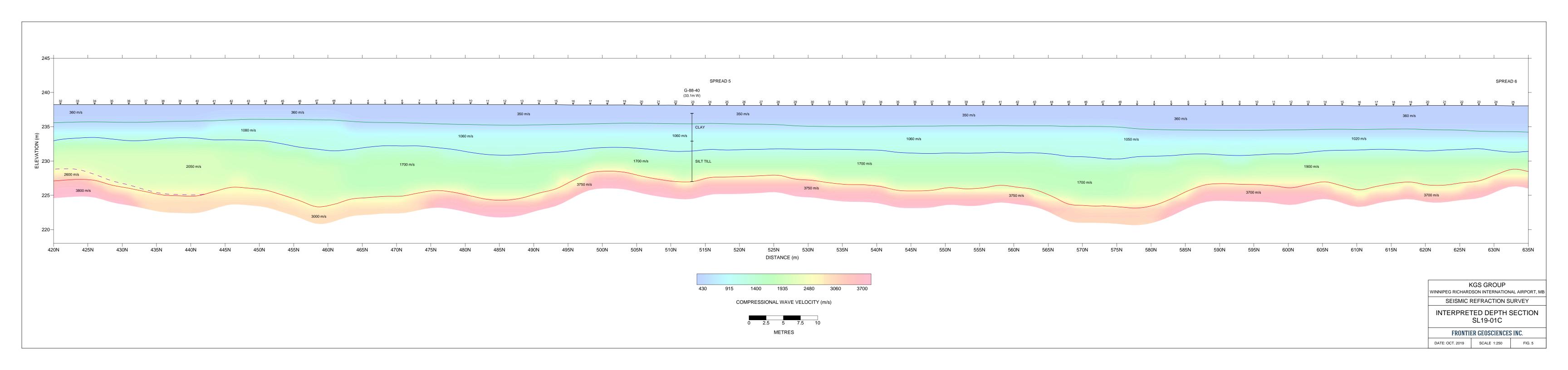
For: Frontier Geosciences Inc.

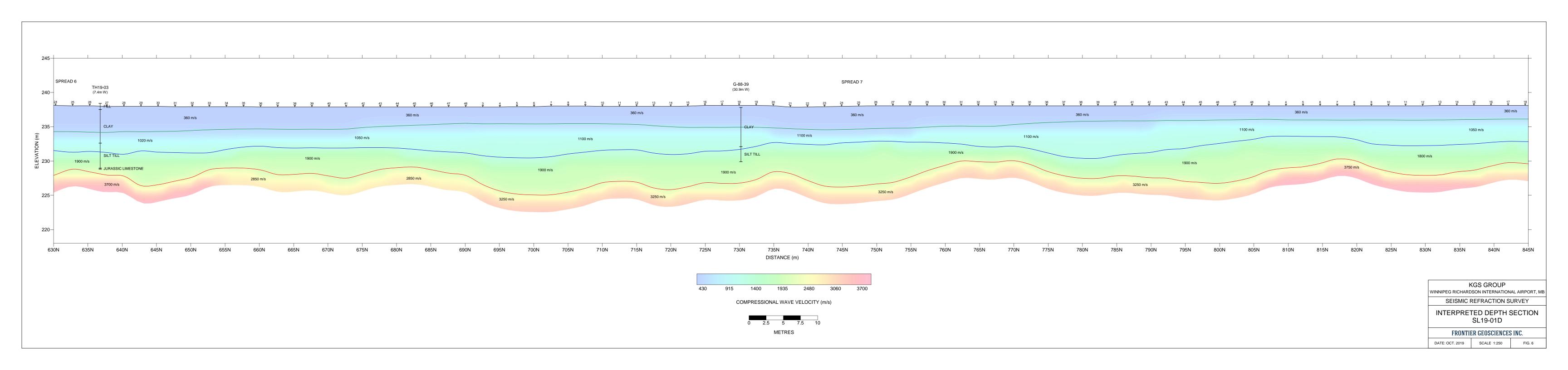

Orgil Bayarsaikhan, B.Sc.

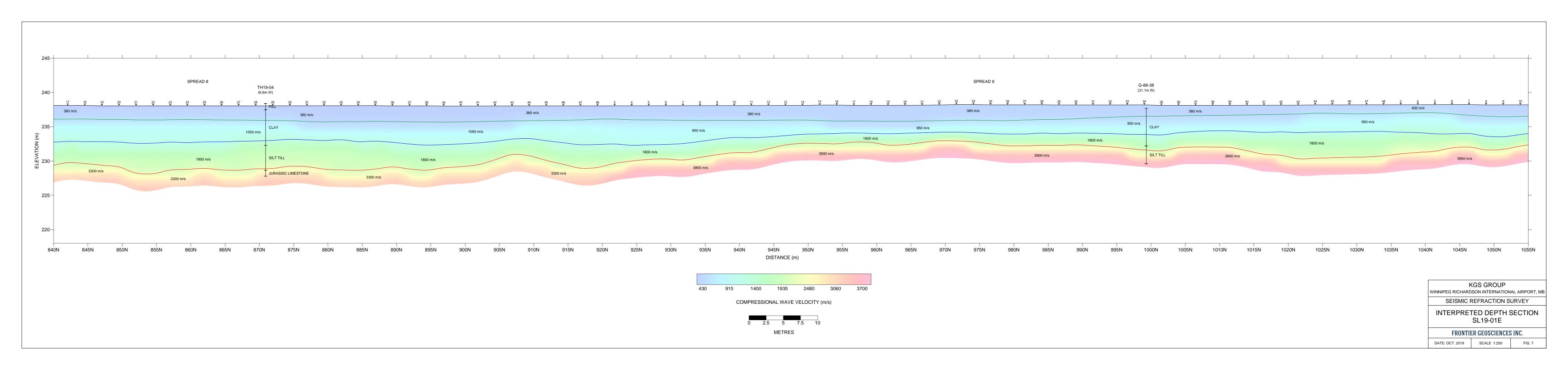

Caitlin Gugins, P.Geo.


10, 2020


M. GUGINS # 43867 BRITISH COLUMBIA

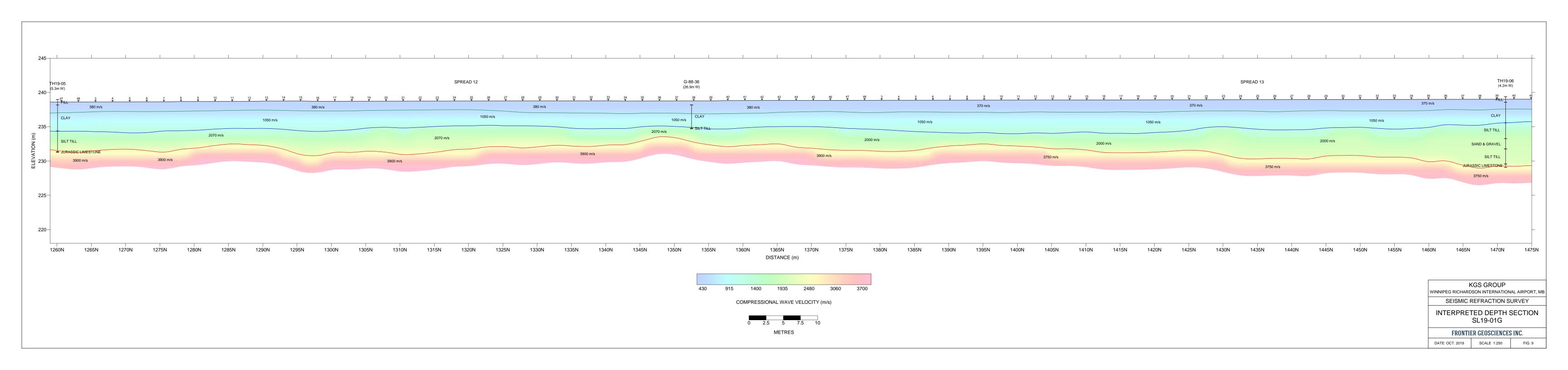

#### **APPENDIX**

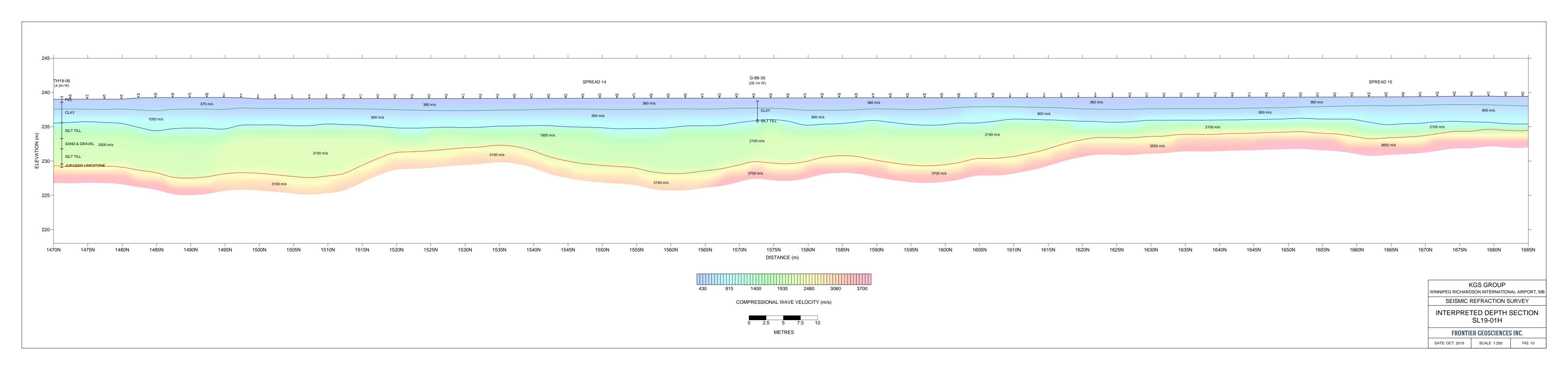


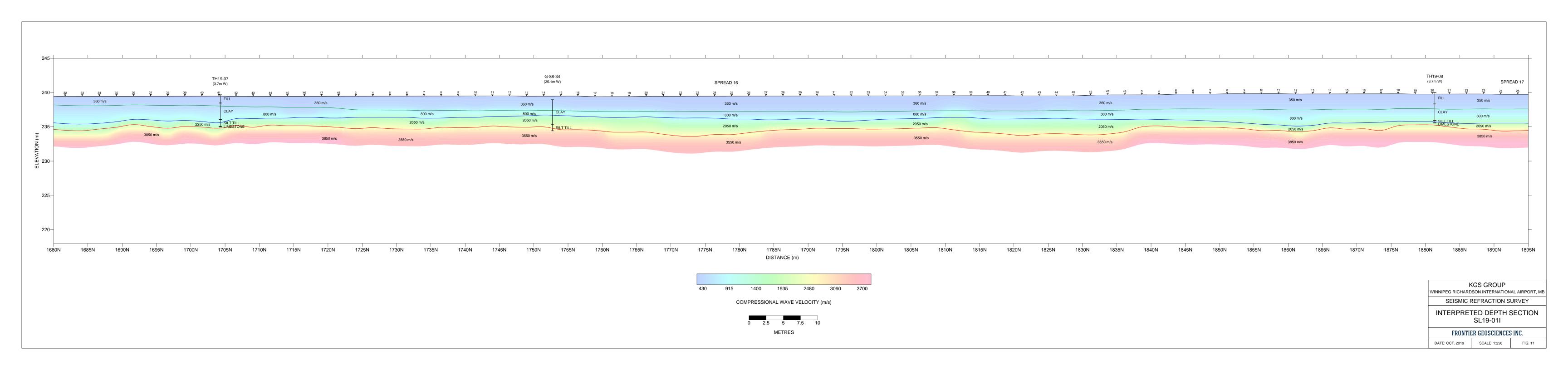



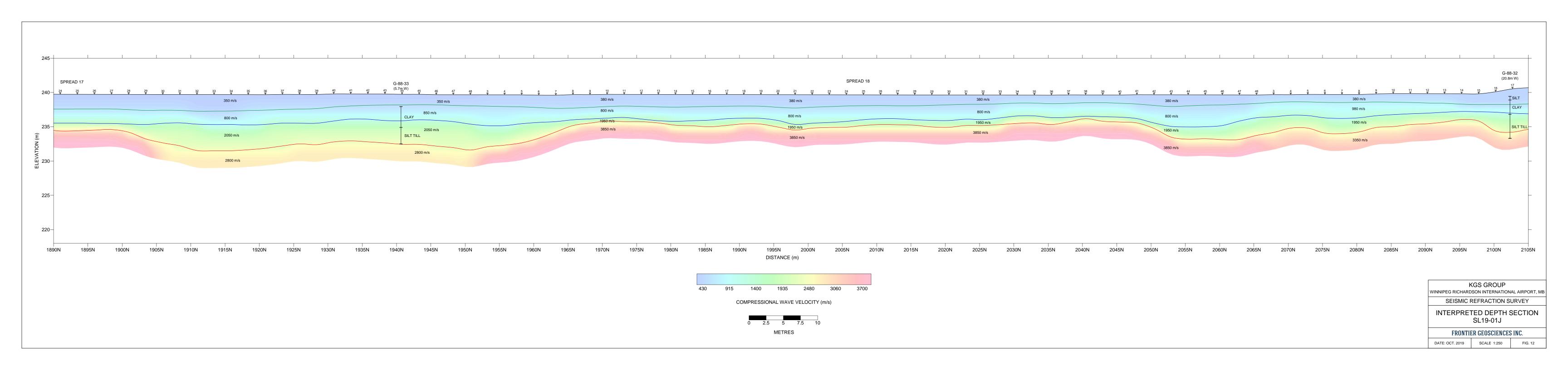


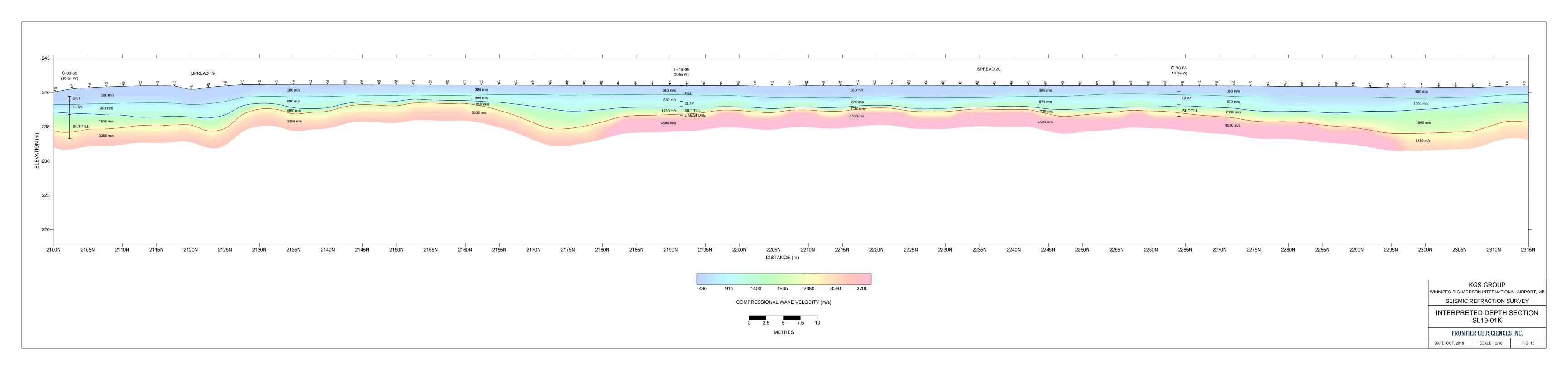


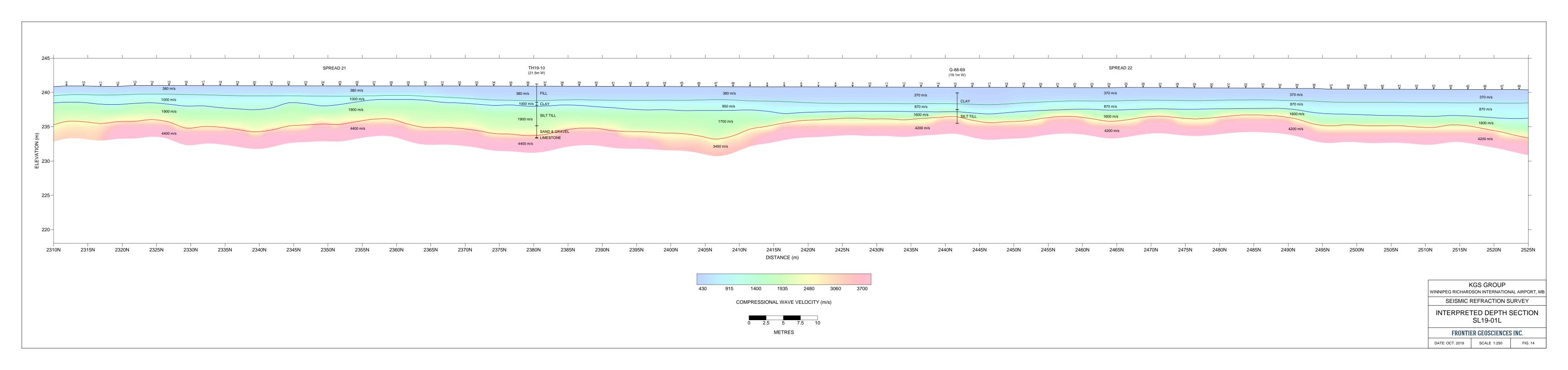


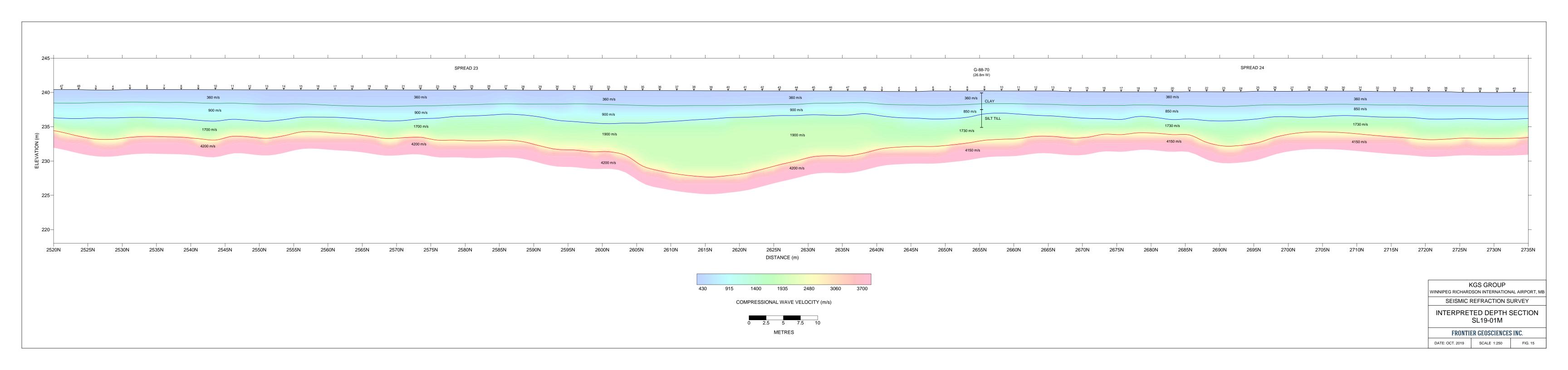



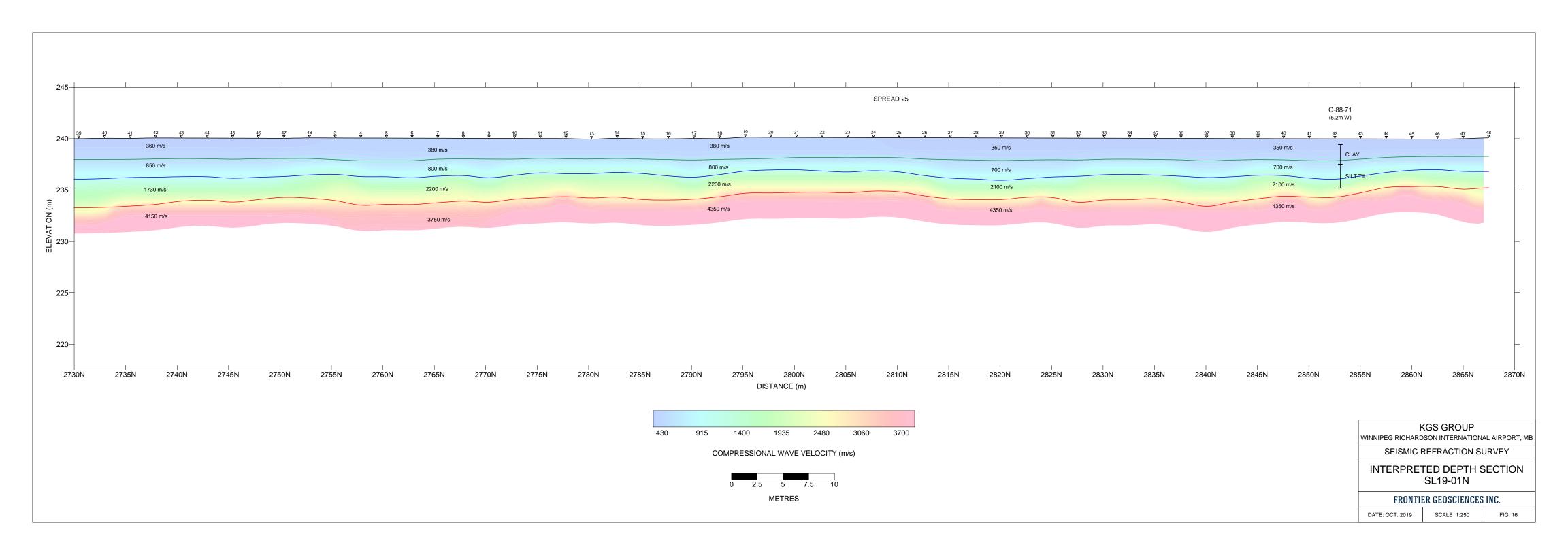



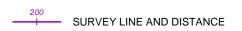



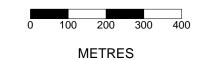









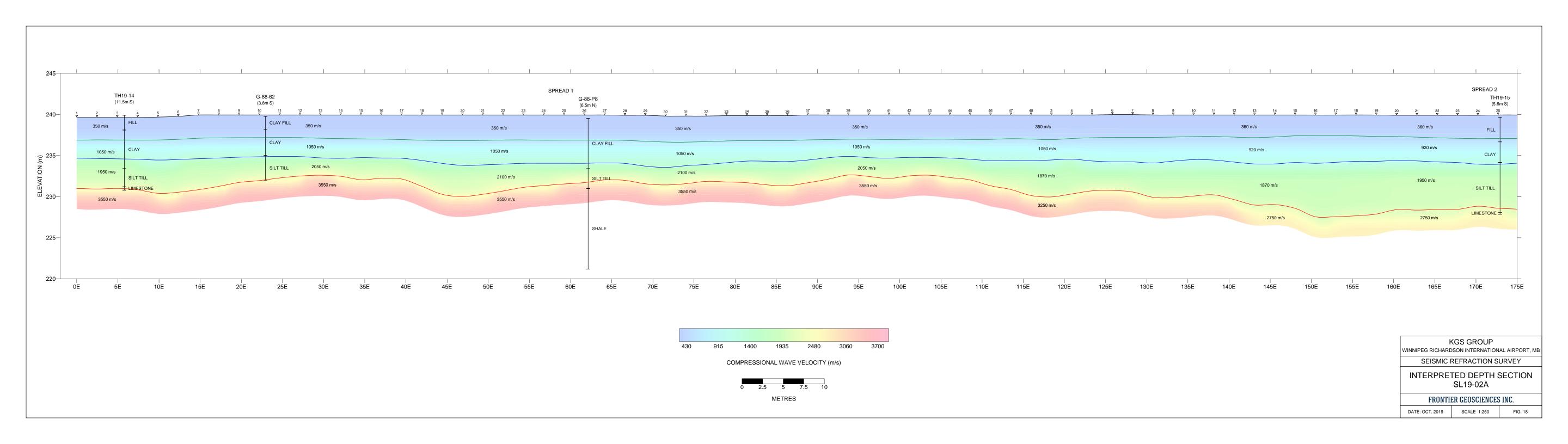


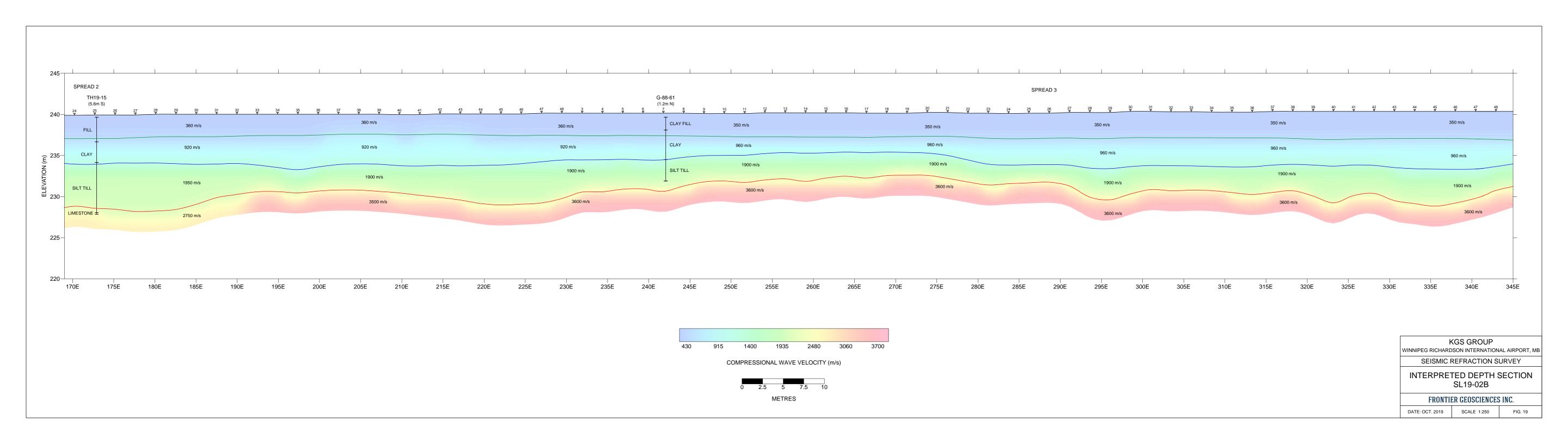


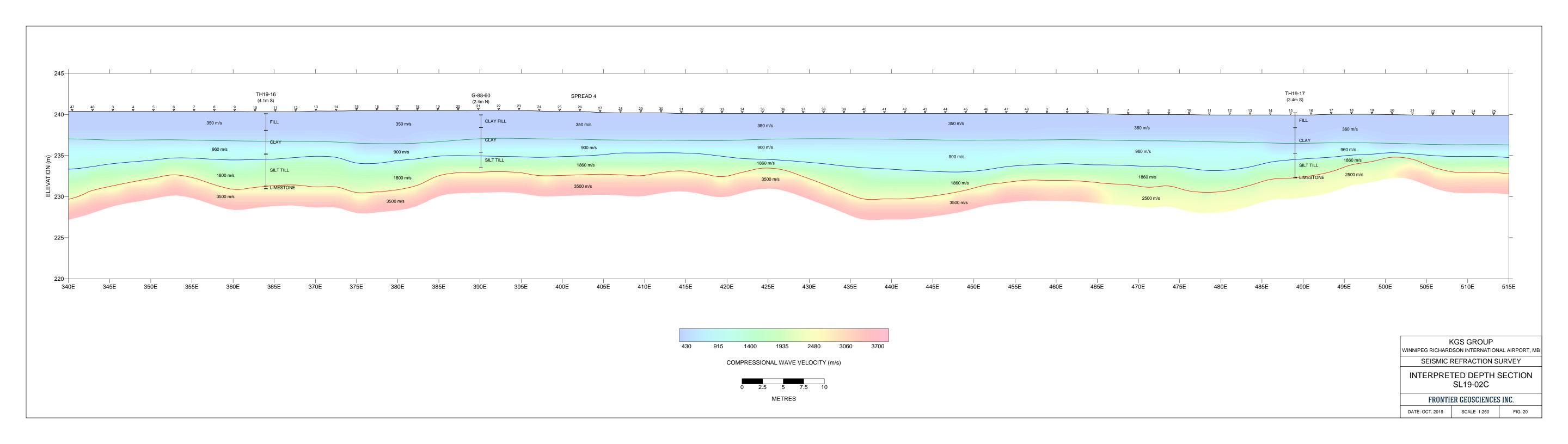


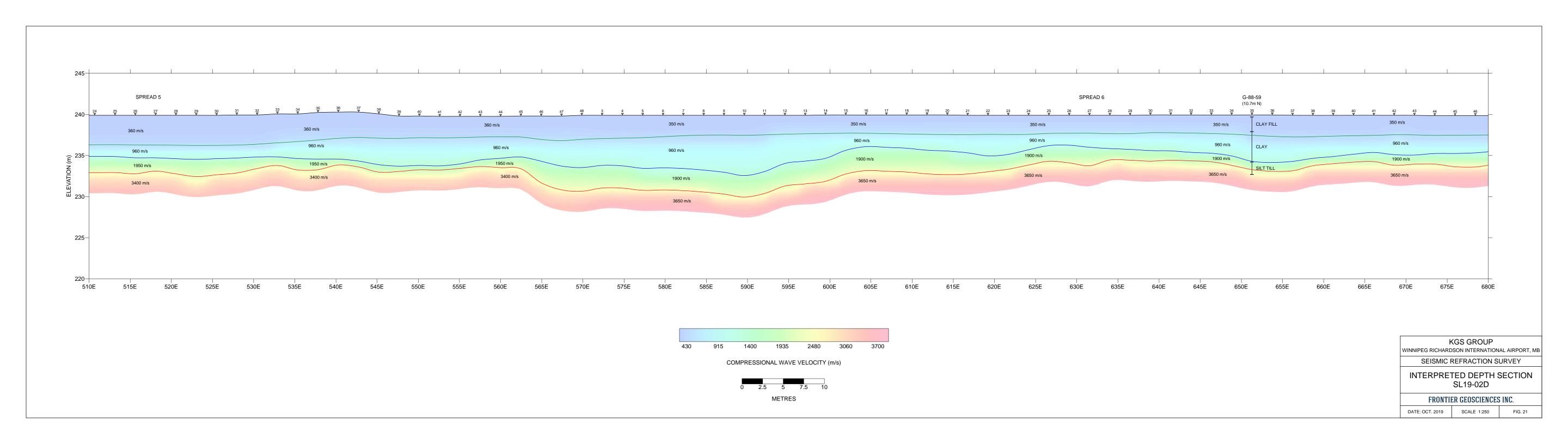

KGS GROUP
WINNIPEG RICHARDSON INTERNATIONAL AIRPORT, MB

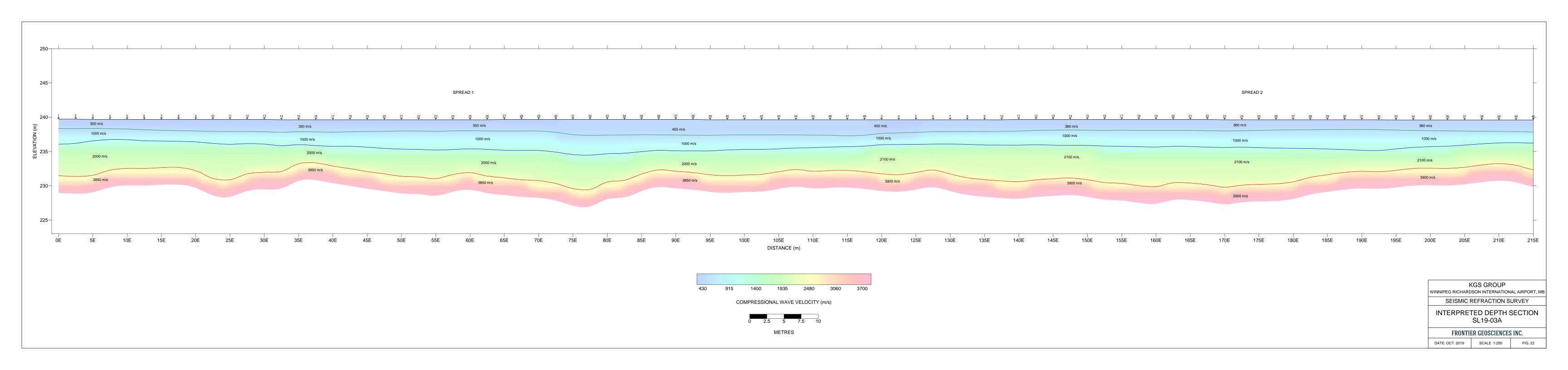
SEISMIC REFRACTION SURVEY

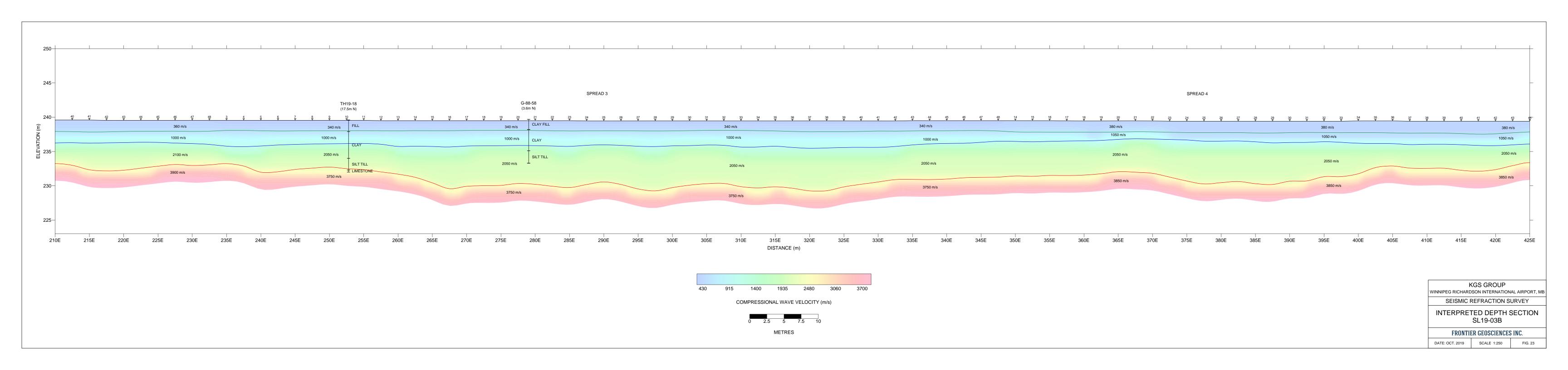

INKSTER ROAD SITE PLAN

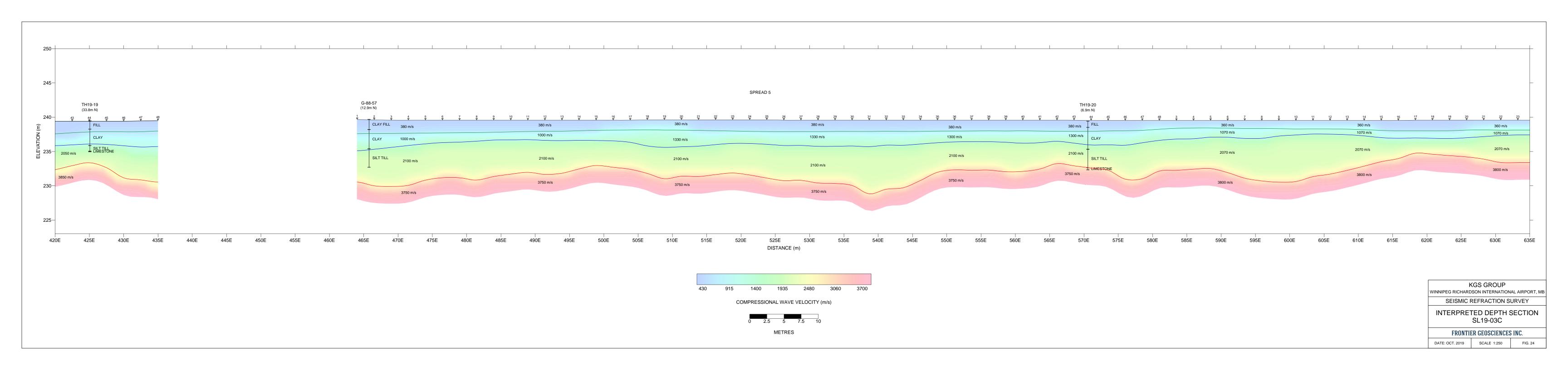

FRONTIER GEOSCIENCES INC.

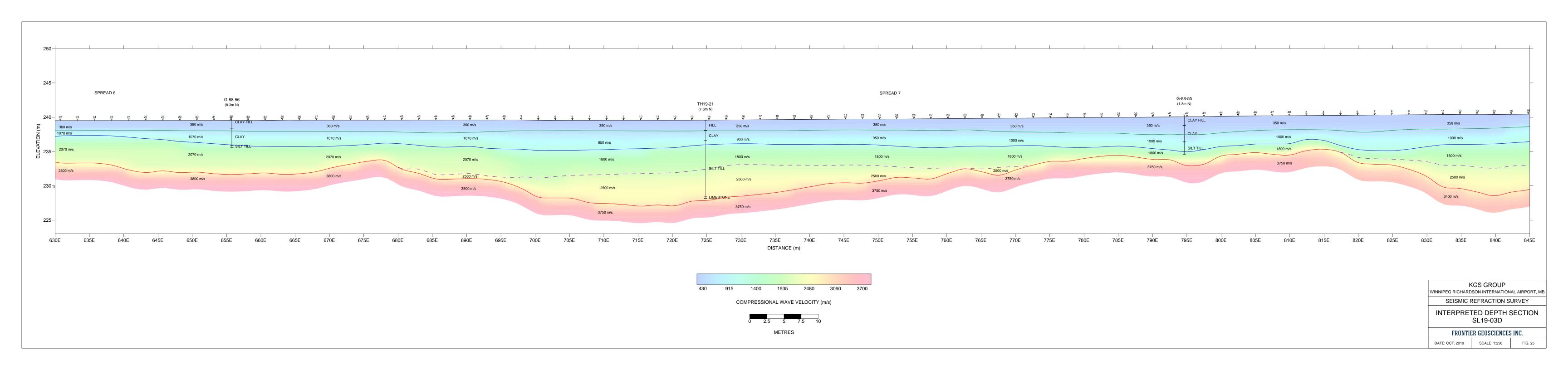

DATE: OCT. 2019 SCALE 1:10,000

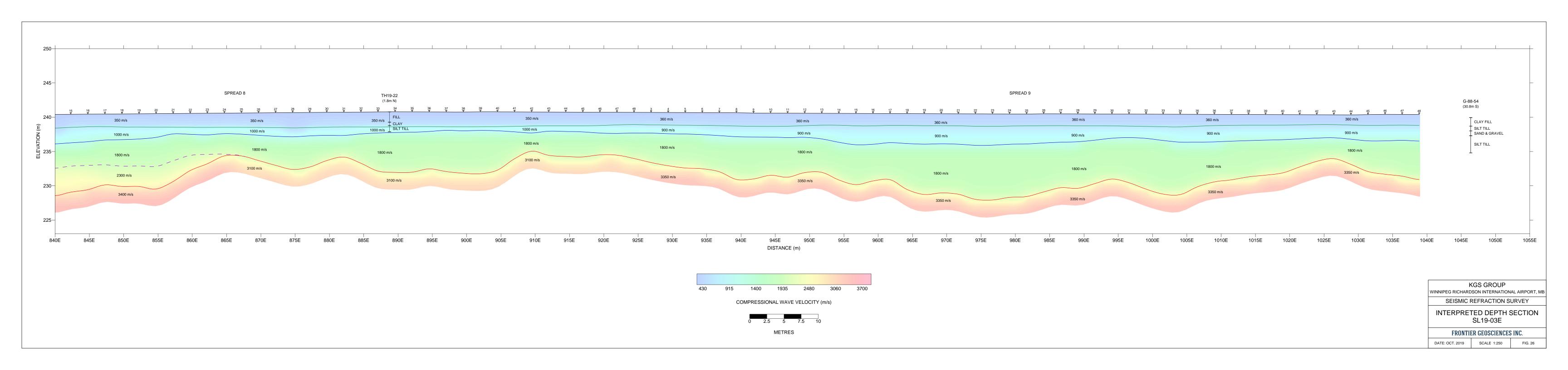

FIG. 17

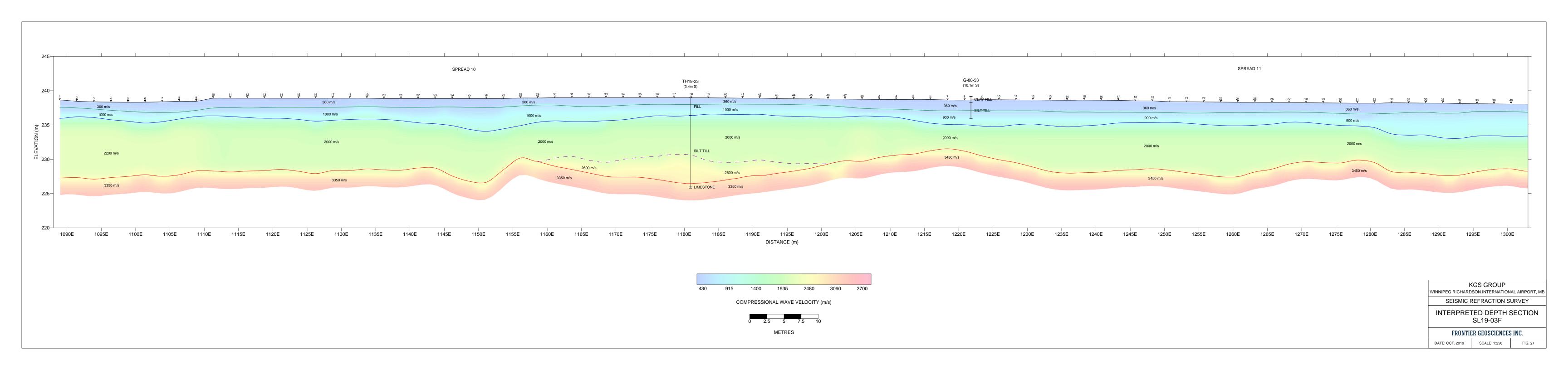

GOOGLE EARTH IMAGERY APPROXIMATE UTM NAD83 ZONE 14

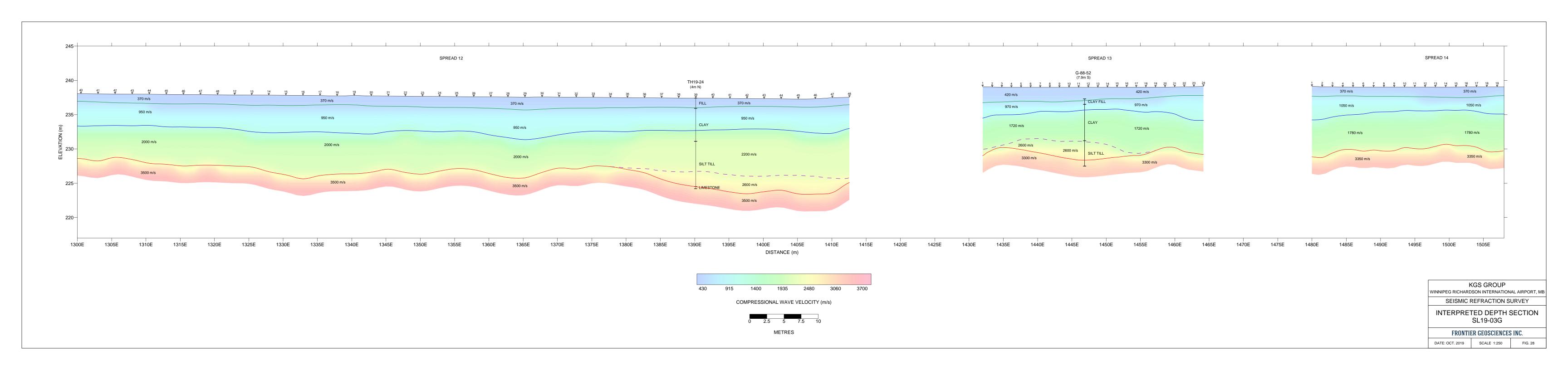


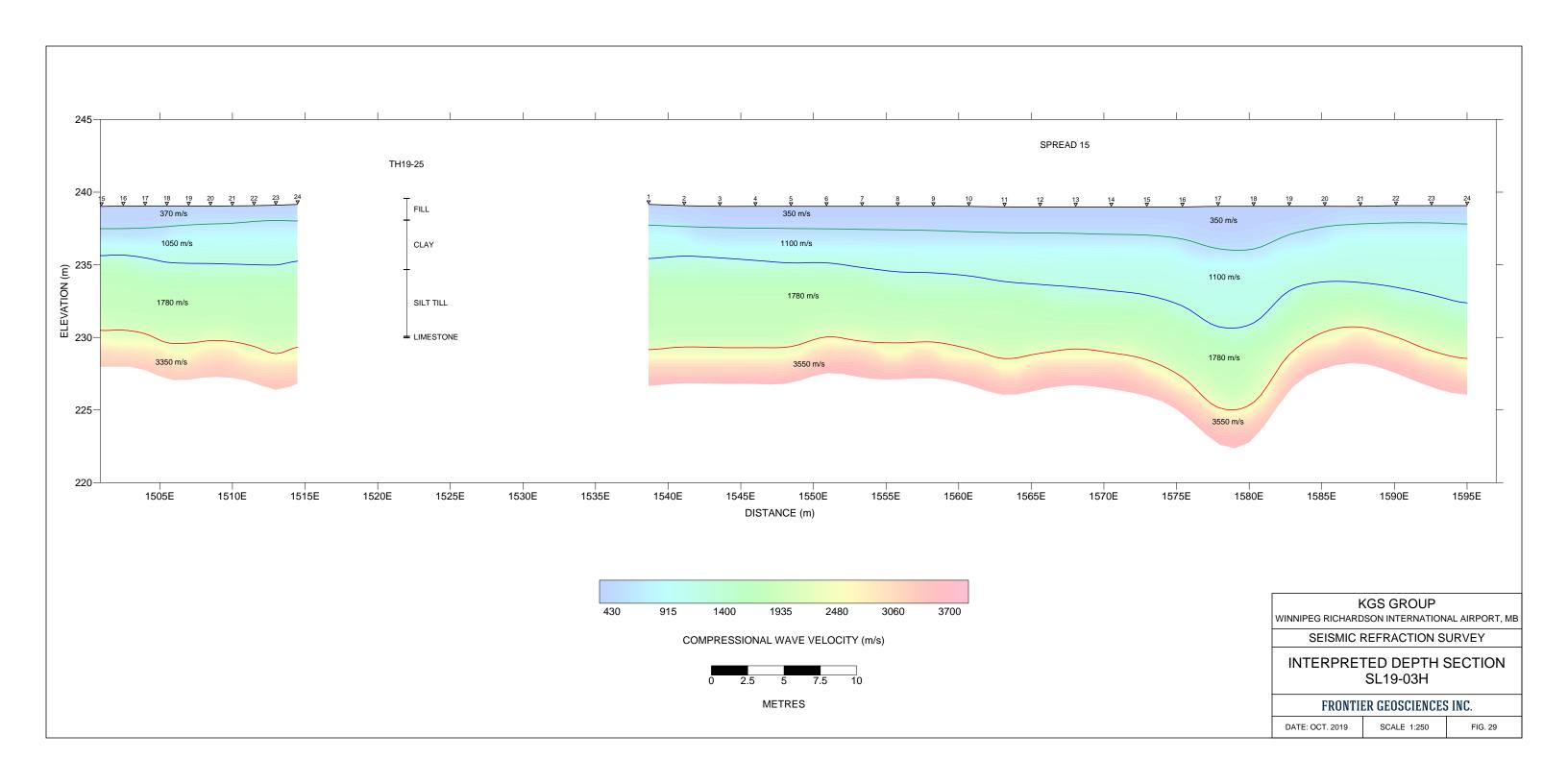
















Experience in Action

# **APPENDIX B**

2023/2024 KGS Group Borehole/Test Pit Logs

HOLE NO. TH23-01

PROJECT NO.

**START DATE** 

UTM (m)

**SURFACE ELEV.** 

SHEET 1 of 2

Zone 14

23-0107-009

240.20 m

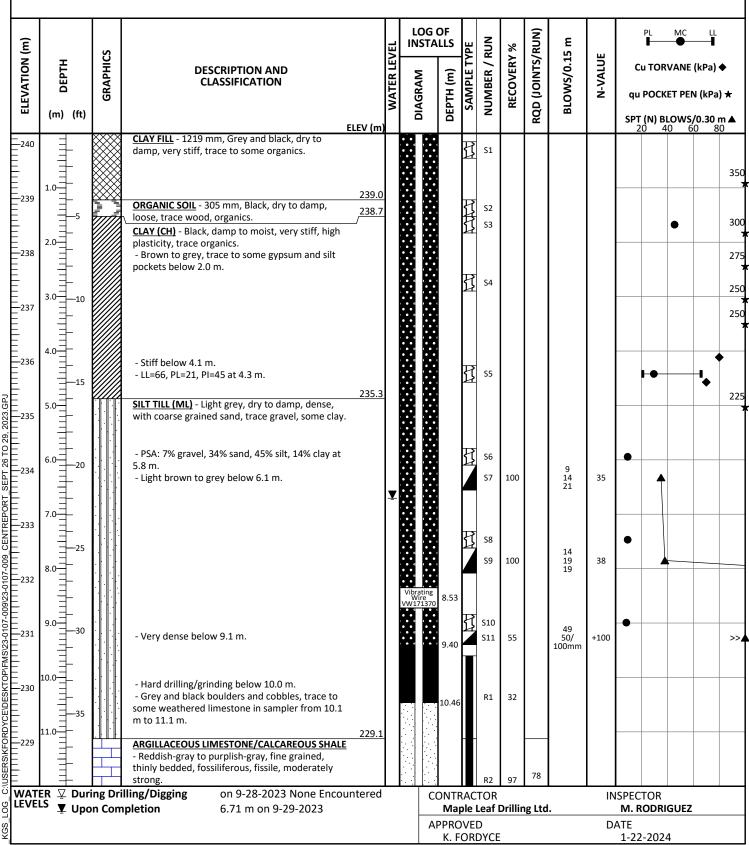
9-28-2023

N 5,530,113

TOC STICK-UP / ELEV. 0.91 m / 241.12 m (Standpipe)

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CLIENT PROJECT CentrePort Regional S&W Servicing** 

LOCATION Winnipeg, Manitoba


DESCRIPTION Southwest corner of lift station

DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

METHOD(S) 0.0 m to 9.1 m: 125 mm ø SSA

E 623,145

9.1 m to 22.5 m: Water Rotary HQ Core - switched due to encountering boulders/ suspected bedrock



| KGS                                                                                          |                              |          | TEST HOLE LOG                                                                                                                                                                                                                                                                                                                               |             |                    |           | но<br><b>Тŀ</b> | SHEET 2 of 2  |            |                  |              |         |                                                                            |    |     |    |
|----------------------------------------------------------------------------------------------|------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------|-----------------|---------------|------------|------------------|--------------|---------|----------------------------------------------------------------------------|----|-----|----|
| (E) T                                                                                        |                              | GRAPHICS | DESCRIPTION AND<br>CLASSIFICATION                                                                                                                                                                                                                                                                                                           | VEL         | LOG OF<br>INSTALLS |           | YPE             | RUN           | % A:       | s/RUN)           | 15 m         | H       | PL MC LL                                                                   |    |     |    |
| ELEVATION (m)                                                                                | (ft)                         |          |                                                                                                                                                                                                                                                                                                                                             | WATER LEVEL | DIAGRAM            | DEPTH (m) | SAMPLE TYPE     | NUMBER / RUN  | RECOVERY % | RQD (JOINTS/RUN) | BLOWS/0.15 m | N-VALUE | Cu TORVANE (kPa) ◆ qu POCKET PEN (kPa) ★ SPT (N) BLOWS/0.30 m. 20 40 60 80 |    |     |    |
|                                                                                              | -40                          |          | Good quality from 11.2 m to 12.6 m ~30 mm soft shale/clay seam at 12.1 m.                                                                                                                                                                                                                                                                   | n)          |                    |           |                 |               |            | (10)             |              |         | 20                                                                         | 40 | 60  | 80 |
| 13.0<br>13.0<br>14.0<br>15.0<br>15.0<br>16.0<br>17.0<br>17.0<br>18.0<br>19.0<br>19.0<br>19.0 |                              |          | - Fair quality from 12.6 m to 15.7 m UCS: 24.1 MPa at 12.9 m Increased shale content, weak, several ~20 mm joints with soft shale/clay infill from 13.0 m to 13.1 m Decreased shale/clay content from 13.1 m to                                                                                                                             |             |                    |           |                 | R3            | 96         | 59<br>(14)       |              |         |                                                                            |    |     | _  |
| 14.0—<br>-226 — — — — — — — — — — — — — — — — — —                                            |                              |          | 14.3 m.  - Broken/Fractured core zone infilled with soft reddish-purple shale/clay at 13.9 m.  - ~125 mm Fractured zone infilled with soft shale/clay, very weak at 14.3 m.  - Moderate strength below 15.2 m.                                                                                                                              |             |                    | 15.34     |                 | R4            | 92         | 65<br>(15)       |              |         |                                                                            |    |     |    |
| 16.0                                                                                         |                              |          | - Poor quality from 15.7 m to 20.3 m 50 - 100 mm thick shale interbeds spaced 150 - 300 mm apart from 16.0 m to 18.0 m.                                                                                                                                                                                                                     |             |                    |           |                 | R5            | 97         | 45<br>(23)       |              |         |                                                                            |    |     |    |
| -223   18.0   -222   -                                                                       |                              |          | - UCS: 17.6 MPa at 16.9 m.                                                                                                                                                                                                                                                                                                                  |             |                    |           |                 | R6            | 93         | 40<br>(18)       |              |         |                                                                            |    |     |    |
| 19.0—<br>19.0—<br>20.0—                                                                      |                              |          |                                                                                                                                                                                                                                                                                                                                             |             |                    |           |                 | R7            | 93         | 64<br>(16)       |              |         |                                                                            |    |     |    |
| -220 = = = = = = = = = = = = = = = = = =                                                     |                              |          | <ul> <li>Fair quality below 20.3 m.</li> <li>Two ~75 mm thick shale/clay interbeds from 20.9 m to 21.5 m.</li> <li>Decreasing shale/clay content, increasing strength below 21.2 m.</li> </ul>                                                                                                                                              |             |                    | 21.44     |                 | R8            | 100        | 65<br>(14)       |              |         |                                                                            |    |     |    |
| -218 22.0—<br>-218 =                                                                         | -                            |          | 217                                                                                                                                                                                                                                                                                                                                         | 7           |                    | 22.50     |                 | R9            | 93         | 70<br>(3)        |              |         |                                                                            |    |     |    |
| 22.0—<br>—218 23.0—<br>—217 24.0—<br>—216 25.0—<br>—215 26.0—                                | —75<br>—75<br>———80<br>———80 |          | <ol> <li>Notes:</li> <li>End of test hole at 22.5 m.</li> <li>Refusal encountered on suspected boulder at a depth of 9.1 m.</li> <li>Protective well cover installed at surface.</li> <li>50.8 mm or two (2) inches diameter standpipe installed.</li> <li>Vibrating wire piezometer (VW171370) installed at 8.53 m below grade.</li> </ol> |             |                    |           |                 |               |            |                  |              |         |                                                                            |    |     |    |
| WAILN *                                                                                      |                              |          | Iling/Digging on 9-28-2023 None Encountere pletion 6.71 m on 9-29-2023                                                                                                                                                                                                                                                                      | d           | CC                 |           |                 | TOR<br>Leaf I | Drillir    | ng Ltd           |              | IN      | ISPECT<br>M. RO                                                            |    | UEZ |    |

HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-03 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing SURFACE ELEV.** 237.80 m LOCATION Winnipeg, Manitoba **START DATE** 9-27-2023 **DESCRIPTION** ~180 m south of Silver Ave, ~125 m west of Sturgeon Rd UTM (m) N 5,528,181 DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer E 623,558 Zone 14 METHOD(S) 0.0 m to 7.0 m: 125 mm ø SSA 3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m CLAY FILL - 762 mm, Grey and black, dry, grass surface. S1 237.0 400 **CLAY (CH)** - Grey, dry to damp, high plasticity, very stiff to hard. 275 S2 <del>\_</del>236 - Trace to some silt inclusions below 1.8 m. - Damp to moist, stiff below 2.3 m. S3 - Firm below 3.0 m. <del>\_</del>234 **S4** 233.1 SILT TILL (ML) - Light grey, moist, compact, some to with fine to coarse grained sand, trace gravel. - With red discoloration/alteration below 5.3 m. S5 - Compact, some limestone fragments in sampler at 6.1 m. S6 56 10 40/ 230.7 S7 17 +100 60mm Notes: 1. End of test hole at 7.1 m. 2. Refusal encountered on suspected bedrock at a depth of 7.0 m. \_\_230 3. Test hole backfilled with auger cuttings and bentonite chips. □ During Drilling/Digging on 9-27-2023 None Encountered CONTRACTOR **INSPECTOR** 

on 9-27-2023 None Encountered

Maple Leaf Drilling Ltd.

**APPROVED** 

K. FORDYCE

M. RODRIGUEZ

1-22-2024

DATE

C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009\CENTREPORT SEPT 26 TO 29, 2023.GPJ

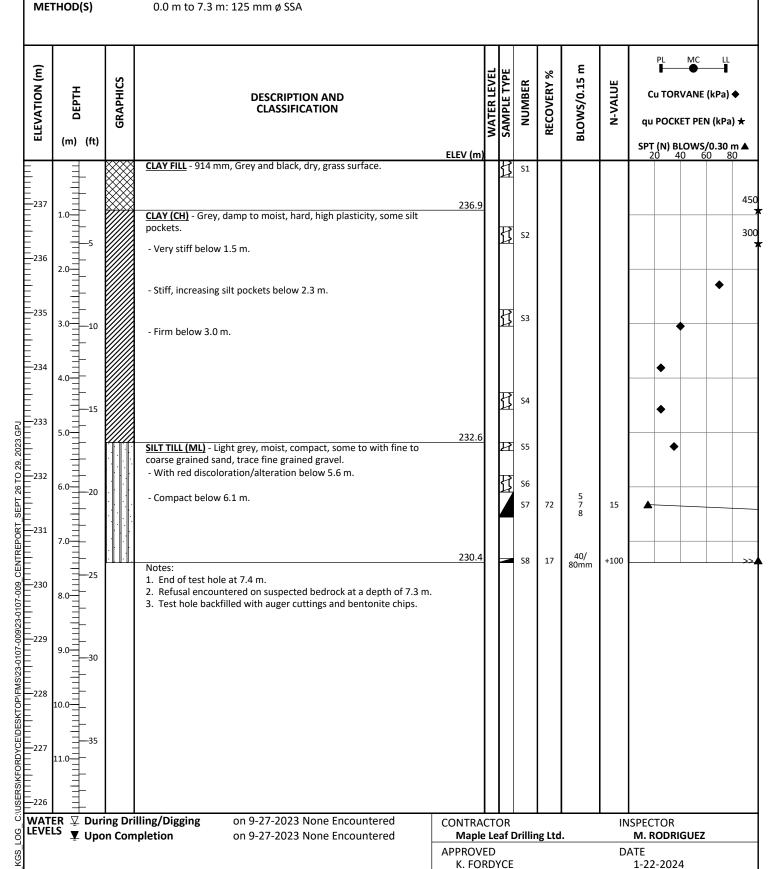
**▼** Upon Completion

HOLE NO. TH23-04

SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 


Winnipeg, Manitoba

~15 m south of Silver Ave, ~175 m west of Sturgeon Rd GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

0.0 m to 7.3 m: 125 mm ø SSA

PROJECT NO. 23-0107-009 **SURFACE ELEV.** 237.80 m **START DATE** 9-27-2023 UTM (m) N 5,528,361

E 623,519 Zone 14

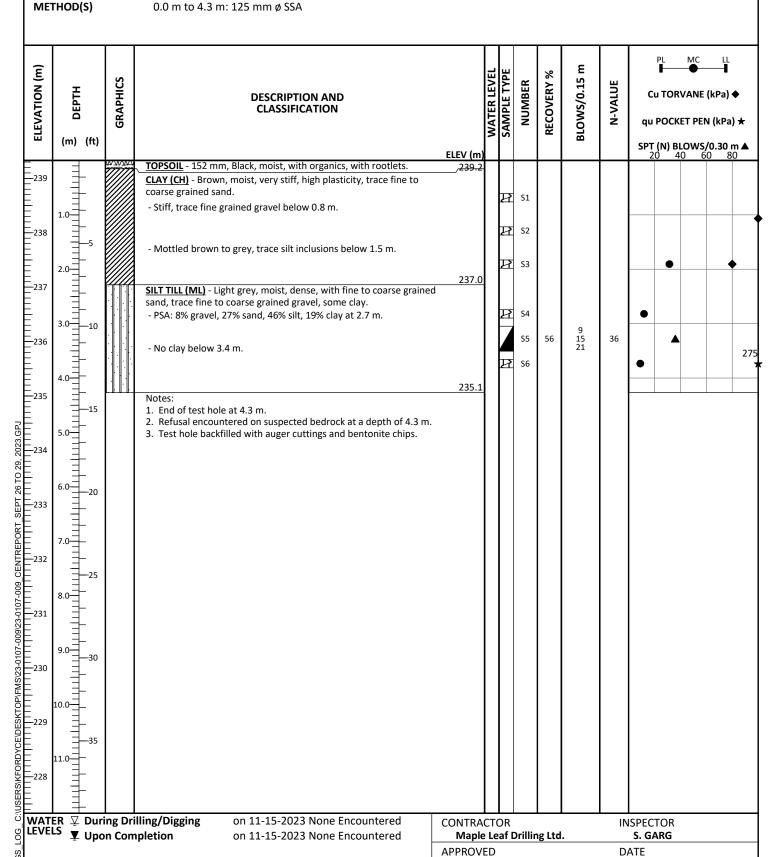


HOLE NO. TH23-05

SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 


Winnipeg, Manitoba

~180 m north of Silver Ave, ~150 m west of Sturgeon Rd GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

0.0 m to 4.3 m: 125 mm ø SSA

PROJECT NO. 23-0107-009 **SURFACE ELEV.** 239.33 m **START DATE** 11-15-2023 UTM (m) N 5,528,557

E 623,549 Zone 14



K. FORDYCE

1-22-2024

HOLE NO. **TEST HOLE LOG** TH23-06 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CLIENT** 

PROJECT NO. 23-0107-009 SURFACE ELEV. 239.10 m **START DATE** 9-27-2023

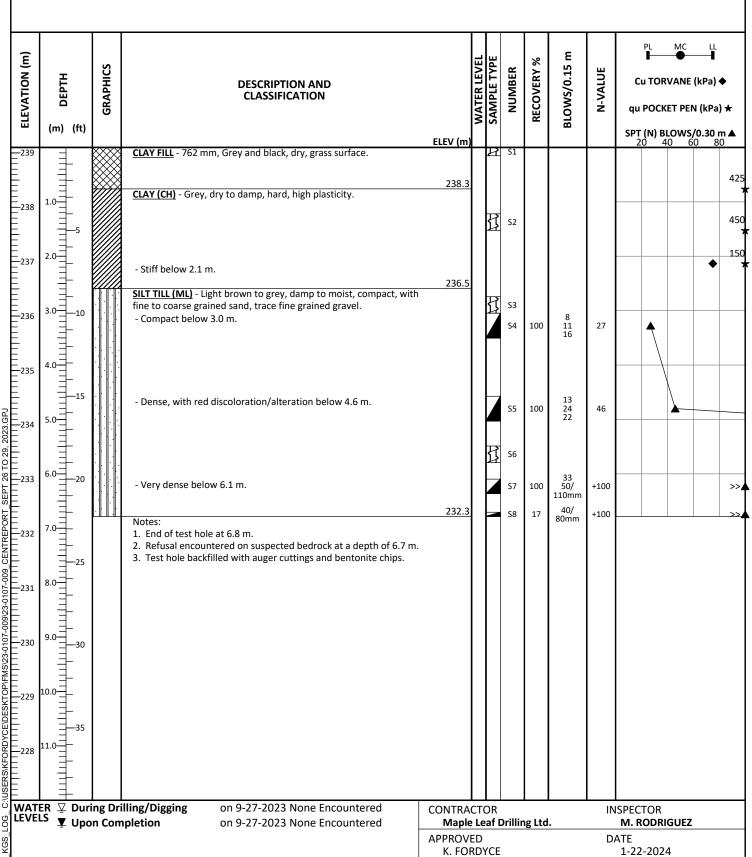
SHEET 1 of 1

Zone 14

~260 m south of Saskatchewan Ave, ~160 m west of Sturgeon Rd UTM (m) N 5,528,836 E 623,547

DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

Winnipeg, Manitoba


**CentrePort Regional S&W Servicing** 

METHOD(S) 0.0 m to 6.7 m: 125 mm ø SSA

**PROJECT** 

LOCATION

**DESCRIPTION** 



KGS TEST HOLE LOG

CLIENT PROJECT

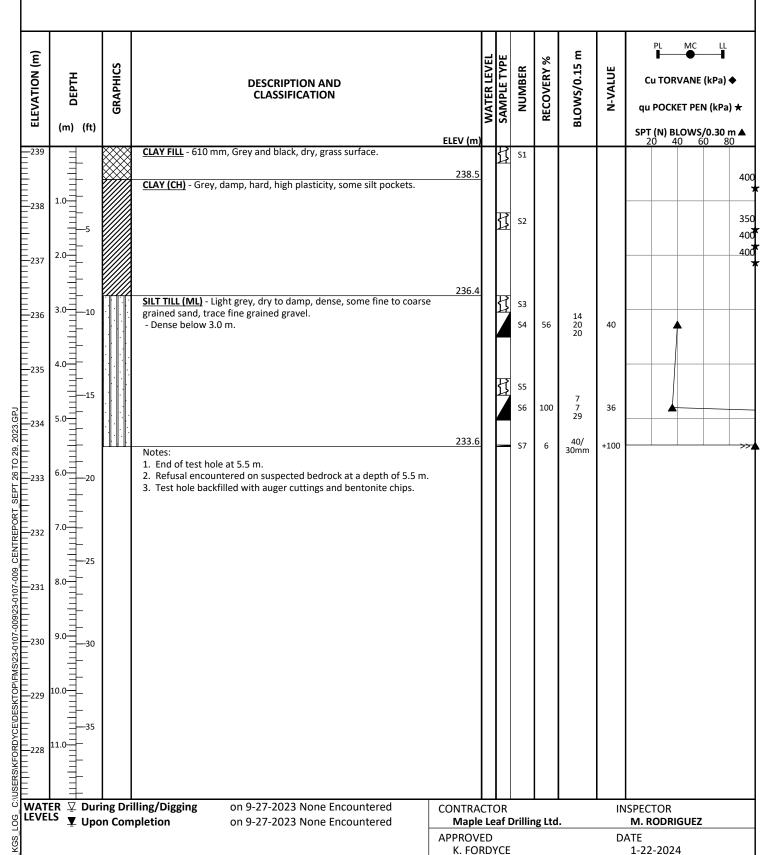
LOCATION

**DESCRIPTION** 

DRILL RIG / HAMMER

# HOLE NO. **TH23-07**

SHEET 1 of 1


CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT
CentrePort Regional S&W Servicing
Winnipeg, Manitoba
START DA

~15 m south of Saskatchewan Ave, ~130 m west of Sturgeon Rd UTM (m) GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

**METHOD(S)** 0.0 m to 5.5 m: 125 mm ø SSA

PROJECT NO. 23-0107-009
SURFACE ELEV. 239.10 m
START DATE 9-27-2023
d UTM (m) N 5,529,083

E 623,587 Zone 14



HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-08 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing** SURFACE ELEV. 239.40 m LOCATION Winnipeg, Manitoba **START DATE** 9-26-2023 **DESCRIPTION** South side Saskatchewan Ave Rail Crossing UTM (m) N 5,529,096 DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer E 623,757 Zone 14 METHOD(S) 0.0 m to 3.0 m: 125 mm ø SSA 3.0 m to 9.4 m: Water Rotary HQ Core - switched due to encountering suspected bedrock RQD (JOINTS/RUN) **NUMBER / RUN** ELEVATION (m) **RECOVERY % WATER LEVE**I **BLOWS/0.15** GRAPHICS DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND** CLASSIFICATION qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m TOPSOIL/ORGANICS - 152 mm, Grey and black, dry, trace to 239.2 some organics. . -239 CLAY (CH) - Grey, dry, hard, high plasticity, trace silt and 450 gypsum pockets, trace fine gravel. 450 **S1** 237.9 SILT TILL (ML) - Light grey, dry to damp, dense, with fine to coarse grained sand, with fine grained gravel, trace to some clay. 450 -237 - PSA: 25% gravel, 30% sand, 35% silt, 10% clay at 2.7 m. S2 50/ 80mm - Very dense below 3.0 m. S3 67 +100 >> 236.0 <del>-</del>236 **DOLOMITE** - Mottled yellow-white, fine grained, massive, trace vugs, very strong. - Fair quality from 3.4 m to 4.9 m. 72 (8) - UCS: 66.1 MPa at 4.0 m. R1 65 \_\_<sub>235</sub> - No water return at 4.3 m. C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009\_CENTREPORT\_SEPT 26 TO 29, 2023.GPJ - Good quality from 4.9 m to 6.4 m. 234.4 - Highly fractured and broken lost core zone from 4.9 m to 5.0 ARGILLACEOUS DOLOMITE - Mottled reddish-gray to green, R2 70 (2) fine grained, fossiliferous, moderately strong. - UCS: 73.7 MPa at 5.1 m. - Lost core zone from 6.4 m to 7.5 m. - Poor quality from 6.4 m to 7.9 m. 7 0 38 R3 (3) - Increased shale content from 7.5 m to 8.5 m. 231 - Good quality below 7.9 m. - ~ 30 mm thick soft shale seam at 8.0 m. Decreased shale content, increased porosity, very strong R4 95 (12)below 8.5 m. 9.0-- Increased joint frequency below 8.5 m. <u>\_\_</u>230 230.0 Notes: 1. End of test hole at 9.4 m. 2. Refusal encountered on suspected bedrock at a depth of 3.0 \_\_\_229 3. Test hole backfilled with auger cuttings and bentonite chips. 11.0--228 **∑** During Drilling/Digging on 9-27-2023 None Encountered CONTRACTOR **INSPECTOR** LEVELS **▼** Upon Completion Maple Leaf Drilling Ltd. M. RODRIGUEZ on 9-27-2023 None Encountered **APPROVED** DATE

K. FORDYCE

1-22-2024

KGS

#### **TEST HOLE LOG**

HOLE NO. **TH23-09** 

SHEET 1 of 1

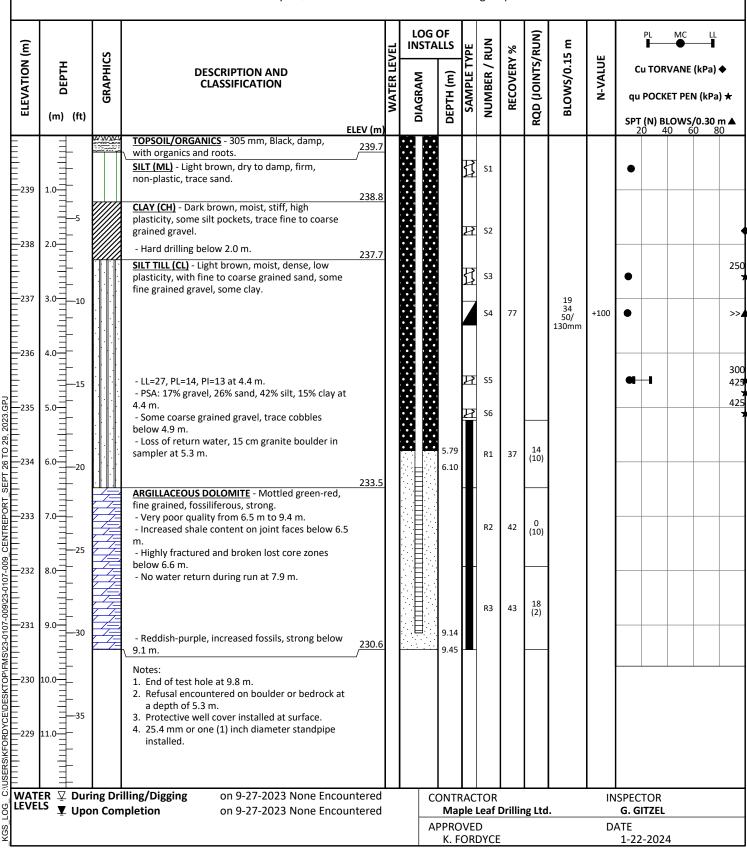
CLIENT CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT CentrePort Regional S&W Servicing

LOCATION Winnipeg, Manitoba

**DESCRIPTION** North side Saskatchewan Ave Rail Crossing

DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

**METHOD(S)** 0.0 m to 5.3 m: 125 mm ø SSA


**PROJECT NO.** 23-0107-009 **SURFACE ELEV.** 240.00 m

TOC STICK-UP / ELEV. 0.91 m / 240.91 m (Standpipe)

**START DATE** 9-25-2023 **UTM (m)** N 5,529,183

E 623,764 Zone 14

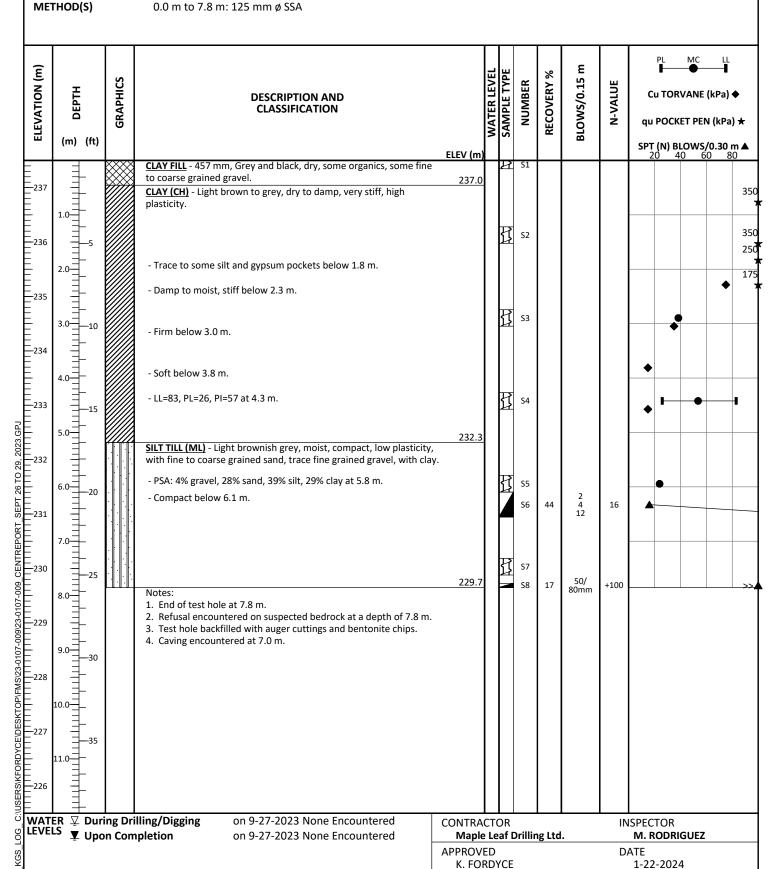
5.3 m to 9.8 m: Water Rotary HQ Core - switched due to encountering suspected bedrock



HOLE NO. TH23-11

SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 


Winnipeg, Manitoba

~60 m northest of Tonka Pt, ~220 m east of Sturgeon Rd GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

0.0 m to 7.8 m: 125 mm ø SSA

PROJECT NO. 23-0107-009 **SURFACE ELEV.** 237.50 m **START DATE** 9-26-2023 UTM (m) N 5,529,997

E 623,757 Zone 14



TEST HOLE LOG
TH23-12

CLIENT CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009
PROJECT CentrePort Regional S&W Servicing SURFACE ELEV. 237.80 m
LOCATION Winnipeg, Manitoba START DATE 9-27-2023

~220 m northeast of Tonka Pt, ~75 m east of Sturgeon Road

GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

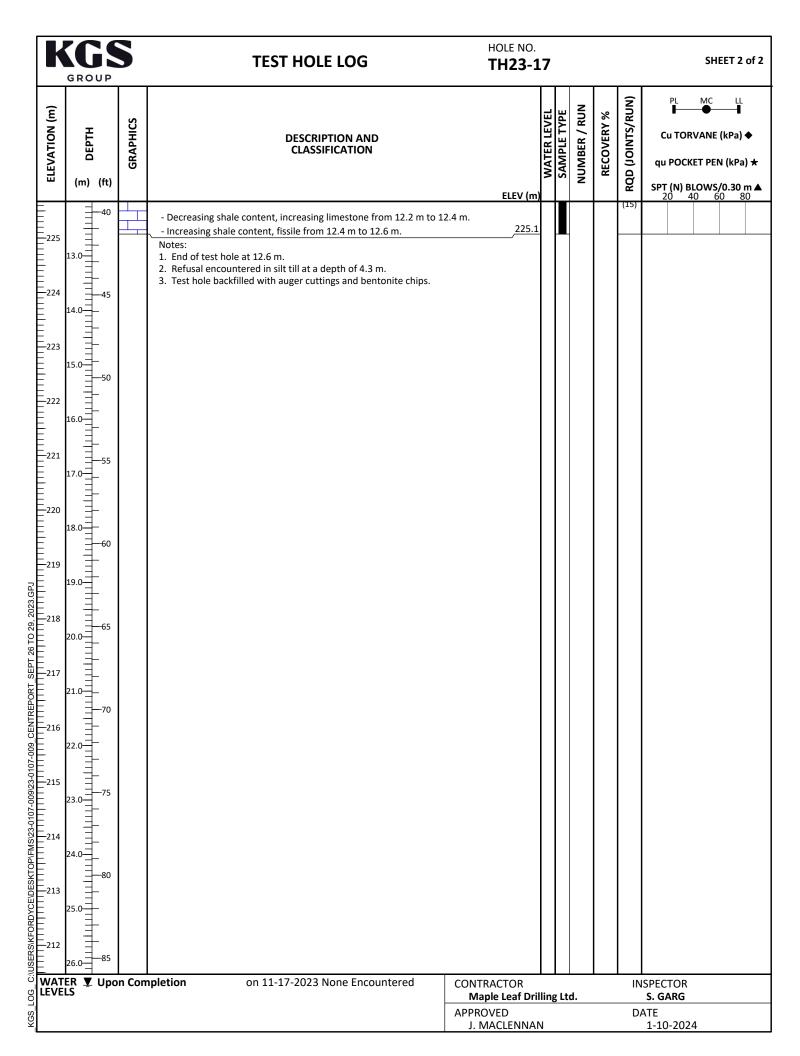
0.0 m to 7.6 m: 125 mm ø SSA

**DESCRIPTION** 

METHOD(S)

DRILL RIG / HAMMER

SURFACE ELEV. 237.80 m START DATE 9-27-2023 UTM (m) N 5,530,219 E 623,766 Zone 14


SHEET 1 of 1

3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m CLAY FILL - 457 mm, Grey and black, dry to damp, some organics, **S1** some fine to coarse grained gravel. 237.3 CLAY (CH) - Light brown to grey, damp to moist, stiff, high plasticity. 150 150 S2 <del>\_</del>236 - Mottled brown/ grey, moist, trace to some gypsum & silt pockets 150 below 2.0 m. 125 S3 <del>\_</del>234 **S4** C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009\CENTREPORT SEPT 26 TO 29, 2023.GPJ - Firm below 5.2 m. - Increasing silt inclusions below 5.8 m. S5 230.9 SILT TILL (ML) - Light brownish grey, moist, compact, some to with fine to coarse grained sand, trace to some fine grained gravel. S6 230.1 20/ 30mm +100 11 - With red discoloration/alteration at 7.6 m. \_\_230 1. End of test hole at 7.6 m. 2. Refusal encountered on suspected bedrock at a depth of 7.6 m. 3. Test hole backfilled with auger cuttings and bentonite chips. 4. Caving encountered at 6.4 m. □ During Drilling/Digging on 9-27-2023 None Encountered CONTRACTOR **INSPECTOR ▼** Upon Completion Maple Leaf Drilling Ltd. M. RODRIGUEZ on 9-27-2023 None Encountered **APPROVED** DATE

K. FORDYCE

1-22-2024

HOLE NO. **TEST HOLE LOG** SHEET 1 of 2 TH23-17 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing** SURFACE ELEV. 237.67 m LOCATION Winnipeg, Manitoba **START DATE** 11-17-2023 DESCRIPTION ~30 m south of CPKC Rail Line, ~125 m east of CCW UTM (m) N 5,533,655 DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer E 624,430 Zone 14 METHOD(S) 0.0 m to 4.3 m: 125 mm ø SSA 4.3 m to 12.6 m: Water Rotary HQ Core - switched due to encountering dense till RQD (JOINTS/RUN) **NUMBER / RUN** ELEVATION (m) SAMPLE TYPE **RECOVERY % WATER LEVEL** GRAPHICS DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND** CLASSIFICATION qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m △** 20 40 60 80 ELEV (m TOPSOIL - 203 mm, Black, moist, with organics, some rootlets. 237. CLAY (CH) - Dark brown, moist, stiff, high plasticity, trace fine to coarse grained sand, some silt inclusions. S1  $\mathbf{P}$ - Brown, very stiff, trace fine grained gravel, trace silt inclusions below 1.5 m. <del>\_</del>236 - LL=80, PL=25, PI=55 at 2.0 m. {} S2 - Stiff below 2.4 m. -235 -10 - Brown silt till pocket, moist, compact, some clay, trace fine to coarse grained sand, trace fine grained gravel from 3.0 m to 3.4 m. 150 - Predominantly clay below 3.4 m. <del>-</del>234  $\mathcal{V}$ S3 25 233.7 Þ SILT TILL (CL) - Brown, moist, compact, low plasticity, and clay, some fine to S4 coarse grained sand, trace fine grained gravel. 233.3 - PSA: 4% gravel, 21% sand, 35% silt, 40% clay at 4.0 m. 75 (2) R1 94 -233 ARGILLACEOUS LIMESTONE/CALCAREOUS SHALE - Reddish-gray to SEPT 26 TO 29, 2023.GPJ purplish-gray, fine grained, thinly bedded, fossiliferous, fissile, moderately strong. - Strong below at 4.6 m. - 40 mm horizontal joint infilled with shale at 4.7 m. 65 (12) R2 97 - UCS: 28.2 MPa at 4.9 m. - UCS: 28.1 MPa at 5.2 m. \_\_231 - 75 mm horizontal joint infilled with shale at 6.6 m. CENTREPORT 70 R3 95 (10)\_ <del>\_</del>230 C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009 - Increased shale content, weak from 8.0 m to 8.1 m. - Three closely spaced joints partially infilled with shale from 8.6 m to 8.8 m. R4 100 (17)- Increased shale content / shale interbeds from 9.4 m to 11.6 m. <del>\_</del>228 - Very weak with significant shale content from 9.5 m to 10.1 m. 21 (23) R5 98 \_\_227 - Three 25 - 75 mm shale beds spaced 0.3 to 0.4 m apart from 10.6 m to 11.4 m. <del>\_</del>226 60 100 **▼** Upon Completion on 11-17-2023 None Encountered **INSPECTOR** CONTRACTOR **LEVELS** Maple Leaf Drilling Ltd. S. GARG **APPROVED** DATE J. MACLENNAN 1-10-2024



HOLE NO. TH23-18

PROJECT NO.

**START DATE** 

UTM (m)

**SURFACE ELEV.** 

SHEET 1 of 2

Zone 14

23-0107-009

238.01 m

11-16-2023

N 5,533,695

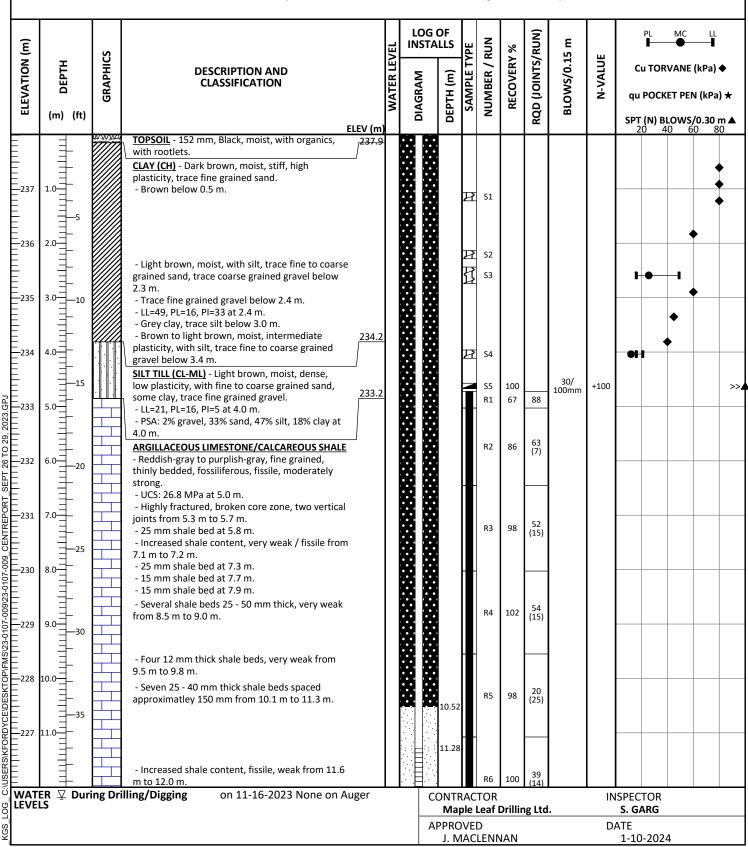
TOC STICK-UP / ELEV. 0.91 m / 238.92 m (Standpipe)

**CLIENT PROJECT** LOCATION DESCRIPTION

DRILL RIG / HAMMER

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 

Winnipeg, Manitoba


~15 m north of CPKC Rail Line, ~125 m east of CCW

GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

METHOD(S) 0.0 m to 4.7 m: 125 mm ø SSA

E 624,469

4.7 m to 12.6 m: Water Rotary HQ Core - switched due to encountering boulders/suspected bedrock



| KC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |          | TEST HOLE LOG                                                                                                                                                                                                                                                                                 |             |         |                |             | LE N         | o.<br><b>-18</b> |                  |                                | SHEET 2 of 2 |                                                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|----------------|-------------|--------------|------------------|------------------|--------------------------------|--------------|-----------------------------------------------------|--|--|--|
| ELEVATION (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | GRAPHICS | DESCRIPTION AND<br>CLASSIFICATION                                                                                                                                                                                                                                                             | WATER LEVEL | DIAGRAM | DEPTH (m)      | SAMPLE TYPE | NUMBER / RUN | RECOVERY %       | RQD (JOINTS/RUN) | BLOWS/0.15 m                   | N-VALUE      | PL MC LL  Cu TORVANE (kPa) ◆  qu POCKET PEN (kPa) ★ |  |  |  |
| 225 13.0— —224 14.0— —223 15.0— —221 17.0— —221 17.0— —221 17.0— —218 20.0— —218 20.0— —217 21.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— —218 20.0— — |           |          | - Decreasing shale, moderate strength to the full exploration depth.  225  Notes:  1. End of test hole at 12.6 m.  2. Refusal encountered on suspected bedrock at a depth of 4.7 m.  3. Protective well cover installed at surface.  4. 25.4 mm or one (1) inch diameter standpipe installed. |             |         | 12.19<br>12.62 |             |              |                  |                  |                                |              | SPT (N) BLOWS/0.30 m 2 20 40 60 80                  |  |  |  |
| LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEVELS AP |          |                                                                                                                                                                                                                                                                                               |             |         |                |             |              | Drillin<br>IAN   |                  | ISPECTOR S. GARG ATE 1-10-2024 |              |                                                     |  |  |  |

HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-19 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing SURFACE ELEV.** 238.74 m LOCATION Winnipeg, Manitoba **START DATE** 11-15-2023 **DESCRIPTION** South side of Colony Creek, ~30 m east of CCW UTM (m) N 5,533,941 DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer E 624,602 Zone 14 METHOD(S) 0.0 m to 7.3 m: 125 mm ø SSA 3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND** CLASSIFICATION qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m TOPSOIL - 152 mm, Black, damp, trace organics, trace rootlets. 238.6 CLAY FILL - 305 mm, Dark greyish brown, moist, very stiff, high 238.3 玿 **S1** plasticity. \_ <del>\_</del>238 CLAY (CH) - Mottled grey/brown, moist, very stiff, high plasticity, trace silt inclusions. 丒 S2 - Stiff below 2.7 m. - Trace oxidation staining below 3.0 m. \_\_\_\_235 丒 S3 - No oxidation staining below 4.6 m. \_\_\_\_234 C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009\CENTREPORT SEPT 26 TO 29, 2023.GPJ - LL=79, PL=24, PI=55 at 5.2 m. 卫 S4 - Grey, increased silt inclusions below 5.3 m. S5 邛 231.7 SILT TILL (ML) - Brown, moist, compact, low plasticity, trace coarse S6 grained sand, trace fine grained gravel, trace clay. 231.1 50/ 30mm **S7** +100 0 Notes: 231 1. End of test hole at 7.6 m. 2. Refusal encountered on suspected bedrock at a depth of 7.6 m. 3. Test hole backfilled with auger cuttings and bentonite chips. \_ \_\_229 \_ <del>\_</del>227 WATER LEVELS **▼** Upon Completion on 11-15-2023 None Encountered INSPECTOR CONTRACTOR Maple Leaf Drilling Ltd. S. GARG **APPROVED** DATE J. MACLENNAN 1-10-2024

HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-20 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing SURFACE ELEV.** 238.81 m LOCATION Winnipeg, Manitoba **START DATE** 10-5-2023 **DESCRIPTION** 15m west of CN Rail Line on Road 64N UTM (m) N 5,534,056 DRILL RIG / HAMMER Mobile B37X Track Mounted Drill Rig with Auto-Hammer E 624,724 Zone 14 METHOD(S) 0.0 m to 8.1 m: 125 mm ø SSA 3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m CLAY FILL - 457 mm, Black, damp, firm, intermediate plasticity, trace rootlets and grass. 238.4 CLAY (CH) - Light brown to grey, damp, stiff, high plasticity, with silt, trace coarse sand, trace rootlets and organics. 尸 S1 玿 S2 - No organics below 1.7 m. <del>--</del>237 225 - Decreased silt content below 2.1 m. 丒 S3 丒 S4 - Light grey, some silt inclusions from 3.0 m to 5.8 m. <del>\_</del>235 丒 - LL=85, PL=26, PI=59 at 3.8 m. S5 玿 S6 C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009\CENTREPORT SEPT 26 TO 29, 2023.GPJ 丒 **S7** 232 玿 S8 - Firm below 6.1 m.  $\mathcal{P}$ **S9** 231.6 SILT TILL (ML) - Light brown, damp, loose, non-plastic, some to with fine to coarse sand, trace fine grained gravel. Ţ S10 - Wet below 7.6 m. 50/ 20mm 230.7 +100 S11 6 - Red/Purple limestone fragments in split spoon at 8.1 m. 1. End of test hole at 8.1 m. 2. Refusal encountered on suspected bedrock at a depth of 8.1 m. 3. Test hole backfilled with auger cuttings and bentonite chips. 4. Caving Encountered at 7.7 m. \_228 □ During Drilling/Digging on 10-5-2023 None Encountered CONTRACTOR **INSPECTOR ▼** Upon Completion Maple Leaf Drilling Ltd. L. PROVEN 7.62 m on 10-5-2023 **APPROVED** DATE J. MACLENNAN 1-10-2024

HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-21 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing** SURFACE ELEV. 238.92 m LOCATION Winnipeg, Manitoba **START DATE** 11-22-2023 **DESCRIPTION** Ditch, offset ~12 m south of CCW, north Red Fife Rd. UTM (m) N 5,534,214 DRILL RIG / HAMMER Mobile B37X Track Mounted Drill Rig with Auto-Hammer E 624,868 Zone 14 METHOD(S) 0.0 m to 8.1 m: 125 mm ø SSA 3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m CLAY FILL - 914 mm, Dark brown, moist, very stiff, high plasticity, trace fine grained gravel, trace organics. 238.0 -238 CLAY (CH) - Brown, moist, stiff, high plasticity, trace coarse grained S1 - Trace silt inclusions below 1.2 m. S2 - Grey below 2.7 m. -236 3.0 - LL=80, PL=29, PI=51 at 3.7 m. S3 --235 - Some silt inclusions below 4.0 m. ¥ - Silt till pocket at 4.1 m. **S**4 <del>-</del>234 233.7 SILT TILL (ML) - Light brown, damp, compact, low plasticity, silt, 225 trace fine grained sand, some clay. **S**5 - PSA: 0% gravel, 2% sand, 81% silt, 17% clay at 5.5 m. - Free water in split spoon at 5.8 m. 89 **S6** 16 - Moist to wet, some fine to coarse sand, trace fine grained gravel below 5.8 m. \* - Moist, dense, some fine grained gravel below 6.4 m. 150 200 **S7** 10 S8 100 35 - Yellow sandy silt till below 7.6 m. S9 230.8 Notes: 1. End of test hole at 8.1 m. 2. Refusal encountered on suspected bedrock at a depth of 8.1 m. 3. Test hole backfilled with auger cuttings and bentonite chips. <del>\_</del>230 9.0-4. Caving encountered at 6.2 m. <del>\_</del>229

WATER Vupon Completion
LEVELS

4.27 m on 11-22-2023

CONTRACTOR
Maple Leaf Drilling Ltd.

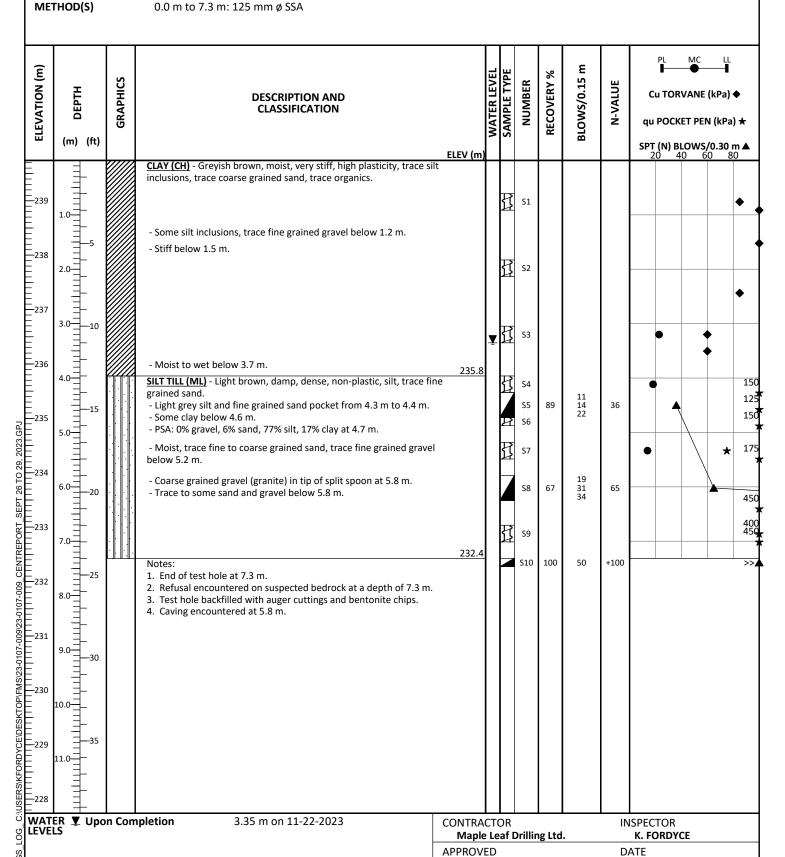
APPROVED
J. MACLENNAN
1-10-2024

C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009 CENTREPORT SEPT 26 TO 29, 2023.GPJ

HOLE NO. TH23-22

SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 


Winnipeg, Manitoba

Ditch, offset ~12 m south of CCW, north Red Fife Rd. Mobile B37X Track Mounted Drill Rig with Auto-Hammer

0.0 m to 7.3 m: 125 mm ø SSA

PROJECT NO. 23-0107-009 SURFACE ELEV. 239.74 m **START DATE** 11-22-2023 UTM (m) N 5,534,319

E 625,091 Zone 14



J. MACLENNAN

1-10-2024

HOLE NO. **TEST HOLE LOG** SHEET 1 of 1 TH23-23 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing** SURFACE ELEV. 238.81 m LOCATION Winnipeg, Manitoba **START DATE** 11-22-2023 **DESCRIPTION** Ditch, offset ~12 m south of CCW, north Red Fife Rd. UTM (m) N 5,534,208 DRILL RIG / HAMMER Mobile B37X Track Mounted Drill Rig with Auto-Hammer E 625,352 Zone 14 METHOD(S) 0.0 m to 6.2 m: 125 mm ø SSA 3LOWS/0.15 m ELEVATION (m) SAMPLE TYPE RECOVERY % **WATER LEVEL** GRAPHICS NUMBER DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m** ▲ 20 40 60 80 ELEV (m TOPSOIL - 152 mm, Black, moist, organic clay. CLAY (CH) - Brown, moist, stiff, high plasticity, trace organics. **S1** - Mottled brown, trace silt inclusions, trace oxide nodules below 1.2 S2 - Trace light brown silt till pockets, no oxide nodules below 2.7 m. S3 - LL=56, PL=29, PI=27 at 3.7 m. \_\_\_\_235 S4 - Grey below 4.0 m. 234.2 SILT TILL (ML) - Light brown, moist, dense, silt, trace clay. C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\Z3-0107-009\_CENTREPORT\_SEPT 26 TO 29, 2023.GPJ - Wet, trace fine grained sand below 4.9 m. **S**5 - Sloughed material in top 125 mm of split spoon at 5.8 m. S6 100 +100 - Damp to moist, dense, non-plastic, some fine to coarse grained 232.6 **S7** sand, trace fine grained gravel below 5.9 m. Notes: 1. End of test hole at 6.2 m. 2. Refusal encountered in silt till at a depth of 6.2 m. 3. Test hole backfilled with auger cuttings and bentonite chips. <del>\_</del>228 WATER LEVELS **▼** Upon Completion 1.83 m on 11-22-2023 **INSPECTOR** CONTRACTOR Maple Leaf Drilling Ltd. K. FORDYCE **APPROVED** DATE

J. MACLENNAN

1-10-2024

HOLE NO. TH23-24

UTM (m)

SHEET 1 of 2

**CLIENT PROJECT** LOCATION DESCRIPTION DRILL RIG / HAMMER

METHOD(S)

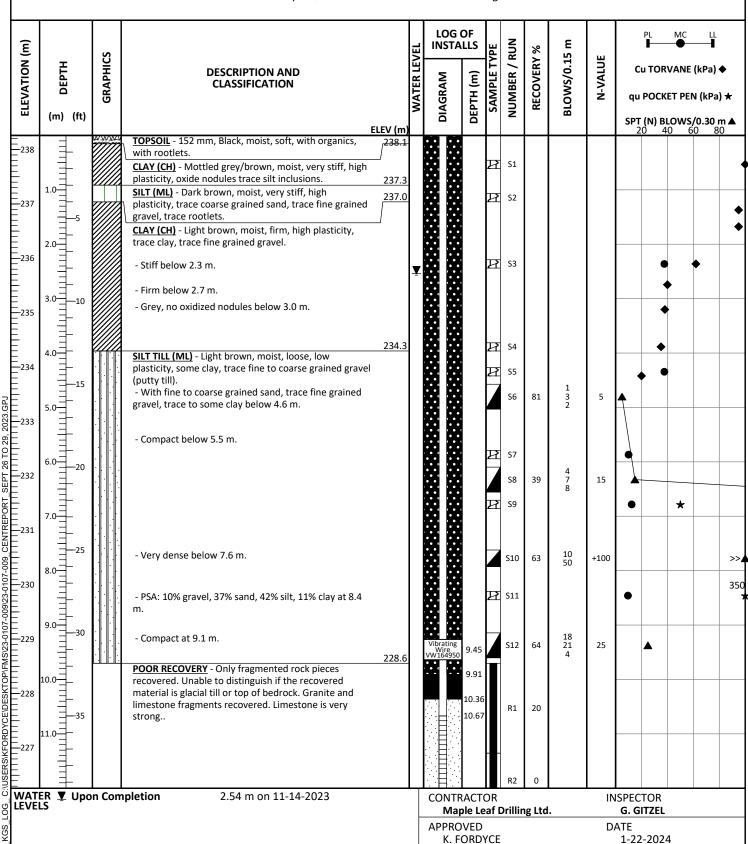
CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 

Winnipeg, Manitoba

Farm field, ~75 m east of CCW, ~320 m south of Sturgeon Access START DATE GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

0.0 m to 10.1 m: 125 mm ø SSA

10.1 m to 12.4 m: Water Rotary HQ Core - switched due to encountering dense till


PROJECT NO. 23-0107-009 **SURFACE ELEV.** 238.26 m

TOC STICK-UP / ELEV.

1.00 m / 239.26 m (Standpipe)

11-13-2023 N 5,529,982

E 622,695 Zone 14



| GRAPHICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                      |                |         |                               |             |              |            |              |         |                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------------------|-------------|--------------|------------|--------------|---------|----------------------------------------------------------------------------|
| TION EPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                      | Ę              |         | G OF                          |             | SUN          | %          | 5 m          |         | PL MC LL                                                                   |
| ELEVA<br>(m) (tt) DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                       | WATEDIEVE      | DIAGRAM | DEPTH (m)                     | SAMPLE TYPE | NUMBER / RUN | RECOVERY % | BLOWS/0.15 m | N-VALUE | Cu TORVANE (kPa) ◆ qu POCKET PEN (kPa) 7  SPT (N) BLOWS/0.30 m 20 40 60 80 |
| 13.0 — 45 14.0 — 45 14.0 — 50 — 224 — 50 — 55 17.0 — 60 — 19.0 — 66 — 19.0 — 65 — 218 — 21.0 — 65 — 218 — 21.0 — 75 — 21.0 — 70 — 22.1 — 70 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 75 — 21.0 — 7 | Notes:  1. End of test hole at 12.4 m.  2. Refusal encountered on suspected bedrock at a depth of 10.1 m.  3. Test hole backfilled with grout.  4. Protective well cover installed at surface.  5. 25.4 mm or one (1) inches diameter standpipe installed.  6. Vibrating wire piezometer (VW164950) installed at 9.45 m below grade. | V (m)<br>225.9 |         | 12.                           | 19 37       |              |            |              |         | 20 40 60 80                                                                |
| WATER ▼ Upon Comp<br>LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>2.54</b> m on 11-14-2023                                                                                                                                                                                                                                                                                                          |                | N       | ITRAC<br><b>1aple</b><br>ROVE | Leaf        |              | ng Ltd     |              |         | NSPECTOR  G. GITZEL  ATE                                                   |

#### **TEST HOLE LOG**

HOLE NO. TH23-25

UTM (m)

SHEET 1 of 2

**CLIENT PROJECT** LOCATION DESCRIPTION

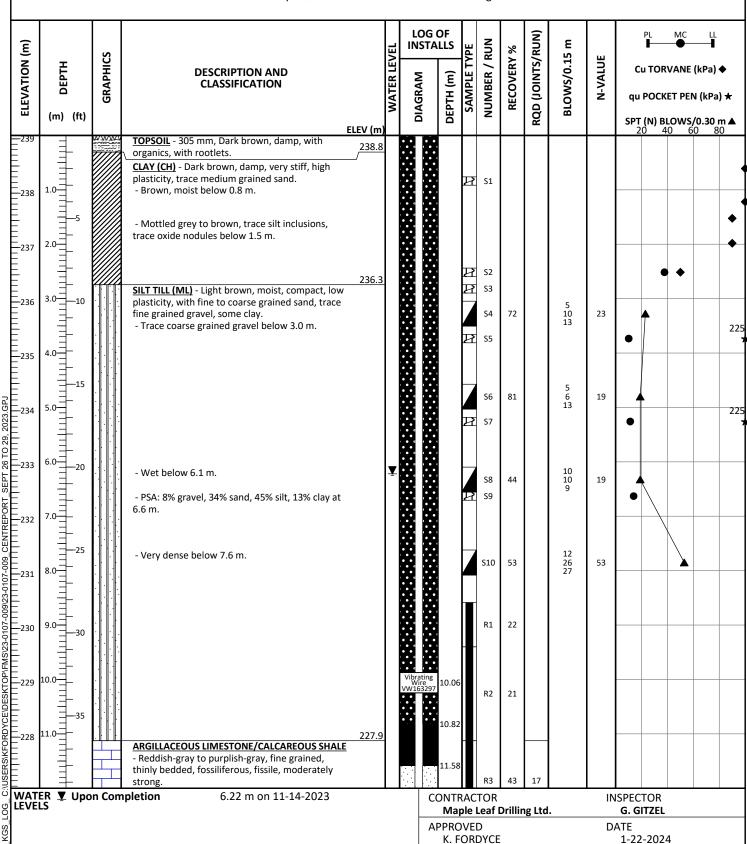
DRILL RIG / HAMMER

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CentrePort Regional S&W Servicing** 

Winnipeg, Manitoba

Farm field, ~180 m east of CCW, ~125 m south of Stugeon AccessSTART DATE GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

METHOD(S) 0.0 m to 8.2 m: 125 mm ø SSA


8.2 m to 14.1 m: Water Rotary HQ Core - switched due to encountering dense till

PROJECT NO. 23-0107-009 **SURFACE ELEV.** 239.06 m

TOC STICK-UP / ELEV. 0.79 m / 239.85 m (Standpipe)

11-14-2023 N 5,530,062

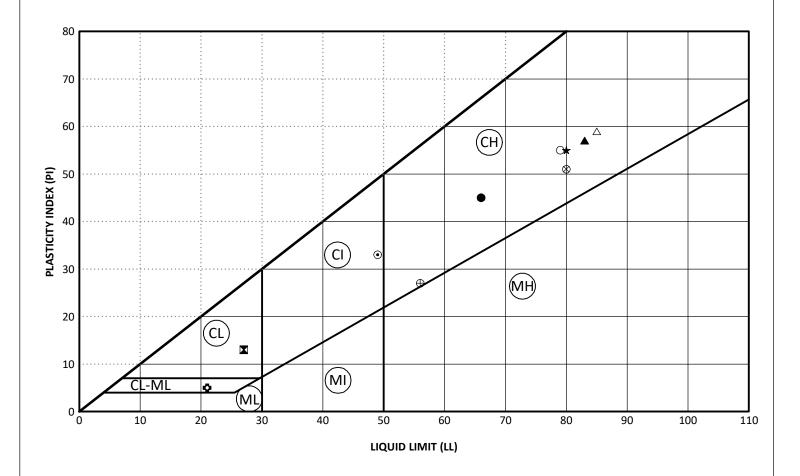
E 622,907 Zone 14



|                                                                                               | GROUP          | 5        | TEST HOLE LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |         |           |             | LE N         | o.<br>5 <b>-25</b> |                  |              |         | SHEET 2 of 2                                       |
|-----------------------------------------------------------------------------------------------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------|-------------|--------------|--------------------|------------------|--------------|---------|----------------------------------------------------|
| ELEVATION (m)                                                                                 | (m) (ft)       | GRAPHICS | DESCRIPTION AND<br>CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER I EVE | DIAGRAM | DEPTH (m) | SAMPLE TYPE | NUMBER / RUN | RECOVERY %         | RQD (JOINTS/RUN) | BLOWS/0.15 m | N-VALUE | PL MC LL  Cu TORVANE (kPa) ◆ qu POCKET PEN (kPa) ★ |
| 221<br>= 221<br>= 220<br>= 219<br>= 218<br>= 217<br>= 216<br>= 215<br>= 214<br>= 214<br>= 214 | 13.0           |          | Broken core zone, high shale content from 11.1 m to 11.3 m.  - UCS: 20.9 MPa at 11.4 m.  - Broken lost core zone from 11.7 m to 12.5 m.  - UCS: 24.3 MPa at 13.3 m.  - 50 mm joint infilled with shale at 13.5 m.  - Increased shale content below 13.9 m.  225  Notes:  1. End of test hole at 14.1 m.  2. Refusal encountered on suspected bedrock at a depth of 8.2 m.  3. Test hole backfilled with grout.  4. Protective well cover installed at surface.  5. 25.4 mm or one (1) inches diameter standpipe installed.  6. Vibrating wire piezometer (VW163297) installed at 10.06 m below grade. |             |         | 13.56     |             | R4           | 100                | 79 (8)           |              |         | SPT (N) BLOWS/0.30 m 20 40 60 80                   |
| WATI<br>LEVEI                                                                                 | ER ▼ Upo<br>LS | n Com    | <b>pletion</b> 6.22 m on 11-14-2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |         | PPRC      | ple<br>OVE  | Leaf         |                    | ng Ltd           |              |         | ISPECTOR G. GITZEL  ATE 1-22-2024                  |

HOLE NO. **TEST HOLE LOG** SHEET 1 of 2 TH23-26 CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. 23-0107-009 **CLIENT PROJECT CentrePort Regional S&W Servicing** SURFACE ELEV. 239.09 m LOCATION Winnipeg, Manitoba **START DATE** 11-14-2023 Field, ~35 m west of Stugeon Rd, ~40 m north of Sturgeon AccessUTM (m) DESCRIPTION N 5,529,971 DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer E 623,340 Zone 14 METHOD(S) RQD (JOINTS/RUN) **NUMBER / RUN** 3LOWS/0.15 m ELEVATION (m) **RECOVERY % WATER LEVE**I GRAPHICS DEPTH Cu TORVANE (kPa) ◆ **DESCRIPTION AND CLASSIFICATION** qu POCKET PEN (kPa) ★ (m) (ft) **SPT (N) BLOWS/0.30 m △** 20 40 60 80 ELEV (m -239 TOPSOIL - 152 mm, Black, moist, with organics, with rootlets. CLAY (CH) - Brown, moist, very stiff, high plasticity, trace medium to coarse grained sand, trace rootlets. Ŋ S1 <del>\_</del>238 - Grey, trace silt inclusions, trace fine grained gravel, no rootlets below 1.5 m. 丒 S2 -237 236.6 SILT TILL (ML) - Light brown, damp, compact, low plasticity, 尸 S3 trace fine to coarse grained sand, trace fine grained gravel, some . -236 -10 78 16 12 28 1 **S5** - With fine to coarse grained sand below 4.0 m. <del>\_</del>235 - Very dense below 4.6 m. 96 +100 S6 >> - PSA: 10% gravel, 31% sand, 45% silt, 14% clay at 4.6 m. SEPT 26 TO 29, 2023.GPJ 41 R1 232.7 ARGILLACEOUS DOLOMITE - Mottled yellow-green, fine CENTREPORT grained, fossiliferous, moderately strong, some vugs (6 - 25 mm). - Concentrated zone of vugs from 6.4 m to 6.6 m. 232.0 7 0 <del>\_</del>232 - 50 mm horizontal joint infilled with shale at 6.8 m R2 98 ARGILLACEOUS LIMESTONE/CALCAREOUS SHALE -Reddish-gray to purplish-gray, fine grained, thinly bedded, C:\USERS\KFORDYCE\DESKTOP\FMS\23-0107-009\23-0107-009 fossiliferous, fissile, moderately strong. <del>\_</del>231 - 25 mm horizontal joint infilled with red shale at 7.3 m. - 12 mm horizontal joint infilled with red shale at 7.7 m. - Broken core zone with significant shale infill from 8.1 m to 8.3 m. R3 98 83 - 75 mm horizontal joint infilled with red shale at 8.5 m. <del>-</del>230 - Increasing green shale interbeds; decreased red shale from 8.8 m to 9.8 m. R4 93 (6) - 7 mm horizontal joint infilled with red shale at 11.0 m. - 25 - 65 mm thick shale interbeds spaced at 0.3 - 0.45 m extending to the full exploration depth. - UCS: 29.6 MPa at 11.4 m. 100 WATER □ During Drilling/Digging on 11-14-2023 None on Auger **CONTRACTOR INSPECTOR LEVELS** Maple Leaf Drilling Ltd. G. GITZEL **APPROVED** DATE

K. FORDYCE


1-22-2024

|                        | GROUP     | 5        | TEST HOLE LOG                                                                                                                                                                                                                                                                                                                                                                           |         |                      | DLE N<br><b>H23</b> | o.<br><b>3-26</b> | ,                  |              |         | SHEET 2 of 2                                                                             |
|------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|---------------------|-------------------|--------------------|--------------|---------|------------------------------------------------------------------------------------------|
| ELEVATION (m)          | (#) (ft)  | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                          | LEV (m) | WATER LEVEL          | NUMBER / RUN        | RECOVERY %        | RQD (JOINTS/RUN)   | BLOWS/0.15 m | N-VALUE | PL MC LL  Cu TORVANE (kPa) ◆  qu POCKET PEN (kPa) ★  SPT (N) BLOWS/0.30 m ▲  20 40 60 80 |
| -227226226225224223221 | 20.0      |          | - Three 100 - 125 mm thick limstone interbeds spaced at 0.3 m from 13.5 m to 13.6 m.  - Decreasing shale, increasing limestone from 14.9 m to 15.0 m.  - Broken core zone, open joint with shale at 15.2 m.  Notes:  1. End of test hole at 15.6 m.  2. Refusal encountered on suspected bedrock at a depth of 5.0 m.  3. Test hole backfilled with auger cuttings and bentonite chips. | 223.4   |                      | R6                  | 95                | 49 (16)<br>47 (12) |              |         |                                                                                          |
| LEVE                   | LK ¥ Duri | וזע אוי  | lling/Digging on 11-14-2023 None on Auger                                                                                                                                                                                                                                                                                                                                               | APP     | <b>1aple</b><br>ROVE |                     | Drillir           | ng Ltd             |              |         | ISPECTOR G. GITZEL  ATE 1-22-2024                                                        |

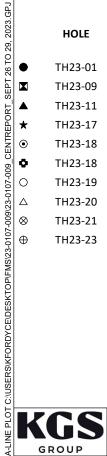
| HOLE    | DEPTH<br>(m) | SAMPLE<br># | GRAVEL<br>(%) | SAND<br>(%) | SILT<br>(%) | CLAY<br>(%) | SILT &<br>CLAY (%) | Cu    | Сс   | CLASSIFICATION |
|---------|--------------|-------------|---------------|-------------|-------------|-------------|--------------------|-------|------|----------------|
| TH23-25 | 6.6          | <b>S9</b>   | 8             | 34          | 45          | 13          | 58                 |       |      | ML             |
| TH23-26 | 4.6          | S6          | 10            | 32          | 45          | 14          | 58                 | 95.66 | 0.81 | ML             |



## **ATTERBERG LIMITS**



|           | HOLE    | DEPTH<br>(m) | SAMPLE<br># | LL | PL | PI | SAND<br>(%) | SILT<br>(%) | CLAY<br>(%) | SILT &<br>CLAY (%) | MC<br>(%) | CLASSIFICATION |
|-----------|---------|--------------|-------------|----|----|----|-------------|-------------|-------------|--------------------|-----------|----------------|
| •         | TH23-01 | 4.3          | <b>S</b> 5  | 66 | 21 | 45 |             |             |             |                    | 30        | СН             |
|           | TH23-09 | 4.4          | <b>S</b> 5  | 27 | 14 | 13 | 27          | 42          | 15          | 56                 | 11        | CL             |
| ▲         | TH23-11 | 4.3          | S4          | 83 | 26 | 57 |             |             |             |                    | 54        | СН             |
| *         | TH23-17 | 2.0          | S2          | 80 | 25 | 55 |             |             |             |                    | 34        | СН             |
| •         | TH23-18 | 2.4          | S3          | 49 | 16 | 33 |             |             |             |                    | 26        | CI             |
| •         | TH23-18 | 4.0          | S4          | 21 | 16 | 5  | 33          | 47          | 18          | 65                 | 12        | CL-ML          |
| 0         | TH23-19 | 5.2          | S4          | 79 | 24 | 55 |             |             |             |                    | 44        | СН             |
|           | TH23-20 | 3.8          | <b>S</b> 5  | 85 | 26 | 59 |             |             |             |                    | 46        | СН             |
| $\otimes$ | TH23-21 | 3.7          | S3          | 80 | 29 | 51 |             |             |             |                    | 46        | СН             |
| $\oplus$  | TH23-23 | 3.7          | <b>S4</b>   | 56 | 29 | 27 |             |             |             |                    | 22        | CH             |


SAND

SILT

CLAY

SILT &

MC



**CLIENT** PROJECT NAME **TESTED BY** 

DEPTH

SAMPLE

CentrePort Regional S&W Servicing

**PROJECT NO.** 23-0107-009 Winnipeg, Manitoba LOCATION **DATE TESTED** 10/24/2023

### **KEY TO SYMBOLS**

#### LITHOLOGIC SYMBOLS



Clay (CH, high plasticity)



Dolomite



**Dolomite Shaley** 



Fill



Limestone



Silt (ML)



Silt Till



No Recovery



Organics



Topsoil

#### SAMPLER SYMBOLS



**Auger Grab** 



Core Barrel



SPT Split Spoon

#### WELL CONSTRUCTION SYMBOLS



Sand Backfill



Standpipe (bentonite pellets)



Standpipe (cement/bentonite grout)



Standpipe (filter sand)



Screen (filter sand)

#### **ABBREVIATIONS**

LL - Liquid Limit

PL - Plastic Limit

PI - Plastic Index

MC - Moisture Content

DD - Dry Density

NP - Non-Plastic

-200 - Percent Passing No. 200 Sieve

TV - Torvane (kPa)

PP - Pocket Penetrometer (kPa)

PSA - Particle Size Analysis

TOC - Top Of Casing

PN - Pneumatic Piezometer

VW - Vibrating Wire Piezometer

PID - Photoionization Detector

ppm - Parts Per Million

, Water Level During

□ Drilling

■ Water Level Upon Completion of Drilling

Water Level

Remeasured/Static



CLIENT

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT

PROJECT NO.

23-0107-009

PROJECT NAME CentrePort Regional S&W Servicing

LOCATION

Winnipeg, Manitoba

|                                                                                                              | GRO          |                 | 5        | TEST PIT LOG                                                                                                                                                                                              | HOLE NO.<br><b>TP24-01</b>                          |        |               |                        |                | SH                            | EET 1  | of 1                    |
|--------------------------------------------------------------------------------------------------------------|--------------|-----------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|---------------|------------------------|----------------|-------------------------------|--------|-------------------------|
| CLIE<br>PRO<br>LOC<br>DES<br>EXC                                                                             |              | N<br>TON<br>OR  |          | CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT<br>CentrePort Regional S&W Servicing<br>Winnipeg, Manitoba<br>Approx 15 m North of TH23-09<br>CAT 320 Excavator                                             | PROJECT NO.<br>SURFACE ELE<br>START DATE<br>UTM (m) |        | 2:<br>2:<br>N | 39.97<br>-21-2<br>5,52 |                | Zone                          | 14     |                         |
| ELEVATION (m)                                                                                                | (m)<br>DEPTH |                 | GRAPHICS | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                            |                                                     | į<br>į | SAMPLE TYPE   | NUMBER                 | qu PO          | DRVANE  CKET PER  BLOWS, 40 6 | N (kPa | <b>◆</b><br>ı) <b>*</b> |
|                                                                                                              |              |                 | W/W/W/   | TOPSOIL - Black, frozen, with grass and rootlets.                                                                                                                                                         |                                                     | 239.7  | +             |                        | 20             | 40 6                          | 0 0    |                         |
| E                                                                                                            | ╡            | -               |          | <u>SILT</u> - Light brown, non-plastic, frozen.                                                                                                                                                           |                                                     | 239.4  |               | S1                     |                |                               |        |                         |
| 239<br>                                                                                                      | 1.0          | _<br>_<br>_     |          | <u>CLAY</u> - Brown, damp, stiff, low plasticity, some silt.                                                                                                                                              |                                                     |        |               | S2                     |                |                               |        |                         |
| E                                                                                                            | =            | <del>-</del> -5 |          | SILT TILL - Light brownish grey, dry, dense, low plasticity, some gravel,                                                                                                                                 | some sand, some                                     | 238.5  |               | S3                     |                |                               |        |                         |
| 238<br>238<br>                                                                                               | 2.0          | _               |          | clay, trace cobbles/boulders Increased gravel, cobbles/boulders. Average boulder size of 380 mm of 560 mm below 2.0 m.                                                                                    | and maximum size                                    |        |               | . S4                   |                |                               |        |                         |
| 237<br>                                                                                                      | 3.0          |                 |          |                                                                                                                                                                                                           |                                                     |        |               | S5                     |                |                               |        |                         |
| 236<br>236<br>                                                                                               | 4.0          | -<br>-<br>15    |          |                                                                                                                                                                                                           |                                                     |        |               |                        |                |                               |        |                         |
| _<br>235                                                                                                     | 5.0—         | -               |          | - Silt till mixed with weathered bedrock at 4.9 m.                                                                                                                                                        |                                                     | 234.9  | ./2           | S6                     |                |                               |        |                         |
| 234<br>234<br>234<br>234<br>234<br>235<br>237<br>237<br>238<br>239<br>231<br>231<br>231<br>231<br>231<br>231 | 6.0          |                 |          | BEDROCK - Reddish brown, argillaceous, brittle.  Notes:  1. End of test pit at 5.3 m.  2. Refusal encountered on boulder or bedrock at a depth of 5.1 m.  3. Test pit backfilled with excavated material. |                                                     | 234.7  |               | \$7                    |                |                               |        |                         |
| 230<br>WAT                                                                                                   | 10.0<br>ER ▼ | Uno             | n Con    | npletion 5.10 m Dry C                                                                                                                                                                                     | ONTRACTOR                                           |        |               | IN.                    | ISPECTO        |                               |        |                         |
| LÉVE                                                                                                         | LS           | 200             |          |                                                                                                                                                                                                           | J CON Civil                                         |        |               |                        | L. PROV        |                               |        |                         |
| 2                                                                                                            |              |                 |          | A                                                                                                                                                                                                         | APPROVED<br>K. FORDYCE                              |        |               | D                      | ATE<br>2-29-20 | 24                            |        |                         |

| KG                                                       |                                                                                                                          | TEST PIT LOG                                                                                                                                                                                                                                                                                | HOLE NO. <b>TP24-02</b>                     |  |             |                          |                                          | SH           | EET 1  | of       |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|-------------|--------------------------|------------------------------------------|--------------|--------|----------|
| CLIENT<br>PROJECT<br>LOCATION<br>DESCRIPTION<br>EXCAVATO | CLIENT CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT PROJECT NO. PROJECT CentrePort Regional S&W Servicing SURFACE ELEV. |                                                                                                                                                                                                                                                                                             |                                             |  |             |                          | 07-009<br>m<br>024<br>9,137.29<br>771.87 | )<br>Zone 14 |        |          |
| ELEVATION (m)                                            | (t)<br>GRAPHICS                                                                                                          | DESCRIPTION AND<br>CLASSIFICATION                                                                                                                                                                                                                                                           | ELEV (m                                     |  | SAMPLE TYPE | NUMBER                   | Cu TO: qu POC SPT (N) I                  |              | N (kPa | <b>*</b> |
| -239                                                     | 10                                                                                                                       | SILT - Light brown, dry, low plasticity, some clay.  CLAY - Brown, damp, hard, low plasticity, with silt.  SILT TILL - Light grey, damp, dense, low plasticity, and clay, some gray trace cobbles/boulders.  - Trace clay. Sedimentary/Igneous boulders (maximum size of 600 m below 3.5 m. |                                             |  |             | \$1<br>\$2<br>\$3<br>\$4 |                                          |              |        |          |
| 5.0—<br>5.0—<br>———————————————————————————————————      | 20 25 30                                                                                                                 | Notes:  1. End of test pit at 5.0 m.  2. Refusal encountered on boulder or bedrock at a depth of 4.6 m.  3. Test pit backfilled with excavated material.                                                                                                                                    | 235.6                                       |  |             | 33                       |                                          |              |        |          |
|                                                          | <br>Jpon Cor                                                                                                             |                                                                                                                                                                                                                                                                                             | CONTRACTOR J CON Civil  APPROVED K. FORDYCE |  |             |                          | ISPECTOR  L. PROVE  ATE  2-29-202        | N            |        | _        |

# APPENDIX C

2023/2024 Select Drilling Photos



**TH23-01 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-01 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-01 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-01 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-01 Photo 5:** 6.0 m to 7.5 m (20 ft to 25 ft)



**TH23-01 Photo 6:** 7.5 m to 9.0 m (25 ft to 30 ft)



**TH23-01 Photo 7:** Bedrock Core, 9.45 m to 22.2 m (31.5 ft to 74 ft)



**TH23-03 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-03 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-03 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-03 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-03 Photo 5:** 6.0 m to 7.0 m (20 ft to 23 ft)



**TH23-04 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-04 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-04 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-04 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-04 Photo 5:** 6.0 m to 7.3 m (20 ft to 24 ft)



**TH23-05 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-05 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-05 Photo 3:** 3.0 m to 4.2 m (10 ft to 14 ft)



**TH23-06 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-06 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-06 Photo 3:** 3.0 m to 4.2 m (10 ft to 14 ft)



**TH23-06 Photo 4:** 3.0 m to 4.5 m (15 ft to 20 ft)



**TH23-07 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-07 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-07 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-07 Photo 4:** 4.5 m to 5.4 m (15 ft to 18 ft)



**TH23-08 Photo 1:** Bedrock core, 3.3 m to 9.3 m (11 ft to 31 ft)



**TH23-09 Photo 1:** 0.0 m to 1.5 m (0 ft to 5 ft)



**TH23-09 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-09 Photo 3:** SPT from 3.0 m to 3.3 m (10 ft to 11 ft)



**TH23-09 Photo 4:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-09 Photo 5:** 4.5m to 5.2m (15 ft to 17 ft-3 in)



**TH23-09 Photo 6:** 5.2 m to 9.3m (17 ft-3in to 31ft)



**TH23-11 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-11 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-11 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-11 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-12 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-12 Photo 2:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-12 Photo 3:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-12 Photo 4:** 6.0 m to 7.5 m (20 ft to 25 ft)



**TH23-17 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-17 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-17 Photo 3:** 3.0 m to 4.2 m (10 ft to 14 ft)



**TH23-17 Photo 4:** Bedrock core from 4.2 m to 12.4 m (14 ft to 41 ft – 4in)



**TH23-18 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-18 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-18 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-18 Photo 4:** Bedrock core from 4.6 m to 12.4 m (15 ft – 5 in to 41 ft – 5 in)



**TH23-19 Photo 1:** 0 to 1.5 m (0 to 5 ft)



**TH23-19 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-19 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-19 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-19 Photo 5:** 6.0 m to 7.2 m (20 ft to 24 ft)



**TH23-20 Photo 1:** 0.0 m to 1.5 m (0 ft to 5 ft)



**TH23-20 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)



**TH23-20 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-20 Photo 4:** 4.5 m to 6.0 m (10 ft to 15 ft)



**TH23-20 Photo 5:** 6.0 m to 7.5 m (20 ft to 25 ft)



**TH23-20 Photo 6:** 7.5 m to 8.1 m (25 ft to 27ft)



TH23-20 Photo 7: Bedrock recovered from SPT at 8.1m (27ft)



**TH23-21 Photo 1:** 0 to 1.2 m (0 to 4 ft)



**TH23-21 Photo 2:** 1.2 m to 2.7 m (4 ft to 9 ft)



**TH23-21 Photo 3:** 2.7 m to 4.2 m (9 ft to 14 ft)



**TH23-21 Photo 4:** 4.2 m to 5.7 m (14 ft to 19 ft)



TH23-21 Photo 5: SPT at 5.7m (19 ft)



**TH23-21 Photo 6:** 5.7m to 7.2 m (19 ft to 24 ft)



TH23-21 Photo 7: SPT at 7.2m (24 ft)



**TH23-21 Photo 8:** 7.2m to 7.8 m (24 ft to 26 ft)



**TH23-22 Photo 1:** 0 to 1.2 m (0 to 4 ft)



**TH23-22 Photo 2:** 1.2 m to 2.7 m (4 ft to 9 ft)



**TH23-22 Photo 3:** 2.7 m to 4.2 m (9 ft to 14 ft)



**TH23-22 Photo 4:** SPT at 4.2m (14 ft)



**TH23-22 Photo 5:** 4.2 m to 5.7 m (14 ft to 19 ft)



TH23-22 Photo 6: SPT at 5.7m (19 ft)



**TH23-22 Photo 7:** 5.7 m to 7.2 m (19 ft to 24 ft)



TH23-22 Photo 8: SPT at 7.2m (24 ft)



**TH23-23 Photo 1:** 0 to 1.2 m (0 to 4 ft)



**TH23-23 Photo 2:** 1.2 m to 2.7 m (4 ft to 9 ft)



**TH23-23 Photo 3:** 2.7 m to 4.2 m (9 ft to 14 ft)



**TH23-23 Photo 4:** 4.2 m to 5.7 m (14 ft to 19 ft)



TH23-23 Photo 5: SPT at 5.7m (19 ft)



**TH23-23 Photo 6:** 5.7 m to 6.2 m (19 ft to 20.5 ft)



TH23-24 Photo 1: 0 to 1.5 m (0 to 5 ft)



**TH23-24 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)

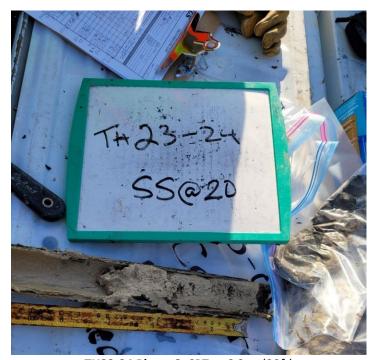


**TH23-24 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



**TH23-24 Photo 4:** 4.5 m to 6.0 m (15 ft to 20 ft)




**TH23-24 Photo 5:** 7.5 m to 9.0 m (25 ft to 30 ft)



**TH23-24 Photo 6:** 9.0 m to 9.9 m (30 ft to 33 ft)



TH23-24 Photo 7: SPT at 4.5 m (15ft)



TH23-24 Photo 8: SPT at 6.0 m (20ft)



TH23-24 Photo 9: SPT at 7.5 m (25ft)



TH23-24 Photo 10: SPT at 9.0 m (30ft)



**TH23-24 Photo 11:** Bedrock core from 9.0 m to 11.2 m (30 ft to 37 ft – 3 in)

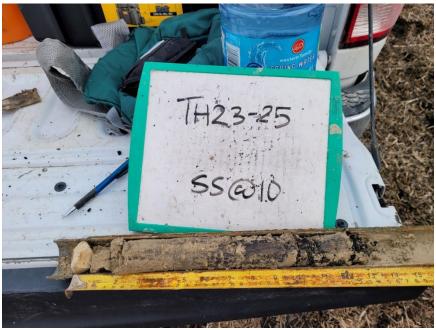


**TH23-25 Photo 1:** 0.0 m to 1.5 m (0 ft to 5 ft)



**TH23-25 Photo 2:** 1.5 m to 3.0 m (5 ft to 10 ft)




**TH23-25 Photo 3:** 3.0 m to 4.5 m (10 ft to 15 ft)



TH23-25 Photo 4: 4.5 m to 6.0 m (15 ft to 20 ft)



**TH23-25 Photo 5:** 6.0 m to 7.5 m (20 ft to 25 ft)



TH23-25 Photo 6: SPT at 3.0m (10 ft)



**TH23-25 Photo 7:** SPT at 4.5m (15 ft)



TH23-25 Photo 8: SPT at 6.0m (20 ft)



TH23-25 Photo 9: SPT at 7.5m (25 ft)



**TH23-25 Photo 10:** Bedrock core from 8.5 m to 13.9 m (28 ft - 2 in to 46 ft - 2 in)



**TH23-26 Photo 1:** Bedrock core from 5.5 m to 15.4 m (18 ft – 4 in to 51 ft – 4 in)



TP24-01 Photo 1: Completed test pit to 5.1 m



TP24-01 Photo 2: Clay -rich Silt Till



TP24-01 Photo 3: Silt Till with Higher Gravel Content



**TP24-01 Photo 4:** Boulders from Silt Till



TP24-01 Photo 5: Sedimentary Boulder (22 inches)



TP24-01 Photo 6: Igneous Boulder (22 inches)



TP24-01 Photo 7: Sedimentary Boulder



TP24-01 Photo 8: Reddish Brown Argillaceous Bedrock at 5.1 m.



TP24-02 Photo 1: Top of bedrock encountered at 4.6 m



TP24-02 Photo 2: Cobbles and Boulders from silt till



TP24-02 Photo 3: Boulder from silt till (22 inches)



TP24-02 Photo 4: Boulders from silt till (16 inches)



TP24-02 Photo 5: Boulder from silt till (24 inches)



TP24-02 Photo 6: Igneous boulder in silt till

# APPENDIX D

2023 Laboratory Testing Results

Tel: (204) 488-6999

# ASTM D2216 - LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK BY MASS

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W

Servicing (23-0107-009)

Winnipeg, Manitoba

R3T 5P4

3rd Floor - 865 Waverley Street

PROJECT NO.

123316822

ATTN: Grace Gitzel

REPORT NO.

DATE SAMPLED: 2023.Sep.25 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.20 SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. TESTED BY: Larry Presado

| TESTHOLE | SAMPLE     | MC % |
|----------|------------|------|
|          | S3         | 45.5 |
|          | <b>S</b> 5 | 29.5 |
| TH23-01  | S6         | 9.3  |
|          | S8         | 9.3  |
|          | S10        | 8.3  |
| TH23-08  | S1         | 20.8 |
| 11123-00 | S2         | 7.9  |
|          | S1         | 11.9 |
| TH23-09  | S3         | 9.8  |
| 1023-09  | S4         | 9.2  |
|          | <b>S</b> 5 | 10.7 |
|          | S3         | 20.0 |
| TH23-20  | <b>S</b> 5 | 45.6 |
| 11123-20 | S6         | 29.3 |
|          | S8         | 42.9 |

REPORT DATE 2023.Oct.27

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

PAGE

OF

1

# ASTM D2216 - LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK BY MASS

TO KGS Group Inc.

3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Grace Gitzel

**PROJECT** 

CentrePort AAW Regional S&W

Servicing (23-0107-009)

PROJECT NO. 123316822

REPORT NO. 2

DATE SAMPLED: 2023.Nov.15

DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Nov.28

SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Carson Cockwell

| TESTHOLE | SAMPLE | MC % |
|----------|--------|------|
|          | S3     | 31.5 |
| TH23-05  | S4     | 11.9 |
|          | S6     | 9.0  |
|          | S3     | 38.4 |
| TH23-11  | S4     | 53.6 |
|          | S5     | 23.9 |
|          | S1     | 38.4 |
| TH23-17  | S2     | 33.6 |
| 11123-17 | S3     | 27.2 |
|          | S4     | 20.4 |
| TH23-18  | S3     | 25.6 |
| 11123-10 | S4     | 11.9 |
|          | S2     | 36.7 |
| TH23-19  | S3     | 39.1 |
| 11123-19 | S4     | 43.5 |
|          | S5     | 31.8 |
|          | S3     | 46.1 |
| TH23-21  | S4     | 41.6 |
|          | S7     | 10.3 |
|          | S3     | 22.7 |
| TH23-22  | S4     | 18.1 |
|          | S7     | 13.8 |
|          | S2     | 38.9 |
| TH23-23  | S4     | 21.6 |
|          | S5     | 21.9 |

| TESTHOLE | SAMPLE     | MC % |
|----------|------------|------|
|          | S3         | 37.6 |
|          | S5         | 37.6 |
| TH23-24  | S7         | 10.0 |
|          | S9         | 12.4 |
|          | S11        | 9.5  |
|          | S2         | 37.7 |
| TH23-25  | S5         | 10.1 |
| 11123-23 | <b>S</b> 7 | 11.3 |
|          | S9         | 13.9 |
|          | S2         | 20.9 |
| TH23-26  | S3         | 8.6  |
| 11123-20 | S5         | 9.6  |
|          | S6         | 9.1  |

REPORT DATE 2023.Nov.29

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.

Design with community in mind

PAGE

OF

1



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

PROJECT NO.

123316822

ATTN: Grace Gitzel

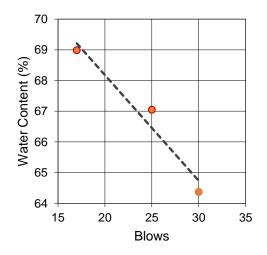
3rd Floor - 865 Waverley Street

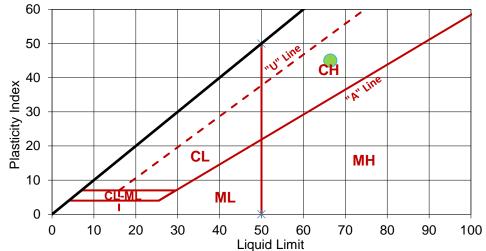
REPORT NO.

DATE SAMPLED: 2023.Sep.28 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.26

SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. TESTED BY: Larry Presado

SAMPLE ID: TH23-01, S5, 14'-15'


TRIAL 1 2 3
BLOWS 30 25 17
MC (%) 64 67 69


TRIAL MC (%) PLASTIC LIMIT

1 2

21 21

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)





COMMENTS:

REPORT DATE 2023.Oct.27

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

KGS Group Inc. TO

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

PROJECT NO.

123316822

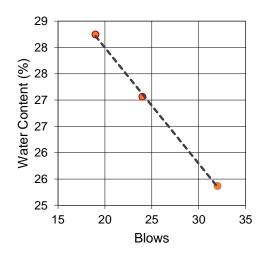
ATTN: Grace Gitzel

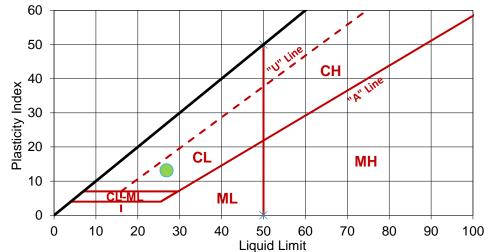
3rd Floor - 865 Waverley Street

REPORT NO.

DATE TESTED: 2023.Oct.26 DATE SAMPLED: 2023.Sep.25 DATE RECEIVED: 2023.Oct.20 SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. **TESTED BY:** Larry Presado

SAMPLE ID: TH23-09, S5, 14.5'-15'


|        | LIQUID LIMIT |    |    |
|--------|--------------|----|----|
| TRIAL  | 1            | 2  | 3  |
| BLOWS  | 32           | 24 | 19 |
| MC (%) | 25           | 27 | 28 |


LICHIDLIMIT

TRIAL MC (%)

| PLASTIC LIMIT |    |  |
|---------------|----|--|
| 1             | 2  |  |
| 14            | 14 |  |

LIQUID LIMIT, LL PLASTIC LIMIT. PL PLASTICITY INDEX, PI AS REC'D MC (%)





COMMENTS:

REPORT DATE 2023.Oct.27 **REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W Servicing

# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

**PROJECT** 

TO KGS Group Inc.

3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4 PROJECT NO. 123316822

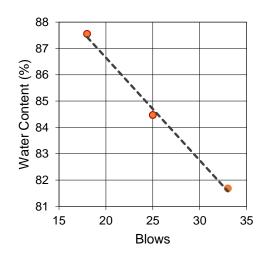
ATTN: Grace Gitzel REPORT NO. 3

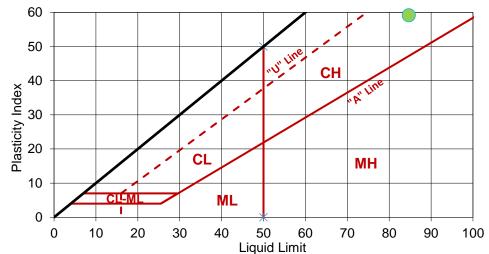
DATE SAMPLED: 2023.Sep.25 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.26

SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. TESTED BY: Larry Presado

SAMPLE ID: TH23-20, S5, 12.5'-13'

|        | LIQUID LIMIT |    |    |
|--------|--------------|----|----|
| TRIAL  | 1            | 2  | 3  |
| BLOWS  | 33           | 25 | 18 |
| MC (%) | 82           | 84 | 88 |


TRIAL MC (%)


| PLASTIC LIMIT |   |  |
|---------------|---|--|
| 1             | 2 |  |
| 26 26         |   |  |

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)

(23-0107-009)







COMMENTS:

REPORT DATE 2023.Oct.27

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

PROJECT NO.

123316822

ATTN: Grace Gitzel

3rd Floor - 865 Waverley Street

REPORT NO.

DATE SAMPLED: 2023.Nov.15
SAMPLED BY: KGS Group Inc.

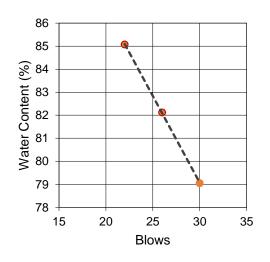
DATE RECEIVED: 2023.Nov.27

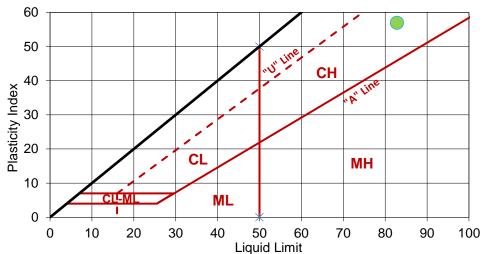
DATE TESTED: 2023.Dec.06

SUBMITTED BY: KGS Group Inc.

TESTED BY: Blair Dawson

SAMPLE ID: TH23-11, S4


|        | LIQUID LIMIT |    |    |
|--------|--------------|----|----|
| TRIAL  | 1            | 2  | 3  |
| BLOWS  | 30           | 26 | 22 |
| MC (%) | 79           | 82 | 85 |


TRIAL MC (%)

|    | PLASTIC LIMIT |    |  |
|----|---------------|----|--|
| L  | 1             | 2  |  |
| %) | 26            | 26 |  |

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.08

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

131 31 4

PROJECT NO.

123316822

ATTN: Grace Gitzel

3rd Floor - 865 Waverley Street

REPORT NO.

DATE SAMPLED: 2023.Nov.15

DATE RECEIVED: 2023.Nov.27

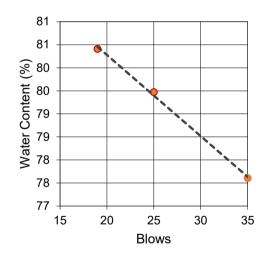
DATE TESTED: 2023.Dec.06

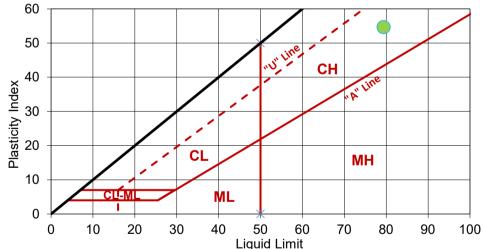
SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Carson Cockwell

SAMPLE ID: TH23-17, S2


|        | LIQUID LIMIT |    |    |
|--------|--------------|----|----|
| TRIAL  | 1            | 2  | 3  |
| BLOWS  | 35           | 25 | 19 |
| MC (%) | 78           | 79 | 80 |


TRIAL MC (%)

| PLASTIC LIMIT |    |  |
|---------------|----|--|
| 1             | 2  |  |
| 25            | 25 |  |

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.11

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

-----

R3T 5P4

PROJECT NO.

123316822

ATTN: Grace Gitzel

3rd Floor - 865 Waverley Street

REPORT NO.

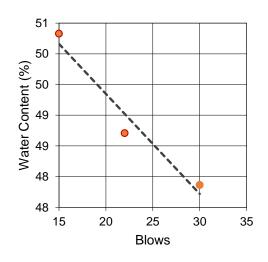
DATE SAMPLED: 2023.Nov.15
SAMPLED BY: KGS Group Inc.

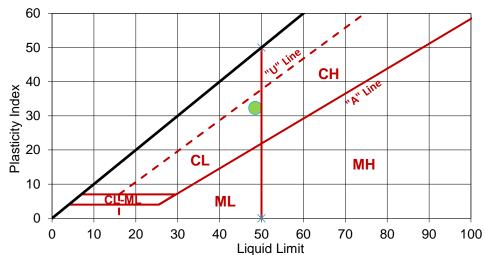
DATE RECEIVED: 2023.Nov.27 SUBMITTED BY: KGS Group Inc. DATE TESTED: 2023.Dec.06

TESTED BY:

Carson Cockwell

SAMPLE ID: TH23-18, S3


|        | LIQUID LIMIT |    |    |
|--------|--------------|----|----|
| TRIAL  | 1            | 2  | 3  |
| BLOWS  | 30           | 22 | 15 |
| MC (%) | 48           | 49 | 50 |


TRIAL MC (%)

| PLASTIC LIMIT |    |  |  |
|---------------|----|--|--|
| 1             | 2  |  |  |
| 16            | 16 |  |  |

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.08

REVIEWED BY

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc.

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

PROJECT NO.

123316822

ATTN: Grace Gitzel

3rd Floor - 865 Waverley Street

REPORT NO.

DATE SAMPLED: 2023.Nov.15

DATE RECEIVED: 2023.Nov.27

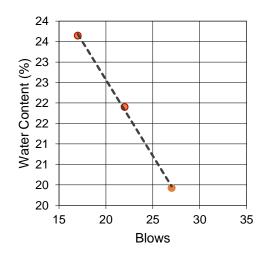
DATE TESTED: 2023.Dec.06

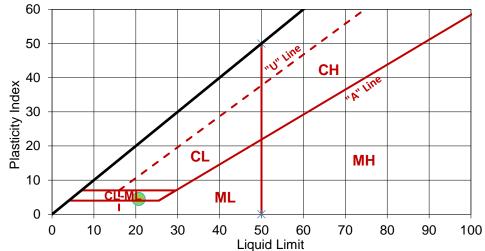
SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Carson Cockwell

SAMPLE ID: TH23-18, S4


|        | LIQUID LIMIT |    |    |  |  |
|--------|--------------|----|----|--|--|
| TRIAL  | 1            | 2  | 3  |  |  |
| BLOWS  | 27           | 22 | 17 |  |  |
| MC (%) | 20           | 22 | 24 |  |  |


TRIAL MC (%)

| PLASTIC LIMIT |    |  |  |
|---------------|----|--|--|
| 1             | 2  |  |  |
| 16            | 16 |  |  |

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.08

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

TO KGS Group Inc. PROJECT CentrePort AAW Regional S&W Servicing

3rd Floor - 865 Waverley Street (23-0107-009)

Winnipeg, Manitoba

R3T 5P4 PROJECT NO. 123316822

ATTN: Grace Gitzel REPORT NO. 8

DATE SAMPLED: 2023.Nov.15

DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Dec.06

SAMPLED BY: KGS Group Inc.

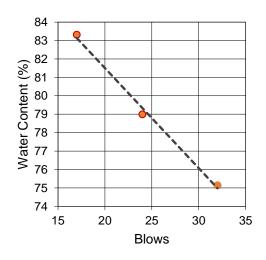
SUBMITTED BY: KGS Group Inc.

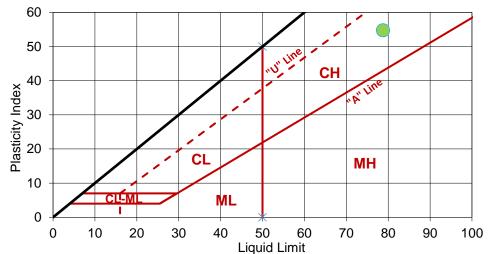
TESTED BY: Carson Cockwell

PLASTIC LIMIT

24

SAMPLE ID: TH23-19, S4


|        | LIQUID LIMIT |    |    |  |
|--------|--------------|----|----|--|
| TRIAL  | 1            | 2  | 3  |  |
| BLOWS  | 32           | 24 | 17 |  |
| MC (%) | 75           | 79 | 83 |  |


LICHIDLIMIT

TRIAL 1
MC (%) 24

LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.08

**REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

KGS Group Inc. TO

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

Winnipeg, Manitoba

R3T 5P4

PROJECT NO.

123316822

ATTN: Grace Gitzel

3rd Floor - 865 Waverley Street

REPORT NO.

DATE TESTED: 2023.Dec.06 DATE RECEIVED: 2023.Nov.27 **TESTED BY:** Carson Cockwell

SUBMITTED BY: KGS Group Inc.

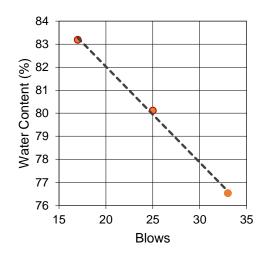
SAMPLE ID: TH23-21, S3

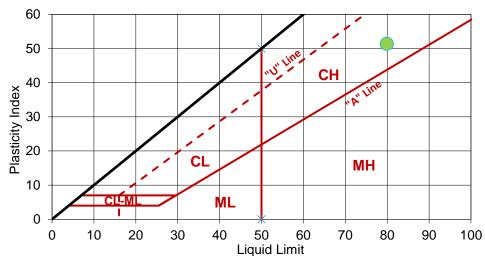
DATE SAMPLED: 2023.Nov.15

SAMPLED BY:

|        | LIQUID LIMIT |    |    |  |  |
|--------|--------------|----|----|--|--|
| TRIAL  | 1            | 2  | 3  |  |  |
| BLOWS  | 33           | 25 | 17 |  |  |
| MC (%) | 77           | 80 | 83 |  |  |

KGS Group Inc.


LICHIDLIMIT


TRIAL MC (%)



LIQUID LIMIT, LL PLASTIC LIMIT. PL PLASTICITY INDEX, PI AS REC'D MC (%)







COMMENTS:

REPORT DATE 2023.Dec.08 **REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



# ASTM D4318 - LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS (LL METHOD A - MULTIPOINT)

KGS Group Inc. TO

**PROJECT** 

CentrePort AAW Regional S&W Servicing

(23-0107-009)

3rd Floor - 865 Waverley Street Winnipeg, Manitoba

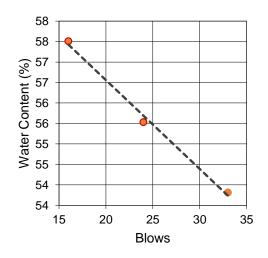
R3T 5P4

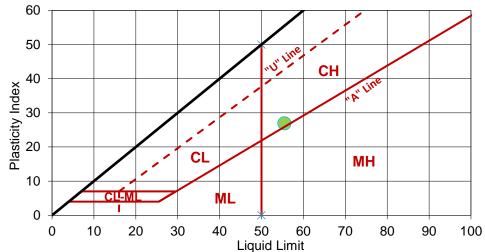
PROJECT NO. 123316822

ATTN: Grace Gitzel REPORT NO. 10

DATE SAMPLED: 2023.Nov.15 SAMPLED BY: KGS Group Inc. DATE RECEIVED: 2023.Nov.27 SUBMITTED BY: KGS Group Inc. DATE TESTED: 2023.Dec.06

**TESTED BY:** Carson Cockwell


SAMPLE ID: TH23-23, S4


|        | LIQUID LIMIT |    |    |  |
|--------|--------------|----|----|--|
| TRIAL  | 1            | 2  | 3  |  |
| BLOWS  | 33           | 24 | 16 |  |
| MC (%) | 54           | 56 | 58 |  |

TRIAL MC (%)



LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTICITY INDEX, PI AS REC'D MC (%)





COMMENTS:

REPORT DATE 2023.Dec.08 **REVIEWED BY** 

Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



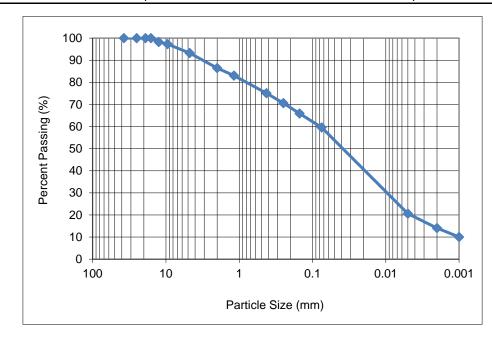
CentrePort AAW Regional S&W

Servicing (23-0107-009)

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

TO KGS Group Inc.


3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4 PROJECT NO. 123316822

ATTN: Grace Gitzel REPORT NO. 1

DATE SAMPLED: 2023.Sep.28 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.24
SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. TESTED BY: Larry Presado



| Gravel | Sand   |        |      | Qil <del>t</del> | Silt     | Clay |  | Clay Colloid | Clay | Colloide |
|--------|--------|--------|------|------------------|----------|------|--|--------------|------|----------|
| Giavei | Coarse | Medium | Fine | SIII             | Colloids |      |  |              |      |          |
| 6.7    | 6.9    | 11.3   | 15.5 | 45.5             | 14.1     | 10.0 |  |              |      |          |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 98.3         |
| 9.5             | 97.3         |
| 4.75            | 93.3         |
| 2.00            | 86.4         |
| 1.18            | 83.1         |
| 0.425           | 75.1         |
| 0.250           | 70.6         |
| 0.150           | 65.9         |
| 0.075           | 59.6         |
| 0.005           | 20.6         |
| 0.002           | 14.1         |
| 0.001           | 10.0         |

COMMENTS:

Material tested was identified as TH23-01, S6, 19'-20'.

REPORT DATE 2023.Oct.27

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

123316822

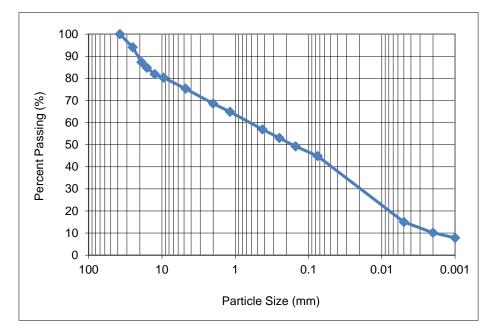
### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.

3rd Floor - 865 Waverley Street


Winnipeg, Manitoba

R3T 5P4

ATTNI, Cross Citral DEDORT NO 2

ATTN: Grace Gitzel REPORT NO. 2

DATE SAMPLED: 2023.Sep.26 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.24
SAMPLED BY: KGS Group Inc. SUBMITTED BY: KGS Group Inc. TESTED BY: Larry Presado



| Gravel | Sand   |        |      | Silt | Silt Clay ( |          | Clay | Colloids |
|--------|--------|--------|------|------|-------------|----------|------|----------|
| Graver | Coarse | Medium | Fine | SIII | Clay        | Colloids |      |          |
| 24.7   | 6.8    | 11.6   | 12.1 | 34.6 | 10.2        | 7.8      |      |          |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 94.0         |
| 19.0            | 87.3         |
| 16.0            | 84.8         |
| 12.5            | 81.9         |
| 9.5             | 80.3         |
| 4.75            | 75.3         |
| 2.00            | 68.5         |
| 1.18            | 64.9         |
| 0.425           | 56.9         |
| 0.250           | 53.0         |
| 0.150           | 49.3         |
| 0.075           | 44.8         |
| 0.005           | 15.0         |
| 0.002           | 10.2         |
| 0.001           | 7.8          |

COMMENTS:

Material tested was identified as TH23-08, S2, 10'-11'.

REPORT DATE 2023.Oct.27

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

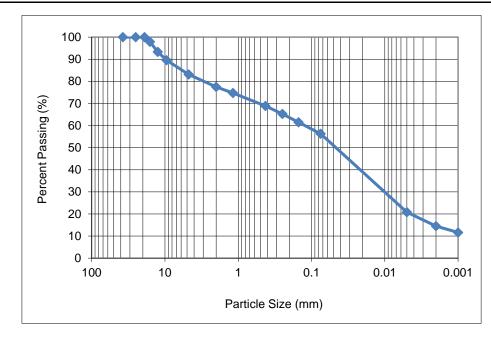
Servicing (23-0107-009)

# AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

TO KGS Group Inc.

3rd Floor - 865 Waverley Street


Winnipeg, Manitoba

R3T 5P4

PROJECT NO. 123316822

ATTN: Grace Gitzel REPORT NO. 3

DATE SAMPLED: 2023.Sep.25 DATE RECEIVED: 2023.Oct.20 DATE TESTED: 2023.Oct.24 KGS Group Inc. KGS Group Inc. Larry Presado SAMPLED BY: SUBMITTED BY: **TESTED BY:** 



| Gravel | Sand   |        |      | Silt | Silt Clay C |          | Colloids |
|--------|--------|--------|------|------|-------------|----------|----------|
| Giavei | Coarse | Medium | Fine | SIII | Clay        | Collolus |          |
| 16.9   | 5.7    | 8.5    | 12.6 | 41.8 | 14.5        | 11.6     |          |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 97.9         |
| 12.5            | 93.3         |
| 9.5             | 89.5         |
| 4.75            | 83.1         |
| 2.00            | 77.4         |
| 1.18            | 74.7         |
| 0.425           | 68.9         |
| 0.250           | 65.2         |
| 0.150           | 61.5         |
| 0.075           | 56.3         |
| 0.005           | 20.8         |
| 0.002           | 14.5         |
| 0.001           | 11.6         |

#### COMMENTS:

Material tested was identified as TH23-09, S5, 14.5'-15'.

REPORT DATE 2023.Oct.27

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

123316822

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.

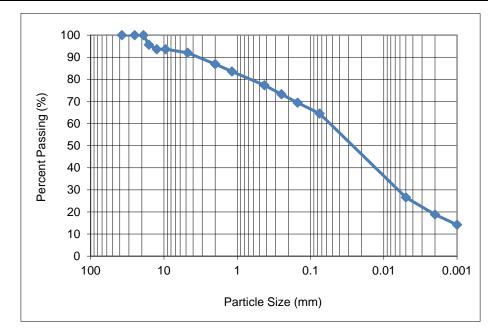
3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce REPORT NO. 4

DATE SAMPLED: 2023.Nov.15


DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Dec.04

SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Larry Presado



| Gravel |        | Sand   |      | Silt | Clay | Colloids |
|--------|--------|--------|------|------|------|----------|
| Giavei | Coarse | Medium | Fine | Silt | Clay | Colloius |
| 8.0    | 5.1    | 9.6    | 12.8 | 45.6 | 18.9 | 14.2     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 95.6         |
| 12.5            | 93.6         |
| 9.5             | 93.6         |
| 4.75            | 92.0         |
| 2.00            | 86.9         |
| 1.18            | 83.5         |
| 0.425           | 77.3         |
| 0.250           | 73.3         |
| 0.150           | 69.5         |
| 0.075           | 64.5         |
| 0.005           | 26.6         |
| 0.002           | 18.9         |
| 0.001           | 14.2         |

COMMENTS:

Material tested was identified as TH23-05, S4.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

123316822

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.

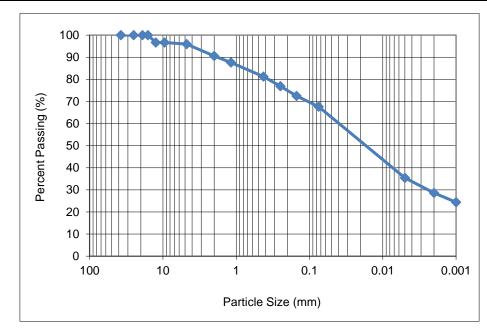
3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce REPORT NO. 5

DATE SAMPLED: 2023.Nov.15


DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Dec.04

SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Larry Presado



| Gravel |        | Sand   |      | Silt | Clay | Colloids |
|--------|--------|--------|------|------|------|----------|
| Giavei | Coarse | Medium | Fine | Silt | Clay | Colloids |
| 4.1    | 5.3    | 9.4    | 13.6 | 39.0 | 28.6 | 24.4     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 96.6         |
| 9.5             | 96.6         |
| 4.75            | 95.9         |
| 2.00            | 90.6         |
| 1.18            | 87.6         |
| 0.425           | 81.2         |
| 0.250           | 76.9         |
| 0.150           | 72.5         |
| 0.075           | 67.6         |
| 0.005           | 35.4         |
| 0.002           | 28.6         |
| 0.001           | 24.4         |

COMMENTS:

Material tested was identified as TH23-11, S5.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

TO KGS Group Inc.

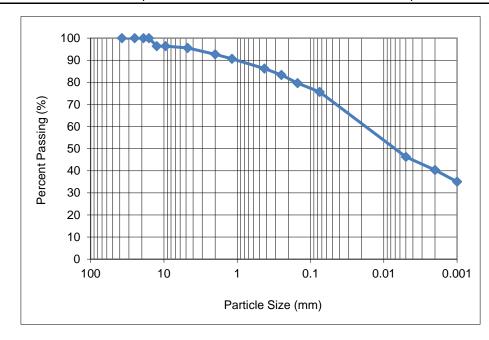
3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4 PROJECT NO. 123316822

ATTN: Kelly Fordyce REPORT NO. 6

DATE SAMPLED: 2023.Nov.15


DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Dec.04

SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Larry Presado



| I | Gravel |        | Sand   |      | Çil+ | Silt Clay Colloi | Colloids |
|---|--------|--------|--------|------|------|------------------|----------|
| l | Glavei | Coarse | Medium | Fine | Siii | Clay             | Colloids |
|   | 4.4    | 2.9    | 6.5    | 10.5 | 35.4 | 40.3             | 35.0     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 96.4         |
| 9.5             | 96.4         |
| 4.75            | 95.6         |
| 2.00            | 92.7         |
| 1.18            | 90.6         |
| 0.425           | 86.2         |
| 0.250           | 83.3         |
| 0.150           | 79.7         |
| 0.075           | 75.7         |
| 0.005           | 46.2         |
| 0.002           | 40.3         |
| 0.001           | 35.0         |

COMMENTS:

Material tested was identified as TH23-17, S4.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

123316822

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.

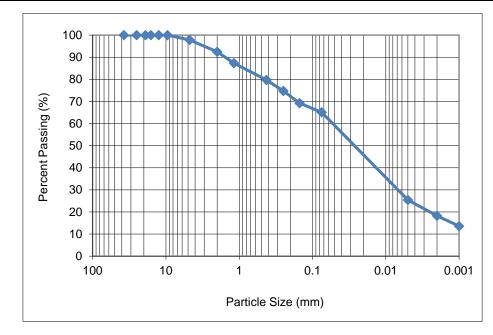
3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce REPORT NO. 7

DATE SAMPLED: 2023.Nov.15


DATE RECEIVED: 2023.Nov.27

DATE TESTED: 2023.Dec.04

SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

TESTED BY: Larry Presado



| Grave |   |        | Sand   |      | Silt | Clay Colloids | Colloids |
|-------|---|--------|--------|------|------|---------------|----------|
| Grave | ' | Coarse | Medium | Fine | Siit | Clay          | Colloids |
| 2.2   |   | 5.3    | 12.8   | 14.6 | 46.9 | 18.2          | 13.6     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 100.0        |
| 9.5             | 100.0        |
| 4.75            | 97.8         |
| 2.00            | 92.5         |
| 1.18            | 87.3         |
| 0.425           | 79.7         |
| 0.250           | 74.7         |
| 0.150           | 69.2         |
| 0.075           | 65.1         |
| 0.005           | 25.4         |
| 0.002           | 18.2         |
| 0.001           | 13.6         |

#### COMMENTS:

Material tested was identified as TH23-18, S4.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

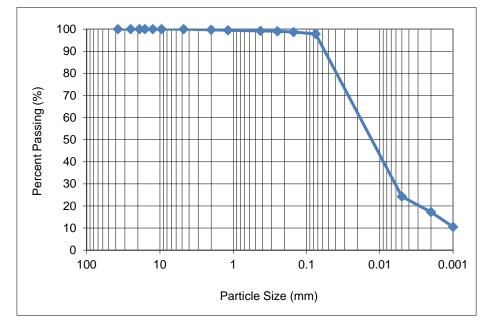
123316822

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.


3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce REPORT NO.

DATE RECEIVED: 2023.Nov.27 DATE TESTED: 2023.Dec.04 DATE SAMPLED: 2023.Nov.15 KGS Group Inc. KGS Group Inc. Larry Presado SAMPLED BY: SUBMITTED BY: **TESTED BY:** 



| ĺ | Gravel |        | Sand   |      | Silt | Clay | Colloids |
|---|--------|--------|--------|------|------|------|----------|
| l | Glavei | Coarse | Medium | Fine | Siii | Clay | Colloids |
|   | 0.0    | 0.3    | 0.5    | 1.4  | 80.5 | 17.3 | 10.5     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 100.0        |
| 9.5             | 100.0        |
| 4.75            | 100.0        |
| 2.00            | 99.7         |
| 1.18            | 99.5         |
| 0.425           | 99.2         |
| 0.250           | 99.0         |
| 0.150           | 98.7         |
| 0.075           | 97.8         |
| 0.005           | 24.3         |
| 0.002           | 17.3         |
| 0.001           | 10.5         |

COMMENTS:

Material tested was identified as TH23-21, S5.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

Servicing (23-0107-009)

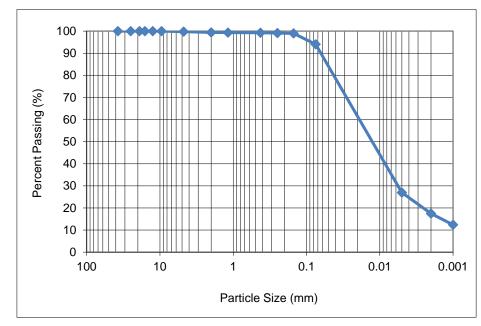
123316822

# AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.


3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce REPORT NO.

DATE RECEIVED: 2023.Nov.27 DATE TESTED: 2023.Dec.04 DATE SAMPLED: 2023.Nov.15 KGS Group Inc. KGS Group Inc. Larry Presado SAMPLED BY: SUBMITTED BY: **TESTED BY:** 



| Gravel |        | Sand   |      | Silt | Silt Clay Colloi | Colloids |
|--------|--------|--------|------|------|------------------|----------|
| Giavei | Coarse | Medium | Fine | Siii | Clay             | Colloids |
| 0.2    | 0.4    | 0.2    | 5.2  | 76.6 | 17.4             | 12.4     |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 100.0        |
| 12.5            | 100.0        |
| 9.5             | 100.0        |
| 4.75            | 99.8         |
| 2.00            | 99.4         |
| 1.18            | 99.3         |
| 0.425           | 99.2         |
| 0.250           | 99.1         |
| 0.150           | 99.0         |
| 0.075           | 94.0         |
| 0.005           | 26.9         |
| 0.002           | 17.4         |
| 0.001           | 12.4         |

COMMENTS:

Material tested was identified as TH23-22, S6.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

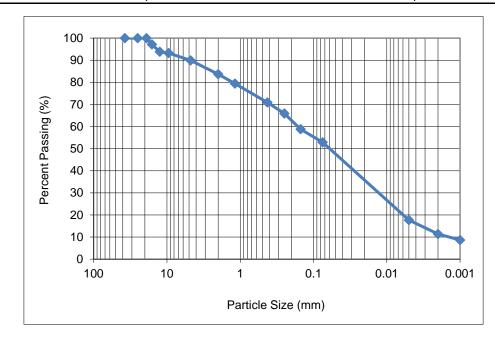
Servicing (23-0107-009)

### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

**PROJECT** 

TO KGS Group Inc.

3rd Floor - 865 Waverley Street


Winnipeg, Manitoba

R3T 5P4

PROJECT NO. 123316822

ATTN: Kelly Fordyce REPORT NO. 10

DATE RECEIVED: 2023.Nov.27 DATE TESTED: 2023.Dec.04 DATE SAMPLED: 2023.Nov.15 KGS Group Inc. KGS Group Inc. Larry Presado SAMPLED BY: SUBMITTED BY: **TESTED BY:** 



| I | Gravel | Sand   |        | Silt | Clay | Colloids |          |
|---|--------|--------|--------|------|------|----------|----------|
|   | Glavei | Coarse | Medium | Fine | SIIL | Clay     | Colloids |
|   | 10.1   | 6.2    | 12.8   | 18.0 | 41.5 | 11.4     | 8.7      |

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 97.2         |
| 12.5            | 93.8         |
| 9.5             | 93.3         |
| 4.75            | 89.9         |
| 2.00            | 83.7         |
| 1.18            | 79.4         |
| 0.425           | 70.9         |
| 0.250           | 65.9         |
| 0.150           | 58.8         |
| 0.075           | 52.9         |
| 0.005           | 17.7         |
| 0.002           | 11.4         |
| 0.001           | 8.7          |

COMMENTS:

Material tested was identified as TH23-24, S11.

REPORT DATE 2023.Dec.11

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



### AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

TO KGS Group Inc.

3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

R3T 5P4

ATTN: Kelly Fordyce

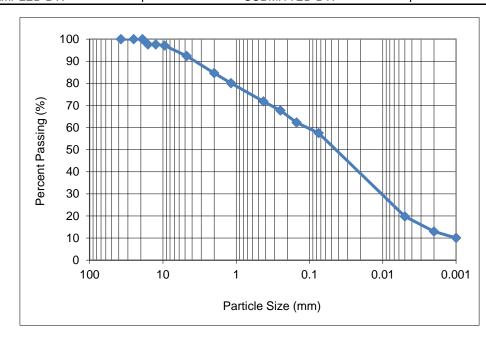
PROJECT NO. 123316822

REPORT NO. 11

**PROJECT** 

DATE SAMPLED: 2023.Nov.15

DATE RECEIVED: 2023.Nov.27


SAMPLED BY: KGS Group Inc.

SUBMITTED BY: KGS Group Inc.

DATE TESTED: 2023.Dec.04
TESTED BY: Larry Presado

CentrePort AAW Regional S&W

Servicing (23-0107-009)



| Gravel |        | Sand   |      | Silt Clay ( |      | Colloids |
|--------|--------|--------|------|-------------|------|----------|
| Glavei | Coarse | Medium | Fine | SIIL        | Clay | Collolus |
| 7.6    | 7.8    | 12.8   | 14.3 | 44.5        | 13.0 | 10.1     |

| G |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

#### COMMENTS:

Material tested was identified as TH23-25, S9.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



199 Henlow Bay, Winnipeg, MB R3Y 1G4

Tel: (204) 488-6999



CentrePort AAW Regional S&W

**TESTED BY:** 

Servicing (23-0107-009)

123316822

# AASHTO T88 (ASTM D422) - PARTICLE-SIZE ANALYSIS OF SOILS

DATE RECEIVED: 2023.Nov.27

**PROJECT** 

PROJECT NO.

TO KGS Group Inc.

3rd Floor - 865 Waverley Street

Winnipeg, Manitoba

DATE SAMPLED: 2023.Nov.15

R3T 5P4

ATTN: Kelly Fordyce REPORT NO. 12

KGS Group Inc. SAMPLED BY: KGS Group Inc. SUBMITTED BY: 100 90 80 Percent Passing (%) 70 60 50 40 30 20 10 10 0.1 0.01 0.001 100

| Ī | Gravel | Sand   |        | Silt | Clay      | Colloids |          |  |
|---|--------|--------|--------|------|-----------|----------|----------|--|
|   | Graver | Coarse | Medium | Fine | Sill Clay |          | Collolus |  |
|   | 10.2   | 6.3    | 11.1   | 14.4 | 44.5      | 13.5     | 9.1      |  |

Particle Size (mm)

| SIEVE SIZE (mm) | %<br>PASSING |
|-----------------|--------------|
| 37.5            | 100.0        |
| 25.0            | 100.0        |
| 19.0            | 100.0        |
| 16.0            | 92.2         |
| 12.5            | 92.2         |
| 9.5             | 92.2         |
| 4.75            | 89.8         |
| 2.00            | 83.5         |
| 1.18            | 80.0         |
| 0.425           | 72.4         |
| 0.250           | 67.8         |
| 0.150           | 61.6         |
| 0.075           | 58.0         |
| 0.005           | 20.1         |
| 0.002           | 13.5         |
| 0.001           | 9.1          |

DATE TESTED: 2023.Dec.04

Larry Presado

#### COMMENTS:

Material tested was identified as TH23-26, S6.

REPORT DATE 2023.Dec.07

REVIEWED BY Guillaume Beauce, P.Eng.

Geotechnical Engineer - Materials Testing Services

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided on written request. The data presented is for sole use of client stipulated above. Stantec is not responsible, nor can be held liable, for the use of this report by any other party, with or without the knowledge of Stantec.



# Compressive Strength & Elastic Moduli of Intact Rock Core Speciments under Varying States of Stress and Temperatures Method C ASTM D7012 & D4543

| Client:        | KGS Group Inc.                        | Project No.:   | 123316822        |
|----------------|---------------------------------------|----------------|------------------|
| Project:       | CentrePort AAW Regional S&W Servicing |                |                  |
| Material Type: | Rock Core                             | Date Received: | October 26, 2023 |
| Date Sampled:  | October 25, 2023                      | Tested By:     | Sagar Khatri     |
| Sampled By:    | Stantec                               | Date Tested:   | November 6, 2023 |

| Sampled by. Stantec Date Tested. November 6, 2025 |                                 |                                               |                                           |                                           |  |  |  |  |
|---------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|--|--|
| Sample Information                                |                                 |                                               |                                           |                                           |  |  |  |  |
| Borehole Location                                 | TH23-01                         | TH23-01                                       | TH23-08                                   | TH23-08                                   |  |  |  |  |
| Sample Number                                     | 2697                            | 2698                                          | 2699                                      | 2700                                      |  |  |  |  |
| Sample Depth                                      | 42'4"-42'11"                    | 55'6"-56'0"                                   | 13'0"-13'9"                               | 16'8"-17'9"                               |  |  |  |  |
|                                                   | Compressive Strength Test Data  |                                               |                                           |                                           |  |  |  |  |
| Physical Description                              | As per<br>Geotechnical Report   | As per<br>Geotechnical Report                 | As per<br>Geotechnical Report             | As per<br>Geotechnical Report             |  |  |  |  |
| Average Diameter (mm) (≥63.0)                     | 60.63                           | 60.71                                         | 60.65                                     | 60.63                                     |  |  |  |  |
| Average Sample Length (mm)                        | 144.07                          | 127.32                                        | 149.05                                    | 150.93                                    |  |  |  |  |
| Density (kg/m³)                                   | 2500.81                         | 2428.47                                       | 2484.85                                   | 2558.87                                   |  |  |  |  |
| Unit Weight (kN/m³)                               | 24.53                           | 23.82                                         | 24.38                                     | 25.10                                     |  |  |  |  |
| L/D Ratio (2.0-2.5)                               | 2.38                            | 2.10                                          | 2.46                                      | 2.49                                      |  |  |  |  |
| Failure Load (lbs)                                | 15610                           | 11430                                         | 42960                                     | 47810                                     |  |  |  |  |
| Compressive Strength (MPa)                        | 24.1                            | 17.6                                          | 66.1                                      | 73.7                                      |  |  |  |  |
| Straightness by Procedure S1 (≤0.02inch)          | <0.02                           | <0.02                                         | <0.02                                     | <0.02                                     |  |  |  |  |
| Flatness by Procedure FP2 (≤0.001inch)            | <0.001                          | <0.001                                        | <0.001                                    | <0.001                                    |  |  |  |  |
| Parallelism by Procedure FP2 (≤0.25°)             | -0.073                          | 0.037                                         | 0.011                                     | 0.036                                     |  |  |  |  |
| Perpendicularity by Procedure P2 (≤0.0043)        | <0.0043                         | <0.0043                                       | <0.0043                                   | <0.0043                                   |  |  |  |  |
| Moisture Condition                                | As-Received                     | As-Received                                   | As-Received                               | As-Received                               |  |  |  |  |
| Description of Break D7012/11.1.13                | Diagonal cracking from one end. | Diagonal fracture with cracking through ends. | Reasonbly well formed cones on both ends. | Reasonbly well formed cones on both ends. |  |  |  |  |
| Note                                              |                                 |                                               |                                           |                                           |  |  |  |  |

|              | Note         |  |          |                |
|--------------|--------------|--|----------|----------------|
| Remarks:     |              |  |          |                |
| Reviewed by: | Brian Prevon |  | Date: No | vember 7, 2023 |



### Compressive Strength & Elastic Moduli of Intact Rock Core **Speciments under Varying States of Stress and Temperatures Method C ASTM D7012 & D4543**

| Client:        | KGS Group Inc.                        | Project No.:   | 123316822         |
|----------------|---------------------------------------|----------------|-------------------|
| Project:       | CentrePort AAW Regional S&W Servicing |                |                   |
| Material Type: | Rock Core; Diameter ≥ 63.0 mm         | Date Received: | November 30, 2023 |
| Date Sampled:  | November 29, 2023                     | Tested By:     | Sagar Kharti      |
| Sampled By:    | Stantec                               | Date Tested:   | December 4, 2023  |

|                                            | Sample Information                       |                                          |                                          |                                          |  |  |  |  |
|--------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--|--|--|--|
| Borehole Location                          | TH23-17                                  | TH23-17                                  | TH23-18                                  | TH23-25                                  |  |  |  |  |
| Sample Number                              | 2816                                     | 2817                                     | 2818                                     | 2819                                     |  |  |  |  |
| Sample Depth                               | 15'6"-16'4"                              | 17'2"-17'11"                             | 15'11"-16'6"                             | 37'0"-37'5"                              |  |  |  |  |
| Compressive Strength Test Data             |                                          |                                          |                                          |                                          |  |  |  |  |
| Physical Description                       | As per<br>Geotechnical Report            | As per<br>Geotechnical Report            | As per<br>Geotechnical Report            | As per<br>Geotechnical Report            |  |  |  |  |
| Average Diameter (mm) (≥63.0)              | 60.79                                    | 61.08                                    | 60.73                                    | 60.64                                    |  |  |  |  |
| Average Sample Length (mm)                 | 145.77                                   | 150.82                                   | 144.05                                   | 122.57                                   |  |  |  |  |
| Density (kg/m³)                            | 2588.59                                  | 2512.24                                  | 2588.72                                  | 2584.92                                  |  |  |  |  |
| Unit Weight (kN/m³)                        | 25.39                                    | 24.65                                    | 25.40                                    | 25.36                                    |  |  |  |  |
| L/D Ratio (2.0-2.5)                        | 2.40                                     | 2.47                                     | 2.37                                     | 2.02                                     |  |  |  |  |
| Failure Load (lbs)                         | 18390                                    | 18480                                    | 17430                                    | 13590                                    |  |  |  |  |
| Compressive Strength (MPa)                 | 28.2                                     | 28.1                                     | 26.8                                     | 20.9                                     |  |  |  |  |
| Straightness by Procedure S1 (≤0.02inch)   | <0.02                                    | <0.02                                    | <0.02                                    | <0.02                                    |  |  |  |  |
| Flatness by Procedure FP2 (≤0.001inch)     | <0.001                                   | <0.001                                   | <0.001                                   | <0.001                                   |  |  |  |  |
| Parallelism by Procedure FP2 (≤0.25°)      | 0.025                                    | -0.043                                   | -0.023                                   | -0.060                                   |  |  |  |  |
| Perpendicularity by Procedure P2 (≤0.0043) | <0.0043                                  | <0.0043                                  | <0.0043                                  | <0.0043                                  |  |  |  |  |
| Moisture Condition                         | As-Received                              | As-Received                              | As-Received                              | As-Received                              |  |  |  |  |
| Description of Break D7012/11.1.13         | Reasonably well formed cone on both ends | Reasonably well formed cone on both ends | Reasonably well formed cone on both ends | Reasonably well formed cone on both ends |  |  |  |  |
| Note                                       |                                          |                                          |                                          |                                          |  |  |  |  |

| Remarks:                  |                                                      |                                 |                                      |                                    |                                |
|---------------------------|------------------------------------------------------|---------------------------------|--------------------------------------|------------------------------------|--------------------------------|
|                           | q                                                    |                                 |                                      |                                    |                                |
| Reviewed by:              | Brian Prevox                                         | •                               |                                      | Date: December                     | 11, 2023                       |
| V:\01216\active\laborator | ry_standing_offers\2023-Laboratory Standing Offers\1 | 23370015-Winnipeg lab\2023\Rock | Cores\Nov 29, 2023. Job # 123316822, | KGS Group Inc\Samples # 2816, 2817 | , 2818 &2819 ASTM D7012 Intact |



# Compressive Strength & Elastic Moduli of Intact Rock Core **Speciments under Varying States of Stress and Temperatures Method C ASTM D7012 & D4543**

| Client:        | KGS Group Inc.                        | Project No.:   | 123316822         |
|----------------|---------------------------------------|----------------|-------------------|
| Project:       | CentrePort AAW Regional S&W Servicing |                |                   |
| Material Type: | Rock Core; Diameter ≥ 63.0 mm         | Date Received: | November 30, 2023 |
| Date Sampled:  | November 29, 2023                     | Tested By:     | Sagar Kharti      |
| Sampled By:    | Stantec                               | Date Tested:   | December 4 2023   |

| Sample Information                         |                                          |                                          |                                |  |  |  |  |  |  |  |  |
|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| Borehole Location                          | TH23-25                                  | TH23-26                                  | TH23-26                        |  |  |  |  |  |  |  |  |
| Sample Number Sample Depth                 | 2820<br>43'5"-44'3"                      | 2821<br>37'0"-37'6"                      | 2822<br>43'6"-44'0"            |  |  |  |  |  |  |  |  |
| Запіріе Беріп                              | Compressive Str                          |                                          | 430 -440                       |  |  |  |  |  |  |  |  |
|                                            | Compressive on                           | engin resi Dala                          |                                |  |  |  |  |  |  |  |  |
| Physical Description                       | As per<br>Geotechnical Report            | As per<br>Geotechnical Report            | As per<br>Geotechnical Report  |  |  |  |  |  |  |  |  |
| Average Diameter (mm) (≥63.0)              | 60.72                                    | 60.94                                    |                                |  |  |  |  |  |  |  |  |
| Average Sample Length (mm)                 | 113.62                                   | 151.95                                   |                                |  |  |  |  |  |  |  |  |
| Density (kg/m³)                            | 2583.94                                  | 2538.38                                  |                                |  |  |  |  |  |  |  |  |
| Unit Weight (kN/m³)                        | 25.35                                    | 24.90                                    | #VALUE!                        |  |  |  |  |  |  |  |  |
| L/D Ratio (2.0-2.5)                        | 1.87                                     | 2.49                                     | #VALUE!                        |  |  |  |  |  |  |  |  |
| Failure Load (lbs)                         | 15830                                    | 19440                                    | 0                              |  |  |  |  |  |  |  |  |
| Compressive Strength (MPa)                 | 24.3                                     | 29.6                                     | #VALUE!                        |  |  |  |  |  |  |  |  |
| Straightness by Procedure S1 (≤0.02inch)   | <0.02                                    | <0.02                                    | <0.02                          |  |  |  |  |  |  |  |  |
| Flatness by Procedure FP2 (≤0.001inch)     | <0.001                                   | <0.001                                   | <0.001                         |  |  |  |  |  |  |  |  |
| Parallelism by Procedure FP2 (≤0.25°)      | 0.062                                    | -0.078                                   | #N/A                           |  |  |  |  |  |  |  |  |
| Perpendicularity by Procedure P2 (≤0.0043) | <0.0043                                  | <0.0043                                  | <0.0043                        |  |  |  |  |  |  |  |  |
| Moisture Condition                         | As-Received                              | As-Received                              | As-Received                    |  |  |  |  |  |  |  |  |
| Description of Break D7012/11.1.13         | Reasonably well formed cone on both ends | Reasonably well formed cone on both ends | 0                              |  |  |  |  |  |  |  |  |
| Note                                       |                                          |                                          | Sample broke while preparation |  |  |  |  |  |  |  |  |

|                           | Note                                                |                                 |                                      | preparation                       |                                 |
|---------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------|-----------------------------------|---------------------------------|
| Remarks:                  |                                                     |                                 |                                      |                                   |                                 |
| Reviewed by:              | Brian Prevon                                        |                                 |                                      | Date: December                    | 11, 2023                        |
| V:\01216\active\laborator | y_standing_offers\2023-Laboratory Standing Offers\1 | 23370015-Winnipeg lab\2023\Rock | Cores\Nov 29, 2023. Job # 123316822, | KGS Group Inc\Samples 2820, & 282 | IASTM D7012 Intact Rock Core(63 |



December 20, 2023

Jacqueline MacLennan KGS Group 3rd Floor - 865 Waverley St Winnipeg, MB R3T 5P4

Re: CERCHAR Abrasivity Testing (KGS Project No. 23-0107-009)

Dear Jacqueline:

On November 29<sup>th</sup>, 2023, a series of four (4) HQ-sized core samples were received by Geomechanica Inc. via courier service. These samples were identified as being from KGS project 23-0107-009. From these samples, four (4) CERCHAR Abrasivity tests were completed.

Details regarding the steps of specimen preparation and testing along with the test results are presented in the accompanying laboratory report and summary spreadsheet.

Sincerely,

Bryan Tatone Ph.D., P. Eng.

Geomechanica Inc. Tel: (647) 478-9767

Email: bryan.tatone@geomechanica.com

Tel: 1-647-478-9767



# Rock Laboratory Testing Results

## A report submitted to:

Jacqueline MacLennan KGS Group 3rd Floor - 865 Waverley St Winnipeg, MB Canada, R3T 5P4

## **Prepared by:**

Bryan Tatone, PhD, PEng Omid Mahabadi, PhD, PEng Geomechanica Inc. #14-1240 Speers Rd. Oakville ON L6L 2X4 Canada Tel: +1-647-478-9767 lab@geomechanica.com

**December 20, 2023** 

Project number: 23-0107-009

### **Abstract**

This document summarizes the results of rock laboratory testing, including 2 CERCHAR Abrasivity tests. The CERCHAR Abrasivity Index (CAI) values are presented herein.

#### In this document:

1 CERCHAR Abrasivity Tests

1

**Disclaimer:** This report was prepared by Geomechanica Inc. for KGS Group. The material herein reflects Geomechanica Inc.'s best judgment given the information available at the time of preparation. Any use which a third party makes of this report, any reliance on or decision to be made based on it, are the responsibility of such third parties. Geomechanica Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

# 1 CERCHAR Abrasivity Tests

#### 1.1 Overview

This section summarizes the results of CERCHAR abrasivity testing. Testing was performed using a Type-2 CERCHAR apparatus as shown in Figure 1a. The tips of the styluses were sharpened to a conical angle of  $90^{\circ}$  using the setup shown in Figure 1b. The styluses used to perform the tests are shown in Figure 1c-d (Rockwell hardness  $55\pm1$ ). A static force of 70 N was applied on top of the stylus by using a combination of weights. Details of the testing procedure are as follows:

- 1. The tips of the five styluses are sharpened using the grinding apparatus (Figure 1b).
- 2. The styluses are placed under a microscope (60x magnification) and three scaled photos (120° apart) are captured before the test is conducted to ensure the 90° point has been properly formed.
- 3. The test specimens are obtained by breaking core samples to expose a fresh fracture surface perpendicular to the core axis.
- 4. The specimen is secured in the cross-slide vise of the testing apparatus and the stylus is carefully lowered on to the surface of the rock.
- 5. A scratch measuring 10 mm in length is performed over a duration of 10 seconds. This process is repeated with all five styluses on undisturbed parts of the fracture surface (e.g., Figure 2a).
- 6. Lastly, the worn tips are re-examined under the microscope. From three scaled photos ( $120^{\circ}$  apart), the wear flat, d, is measured (e.g., Figure 2c).

The length or the diameter of the wear flat, d, was measured from scaled microscope images using the image processing software Fiji (e.g., Figure 2b-c). The mean wear of the tip is calculated by taking the average d of all tests. The CERCHAR-Abrasivity-Index (CAI) of the sample is subsequently calculated by taking the mean wear and multiplying it by 10. The above testing procedure followed ASTM D7625.

#### 1.2 Results

Project number: 23-0107-009

The results of CERCHAR abrasivity testing are provided in Table 1. Please note that additional specimen and testing details are available in the summary spreadsheet that accompanies this report.

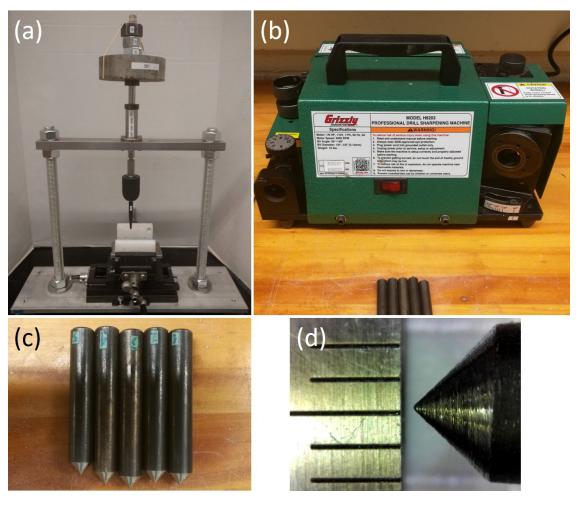



Figure 1: Photos showing (a) the CERCHAR apparatus, (b) tip sharpening setup, (c) the five styluses used to perform the test and (d) a microscope image of one of the stylus tips.

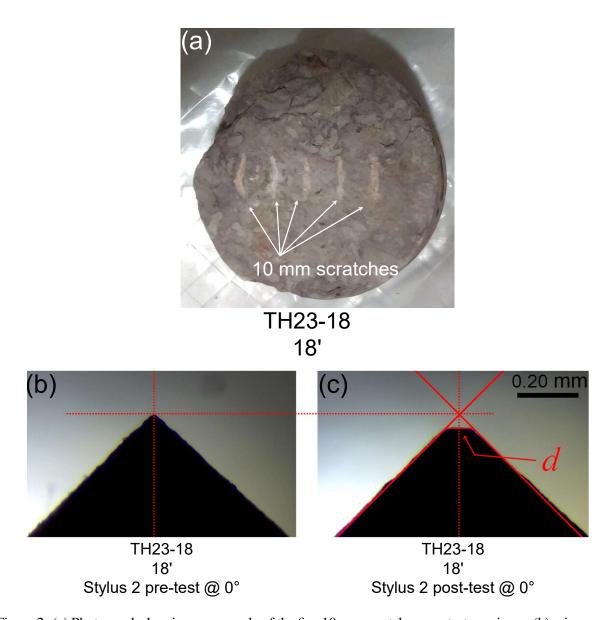



Figure 2: (a) Photograph showing an example of the five 10 mm scratches on a test specimen; (b) microscope image of select stylus prior to testing at the noted position; and (c) microscope image of the same stylus at the same position following testing with the wear flat, d, denoted.

Project number: 23-0107-009

Table 1: Summary of CERCHAR abrasivity test results.

| Sample  | Depth (ft) | Test 1<br>Mean<br>(mm) | Test 2<br>Mean<br>(mm) | Test 3<br>Mean<br>(mm) | Test 4<br>Mean<br>(mm) | Test 5<br>Mean<br>(mm) | Mean<br>Wear<br>(mm) | CAI   | Description | ASTM<br>Classification |
|---------|------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------|-------|-------------|------------------------|
| TH23-18 | 18'        | 0.045                  | 0.094                  | 0.029                  | 0.030                  | 0.025                  | 0.045                | 0.445 | Bedrock     | Very Low               |
| TH23-17 | 17'        | 0.021                  | 0.022                  | 0.037                  | 0.032                  | 0.038                  | 0.030                | 0.301 | Bedrock     | < Very Low             |
| TH23-26 | 36'        | 0.030                  | 0.023                  | 0.025                  | 0.025                  | 0.037                  | 0.028                | 0.278 | Bedrock     | < Very Low             |
| TH23-25 | 38'        | 0.024                  | 0.061                  | 0.060                  | 0.082                  | 0.036                  | 0.053                | 0.525 | Bedrock     | Very Low               |

# APPENDIX E

2009 Consolidation Testing Results



199 Henlow Bay Winnipeg, MB R3Y 1G4 Phone (204) 488-6999 Fax (204) 488-6947 Email info@nationaltestlabs.com www.nationaltestlabs.com

July 28, 2009

KGS Group Inc. 3<sup>rd</sup> Floor - 865 Waverley St. Winnipeg, Manitoba

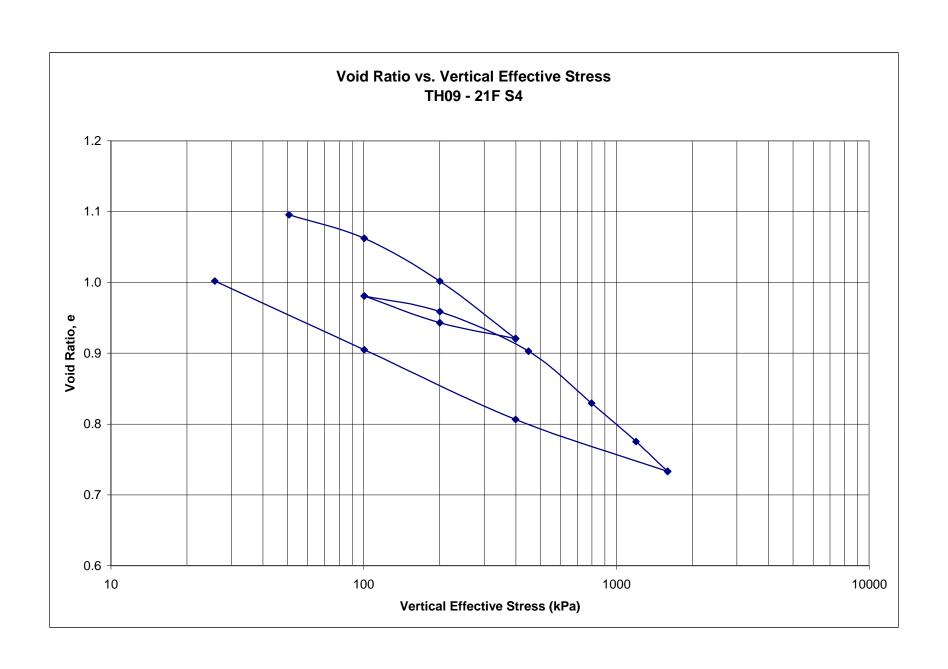
Project: Centre Port

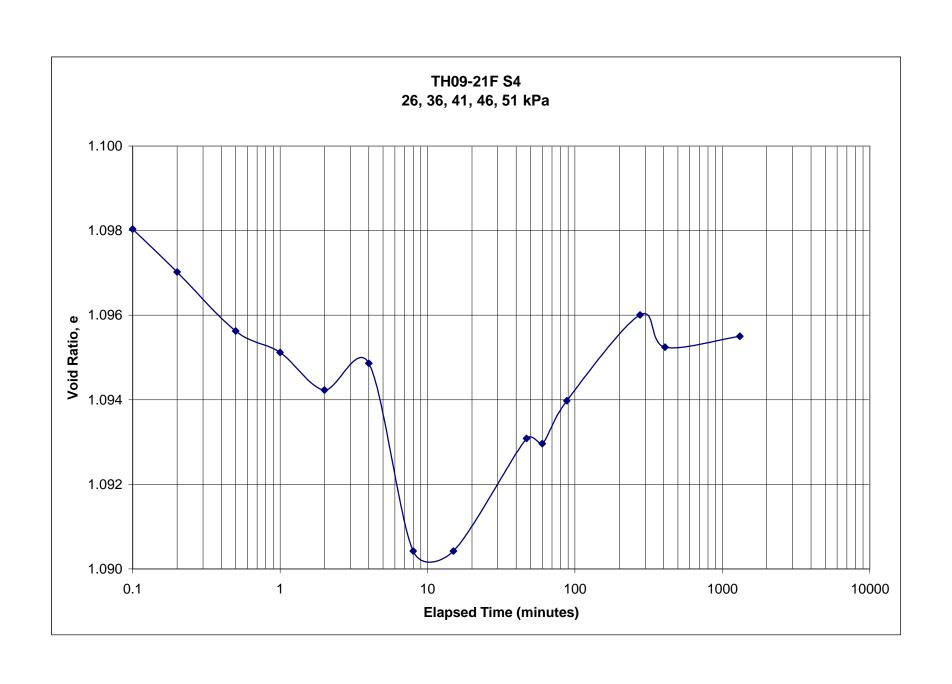
R3T 5P4 Attention: David Anderson

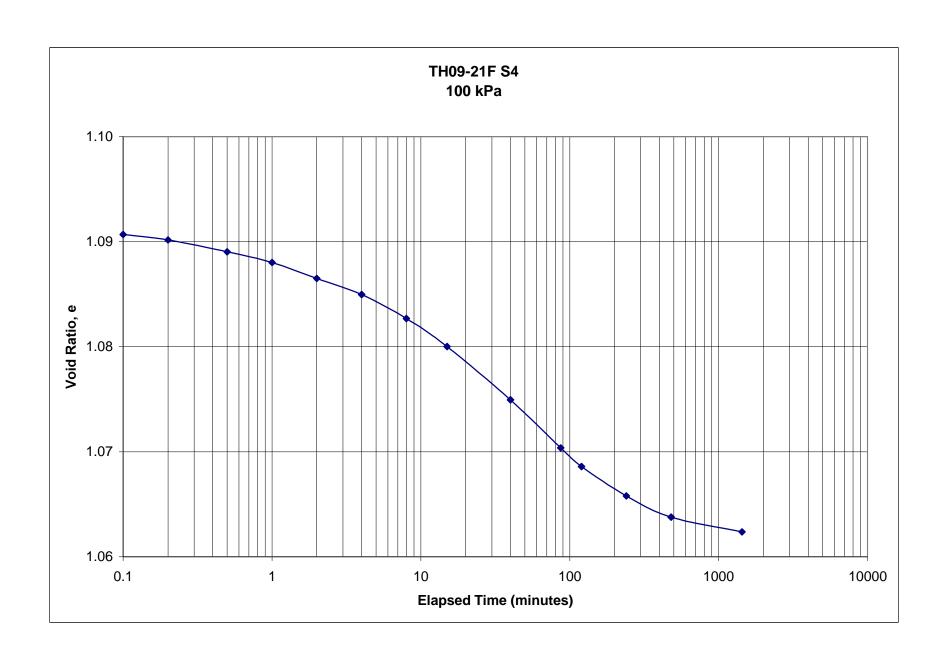
Soil samples were submitted to our testing laboratory on May 19, 2009. The samples were tested for one-dimensional consolidation properties in accordance with ASTM D2435 (Method A). Additional loadings were applied at the beginning of each test to prevent swelling of the test specimens. The load and unload increments in kPa for the test specimens are summarized in the following table:

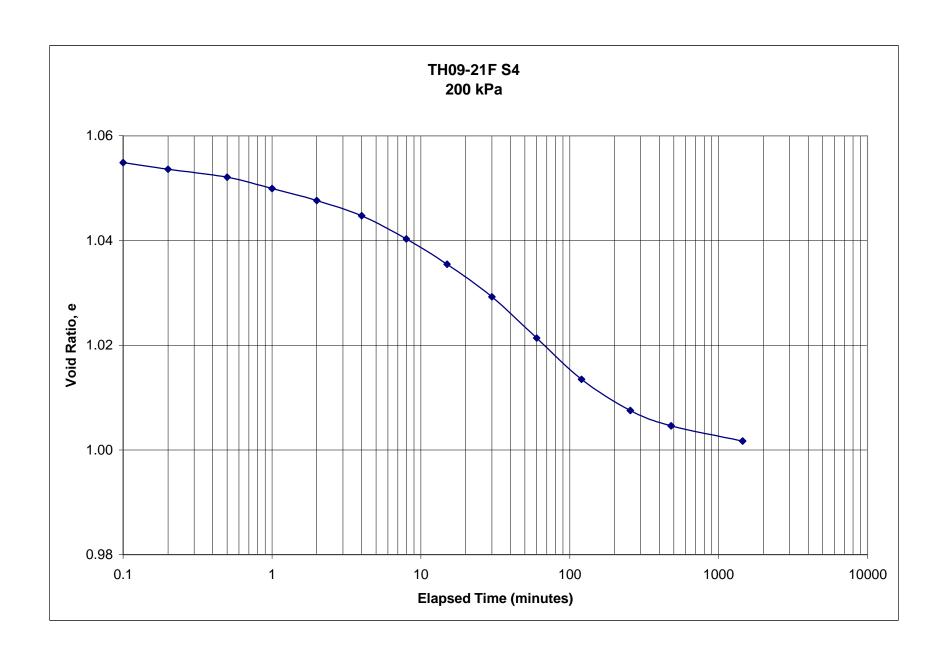
| TH09-21F S4        | TH09-25A S5 | TH09-25A S8 |
|--------------------|-------------|-------------|
| 23, 36, 41, 46, 51 | 26, 36      | 26, 36, 41  |
|                    | 51          | 51          |
| 100                | 100         | 100         |
| 200                | 200         | 200         |
| 399                | 399         | 399         |
| 200                | 200         | 200         |
| 100                | 100         | 100         |
| 200                | 200         | 200         |
| 449                | 399         | 399         |
| 798                | 797         | 798         |
| 1196               | 1195        | 1196        |
| 1594               | 1594        | 1595        |
| 399                | 399         | 399         |
| 100                | 100         | 100         |
| 26                 | 26          | 26          |

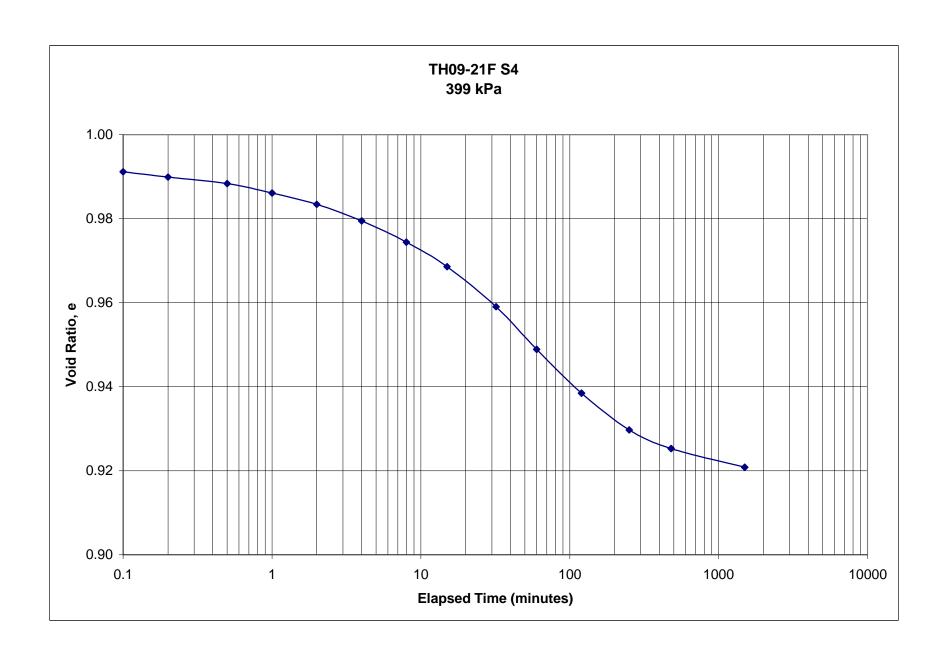
The test data for the soil samples are summarized in the attached table and graphs.

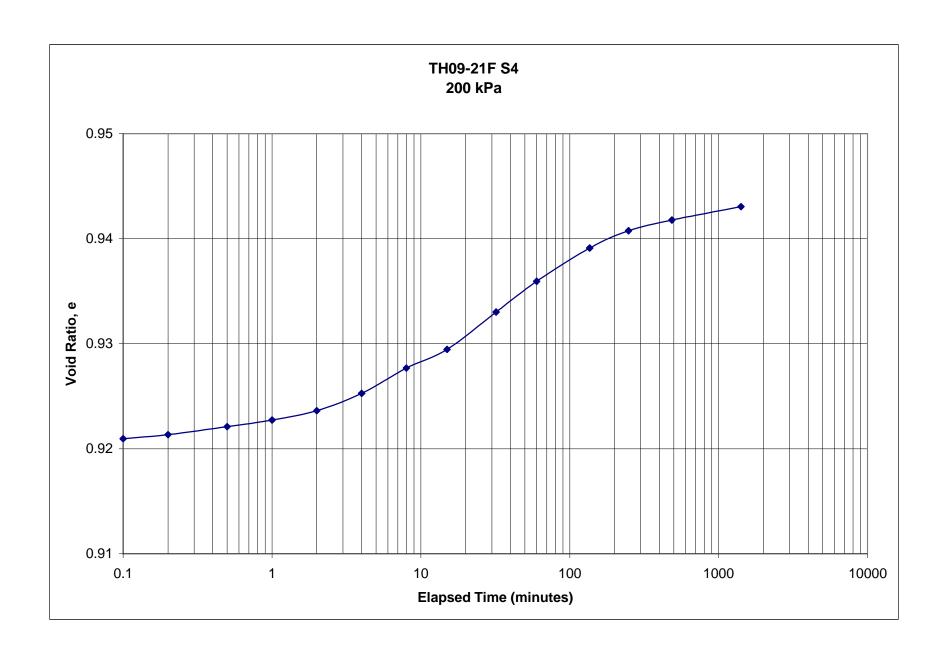

We appreciate the opportunity to assist you in this project. Please call me if you have any questions regarding this report.

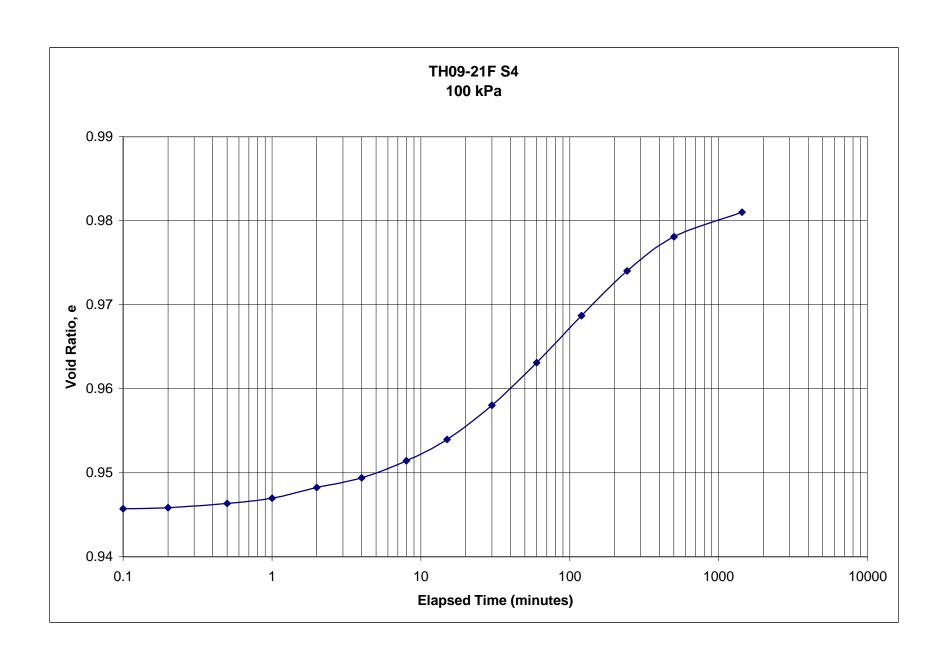

Don Flatt, M.Eng., P.Eng. Senior Geotechnical Engineer

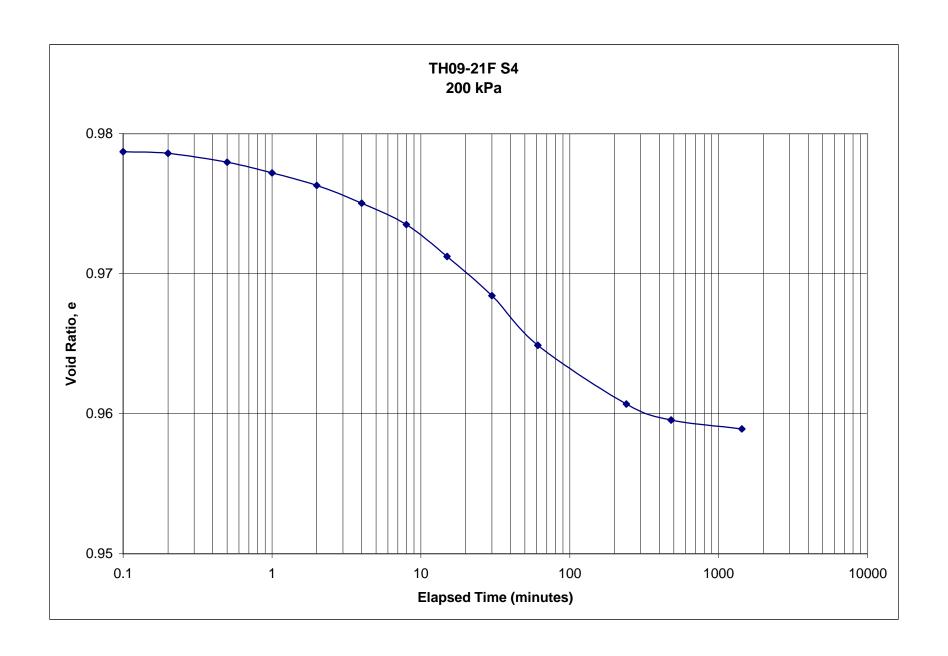


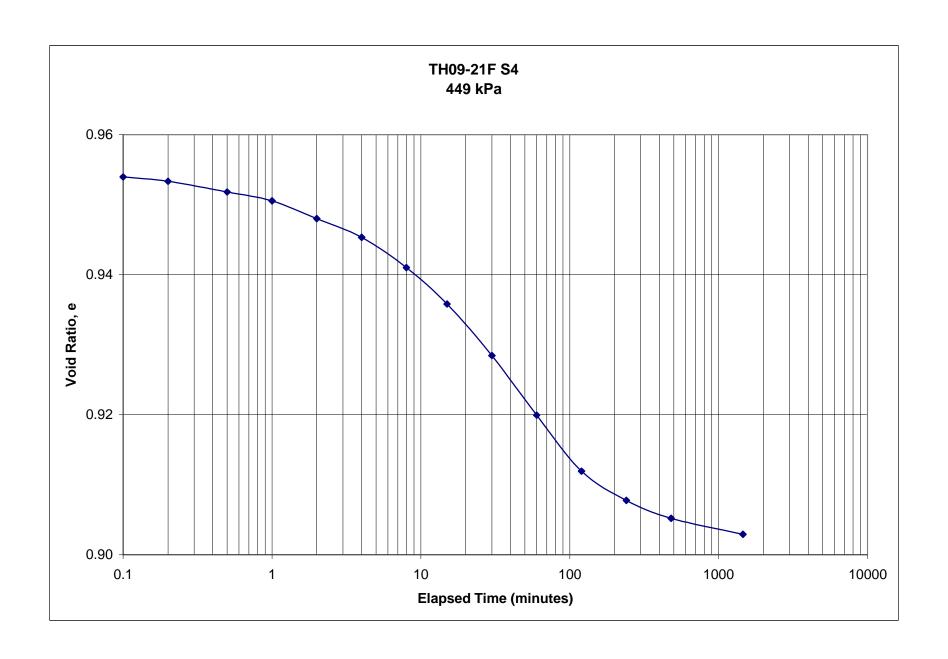


# CONSOLIDATION TEST DATA CENTRE PORT

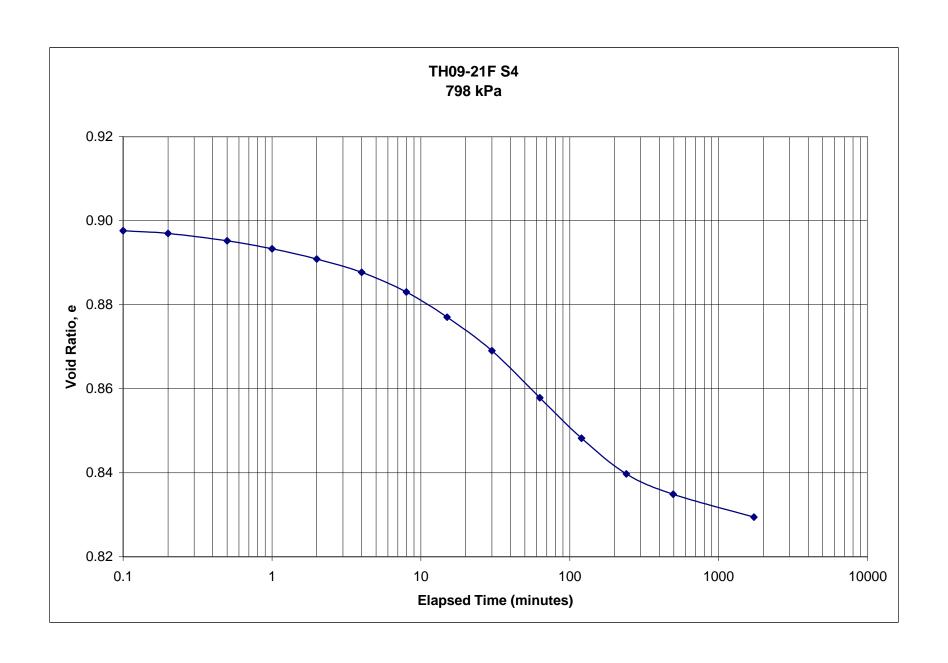

| Testhole no.  | Sample         | Cc   | Cc Cr | Moisture Content (%) Saturation (%) |       | Void Ratio |       | Wet Density (kg/m³) |       | Dry Density (kg/m³) |       |         |       |
|---------------|----------------|------|-------|-------------------------------------|-------|------------|-------|---------------------|-------|---------------------|-------|---------|-------|
| restrible no. | ole ilo. ID CC | OC   |       | Initial                             | Final | Initial    | Final | Initial             | Final | Initial             | Final | Initial | Final |
| TH09-21F      | S4             | 0.32 | 0.10  | 35.3                                | 37.5  | 84.2       | 101.0 | 1.15                | 1.00  | 1728                | 1872  | 1277    | 1362  |
| TH09-25A      | S5             | 0.55 | 0.13  | 51.3                                | 47.7  | 83.1       | 102.1 | 1.70                | 1.25  | 1542                | 1778  | 1020    | 1203  |
| TH09-25A      | S8             | 0.53 | 0.15  | 50.1                                | 47.3  | 94.7       | 104.2 | 1.46                | 1.27  | 1682                | 1801  | 1120    | 1222  |

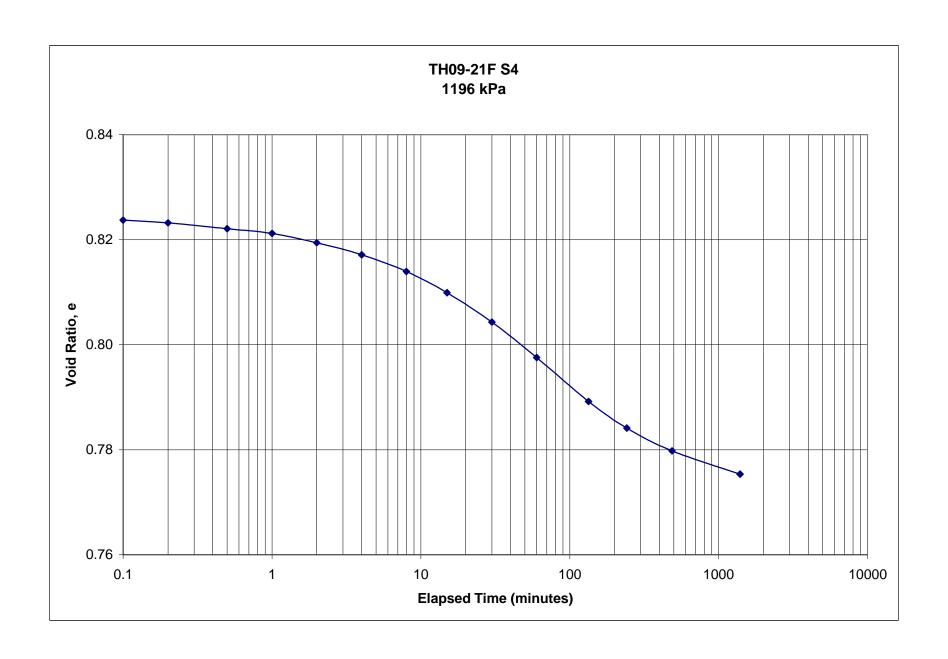


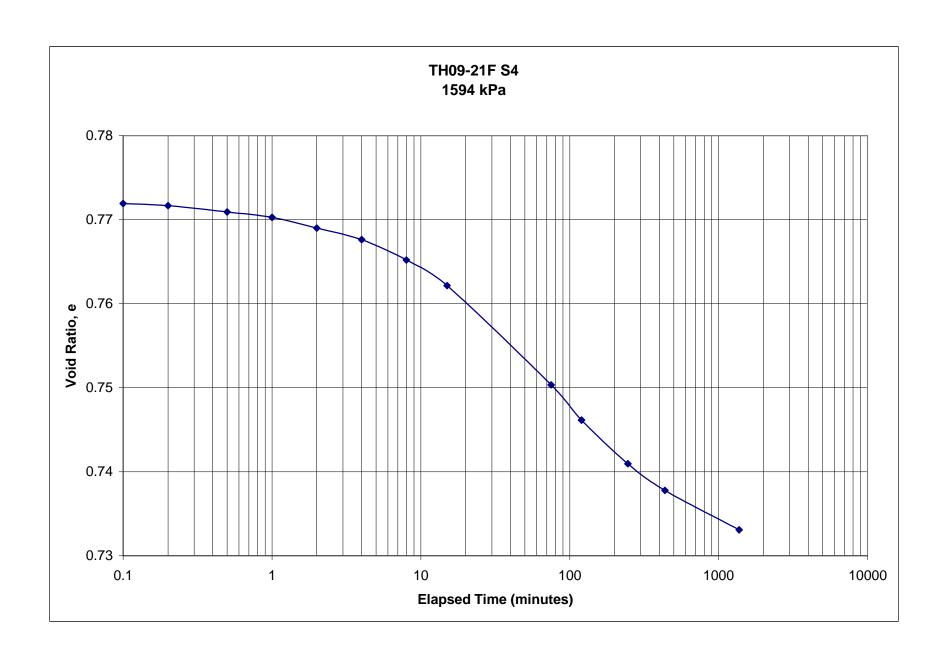



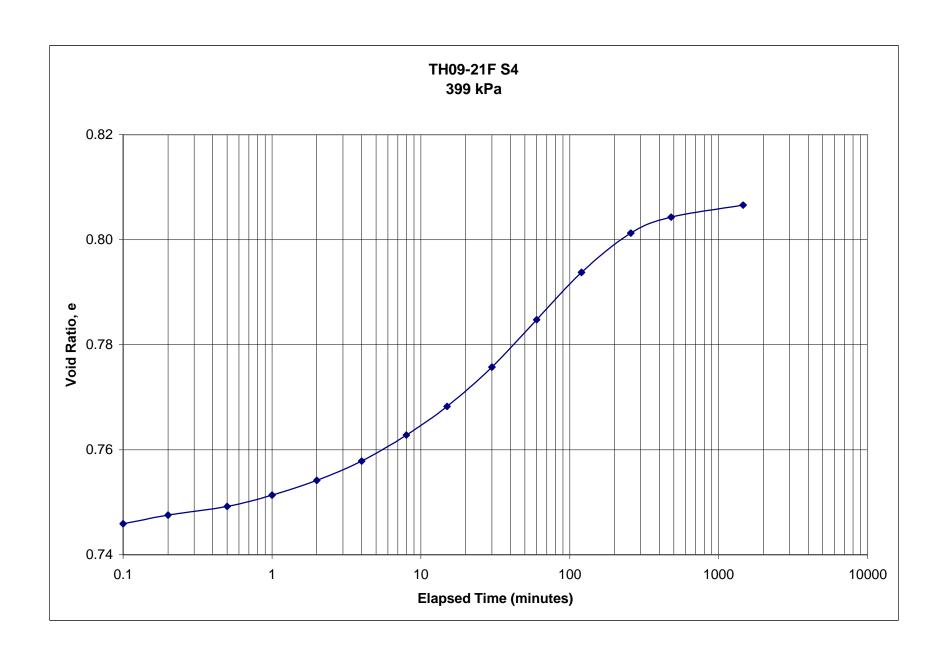



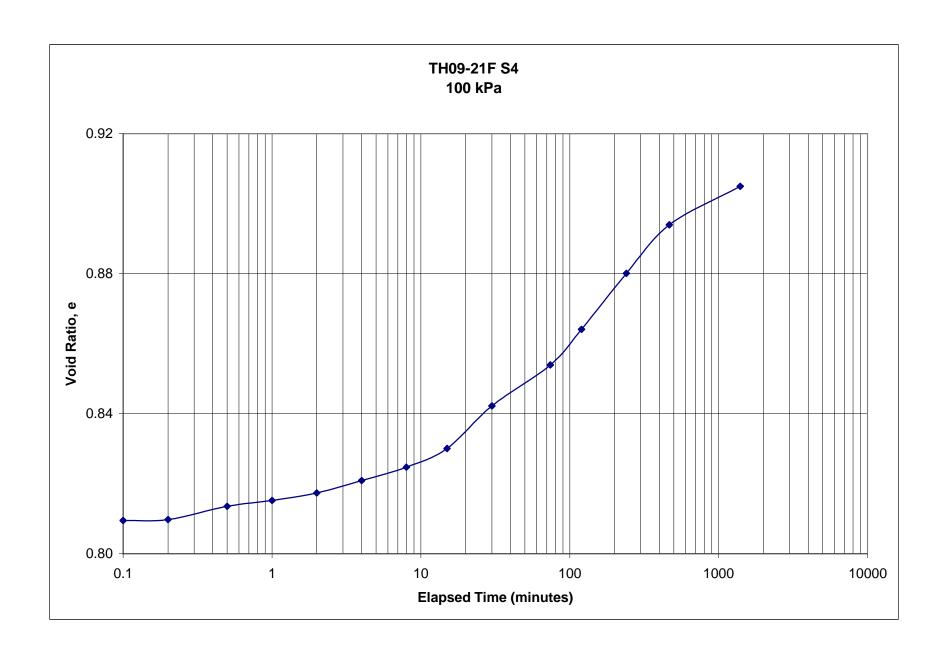



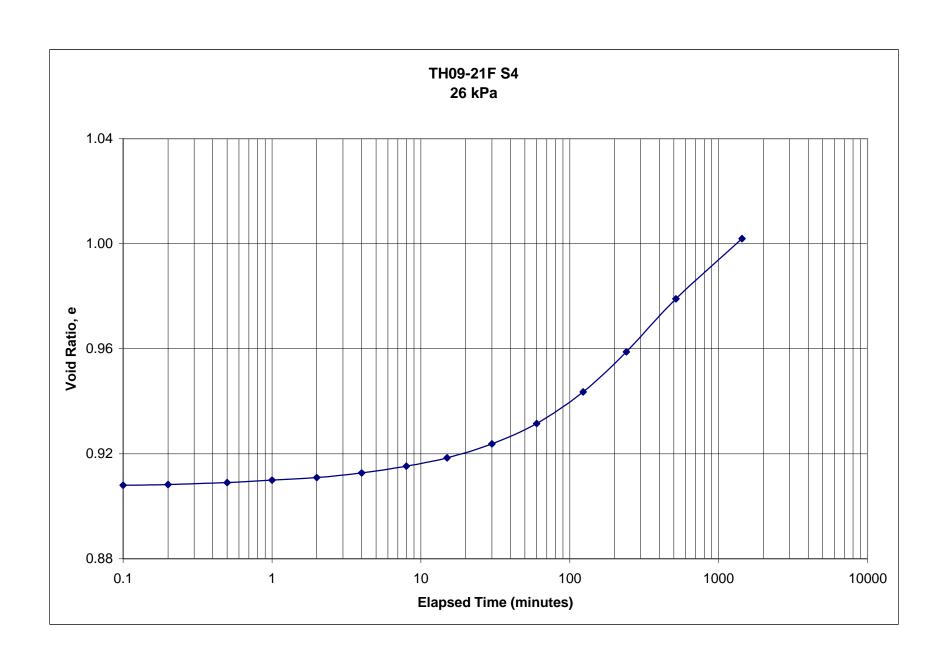



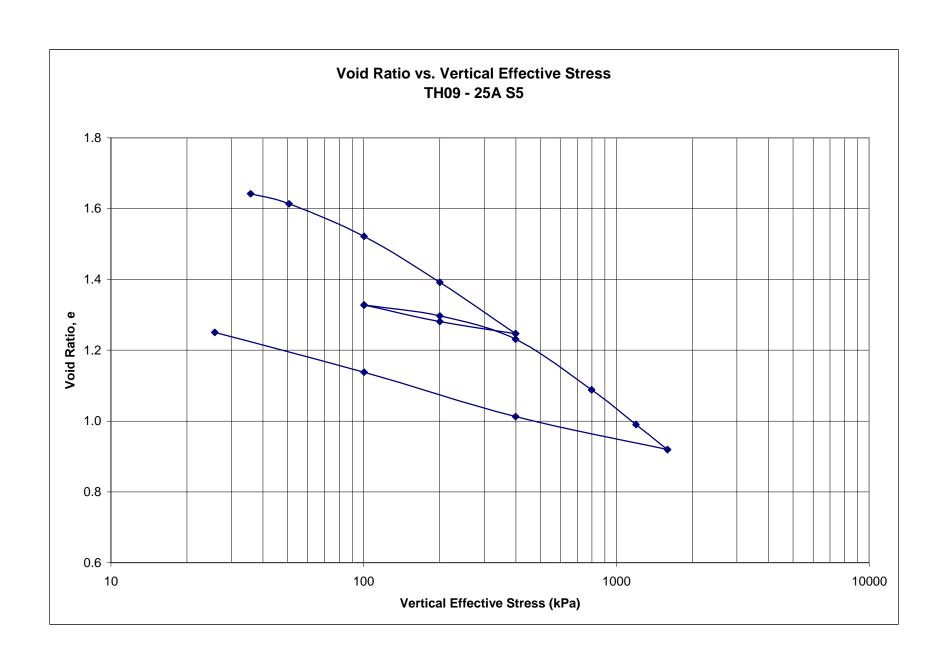



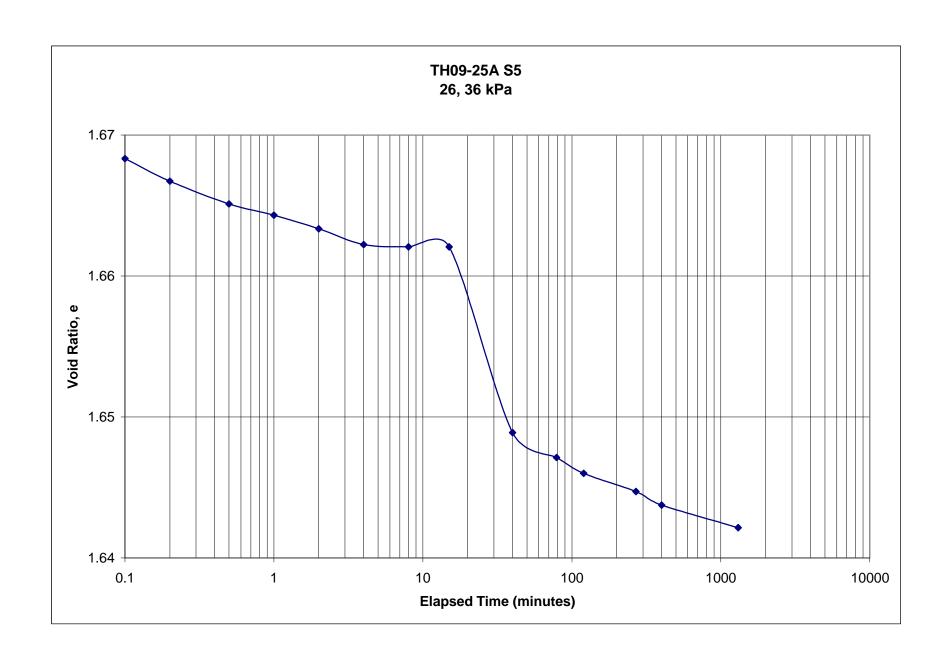



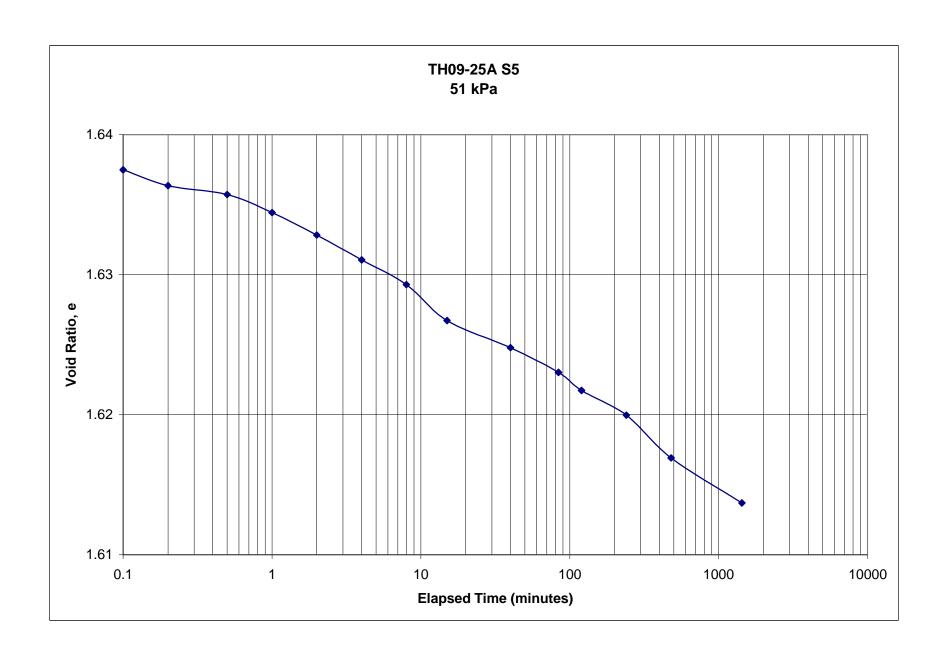



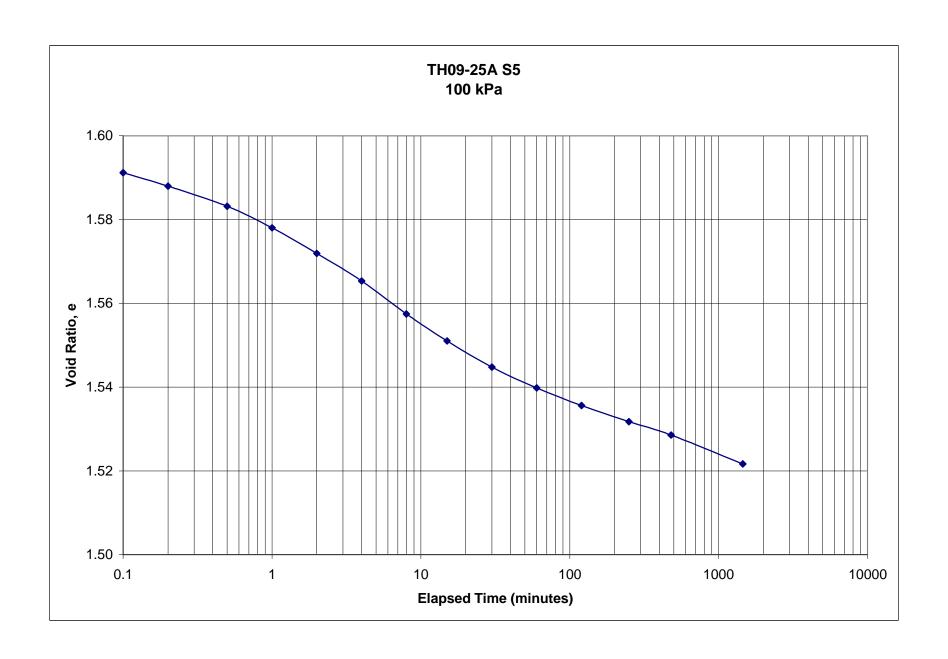



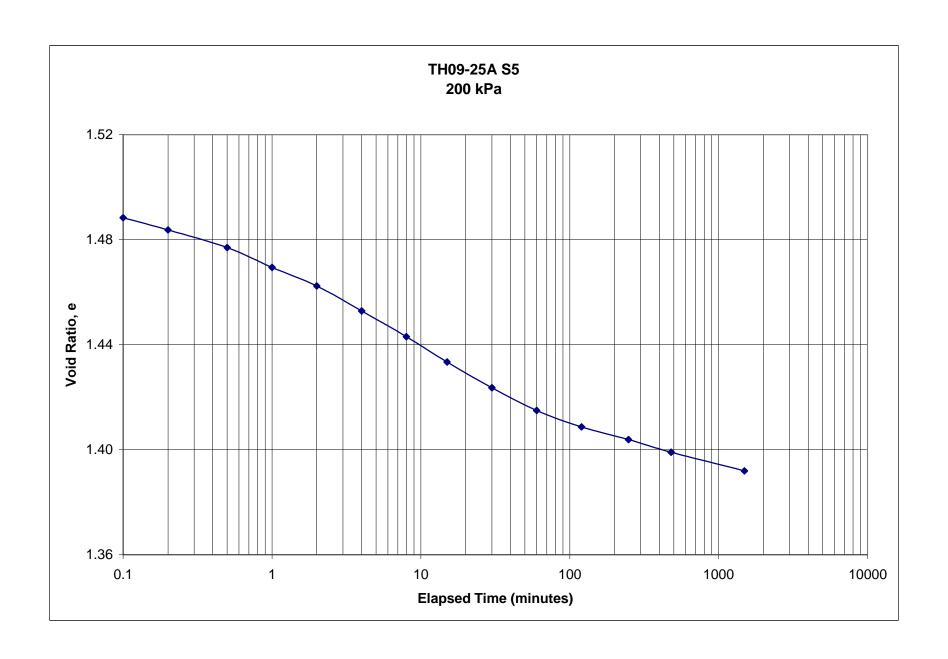



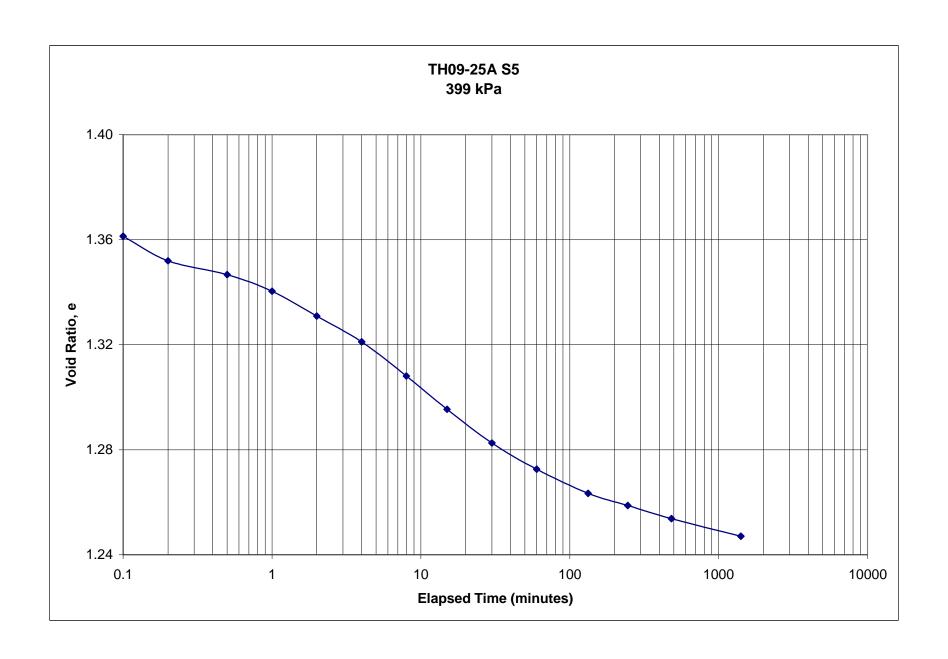



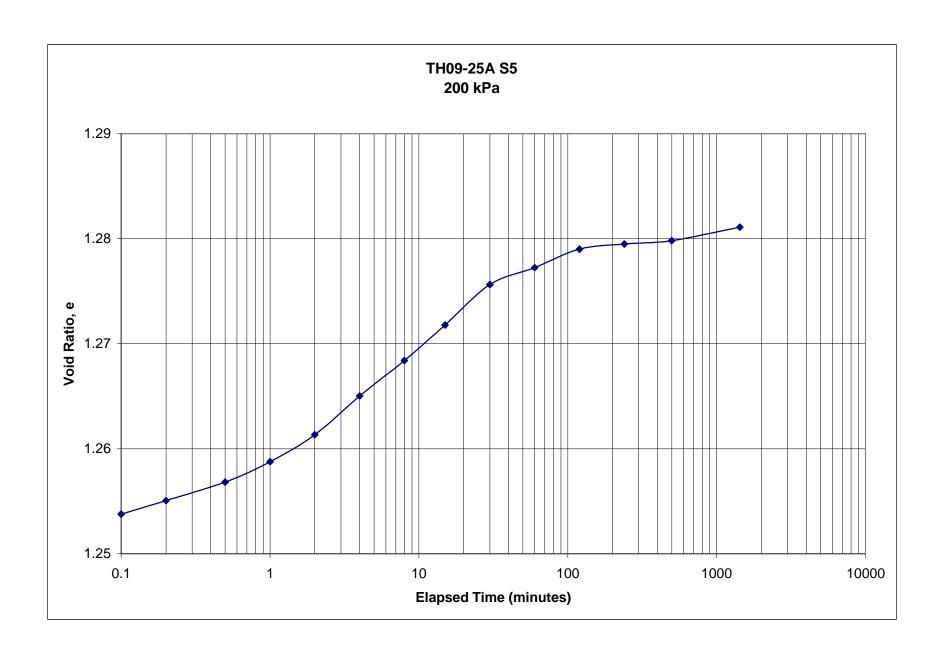



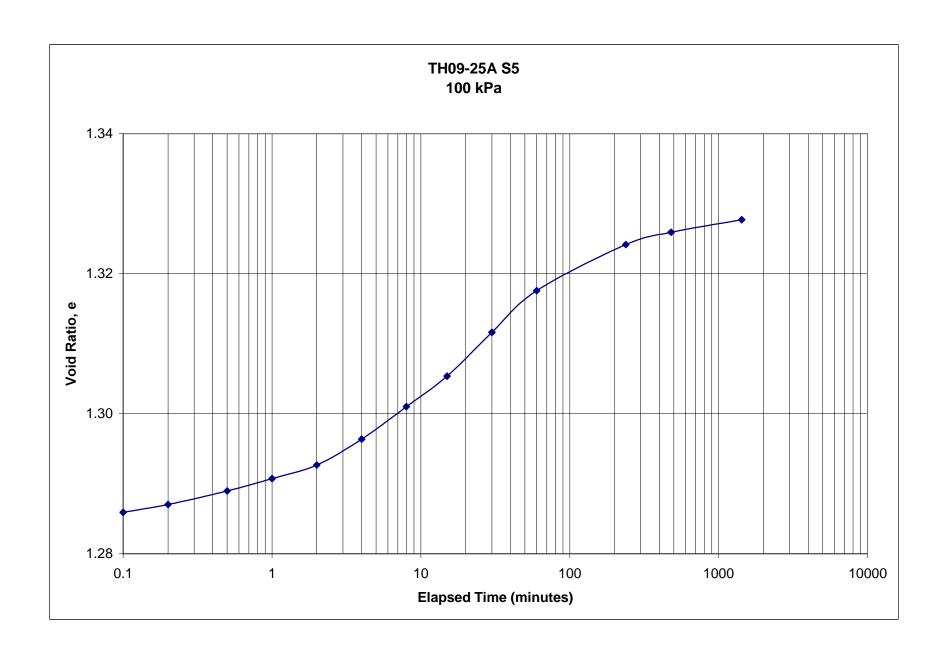



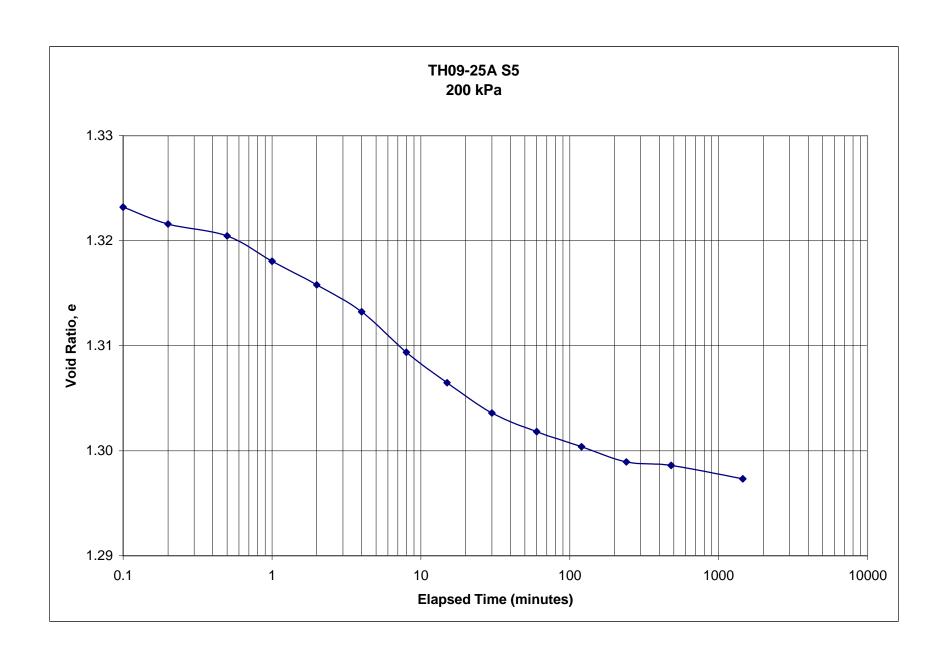



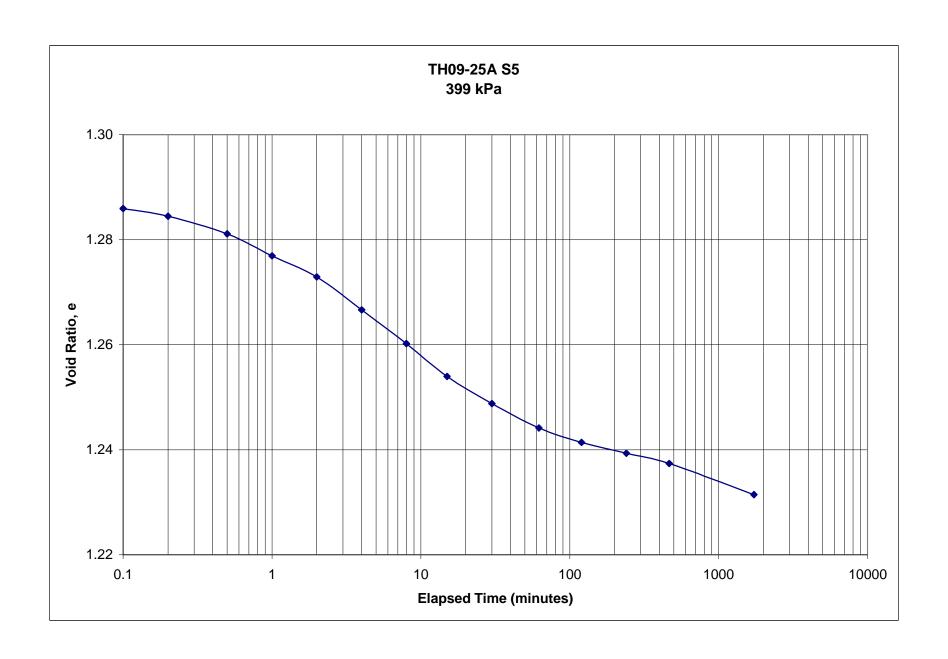



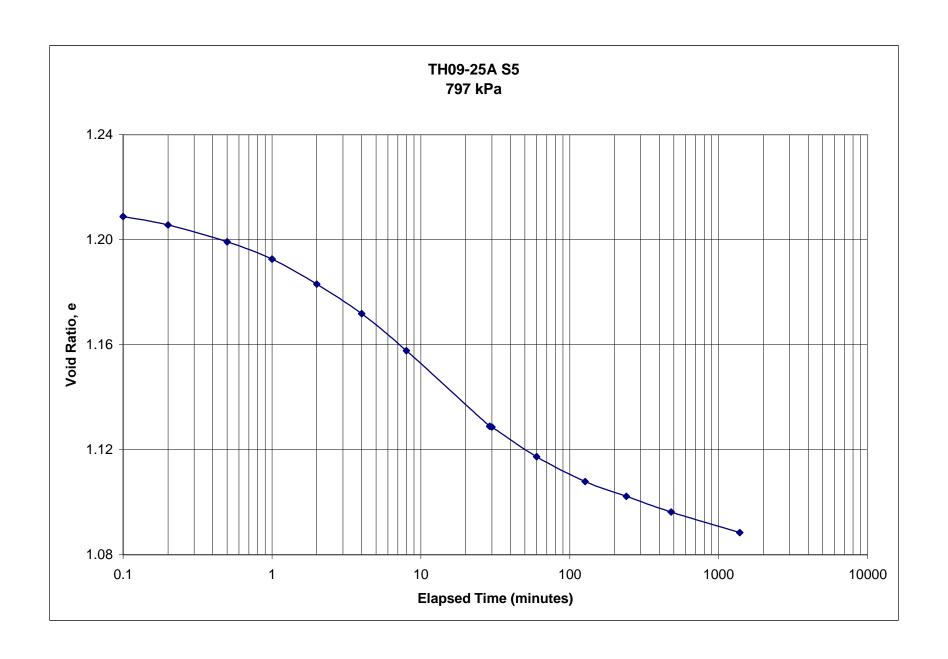



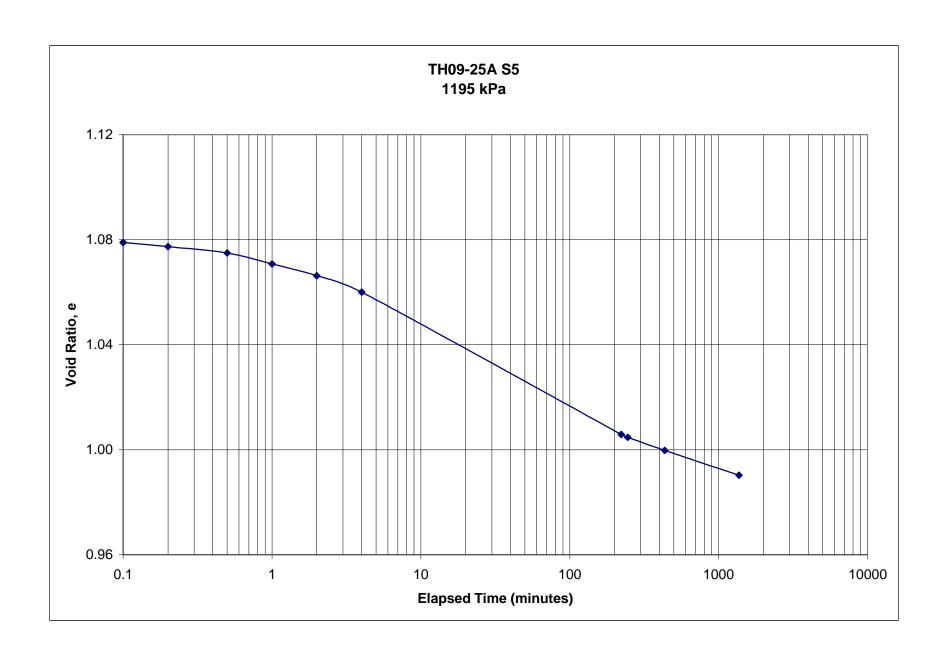



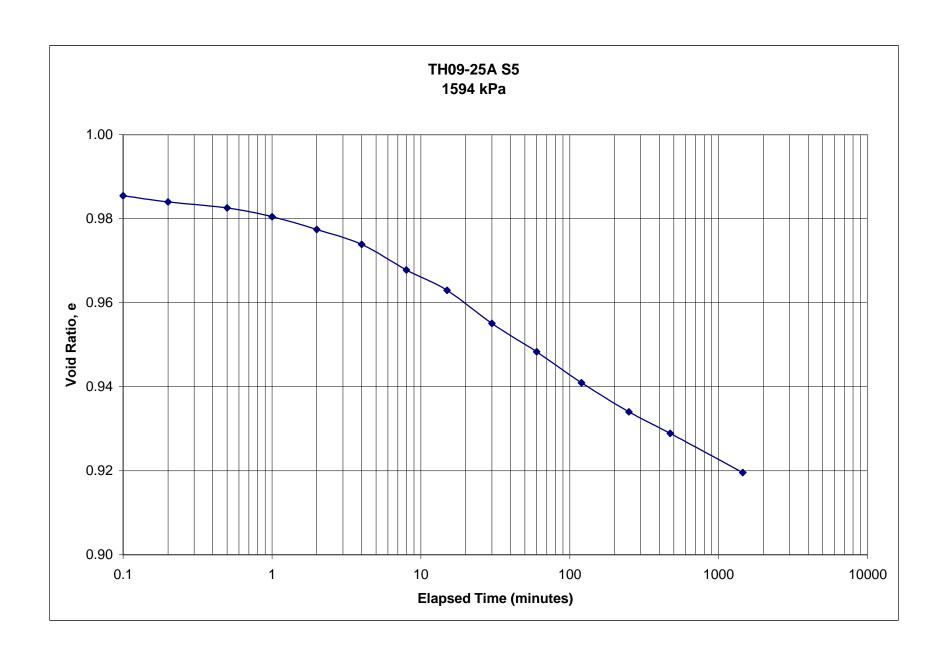



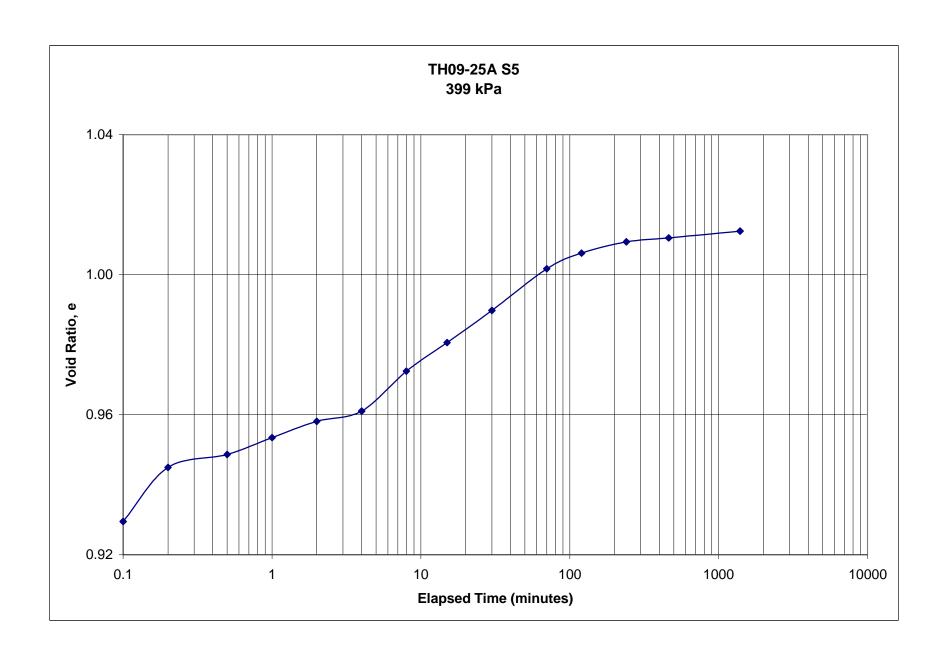



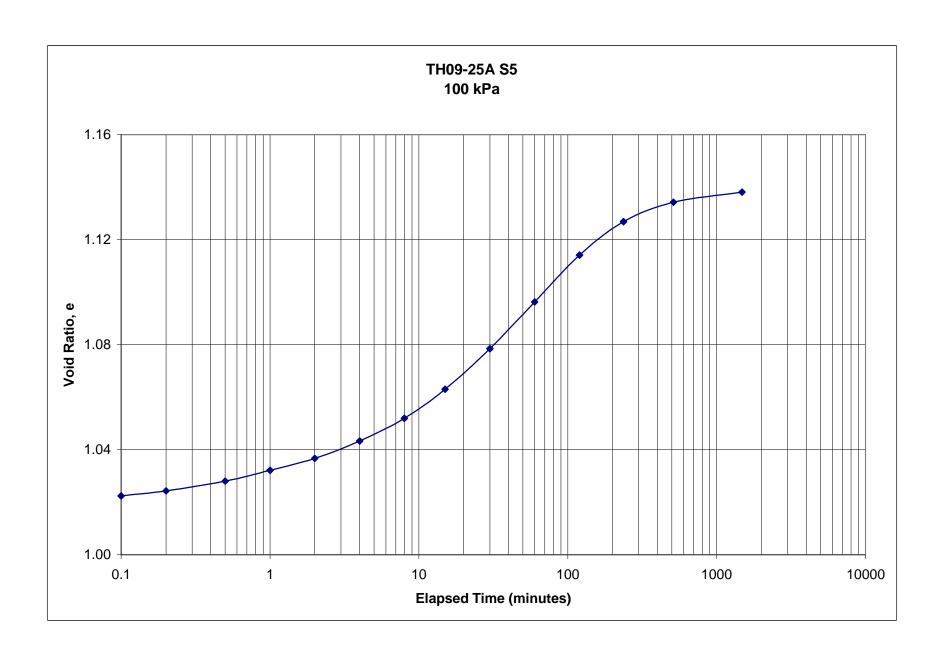



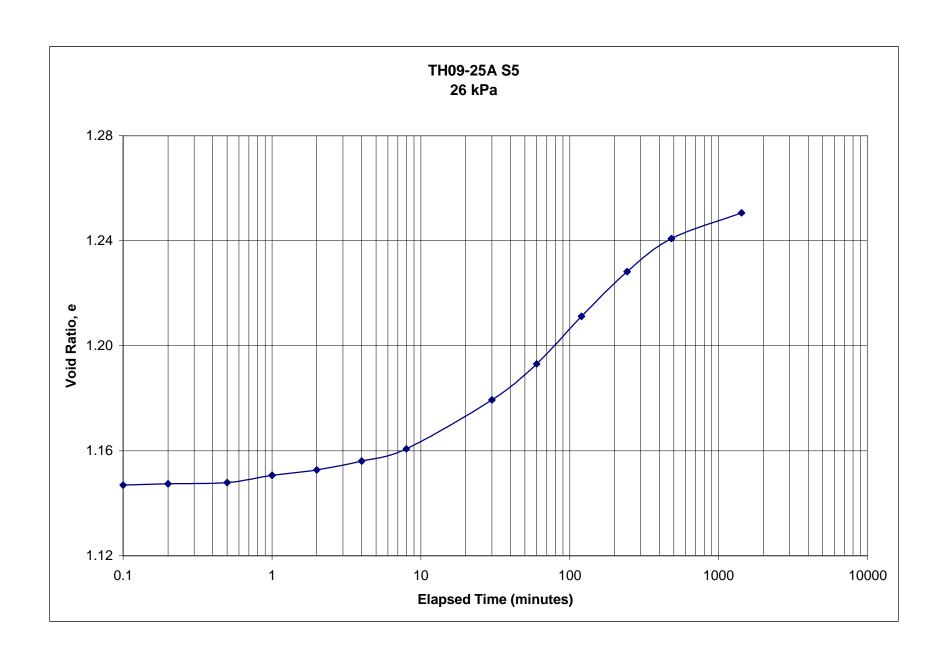



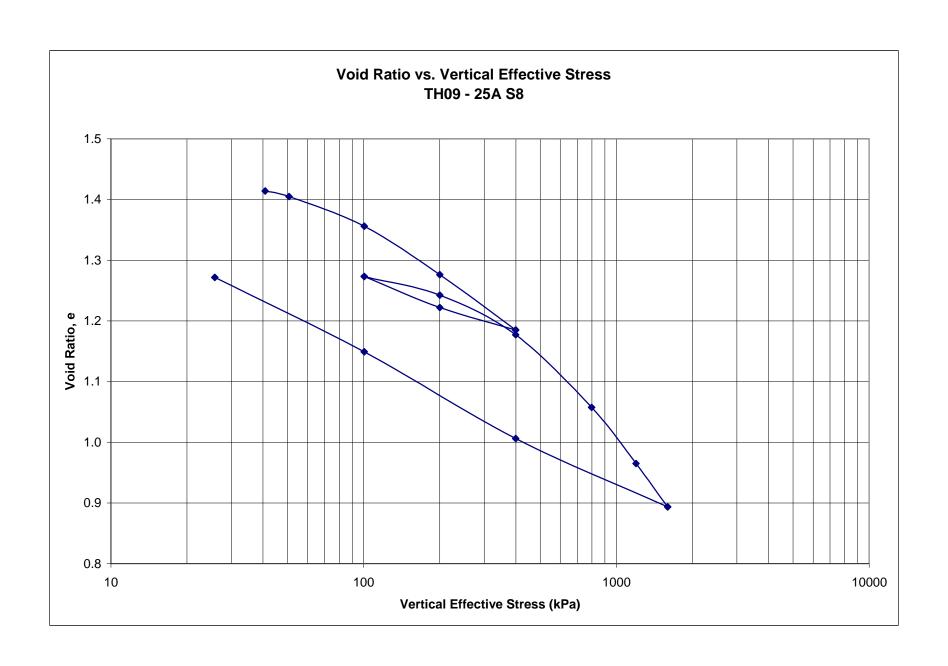



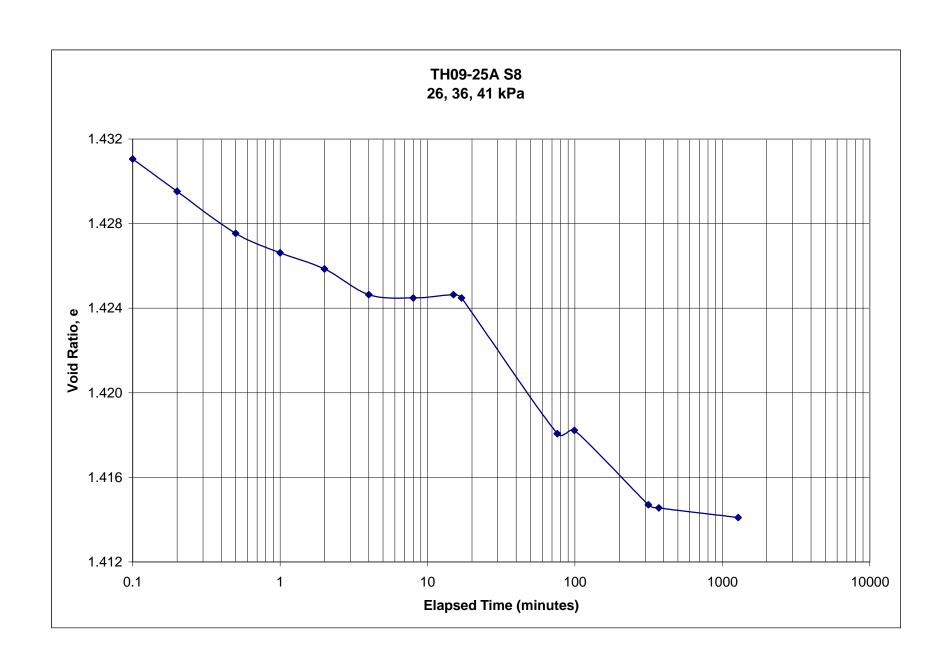



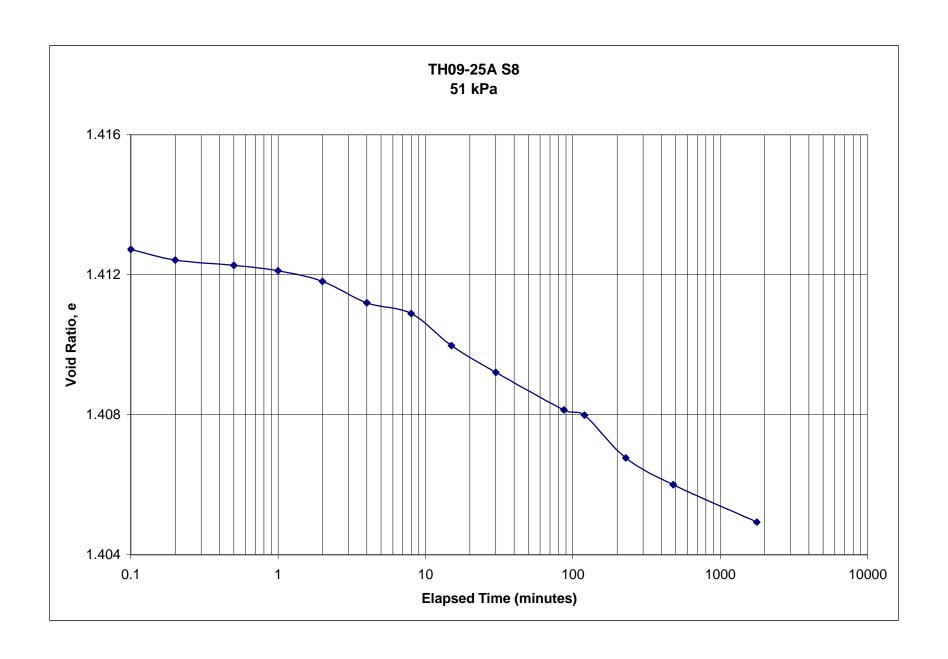



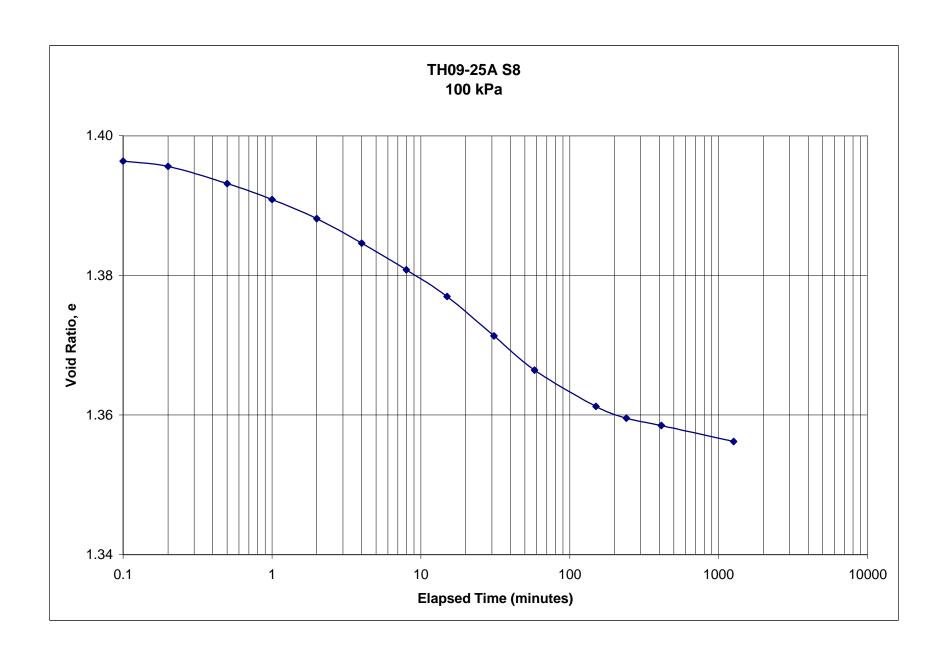



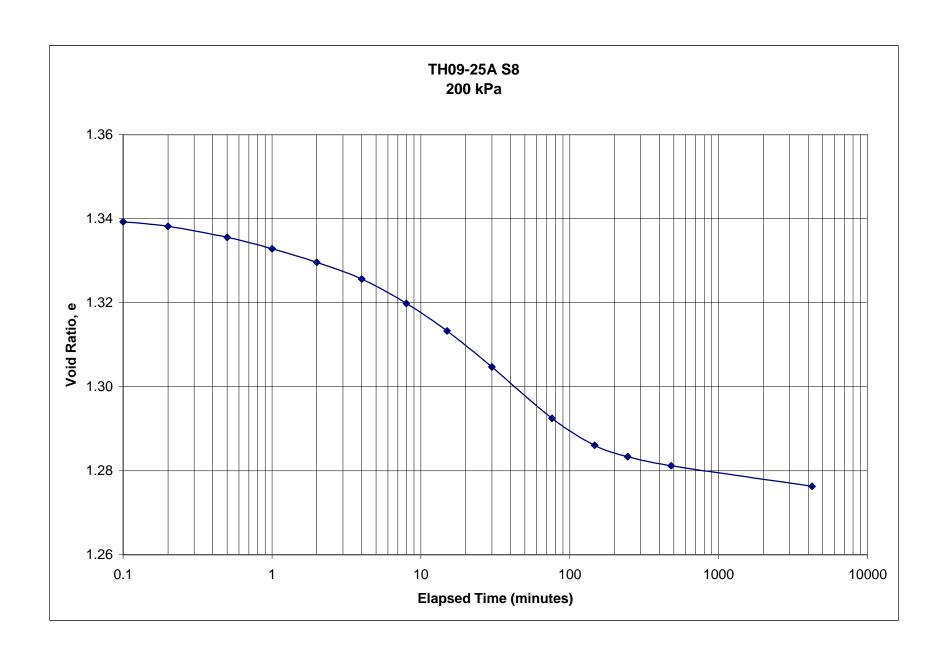



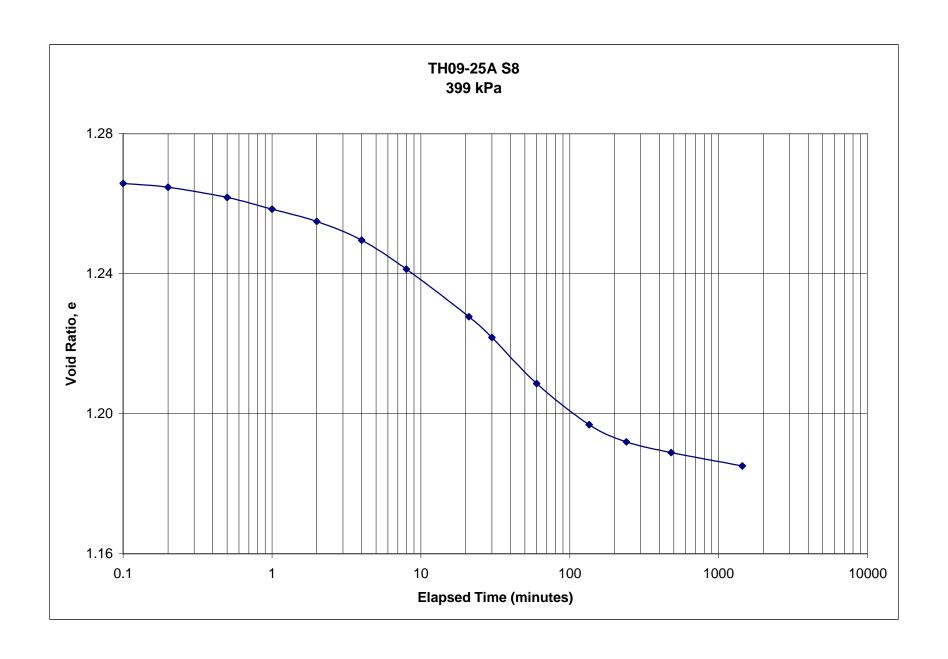



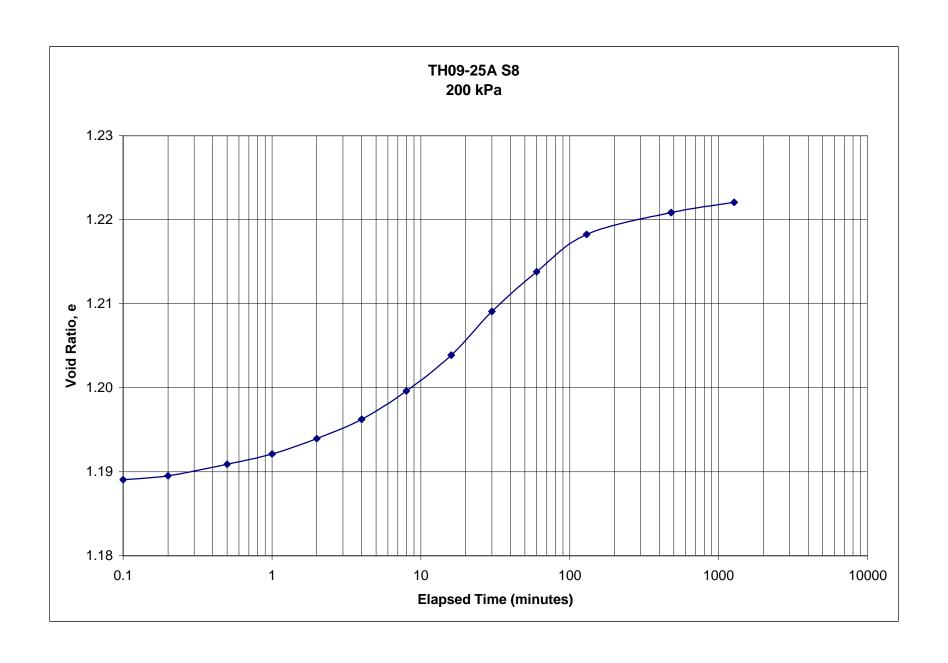



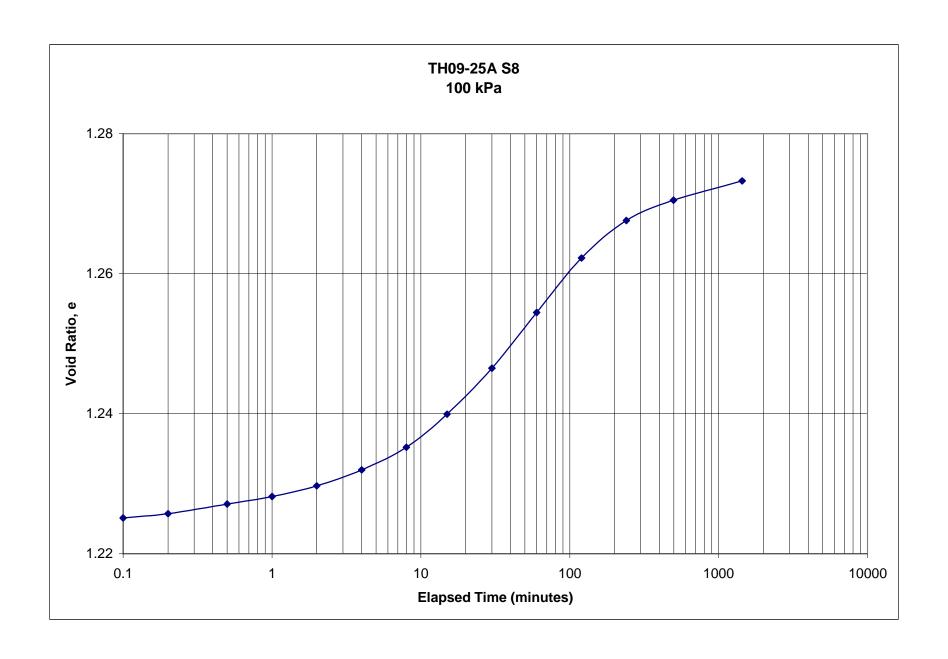



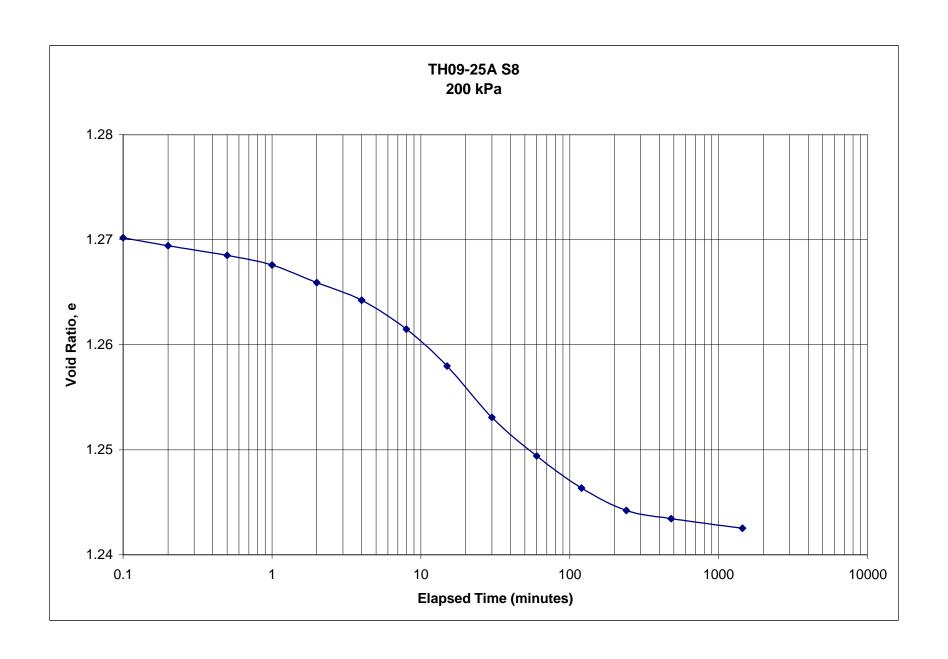



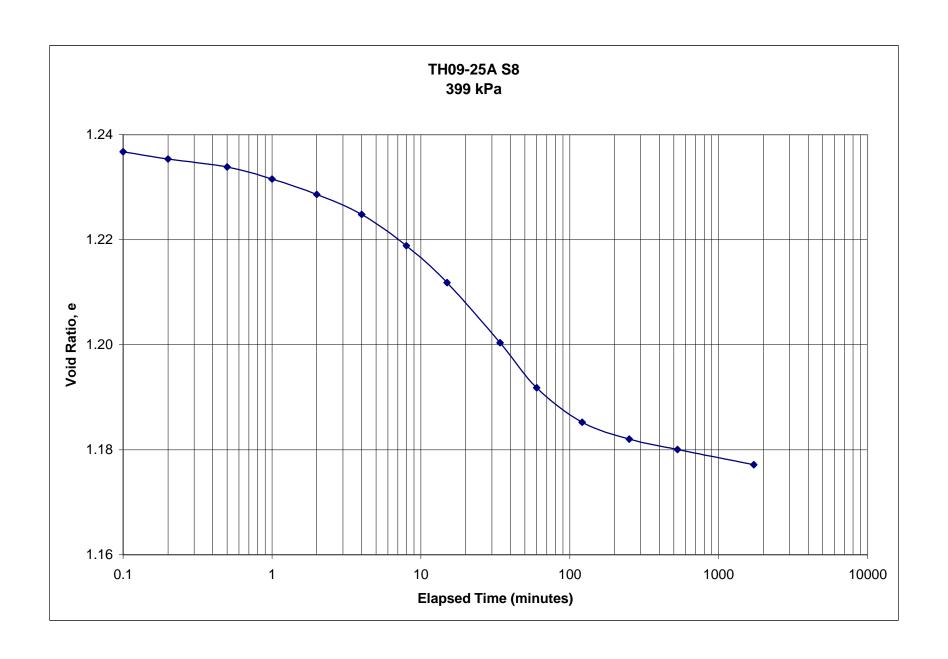



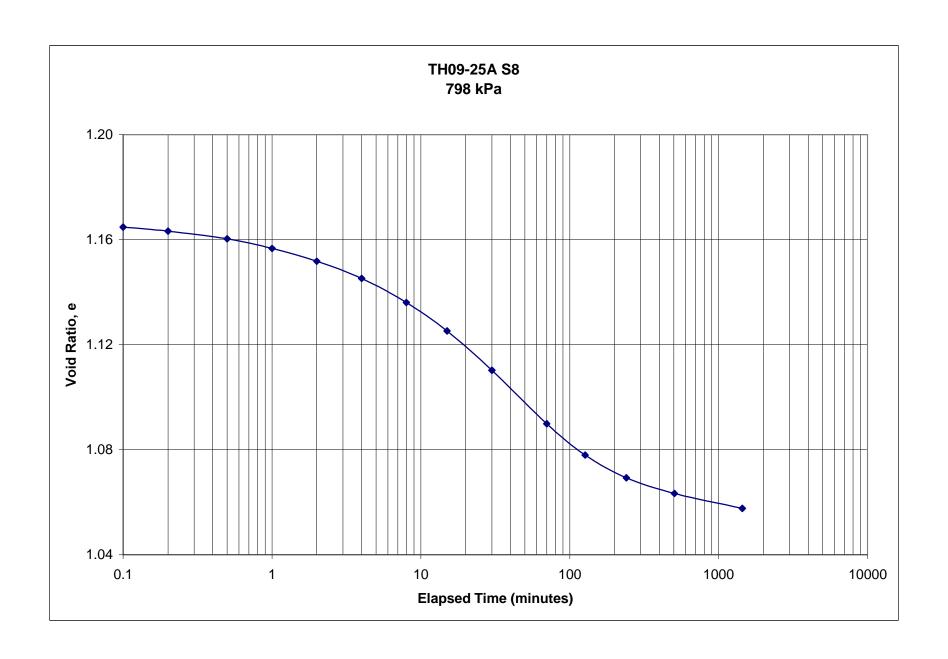



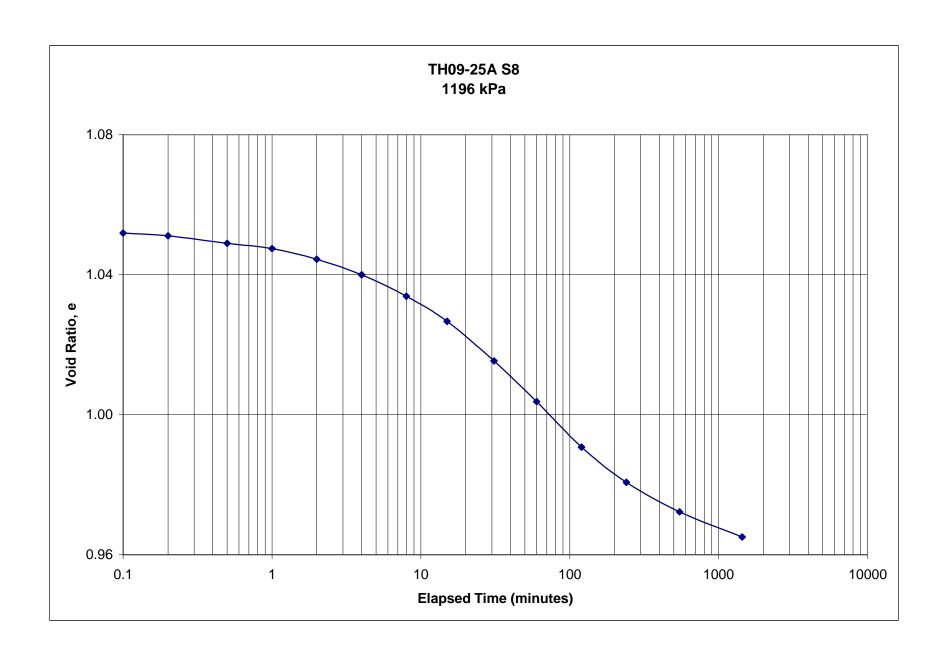



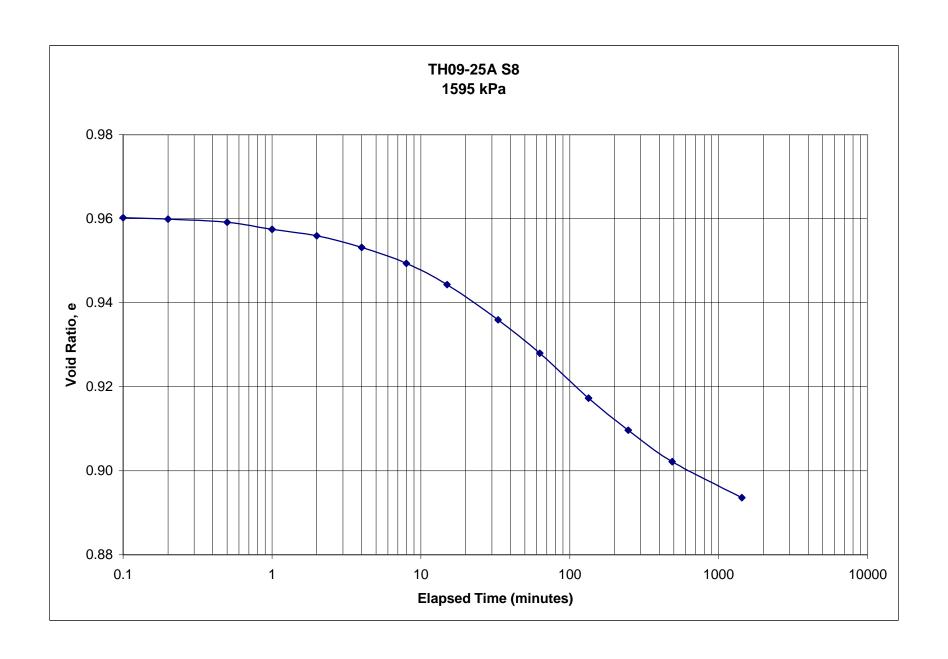



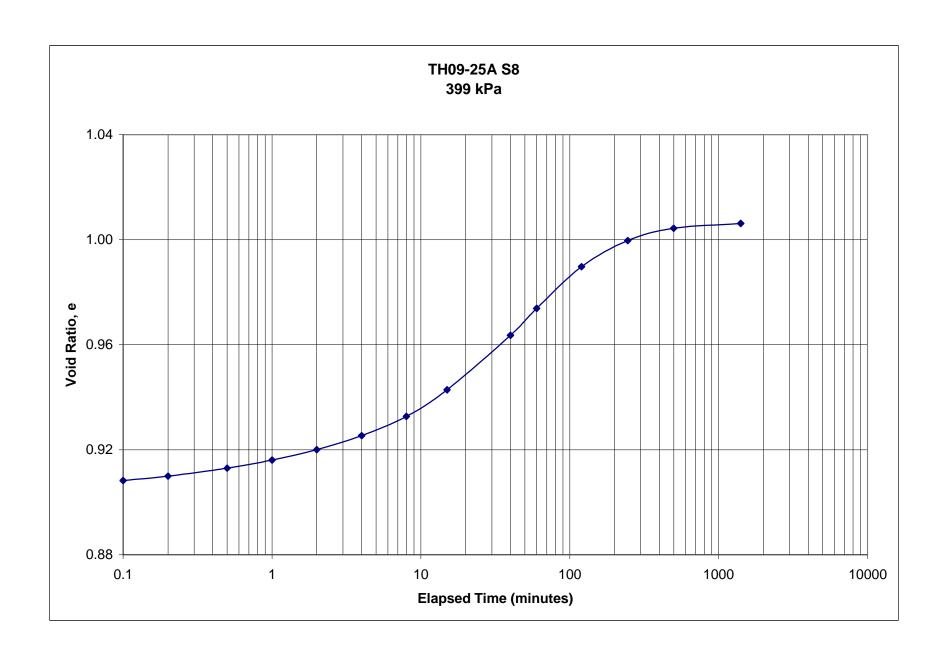



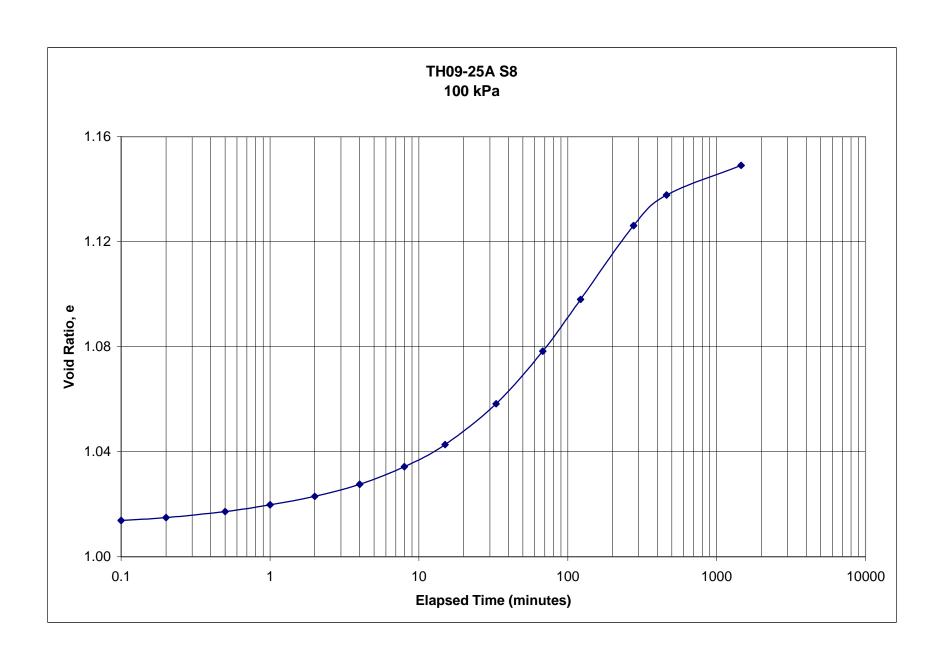



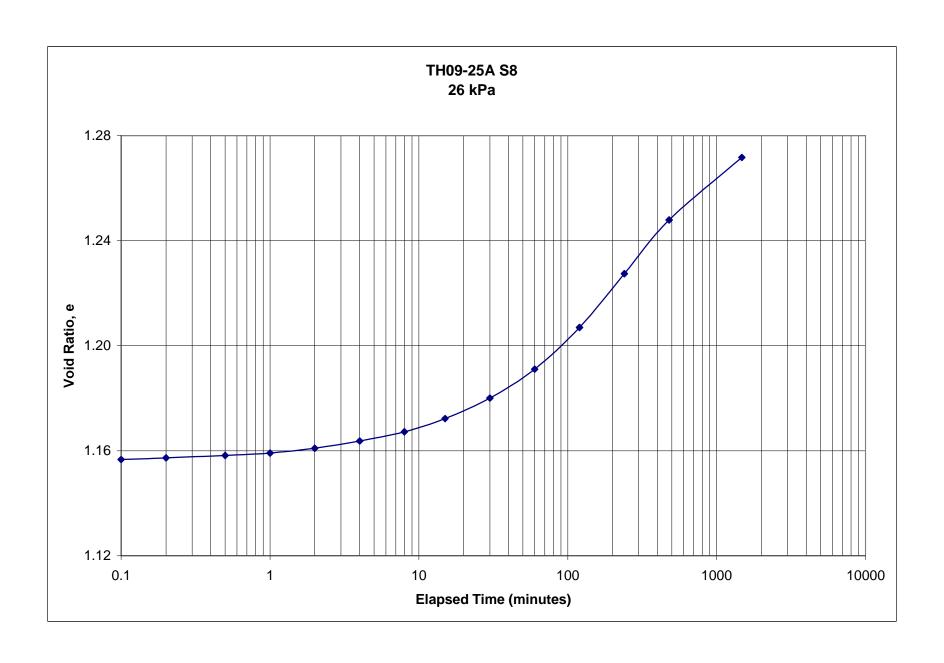














# **APPENDIX F**

2023 Frontier Geoscience Seismic Refraction Survey Report

SEISMIC REFRACTION

SURVEY REPORT

CENTREPORT REGIONAL S&W SERVICING PROJECT

WINNIPEG, MB

Submitted to:

KGS Group

January 25, 2024

Authors:

Laysa Vieira, M.Sc. Caitlin Gugins, P.Geo.

Project: FGI-1852

Figure 8

Figure 9

Figure 10

|                              | Table of Contents                                     |          |
|------------------------------|-------------------------------------------------------|----------|
| 1. Introduction              |                                                       | 1        |
| 2. Seismic Refraction Survey |                                                       | 2        |
| 2.1 Survey Equipment         |                                                       | 2        |
| 2.2 Survey Procedure         |                                                       | 3        |
| 2.3 Interpretive Method      |                                                       | 3        |
| 3. Geophysical Results       |                                                       | 4        |
| 3.1 General                  |                                                       | 4        |
| 3.2 Discussion               |                                                       | 4        |
| 4. Limitations               |                                                       | 6        |
| 5. References                |                                                       | 7        |
|                              | Illustrations                                         |          |
|                              |                                                       | Location |
| Figure 1                     | Survey Location Plan                                  | Appendix |
| Figure 2                     | Site Plan                                             | Appendix |
| Figure 3                     | Interpreted Seismic Refraction Depth Section SL23-01A | Appendix |
| Figure 4                     | Interpreted Seismic Refraction Depth Section SL23-01B | Appendix |
| Figure 5                     | Interpreted Seismic Refraction Depth Section SL23-01C | Appendix |
| Figure 6                     | Interpreted Seismic Refraction Depth Section SL23-01D | Appendix |
| Figure 7                     | Interpreted Seismic Refraction Depth Section SL23-02A | Appendix |

Appendix

Appendix

Appendix

Interpreted Seismic Refraction Depth Section SL23-02B

Interpreted Seismic Refraction Depth Section SL23-03A

Interpreted Seismic Refraction Depth Section SL23-03B

November, 2023 i Project No. 1852

## 1. Introduction

During the period October 31 to November 3, 2023, Frontier Geosciences Inc. carried out a seismic refraction investigation for KGS Group in support of the Centreport Regional S&W Servicing Project, in Winnipeg, Manitoba. The survey area is located adjacent to Summit Road and Sturgeon Road, and to the west of the Winnipeg Richardson International Airport. A Survey Location Plan of the area is shown at a scale of 1:50,000 in Figure 1, in the Appendix.

The purpose of the geophysical survey was to determine depth to bedrock and overburden layering classification to aid in defining depth to a till layer, as well as characterizing material types and densities. Approximately 1150 metres of detailed seismic refraction data were collected along three separate seismic traverses. A Site Plan showing the line locations is presented at a scale of 1:5,000 in Figure 2, of the Appendix. This project is an augmentation of a previous geophysical investigation carried out by Frontier Geosciences Inc. in October, 2019.



Line SL23-03 Looking Northwest

## 2. Seismic Refraction Survey

## 2.1 Survey Equipment

The seismic refraction investigation was carried out using two Geometric Geode, 24 channel, signal enhancement seismographs and Oyo Geospace 10 Hz geophones. Geophone intervals along the multicored seismic cable were maintained at 2.5 metres in order to ensure high resolution data on subsurface layering. Seismic energy was provided from a percussive firing rod (PFR) discharging 8 gauge, blank, black powder shells into hand-excavated shotholes. Shot initiation or zero time was established by metal to metal contact of a hammer contacting the firing pin.



Example of Instrumentation Setup

## 2.2 Survey Procedure

Field procedure entailed setting out two 24 channel geophone cables in a straight line and implanting the geophones. The spread was traversed with the seismic sources, moving progressively down the array of geophones, with up to 9 individual shotpoints on each spread: one at either end of the spread, up to 5 at intermediate locations along the seismic cable, and one off each end of the spread, where possible, to ensure adequate coverage of the subsurface. The shots were triggered individually and arrival times for each geophone were acquired in the seismographs and recorded in the field laptop. For quality assurance, field inspection of raw data after each shot was carried out, with additional shots recorded if first arrivals were unclear.

Throughout the survey, notes were recorded regarding seismic line positions in relation to topographic and geological features. Relative elevations along the seismic lines were recorded by chain and inclinometer, with absolute elevations taken from the City of Winnipeg 2020 WWD Lidar.

## 2.3 Interpretive Method

The final interpretation of the seismic data was arrived at using the method of differences technique. This method utilises the time taken to travel to a geophone from shotpoints located to either side of the geophone. Velocities are calculated as the slope of first break pick times and geophone distances. When there is a significant change in slope a new velocity is calculated and assigned to the new layer. Basal velocities are calculated by the arrivals of off-end shots where picked arrivals are refracted from the basal layer. Each geophone is assigned a velocity and time for each layer. Using the total time, a small vertical time is computed which represents the time taken to travel from the refractor up to the ground surface. This time is then multiplied by the velocity of each overburden layer to obtain the thickness of each layer at that point. The thicknesses are splined along the seismic line to create a continuous boundary between layers.

## 3. Geophysical Results

### 3.1 General

The interpreted results of the seismic refraction lines are illustrated at a scale of 1:250, in profile in Figures 3 to 10 in the Appendix. The seismic velocity layer interfaces are marked on the seismic profiles in green, blue and red. The interface line colours are not a specific velocity contour, but rather the interpreted discrete boundary above which velocities are defined within a certain range, and below which velocities are within a significantly increased velocity range.



Line SL23-01 Looking Northeast

### 3.2 Discussion

The interpreted results of the seismic refraction survey indicate the area is underlain by four distinct velocity layers. The surficial layer with compressional velocities ranging from 360 m/s to 440 m/s, is consistent with a surficial sediment layer, such as clays, silts and fills. This layer averages approximately 2.7 metres in thickness, reaching a maximum thickness of 5.6 metres near station 125SE on line SL23-03 and a minimum of 1.5 metres at station 157NE on line SL23-02.

Below the surficial layer is an upper intermediate layer with an interpreted velocity range of 820 m/s to 1150 m/s. Averaging 3.3 metres, this layer reaches a maximum thickness of 5.3 m at the southeastern end of line SL23-03, while thinning to approximately one metre at station 30SE on SL23-03. These velocities are consistent with testhole intersections of firm to very stiff, clays and silts, or in some locations, a loose to compact, unsaturated silt till material.

The base of this upper intermediate layer is illustrated by a blue line, and in places may represent the transition from unsaturated to saturated in the compact to dense silt till present in the area; however, the thickness of the saturated zone is not large enough to significantly increase the compressional wave velocity to delineate it as a discrete velocity layer.

Bounded on the surface by this blue line, is a deeper intermediate layer, ranging in compressional wave velocity from 1800 m/s to 2250 m/s. This velocity range is consistent with dense to very dense silt till encountered in the testholes, indicating this layer correlates with, likely saturated, silt till in the area. The interpreted thickness of this layer varies significantly, from a minimum thickness of 1.1 metres near the end of line SL23-03, to a maximum of over 11 metres in more than one location along the first half of line SL23-01, with an average thickness of 5.5 metres.

Underlying the intermediate layers is the interpreted basal layer with compressional wave velocities of 3650 m/s to 4050 m/s. These velocities are consistent with testhole intersections of a limestone or shale bedrock, and is the interpreted bedrock surface. Lower velocities in this range most likely represents an increased level of fracturing and/or weathered bedrock, while the higher end is indicative of more competent bedrock. This interpreted bedrock surface exhibits an average depth of approximately 11.5 metres and reaches a maximum depth of almost 18 metres near station 265NE along line SL23-01, while rising to a minimum depth of 6.6 metres, at station 70NE on line SL23-02.

#### 4. Limitations

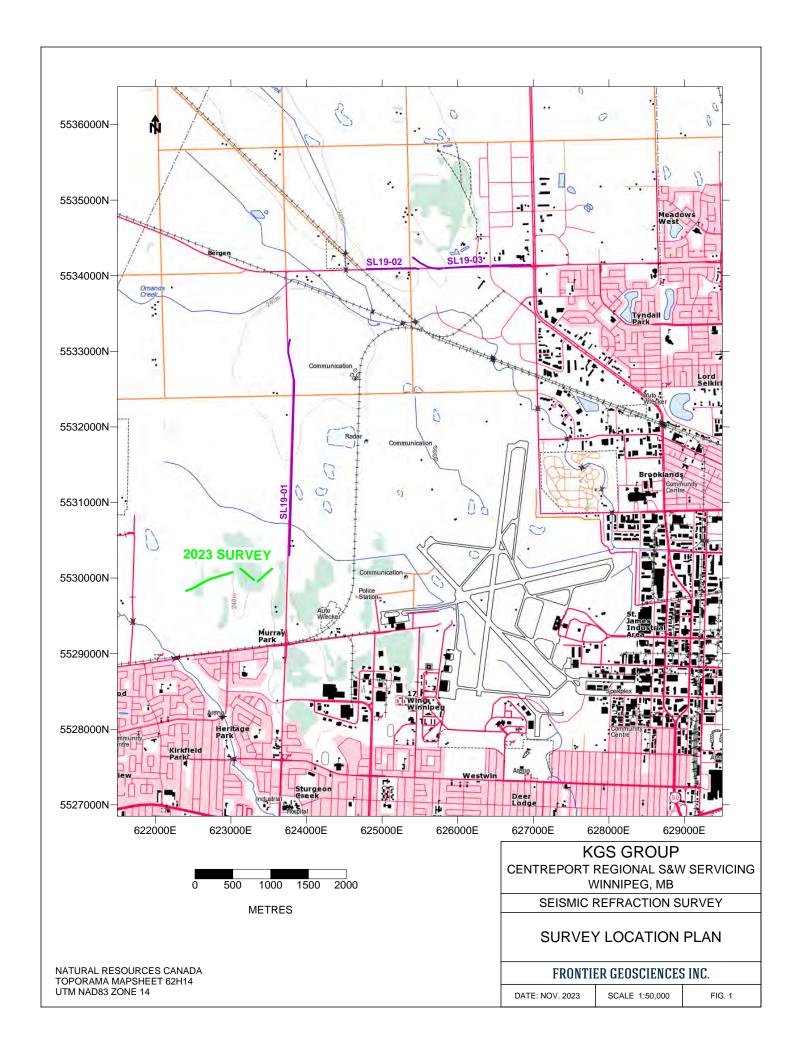
The depths to subsurface boundaries derived from seismic refraction surveys are generally accepted as accurate to within ten percent of the true depths to the boundaries, below 10 metres. Above 10 metres, the accuracy of seismic refraction data is approximately +/- 1.0 metres due mainly to the greater statistical error in determining the upper velocity layers from fewer data points. In some cases, unusual geological conditions may produce false or misleading data points with the result that computed depths to subsurface boundaries may be less accurate. In seismic refraction surveying difficulties with a "hidden" layer' or a velocity inversion may produce erroneous depths. The first condition is caused by the inability to detect the existence of a layer because of insufficient velocity contrasts or layer thicknesses. A velocity inversion exists when an underlying layer has a lower velocity than the layer directly above it. The interpreted depths shown on drawings are to the closest interface location, which may not be vertically below the measurement point if the refractor dip direction departs significantly from the survey line location. Structural discontinuities occurring on a scale less than the geophone spacing or isolated boulders would go undetected in the interpretation of the data. The seismic refraction method may not detect a narrow canyon-like feature incised into bedrock, if the canyon width is narrow relative to the depth of burial of the feature.

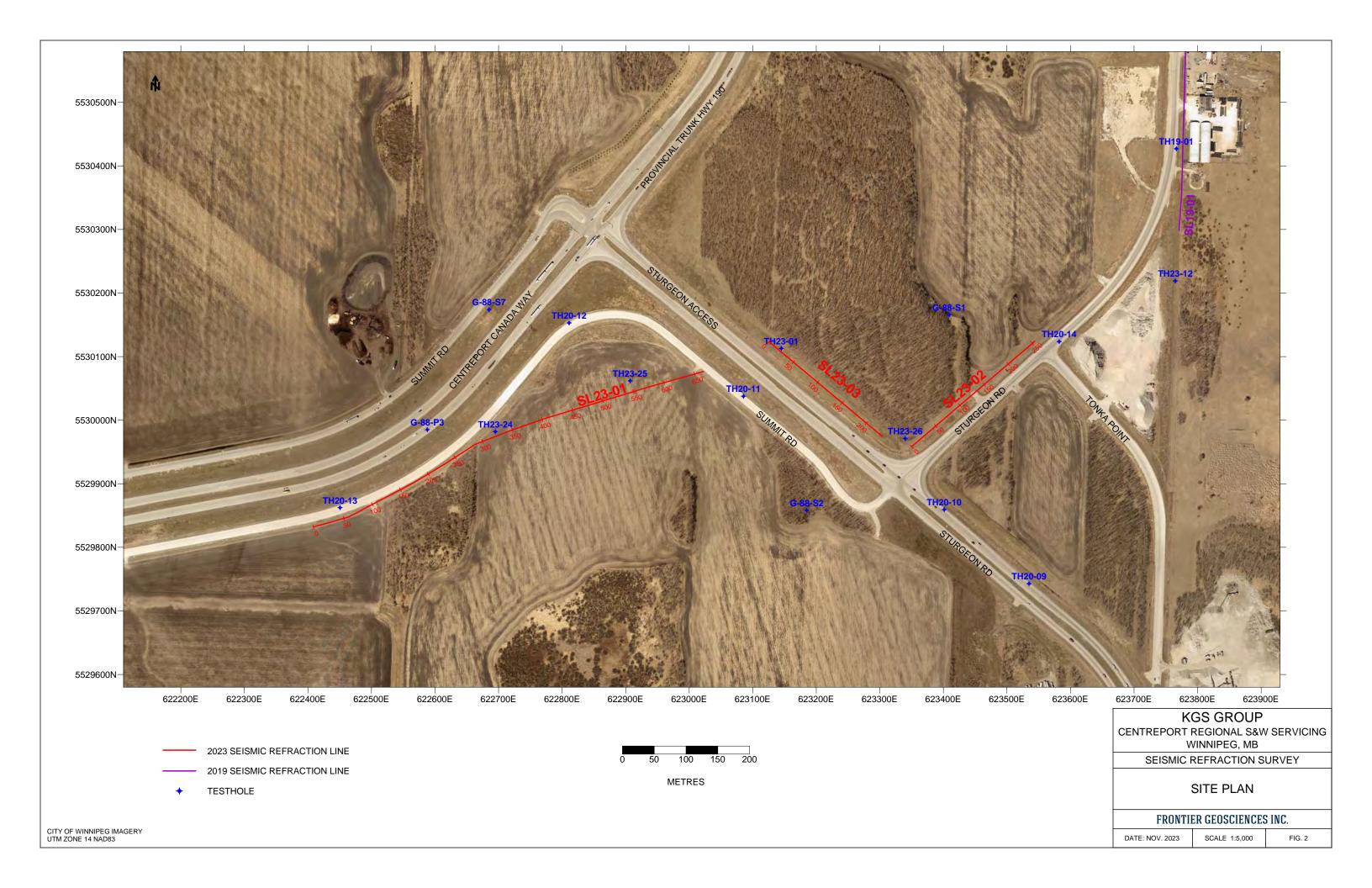
The information in this report is based upon geophysical measurements and field procedures and our interpretation of the data. The results are interpretive in nature and are considered to be a reasonably accurate representation of existing subsurface conditions within the limitations of the methods used.

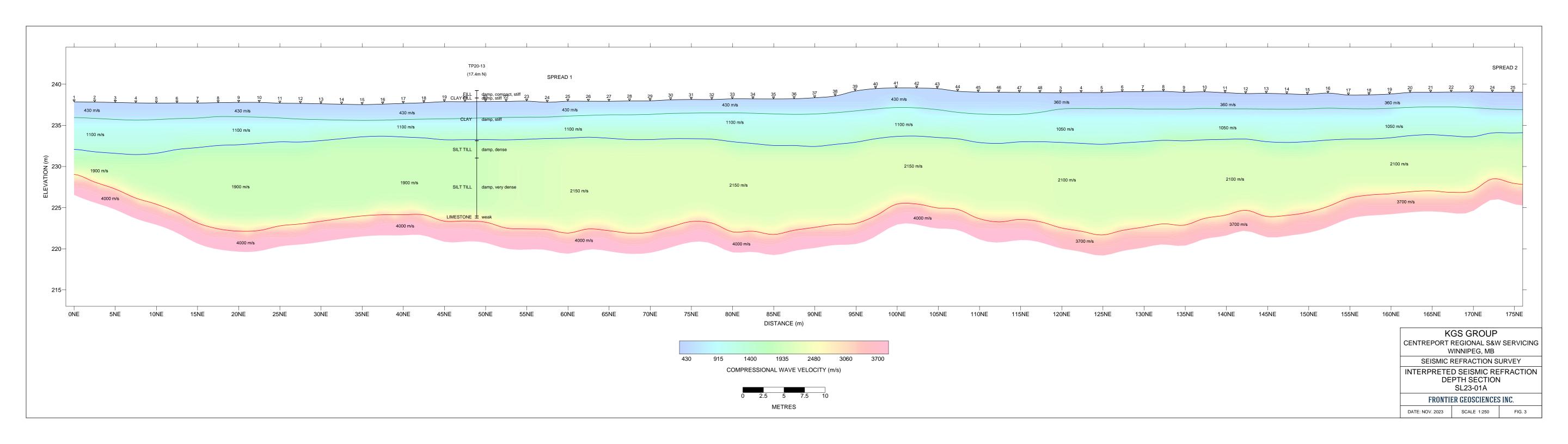
For: Frontier Geosciences Inc.

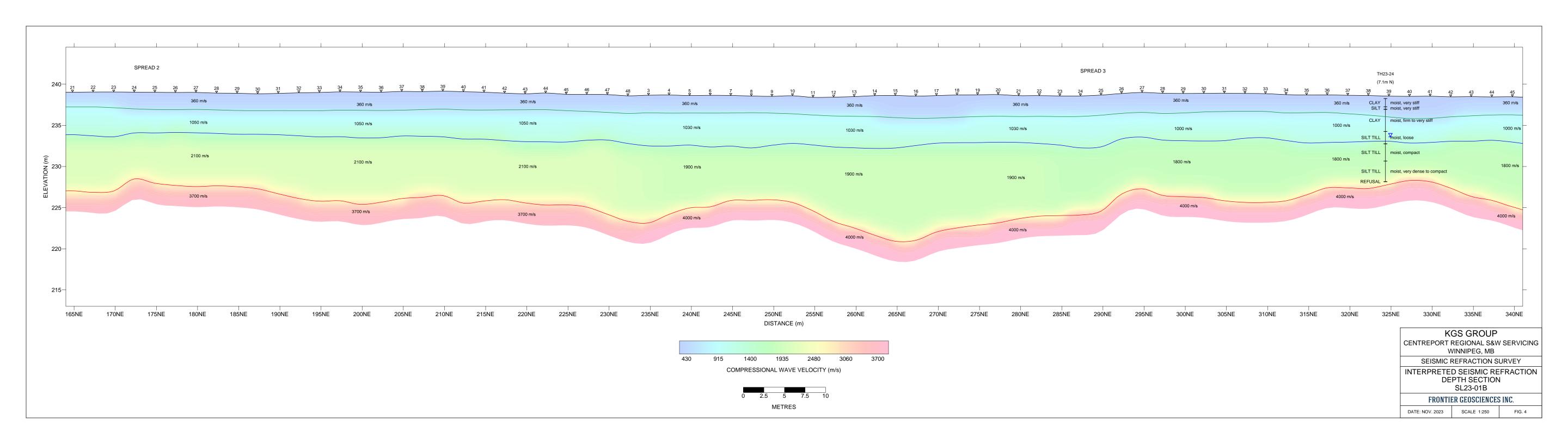
Laysa Vieira, M.Sc.

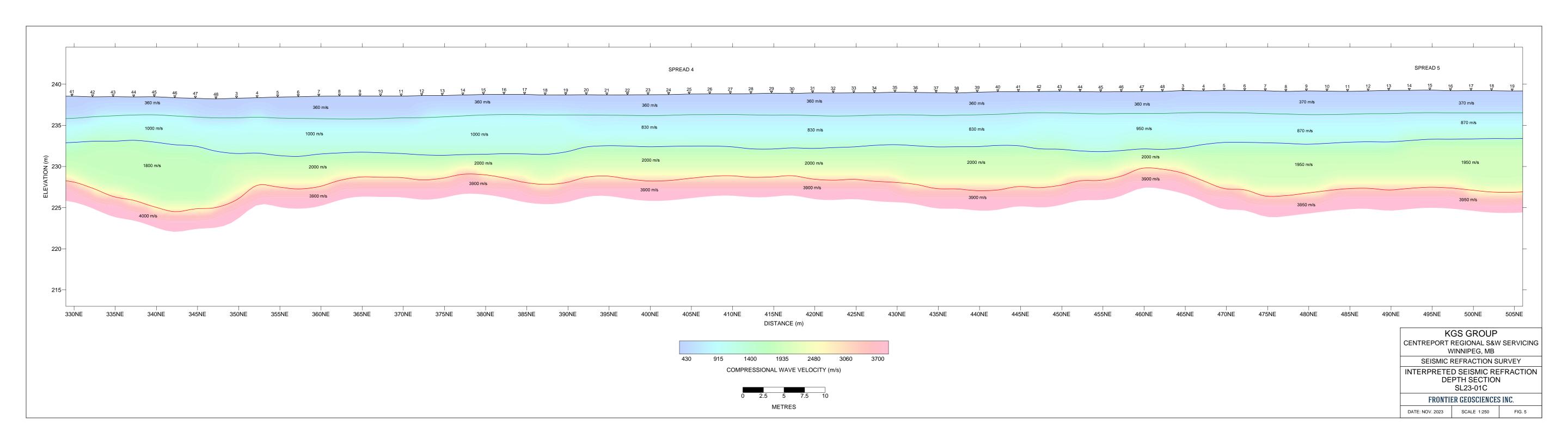
Engineers and Geoscientists of Manitoba Certificate of Authorization #7657

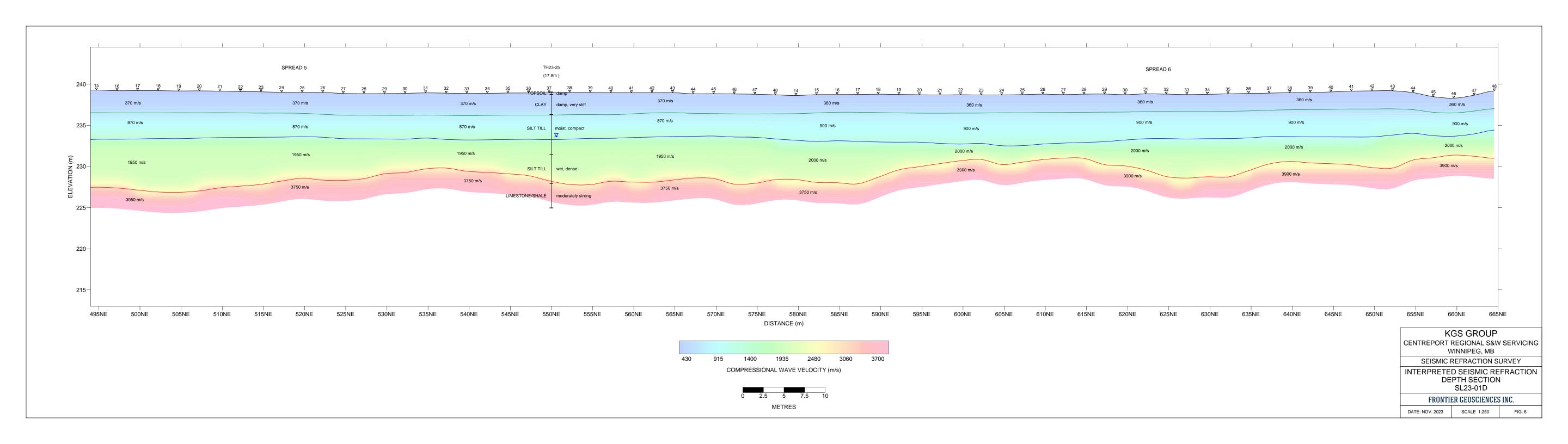

Caitlin Gugins, P.Geo.

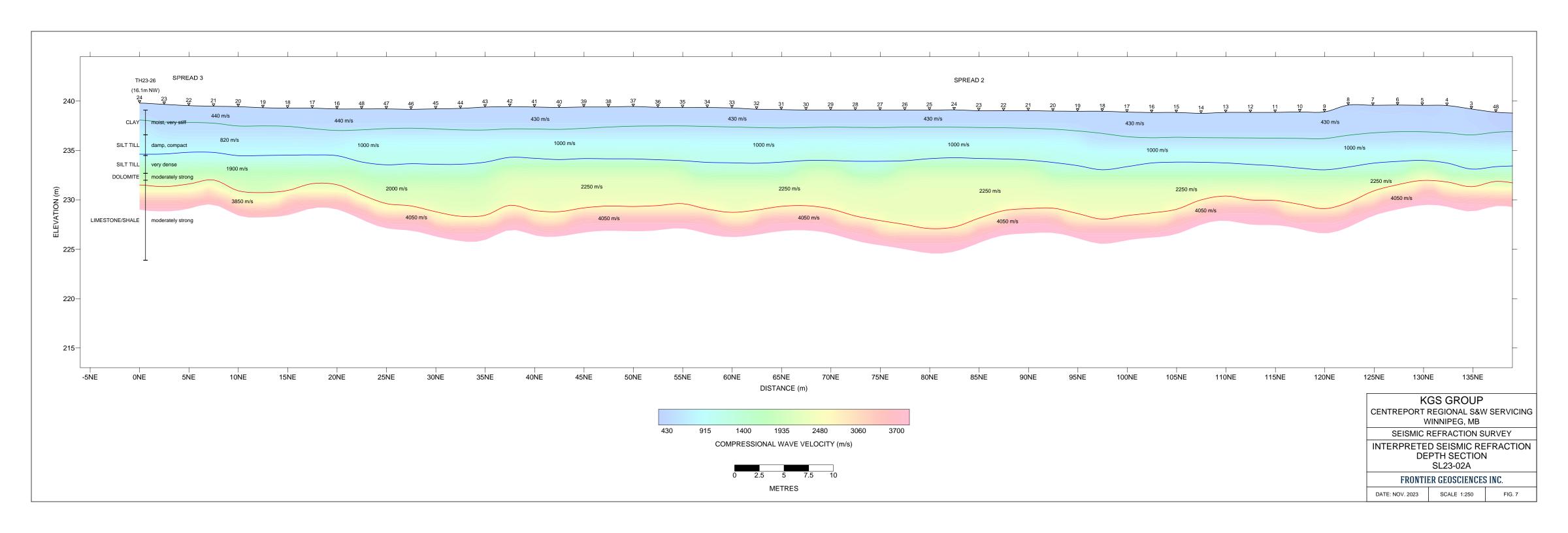

## 5. References

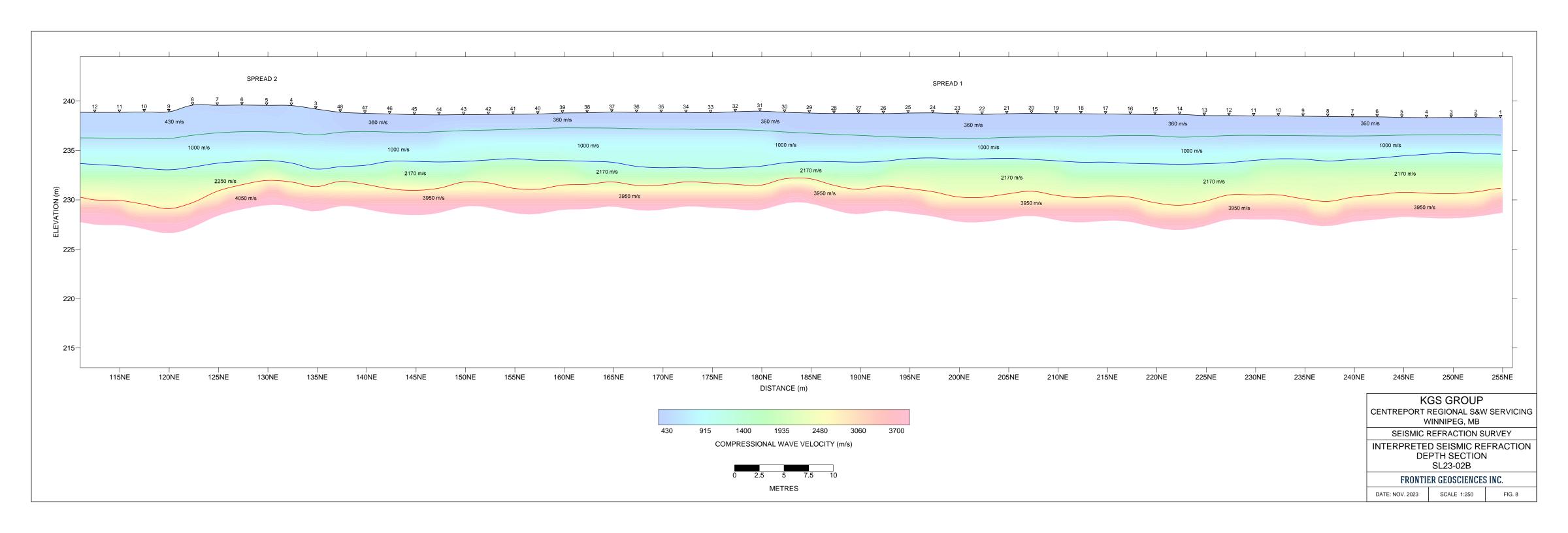

1. *Seismic Refraction Survey Report,* Winnipeg Richardson International Airport, Winnipeg, MB; Submitted to KGS Group; Frontier Geosciences Inc.; Project No. FGI-1644; October, 2019

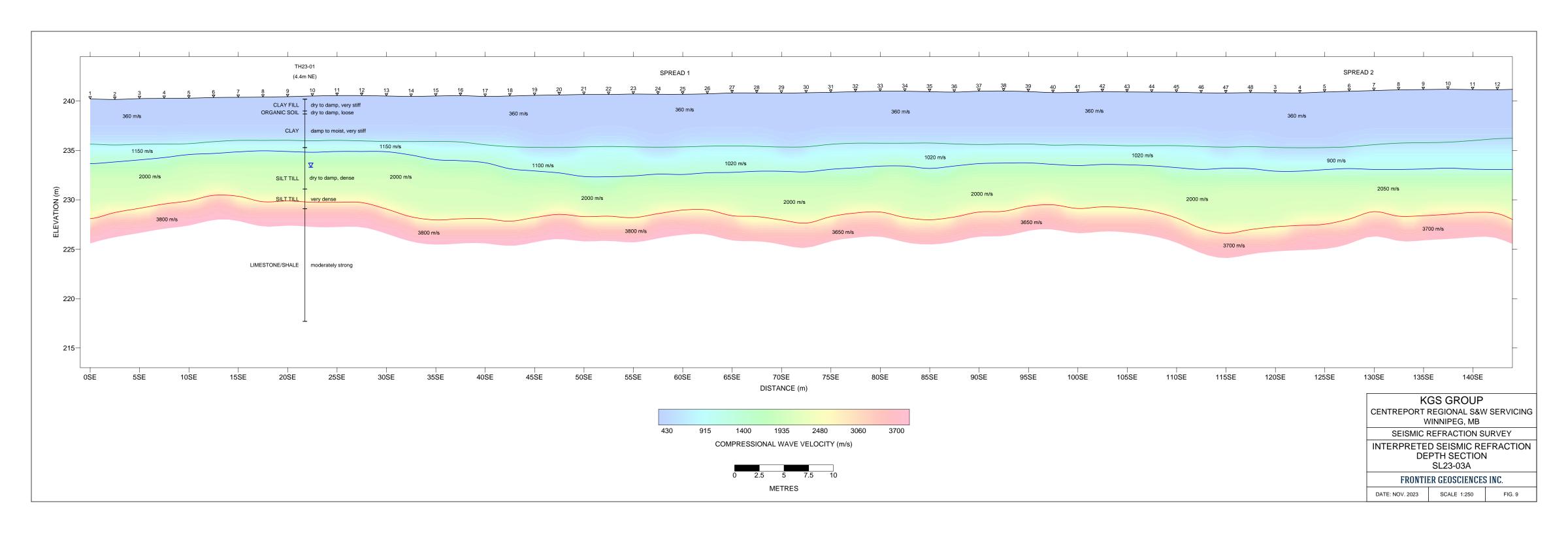

## **APPENDIX**

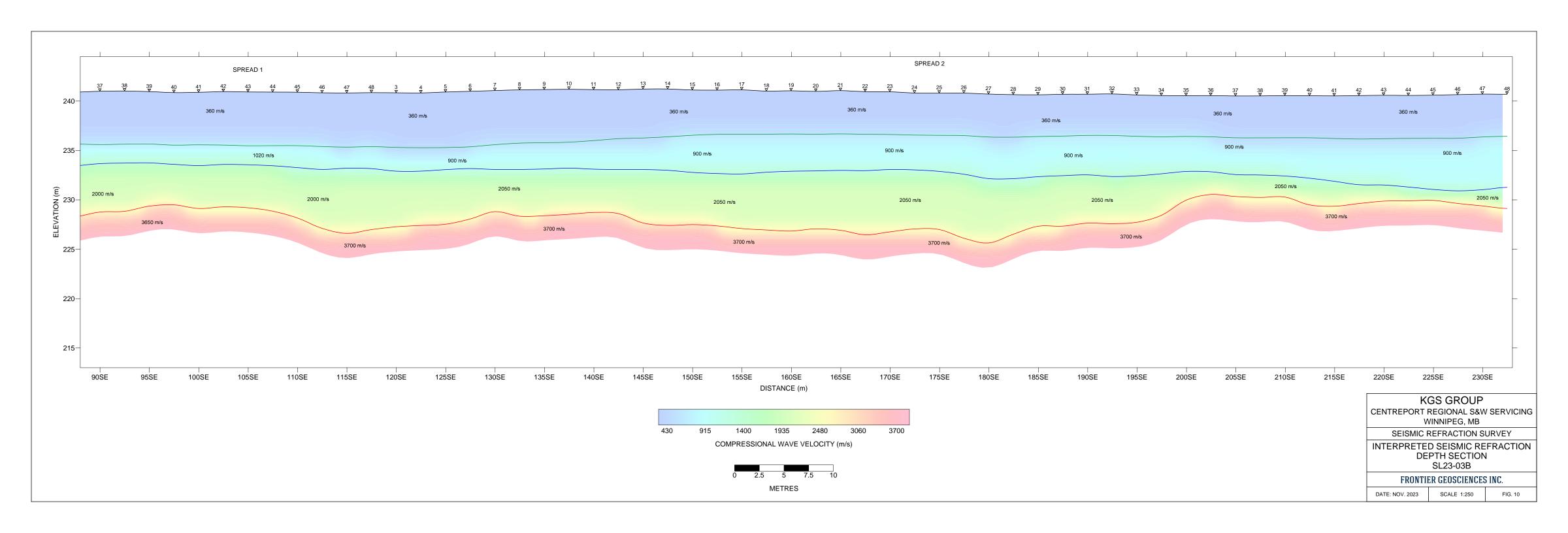

November, 2023 Project No. 1852














# **APPENDIX G**

2023 KGS Group Hydrogeological Assessment Memo



## Memorandum

| То:   | Ray Offman<br>Municipal Department Head | Date:           | March 7, 2024                            |  |  |  |  |  |
|-------|-----------------------------------------|-----------------|------------------------------------------|--|--|--|--|--|
|       | KGS Group                               | Project<br>No.: | 23-0107-009                              |  |  |  |  |  |
| From: | Paul Lindell, B.Sc., P.Eng.             | Cc:             | Dami Adedapo, Ph.D., P.Eng.              |  |  |  |  |  |
|       | KGS Group                               |                 | Principal & Geotechnical Department Head |  |  |  |  |  |
|       | Simratpal Singh, M.Sc. EIT              |                 | Kelly Fordyce, B.Sc., P.Eng.             |  |  |  |  |  |
|       | KGS Group                               |                 | Geotechnical Engineer, KGS Group         |  |  |  |  |  |
|       |                                         |                 | Jason Mann, M.Sc., P.Geo., FGC           |  |  |  |  |  |
|       |                                         |                 | Principal, KGS Group                     |  |  |  |  |  |

### 4.2. PUMPING TEST DESIGN AND ANALYSIS

## 4.2.1. Pumping Test Design

A pumping test was completed within the footprint of the future CentrePort South lift station site (the "Site") to understand the bedrock aquifer conditions for the deep shaft excavations that will be required for construction.

An observation well TH23-01 was installed at the Site on September 28, 2023, to a total depth of 22.5 m below ground surface (bgs) using a GeoProbe 3230 track mounted drill rig. At this location, a 2-inch standpipe piezometer was installed within the bedrock, along with a vibrating wire piezometer (SN# VW171370) installed at an elevation of 231.7 m above sea level (asl) within the silt till.

A 0.13 m (5-inch) diameter pumping well PW23-01 was installed at the Site on November 14, 2023, using a Canterra CT 250 truck-mounted mud rotary drill rig. The PVC well casing was installed through the overburden soil into the bedrock until competent bedrock was encountered. The bottom of PVC casing was installed at 12.5 m bgs with an open hole drilled in the limestone bedrock from 12.5 m to 22.3 m bgs. The preliminary yield testing on this well resulted in a calculated specific capacity of less than 1 USgpm, which was low, and therefore a second pumping well (PW23-02) was installed closer to TH23-01 on November 17, 2023. Pumping Well, PW23-01 was used as an additional observation well during the pumping test at PW23-02.

PW23-02 was installed approximately 35 m southwest of PW23-01, and with similar depth specifications and well makeup as PW23-01. The specific capacity of this well was calculated at 5 USgpm. The geographical location of each of these wells is shown in Figure 4.2.1. The drilling contractor used for this pumping test was Maple Leaf Drilling Ltd., of Winnipeg, Manitoba.

The UTM coordinates of the wells were collected using a handheld GPS and are accurate to +/- 4m. The borehole drilling and well construction details for the test wells are presented in Table 4.2.1, and the borehole logs are included in Appendix A.

**Casing Diameter** Depth of **Total Depth** Easting **Northing Well Name** and Type Casing (m bgs) (m bgs) (UTM) (UTM) PW23-01 5-inch φ PVC 12.9 22.3 623136 5530157 PW23-02 5-inch φ PVC 11.7 22.3 623154 5530127 TH23-01 22.5 2-inch φ PVC 21.4 623145 5530113

TABLE 4.2.1: BOREHOLE INSTALLATION DETAILS

### 4.2.2. Aquifer Monitoring and Aquifer Testing

A 2-hour pumping test was conducted at PW23-02 on November 20, 2023, starting at 15:00 and ending at 17:00. Initially, an 8-hour pumping test was planned, but was revised to 2-hours to accommodate time to drill the additional pumping well PW23-02. Field observations indicated that 2 hours of pumping could establish the drawdown around the well and allow the drawdown cone to expand from PW23-02 to the observation well TH23-01. Recovery was monitored in the observation wells to at least 90% of the static water level.

A 0.08 m (3-inch) diameter submersible pump was installed in PW23-02 at a depth of 10.9 m below grade. Power was supplied by an on-site portable generator. The 2-hour pumping test commenced on November 20, 2023, at 15:00 and was completed at 17:00. The pumping test was started with a flow rate of 5 USgpm for the first 26 minutes to achieve a stable drawdown in PW23-02. A stable drawdown of 1.7 m was achieved within the first 26 minutes of pumping. The pumping rate was then increased to 10 USgpm to test and monitor the well response. The increased pumping rate (10 USgpm) lowered the groundwater elevation close to the pump elevation within approximately 10 minutes of pumping at this rate, so pumping rate was then adjusted to 8 USgpm and a stabilized drawdown of 5.3 m was achieved for the remaining duration of the pumping test.

Water levels in TH23-01 and PW23-01 were monitored during the pumping test at PW23-02 using Heron DipperLog non-vented M30/F100 and M10/F30 automatic data logging pressure transducers, respectively, to record how the aquifer responds to pumping. The water level in PW23-02 was monitored using a manual water level meter. The vibrating wire in the silt layer installed in TH23-01 was monitored manually intermittently throughout the pumping test.

A barometric pressure logger (Heron BarLog) was deployed onsite for use in barometric compensation of non-vented transducers. The transducers and the barologger were installed in the respective wells at least one hour prior to the start of pumping to collect the static water level and barometric pressure data. The transducer plots and drawdown measured in each observation well are shown in Figure 4.2.2.



The discharge from the pumping test was piped to a ditch south of the site, and approximately 30 m west of the pumping well. Recirculation was not expected to occur during the 2-hour test.

### 4.2.3. Pumping Test Data Analysis

The Cooper-Jacob (1946) method is the most common approach for analyzing the results from aquifer pumping tests in confined aquifers and is a semi-log approximation of Theis (1935) method. Critical assumptions integral to these methods are detailed as follows:

- Darcy's law is valid
- The pumping well diameter is infinitesimal
- The aquifer is horizontal and has constant thickness
- The wells are fully penetrating the aquifer formation
- The aquifer is infinite in areal extent
- The aquifer is bounded by impermeable strata above and below
- Single pumping well

- Uniform hydraulic conductivity
- The pumping rate is constant
- The aquifer is homogeneous and isotropic
- The aquifer has constant storage properties through time
- Head always remains above the top of the pumped aquifer
- There are no water level changes in the aquifer from any other nearby pumping.
- The head is known everywhere prior to pumping.

Through a review of the above assumptions, it can be seen that some of the assumptions for the analysis of the pumping tests conducted at the Centreport well field site are not fully satisfied for the Theis (1935) as well as the Cooper-Jacob (1946) approaches. For example, the limestone aquifer does not appear to have isotropic conditions in the areal extent as the yielding capacity of both pumping wells (PW23-01 and PW23-02) appears to be distinct since the number of water-producing fractures likely vary at both locations. However, the limestone aquifer does appear to satisfy the confined aquifer conditions as an impermeable layer of clay, silt till and a calcareous shale exists above the limestone. No change in pressure readings were observed from the vibrating wire installed in the silt till zone. Since, pumping was being carried out in the limestone bedrock, this suggests that a hydraulic disconnect exists between the silt till and the deeper bedrock aquifer making limestone bedrock a confined aquifer.

The Cooper-Jacob (1946) approach is highly idealized to the assessment of the aquifer and represents the state of the art for the determination of aquifer parameters. The method has been found to be reasonably workable for aquifer engineering evaluation, all over the world, for more than 80 years. In this case, conditions of the Cooper-Jacob (1946) approach are not being severely violated and the methodology provides for good comparisons to the other regional work conducted in the area.

A summary of measured response to pumping during the 2-hour pumping test are shown in Table 4.2.2. The pumping test data was analyzed using the Cooper-Jacob (1946) (both time and distance drawdown) method and the hydraulic parameters inferred from the data are shown in Table 4.2.3.



TABLE 4.2.2: PUMPING TEST DRAWDOWN RESULTS

| Test<br>Hole ID | Instrument<br>Type | from<br>nstrument Tip Depth Monitored<br>Pumpin |           | Pumpin<br>g Well | Static<br>Water<br>Level<br>(m below<br>TOC) | GW<br>Elevation<br>(m asl) | End of Test<br>Drawdown<br>(m) |  |  |
|-----------------|--------------------|-------------------------------------------------|-----------|------------------|----------------------------------------------|----------------------------|--------------------------------|--|--|
| PW23-<br>02     | Standpipe          | 11.73                                           | Bedrock   | -                | 6.07                                         | 233.42                     | 5.57                           |  |  |
| TH23-01         | Standpipe          | 21.40                                           | Bedrock   | ~ 13             | 7.93                                         | 233.15                     | 0.08                           |  |  |
| TH23-01         | Vibrating<br>wire  | 9.10                                            | Silt Till | ~ 13             | .3 7.84 233.28 Non                           |                            | None                           |  |  |
| PW23-<br>01     | Standpipe          | 12.95                                           | Bedrock   | ~ 35             | 9.07                                         | 230.28                     | None                           |  |  |

Note: The GW Elevations were calculated using the ground elevations from the Lidar elevation data presented in figure 4.2.1.

TABLE 4.2.3: TRANSMISSIVITY AND STORATIVITY CALCULATIONS FROM PUMPING TEST

| Data from the<br>Well  | Data Type                             | Method              | Transmissivity<br>(m²/day) | Storativity |
|------------------------|---------------------------------------|---------------------|----------------------------|-------------|
| PW23-02                | Residual Drawdown vs<br>Elapsed Time  | Cooper-Jacob (1946) | 1.47                       | -           |
| PW23-02 and<br>TH23-01 | Distance-Drawdown                     | Cooper-Jacob (1946) | 2.90                       | 0.0032      |
| А                      | verage Transmissivity (m <sup>2</sup> | 2.18                |                            |             |

In general, the aquifer was inferred to have an approximate transmissivity of 2.18 m²/day (<500 USgpd/ft), based on the results of the 2-hour, single pumping well test, and the data from the responding observation wells. The drawdown observations from the bedrock monitoring wells did not show appreciable fracture connectivity to the pumping well. Drawdown in the limestone aquifer was small but detectable in the pumping well, PW23-02, and in observation well, TH23-01; however, no drawdown was observed in PW23-01. The storativity was calculated to be approximately 0.003.



Drawdown versus time for the pumping well PW23-02 is shown as Figure 4.2.3. This data was not considered in the analysis as the drawdown was stabilized initially at 5 USgpm for the first 26 minutes; however, on increasing the pumping rate to 10 USgpm, the groundwater level rapidly drew down to the elevation where the pump was sitting in the well. The pumping rate was then reduced to 8 USgpm resulting in a stabilized drawdown of 5.3 m for the remaining duration of the test. The residual drawdown verses time plot for the pumping well is shown in figure 4.2.4. It was observed that PW23-02 recovered back to the static groundwater level within first 10 minutes of recovery period after pump shutoff.

The radius of influence calculation was not performed; however, it can be noted from the drawdown versus time data for TH23-01 (Figure 4.2.5) that the maximum drawdown at this well location was 0.08 m. It can be estimated that the radius of influence of pumping at 8 USgpm was approximately 13 m.

#### STATEMENT OF LIMITATIONS AND CONDITIONS

#### Limitations

This memorandum has been prepared for City of Winnipeg in accordance with the agreement between KGS Group and City of Winnipeg (the "Agreement"). This memorandum represents KGS Group's professional judgment and exercising due care consistent with the preparation of similar documents. The information, data, recommendations, and conclusions in this memorandum are subject to the constraints and limitations in the Agreement and the qualifications in this memorandum. This memorandum must be read as a whole, and sections or parts should not be read out of context.

This memorandum is based on information made available to KGS Group by City of Winnipeg. Unless stated otherwise, KGS Group has not verified the accuracy, completeness, or validity of such information, makes no representation regarding its accuracy and hereby disclaims any liability in connection therewith. KGS Group shall not be responsible for conditions/issues it was not authorized or able to investigate or which were beyond the scope of its work. The information and conclusions provided in this memorandum apply only as they existed at the time of KGS Group's work.

## Third Party Use of Memorandum

Any use a third party makes of this memorandum or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this memorandum.

### Geo-Environmental Statement of Limitations

KGS Group prepared the geo-environmental conclusions and recommendations for this memorandum in a professional manner using the degree of skill and care exercised for similar projects under similar conditions by reputable and competent environmental consultants. The information contained in this memorandum is based on the information that was made available to KGS Group during the investigation and upon the services described, which were performed within the time and budgetary requirements of City of Winnipeg.



As this memorandum is based on the available information, some of its conclusions could be different if the information upon which it is based is determined to be false, inaccurate, or contradicted by additional information. KGS Group makes no representation concerning the legal significance of its findings or the value of the property investigated.

## Geotechnical Investigation Statement of Limitations

The geotechnical investigation findings and recommendations of this memorandum were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at the site at the time of drilling. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, KGS Group should be notified in order that the recommendations can be reviewed and modified if necessary.

Prepared By:

Simratpal Singh, M.Sc., EIT Environmental Hydrogeologist

Sincatpal Singh

Reviewed By:

Paul Lindell, P.Eng. Environmental Engineer

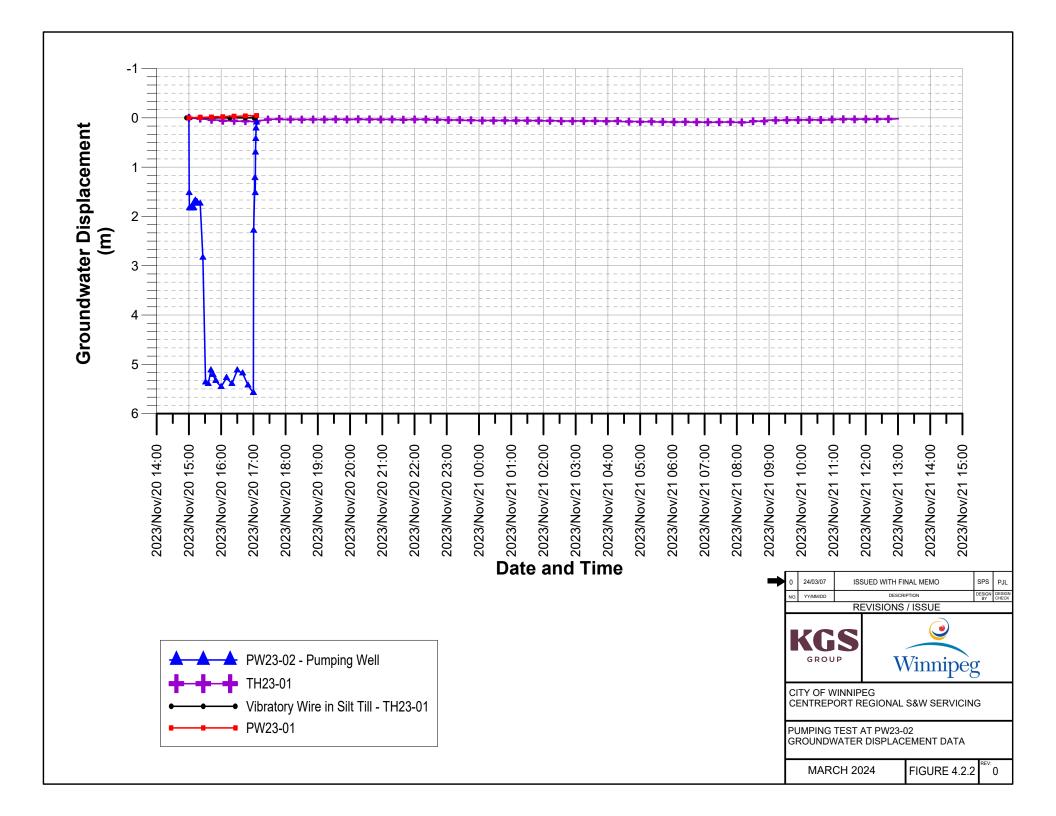
P. Likell

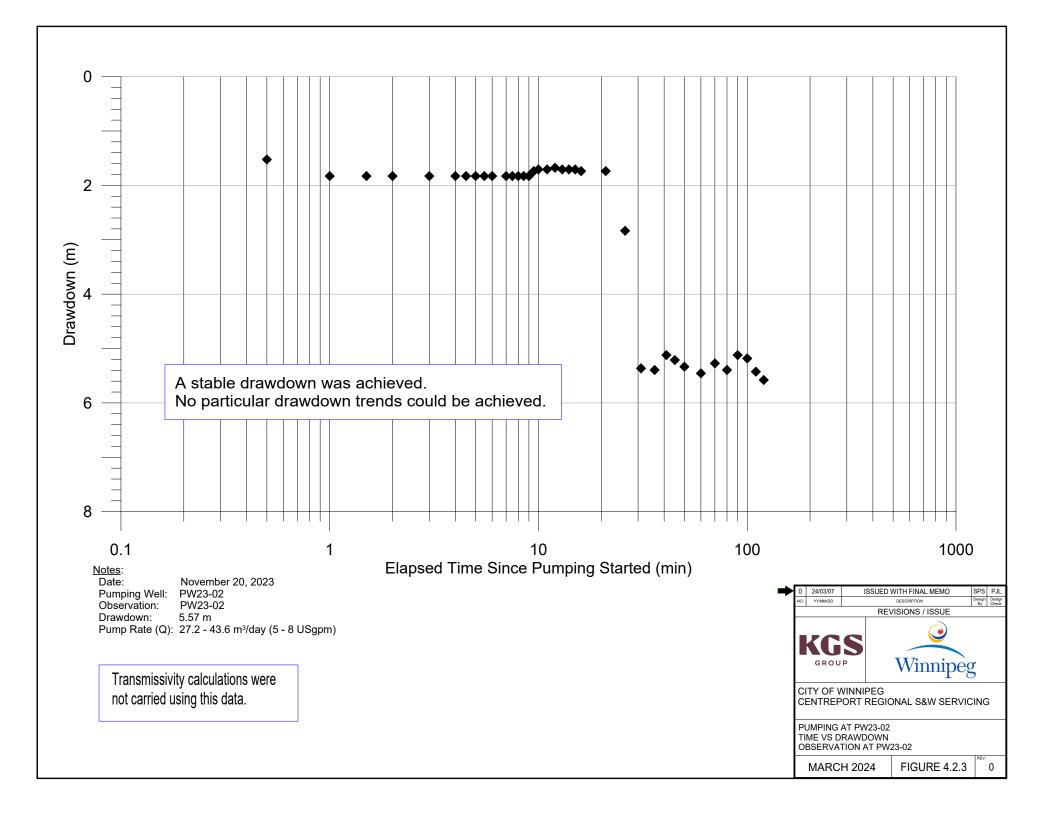
Approved By:

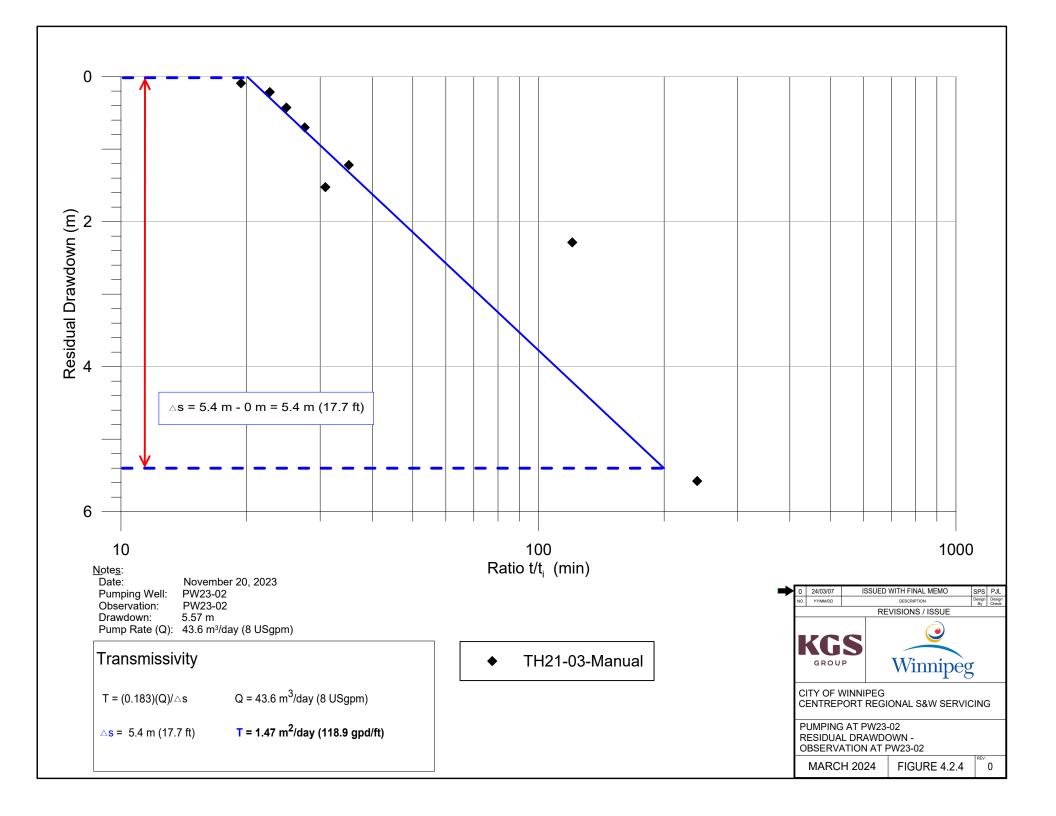
Jason Mann, M.Sc. P.Geo., FGC

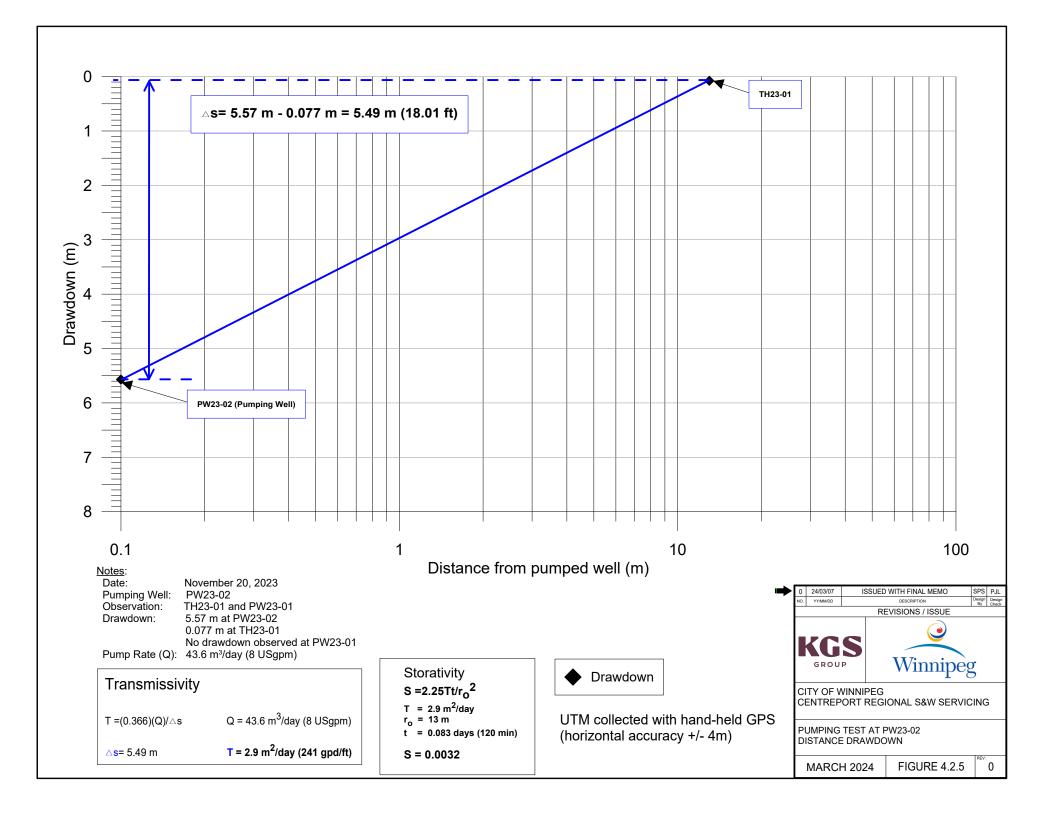
Jason The

Principal


SPS/PJL/jdm/jr Attachments





## **FIGURES**














## **APPENDIX A**

Borehole Logs



#### **TEST HOLE LOG**

HOLE NO. TH23-01

PROJECT NO.

**START DATE** 

UTM (m)

**SURFACE ELEV.** 

SHEET 1 of 2

Zone 14

23-0107-009

240.20 m

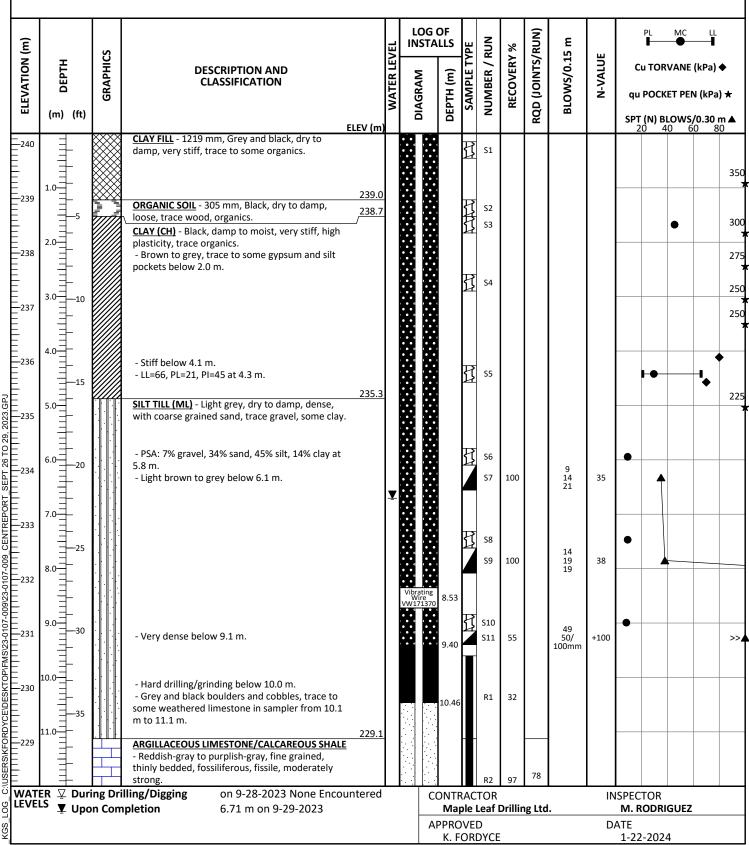
9-28-2023

N 5,530,113

TOC STICK-UP / ELEV. 0.91 m / 241.12 m (Standpipe)

CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT **CLIENT PROJECT CentrePort Regional S&W Servicing** 

LOCATION Winnipeg, Manitoba


DESCRIPTION Southwest corner of lift station

DRILL RIG / HAMMER GeoProbe 3230 Track Mounted Drill Rig with Auto-Hammer

METHOD(S) 0.0 m to 9.1 m: 125 mm ø SSA

E 623,145

9.1 m to 22.5 m: Water Rotary HQ Core - switched due to encountering boulders/ suspected bedrock



| KGS TEST HOLE LOG                                                                            |                              |        |                                                                                                                                                                                                                                                                                                                                             |             |         |           | LE N<br><b>123</b> | o.<br>- <b>01</b> |            | SHEET 2 of 2     |              |         |                 |       |                                         |         |
|----------------------------------------------------------------------------------------------|------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|-----------|--------------------|-------------------|------------|------------------|--------------|---------|-----------------|-------|-----------------------------------------|---------|
| (E) T                                                                                        |                              | cs     |                                                                                                                                                                                                                                                                                                                                             | VEL         | LOG (   |           | YPE                | RUN               | ۱۲ %       | S/RUN)           | 15 m         | JE      |                 |       |                                         | LL<br>¶ |
| ELEVATION (m) (m) (m) (m) (m) (m)                                                            | (#) DEPTH                    | GRAPHI | DESCRIPTION AND CLASSIFICATION                                                                                                                                                                                                                                                                                                              | WATER LEVEL | DIAGRAM | DEPTH (m) | SAMPLE TYPE        | NUMBER / RUN      | RECOVERY % | RQD (JOINTS/RUN) | BLOWS/0.15 m | N-VALUE | qu F            | OCKET | ANE (kPa<br>r PEN (kP<br>)WS/0.30<br>60 | Pa)     |
|                                                                                              | -40                          |        | Good quality from 11.2 m to 12.6 m ~30 mm soft shale/clay seam at 12.1 m.                                                                                                                                                                                                                                                                   | n)          |         |           |                    |                   |            | (10)             |              |         | 20              | 40    | 60                                      | 80      |
| 13.0<br>13.0<br>14.0<br>15.0<br>15.0<br>16.0<br>17.0<br>17.0<br>18.0<br>19.0<br>19.0<br>19.0 |                              |        | - Fair quality from 12.6 m to 15.7 m UCS: 24.1 MPa at 12.9 m Increased shale content, weak, several ~20 mm joints with soft shale/clay infill from 13.0 m to 13.1 m Decreased shale/clay content from 13.1 m to                                                                                                                             |             |         |           |                    | R3                | 96         | 59<br>(14)       |              |         |                 |       |                                         | _       |
| 14.0—<br>-226 — — — — — — — — — — — — — — — — — —                                            |                              |        | 14.3 m.  - Broken/Fractured core zone infilled with soft reddish-purple shale/clay at 13.9 m.  - ~125 mm Fractured zone infilled with soft shale/clay, very weak at 14.3 m.  - Moderate strength below 15.2 m.                                                                                                                              |             |         | 15.34     |                    | R4                | 92         | 65<br>(15)       |              |         |                 |       |                                         |         |
| 16.0                                                                                         |                              |        | - Poor quality from 15.7 m to 20.3 m 50 - 100 mm thick shale interbeds spaced 150 - 300 mm apart from 16.0 m to 18.0 m.                                                                                                                                                                                                                     |             |         |           |                    | R5                | 97         | 45<br>(23)       |              |         |                 |       |                                         |         |
| -223   18.0   -222   -                                                                       |                              |        | - UCS: 17.6 MPa at 16.9 m.                                                                                                                                                                                                                                                                                                                  |             |         |           |                    | R6                | 93         | 40<br>(18)       |              |         |                 |       |                                         |         |
| 19.0—<br>19.0—<br>20.0—                                                                      |                              |        |                                                                                                                                                                                                                                                                                                                                             |             |         |           |                    | R7                | 93         | 64<br>(16)       |              |         |                 |       |                                         |         |
| -220 = = = = = = = = = = = = = = = = = =                                                     |                              |        | <ul> <li>Fair quality below 20.3 m.</li> <li>Two ~75 mm thick shale/clay interbeds from 20.9 m to 21.5 m.</li> <li>Decreasing shale/clay content, increasing strength below 21.2 m.</li> </ul>                                                                                                                                              |             |         | 21.44     |                    | R8                | 100        | 65<br>(14)       |              |         |                 |       |                                         |         |
| -218 22.0—<br>-218 =                                                                         | -                            |        | 217                                                                                                                                                                                                                                                                                                                                         | 7           |         | 22.50     |                    | R9                | 93         | 70<br>(3)        |              |         |                 |       |                                         |         |
| 22.0—<br>—218 23.0—<br>—217 24.0—<br>—216 25.0—<br>—215 26.0—                                | —75<br>—75<br>———80<br>———80 |        | <ol> <li>Notes:</li> <li>End of test hole at 22.5 m.</li> <li>Refusal encountered on suspected boulder at a depth of 9.1 m.</li> <li>Protective well cover installed at surface.</li> <li>50.8 mm or two (2) inches diameter standpipe installed.</li> <li>Vibrating wire piezometer (VW171370) installed at 8.53 m below grade.</li> </ol> |             |         |           |                    |                   |            |                  |              |         |                 |       |                                         |         |
| WAILN *                                                                                      |                              |        | Iling/Digging on 9-28-2023 None Encountere pletion 6.71 m on 9-29-2023                                                                                                                                                                                                                                                                      | d           | CC      |           |                    | TOR<br>Leaf I     | Drillir    | ng Ltd           |              | IN      | ISPECT<br>M. RO |       | UEZ                                     |         |

#### HOLE NO. **TEST HOLE LOG**

PW23-01

SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER

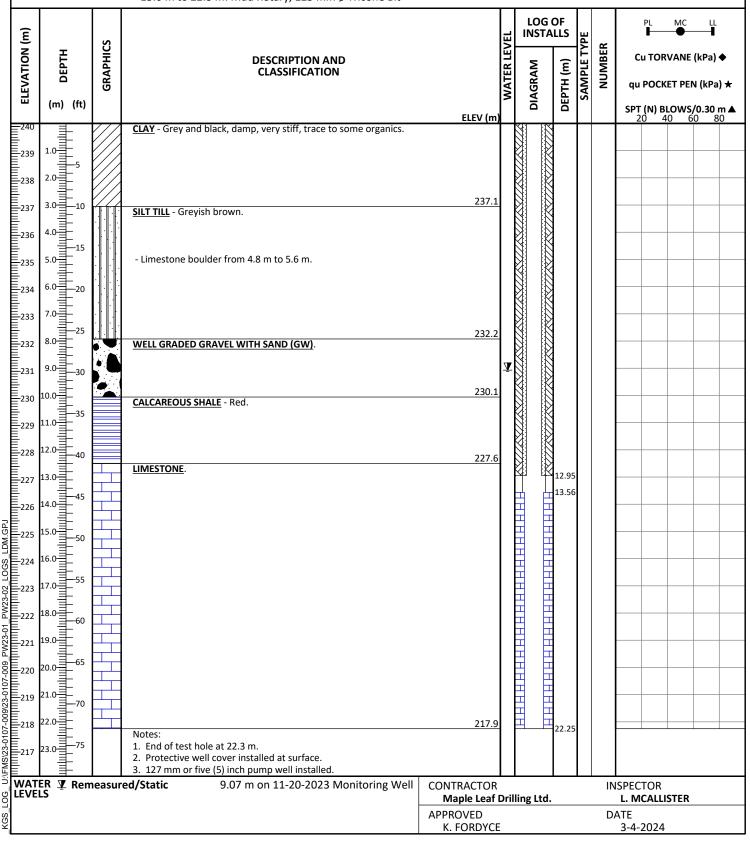
METHOD(S)

**CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT CentrePort Regional S&W Servicing** 

Winnipeg, Manitoba

W side of lift station; 40m NNW of TH23-01 Canterra CT 250 Truck Mounted Drill Rig 0.0 m to 13.0 m: Mud Rotary/Air Hammer

PROJECT NO. 23-0107-009 **SURFACE ELEV.** 240.11 m


TOC STICK-UP / ELEV. 0.61 m / 240.72 m (Standpipe)

**START DATE** 11-14-2023 UTM (m) N 5,530,157

E 623,136 Zone 14

13.0 m to 13.6 m: Mud Rotary, 150 mm ø Tricone Bit - switched due to encountering bedrock

13.6 m to 22.3 m: Mud Rotary, 125 mm ø Tricone Bit



HOLE NO. **TEST HOLE LOG** 

PW23-02

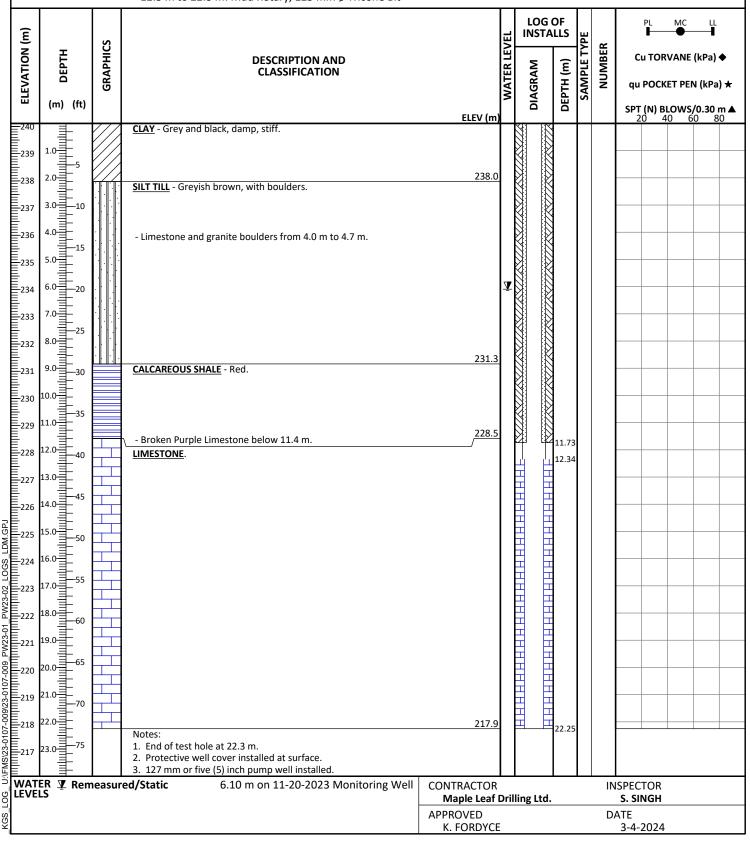
SHEET 1 of 1

**CLIENT PROJECT** LOCATION **DESCRIPTION** DRILL RIG / HAMMER METHOD(S)

**CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT CentrePort Regional S&W Servicing** 

Winnipeg, Manitoba

S side of lift station; 16m NE of TH23-01 Canterra CT 250 Truck Mounted Drill Rig 0.0 m to 11.7 m: Mud Rotary/Air Hammer PROJECT NO. 23-0107-009 **SURFACE ELEV.** 240.11 m TOC STICK-UP / ELEV. 0.61 m / 240.72 m (Standpipe)


**START DATE** 11-17-2023

UTM (m) N 5,530,127

E 623,154 Zone 14

11.7 m to 12.3 m: Mud Rotary, 150 mm ø Tricone Bit - switched due to encountering bedrock

12.3 m to 22.3 m: Mud Rotary, 125 mm ø Tricone Bit





Experience in Action