

Replacement of the FGSV Siphon

Geotechnical Baseline Report FINAL

City of Winnipeg

607228226

May 2025

Delivering a better world

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada ULC ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada ULC. All Rights Reserved. City of Winnipeg Replacement of the FGSV Siphon Geotechnical Baseline Report

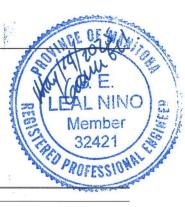
Quality Information

Prepared by

Gene Acuñn, E.I.T., B.Eng. Geotechnical

Verified by

Fans Alobaidy, M.Sc. P.Eng. Senior Geotechnical


Revision History

Checked by

Mike Gaudreau, P.Eng. Project Manager

Approved by

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical

	Rev #	Revision Date	Revised By:	Revision Description	4	WOLF22IO.
ĺ	0	April 17, 2025	G. Acurin	DRAFT		and the second second
	1	May 14, 2025	G Acurin	FINAL		

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	~	City of Winnipeg
✓ AECOM Canada ULC		AECOM Canada ULC

City of Winnipeg Replacement of the FGSV Siphon Geotechnical Baseline Report

Prepared for:

City of Winnipeg

Prepared by:

Gene Acurin, E.I.T., B.Eng. Geotechnical, EIT M: 204.471.0136 E: gene.acurin@aecom.com

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204.477.5381 M: 431.335.9734 E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

Table of Contents

1.	Intro	oduction	1
	1.1	General	1
	1.2	Purpose of Report and Limitations	
2.	Pro	ect Description	3
	2.1	General	3
	2.2	Project location	
		2.2.1 Adjacent Structures	3
		2.2.2 Winnipeg Climate	3
	2.3	Key Components of the Project	4
3.	Loc	al Trenchless Construction Experience	5
	3.1	General	5
	3.2	Northeast Interceptor Sewer Project	5
	3.3	Semple Outfall, Contract 4, Jefferson East CSR Project	5
		3.3.1 Jefferson East Combined Sewer Relief Works (Contract 5) Semple Avenue Trunk Sewer Project	6
	3.4	Northwest Interceptor Sewer Extension	
	3.5	Trunk Sewer, Contract 4, Cockburn & Calrossie CSR Project	
	3.6	Taylor Avenue Trunk, Contract 5, Cockburn & Calrossie CSR Project	
4.	Geo	logical Setting	8
	4.1	Regional Geology	8
	4.2	Topography	
5.	Sun	nmary of Subsurface Investigation	9
	5.1	Previous Geotechnical Investigations	
	0.1	5.1.1 Geotechnical Condition Assessment (AECOM, 2021)	
		5.1.2 Geotechnical Assessment Ft. Garry-St. Vital Feeder Main (AECOM, 2018)	
		5.1.3 Geotechnical Investigation for Ft Garry Bridges (Klohn Leonoff, 1976)	
	5.2	AECOM 2024 Geotechnical Investigation	10
	5.3	Laboratory Testing	11
6.	Gro	und Characterization	. 12
	6.1	General Stratigraphy	12
	6.2	Subsurface Profile	
		6.2.1 Topsoil	12
		6.2.2 Fill – Clay (CH)	
		6.2.3 Clay (CH)	
		6.2.4 Silt (ML) Till	
	6.3	6.2.5 Bedrock Bedrock Characterization	
	0.3	6.3.1 General	

				lity Designation (RQD) ed Compressive Strength of Intact Rock Core Specimens				
				Permeability				
	6.4			d Sloughing Conditions				
				ific Groundwater Observations				
		6.4.2 Gro	oundw	ater Dewatering Rates	14			
7.	Dise	cussions	and	Recommendations	15			
	7.1	Soil and B	edroc	k Stratigraphic Summary	15			
	7.2	Anticipated	d Gro	und Behaviour	15			
				en				
			00 0	Potential				
	7.3	Hydrogeological Investigation						
	7.4			Geotechnical Baseline Parameters				
				haft (East Riverbank) Geotechnical Baseline				
				Tunnel Geotechnical Baseline Shaft (West Riverbank) Geotechnical Baseline				
	7.5			ound Classification and Probable Working Conditions				
	7.6			ased Assessment for MTBM				
	7.0			neling Boring Machine (MTBM)				
				n Risks				
			.2.1	Ground Settlement				
			.2.2	Buried Obstructions				
			.2.3	Clogging Potential				
			.2.4 .2.5	Void Development in Soil and Bedrock Bedrock Considerations				
			.2.6	Groundwater				
		7.6	.2.7	Pipe Alignment and Grade Control	25			
8.	Des	ign and C	Cons	truction Considerations	26			
	8.1	General						
	8.2			eiving Shafts				
	8.3							
	8.4			ng Structures				
	••••	•		Structure and Potential Risks				
			.1.1	Embankments				
		•	.1.2	Multi-Use Paths				
	<u> </u>		.1.3	Riverbanks				
	8.5			anagement and Spoil Disposal				
				ater Quality				
			.1.1	Water Quality Sample Collection and Testing				
			.1.3	Water Quality Results				
				8.5.1.3.1 BTEX, F1 and F2				
				8.5.1.3.2 Polyaromatic Hydrocarbons 8.5.1.3.3 General Chemistry, Nitrogen and Phosphorus				
				8.5.1.3.4 Dissolved Metals				
		0.5	4 4	8.5.1.3.5 Total Metals				
			.1.4 .1.5	Water Testing Quality Assurance Recommendations				
		0.0						

9.	Instrumentation Program				
	9.1	Geotechnical Monitoring	32		
10.	Ref	erences	33		

Figures

Figure 6-1: Graph of Groundwater Elevations Versus Time14

Tables

Table 5-1: Summary of Testholes for the South Bridge	10
Table 5-2: Summary of Testholes for the North Bridge	
Table 5-3: Laboratory Testing (AECOM 2024 Geotechnical Investigation)	11
Table 7-1: Anticipated Behaviour of Soil at Unsupported Vertical Tunnel/ Excavation Face	16
Table 7-2: Anticipated Behaviour of Bedrock at Unsupported Vertical Tunnel/ Excavation Face	17
Table 7-3: Subsurface Profile and Baseline Parameters for Launch Shaft	18
Table 7-4: Seasonal Groundwater Levels for Launch Shaft	19
Table 7-5: Subsurface Profile and Baseline Parameters for Riverbed Tunnel	19
Table 7-6: Subsurface Profile and Baseline Parameters for Receiving Shaft	20
Table 7-7: Seasonal Groundwater Levels for Receiving Shaft	21
Table 7-8: Tunnelman's Ground Classification and Probable Work Conditions	22
Table 8-1: Summary of Total Metal Parameters	30

Appendices

Appendix I Replacement of the FGSV Siphon Geotechnical Data Report Appendix II Environmental Results Appendix III Daily Water Level Grap

1. Introduction

1.1 General

AECOM Canada ULC was retained by the City of Winnipeg (the City) to develop a geotechnical baseline report (GBR) for the proposed replacement of the Fort Garry - St Vital (FGSV) Siphon crossing of the Red River. The FGSV Siphon receives wastewater flows for the D'Arcy Lift Station servicing approximately 3,360 ha of development in the southwest section of the City. The project site is located in south end of Winnipeg, MB, on Abinojii Mikanah adjacent to the Fort Garry Bridge.

1.2 **Purpose of Report and Limitations**

AECOM has prepared this Geotechnical Baseline Report (GBR) for the Replacement of the FGSV Siphon across the Red River, located at the Fort Garry Bridge in south Winnipeg, Manitoba.

This GBR is intended to apply to the proposed river crossing only, located south of the east bound Ft Garry bridge, including the two tunnel shafts and the pipe located between the two shafts. Other aspects of this project including gravity sewers extending from and to the proposed siphon location, connections to existing pipes and structures, and modifications of the existing overflow structure are not subject to the baselines included in this report.

The purpose of this GBR is to:

- Provide a baseline interpretation of the geotechnical of the works;
- Set clear baselines for subsurface conditions anticipated to be encountered during construction;
- Provide all bidders with a single contractual interpretation in preparing bids;
- Describe the subsurface conditions along the FGSV Siphon alignment; and,
- Assist in evaluating the requirements for excavation, temporary support, groundwater control, and ground movement for shaft and tunnel construction.

The GBR presents the subsurface conditions as baseline values and descriptions that the contractors shall use for their tenders. The GBR should be read in conjunction with the Geotechnical Data Report (GDR) prepared for FGSV Siphon by AECOM dated April 2025. The baselines presented in this GBR do not provide a warranty that subsurface conditions different from the baselines will not be encountered. The baselines, however, represent a contractual agreement between the City of Winnipeg (the City) and the Contractor to use for the resolution of claims made for "differing ground conditions". Contractors must consider this GBR as part of the Contract Documents, and it must be read in conjunction with the Specifications and the Design Drawings prepared by AECOM for the City. The hierarchy of this document and other documents is indicated in the Project's Contract Documents. The baselines presented in this GBR apply to the excavation limits shown on the Design Drawings and Figures provided in this GBR. The baselines presented in this GBR do not apply to Contractor-modified portion(s) of the Project.

The baselines in this GBR also provide the City with the opportunity to allocate risks associated with the variability in the subsurface ground conditions during the bidding stage. Risks associated with consistent or less adverse subsurface conditions than baselined subsurface conditions are allocated to the Contractor and risks associated with more adverse subsurface conditions than the baselined subsurface conditions are accepted by the City. The effective use of the baseline conditions will depend on adequate documentation of subsurface conditions encountered during trenchless utility installation.

This GBR has been prepared in general conformance with the guidelines and practices described in the Geotechnical Baseline Reports for Construction, Suggested Guidelines, published by ASCE, 2022. The GBR has been prepared by AECOM for the City. Some of the technical concepts, terms and descriptions in this GBR may not be fully

understood by bidders. It is required that bidders have a geotechnical engineer with local experience, who is familiar with the topics in this GBR, to carefully review and explain this information so that a complete understanding of the information presented in this GBR can be developed prior to submitting a bid.

Certain elements of the Project are based on requirements that cannot be varied unless otherwise specified in this GBR. These include, but are not limited to, the following:

- Use of full supported face during tunneling
- Mixed face conditions are expected.
- Adoption of 'sealed' methods of shaft construction 'sealed' methods of shaft construction may include secant piles, pre-cast concrete or cast-in-place concrete caissons, or other methods. All sealed shafts are required to have a concrete base designed to prevent basal heave, resist hydrostatic pressures, and minimize ingress of fines and infiltration of groundwater.
- Microtunnelling Boring Machine (MTBM) launch and receiving shafts minimum dimensions to support proposed control structures.
- Final minimum siphon internal diameter.
- Alignment of pipes and incoming and outgoing trunk inverts for the proposed siphon.

Other elements of the project that are flexible and afford the Contractor latitude in planning its work and selecting means and methods, include, but are not limited to, the following:

- Procurement, selection, and configuration of the Microtunnel Boring Machine (MTBM).
- Design of the jacking pipe, although there are minimum requirements that must be satisfied.
- Type of sealed shaft support system.

2. Project Description

2.1 General

The descriptions and dimensions for the various components of the project provided in this GBR are approximate and for illustration purposes only. The Contractor should refer to the Contract Documentations/Drawings for accurate information on dimensions and project layout.

2.2 **Project location**

The project site is in the southern part of Winnipeg near the existing Fort Garry Bridge on Abinojii Mikanah. The proposed FGSV Siphon alignment will cross the Red River directly south of the east bound bridge.

2.2.1 Adjacent Structures

A high-rise residential development is located approximately 20 to 50 meters southeast of the siphon outlet chamber located east of the Red River. Additionally, a residential neighborhood is situated approximately 70 to 80 m southwest of siphon inlet chamber located west of the Red River. The Fort Garry Bridge is located approximately 30 m north of the proposed FGSV alignment. These structures are not directly above the siphon alignment, and therefore, settlement is not a concern for these structures.

Multi-use paths are located on both the eastern and western embankments. These paths are directly above the FGSV Siphon alignment, making settlement a potential concern for these structures.

The existing siphon sewer alignment is located directly north of the proposed FGSV Siphon alignment, in between the two bridges. Overhead electrical utility lines run near parallel to the existing siphon alignment at the Red River Crossing. Additional existing buried utilities, such as Telus fibre lines, are present just south of the Fort Garry Bridge, which is parallel and aligns with the proposed FGSV Siphon alignment and crosses the Red River. However, these structures are not directly on top of the siphon alignment. Settlement is not a concern to these structures.

The proposed FGSV alignment relative to adjacent and pertinent features is shown in **General Plan** within the **Contract Documents and Drawings**.

2.2.2 Winnipeg Climate

Winnipeg is located in central southern Manitoba at the bottom of the Red River Valley, a low-lying flood plain with flat topography. Winnipeg has a humid continental climate with a wide range of temperatures throughout the year. The monthly average temperature ranges from -18°C in January to 20°C in July. Winter is defined as the time which the daily mean temperature remains below 0°C and typically lasts from the beginning of November to the beginning of April. Spring and autumn are defined as the time period the mean daily temperature ranges from 0° to 6°C and are typically short in duration, lasting only a couple of weeks. The average yearly precipitation in Winnipeg is 505 mm of precipitation per year although the precipitation can vary greatly. The average annual snow fall in Winnipeg is 115 cm, with the most snow typically accumulating in January and February.

The Red River levels vary significantly throughout the year, with notable differences in ranges:

- Spring: Highly variable up to 230.89 mASL (1:700 year flood).
- Summer: approximately 223.98 mASL.
- Winter: approximately 221.76 mASL.

For more details regarding the river levels, see Section 6.4.1.

2.3 Key Components of the Project

The FGSV Siphon replacement project aims to replace the failed 700 mm and 800 mm wastewater siphons that cross the Red River between the Fort Garry eastbound and westbound bridges. It is expected that construction will start with the construction of a launch shaft at the siphon outlet of a launch shaft at the siphon outlet chamber, where the micro tunnel will exit at the siphon inlet chamber.

The new FGSV siphon replacement will be installed using a trenchless method, specifically utilizing micro tunnel boring machine (MTBM) technology. This method involves tunneling underneath the river, starting at the launch shaft located at an elevation of approximately **216.40 m** (near testhole TH24-05) and exiting at the receiving shaft at an elevation of approximately **222.7 m** (near testhole TH24-01). This approach allows for minimal disruption to surface activities and infrastructure while efficiently replacing critical underground infrastructure.

- **Shaft Details**: The launch and receiving shafts will have a minimum diameter of approximately **10.0 m** to suit the final siphon chamber configuration. These dimensions may be adjusted based on the Contractor's equipment, construction methodology and the lengths of the jacking pipes selected.
- MTBM Technology: A large 2100 mm diameter reinforced concrete pipe (RCP) casing will be installed beneath the river in bedrock using MTBM. Two 900 mm DR11 high-density polyethylene (HDPE) carrier pipes will be pulled through after the casing installation. The invert elevation of the RCP is expected to be approximately 206.31 m, with a bore path consisting of a Launch and exit angle of 9 degrees and a 500 m bending radius, covering a shaft-to-shaft distance of approximately 350 m.

The scope of work of this Project includes:

- Site mobilization and establishment of work areas.
- Installation of MTBM launch and receiving shafts.
- Installation of approximately 350 long river crossing (siphon) using Microtunneling:
 - 2100 mm internal diameter primary casing pipe through underlying limestone bedrock strata.
 - Two (2) 900 mm DR 11 HDPE carrier pipe to be pulled through casing pipe on casing spacers.
- Conversion of the launch and receiving shafts into final control chamber configuration:
 - Installation of chamber foundation and walls (if not part of construction shafts).
 - o Installation of permanent roof and service access projection to grade.
 - o Installation of intermediate floor(s), ladders, lighting, and other man-entry accommodations.
 - o Installation of chamber appurtenances.
- Site restoration works.

Details of the alignment and elevations are illustrated in the **General Plan** within the **Contract Documents and Drawings**.

3. Local Trenchless Construction Experience

3.1 General

Select case histories relevant to the current project's design and construction, and lessons learned from microtunneling construction using MTBM in the Winnipeg area are presented in the following sections.

3.2 Northeast Interceptor Sewer Project

The Northeast Interceptor Sewer (NEIS) project, located in the Kildonan area of northeast Winnipeg, involves the construction of a new sewer alignment to address capacity issues and surcharging during severe wet weather events. The proposed alignment crosses the Red River just south of the Kildonan Settlers Bridge and runs almost parallel to the existing siphon sewer. Key components of the project include the installation of a 1200 mm carrier pipe using microtunneling methods and the construction of inlet and outlet chambers on both riverbanks. Additionally, the project utilized vertical curves to minimize shaft depth and rock excavation within shafts, sealed shaft, 1500 OD RCP, and sunk concrete caisson shaft construction that is found on top of bedrock. The project also involves navigating various adjacent structures and utilities, such as a high-rise residential development, the Kildonan Golf Course, and existing utility lines.

General Lessons learned from the Northeast interceptor Sewer Project include the following:

- **Karstic Features:** The Geotechnical Data Report (GDR) and Geotechnical Baseline Report (GBR) should characterize if karstic features are or could be present.
- Fractured Limestone and Groundwater: The GDR/GBR should state that the upper limestone is fractured, and that groundwater will be present. Flow rates are difficult to assess; therefore, the contractor shall assume a tremie pour is required to seal the shaft base above bedrock.
- **Dewatering Limitations:** The GBR limits dewatering, with the intent that dewatering of the carbonate aquifer is not permitted. However, dewatering of overburden soils, silt seams, sand seams, existing trench beddings, and backfills that do not affect the aquifer are permitted.

3.3 Semple Outfall, Contract 4, Jefferson East CSR Project

The Semple Outfall Project was constructed as the outfall segment of the Semple Avenue Trunk Sewer and completed in 2016. The project was tunneled in glaciolacustrine clays similar to clays that will be encountered on sections of this Project. The project involved construction of 110 m of 2,100 mm diameter reinforced concrete pipe (RCP) at a depth of about 8 m. An Ackerman EBS840 with EX-50 Excavator shield was used for tunneling. Muck handling was with a conveyor and muck cars. Tunneling was completed in two drives of 40 and 70 m length. Pipe was jacked from the central launch shaft to the reception shafts. The shafts were constructed with temporary support consisting of soldier piles and timber lagging. There were no reported issues with shaft construction. Dewatering was not used for construction. The contractor experienced challenges with maintaining equipment in cold winter conditions and had difficulty in handling the cuttings of high plastic clays with the TBM belt conveyor. Additional details are provided in AECOM (2019).

General Lessons learned from the Northeast interceptor Sewer Project include the following:

- **TBM Oversteer/Overcorrection:** TBM oversteer/overcorrection should be avoided, as it significantly increases stress on jacking pipes.
- **Pipe Manufacture Monitoring:** Pipe manufacture should be carefully monitored. On this project, mismatched header pallets resulted in overstress on bell joints and caused several damaged pipes.

3.3.1 Jefferson East Combined Sewer Relief Works (Contract 5) Semple Avenue Trunk Sewer Project

The Semple Avenue trunk sewer project was an extension of the Jefferson East Combined Sewer Relief (CSR) Works, designed to upgrade the Jefferson East Combined Sewer District to meet the five-year level of service (LOS) design criteria. This project involved disconnecting surface runoff from the existing combined sewer system in the northern portion of the Jefferson district, thereby increasing capacity in the existing Jefferson Combined Sewer trunk. The Semple Avenue Trunk Sewer was tunneled in glaciolacustrine clays similar to the clays that will be encountered on sections of this Project and was completed in 2021. The tunnel was constructed as a 1,540 m single drive between the launch shaft and reception shaft A Lovat M-112 open face TBM with a 2845 mm diameter cutterhead was used to advance the tunnel The tunnel was constructed with a primary lining of steel ribs and timber lagging. Tunnel cuttings were handled by TBM conveyor and muck cars. Winter construction was involved. HOBAS - CCFRPM carrier pipe consisting of 400 m of 1,800 mm and 1,100 m of 2,100 mm was installed following completion of tunnelling. The carrier pipe was grouted in place. Grout loss during backfilling resulted in grout migrating into adjacent sewers.

General Lessons learned from the Northeast interceptor Sewer Project include the following:

- **Two-Pass Tunnel System:** The Jefferson project utilized a two-pass tunnel system (2.9 m diameter primary steel ring/timber lagging) with a 2100 mm GRP carrier. This system worked well, achieving a single drive of 1600 meters.
- Annular Grout Breach: An annular grout breach into the sewer system occurred, ultimately resulting in basements breached with annular grout. Lessons learned include:
 - $_{\odot}$ $\,$ The contractor needs to monitor and assess grout volume versus planned volumes.
 - The contractor needs to monitor grout pressure at discharge, not at the pump, to ensure pressures are within safe limits in the annulus.
 - The contractor needs to assess fill levels of staged grouting to ensure annular blockages between ports are not created, which could confine the grout.
 - The importance of establishing baseline vibration levels for construction monitoring, conducting preconstruction inspections of structures within the expected zone of influence and ensuring there is adequate means for the monitoring and control of grout volumes and grout loss.

3.4 Northwest Interceptor Sewer Extension

The Northwest Interceptor Sewer was installed in 2015 and 2016, within the lacustrine clay and silt till transition zone by pipe jacking using an Ackerman open face TBM. The project involved construction of about 1,600 m of 1350 mm diameter LDS pipe. Ground conditions encountered during tunneling included cobbles and boulders ranging in size up to 500 mm embedded within the lacustrine clay zone, as well as till undulations as the project moved west, also containing numerous boulders. Two rescue shafts were required during tunnel construction due to numerous cobble and boulder obstructions ahead of the TBM. A third rescue shaft was constructed for an alignment correction. A total of 13 shafts were used for the project and were constructed using either soldier pile and lagging or steel caissons for excavation support.

Lessons learned from this project include:

• **Tunneling Method and Boring Machine:** The selected tunneling method and boring machine must be matched to the expected ground conditions, including tunneling within the clay-till interface with concentrations of cobbles and boulders.

3.5 Trunk Sewer, Contract 4, Cockburn & Calrossie CSR Project

The Trunk Sewer and LDS Separation Project, Contract 4 was mined in glaciolacustrine clays similar to the clays that will be encountered on sections of this Project. The project was completed in 2017 and involved construction of about 525 m of 2,700 mm diameter Land Drainage Sewer (LDS) pipe at depths ranging from 8 to 8.5 m below grade. The project included two tunnel drives consisting of a 120 m drive under CN rail tracks and a 410 m drive from the launch shaft to Taylor Avenue. The contractor used a Herrenknecht AVN 2500 slurry MTBM to mine the tunnel. The TBM shield was increased (up skinned) to 2750 mm for the project. The contractor successfully used two centrifuges with the slurry treatment plant for separating clay cuttings from the slurry. The contractor was required to meet strict settlement criteria for the segment crossing under the CN rail right of way. Surface settlement was monitored to confirm compliance with the established limits. Results from monitoring prior to crossing under the CN ROW showed settlement had exceeded allowable levels. Tunneling under CN met the allowable settlement limits using a combination of maintaining TBM face pressure throughout the drive and injection of bentonite grout through ports in the RCP. Three circular self-sinking shafts were constructed, one launch shaft and two retrieval shafts. The self-sinking method used a surface form to cast the concrete lining and a sacrificial sinking shoe. The shaft lining dropped under self-weight as the interior of the shaft was excavated. Construction vibrations were not reported as an issue. The launch shaft incorporated the alignment deflection of the two drives. Additional details on this project are provided in Fordyce (2018), AECOM (2018 and 2019), KGS (2016 and 2019) and Trek 2025.

3.6 Taylor Avenue Trunk, Contract 5, Cockburn & Calrossie CSR Project

The Taylor Avenue Trunk, Contract 5, was mined in glaciolacustrine clays similar to the clays that will be encountered on sections of this Project. The project involved construction of about 700 mm, 2,100 mm and 2,400-mm diameter fiberglass LDS pipe and was completed in 2020. The tunnel alignment was located below and close to multiple utilities including transmission towers, gas and water mains, sewers and communications lines. These constraints resulted in an alignment with vertical and horizontal curves and restrictions on locations for intermediate shafts. Tight settlement criteria were established to limit impact on adjacent utilities. The contractor used a 3,335 mm diameter Lovat open-face TBM equipped with pressure relieving gate and flood doors. The TBM cutterhead was equipped for tunneling in clays with a high clogging potential. The TBM incorporated an articulated steering shield to meet the vertical and horizontal curve between the launch shaft and the retrieval shaft with a primary lining

consisting of steel ribs and timber lagging installed as the tunnel was advanced. The final fiberglass LDS pipe was installed and grouted in place following completion of mining and installation of stub-outs for future connections. Additional details on this project are provided in Fordyce (2018), AECOM (2019), KGS (2019) and Trek 2025.

Key lessons learned from this project included:

- **Tunnel Completion:** Successful completion of a tunnel in a constrained alignment and high plastic clay using ribs and lagging as the primary lining.
- Settlement Monitoring Program: Effective use of a settlement monitoring program for control of settlement and limiting impact on nearby sensitive infrastructure.

4. Geological Setting

4.1 Regional Geology

In general, the soils encountered during the investigation consisted of fill underlain by fat clay. The regional geology of the site has been outlined in the AECOM (April 2025) Geotechnical Data Report (GDR) and should be reference in conjunction with Section 4 of this Report for a more detailed outline of the regional geological setting.

Site-specific geotechnical and geological information derived from the AECOM 2024 geotechnical investigation and past investigations (including results of the geotechnical drilling and laboratory test data) are also presented in the GDR. The full GDR can be found in **Appendix I.**

4.2 Topography

The topography along the FGSV Siphon alignment varies significantly as the site is located at a river crossing. The elevation along the eastern riverbank varies between approximately 230 m above sea level (mASL) and 235 m ASL at its crest and decreases sharply towards the centre of the river channel to an approximate elevation of 218 m. The ground surface along the crest of the western riverbank varies between 227 m ASL and 238 m ASL and, in turn, falls sharply to the centreline of the river channel. The proposed excavation work involves constructing a 10 m diameter base shaft at the launch and receiving site, located on the east and west side of the riverbank slope. It is understood that this work will not impact the existing riverbank profiles, as the siphon chambers are situated away from the riverbank slopes.

Any plans to disturb the riverbank slopes should be submitted to the Consultant for review prior to construction. The ground surface profile along the sewer alignment is shown on the **General Plan** within the **Contract Documents and Drawings**.

5. Summary of Subsurface Investigation

As described in the AECOM (April 2025) GDR, AECOM conducted a geotechnical investigation in 2024 along the proposed FGSV Siphon alignment with the objective of characterizing the subsurface ground and groundwater conditions along the new alignment. The findings of the AECOM 2024 geotechnical investigation, including groundwater level readings in 2025, are summarized in the GDR found in **Appendix I**, with the pertinent findings of the investigations are also presented below.

5.1 **Previous Geotechnical Investigations**

5.1.1 Geotechnical Condition Assessment (AECOM, 2021)

A previous geotechnical investigation completed near the project site has also been referenced within the AECOM (April 2025) GDR. This previous geotechnical investigation that was referenced within the GDR was carried out to support condition assessment of the FGSV Siphon Crossings, found between the two Fort Garry Bridges, just north of the proposed FGSV siphon alignment. The historical geotechnical information has also been summarized in the following sections of this report. AECOM reviewed these previous geotechnical investigations as part of our abandonment/siphon works at FGSV.

As described in the project GDR, a geotechnical condition assessment was conducted by AECOM in 2021 for the FGSV Siphon Crossing. The geotechnical condition assessment for the existing Fort Garry Siphon Crossings, involved reviewing available background information and conducting a visual field inspection within a 30-meter zone around the crossing. The assessment aimed to evaluate potential risks of slope instability and erosion affecting the buried sewer and water systems. The findings from the review and inspection were used to assign Slope Condition Grade (SCG) and Erosion Condition Grade (ECG), helping to determine the need for further geotechnical investigation or slope stability Analysis. Detailed information of AECOM's geotechnical condition assessment (AECOM 2021) is provided in **Appendix 1** of the GDR.

5.1.2 Geotechnical Assessment Ft. Garry-St. Vital Feeder Main (AECOM, 2018)

AECOM conducted a geotechnical assessment of the Ft Garry-St Vital Feeder Main in 2018 as part of a condition assessment of the feeder main. The feeder main is located between the twin Ft Garry bridges immediately north of the existing sanitary sewer siphons. Results of that geotechnical condition assessment was that the west bank global stability between the bridges was slightly less that the desired factor of safety of 1.5 for critical infrastructure.

5.1.3 Geotechnical Investigation for Ft Garry Bridges (Klohn Leonoff, 1976)

The geotechnical assessments included within the appendix are testhole logs in support of the Fort Garry Bridge construction by Klohn Leonoff Consultants Ltd in1975/76. This comprised of eleven testholes for the south bridge and eight (8) testhole logs for the north bridge. AECOM does not have access to the full geotechnical report for the testholes. A summary of the drilling and testing components are shown in the tables below.

Testholes	Testhole Elevation (mASL)	Location	Completion Depth (m)	Bedrock Contact Elevation (mASL)	Completion Elevation (mASL)	Stratum
TH 1004	230.429	Western	15.85	216.865	214.579	Bedrock
TH 401	228.905	Riverbank	12.19	n/a	216.715	Till
TH 1	227.442		14.66	216.469	212.782	Bedrock
TH 11	221.712	Riverbed	11.80	216.225	209.912	Bedrock
TH 12	221.712	-	10.45	216.173	211.262	Bedrock
TH 6	221.742		9.54	216.713	212.202	Bedrock
TH 5	221.742		10.67	216.509	211.074	Bedrock
TH 4	226.863	Eastern	14.54	217.313	212.324	Bedrock
TH 1002	229.514	Riverbank	16.15	216.408	213.364	Bedrock
TH 402	229.667		13.72	n/a	215.947	Till
TH 403	231.191		14.63	n/a	216.560	Till

Table 5-1: Summary of Testholes for the South Bridge

Table 5-2: Summary of Testholes for the North Bridge

Testholes	Testhole Elevation (mASL)	Location	Completion Depth (m)	Bedrock Contact Elevation (mASL)	Completion Elevation (mASL)	Stratum
TH 1003	230.429	Western	16.76	216.408	213.665	Bedrock
TH 2	227.076	Riverbank	16.06	216.256	211.013	Bedrock
TH 9	221.681	Riverbed	9.75	216.499	211.927	Bedrock
TH 10	221.681	-	10.27	216.499	211.409	Bedrock
TH 8	221.742	Riverbed	13.08	216.332	208.666	Bedrock
TH 7	221.742	-	10.97	216.332	210.769	Bedrock
TH 3	227.106	Eastern	15.48	216.338	211.623	Bedrock
TH 1001	231.648	Riverbank	18.29	216.408	213.360	Bedrock

5.2 AECOM 2024 Geotechnical Investigation

From June 3 to August 9, 2024, five (5) test holes (TH24-01 to TH24-05) were drilled at the approximate locations shown in **Appendix 2** within the GDR. Test holes TH24-01 and TH24-02 were drilled along the west embankment in the vicinity of the west shaft location, test hole TH24-03 was drilled within the Red River channel, and test holes TH24-04 and TH24-05 were drilled on the east embankment in the vicinity of the east shaft location.

Drilling was completed by Paddock Drilling using the following equipment: track-mounted Acker Renegade drill rig equipped with 125 mm solid stem augers and HQ-sized (96 mm OD) core barrel for test holes TH24-01, TH24-02, TH24-04 and TH24-05, and Cricket B20 equipped with BQ sized (60 mm OD) core barrel mounted on a floating barge for test hole TH24-03. Subsurface conditions observed during drilling were visually classified and documented by AECOM geotechnical personnel. Other pertinent information, such as groundwater and drilling conditions, were also recorded during the field investigation.

Disturbed soil samples collected from auger cuttings and split-spoon samplers, as well as relatively undisturbed Shelby Tube samples, were obtained at regular intervals. Standard penetration tests (SPTs) were completed at selected intervals in the test holes, and blow counts for 300 mm penetration (SPT "N" blow counts) were recorded. NQ and HQ rock core samples were logged in the field and collected for further analysis. Recovered soil and rock core samples were transported to AECOM's materials testing laboratory in Winnipeg for further visual examination and testing.

The bedrock cores were logged at AECOM's materials testing laboratory, recording the type of bedrock, Total Core Recovery (TCR), Solid Core Recovery (SCR) and Rock Quality Designation (RQD).

Monitoring wells (50 mm diameter PVC pipes) were installed in two test holes (TH24-01 and TH24-05) to measure groundwater depths. The test hole logs, and groundwater instrumentation details and measurements are provided in the GDR.

5.3 Laboratory Testing

Soil samples collected during the geotechnical investigations were tested at Geomechanica's Materials Testing Laboratory in Oakville, Ontario, and AECOM's Materials Testing Laboratories in Winnipeg, Manitoba for soil classification and estimation of engineering properties. The bedrock core samples were tested in Eng-Tech Consulting Ltd., Laboratories in Winnipeg, Manitoba to estimate uniaxial compressive strength (UCS). Details of the type and number of tests are presented in **Table 5-3**. The laboratory test results for test holes drilled along the FGSV Siphon alignment are provided in the GDR.

Table 5-3: Laboratory Testing (AECOM 2024 Geotechnical Investigation)

Laboratory Testing	Number of Tests Completed
Moisture Content	60
Particles Size Analysis (Hydrometer Analysis)	15
Atterberg Limits	15
Unconfined Compressive Strength (Soil)	10
Unconfined Compressive Strength of Intact Rock Core	5
Abrasiveness of Rock Using the CERCHAR Abrasiveness Index Method	5

6. Ground Characterization

6.1 General Stratigraphy

The subsurface stratigraphy along the FGSV Siphon alignment generally comprises of mixed alluvial soils (sand, silt and clay) overlying (in descending order) glacio-lacustrine clay, glacial till deposits (sand and silt till), and carbonate bedrock (predominately limestone and dolomitic limestone). The bedrock surface was typically encountered at an elevation of between 217.21 m and 215.78 m. The composition of the alluvial soils is expected to vary with depth and between riverbanks (and at the proposed siphon outfall chamber locations). Cobbles and boulders should be expected within the glacial till deposit (typical of glacial till soils within the Winnipeg area).

Detailed descriptions of the subsurface conditions encountered at the testholes locations are shown on the test holes logs in Appendix 3 and Appendix 4 of the GDR. A brief description of the subsurface soil/bedrock units encountered along the FGSV Siphon alignment, and their engineering properties is provided in the following Sections.

6.2 Subsurface Profile

The soil stratigraphy on the project site generally consists of topsoil, clay fill overlying a clay deposit, which is underlain by silt till and bedrock. Additionally, alluvial deposits were observed at the riverbank and along the river bottom. Detailed descriptions of the strata and related field and laboratory data are provided in Sections 5 and 7 of the GDR.

6.2.1 Topsoil

Topsoil was encountered at the ground surface in testholes TH24-01, TH24-02, TH24-04, and TH24-05. The thickness of the topsoil was approximately 0.30 m and is observed to be black, moist, with organic content, with traces of sand, gravel, and silt. The moisture content of the topsoil ranged from 31.4% to 35.6%.

6.2.2 Fill – Clay (CH)

Fat clay (CH) fill material was encountered in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from approximately 0.7 m to 1.9 m. The fat clay (CH) fill layer was generally observed to be moist, of high plasticity, black in color, firm to stiff and have traces of sand, gravel, and silt. The moisture content of the fat clay (CH) fill ranged from 32.8% to 35.6%.

6.2.3 Clay (CH)

Grey fat clay (CH) was encountered below the clay fill in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from 10.10 m to 15.75 m. It is observed to be moist, firm, and of high plasticity with trace of silt. The clay shear strength varies from firm to soft and decreases with depth. The moisture content of the fat clay (CH) ranged from 13.6% to 51.3%.

6.2.4 Silt (ML) Till

Tan silt (ML) till was encountered below the fat clay material in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from 0.71 m to 1.95 m. It is observed to be moist, loose, and of low plasticity with trace of sand, and clay and gravel. The silt (ML) till was compact with moisture content of the silt (ML) till ranged from 11.4% to 18.5%. Cobbles and boulders should be expected within the glacial till deposit (typical of glacial till soils within the Winnipeg area).

6.2.5 Bedrock

Bedrock (BR) was encountered below the silt (ML) till in the cored testholes TH24-01, TH24-03 and TH24-05. Brecciated Dolomitic Mudstone was the type of rock observed in the coring, a Lower Fort Garry Member of the Red River Formation. The Brecciated Dolomitic Mudstone was observed at elevations of 216.38 m ASL and 217.20 m ASL to beyond 207.20 m ASL and 182.53 m ASL. The dolomitic limestone was white greyish and was nodular bedded.

6.3 Bedrock Characterization

6.3.1 General

Most of the bedrock encountered at the site, specifically along the proposed FGSV Siphon alignment, consists of Brecciated Dolomitic Mudstone. The bedrock surface elevation varied between 217.21 mASL and 215.78 mASL along the proposed FGSV Siphon alignment. The bedrock is generally white greyish, medium strong to very strong. The bedrock units encountered are consistent with geological maps of the area. Details of bedrock UCS, RQD, SCR and RQD are provided in Section 7 of the GDR.

6.3.2 Rock quality Designation (RQD)

RQD ranges from 0% to 94% which represents very poor to excellent quality bedrock. Lower RQD values were typically found at depths closer to the bedrock surface, but RQD values are typically consistent between an approximate elevation of 215.24 mASL to 187.10 mASL. RQD values at each test hole location are shown in Section 7.1.4 of the GDR.

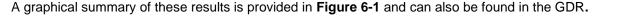
6.3.3 Unconfined Compressive Strength of Intact Rock Core Specimens

Unconfined Compressive Strength of Intact Rock Core Specimen testing was performed on samples of Brecciated Dolomitic Mudstone from the Red River Formation. The Brecciated Dolomitic Mudstone is classified as medium strong to very strong. The measured unconfined compressive strength of the intact rock for the Brecciated Dolomitic Mudstone range between 35.3 MPa and 128.0 MPa. More details regarding the Unconfined Compressive Strength of Intact Rock Core Specimen are found within **Appendix I**.

6.3.4 Bedrock Permeability

High permeability zones could be encountered at various bedrock contacts and within the upper bedrock near the ground surface, approximately 5 mBGS (216.5 mASL). The MTBM operating in closed-face is slurry-supported using a bentonite suspension drilling fluid. The slurry pump and face pressure should be monitored to ensure excessive pressure is not applied to the tunnel face. These zones of high permeability may provide preferential pathways for drilling fluid and annular lubrication fluid flow, depending on the features contributing to the high permeability. These features can include, but are not limited to, fracture networks, joint networks, shear zones, or areas of weathered rock.

6.4 Groundwater and Sloughing Conditions


Groundwater seepage or soil sloughing conditions were observed in most testholes upon completion of drilling. Details of the location and nature of the sloughing, seepage, and groundwater encountered are provided in Section 6 of the GDR, as well as in the testhole logs in **Appendix 3** of the GDR

Groundwater levels fluctuate seasonally and typically rise during the spring melt and after significant rainfall events and snowmelts.

6.4.1 Site Specific Groundwater Observations

Groundwater elevations were measured in the test holes during and after the completion of AECOM geotechnical investigation. The measured groundwater levels are also presented in Section 6.1 **(Table 6)** of the GDR.

Groundwater instrumentation along the FGSV Siphon alignment consists of two (2) standpipe piezometers installed as part of the AECOM 2024 geotechnical investigations. Instrumentation was installed into the bedrock along the FGSV Siphon alignment, and the instruments were monitored between June 4, 2024, and March 12, 2025, by AECOM.

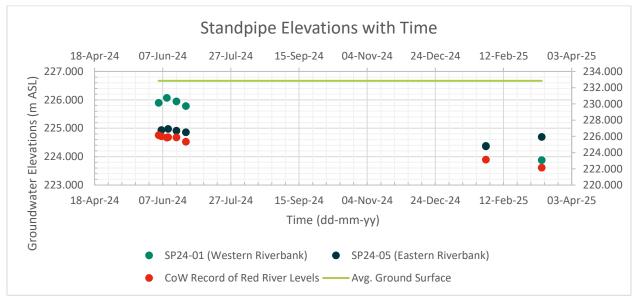


Figure 6-1: Graph of Groundwater Elevations Versus Time

It is anticipated that the launch and receiving pit will be constructed mostly within fat clay, at a depth of approximately 15 mBGS (216.40 mASL) and 10 mBGS (222.7 mASL). The typical range of hydraulic conductivity for fat clay is between 1x10⁻¹⁰ to 1x10⁻⁶ cm/s. Thus, there will be no significant groundwater seepage expected from within the fat clay. For the daily water level for Red River at James Avenue Pumping Station, see **Appendix III**.

6.4.2 Groundwater Dewatering Rates

Drawdown of the aquifer is not permitted to facilitate shaft construction as part of the project. Therefore, the Contractor is required to use 'sealed' methods for shaft construction. Watertight shafts must include a sealed concrete base designed to prevent basal heave, resist hydrostatic pressures, and minimize the ingress of fines and groundwater infiltration. Additionally, it is recommended that the Contractor does a pumping test prior to construction for the entry shaft, where bedrock is found at the bottom of the excavation. This pumping test is meant to facilitate the nuisance dewatering of the launch shaft and not the underlying aquifer.

The Contractor is responsible for conducting the necessary hydrogeological assessments and tests at each shaft location to determine appropriate dewatering rates.

7. Discussions and Recommendations

This section of the report presents geotechnical engineering insights regarding the proposed installation of the casing and carrier pipe, which will run parallel to the Fort Garry Bridge and cross the Red River to the south of the bridge.

The following geotechnical input is based on the information available at the time of this report. Comments regarding construction are included to highlight aspects that may impact the design. Contractors should review the factual results of the investigation to ensure the adequacy of the information for construction. They must interpret the data concerning the profile provided during the tendering phase, as this will influence their construction techniques, schedule, safety measures, and equipment capabilities.

7.1 Soil and Bedrock Stratigraphic Summary

The stratigraphic summary shown below has been developed in consideration of the conditions encountered in the testholes. A more detailed version is found in Section 5 of the GDR.

- Topsoil: black in colour, moist, with organic content, and with trace of sand, gravel and silt.
- Clay (CH) Fill: black in colour, moist, high plasticity, firm to stiff and have traces of sand, gravel and silt.
- Clay (CH): grey in colour, moist, firm, and of high plasticity with trace of silt.
- Silt (ML) Till: tan in colour, loose, and of low plasticity with trace of sand, clay, and gravel.
- Bedrock: grey to dark grey in colour and was nodular bedded.

The lowest and highest groundwater levels recorded at the monitoring wells TH24-01 and TH24-05 were at elevations of **223.874 mASL** and **224.754 mASL**, respectively. These readings, taken from June 4, 2024, to March 12, 2025, indicate that both the bottom of the shaft and the tunnel are located below the water table. The anticipated elevations of the shaft at the launch and receiving shafts are **216.40 mASL** and **222.70 mASL**, respectively.

7.2 Anticipated Ground Behaviour

7.2.1 Overburden

For the description of the anticipated behaviour of the overburden deposits, the Tunnelman Ground Classification System, developed by Terzaghi (1950) and modified by Heuer (1974), has been adopted. It should be noted that the Tunnelman ground classification terms provide a description of the behaviour of the different soil types at an unsupported vertical tunnel face under atmospheric conditions. As the tunnelling is to be constructed using MTBM, the Tunnelman descriptions have only been provided to give a general idea of soil face stability behaviour.

The baseline behaviour of the overburden soil units is presented in Table 7-1.

Soil Group	Soil Type and Description	Anticipated Behaviour
Alluvial Cohesive Soil Unit	Clayey Silt, Silty Clay	Will be stable and exhibit firm behaviour initially after excavation but depending on the degree of fissuring will degrade into Slow Raveling ground both above and below the groundwater table. The silt layers are known to be water bearing and are susceptible to strength loss when subjected to mechanical disturbance and sloughing from wetting. All open excavation side slopes should be covered with waterproof material to prevent saturation of the soil and all surface runoff to be directed away from the excavations.
Glacio-Lacustrine Clay (Cohesive) Unit	Silty Clay	The upper layer of the glacio-lacustrine clay will be stable and exhibit firm behaviour initial upon excavation and quickly in-turn become Slow Raveling depending upon the degree of fissuring. The lower layer will begin to Squeeze and yield plastically with increased depth upon excavation. The shear strength of both the upper and lower silty clay will progressively decrease over a short period of time due to changes in effective stress and moisture conditions, resulting in Swelling and yielding conditions of the soil if left unsupported.
Alluvial Granular Soil Unit	Sand, Sand and Gravel	Above the groundwater table these soil types will be Fast Raveling or exhibit cohesive running but will immediately Flow below the groundwater table even under a small groundwater head (< 1 m).
Glacial Till (Granular)	Sandy Silt, Silty Sand	Below the groundwater table, Fast Raveling to Flowing conditions will occur. Unstable (Running or Flowing) conditions can be expected where cohesionless granular layers or pockets are present in the till. Cobbles and boulders will be encountered.

Table 7-1: Anticipated Behaviour of Soil at Unsupported Vertical Tunnel/ Excavation Face

These baseline conditions should be considered during the planning and execution of the tunnelling project to ensure stability and safety.

7.2.2 Clogging Potential

Clogging potential refers to the likelihood of soil particles adhering to the cutting tools and conveyor systems of Microtunneling Boring Machines (MTBM). This stickiness can lead to clogging and blockages and can significantly impact the efficiency and safety of tunneling operations, making it crucial to assess and mitigate in advance. The methodology for assessing clogging potential was developed by F. Hollman and M. Thewes in 2013, focusing on evaluating soil properties such as plastic limit (PL), liquid limit (LL) and moisture content to predict and manage clogging risks.

The consistency and behaviour of soil containing clay minerals can change with interaction of tunneling equipment and water and conditioning agents (i.e. groundwater seepage or construction water). Based on the clogging charts that show groups of data points using the results from Atterberg's Limits testing on samples of the fat clay and till materials, our analysis shows strong to medium clogging for the fat clay layers, and little clogging for the glacial till.

It is the contractor's responsibility to carry out compatibility tests with different conditioning agents, dosing levels, and moisture contents so that field operation prevent clogging from occurring. Details regarding PL, LL and moisture content is found within the GDR and shall be considered by the Contractor for clogging potentials before construction commences.

7.2.3 Bedrock

This section describes the anticipated behaviour of the bedrock at an unsupported vertical tunnel face under atmospheric conditions. The following description will apply to sections of shafts in bedrock and will also give a general idea of face stability behaviour in the tunnel sections where bedrock is encountered.

Wedge-shaped blocks will be released and fall into the tunnel excavation under the following conditions:

- i. where nearly vertical joint sets intersect the tunnel at a shallow angle in combination with bedding planes and/or weak horizontal seams; and,
- ii. where horizontal bedding planes intersect two inclined joints. This type of wedge instability is expected to occur on a localized basis and can be expected to occur at any time following tunnel excavation.

Roof slab fallout can occur in the bedrock where a clay-filled or open, weak horizontal seam is present in the tunnel crown. This type of fallout occurs along the tunnel until the weak seam pinches out or rises sufficiently above the crown.

Layer	Type and Description	Anticipated Behaviour
Bedrock	Lower Fort Garry Member of the Red River Formation: Brecciated Dolomitic Mudstone	The un-weathered competent bedrock units will be stable and Firm upon excavation. Fast
		Raveling conditions will be encountered depending upon the degree of rock fracturing and discontinuities within the bedrock formation.

Table 7-2: Anticipated Behaviour of Bedrock at Unsupported Vertical Tunnel/ Excavation Face

7.3 Hydrogeological Investigation

If required, it is the contractor's responsibility to conduct a hydrogeological investigation to manage the groundwater, which would allow for deep excavations at the project (as well as at locations within the tunnel). The hydrogeological investigation will need to include, but is not limited to:

- Test well drilling
- Aquifer pump testing
- Technical analysis

7.4 **Recommended Geotechnical Baseline Parameters**

7.4.1 Launch Shaft (East Riverbank) Geotechnical Baseline

The proposed bottom elevation of the launch shaft is 216.40 mASL, on top of bedrock. **Table 7-3** and **Table 7-4** summarize the baseline parameters for the launch shaft, located near testhole TH24-05.

Subsurface Profile	Elevation	Baseline Parameter
Fill – Clay (CH)	231.63 m	Thickness = 0.61 m
Brown Clay (CH)	231.02 m	Thickness = 6.72 m USS ¹ = 50 kPa Unit Weight = 19 kN/m^3 Effective Cohesion = 3 kPa Effective Angle of Internal Friction = 20 degrees Plastic Limit = 20% Liquid Limit = 90% Plastic Index = 70 Moisture Content = 28%
		Liquid Index = 0.11
Grey Clay (CH)	224.30 m	Thickness = 5.18 m USS ¹ = 25 kPa Unit Weight = 19 kN/m ³ Effective Cohesion = 3 kPa Effective Angle of Internal Friction = 20 degrees Plastic Limit = 20% Liquid Limit = 90% Plastic Index =70% Moisture Content = 40% Liquid Index = 0.20
Silt (ML) Till	219.12 m	Thickness = 1.92 m Relative Density = Dense Unit Weight = 20 kN/m ³ Angle of Friction = 35 degrees SPT N Value = 50 % Gravel = 8 % Sand = 55 % Fines = 37 Moisture Content = 15.5% It is anticipated that boulders less than 1 m ³ in size will be encountered.
Bedrock	217.20 m	Lithology = Lower Red River Formation: Dolomitic Mudstone, Brecciated UCS ² = 125 MPa (ISRM Classification: Very Strong) CAI ³ = 1.6 (ASTM Classification: Medium) RQD ⁴ = 45%
		Basal Instability
Launch Shaft	216.40	Since the bottom of the excavation is found on the bedrock, excavation base stability is not a concern.
Buoyan	cy Uplift fron	n Excess Groundwater Pressure Beneath an Impermeable Stratum
Launch Shaft	216.40	Since the bottom of the excavation is found on the bedrock, it is not applicable. The contractor should develop a plan to manage artesian pressures. A professional engineer specializing in excavation design should be consulted before construction begins.

Table 7-3: Subsurface Profile and Baseline Parameters for Launch Shaft

¹USS = Undrained Shear Strength ²USC = Unconfined Compressive Strength

 $^{3}CAI = CERCHAR-Abrasivity-Index of the sample that is calculated by taking the mean wear and multiplying it by 10$

⁴RQD = Rock Quality Designation (International Society of Rock Mechanics (ISRM) Standard, 1979)

Given the potential for seasonal fluctuation of the groundwater table, it is recommended that the groundwater level in the SP's be measured again prior to construction to confirm any change arising from seasonal variation or changed

conditions since the time of previous monitoring event. As a baseline, the table below shows the recommended groundwater and river levels to be utilized for each season.

Location	Piezometer ID	Season	GW Reading	Historical River Levels
East Riverbank	SP24-05	Spring	Highly Variable	Highly Variable
		Summer ¹	~227.718 mASL	223.98 mASL
		Winter	~224.75 mASL	221.76 mASL

Table 7-4: Seasonal Groundwater Levels for Launch Shaft

¹Based on Daily Water Level Graph (see Appendix III.)

7.4.2 Riverbed Tunnel Geotechnical Baseline

As previously mentioned, the lowest point of pipe is within the river and will be tunneled through bedrock at an invert elevation 207 m. **Table 7-5** summarizes the baseline parameters for the bedrock at this location which is located near testhole TH24-03.

Table 7-5: Subsurface Profile and Baseline Parameters for Riverbed Tunnel

Subsurface Profile	Elevation	Baseline Parameter
Red River	Spring = Highly Variable Summer ⁴ = 223.98 mASL Winter = 221.76 mASL	 High Variability in Spring Summer levels. Controlled by St. Andrews Lock and Dam Small variability in Winter
Silt (ML) Till	217.60 mASL	Thickness = 1.92 m Relative Density = Dense Unit Weight = 20 kN/m ³ Angle of Friction = 35 degrees SPT N Value = 50 blows/300 mm penetration % Gravel = 8 % Sand = 55 % Fines = 37 Moisture Content = 15.5% It is anticipated that boulders less than 1 m ³ in size will be encountered.
Bedrock	215.80 mASL	Lithology = Lower Red River Formation: Dolomitic Mudstone, Brecciated UCS1 = 164 MPa (ISRM Classification: Very Strong) CAI2 = 1.6 (ASTM Classicisation: Medium) RQD ³ = 47%

¹USC = Unconfined Compressive Strength.

 2 CAI = CERCHAR-Abrasivity-Index of the sample that is calculated by taking the mean wear and multiplying it by 10.

³RQD = Rock Quality Designation (International Society of Rock Mechanics (ISRM) Standard, 1979).

⁴Based on Daily Water Level Graph (see Appendix III).

7.4.3 Receiving Shaft (West Riverbank) Geotechnical Baseline

The proposed bottom elevation of the receiving shaft is 222.7 m within fat clay. **Table 7-6** and **Table 7-7** summarize the baseline parameters for the launch shaft, located near testhole TH24-01.

Subsurface	Elevation	Baseline Parameter
Profile	Elevation	baseline Parameter
	222 E0 mASI	Thiskness 0.45 m
Fill – Clay (CH)		Thickness = 0.45 m
Brown Clay (CH)	233.05 mASL	Thickness = 11.45 m
		$USS^{1} = 50 \text{ kPa}$
		Unit Weight = 19 kN/m ³
		Effective Cohesion = 3 kPa
		Effective Angle of Internal Friction = 20 degrees
		Brown Clay USS ¹ = 50 kPa Plastic Limit = 20%
		Liquid Limit = 90%
		Plastic Index = 70%
		Moisture Content = 38%
		Liquidity Index = 0.26
	221 60 m A SI	Thickness = 4.26 m
Grey Clay (CH)	221.60 mASL	$USS^1 = 25 \text{ kPa}$
		Unit Weight = 19 kN/m^3
		Effective Cohesion = 3 kPa
		Effective Angle of Internal Friction = 20 degrees
		Grey Clay USS ¹ = 25 kPa
		Plastic Limit = 20%
		Liquid Limit = 90%
		Plastic Index = 70%
		Moisture Content = 49%
		Liquidity Index = 0.29
Silt (ML) Till	217.30 m	Thickness = 0.75 m
, , ,		Relative Density = Dense
		Unit Weight = 20 kN/m^3
		Angle of Friction = 35 degrees
		SPT N Value = 50 per 300 mm penetration
		% Gravel = 10.4
		% Sand = 33.5
		% Fines = 56.1
		Moisture Content = 13.8 %
		It is anticipated that boulders less than 1 m ³ in size will be encountered.
Bedrock	216.80 mASL	Lithology = Lower Red River Formation: Dolomitic Mudstone, Brecciated
		UCS ² = 125 MPa (ISRM Classification: Very Strong)
		CAI ³ = 1.6 (ASTM Classicisation: Medium)
		RQD ⁴ = 56%
	1	Basal Instability
Receiving Shaft	222.70 mASL	As per Section 20.8.2.1 of the CFEM, base heave is deemed satisfactory if (FS)
		heave is greater than 1.5. The design of the shoring should be carried out by a
		professional engineer specialized in shoring design with a baseline value of
		(FS)heave of 1.5 or greater.
	1	cess Groundwater Pressure Beneath an Impermeable Stratum
Receiving Shaft	222.0 mASL	As per Section 22.3.1 of the CFEM, buoyancy uplift due to excess groundwater
		pressure beneath an impermeable stratum is deemed satisfactory if FS is
		greater than 1.1. The contractor should develop a plan to manage artesian
		pressures.
¹ USS = Undrained She	ar Strenath	

Table 7-6: Subsurface Profile and Baseline Parameters for Receiving Shaft

¹USS = Undrained Shear Strength ²USC = Unconfined Compressive Strength ³CAI = CERCHAR-Abrasivity-Index of the sample that is calculated by taking the mean wear and multiplying it by 10 ⁴RQD = Rock Quality Designation (International Society of Rock Mechanics (ISRM) Standard, 1979)

Given the potential for seasonal fluctuation of the groundwater table, it is recommended that the groundwater level in the SP's be measured again prior to construction to confirm any change arising from seasonal variation or changed conditions since the time of previous monitoring event. As a baseline, the table below shows the recommended groundwater levels to be measured for each season.

Location	Piezometer ID	Season	GW Reading	Historical River Levels
West Riverbank	SP24-01	Spring	Highly Variable	Highly Variable
		Summer ¹	~225.921 mASL	223.98 mASL
		Winter	~224.384 mASL	221.76 mASL

Table 7-7: Seasonal Groundwater Levels for Receiving Shaft

¹Based on Daily Water Level Graph (see **Appendix III**)

7.5 Tunnelman's Ground Classification and Probable Working Conditions

Table 7-8 is included for completeness and general reference. This table outlines the framework for Tunnelman's Ground Classification and details the corresponding tunnel working conditions, as described by Heur and Virgins (1987), Brandt (1970), and others.

Classification	Representative Soil Types	Tunnel Working Conditions
Hard	Very hard calcareous clay; cemented sand and gravel	Tunnel heading may be advanced without roof support
Firm	Loss above GWT; Various calcareous clay with low plasticity	Tunnel heading may be advanced without roof support, and the permanent support can be constructed before the ground will start to move
Slow Raveling and Fast Raveling	<i>Fast Raveling</i> occurs in residual soils or in sand with clay binder below the GWT. Above the GWT, the same soils may be <i>Slowly</i>	Chunks or flakes of material begin to drop out of roof or the sides sometime after the ground has been exposed.
	<i>Raveling</i> or even Firm	In <i>Fast Raveling</i> ground, the process starts within a few minutes; otherwise, it is classed as <i>Slow Raveling</i>
Squeezing	Soft or medium-soft clay	Ground slowly advances into tunnel without fracturing and without perceptible increase of water content in ground surrounding the tunnel (may not be noticed in tunnel but cause surface subsidence)
Swelling	Heavily pre-compressed clays with a plasticity index more than about 30; Sedimentary formations containing layers of anhydrite.	Like squeezing ground, moves slowly into tunnel, but the movements are associated with a very considerable volume increase in the ground surrounding the tunnel.
Cohesive Running and Running	<i>Cohesive running</i> occurs in clean, fine moist sand <i>Running</i> occurs in clean, coarse or medium sand above the GWT	The removal of the lateral support of any surface rising at an angle of more than about 34° to the horizontal is followed by a 'run,' whereby the material flows like granulated sugar until the slope angle becomes equal to about 34°. If the 'run' is preceded by a brief period of raveling, the ground is called <i>Cohesive Running</i>
Very Soft Squeezing	Clays and silts with high plasticity index	Ground advances rapidly into the tunnel in a plastic flow
Flowing	Any ground below the GWT that has an effective grain size more than about 0.005 mm	Flowing ground moves like a viscous liquid. It can invade the tunnel not only through the roof and the sides but also through the bottom. If the flow is not stopped, it continues until the tunnel is completely filled.
Bouldery	Boulder glacial till; rip-rap fill; some land slide deposits, some residual soils. The matrix between boulders may be gravel, sand, silt, clay or combinations of thereof.	Problems occurred in advancing shield or fore poling; blasting or hand mining ahead machine may become necessary.

Table 7-8: Tunnelman's Ground Classification and Probable Work Conditions

For reference, stiff to firm fat lay below the groundwater level is anticipated to exhibit a 'slow raveling' to 'squeezing' behaviour.

7.6 Geotechnical-Based Assessment for MTBM

7.6.1 Micro-Tunneling Boring Machine (MTBM)

It is understood that the preferred method of installation of the siphon is by pipe jacking with MTBM. In general, the siphon is constructed by consecutively pushing pipes and the tunneling machine through the ground, using a jacking system for thrust. MTBM's are used with a mechanized excavating equipment that is remotely controlled, steerable, guided and articulated, connected to, and jacked forward by the pipe being installed. A tunneling machine has a rotating cutterhead that rotates and excavates the soil which comes inside the cutting head. The spoil is transferred to the rear of the shield via slurry lines or through conveyers which dump it into muck carts and conveys it out of the tunnel through the pipe being installed. Thrust power of hydraulic jacks is utilized to force the tunneling machine and the following string of pipes forward. The hydraulic pressures overcome face resistance and friction forces on the exposed surfaces of the shield and installed pipes.

It is understood that the installation of the pipes will be through a tunneling machine based upon local availability and expertise. Systematic settlements (typically small) and other operational settlements can occur when pipe jacking with tunneling machine is used.

When used with pipe jacking techniques, tunneling machines can advance pipelines several hundred metres to very accurate tolerances. Tunneling machines can be used in varying ground conditions, and high-water tables.

7.6.2 Installation Risks

Pipe Jacking with Tunneling Machine for the FGSV siphon has been evaluated against the following perceived risks:

- Ground settlement
- Buried Obstructions
- Clogging Potential
- Void Development
- Bedrock Considerations
- Groundwater
- Pipe Alignment and Grade Control

7.6.2.1 Ground Settlement

Major settlement is not anticipated on existing road embankments and riverbanks due to the use of Micro Tunnel Boring Machines (MTBM). Most of the siphon is submerged, mitigating settlement concerns. The riverbanks consist mainly of grass areas, further reducing settlement risks. However, the siphon may pass beneath a bicycle path, which will require monitoring.

Moderate to heavy groundwater seepage was recorded in test holes TH24-01, TH24-02, TH24-04, and TH24-05, within a clay layer at depths of 6.1 m (Elev. 225.1 mASL) to 10.4 m (Elev. 220.8 mASL). Soil sloughing was observed in test holes TH24-01, TH24-02, and TH24-03 at depths of 9.1 m (Elev. 222.1 mASL) to 16.5 m (Elev. 214.7 mASL).

While pipe jacking minimizes ground disturbance, small settlements can occur due to:

- **Systematic Settlement**: Resulting from the collapse of the overcut between the excavation and the trailing pipeline (E.g. Annular Collapse).
- **Operational Settlements**: Caused by over-excavation due to operator inexperience or unexpected ground conditions.

To mitigate these risks, lubricating slurry should be applied to fill annular voids, preventing collapse. This slurry can be replaced with cementitious grout upon completion. The contractor must ensure they have the necessary equipment for effective grouting and be prepared to address any instability at the tunnel face based on observed settlements.

7.6.2.2 Buried Obstructions

Buried obstructions were not encountered during AECOM'S geotechnical investigation in June and August 2024. Obstructions such as cobbles and boulders are likely in till interface and possible in lacustrine clays. Encountering buried obstructions can prevent or slow down the progress of a trenchless method. An installation technique should be selected that can accommodate removal of potential obstructions without having to remove or expose the leading edge of the encasement pipe.

7.6.2.3 Clogging Potential

According to clogging charts based on Atterberg's Limits testing of fat clay and till samples, our analysis indicates strong to medium clogging for fat clay layers and minimal clogging for glacial till. It is the contractor's duty to perform compatibility tests with various conditioning agents, dosing levels, and moisture contents to prevent clogging during field operations. Details on PL, LL, and moisture content are provided in the Geotechnical Data Report (GDR) and should be considered by the contractor before starting construction.

7.6.2.4 Void Development in Soil and Bedrock

The proposed siphon is anticipated to traverse through various layers, including clay, silt till, and bedrock, as identified in test holes TH24-01 to TH24-05. During the installation process, voids may develop both in the surrounding soil and within the bedrock, which is critical to understanding the potential impacts on stability and construction integrity.

In the soil, particularly within cohesive materials such as firm to very stiff clays, voids can form due to several factors, including excavation activities, soil settlement, and fluctuations in moisture content. These voids can lead to ground movement over time, potentially compromising the stability of the surrounding area. It is essential to monitor these conditions closely, as they can affect the performance of the siphon and the safety of the construction site.

Similarly, voids in bedrock may arise from natural geological processes, such as weathering and erosion, or from previous excavation activities. These voids can create challenges for the structural integrity of the siphon, as they may lead to unexpected ground movement or instability. Understanding the extent and nature of these voids is crucial for effective risk management during construction. As noted in Section 3.2, for the Northeast Interceptor Sewer Project. Karstic featuress (e.g. sinkholes, caves) could be encountered during tunneling in Winnipeg.

If significant voids are encountered in either the soil or bedrock, implementing circumference grouting outside the casing may be necessary to stabilize the ground and mitigate potential issues. This proactive approach helps ensure that the construction remains safe and effective.

Additionally, the contractor must ensure the proper installation of entry and exit seals at the break-in and break-out points of the trenchless crossing. This step is vital to prevent slurry loss prior to grouting, which can further safeguard against void formation and maintain the integrity of the installation process.

7.6.2.5 Bedrock Considerations

The proposed siphon is anticipated to be drilled through a bedrock layer with a lithology of lower Red River Formation; Dolomitic Mudstone, Brecciated. Understanding the geological characteristics of this formation is critical for the successful execution of the tunneling project. The Rock Quality Designation (RQD) of the bedrock ranges from poor to fair. This indicates the presence of fractures, which can lead to groundwater seepage. Additionally, cobbles and boulders may be encountered during tunneling operations. These conditions highlight the need for careful planning and mitigation strategies to address potential challenges related to bedrock stability and groundwater management.

Detailed bedrock test results, including unconfined compressive strength and CERCHAR Abrasivity tests, are available in the GDR, **Appendix I**.

The CERCHAR test is essential for evaluating the abrasiveness of rock materials, as this characteristic directly impacts the wear on cutting tools utilized in tunneling operations. Understanding the Abrasivity of the rock is critical for planning effective maintenance and tool replacement strategies, thereby ensuring the efficient operation of the MTBM. To mitigate the risks associated with rock abrasiveness, it is essential for the contractor to implement a comprehensive maintenance plan. This plan should include regular inspections and timely replacements of cutting tools to minimize downtime and ensure operational efficiency throughout the tunneling process.

7.6.2.6 Groundwater

As mentioned previously, Moderate to heavy groundwater seepage was observed in testholes TH24-01, TH24-02, TH24-04 and TH24-05 during drilling.

Groundwater readings were taken in testholes TH24-02 and TH24-04 upon the completion of drilling. Groundwater in testholes TH24-02 and TH24-04 was observed at depth of 11.4 m (Elev. 218.3 mASL) and 3.2 m (Elev. 226.1 mASL). Groundwater was measured and observed upon installation of the SP's in testholes TH24-01 and TH24-05. Groundwater level was monitored later from the SP's installed in testholes TH24-01 and TH24-05 within bedrock, details of groundwater readings are provided in Section 6 of the GDR. The installation of the siphon (top of siphon approx. 225.9 m ASL) is below the highest groundwater elevation recorded by the standpipe piezometer (SP) installed in TH24-05. During the construction of the jacking and receiving pit, the contractor should also be prepared to deal with groundwater originating from the till.

Groundwater will require careful management and control throughout the installation process. Groundwater can promote instability at the face of the tunnel boring machine and may result in higher ground deformations (settlement/heave) at ground surface unless adequate solutions are implemented. The contractor will have to develop a method to mitigate this risk especially if open-faced MTBM.

7.6.2.7 Pipe Alignment and Grade Control

Pipe alignment and grade control are critical during the initial stages of installation and require careful management to achieve adequate design inverts along the drive length. In difficult ground conditions where potential obstructions maybe present (i.e., abandoned pipes), encountering an obstruction may result in the reduction of alignment and grade control accuracy.

For tunneling machine, MTBM guidance system employs either an active laser guidance system, gyroscopic controls or advanced laser theodolite system to maintain the installation accuracy.

8. Design and Construction Considerations

8.1 General

Based on our current understanding of the proposed development and the results of our geotechnical investigation, the primary geotechnical concerns at the project site are:

- Based on the water levels recorded in standpipes SP24-01 and SP24-05, the water table will significantly
 influence the design and construction methods. As illustrated in Figure 6.1, the water measurement readings
 in SP24-01 and SP24-05 reflect the river's influence. The water elevation in the standpipes is higher than
 that of the river, and it decreases as you move towards the river which follows the general behaviour of the
 river and GW is influenced by the river. The approximate levels are as follows:
 - June 2024:
 - SP24-01 (Western Riverbank): 225.921 mASL
 - SP24-05 (Eastern Riverbank): 227.718 mASL
 - January 2025:
 - SP24-01 (Western Riverbank): 224.384 mASL
 - SP24-05 (Eastern Riverbank): 224.754 mASL
 - These variations in water table levels between June 2024 and January 2025 indicate seasonal fluctuations.
- Variable depths in bedrock depth.

8.2 Launch and Receiving Shafts

- The Contractor is responsible for the design of temporary support systems considered necessary for shafts in accordance with the Contract Documents.
- Two (2) vertical shafts are planned for construction as part of the proposed FGSV Siphon tunnel section. The launching and receiving shafts shall be located on the eastern and western side of the Red River (near TH24-03 and TH24-01), respectively. The shafts should be large enough to accommodate launching and retrieving of the MTBM, while providing space required for siphon construction as per Contract Drawings.
- Shafts will be used to launch and/or retrieve the MTBM and provide access and space for construction of the tunnel and permanent structures within the shafts. The shafts will be constructed in a combination of soil and bedrock.
- Due to proximity of buildings and utilities, use of temporary shoring will be required to support the excavation walls without impacting the adjacent structures.
- Ground movements are anticipated around the vertical shaft; therefore, the Contractor shall assess the potential adverse impacts and, where necessary, adopt suitable measures to prevent any damage to the utilities (underground and overhead) and buildings.
- The anticipated behavior of each type of soil/bedrock to be encountered is provided in **Table 7-1** Section 7.1 of this GBR.
- The baseline UCS for bedrock is provided in Section 7.4 of this GBR. The Contractor shall consider the UCS of bedrock for selecting equipment for bedrock excavation.
- For each shaft location, baseline elevations are presented in General Plan within the Contract Documents and Drawings.
- Temporary support and protection of the bedrock within the excavation should be provided as soon as possible after exposure to protect the bedrock from weathering, deterioration and spalling. Seepage at joints in the bedrock is expected.
- Temporary support systems are required to be designed for lateral earth pressure, lateral hydrostatic pressure, surcharge of equipment adjacent to the shaft, and should be capable of controlling ground movement in accordance with the Contract Documents. Shaft walls and base slab need to resist uplift forces

due to buoyancy, and adequate foundation details should be provided to prevent ground instability due to soil piping and basal heave. The following remarks regarding the receiving and jacking shaft can be used as baseline for the basal instability and buoyancy uplift from excess groundwater pressure beneath an impermeable stratum.

- **Launch Shaft (East Riverbank):** Since the bottom of the excavation is found on the bedrock, excavation base stability is not a concern.
- Receiving Shaft (West Riverbank): As per Section 20.8.2.1 of the CFEM, base heave is deemed satisfactory if (FS) heave is greater than 1.5. The (FS) heave for the excavation of the proposed receiving shaft was calculated as 1.46 which is below a factor of safety of 1.5. The design of the temporary shoring system should be carried out by a professional engineer specialized in shoring design.
- All shoring designs should be in accordance with the 5th Edition of the Canadian Foundation Engineering Manual 2023 and must be reviewed by the design engineers. Surface surcharges from construction activities must be accounted for in the shoring design. If shoring is to be carried out over the winter months or if the excavation is to be left open for any period during below zero temperature, shored walls must be protected against frost penetration by means of insulation or heated hoarding. The drilling contractor should account for potential for presence of obstruction in the till layer and at the bedrock surface when installing the shoring system. Cobbles and boulders are frequently encountered in the till layer above the bedrock.
- The construction of the shafts by "sealed" construction methods. The Contractor is required to submit their methods of designing and constructing a sealed shaft temporary support system to the Consultant for review with respect to meeting the performance requirements defined in the Contract Documents.
- The Contractor shall be prepared to collect and discharge potential seepage within the shafts and meet the discharge requirements indicated in the Contract Documents.
- As previously mentioned, the launch shaft is expected to be on top the bedrock at an approximate elevation of 216.40 mASL, while the receiving shaft is expected to be in clay at an elevation of 222.7 mASL. Therefore, there is the potential for boulders within the glacial till soil units and competent bedrock within the launch shaft excavation. It is anticipated that boulders less than 1 m³ in size will be encountered. It will be necessary to use equipment that is robust enough to deal with these conditions during shaft excavation and shaft wall construction.
- The sealed shaft wall system selected by the Contractor shall be designed and constructed to allow for the Launch and receiving of the MTBM. This typically requires the incorporation of a "soft eye" reinforced with materials that can be cut by the MTBM along with a tunnel eye sealing system that prevents soil and groundwater ingress during MTBM breakout or breakthrough.
- The zone located outside of the shaft wall system at the break-in and break-out penetrations shall create a watertight zone where the MTBM can develop or dissipate earth pressure in the forward chamber of the MTBM and allow penetration through the shaft "soft eye".

8.3 Tunnels

- The Contractor is to design the jacking pipes and construct the tunnel using a MTBM which can provide face support, installing and jacking pipes from the launching shaft immediately behind the MTBM.
- MTBM's are to be used for the entire FGSV Siphon alignment in bedrock to install a large 2100 mm diameter RCP casing under the Red River in accordance with the Contract Documents.
- The anticipated face stability behavior of each soil unit to be encountered is provided in **Table 7-1** of this GBR.
- The cutter head should be designed to breakdown boulders and cobbles into fragments that are easily ingestible by the conveyance system (screw convey, slurry lines, etc.) or easily broken by a rock crusher.
- The MTBM is required to be utilised in conjunction with jacking pipe that provides full ground support over the entire excavated length of tunnel.
- Where the tunnel will be excavated in bedrock, the MTBM should be capable of boring through the following type of carbonated bedrock per our baseline interpretation:

- Grade R5 (very strong) rock categorization according to ISRM Standard 1979
- $_{\odot}$ $\,$ Medium CERCHAR-Abrasivity-Index according to ASTM D7625 $\,$
- Watertight techniques are required to install the 2100 mm RCP or casing pipes in accordance with the Contract Documents, and this shall prevent significant groundwater inflow. Local dewatering or compressed air may be required to provide access to the face of the MTBM for maintenance, change of cutters, etc.
- The groundwater flow into the tunnel should be collected and discharged according to the requirements indicated in the Contract Documents.
- Contact grouting shall be used to completely fill the annulus between the ground and the lining to provide ground support and reduce ground settlement. Cementitious grouting is recommended to be done upon completion of each drive. To minimize surface settlement, all voids behind the lining must be completely filled with grout so that the tunnel lining is in direct contact with the ground.
- During microtunneling operations, bentonite or other suitable lubricating fluid should be used in the annular gap surrounding the pipe to minimize ground deformation and buildup of soil friction.
- To maintain face stability during excavation and avoid ground loss at the face it is essential that the chamber pressure is maintained within an acceptable range. Further, it is essential for the Contractor to ensure that the forward progress of the machine matches to the amount of excavation being removed from the chamber.
- MTBM selection should consider face intervention for tooling changes.

8.4 Impact on Existing Structures

Some degree of settlement, heave, and lateral movement will be an inevitable consequence of the construction of the shafts, tunnels, and there will also be some movement of adjacent structures and utilities. The Contractor shall undertake construction in a fashion which mitigates movements of utilities and structures within acceptable predefined limits, shown on Contract Drawings, to ensure there will be no adverse impacts or damage to the adjacent infrastructure.

During the tunneling process, minor ground loss may occur at the face of the MTBM, as well as some convergence of soil into the annular void surrounding the trailing pipes. These factors can lead to ground movements and settlements both longitudinally and transversely to the direction of tunneling.

To mitigate these potential impacts, it is essential that the Contractor implements appropriate risk management strategies throughout the operation. Continuous monitoring and adaptive measures will be crucial to ensure the stability of the surrounding ground and the integrity of the installation. With the selection of the MTBM as the trenchless method, it is anticipated that ground loss may occur at the tunnel face, along with some ground convergence into the annular space between the casing and the excavated tunnel walls. This can lead to ground movements and settlements both longitudinally and transversely to the tunneling direction. Therefore, it is important for the Contractor to implement effective risk mitigation strategies to address these potential issues and ensure the stability of the surrounding ground.

The contractor shall ensure that ground movements and settlements of adjacent utilities and buildings are maintained within acceptable limits. It is expected that the Contractor will adopt the following measures:

- Maintain the clearances indicated in the Contract Documents when tunnelling below or adjacent to utilities, buildings and the Red River.
- Minimise the magnitude of ground loss due to MTBM by:
 - Utilising an appropriate MTBM;
 - Utilizing appropriate trenchless methods for two tunnel sections required for the stub connections on east and west sides of the Red River;
 - Using experienced MTBM operators who will carefully control machine operating parameters for optimum results;
 - Limit the degree of radial overcut;

- Fill the annulus with bentonite lubricant during microtunneling operations, and with cement grout immediately following completion of the tunnel drive;
- The Contractor should be highly experienced to avoid improper operation of the tunneling machine; and,
- Install and monitor the instrumentation shown on the Contract Documents and undertake investigation of MTBM operation and adopt suitable corrective measures in the event that instrumentation readings equal or exceed pre-defined alert levels.

8.4.1 Existing Structure and Potential Risks

In addition to the general impact's outlines above, specific existing structure such as embankments, multi-use path, and riverbanks present in the vicinity pose risks during tunneling operations.

8.4.1.1 Embankments

The stability of nearby embankments may be compromised due to ground movements associated with tunneling. The contractor must monitor these structures closely and implement stabilization measures if necessary to prevent erosion or collapse.

8.4.1.2 Multi-Use Paths

The construction activities may affect the integrity and usability of adjacent multi-use paths. The contractor should ensure that these paths remain safe and accessible through the construction process, providing detours or temporary closures as needed.

8.4.1.3 Riverbanks

The proximity of the Red River adds another layer of complexity. Ground movements could potentially lead to erosion or destabilization of the riverbanks, which may impact water flow and surrounding ecosystems. The contractor must take precautions to protect the riverbanks, including monitoring for signs and erosion and implementing protective measure as required.

8.5 **Groundwater Management and Spoil Disposal**

The Contractor shall be familiar with local spoil disposal regulations, and include the cost of all monitoring, testing, analyses, permits, and treatment necessary to meet the disposal guidelines as part of the Tender.

The Contractor's Environmental Construction Operations (ECO) Plan shall provide the methodology for managing impacted soils and groundwater, if encountered. The Contractor shall be responsible for managing and discharging groundwater in accordance with the applicable City of Winnipeg By-Laws and applicable provincial and federal regulatory requirements.

8.5.1 Groundwater Quality

8.5.1.1 Water Quality Sample Collection and Testing

Three water samples, including one field duplicate, were collected on February 6, 2025, from monitoring wells TH24-01 and TH24-05. Water samples were submitted to ALS Global (ALS) in Winnipeg, MB for analysis of benzene, toluene, ethylbenzene and xylene (BTEX), petroleum hydrocarbon fractions 1 and 2 (PHC F1-F2), styrene, polycyclic aromatic hydrocarbons, total metals, dissolved metals and select nutrient parameters. Tabulated analytical results are presented in **Tables 1** to **5**. Laboratory certificates of analysis are presented in **Appendix II**.

8.5.1.2 Applicable Guidelines

Guideline selection for groundwater analytical results was based on potential receiving environment governing authority. The City of Winnipeg Sewer By-Law No. 106/2018 (City of Winnipeg, 2022) lists contaminants of potential concern (COPCs) concentration limits for discharge to the wastewater system (Schedule B) and land drainage systems (Schedule D). Should the effluent be discharged directly to environment, quantitative limits set out in Tier III Manitoba Water Quality Standards, Objectives and Guidelines (Manitoba Water Stewardship, 2011) apply. Water quality guidelines are displayed in the tables.

8.5.1.3 Water Quality Results

8.5.1.3.1 BTEX, F1 and F2

Analytical results were below the detection limit for all BTEX, PHC F1-F2 and styrene parameters. Results are presented in Table 1 in **Appendix II**.

8.5.1.3.2 Polyaromatic Hydrocarbons

Analytical results were below applicable guidelines for all PAH parameters. Select PAH parameters were above the detection limit. Results are presented in Table 2 in **Appendix II**.

8.5.1.3.3 General Chemistry, Nitrogen and Phosphorus

Analytical results were below applicable guidelines for all nutrient and general chemistry parameters, except total phosphorous, which was above By-Law No. 106/2018 Schedule B and D limits. Unionized ammonia was not calculated. Ammonia will not be a trigger for concern except in water with high pH levels, which can be confirmed prior to construction. Results are presented in Table 3 in **Appendix II**.

8.5.1.3.4 Dissolved Metals

The Manitoba Water Quality Standards, Objectives and Guidelines are applied to dissolved metal analytical results. All results were below guidelines. Guidelines for select parameters are calculated based on water hardness which was not analysed. Results are presented in Table 4 in **Appendix II**.

8.5.1.3.5 Total Metals

Winnipeg's Sewer By-Law No. 106/2018 Schedule B and D limits apply to total metals. Select parameters were above limits, as summarized below.

Total metal results exceeding Schedule B – Limits to Discharge into Wastewater System	Total metals result exceeding Schedule D – Limits to Discharge to Land Drainage System
Aluminum	Arsenic
Manganese	Chromium
Zinc	Copper
	Lead
	Manganese
	Nickel
	Zinc

Table 8-1: Summary of Total Metal Parameters

Results are presented in Table 5 in Appendix II.

8.5.1.4 Water Testing Quality Assurance

A quality assurance and quality control (QA/QC) program was implemented to minimize and quantify impacts introduced during sample collection, handling, shipping and analysis. As part of the QA/QC program, sampling protocols included minimizing sample handing, submitting field QA/QC samples, using dedicated sampling equipment, using sample-specific identification and labelling procedures and using chain of custody records.

One field duplicate sample was collected and submitted to the laboratory along with the original sample for analysis of the same parameters.

Laboratory QA/QC measures included analysis of duplicate and laboratory control samples. Details of the internal QA/QC procedures and methodologies employed by ALS are presented in the laboratory reports provided in **Appendix II**.

The field duplicate samples provide a means to evaluate the precision of the field quality control program. Reproducibility is quantified by calculating the relative percent difference (RPD) defined by the following equation:

Field Duplicate RPD (%) =
$$\frac{C1 - C2}{(C1 + C2)/2} * 100$$

where: C1 = larger of the two observed values from the field duplicate analysis

C2 = smaller of the two observed values from the field duplicate analysis

Both sets of results must be greater than five times the laboratory reportable detection limit (RDL) to calculate a valid RPD.

All RPDs were below thresholds, and no QA/QC issues were identified. Parent and duplicate analytical results and calculated RPDs are presented in Table 6 in **Appendix II**.

8.5.1.5 Recommendations

Recommendations for this baseline water quality characterization include:

- The results of **Table 1** to **Table 5** in **Appendix II** could be used as a baseline for the groundwater quality.
- Water quality samples should be collected prior to any activities that will require groundwater withdrawal and disposal.
- Results from this baseline groundwater quality characterization should be reconfirmed to allow for proper planning and execution related to groundwater storage, conveyance and/or treatment prior to discharge.

9. Instrumentation Program

The potential impact of tunnel construction on adjacent structures should be monitored and instrumentation designed for the project location to monitor ground movements, settlement of any structures within the zone of influence, tunnel convergence, ground vibration, and level of noise. Details of instrumentation design, Review Level and Alert Level and amount of displacement/distortion that necessitate response for each level are provided in the Contract Documents (if any).

The potential impact of tunnel construction on the overlying ground, nearby buildings and other infrastructure will be monitored by the Contractor during construction.

9.1 Geotechnical Monitoring

Requirement for geotechnical monitoring are summarized as follows:

- Surface Monitoring Point (SMP), distributed along the tunnel route at points along the tunnel centerline on the east and west riverbanks.
- The Surface Monitoring Points will be supplemented by Settlement Monitoring Marker (SMM). These will primarily be in the multiuse path, crossing the tunnel route.
- Utility Monitoring Points (UMP) will monitor the settlement and will be installed near the following structures:
 - 1650 CONC LDS found south of the receiving shaft
 - 450 CSP found north of the launch shaft.
- Inclinometer (INC) are proposed at shaft locations to identify movement of shaft structures.
- Vibrating wire Piezometer (VWP) are proposed near shafts (mid-slope).

Instruments will be installed prior to the commencement of works to develop baseline values. The Tender documents specify review and alert levels for geotechnical monitors. These levels enable the Contractor to take necessary actions to prevent unacceptable movements, protecting the project and third-party structures, and providing data for third-party claims.

10. References

Bezys, R. K., Bamburak, J. D., & Conley, G. G. (2002). Bedrock Mineral Resources of Manitoba's Capital Region. Winnipeg: Manitoba Geological Survey.

Canadian Commission on Building and Fire Codes, (2020). *National Building Code of Canada (NBCC) 2020*. National Research Council of Canada 2022.

The Canadian Geological Society. (2023). Canadian Foundation Engineering Manual 5th Edition.

Muni Budhu, (2010). Soil Mechanics and Foundations 3rd Edition.

American Society for Testing and Materials, (2017). D2487 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classificiation System).

James A. Farny (2001). Concrete Floors on Ground. Portland Cement Association.

City of Winnipeg, (2022). CW 3110 - Sub-Grade, Sub-Base, and Base Course Construction.

American Society for Testing and Materials, (2022). D7625 - Standard Test Method or Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Abrasiveness Index Method.

City of Winnipeg, (2018). THE CITY OF WINNIPEG SEWER BY-LAW NO. 106/2018

AECOM Canada Ltd., (2018). City of Winnipeg. Jefferson East Combined Sewer Relief Works (Contract 5) Semple Avenue Trunk Sewer Geotechnical Baseline Report.

KGS Group Ltd., (2019). Cockburn and Calrossie Combined Sewer Relief Works, C5 – Taylor Avenue Trunk Sewer Geotechnical Baseline Report – Final Rev 1. Report for City of Winnipeg. January 2019

Trek Geotechnical Baseline Report, (2024). Ferry Road & Riverbend CSR Project Contract 6.

Appendix

Replacement of the FGSV Siphon Geotechnical Data Report

Replacement of the FGSV Siphon

Geotechnical Data Report FINAL – Rev. 1

City of Winnipeg

607228226

April 2025

Delivering a better world

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada ULC ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada ULC All Rights Reserved. City of Winnipeg Replacement of the FGSV Siphon Geotechnical Data Report

Quality Information

Prepared by

Gene/Acurin, E.I.T., B.Eng. Geotechnical

Verified by

Mike Gaudreau, P.Eng. Project Manager

Revision History

Revision Date

September 5, 2024 November 6, 2024

April 11, 2025

Revised By:

S. Chang S. Chang

G. Leal

DRAFT

FINAL (Rev. 1)

FINAL

Rev #

0

1

2

Checked by

Sonny Chang, M.Sc., Étig Geotechnical

Approved by

German Leal, M.Eng., P.Eng. Discipline Lead

Distribution List

# Hard Copies	PDF Required	Association / Company Name	
	1	City of Winnipeg	
	√.	AECOM Canada ULC	

City of Winnipeg Replacement of the FGSV Siphon Geotechnical Data Report

Prepared for:

City of Winnipeg

Prepared by:

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204.477.5381 M: 431.335.9734 E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

Table of Contents

1.	Intro	oduction	1
	1.1	General	1
	1.2	Aims and Objectives	
	1.3	Project Details	
	1.4	Scope of Work	
2.	Bac	kground Information	3
	2.1	Review of Background Reports	3
	2.2	Background Information from AECOM (2021)	
3.	Geo	otechnical Investigation	6
	3.1	Drilling and Sampling Program	6
	3.2	Groundwater Levels Monitoring	6
4.	Lab	oratory Testing	7
	4.1	Geotechnical Testing	7
5.	Sub	surface Conditions	8
	5.1	Subsurface Profile	8
		5.1.1 Topsoil	8
		5.1.2 Fill – Clay (CL)	
		5.1.3 Clay (CH) 5.1.4 Silt (ML) Till	
		5.1.5 Bedrock	
		5.1.6 Clay Deposition	
6.	Gro	undwater and Sloughing Conditions	10
	6.1	Standpipe Piezometer Monitoring Results	10
7.	Lab	oratory Testing Results	12
	7.1	General	12
	7.2	Overburden Soils	12
	7.3	Bedrock	
	7.4	Bedrock Classification	
		7.4.1 Total Core Recover (TCR)	
		7.4.2 Solid Core Recover (SCR)7.4.3 Rock Quality Designation (RQD)	
		7.4.4 Bedrock Classification Results	
8.	Fro	st	18
	8.1	Seasonal Frost Penetration	18
	8.2	Frost Susceptivity	18

9.	Seismic Considerations	19
10.	References	20

Figures

Tables

Table 2-1: Summary of SCG and ECG Values (Site 4 – AECOM 2021)	4
Table 2-2: Geotechnical Parameters Used in Slope Stability Modelling (Site 4 – AECOM 2021)	5
Table 2-3: Riverbank Slope Stability Results Along Pipe Alignment (Site 4 – AECOM 2021)	5
Table 3-1 :Standpipe Piezometer Installed for GWL Reading	6
Table 4-1: Summary of Laboratory Testing	7
Table 6-1: Observed Groundwater Seepage and Sloughing Conditions	
Table 6-2: Groundwater Readings	10
Table 7-1: Particle Size Analysis	12
Table 7-2: Atterberg Limits Test Data	12
Table 7-3: Unconfined Compressive Strength Test (Soil)	
Table 7-4: Unconfined Compressive Strength of Intact Rock Core Specimens Results	13
Table 7-5: CERCHAR Abrasive Test Results	14
Table 7-6: Rock Strength Categorization	14
Table 7-7: Rock Classification Ranges	
Table 7-8: TCR, SCR, and RQD Results	
Table 8-1: Frost Penetration Depth	18
Table 8-2: Frost Susceptibility	18

Appendices

Appendix 1 Site Photos
Appendix 2 Testhole Location Plan
Appendix 3 Testhole Logs
Appendix 4 Laboratory Results
Appendix 5 Seismic Hazard Values
Appendix 6 Technical Memorandum (AECOM, 2021)

1. Introduction

1.1 General

AECOM Canada ULC was retained by the City of Winnipeg Water and Waste Department (the City) to provide geotechnical engineering services to support the design and construction of the proposed Fort Garry-St Vital (FGSV) Siphon that crosses the Red River. The project site is located at the Fort Garry Bridge, Winnipeg, MB. The Fort Garry Bridge is a paired bridge system, with the north bridge serving westbound traffic and the south bridge serving eastbound traffic. AECOM understand that installation of the proposed FGSV Siphon below the Red River will be completed using either micro-tunneling or horizontal directional drilling (HDD), from the western siphon outlet chamber to the eastern siphon inlet chamber.

This Geotechnical Data Report (GDR) presents the results of a detailed geotechnical investigation conducted by AECOM along the proposed FGSV Siphon alignment. The detailed geotechnical investigation was conducted in general accordance with the American Society of Civil Engineers (ASCE) Manual of Practice 154 Geotechnical Baseline Reports: Suggested Guidelines.

This report also provides a summary of previous geotechnical investigation program undertaken near the site. The results and factual outcomes of this study are included within Section 2 of this report.

This GDR should be read in conjunction with the Geotechnical Baseline Report (GBR). The GDR is subject to AECOM's Statement of Qualification and Limitations and General Statement regarding the Normal Variability of the Subsurface Conditions.

1.2 Aims and Objectives

The main objectives of the geotechnical investigation were to determine the subsurface soil/bedrock/groundwater conditions and engineering properties of the soil/bedrock encountered at the test hole locations drilled along the FGSV alignment. The primary focus of this report is to present and document factual findings from AECOM and other relevant geotechnical investigations and laboratory testing programs. The results of AECOM's laboratory testing program and test hole logs are included within this report.

The analyses and results presented in this report are based on the data obtained from the test holes drilled at distinct locations along the FGSV alignment. This report does not reflect any variations which may occur between the test hole locations. In the performance of subsurface explorations, specific information is obtained at specific locations at specific times. However, it is well known that variations in soil, bedrock, and groundwater conditions exist at most sites between test hole locations. The nature and extent of the variations may not become evident until the course of construction. If variations are then evident, it will be necessary to re-evaluate the findings and results presented in this report after performing on-site observations during the construction period and noting the characteristics of any variations.

1.3 Project Details

The FGSV Siphon replacement project involves the replacement of the failed 700 mm wastewater siphons crossing the Red River between the Abinoji Mikanah east bound and west bound bridges.

The new FGSV siphon replacement will be installed using a trenchless method, which will consist of either micro tunnel boring machine (MTBM) technology or horizontally directionally drilled (HDD) method. Both methods involve tunneling underneath the river, beginning at the entry pit (near testhole TH24-05) and exiting at the exit pit (near testhole TH24-01). The following trenchless installation approach ensures minimal disruption to surface activities and infrastructure while efficiently replacing critical underground infrastructure:

- 1. MTBM Technology: A large 2100 mm diameter reinforce concrete pipe (RCP) casing installed beneath the river in bedrock, with two 900 mm DR11 HDPE pulled through after the casing install; or
- 2. Horizontally Directionally Drilling (HDD): Twin 900 mm DR9 HDPE pipes will be installed using HDD beneath the river in bedrock.

In addition to the trenchless river crossing, new 1350 mm RCP will be installed using trenchless pipe jacking methods to connect the siphon crossing at two locations:

- Approx. 60 m from the discharge manhole to the upstream siphon chamber on the west side of the Red River.
- Approx. 60 m from the downstream siphon chamber to the existing St. Vital Trunk.
 a) Photographs of the project site taken at the time of the field drilling program are provided in Appendix 1.

1.4 Scope of Work

The scope of work for the detailed geotechnical investigation along the FGSV alignment is summarized below:

- 1. Review of geological survey maps and relevant background information.
- 2. Obtain and review geotechnical reports provided to AECOM with respect to the subject site. AECOM will also review geotechnical reports available in AECOM's library to collect information on the soil and bedrock within and near to the subject site.
- 3. Prepare a GDR that documents the findings from AECOM's 2024 investigation and from previous geotechnical investigations and laboratory testing.

2. Background Information

2.1 Review of Background Reports

A review of available geotechnical information pertinent to the project was conducted including the geotechnical report prepared by AECOM Canada Ltd. (2021). The main objective of the review was to obtain and present information specific to the subsurface conditions, groundwater conditions and riverbank stability with respect to the FGSV alignment. The available memorandum was reviewed to prepare a GDR that presents the factual information collected from the site investigation and laboratory testing. The following information was provided to the project team by the City:

- AECOM Canada Ltd. (2021). City of Winnipeg High Risk River Crossing Phase 3 Geotechnical Condition Assessment.
- AECOM Canada Ltd. (2018). City of Winnipeg Geotechnical Assessment Ft. Garry-St. Vital Feeder Main

Appendix 2 shows the locations of test holes from the past and current investigations relevant to the site. This information was reviewed to improve the understanding of site conditions and riverbank stability during the construction of the existing Fort Garry-St. Vital Interceptor Siphon, located approximately 55 to 65 m north of the proposed siphon location.

In summary, the review indicated the following:

- The riverbank soil consists of lacustrine and alluvial layers overlying glacial till and limestone bedrock.
- Stabilization measures will likely be required for the west riverbank if disturbed during construction.
- Constructability challenges (sloughing, seepage etc.) are anticipated, dewatering and temporary shoring will be required.
- Bedrock contains zones of large fractures and weak rock.
- Ground stabilization (1989/90) was completed on the west bank adjacent to the existing bridge location.

2.2 Background Information from AECOM (2021)

The geotechnical condition assessment for Site 4, the existing Fort Garry Bridge Siphon Crossings, involved reviewing available background information and conducting a visual field inspection within a 30 m zone around the crossing. The assessment aimed to evaluate potential risks of slope instability and erosion affecting the buried sewer and water systems.

As noted in the Technical Memorandum (AECOM, 2021), the findings from the review and inspection were used to assign Slope Condition Grade (SCG) and Erosion Condition Grade (ECG), helping to determine the need for further geotechnical investigation or slope stability analysis. The results are detailed in the Technical Memorandum, which includes the assigned condition grades and any additional geotechnical findings. The Technical Memorandum is found in **Appendix 6**.

Available Background Information Review

The available background information covers geotechnical investigations conducted at six different sites throughout the city of Winnipeg. This review focuses on Site 4, located at the Abinoji Mikanah Bridge crossing on the Red River in south Winnipeg. Site 4 features two bridge structures and pedestrian crossings. The Fort Garry-St. Vital interceptor siphons, with diameters of 700 mm and 800 mm, are embedded in alluvial sediments on the banks and surface laid across the bottom of the river. Geotechnical investigations from 1975-76 and 2013 indicated that the slope of the eastern riverbank was unstable under rapid drawdown conditions, posing a risk to the 800 mm siphon. Recommendations for slope stabilization, including placing stone riprap and regrading, to protect the existing siphon pipe, were implemented in 2014.

Site Reconnaissance

On November 17 and 18, 2020, AECOM conducted a visual inspection for the riverbanks at Site 4, focusing on both the west and east riverbanks.

West Bank:

- Observed minor erosion scarps and a scarp near the crest are likely from shallow failures. No deep-seated failures were noted. The bank is classified as altered due to localized ripraps around the toe. The riprap was large and moving, with some erosion and gullying around bridge abutments.
- The slope profile ranged from 2H:1V to 3H:1V, with erosion scarps 100-150 mm high in unarmored areas. No evidence of deep-seated instabilities or animal burrows was found.

East Bank:

- Minor erosion was observed above the riprap, which was placed in 2013. The bank is also classified as altered. The slope profile ranged from 3H:1V to 4H:1V. Some riprap was missing around bridge piers, exposing alluvial soils.
- Erosion scarps 100 mm high were noted in unarmored areas. No deep-seated slope instabilities or animal burrows were observed, though animal burrows were noted east of the sidewalk.

Overall, both banks exhibited localized erosion and required further stabilization, but no significant instability or damage to structures was detected. **Table 2-1** provides a summary of the SCG and ECG rating selected for each bank at this site.

Riverbank	SCG ¹	ECG ²	Comments
West	3	2	Evidence of slope instabilities and erosion indicated need for further analysis. Slope stability analysis completed at this site and results presented below.
East	1		No defects observed with slope condition. Minor erosion observed, short-term potential for further deterioration of asses due to slope instability and erosion is low.

Table 2-1: Summary of SCG and ECG Values (Site 4 – AECOM 2021)

SCG = Slope Condition Grade.
 ECG = Erosion Condition Grade.

Geotechnical Investigation

Based on the results of the background information review and the visual field inspection, it was deemed that Site 4 did not require geotechnical investigation, laboratory testing and instrumentation installation/monitoring.

Slope Stability

To develop the slope stability model for the west riverbank at Site 4, subsurface data from test holes 1003, 1004, and 401: Klohn Leonoff Consultants Ltd. (April 12, 1976) were utilized.

Shear strength values were assigned to the alluvial and glacio-lacustrine clay layers, with bedrock treated as impenetrable and riprap not included in the analysis due to limited data. The parameters used for the stability analysis are shown in **Table 2-2**.

Table 2-2: Geotechnical Parameters Used in Slope Stability Modelling (Site 4 – AECOM 2021)

Soil Description	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (°)
Alluvial Clay	18	18	5
Glacio-Lacustrine Clay	18	14	5
Glacial Till	21	30	10.0

Slope stability analyses were completed for the west bank and the FS values results from the analyses are presented in **Table 2-3**.

Table 2-3: Riverbank Slope Stability Results Along Pipe Alignment (Site 4 – AECOM 2021)

File Output Reference	Slope Stability Case	Factor of Safety (FS)
West	Slope Stability Case	West
H-01	Long Term – Normal Winter Water Level (NWWL)	1.39
H-02	Long Term – Normal Summer Water Level (NSWL)	1.46
H-03	Short Term – Rapid Draw Down (RDD)	1.30

Based on the results of the preliminary slope stability assessment for Site 4, the following general conclusions and recommendations are summarized:

- For long-term conditions, the FS values indicate a risk of failure affecting the HDPE interceptor sewers, though the risk is low. The short-term FS value meets the industry standard of 1.30.
- Long-term FS values are below the standard FS of 1.5, but immediate slope failure is unlikely. Regular monitoring of slope stability due to erosion is recommended.
- Slope improvements should be evaluated on a cost/benefit basis. Short-term actions may include visual inspections or instrumentation monitoring (e.g., slope inclinometer) for ground movements, if needed, slope regarding and expanded riprap placement around the crossing.

3. Geotechnical Investigation

3.1 Drilling and Sampling Program

AECOM obtained underground service clearances from public utility companies (Click Before You Dig Manitoba). A utility locator identified and marked the private utilities on May 20, 2024. The subsurface drilling and sampling program was conducted from June 3 to June 7 and August 9, 2024. Drilling services were provided by Paddock Drilling under the supervision of AECOM geotechnical field personnel. The proposed testholes are shown on the attached location plan provided in **Appendix 2**. Five (5) testholes were drilled on the project sites using a track mounted and barge drill rig which was equipped with 125 mm solid stem augers and HQ coring. Testholes TH24-01 and TH24-05 were cored into the bedrock at depths of 26.14 m and 24.69 m within the site area, while TH24-03 was cored into the bedrock at a depth of 35 m, respectively. Testholes TH24-02, and TH24-04 were drilled to auger refusal within the site area, at depths of 12.95 m and 13.11 m. Sloughing was observed in testholes TH24-01, TH24-02 and TH24-04, at a depth between 9.14 m and 16.46 m.

Soil samples were obtained directly from the auger flights at depth intervals ranging from 0.3 to 1.5 m. SPT were conducted in testhole TH24-02 to assess the relative density of cohesionless soils. The soil samples were visually classified in the field and returned to our soil laboratory for additional examination and testing. Cohesive soil samples were tested using a pocket torvane and penetrometer to estimate the undrained shear strength and the compressive soil strength.

Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage, sealed with bentonite at the bottom, and the excess auger cuttings were left on site. The detailed testhole records are provided in **Appendix 3**, which include a summary sheet outlining the symbols and terms of the testhole record.

3.2 Groundwater Levels Monitoring

During the geotechnical field investigation, two (2) standpipe piezometers (SP) consisting of 50 mm in diameter and 305 mm in length screening Casagrande tip were installed. The installation details of the standpipe piezometers are shown on the testhole logs in **Appendix 3** and summarize in **Table 3-1**.

Testhole No.	SP depth (m)	Tip Elevation (m ASL)	USCS Soil Type
TH24-01 (SP1)	25.2 m	208.58	Bedrock
TH24-05 (SP5)	24.7 m	207.21	Bedrock

Table 3-1 :Standpipe Piezometer Installed for GWL Reading

4. Laboratory Testing

A laboratory testing program was performed on soil samples obtained during the drilling program to determine the relevant engineering properties of the subsurface materials. The laboratory tests consisted of geotechnical testing on disturbed and bulk samples. The geotechnical tests were conducted at Geomechanica's Materials Testing Laboratory in Oakville, Ontario, as well as at the Materials Testing Laboratories of AECOM and Eng-Tech in Winnipeg, Manitoba. In addition, pocket torvane readings were taken on auger grab samples. The results of the laboratory testing are shown on the testhole records in **Appendix 2** and on the laboratory test reports in **Appendix 3**.

4.1 Geotechnical Testing

Geotechnical laboratory testing was performed on selected soil samples to evaluate the physical characteristics, evaluate the engineering properties and aid with further characterization of the subsurface. The geotechnical laboratory testing program included diagnostic testing included moisture contents on all collected soil samples, as well as particle size analysis, Atterberg limits tests, unconfined compressive strength on clay, unconfined compressive strength of intact rock core, and abrasiveness of rock on some samples. A summary of the geotechnical testing that was completed in **Table 4-1**. The results of the laboratory testing are shown on the testhole records in **Appendix 3** and within the laboratory test reports in **Appendix 4**.

Table 4-1: Summary of Laboratory Testing

Laboratory Test	Number of Tests	Testing Standard
Moisture Content	60	ASTM D2216
Particle Size Analysis (Hydrometer Analysis)	15	ASTM D422
Atterberg Limits	15	ASTM D4318
Unconfined Compressive Strength (Clay)	10	ASTM D2850
Unconfined Compressive Strength of Intact Rock Core	5	ASTM D2938
Abrasiveness of Rock Using the CERCHAR Abrasiveness Index Method	5	ASTM D7625

5. Subsurface Conditions

Subsurface conditions observed during testhole drilling and sampling were visually documented by AECOM geotechnical personnel in accordance with the Unified Soil Classification System (USCS).

The conditions of the site have been based on the investigation results obtained during the field and laboratory investigation programs. The pertinent results from these investigations are outlined below.

5.1 Subsurface Profile

The soil stratigraphy on the project site generally consists of topsoil, clay fill overlying a clay deposit, which is underlain by sand till and bedrock. Additionally, alluvial deposits are observed at the riverbank and along the river bottom. A description of the soil stratigraphy is provided below. The detailed testhole records are provided in **Appendix 3**, which include a summary sheet outlining the symbols and terms of the testhole record.

5.1.1 Topsoil

Topsoil was encountered at the ground surface in testholes TH24-01, TH24-02, TH24-04, and TH24-05. The thickness of the topsoil was approximately 0.30 m and is observed to be black, moist, with organic content, with traces of sand, gravel, and silt. The moisture content of the topsoil ranged from 31.4% to 35.6%.

5.1.2 Fill – Clay (CL)

Black fat clay (CL) fill material was encountered in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from approximately 0.7 m to 1.9 m. The clay (CL) fill layer was generally observed to be moist, high plasticity, black in color, firm to stiff and have traces of sand, gravel, and silt. The moisture content of the clay fill (CH) fill ranged from 32.8% to 35.6%.

5.1.3 Clay (CH)

Grey fat clay (CH) was encountered below the clay fill materials in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from 10.10 to 15.75 m. It is observed to be moist, firm, and high plasticity with silt inclusions. The clay shear strength varies from firm to soft and decreases with depths. The moisture content of the fat clay (CH) ranged from 13.6% to 51.3%.

5.1.4 Silt (ML) Till

Tan silt (ML) till was encountered below the clay fill material in TH24-01, TH24-02, TH24-04, and TH24-05, with a thickness ranging from 0.71 m to 1.95 m. It is observed to be moist, loose, and of low plasticity with trace of sand, clay and gravel. The silt shear strength was soft. The moisture content of the silt (ML) till ranged from 11.4% to 18.5%.

5.1.5 Bedrock

Bedrock (BR) was encountered below the silt (ML) in the cored testhole TH24-01, TH24-03 and TH24-05. Brecciated Dolomitic Mudstone was the type of rock observed in the coring, a Lower Fort Garry Member of the Red River Formation. The Brecciated Dolomitic Mudstone was observed at the depth of 216.38 and 217.20 m ASL to beyond 207.20 m ASL and 182.53 m ASL. During coring, it was observed that there was no water return. The lack of water return typically indicates the presence of large fractures within the bedrock. The dolomitic limestone was white greyish to dark grey and was nodular bedded. The quality and strength of the bedrock will be discussed further in Section 7.4. Section 7.4.1 describes the total core recovery (TCR), Section 7.4.2 describes the solid core recovery (SCR),

Section 7.4.3 describes the rock quality designation (RQD), and Section 7.4.3 describes the bedrock classification results.

5.1.6 Clay Deposition

5.1.6.1 Alluvial Deposits

Based on the meandering of the river, we anticipate that the river overburden will primarily consist of alluvial deposits, mainly made up of clay, silt, sand, and organic materials. The meandering of the river creates an alluvial deposit on the west side and lacustrine deposit on the east riverbank. The properties and classifications of these materials may differ. The extent of these alluvial deposits is not well-defined, because the drilling operations focused solely on reaching the targeted bedrock depth and did not include sampling or testing of the overburden.

5.1.6.2 Lacustrine Deposits

Lacustrine deposits, which form in glacial lakes, were found in the project area. The Glacio-Lacustrine clay in the area varies in thickness. The clay layer tends to be thinner near the river channel and increases in thickness as the distance from the river channel increases. The clay is thinner in the eastern riverbank compared to those located along the western riverbank. Additionally, the meandering of the river creates an alluvial deposit on the west side and lacustrine deposit on the east riverbank.

6. Groundwater and Sloughing Conditions

Groundwater seepage or soil sloughing conditions were observed in most testholes upon completion of drilling. Details of the location and nature of the sloughing, seepage, and groundwater encountered are provided on the testhole logs in **Appendix 3** and presented in **Table 6-1**.

Testhole No.	Groundwater Seepage	Depth of Groundwater Seepage (m)	Groundwater Depth Upon Completion of Drilling (m)	Depth of Soil Sloughing
TH24-01	Moderate	9.0	7.9	14.3 m & 16.5 m
TH24-02	Heavy	10.4	11.4	11.0 m & 11.4 m
TH24-04	Heavy	9.1	3.2	9.1 m & 12.2 m
TH24-05	Moderate	6.1	5.1	None

Table 6-1: Observed Groundwater Seepage and Sloughing Conditions

6.1 Standpipe Piezometer Monitoring Results

Groundwater readings were taken upon completion of the testhole drilling and utilizing the standpipes installed in TH24-01 (SP24-01) and TH24-05 (SP24-05) by AECOM. The readings recorded are summarized in **Table 6-2**.

Table 6-2: Groundwater Readings

	Groundwater Elevation (m ASL)								
Standpipe	Stratum/Tip m ASL	Jun. 4/24	Jun. 6/24	Jun. 10/24	Jun. 11/24	Jun. 17/24	Jun. 24/24	Jan. 30/25	Mar. 12/25
SP24-01	Bedrock/207.70	225.89	-	226.06	-	225.94	225.78	224.38	223.87
SP24-05	Bedrock/207.20	-	226.78	-	226.90	226.69	226.50	224.75	225.92

Normal River Level (Summer) = 223.98 m ASL

A graphical summary of these results is provided in Figure 6-1.

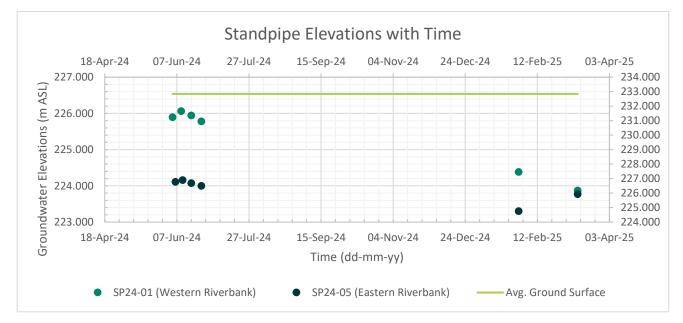


Figure 6-1: Graph of Groundwater Elevations Versus Time

Only short-term seepage and sloughing conditions were observed in the testholes. Groundwater levels will normally fluctuate during the year and will be dependent on precipitation, surface drainage, and regional groundwater regimes. Groundwater seepage and soil sloughing should be expected from the silt (ML) till layer and expected in entry and exit pit excavations during construction.

7. Laboratory Testing Results

7.1 General

Samples retrieved from the testholes were selected for geotechnical laboratory testing to characterize material types and determine their engineering properties.

7.2 Overburden Soils

Testhole	Sample Depth	Group		Particle Size					
No.	(m)	Name	Gravel 75 to 4.75 mm	Sand <4.75 to 0.075 mm	Silt <0.075 to 0.002 mm	Clay <0.002 mm			
TH24-01	0.61 – 0.76	СН	0.0%	1.6%	28.9%	69.5%			
TH24-01	4.42 – 4.57	СН	0.0%	1.3%	38.9%	59.8%			
TH24-01	10.52 – 10.67	СН	0.2%	2.2%	35.2%	62.5%			
TH24-01	16.61 – 16.76	CL-ML	10.4%	33.5%	41.7%	14.4%			
TH24-02	5.94 – 6.10	СН	0.0%	1.4%	50.4%	48.1%			
TH24-02	10.52 – 10.67	СН	0.0%	0.2%	32.1%	67.8%			
TH24-02	12.04 – 12.19	CL	4.6%	33.6%	43.6%	18.1%			
TH24-04	5.94 – 6.10	СН	0.0%	1.7%	47.6%	50.6%			
TH24-04	8.99 – 9.14	СН	0.0%	1.1%	45.3%	53.5%			
TH24-04	12.04 – 12.19	СН	3.4%	5.9%	32.0%	58.7%			
TH24-04	12.95 – 13.11	CL	2.4%	26.9%	49.1%	21.5%			
TH24-05	0.76 – 0.91	СН	0.0%	0.9%	44.6%	54.6%			
TH24-05	4.42 - 4.57	СН	0.0%	0.1%	47.8%	52.1%			
TH24-05	10.52 – 10.67	СН	0.2%	1.6%	35.0%	63.2%			
TH24-05	13.58 – 13.72	CL	8.0%	36.8%	38.9%	16.2%			

Table 7-1: Particle Size Analysis

Table 7-2: Atterberg Limits Test Data

Testhole No.	Sample Depth (m)	USCS	Liquid Limit	Plastic Limit	Plasticity Index
TH24-01	0.61 – 0.76	СН	84	22	62
TH24-01	4.42 - 4.57	СН	90	26	64
TH24-01	10.52 – 10.67	СН	85	24	61
TH24-01	16.61 – 16.76	CL-ML	15	11	58
TH24-02	5.94 – 6.10	СН	80	24	56
TH24-02	10.52 – 10.67	СН	92	24	68
TH24-02	12.04 – 12.19	CL	21	12	9
TH24-04	5.94 – 6.10	СН	86	23	63
TH24-04	8.99 – 9.14	СН	81	22	59
TH24-04	12.04 – 12.19	СН	67	18	49
TH24-04	12.95 – 13.11	CL	27	12	15
TH24-05	0.76 – 0.91	СН	91	27	64
TH24-05	4.42 – 4.57	СН	96	23	73
TH24-05	10.52 – 10.67	СН	74	21	53
TH24-05	13.58 – 13.72	CL	18	10	8

Testhole No.	Sample Depth (m)	Soil Type	Moisture Content (%)	Undrained Shear Strength (kPa)	Unconfined Compressive Strength (kPa)
TH24-01	3.05 – 3.66	СН	13.6	73.09	146.18
TH24-01	6.10 – 6.71	СН	15.0	29.06	58.12
TH24-01	12.19 – 12.80	СН	47.3	49.23	98.45
TH24-02	3.05 – 3.66	СН	33.4	74.65	149.31
TH24-02	9.14 – 9.75	СН	32.7	68.37	136.74
TH24-04	3.05 – 3.66	СН	14.6	48.97	97.93
TH24-04	9.14 – 9.75	СН	33.1	50.09	100.19
TH24-05	1.52 – 2.13	СН	14.2	95.63	191.25
TH24-05	7.62 – 8.23	СН	32.1	52.67	105.34
TH24-05	10.67 – 11.28	СН	16.1	30.87	61.74

Table 7-3: Unconfined Compressive Strength Test (Soil)

7.3 Bedrock

Table 7-4: Unconfined Compressive Strength of Intact Rock Core Specimens Results

Testhole No.	Sample Depth (m)	Sample Elevation (m ASL)	Maximum Load (kN)	Compressive Strength (MPa)
TH24-01	18.3 – 18.5	215.48 – 215.28	243.3	78.0
TH24-03	16.29 – 16.49	207.69 – 207.49	291.8	93.0
TH24-03	17.46 – 17.71	206.52 - 206.2	734.5	235.0
TH24-03	29.97 – 30.19	194.01 – 193.79	273.4	87.7
TH24-03	31.43 – 31.65	192.55 – 192.33	157.7	50.6
TH24-03	32.28 – 32.76	191.70 – 191.22	110.0	35.3
TH24-05	23.75 – 24.2	208.16 – 207.71	398.5	128.0

Testhole No.	Sample Elevation (m ASL)	Test 1 Mean (mm)		Test 3 Mean (mm)		Test 5 Mean (mm)	Mean Wear (mm)	CAI	Lithology	ASTM Classification
TH24-01, C23	208.35 – 207.35	0.127	0.068	0.105	0.176	0.165	0.128	1.281	Lower Red River Formation: Dolomitic Mudstone, Brecciated	Medium
TH24-03, C09	207.85 – 207.69	0.138	0.165	0.179	0.186	0.179	0.169	1.694		Medium
TH24-03, C10	206.71 – 206.52	0.157	0.152	0.140	0.151	0.159	0.152	1.517	Lower Red River	Medium
TH24-03, C20	194.87 – 194.69	0.117	0.114	0.050	0.040	0.073	0.079	0.789	Formation: dolomitic mudstone,	Low
TH24-03, C21	192.85 – 192.66	0.059	0.055	0.029	0.034	0.034	0.042	0.423	brecciated	Very Low
TH24-03, C22	191.14 – 190.99	0.046	0.051	0.048	0.080	0.029	0.051	0.509		Very Low
TH24-05, C23	208.48 – 208.30	0.154	0.164	0.167	0.164	0.190	0.168	1.677	Lower Red River Formation: Dolomitic mudstone, brecciated	Medium

Table 7-5: CERCHAR Abrasive Test Results

7.4 Bedrock Classification

The rock strength can be categorized with the unconfined compressive strength of the rock based on International Society of Rock Mechanics (ISRM) Standard (1979) as shown in **Table 7-6**. AECOM prepared two (5) rock specimens for the unconfined compressive strength of intact rock tests to be processed for testing.

Grade	Term	Unconfined Compressive Strength (MPa)		
R6	Extremely Strong	>250		
R5	Very Strong	100 – 250		
R4	Strong	50 – 100		
R3	Medium Strong	25 – 50		
R2	Weak	5 – 25		
R1	Very Weak	1 – 5		
R0	Extremely Weak	0.25 – 1		

Table 7-6: Rock Strength Categorization

The testing results for the TH24-01 (C18) sample showed an unconfined compressive strength of 78 MPa. For the TH24-03 (C20, C21, and C22) samples, the unconfined compressive strengths were 87.7 MPa, 50.6 MPa, and 35.3 MPa, respectively. The TH24-05 (C23) sample exhibited an unconfined compressive strength of 128 MPa. Based on these results, AECOM concludes that the rock strength ranges from medium strong (R3) to very strong (R5).

7.4.1 Total Core Recover (TCR)

Total core recovery (TCR) is the testhole core recovery percentage. TCR is expressed as follows:

$$TCR (\%) = \frac{sum of recovered core length}{total core length} x 100$$

The TCR was calculated for each bedrock core run advanced within the testholes. A summary of the TCR values is provided in **Table 7-8**.

7.4.2 Solid Core Recover (SCR)

Solid core recovery (SCR) is the testhole core recovery percentage of solid cylindrical rock. SCR is expressed as follows:

 $SCR (\%) = \frac{sum of recovered solid cylindrical core lengths}{total core length} x 100$

The SCR was calculated for each bedrock core run advanced within the testhole. A summary of the SCR values is provided in **Table 7-8**.

7.4.3 Rock Quality Designation (RQD)

RQD is based on the ISRM classification System. The RQD is an indirect measure of the number of fractures and the amount of jointing in the rock mass. The RQD is expressed as a percentage of the ratio of summed core lengths (greater than 10 cm) to the total length cored. The RQD index is used to provide a classification of the rock quality shown in **Table 7-7**.

Table 7-7: Rock Classification Ranges

RQD (%)	Rock Quality Designation				
0 – 25	Very Poor				
25 – 50	Poor				
50 – 75	Fair				
75 – 90	Good				
90 - 100	100 Excellent				

Rock quality designation (RQD) is expressed as follows:

$$RQD (\%) = \frac{sum of recovered core lengths greather than 10 cm}{total core length} x 100$$

The RQD was calculated for each core run advanced within TH24-01, TH24-03 and TH24-05. A summary of the RQD values is provided below in **Table 7-8**.

7.4.4 Bedrock Classification Results

Based on the rock classification and laboratory test results (as shown in **Table 7-4**) the encountered bedrock classification ranges from very poor to excellent quality, with a range of intact rock strength from extremely weak (R0) to strong (R4).

			·	·			
Testhole ID	Sample Number	Core Run No.	Core Run Depth (m bgs)	Elevation (m asl)	TCR (%)	SCR (%)	RQD (%)
	C18	1	17.37 - 18.52	216.41 - 215.26	94	78	67
	C19	2	18.52 - 20.04	215.26 - 213.74	93	71	57
TUOAOA	C20	3	20.04 - 21.56	213.74 - 212.22	79	22	20
TH24-01	C21	4	21.56 - 23.09	212.22 - 210.69	97	79	78
	C22	5	23.09 - 24.61	210.69 - 209.17	84	54	45
	C23	6	24.61 - 26.14	209.17 - 207.64	81	76	68
	C1	1	8.23 - 8.69	209.35 - 208.89	61	28	0
	C2	2	8.69 - 9.14	208.89 - 208.44	95	97	53
	C3	3	9.14 - 10.67	208.44 - 206.91	96	81	47
	C4	4	10.67 - 12.19	206.91 - 205.39	90	71	41
	C5	5	12.19 - 13.72	205.39 - 203.86	98	96	81
	C6	6	13.72 - 14.27	203.86 - 203.31	91	68	68
	C7	7	14.27 - 15.24	203.31 - 202.34	87	80	56
	C8	8	15.24 - 15.85	202.34 - 201.73	96	82	72
	C9	9	15.85 - 16.76	201.73 - 200.82	94	88	86
	C10	10	16.76 - 18.29	200.82 - 199.29	96	75	57
	C11	11	18.29 - 19.81	199.29 - 197.77	98	86	64
TH24-03	C12	12	19.81 - 20.93	197.77 - 196.65	91	88	84
	C13	13	20.93 - 21.34	196.65 - 196.24	93	65	39
	C14	14	21.34 - 22.86	196.24 - 194.72	88	73	60
	C15	15	22.86 - 23.93	194.72 - 193.65	87	70	70
	C16	16	23.93 - 25.15	193.65 - 192.43	92	66	62
	C17	17	25.15 - 25.91	192.43 - 191.67	94	90	90
	C18	18	25.91 - 27.43	191.67 - 190.15	98	86	84
	C19	19	27.43 - 28.96	190.15 - 188.62	98	81	73
	C20	20	28.96 - 30.48	188.62 - 187.10	97	70	59
	C21	21	30.48 - 32.00	187.10 - 185.58	98	90	83
	C22	22	32.00 - 33.53	185.58 - 184.05	99	98	89
	C23	23	33.53 - 35.05	184.05 - 182.53	97	96	94
	C17	1	14.73 - 15.49	219.05 - 218.29	69	0	0
	C18	2	15.49 - 17.02	218.29 - 216.76	78	30	25
	C19	3	17.02 - 18.54	216.76 - 215.24	81	32	29
TH24-05	C20	4	18.54 - 20.07	215.24 - 213.71	94	85	58
	C21	5	20.07 - 21.59	213.71 - 212.19	92	70	62
	C22	6	21.59 - 23.11	212.19 - 210.67	96	88	87
	C23	7	23.11 - 24.69	210.67 - 209.09	89	85	80

Table 7-8: TCR, SCR, and RQD Results

<u>TH24-01:</u> all six (6) core runs exhibited good recovery runs, with varying rock classification; C18, C19, C21, and C23 exhibited a fair rock classification. While C20 and C22 exhibited a very poor and poor rock classification.

<u>TH24-03:</u> all twenty-three (23) core runs exhibited good recovery runs, with varied rock quality designations; C1 exhibited a poor rock quality designation. C2, C6, C7, C8, C10, C11, C14, C15, C16, C19 and C20 exhibited a fair rock quality designation. C3, C4, and C13 exhibited a poor rock quality designated. C5, C9, C12, C17, C18, C21, and C22 exhibited a good rock quality designation. Finally, C23 exhibited an excellent rock quality designation.

<u>TH24-05:</u> all seven (7) core runs exhibited good recovery core runs, with varying rock quality designation; C17 exhibited a very poor rock classification, followed by C18 and C19 with poor rock classification. C20 and C21 showed improvement with fair rock classification, while the final two, C22 and C23, exhibited good rock classification.

8. Frost

8.1 Seasonal Frost Penetration

The depths of frost penetration have been estimated for a range of annual air freezing identified in **Table 8-1**. The annual average freezing index was inferred from Figure K-4 of the National Building Code of Canada (2020) Commentary document. The ten-year return annual freezing index was calculated using the mean annual freezing index value and recommendations outlined in the Canadian Foundation Engineering Manual (CFEM 5e). The fifty-year return annual freezing index was taken from Figure K-5 of the National Building Code of Canada (2020) Commentary document.

Factors such as snow cover, vegetation at surface, soil type and groundwater conditions can all significantly impact the depth of frost penetration. The predominant soil type on the project site is fat clay.

Parameter	Period					
raidilletei	Mean	10-Year Return	50-Year Return			
Annual Air Freezing Index (°C-days)	1825	1875	2375			
Estimated Frost Penetration (Fat Clay Subgrade) – gravel surface, no snow cover (m)	1.9	2.0	2.5			
Estimated Frost Penetration (Fat Clay Subgrade) – grass with snow cover (m)	1.7	1.9	2.2			

Table 8-1: Frost Penetration Depth

For foundation design considerations, the CFEM recommends using the ten-year return annual freezing index to predict frost penetration. It is the responsibility of the design team to select an adequate frost penetration depth to be incorporated into the design.

8.2 **Frost Susceptivity**

The qualitative frost susceptibility of a soil is typically assessed using guidelines developed by Casagrande (1932) based on the percentage by weight of the soil finer than 0.02 mm, and the Plasticity Index. The classification system has been adapted by the U.S. Army Corps of Engineers and the Canadian Foundation Engineering Manual (2023). Soils are classed as F1 through F4 in order of increasing frost susceptibility.

The soils (clay and silt) encountered during the geotechnical investigation fall mostly within the frost groups F3 and F4. The F3 group has high to very high susceptibility to frost and F4 has very high susceptibility. Frost susceptibility has been assigned to the encountered soil type and is summarized in **Table 8-2**.

Table 8-2: Frost Susceptibility

Soil Unit	USCS Soil Type	Frost Group	Percentage finer than 0.02 mm, by weight	PI	Frost Susceptibility
Clay/Clay fill	CL, CH	F3	-	>12	High to very high susceptibility
Silt	ML	F4	-	-	Very high susceptibility

Source: Canadian Foundation Engineering Manual (CFEM, 5e), Chapter 14 Frost Action

9. Seismic Considerations

As per the CFEM, the site classification for seismic site response is dependent on the average properties in the top 30 m of the soil profile. Based on a soil profile having more than 3 m of high plasticity clay and Article 4.1.8.4 of the National Building Code of Canada (NBCC) 2020, a Seismic Site Class E can be assigned to the site.

The 2020 National Building Code of Canada (NBCC) Seismic Hazard Calculation for the site is provided in **Appendix 5.** It includes values of spectral acceleration (for time periods of 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 seconds), peak ground acceleration, and peak ground velocity for 2%, 5%, and 10% probability of exceedance in 50 years.

10. References

AECOM Canada Ltd. (2021). Technical Memorandum: High Risk River Crossings – Phase 3 – Geotechnical Condition Assessment. Winnipeg: AECOM Canada Ltd. (2021).

AECOM Canada Ltd. (2018). Technical Memorandum: High Risk River Crossings – Phase 2 – Geotechnical Assessment for Site 5 and 6. Winnipeg: AECOM Canada Ltd. (2018).

Bezys, R. K., Bamburak, J. D., & Conley, G. G. (2002). *Bedrock Mineral Resources of Manitoba's Capital Region. Winnipeg: Manitoba Geological Survey.*

Canadian Commission on Building and Fire Codes, (2020). *National Building Code of Canada (NBCC) 2020*. National Research Council of Canada 2022.

Canadian Geological Society. (2023). Canadian Foundation Engineering Manual 5th Edition.

American Society for Testing and Materials, (2017). D2487 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classificiation System).

American Society for Testing and Materials, (2022). D7625 - Standard Test Method or Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Abrasiveness Index Method.

American Society for Testing and Materials, (1995). D2938 - Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens.

Appendix 1

Site Photos

TH24-01 Drilling

TH24-01 Standpipe

TH24-02 Drilling

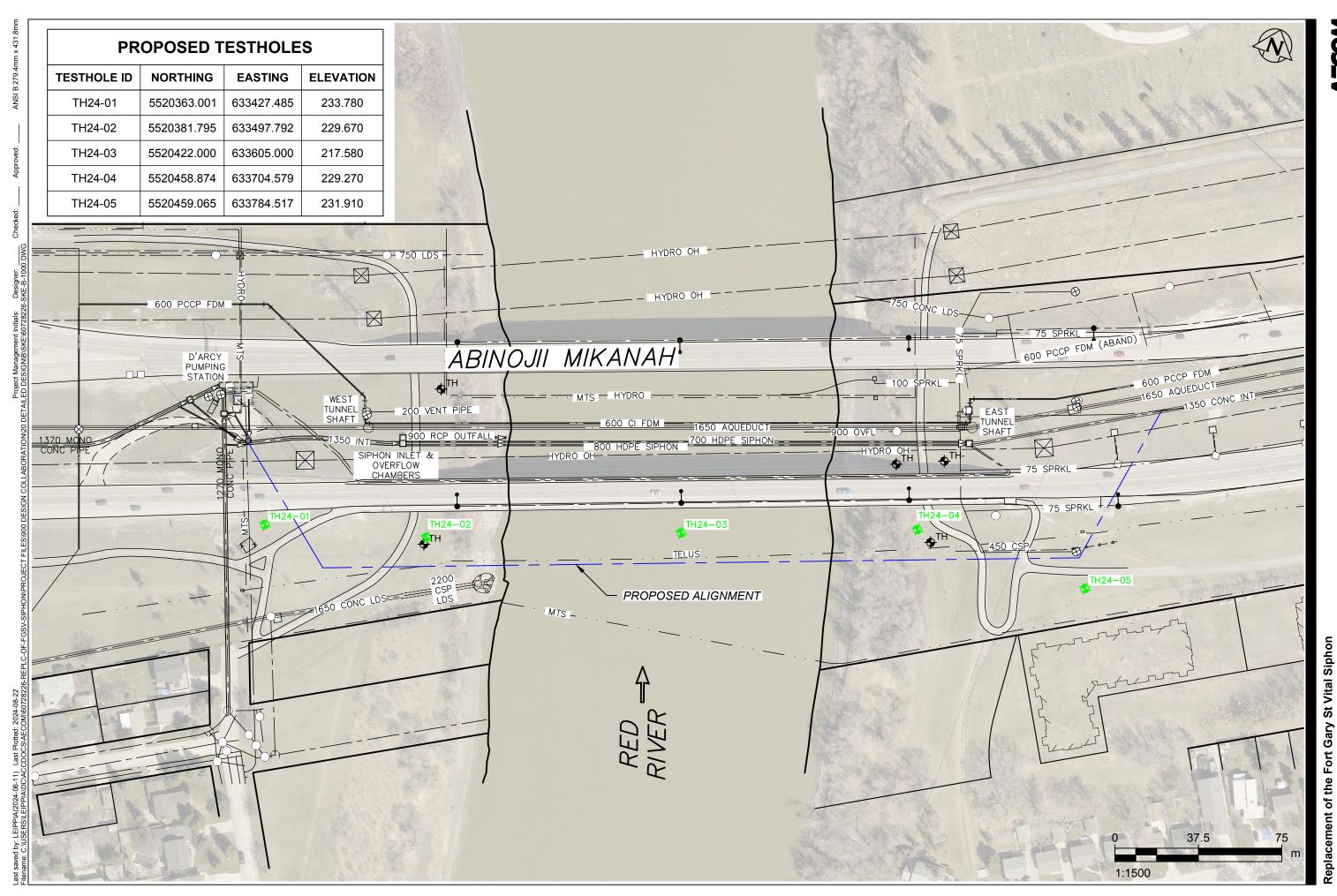
ΑΞϹΟΜ

TH24-03 Barge Launch

TH24-03 Barge Drilling

TH24-03 Barge Demobilization

TH24-04 Drilling

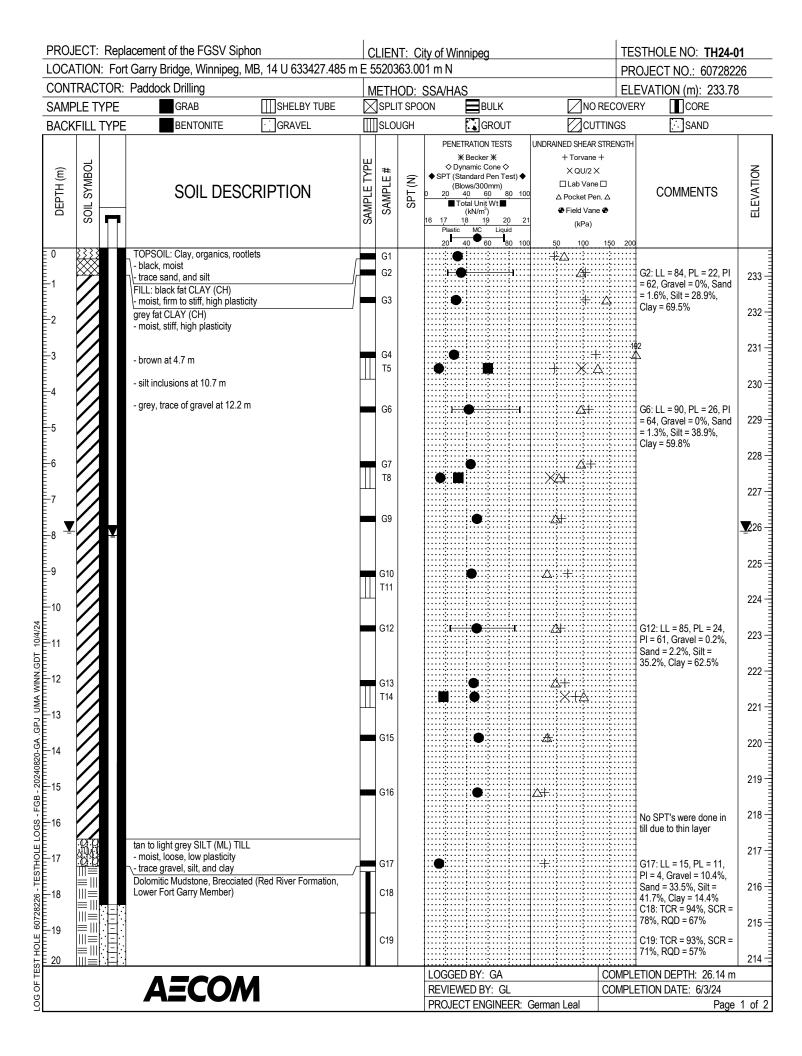


TH24-05 Standpipe

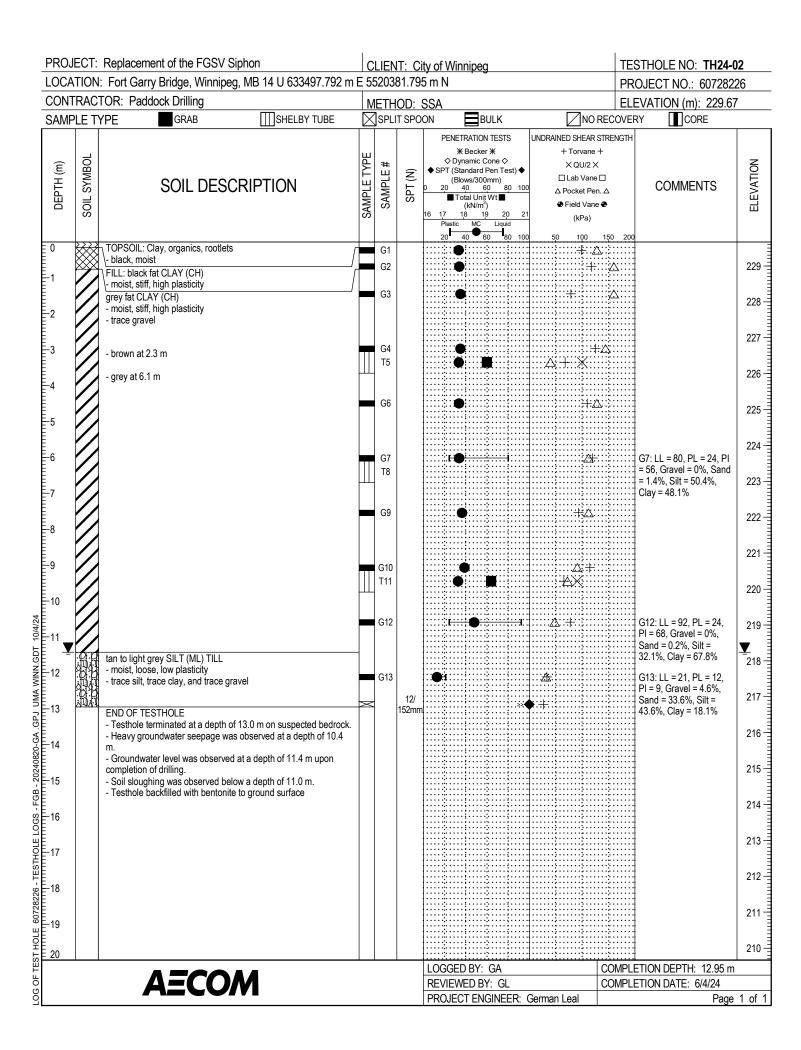
Appendix 2

Testhole Location Plan

AECOM Figure: 1.0

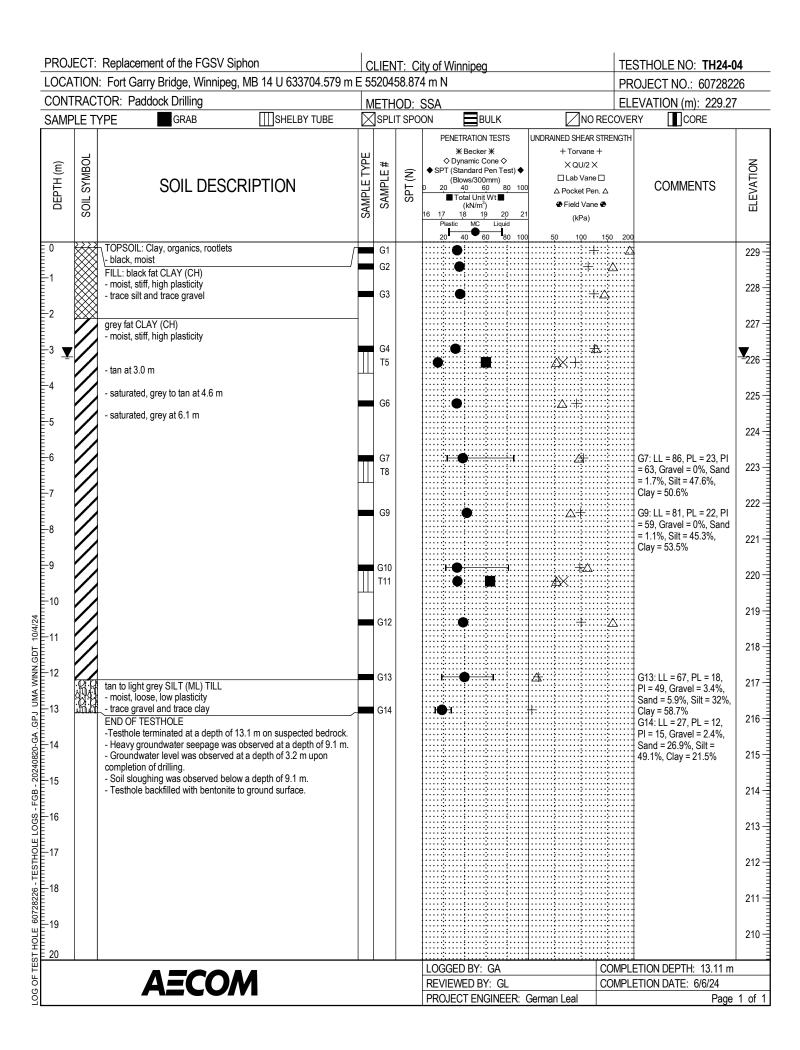

PROPOSED TESTHOLE LAYOUT PLAN

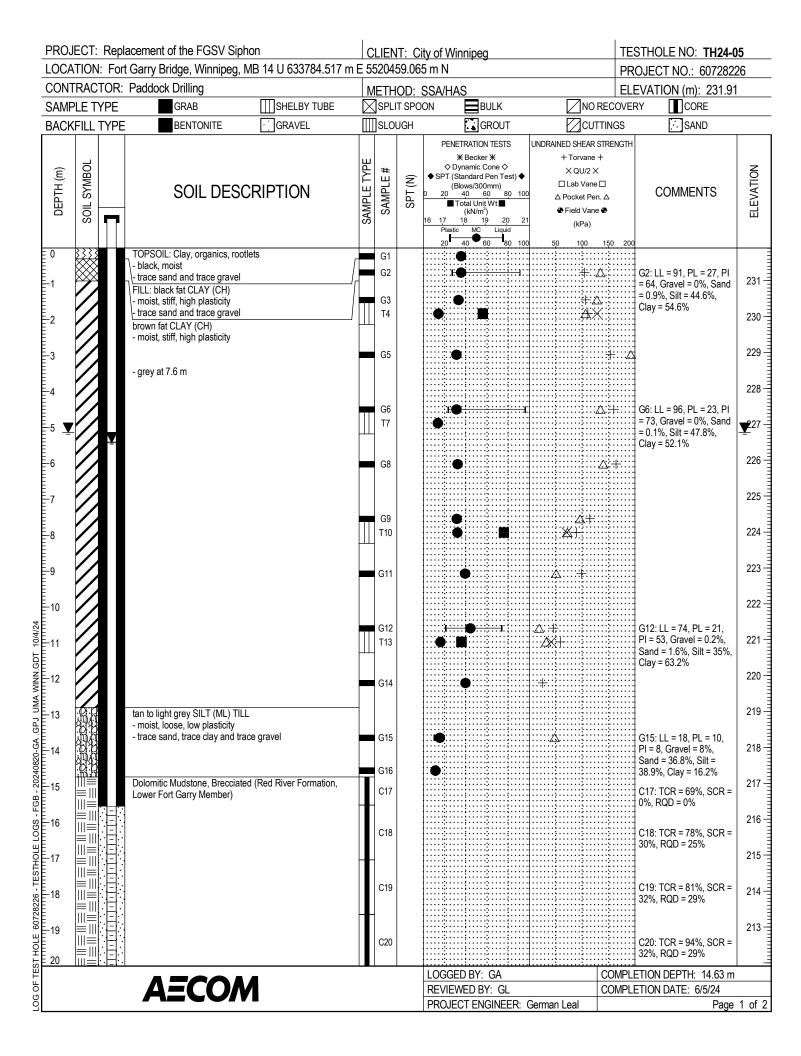
The City of Winnipeg Water and Waste Department Engineering Division Project No.: 60728226 Date: 2024/08/22



Appendix 3

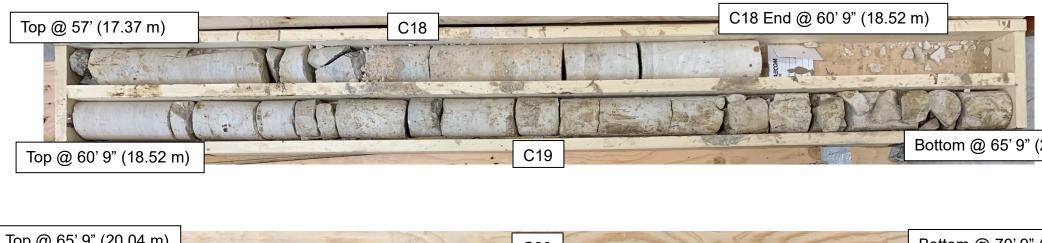
Testhole Logs

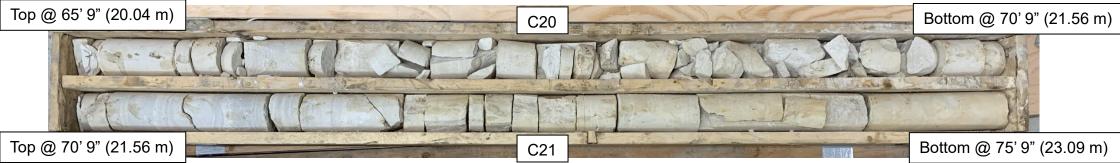



			Garry Bridge, Winnipeg,	MB, 14 U 633427.485											PROJECT NO.: 60728226			
			Paddock Drilling				HOD:					EL			EVATION (m): 233.78	5		
		YPE TYPE	GRAB BENTONITE		¢	×]SPL ∭SLC		DON		BULK GROU	т			NO RE		RY CORE		
DEPTH (m)	SOIL SYMBOL	PIEZOMETER	SOIL DES				SPT (N)	♦S 0 16	PENETRATIC * Beck Dynamic T (Standarc (Blows/30 0 40 Total Un (kN/m 7 18 Plastic MC	DN TEST er ₩ Cone < d Pen Te 00mm) 60 { hit Wt ■ 19 2 Liqu	⁻ S est) ♦ 80 100	4	NED SH + Torv ∠ QL □ Lab \ △ Pocke ● Field (kF	EAR STF vane + J/2 X √ane □ vt Pen. ∠ Vane ⊕ Pa)	RENGTH	COMMENTS		
20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39			END OF TEST HOLE - Teshole terminated at depth - No seepage was observed on methods. - Groundwater level was observed upon completion of drilling. - Soil sloughing was observed Monitoring Well: - Standpipe piezometer instal bedrock, slotted between a de up 0.9 m. - Testhole backfilled with filter bentonite pellets to ground su	lue to use to coring erved at a depth of 7.9 m d below a deptht of 14.3 m. led to a depth of 25.2 m, in epth of 18.3 and 25.2 m, sticl sand at 17.4 m, then with		C20 C21 C22 C23										C20: TCR = 79%, SCR = 22%, RQD = 20% C21: TCR = 97%, SCR = 79%, RQD = 78% C22: TCR = 84%, SCR = 54%, RQD = 45% C23: TCR = 81%, SCR = 76%, RQD = 68%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
40									GGED BY	<u> </u>	;	·····;				: <u> </u> _ETION DEPTH: 26.14 m	1	
			AECOA	A					VIEWED E							ETION DATE: 6/3/24		

		Replacement of the FGSV Siphon : Fort Garry Bridge, Winnipeg, MB 14 U 633605 m E					Winnipe	y						ESTHOLE NO: TH24-(ROJECT NO.: 607282		
		TOR: Paddock Drilling														
					IOD: IT SPC			BULK						LEVATION (m): 223.98 ERY CORE	J	
JAIVIP					350					10000						
DEPTH (m)	SOIL SYMBOL	SOIL DESCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SI 0 : 16 1	Plastic MC	er ₩ Cone Pen To 0mm) 60 8 it Wt ■ ³) 19 2 Liqu	> est) ♦ 80 100 I 20 21		X QI □ Lab △ Pocke ● Field (kl	vane + U/2 X Vane ⊑ et Pen. / Vane 4 Pa)]	COMMENTS		
0	$\frac{1}{2}$	Red River					40	÷						•••		
	땠							·····			<u>.</u>	<u>.</u>		• • • • • •		
1	m						· · · · · · · · · · · · · · · · · · ·					<u>.</u>		• • • • • •	2	
	ш							÷			;	;		• • • • • •		
2	μų							÷							2	
	$\widetilde{\mathbb{M}}$						· · · · · · · · · · · · · · · · · · ·	÷						• •		
3	\mathbb{M}						· · · · · · · · · · · · · · · · · · ·	÷			;	;			2	
	떴															
4	m							÷						•		
	μ													• •		
5	떴															
-	m					::::		÷			<u>.</u>	<u>.</u>	÷••••			
6	μų						· · · · · · · · · · · · · · · · · · ·				;	;;				
~	W	Alluvial Dependen						·····							1	
7	\bigotimes	Alluvial Deposits - Note: no samples and testing were conducted due to time					· · · · · · · · · · · · · · · · · · ·									
I	\bigotimes	constraint					· · · · · · · · · · · · · · · · · · ·				<u>.</u>	<u>.</u>			6	
0	\bigotimes														.	
8		Dolomitic Mudstone, Brecciated (Red River Formation, Lower					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	:			<u>.</u>	· · · · · · · · · · · · · · · · · · ·			
		Fort Garry Member)	⊢	C1 C2										C1: TCR = 61%, SCR =		
9			⊢											C2: TCR = 95%, SCR =		
	<u>≕</u>						; ; ; ; ; ;	÷						97%, RQD = 53%		
10				C3			·····	·····			;	<u>.</u>		C3: TCR = 96%, SCR = 81%, RQD = 47%		
	≡		⊢													
11																
12	≡			C4							;	; ;		C4: TCR = 90%, SCR =		
12																
												· · · · · ·				
13				C5		::::		÷			;	;;	·* · · · · ·	C5: TCR = 98%, SCR =		
	≡													96%, RQD = 81%		
14 15				C6				·····						C6: TCR = 91%, SCR =		
				1										68%, RQD = 68%		
15				C7										C7: TCR = 87%, SCR =		
-	≡			C8			· · · · · · · · · · · · · · · · · · ·							C8: TCR = 96%, SCR =		
16			┝										· · · · · · · · · · · · · · · · · · ·	82%, RQD = 72%		
16				C9										C9: TCR = 94%, SCR =		
17			┝								<u>.</u>	<u>.</u>	: : : :	88%, RQD = 86%		
17	≡			040			·····	÷••••	<u>.</u>		<u>.</u>	<u>.</u>	· · · · · · · · · · · · · · · · · · ·			
17				C10										C10: TCR = 96%, SCR =	.	
١ŏ																
18 19							· · · · · · · · · · · · · · · · · · ·					<u>.</u>				
19	≡			C11								<u>.</u>		C11: TCR = 98%, SCR =		
20	≝∥ ∥≞													86%, RQD = 64%		
20				1	1		GED BY:	GA		1		 r		::I LETION DEPTH: 35.05 m		
		AECOM					IEWED B		L					LETION DATE: 8/13/24		
							DJECT EN			Germa	n l eal	+		Page	4	

		Replacement of the FGSV S : Fort Garry Bridge, Winnipe	•				ity of	Winnipeg					<u>ESTHOLE NO: TH24-0</u> ROJECT NO.: 6072822	
		TOR: Paddock Drilling	<u>,</u>			OD:	HAS						EVATION (m): 223.98	
	LE T		SHELBY TUBE			T SPO		BULK	<			RECOVE		
DEPTH (m)	SOIL SYMBOL	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SP 0 2 16 17	■ Total Unit Wt (kN/m ³) 18 19	♦ Test) ♦) 80 100		+ Torvane X QU/2 : Lab Van Pocket Pe Field Var (kPa)	× e □ en. ∆	COMMENTS	
20					C12						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	C12: TCR = 91%, SCR =	
·21					C13						· · · · · · · · · · · · · · · · · · ·		88%, RQD = 84% C13: TCR = 93%, SCR = 65%, RQD = 39%	2
22					C14							· · · · · · · · · · · · · · · · · · ·	C14: TCR = 88%, SCR = 73%, RQD = 60%	2
23 24					C15								C15: TCR = 87%, SCR = 70%, RQD = 70%	2
25					C16								C16: TCR = 92%, SCR = 66%, RQD = 62%	1
26					C17					·····			C17: TCR = 94%, SCR = 90%, RQD = 90%	1
27					C18					······	· · · · · · · · · · · · · · · · · · ·		C18: TCR = 98%, SCR = 86%, RQD = 84%	
28					C19							· · · · · · · · · · · · · · · · · · ·	C19: TCR = 98%, SCR = 81%, RQD = 73%	1
29 30					C20								C20: TCR = 97%, SCR = 70%, RQD = 59%	1
31					C21						×		C21: TCR = 98%, SCR = 90%, RQD = 83%	1
32 33					C22						×		C22: TCR = 99%, SCR =	
					C23								98%, RQD = 89%	
34 35		END OF TEST HOLE	15 m in hadrook		020						· · · · · · · · · · · · · · · · · · ·		96%, RQD = 94%	1
36		 Teshole terminated at depth of 3 No seepage was observed due t No groundwater level was observed No soil sloughing was observed 	to use to coring methods. ved due to coring methods. due to coring methods.											1
37		- River level was observed at an e	elevation of 223.98 m.									· · · · · · · · · · · · · · · · · · ·		1
38 39														1
39 40														
	- 1							GED BY: GA					ETION DEPTH: 35.05 m	
		AECO						IEWED BY: (1	COMPL	ETION DATE: 8/13/24 Page	





-	ROJECT: Replacement of the FGSV Siphon					IT: C			ipeg					TESTHOLE NO: TH24-05		
		t Garry Bridge, Winnipeg, M	B 14 U 633784.517 m	1E5	5204	59.06	5 m l	١						PROJECT NO.: 60728226		
		Paddock Drilling				OD:						ELEVATION (m): 231.91				
SAMPLE		GRAB		<u> </u>	-	T SPO	ON	-	BULK							
BACKFI		BENTONITE	GRAVEL	_Ш		UGH	1		GRO		1		UTTING		SAND	
	Soll Symbol SLOTTED PIEZOMETER	SOIL DESC	RIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆SF 0 2 16 1	₩ B	MC Lie	♦ Test) ♦ 80 100		INED SHEA + Torvar × QU/2 □ Lab Va △ Pocket F ● Field Va (kPa 0 100	ne + 2 × ne □ Pen. △ ane ⊕)	200	COMMENTS	ELEVATION
		END OF TEST HOLE - Teshole terminated at depth of - No seepage was observed due methods. - Groundwater level was observe upon completion of drilling. - No soil sloughing was observe completion of drilling. Monitoring Well: - Standpipe piezometer installed bedrock, slotted between a dept stick up 0.9 m. - Testhole backfilled with filter sa pellets to ground surface.	e to use to coring ed at a depth of 5.1 m d during or upong t to a depth of 24.7 m, in th of 24.7 m and 15.5 m,		C21 C22 C23										C21: TCR = 92%, SCR = 70%, RQD = 62% C22: TCR = 96%, SCR = 88%, RQD = 87% C23: TCR = 89%, SCR = 85%, RQD = 80%	211 210 209 208 207 206 205 204 203 202 201 199 198 197 196 195
HOLE 60728226 - TEST																194 - 193 -
									<u> </u>	_			<u></u>			
CF TE									BY: GA						TION DEPTH: 14.63 m TION DATE: 6/5/24	
000		AECON							D BY: (ENGIN		Germa	n Leal		"IFLE		2 of 2
- L							1.1.10				Jointa	001			i aye	2 UI Z

Replacement of the FGSV Siphon Crossing the Red River

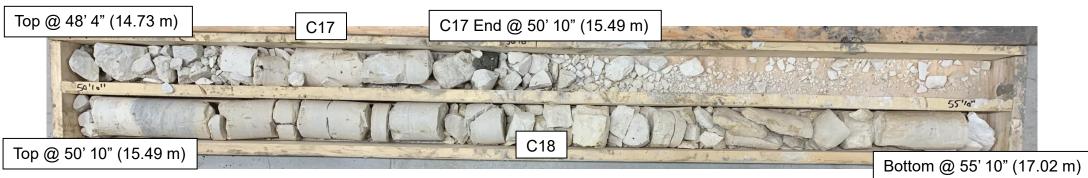
TH24-01 Core Runs

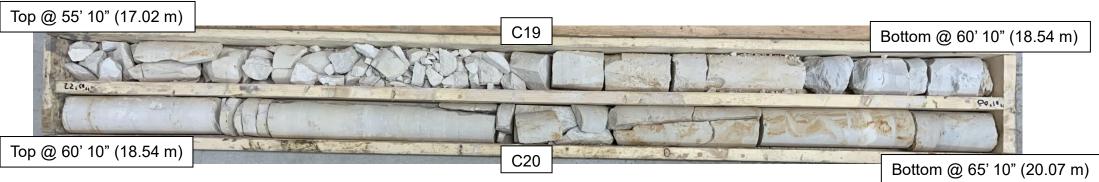


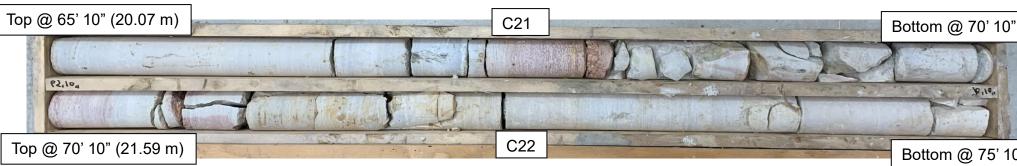
Bottom @ 65' 9" (20.04 m)

TH24-03 Core Runs

2/4







TH24-05 Core Runs

Bottom @ 75' 10" (23.11 m)

Bottom @ 70' 10" (21.59 m)

ΑΞϹΟΜ

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. **EXPLANATION OF SOIL**

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

1.1 Tests on Soil Samples

Laboratory and field tests are identified by the following and are on the logs:

- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_{T} <u>Total (moist, wet, or bulk) Unit Weight</u>. Usually expressed in kN/m³.
- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value can be determined by a field vane shear test and may also be used in determining the allowable bearing capacity of the soil.
- CPEN <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.
- N <u>Standard Penetration Test (SPT) Blow Count</u>. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer free falling of 760 mm (30 in.) which is required to drive a 50 mm (2 in.) split spoon sampler 300 mm (12 in.) into the soil.
- Q_U <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

1.2 Natural Moisture Content

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart to determine the soil classification.

Descriptive Term	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually in coarse-grained soils below the water table

1.3 Grian Size Distrubtion

Laboratory grain size analyses provided by AECOM follow the following system. Note that, with the exception of those samples where a grain size distribution analysis has been completed, all samples have been classified by visual inspection. Visual inspection classification is not sufficient to provide exact gain sizing.

		SOIL CO	MPONENTS			
FRACT	ION	SIEVE S	SIZE (mm)	DEFINING RANGES OF PEI MINOR CO	RCENTAGE BY WEIGHT OF MPONENTS	
		PASSING	RETAINED	PERCENT	IDENTIFIER	
GRAVEL	COARSE	75	19	F0 3F		
	FINE	19	4.75	50 – 35	AND	
SAND	COARSE	4.75	2.00	25 20		
	MEDIUM	2.00	0.425	35 – 20	ADJECTIVE	
	FINE	0.425	0.075	20 – 10	SOME	
SILT (non-	-plastic)			20 10	SOME	
or		0	.075	10 - 1	TRACE	
CLAY (p	astic)			10-1	TRACE	
		OVERSIZE	E MATERIALS			
	UNDED OR SUB-ROUNDED BBLES 75 mm TO 200 mm BOULDERS >200 mm			ANGULAR ROCK FRAGMENTS ROCKS > 0.75 m3 IN VOLUM	E	

ISSMFE / USCS SOIL CLASSIFICATION

CLAY	SILT		SAND		GR	AVEL	COBBLES	BOULDERS	
		FINE	MEDIUM	COARSE	FINE	COARSE			
0.0	02 0.0	175 0.42	25 2	.0 4.	75	19 7	75 20	0	
EQUIVALENT GRAIN DIAMETER IN MILLIMETRES									

1.4 Soil Compactness and Consistency

The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by in-situ vane tests, penetrometer tests, unconfined compression tests, or similar field and laboratory analysis. Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine-grained, cohesive soils.

The standard terminology to describe cohesionless soils includes the compactness condition as determined by the Standard Penetration Test 'N' value. These approximate relationships are summarized in the following tables:

ΑΞϹΟΜ

Table 1 Cohesive Soils

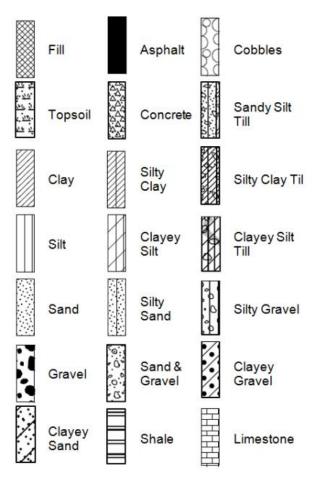
Consistency	SPT N (blows/0.3m)	C _u (kPa) approx.
Very Soft	<2	<12
Soft	2 - 4	12 - 25
Firm	4 - 8	25 - 50
Stiff	8 - 15	50 - 100
Very Stiff	15 - 30	100 - 200
Hard	>30	>200

Table 2 Cohesionless Soils

Compactness Condition	SPT N (blows/0.3m)
Very Loose	0 - 4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	>50

ΑΞϹΟΜ

	MAJOR DIVISION		UCS		TYPICAL DE	SCRIPTION		LABORATORY	CLASSIFICA	TION CRITERIA	
		CLEAN GRAVELS	GW	WELI	l graded gra No fi	AVELS, LITTL	E OR	$C_u = \frac{D_{60}}{D_{10}} >$	$4 C_{c} = \frac{(D_{3})}{(D_{10})^{2}}$	$\frac{(0)^2}{(D_{60})^2} = 1 \text{ to } 3$	
		(LITTLE OR NO FINES)	GP		orly graded El-Sand Mix No Fi	TURES, LITTI		NOT MEETI	NG ABOVE RE	QUIREMENTS	
	GRAVELS (MORE THAN HALF COARSE GRAINS LARGER THAN 4.75 mm)	GRAVELS	GM	SILT	Y GRAVELS, GI MIXTL	RAVEL-SAND	-SILT	Conten Fines exc		ATTERBERG LIMITS BELOW 'A' LINE Wp LESS THAN 4	
COARSE GRAINED SOILS		WITH FINES	GC	CLA	YEY GRAVELS CLAY MI	, GRAVEL-SA XTURES	ND-	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _P MORE THAN 7		
ARSE G		CLEAN SANDS (LITTLE R NO	SW	S	LL GRADED SA ANDS, LITTLE	OR NO FINE	S	$C_u = \frac{D_{60}}{D_{10}} >$	$6 C_{c} = \frac{(D_{3})}{(D_{10})^{2}}$	$\frac{(0)^2}{(D_{60})^2} = 1 \text{ to } 3$	
Ô		FINES)	SP	POOF	RLY GRADED S NO FI		e or	NOT MEETII	NG ABOVE RE	QUIREMENTS	
	SANDS (MORE THAN HALF COARSE GRAINS SMALLER THAN 4.75 mm)	SANDS	SM	SILT	y Sands, San	D-SILT MIXT	URES	CONTEN	ATTERBERG LIMITS BELOW 'A' LINE Wp LESS THAN 4		
		WITH FINES	SC	0	Clayey Sands Mixtu		(FINES EX0 12%		ATTERBERG LIMITS ABOVE 'A' LINE Wp MORE THAN 7	
	SILTS (BELOW 'A' LINE	ML		RGANIC SILTS S, ROCK FLOU SLIGHT PL	R, SILTY SAM		CLASSIFICATION IS BASED UPON PLASTICITY CH (SEE BELOW)				
SIIC	NEGLIGIBLE ORGANIC CONTENT)	W _L > 50	МН		Rganic Silts Maceous Fin So:	NE SANDY OF					
FINE GRAINED SOILS	CLAYS	W _L < 30	CL		ANIC CLAYS C /ELLY, SANDY LEAN (, OR SILTY C				FINE CONTENT HAS	
INE GR	(ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	$30 < W_L < 50$	CI		IORGANIC CLA PLASTICITY,	YS OF MEDI		NOT BEEN DETERMINED, IT IS DESIGNA BY THE LETTER 'F'. E.G. SF IS A MIXTURE OF SAND WITH SILT OR CLAY			
Ľ.		W _L > 50	СН		ANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS ANIC SILTS AND ORGANIC SILTY			, SILT OR CLAY		Ŷ	
	ORGANIC SILTS & CLAYS (BELOW 'A' LINE)	W _L < 50	OL		CLAYS OF LOV	V PLASTICIT	Ý				
	HIGHLY ORGANIC SC	W _L > 50 ILS	OH Pt		NIC CLAYS OF AND OTHER SO	HIGHLY ORG					
	BEDROCK		BR		30.	11.5		REPORT DESCRIPTION			
8	FILL		FILL				SEE REPU	RT DESCRIPTION	4		
50					FRAC	TION		E SIZE (mm)	PERCE WEIGHT	G RANGES OF NTAGE BY OF MINOR PONENTS	
NDEX			СН				PASSING	RETAINED	PERCENT	IDENTIFIER	
NI Y IN					GRAVEL	COARSE FINE	75 19	19 4.75	50 – 35	AND	
PLASTICITY 30		C1	. KUNK		SAND	COARSE	4.75	2.00	25 20		
5 ⁵	+					MEDIUM	2.00	0.425	35 – 20	Y	
a	CL				SILT (no	FINE n-plastic)	0.425	0.075	20 – 10	SOME	
	CL-1/L ML	ML			c	plastic)		0.075	10 - 1	TRACE	
0	10 20 30	40 50	60 70 80 9	0 100		,	OVER	SIZE MATERIALS	•		
			CHARACTERISTICS OF		COBBLE	ED OR SUB-R ES 75 mm TO JLDERS >200	200 mm		ANGULAR OCK FRAGME > 0.75 m3 IN		
	ROUPS ARE GIVEN GRO RAVEL MIXTURE WITH CL		. GW-GC IS A WELL GI EN 5% AND 12%	RADED				TED UNIFIED SO			
			February 2022								


1.5 Sample Type, Symbols and Abbreviations

The depth, type, and condition of samples are indicated on the logs by the following symbols or abbreviations:

ΑΞϹΟΜ

Sample abbreviations:	Symbols:	
GS: Grab Sample		
BK: Bulk Sample	Grab	Bulk
NR: No Recovery		
ST: Shelby Tube		
SS: Split Spoon		
Core: Core Samples	No Recovery	Shelby Tube
FV: Field Vane		
PP: Pocket Penetrometer		
DCPT: Dynamic cone penetration test	Split Spoon	Core Sample

1.6 STRATA/Graphic Plot (Shall be Changed For Different Guidelines)

2. EXPLANATION OF ENVIROMENTAL SAMPLE

2.1 Contaminant Abbreviations

Contaminant Abbreviations	
BNAE	Base/neutral/acid extractables
BTEX	Benzene, toluene, ethylbenzene, xylenes
OCP	Organochlorine pesticides
MI	Metals and inorganics
PAH	Polycyclic aromatic hydrocarbons
PCB	Polychlorinated biphenyls
PHC	CCME petroleum hydrocarbons (fractions 1-4)
VOC	Volatile organic compounds (includes BTEX)
SO ₄	Water Soluble Sulphate Content

2.2 Water Soluble Sulphate Concentration

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

						Performance requirements§,§§		§,§§
		Water-soluble	Sulphate (SO4)	Water soluble sulphate (SO ₄) in recycled	Cementing	Maximum e when tested CSA A3004-C Procedure A	using 28	Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††
Class of exposure	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater samples, mg/L‡	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10
S-2	Severe	0.20–2.0	1500–10 000	0.60–2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10
S-3	Moderate (including seawater exposure*)	0.10–0.20	150–1500	0.20–0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

*For sea water exposure, also see Clause 4.1.1.5.

⁺In accordance with CSA A23.2-3B.

‡In accordance with CSA A23.2-2B.

§Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

**Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

⁺⁺The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

^{‡‡} If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

⁺⁺⁺If the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

2.3 Soil Corrosivity

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the

corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Soil Resistivity (ohm-cm)	Corrosivity Rating
>20,000	Essentially non-corrosive
10,000 - 20,000	Mildly corrosive
5,000 - 10,000	Moderately corrosive
3,000 – 5,000	Corrosive
1,000 - 3,000	Highly corrosive
<1,000	Extremely corrosive

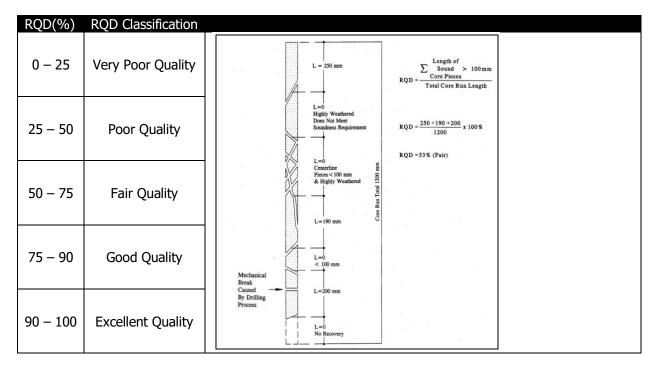
 Table 4 Corrosivity Ratings Based on Soil Resistivity

3. HYDROGEOLOGICAL

The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a test hole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle (\mathbf{v}).

4. **EXPLANATION OF ROCK**

4.1 General Description and Terms


General Description of Geotechnical Unit including: Quantitative description including rock type (s), percentage of rock types, frequency and sizes of interbeds, colour, texture, weathering, strength and general joint spacing

Total Core Recovery (TCR): Total length of core recovered expressed as percentage of core run length. **Solid Core Recovery (SCR):** Total length of solid full diameter core expressed as percentage of core run length.

Rock Quality Designation (RQD): Sum of lengths of solid core pieces longer than 100 mm expressed as percentage of core run length.

Fracture Index (FI): Number of fractures per meter of core.

4.2 Rock Quality Designation (RQD)

4.3 Classification of Strength

Grade	Description	Field identification	Approximate range of Uniaxial compression strength (MPa)
R0	Extremely weak rock	Indented by thumbnail	0.25-1.0
R1	Very weak rock	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	1.0-5.0

R2	Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	5.0-25
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	25-50
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it	50-100
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100-250
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250

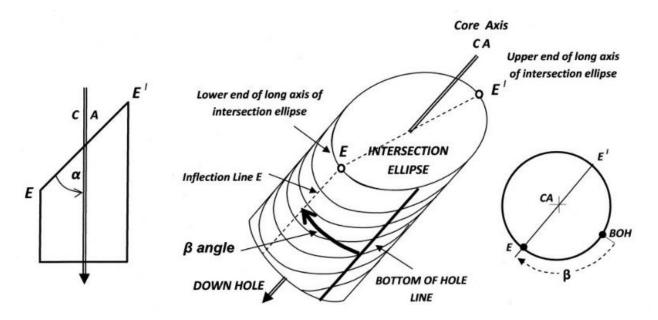
4.4 Classification of Weathering

Grade	Description	Field identification
W1	Fresh	No visible sign of rock material weathering; perhaps slight discolouration on major discontinuity surface
W2	Slightly Weathered	Discolouration indicates weathering of rock material and discontinuity surface. All the rock material may be discoloured by weathering and may be somewhat weaker externally than in its fresh condition
W3	Moderately Weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W4	Highly Weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.
W5	Completely Weathered	All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact. All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but soil has not been significantly transported.
W6	Residual Soil	Residual Soil

4.5 Type of discontinuity

Symbol	Description
F	Fault
J	Joint
Sh	Shear
Fo	Foliation
V	Vein
В	Bedding

4.6 Spacing of discontinuity


Spacing Classification	Spacing width
Extremely close	<0.02m

Very close	0.02-0.06m
Close	0.06-0.2m
Moderately Close	0.2-0.6m
Wide	0.6-2.0m
Very Wide	2.0-6.0m
Extremely Wide	>6.0m

4.7 Joint Orientation

The orientation of a planar surface intersected by drill core can be defined by two angles called alpha (a) and beta (β). The definition of these angles is shown in the diagram below:

4.8 Inclination

Term	Inclination (degrees from the horizontal)
Sub-horizontal	0-5
Gently Inclined	6-15
Moderately Inclined	16-30
Steeply Inclined	31-60
Very Steeply Inclined	61-80
Sub-vertical	81-90

4.9 Stratification/foliation

Term	Spacing
Very Thickly Bedded	>2m
Thickly Bedded	600mm-2m
Medium Bedded	200mm-600mm
Thinly Bedded	60mm-200mm

AECOM

Term	Spacing
Very Thinly Bedded	20mm-60mm
Laminated	6mm-20mm
Thinly Laminated	2mm-6mm
Fissile	<2mm

4.10 Grain Size

Term	Size
Very Coarse Grained	>60 mm
Coarse Grained	2mm-60mm
Medium Grained	60 microns – 2mm
Fine Grained	2 microns – 60 microns
Very Fine Grained	<2 microns

4.11 Aperture of open discontinuity

Symbol	Aperture Opening	Description	
VT	<0.1 mm	Very tight	Closed Features
Т	0.1-0.25mm	Tight	
PO	0.25-0.5mm	Partly open	
0	0.5-2.5mm	Open	Gapped Features
MW	2.5-10mm	Moderately open	
W	>10mm	Wide	
VW	1-10cm	Very wide	Open Features
EW	10-100cm	Extremely wide	
С	>1m	Cavernous	

4.12 Width of filled discontinuity

Symbol	Width	Description
W	12.5-50mm	Wide
MW	2.5-12.5mm	Moderately Wide
Ν	1.25-2.5mm	Narrow
VN	<1.25mm	Very Narrow
Т	0mm	Tight

4.13 Roughness of discontinuity

Symbol	Description
Slk	Slickenside (surface has smooth, glassy finish with visual evidence of striations)
S	Smooth (surface appears smooth and feels so to the touch)
SR	Slightly rough (asperities on the discontinuity surfaces are distinguishable and can be felt)
R	Rough (some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive)

Symbol	Description
VR	Very rough (near-vertical steps and ridges occur on the discontinuity
VR	surface)

4.14 Shape of discontinuity

Symbol	Description
PI	Planar
St	Stepped
Un	Undulating
Ir	Irregular

4.15 Filling amount

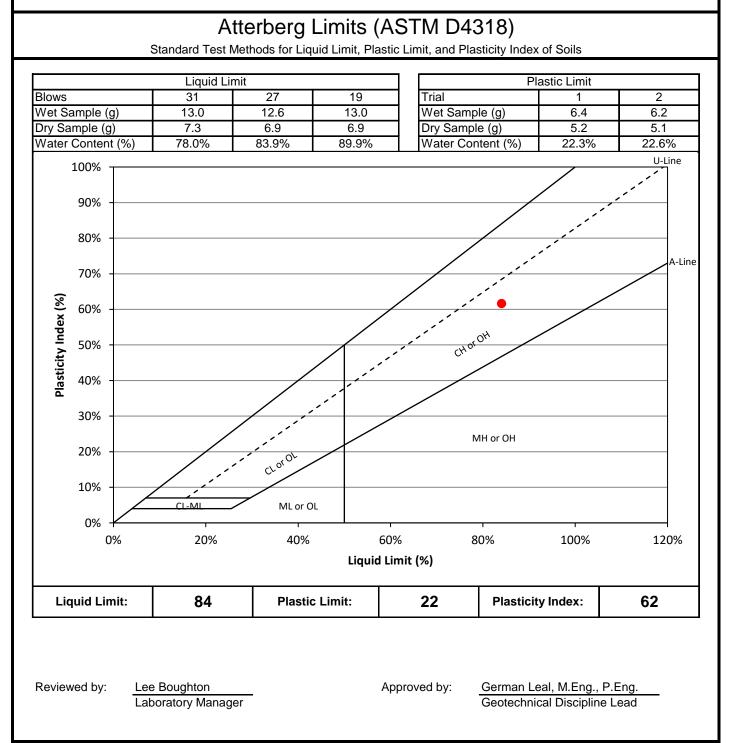
Symbol	Description	
Su	Surface Stain	
Sp	Spotty	
Ра	Partially Filled	
Fi	Filled	
No	None	

4.16 Filling Type

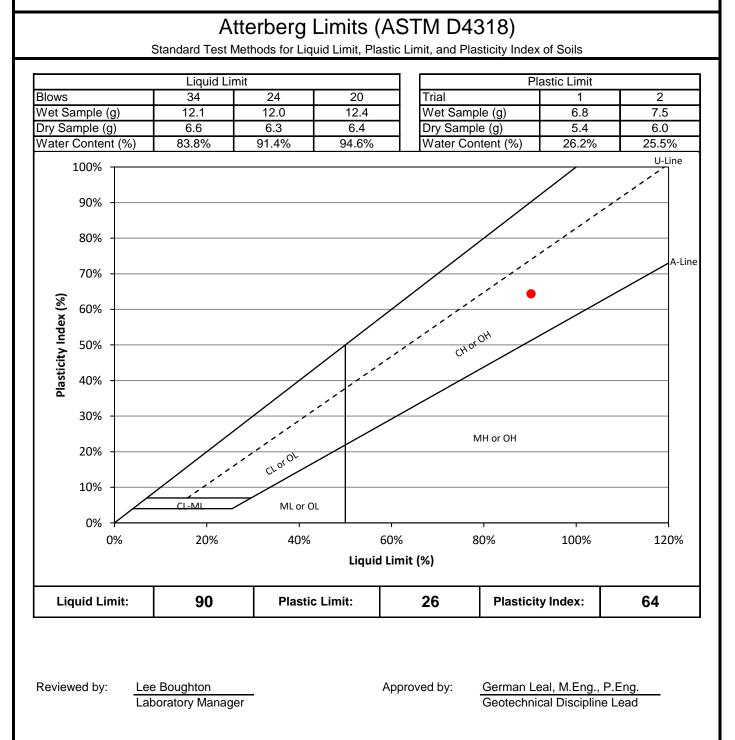
Symbol	Term	Hard/Soft
Ab	Albite Hard	
Ah	Anhydrite	Hard
Bt	Biotite	Soft
Bn	Bornite	Hard
Са	Calcite	Hard
Cb	Carbonate	Hard
Ch	Chlorite	Soft
Сру	Chalcopyrite	Hard
Су	Clay	Soft
Do	Dolomite	Hard
Ep	Epidote	Hard
Fd	Feldspar	Hard
FeOx	Iron Oxide Hard	
Go	Gouge Soft	
Gr	Graphite	Soft
Gy	Gypsum	Soft
He	Hematite Hard	
Ка	Kaolinite	Soft
Kf	K-feldspar	Hard

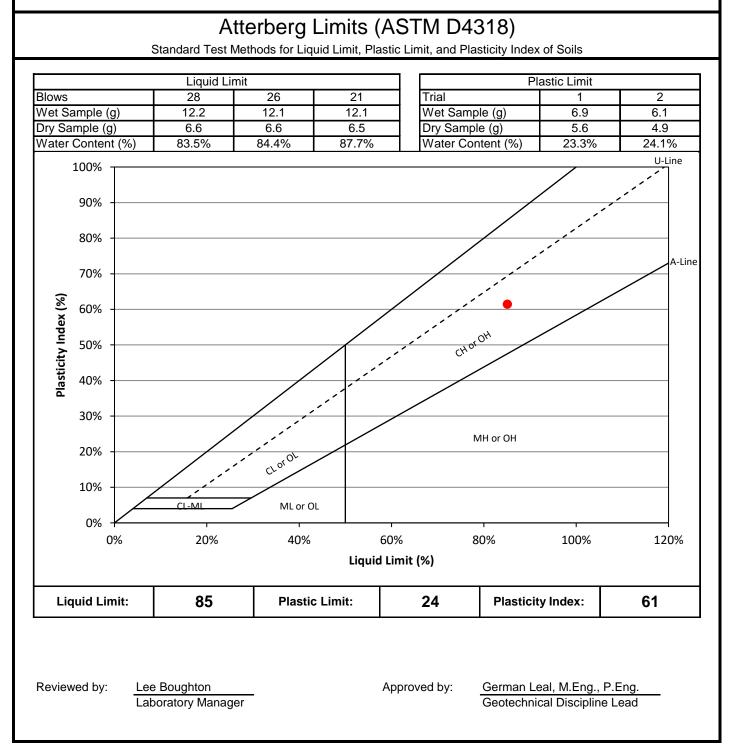
AECOM

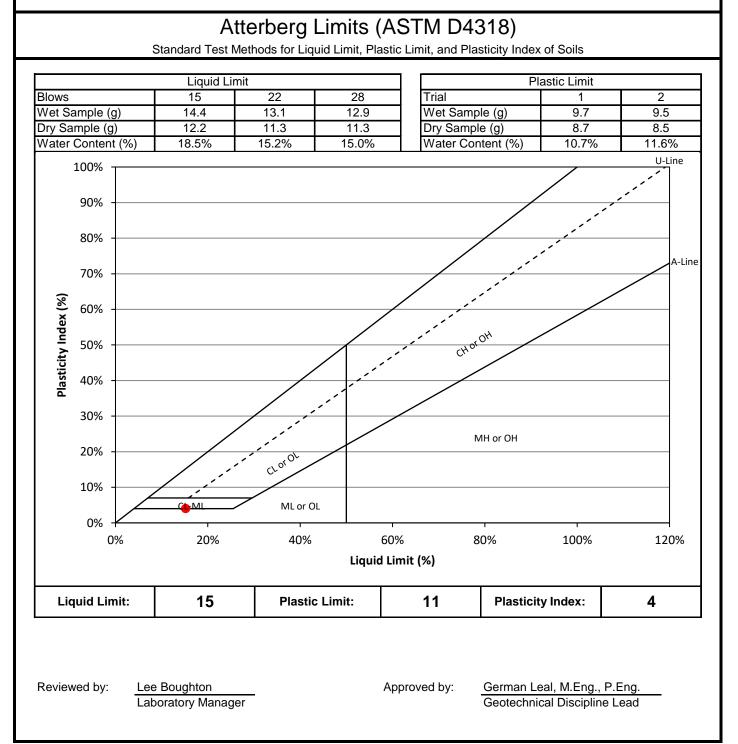
Symbol	Term	Hard/Soft
Lm	Limonite/FeOx Soft	
Ms	Muscovite	Soft
Mt	Magnetite	Hard
Ру	Pyrite	Hard
Qz	Quartz	Hard
Rb	Rubble	Hard
Sa	Sand	Hard
Se	Sericite/Illite	Soft
Si	Silt Hard	
Sm Smectite Soft		Soft
Su	Sulphide Hard	
Та	Talc Soft	
UH	Unknown Hard Hard	
US	Unknown Soft Soft	
OTH - see comments		

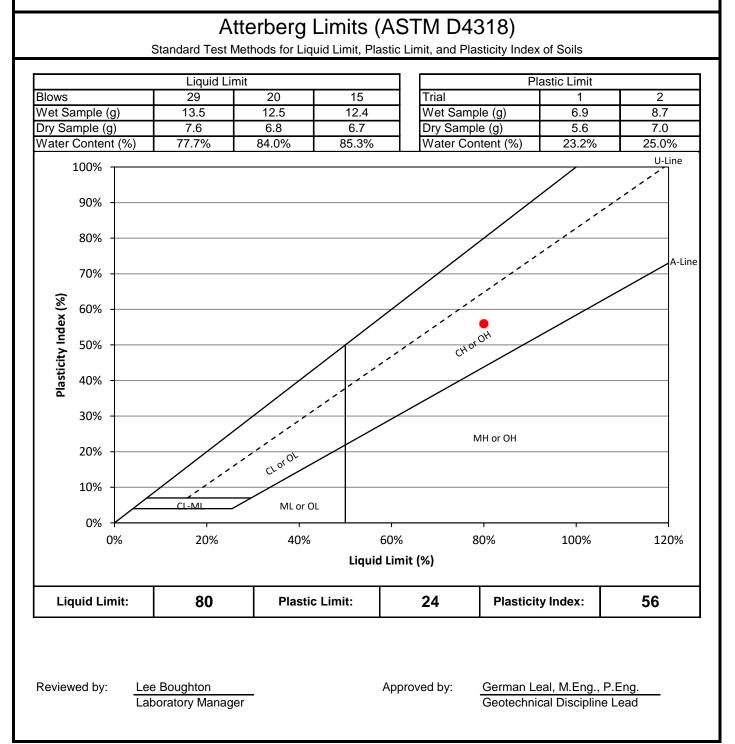

Appendix **4**

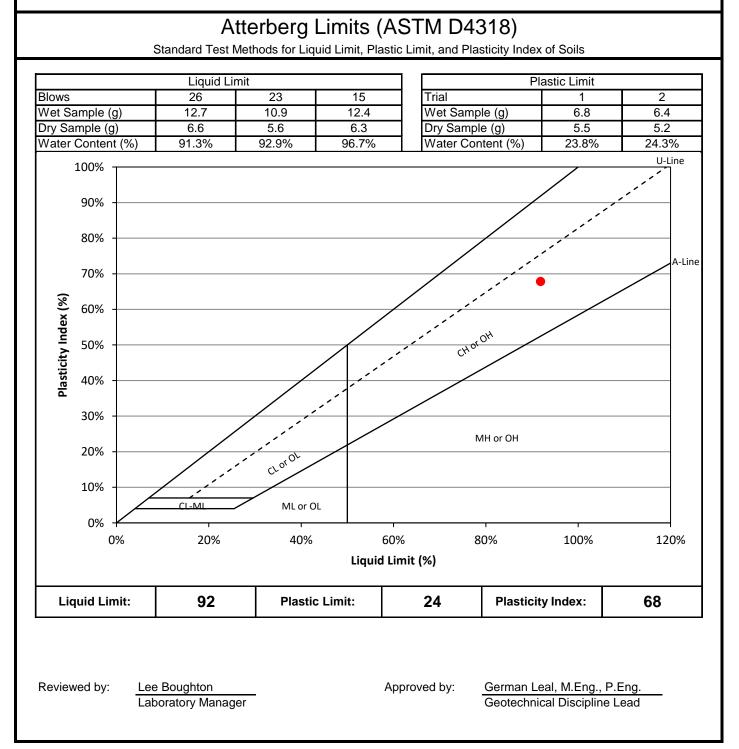
Laboratory Results

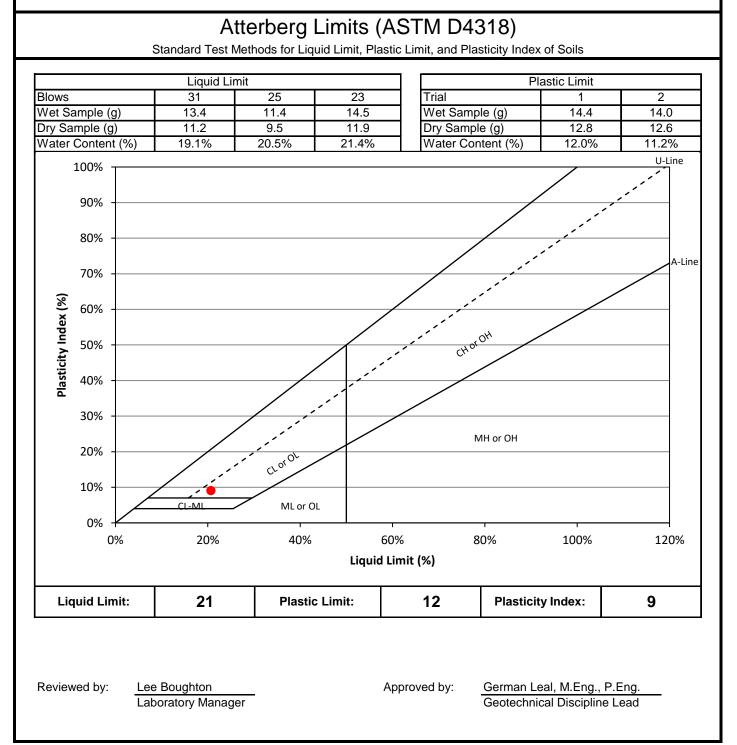

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	June 6, 2024
Sample Depth:	0.61 - 0.76 m	Lab Technician:	JEnriquez
Sample Number:	G2	Date Tested:	June 18, 2024

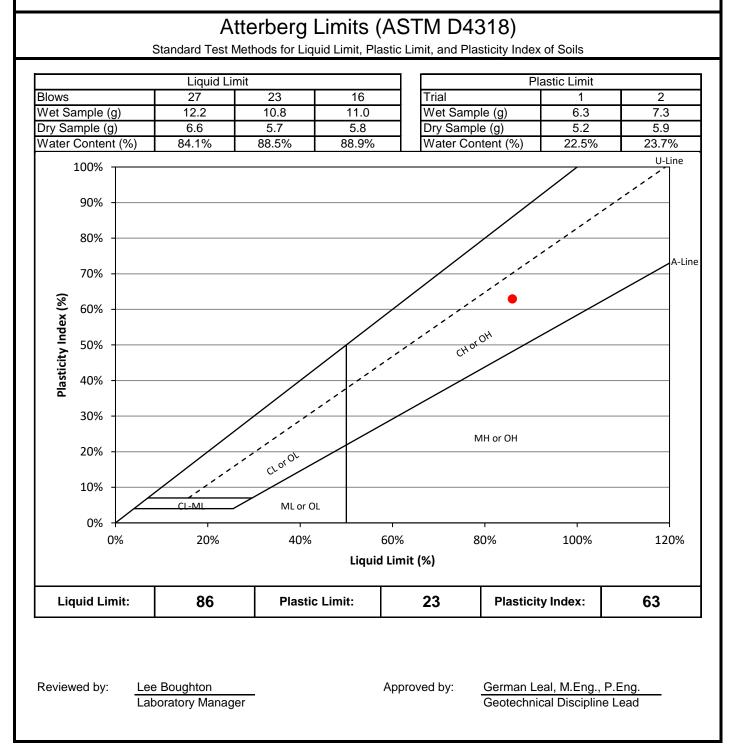

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	June 6, 2024
Sample Depth:	4.42 - 4.57 m	Lab Technician:	JEnriquez
Sample Number:	G6	Date Tested:	June 18, 2024

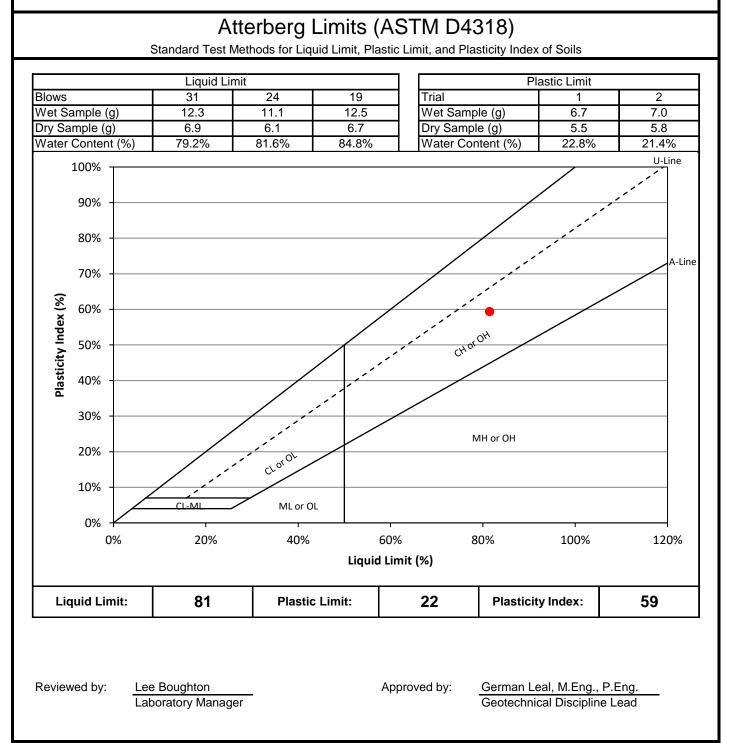

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	June 6, 2024
Sample Depth:	10.52 - 10.67 m	Lab Technician:	JEnriquez
Sample Number:	G12	Date Tested:	June 18, 2024

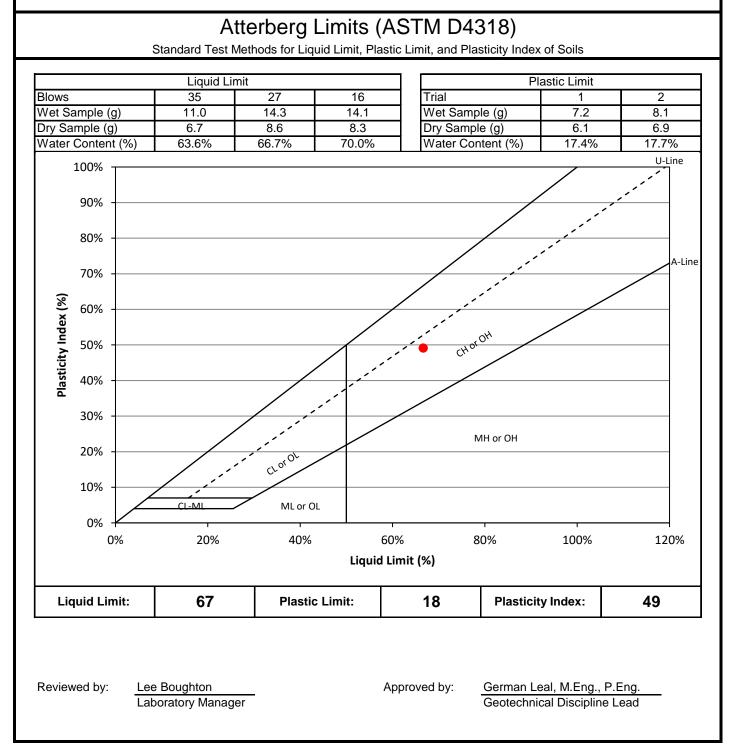

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	June 6, 2024
Sample Depth:	16.61 - 16.76 m	Lab Technician:	JEnriquez
Sample Number:	G17	Date Tested:	June 18, 2024

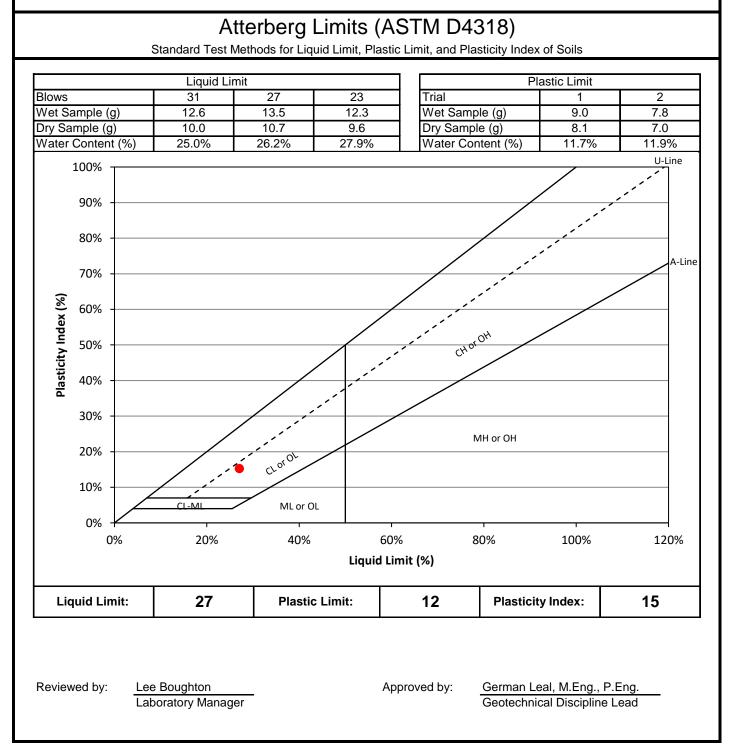

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	June 6, 2024
Sample Depth:	5.94 - 6.10 m	Lab Technician:	JEnriquez
Sample Number:	G7	Date Tested:	June 18, 2024

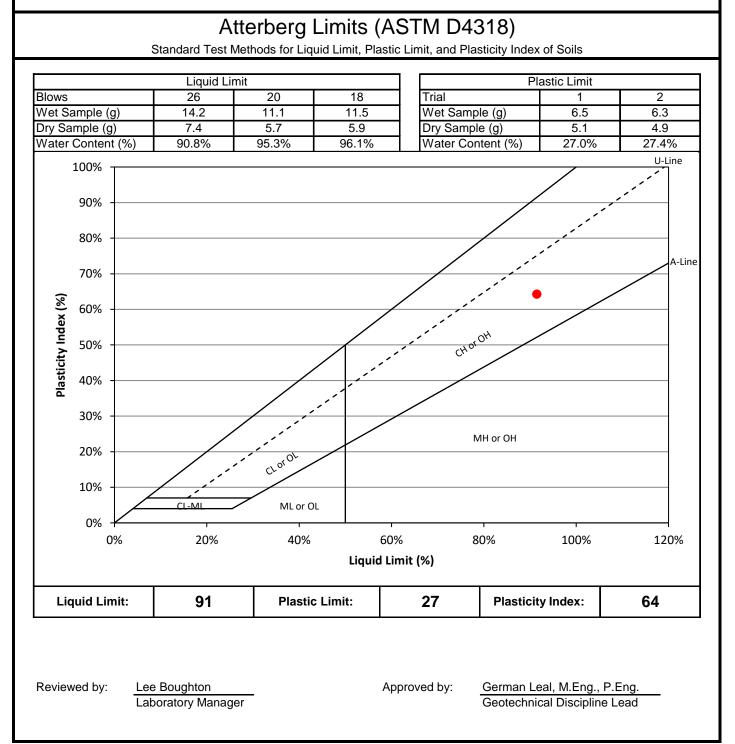

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	June 6, 2024
Sample Depth:	10.52 - 10.67 m	Lab Technician:	JEnriquez
Sample Number:	G12	Date Tested:	June 18, 2024

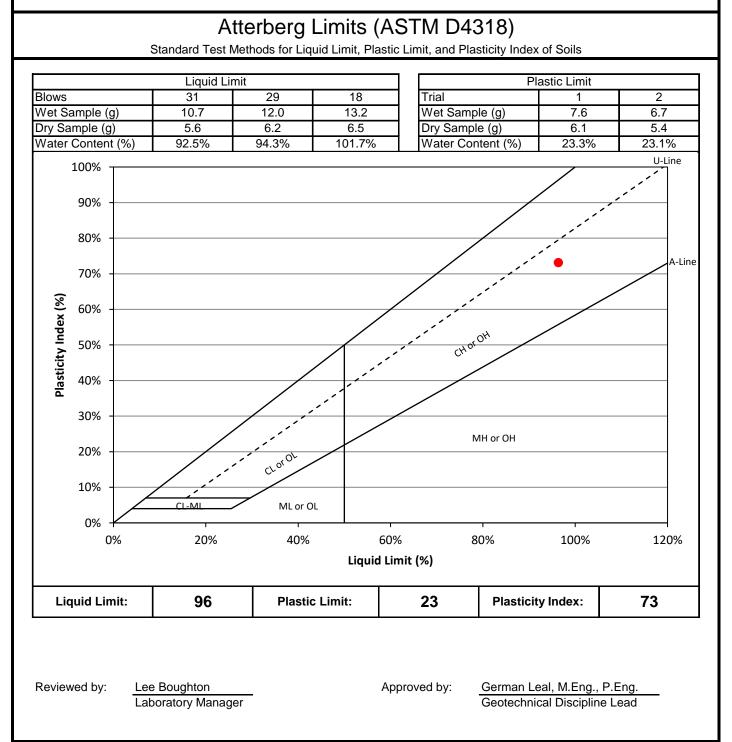

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	June 6, 2024
Sample Depth:	12.04 - 12.19 m	Lab Technician:	JEnriquez
Sample Number:	G13	Date Tested:	June 18, 2024

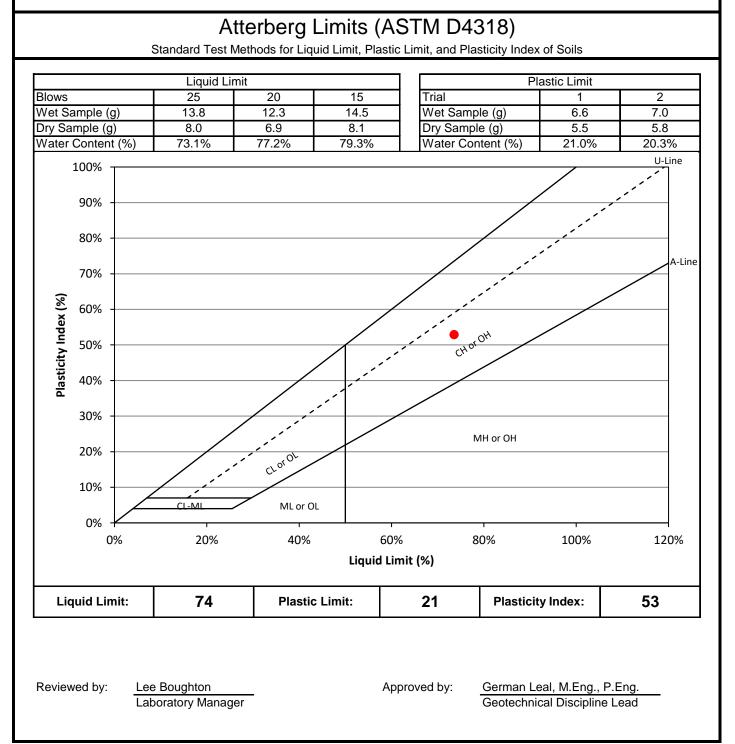

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	June 6, 2024
Sample Depth:	5.94 - 6.10 m	Lab Technician:	JEnriquez
Sample Number:	G7	Date Tested:	June 18, 2024

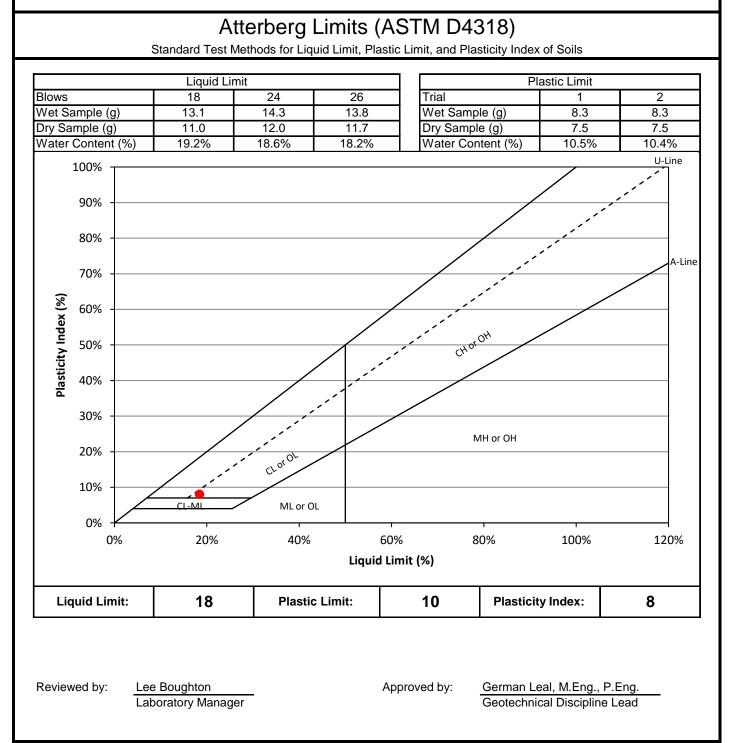

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	June 6, 2024
Sample Depth:	8.99 - 9.14 m	Lab Technician:	JEnriquez
Sample Number:	G10	Date Tested:	June 18, 2024


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	June 6, 2024
Sample Depth:	12.04 - 12.19 m	Lab Technician:	JEnriquez
Sample Number:	G13	Date Tested:	June 18, 2024

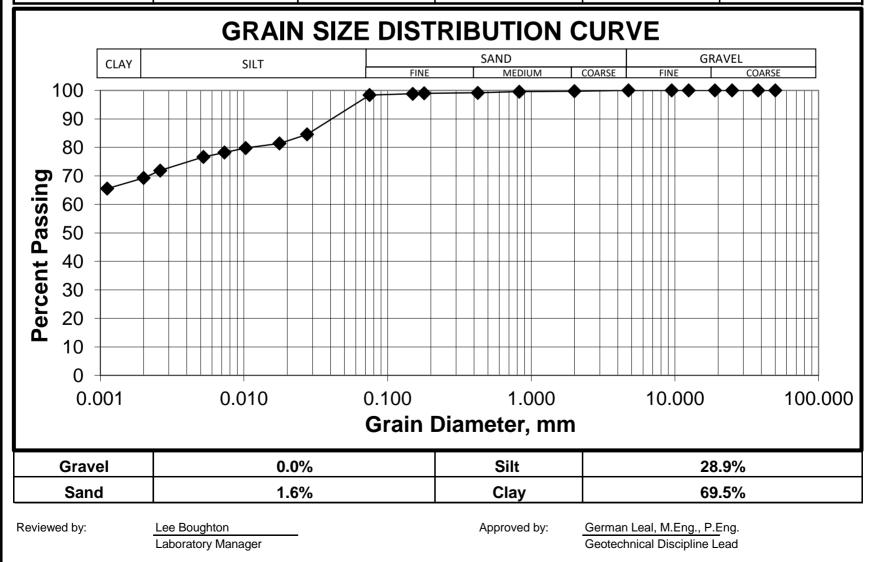

Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	June 6, 2024
Sample Depth:	12.95 - 13.11 m	Lab Technician:	JEnriquez
Sample Number:	G14	Date Tested:	June 18, 2024


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	June 6, 2024
Sample Depth:	0.76 - 0.91 m	Lab Technician:	JEnriquez
Sample Number:	G2	Date Tested:	June 18, 2024


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	June 6, 2024
Sample Depth:	4.42 - 4.57 m	Lab Technician:	JEnriquez
Sample Number:	G6	Date Tested:	June 18, 2024


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	June 6, 2024
Sample Depth:	10.52 - 10.67 m	Lab Technician:	JEnriquez
Sample Number:	G12	Date Tested:	June 18, 2024

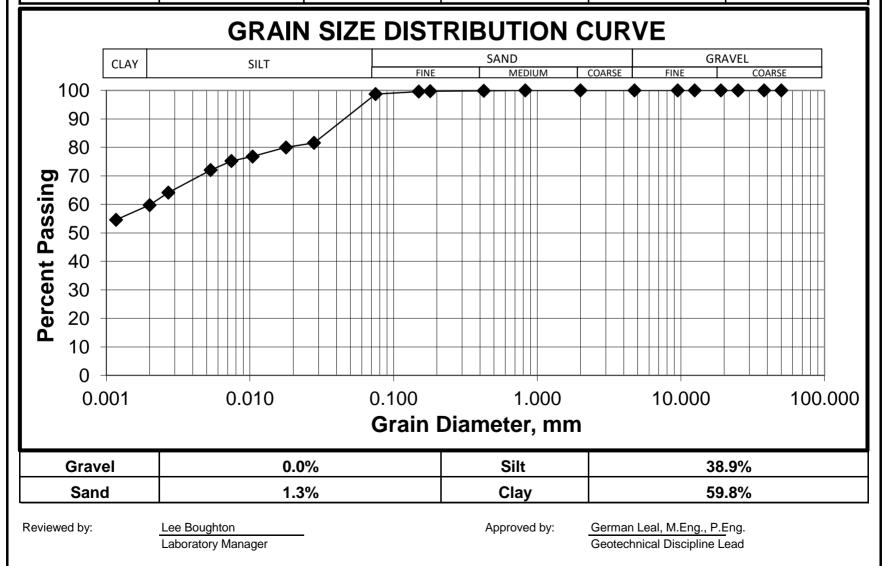
Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	June 6, 2024
Sample Depth:	13.56 - 13.72 m	Lab Technician:	JEnriquez
Sample Number:	G15	Date Tested:	June 18, 2024



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	6-Jun-24
Sample Depth :	0.61 - 0.76 m	Lab Technician:	JEnriquez
Sample Number:	G2	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

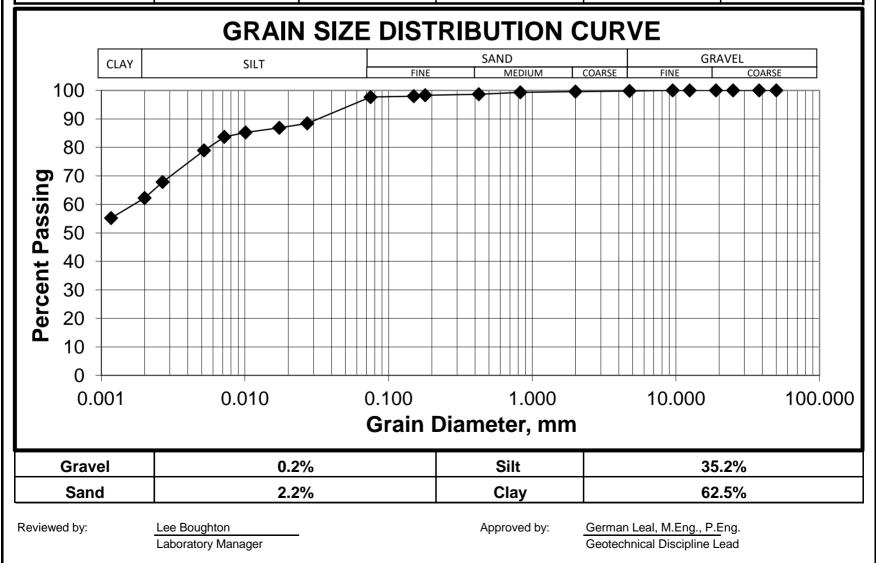
GRAVE	GRAVEL SIZES		SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.4
38.0	100.0	2.00	99.7	0.0275	84.8
25.0	100.0	0.825	99.6	0.0177	81.6
19.0	100.0	0.425	99.1	0.0103	80.0
12.5	100.0	0.18	99.0	0.0073	78.4
9.5	100.0	0.15	98.8	0.0052	76.8
4.75	100.0	0.075	98.4	0.0026	72.1
				0.0020	69.5
				0.0011	65.7



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	6-Jun-24
Sample Depth :	4.42 - 4.57 m	Lab Technician:	JEnriquez
Sample Number:	G6	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

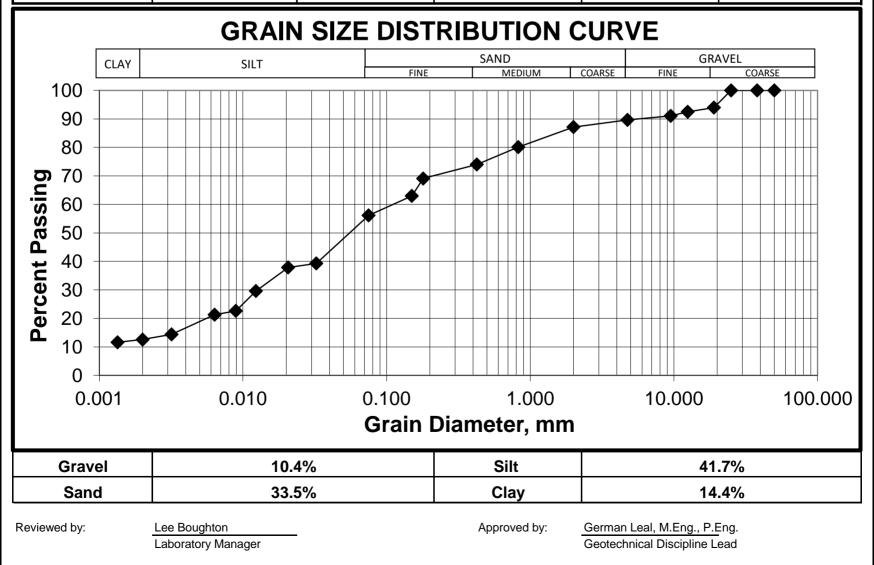
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.7
38.0	100.0	2.00	100.0	0.0280	81.6
25.0	100.0	0.825	100.0	0.0178	80.0
19.0	100.0	0.425	99.9	0.0104	76.8
12.5	100.0	0.18	99.7	0.0074	75.2
9.5	100.0	0.15	99.6	0.0053	72.1
4.75	100.0	0.075	98.7	0.0027	64.1
				0.0020	59.8
				0.0012	54.6



FGSV Siphon Replacement		
60728226	Supplier/Location:	Winnipeg, Manitoba
City Of Winnipeg	Field Technician:	GAcurin
TH24-01	Sample Date:	6-Jun-24
10.52 - 10.67 m	Lab Technician:	JEnriquez
G12	Date Tested:	11-Jun-24
	60728226 City Of Winnipeg TH24-01 10.52 - 10.67 m	60728226Supplier/Location:City Of WinnipegField Technician:TH24-01Sample Date:10.52 - 10.67 mLab Technician:

Hydrometer (AASHTO T88)

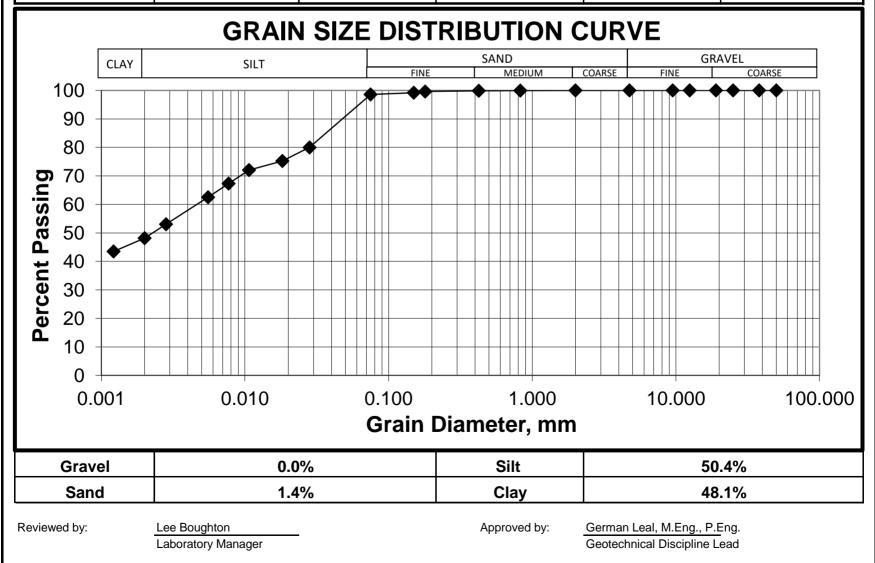
GRAVEL SIZES SAND SIZES FINES		IES			
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.8	0.0750	97.7
38.0	100.0	2.00	99.6	0.0272	88.8
25.0	100.0	0.825	99.3	0.0173	87.2
19.0	100.0	0.425	98.7	0.0101	85.6
12.5	100.0	0.18	98.3	0.0072	84.0
9.5	100.0	0.15	98.0	0.0052	79.3
4.75	99.8	0.075	97.7	0.0027	68.2
				0.0020	62.5
				0.0012	55.5



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-01	Sample Date:	6-Jun-24
Sample Depth :	12.04 - 12.19 m	Lab Technician:	JEnriquez
Sample Number:	G17	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

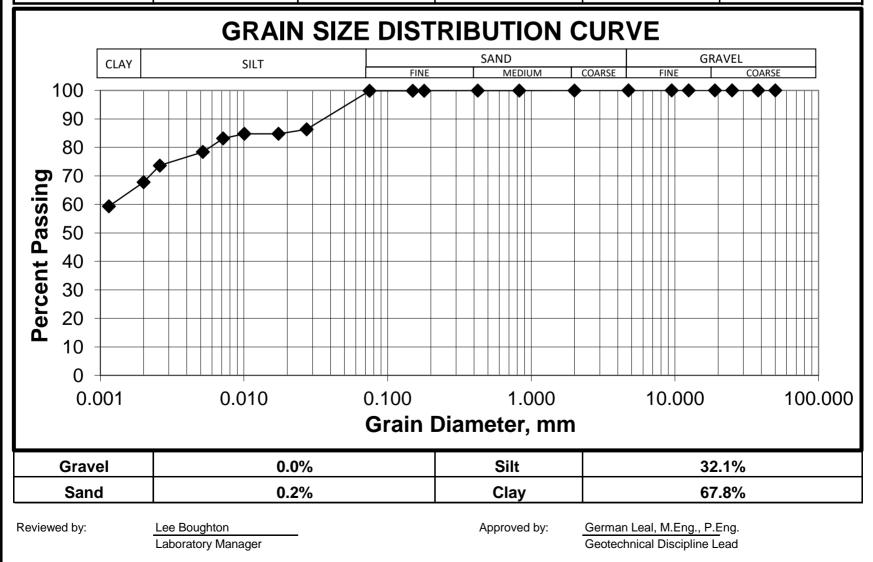
GRAVE	GRAVEL SIZES		SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	89.6	0.0750	56.2
38.0	100.0	2.00	87.1	0.0325	45.1
25.0	100.0	0.825	80.1	0.0206	43.5
19.0	93.9	0.425	74.0	0.0123	33.9
12.5	92.5	0.18	69.1	0.0089	26.0
9.5	91.1	0.15	63.0	0.0063	24.4
4.75	89.6	0.075	56.2	0.0032	16.5
				0.0020	14.4
				0.0013	13.3



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	6-Jun-24
Sample Depth :	5.94 - 6.10 m	Lab Technician:	JEnriquez
Sample Number:	G7	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

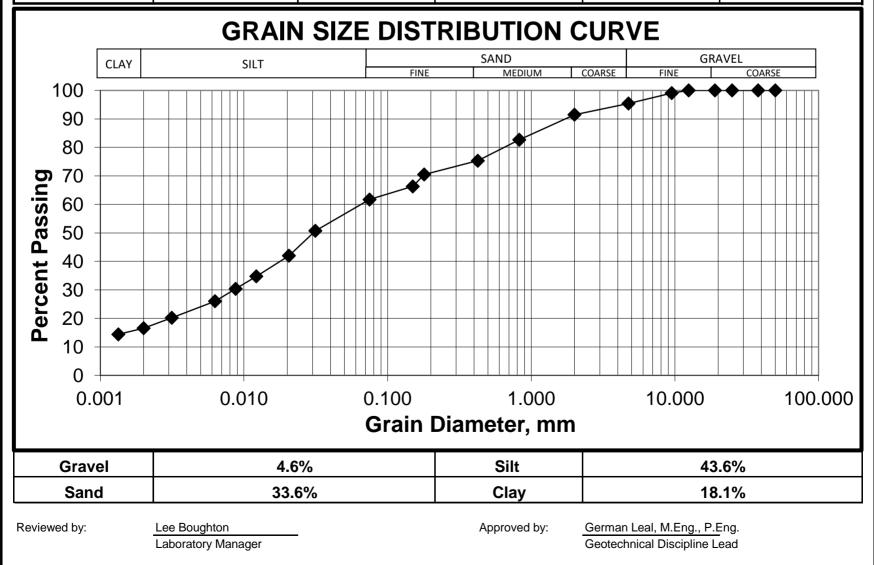
GRAVE	GRAVEL SIZES		SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.6
38.0	100.0	2.00	100.0	0.0282	80.0
25.0	100.0	0.825	100.0	0.0182	75.2
19.0	100.0	0.425	99.9	0.0107	72.1
12.5	100.0	0.18	99.6	0.0077	67.3
9.5	100.0	0.15	99.2	0.0055	62.5
4.75	100.0	0.075	98.6	0.0028	53.0
				0.0020	48.1
				0.0012	43.5



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	6-Jun-24
Sample Depth :	10.52 - 10.67 m	Lab Technician:	JEnriquez
Sample Number:	G12	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

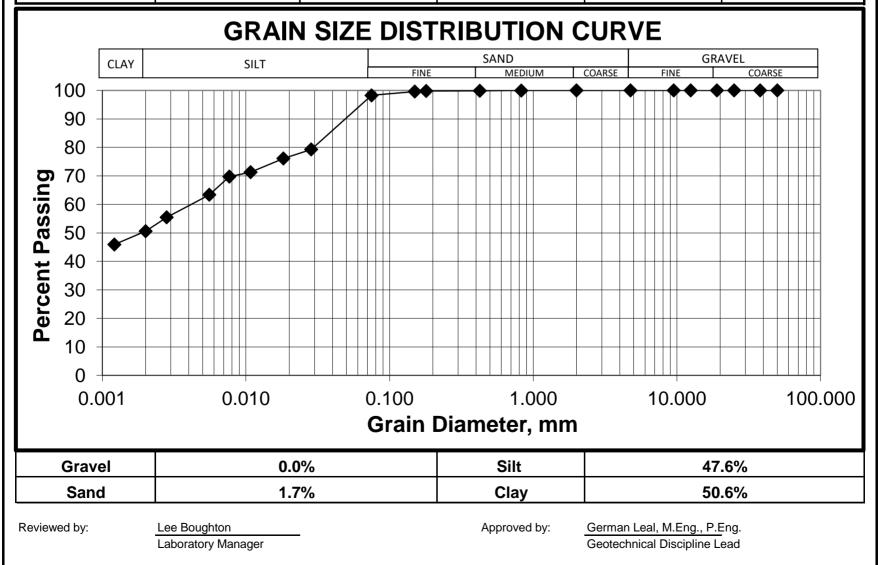
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.8
38.0	100.0	2.00	100.0	0.0273	86.4
25.0	100.0	0.825	99.9	0.0174	84.8
19.0	100.0	0.425	99.9	0.0101	84.8
12.5	100.0	0.18	99.9	0.0072	83.2
9.5	100.0	0.15	99.9	0.0052	78.4
4.75	100.0	0.075	99.8	0.0026	73.7
				0.0020	67.8
				0.0011	59.4



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-02	Sample Date:	6-Jun-24
Sample Depth :	12.04 - 12.19 m	Lab Technician:	JEnriquez
Sample Number:	G13	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

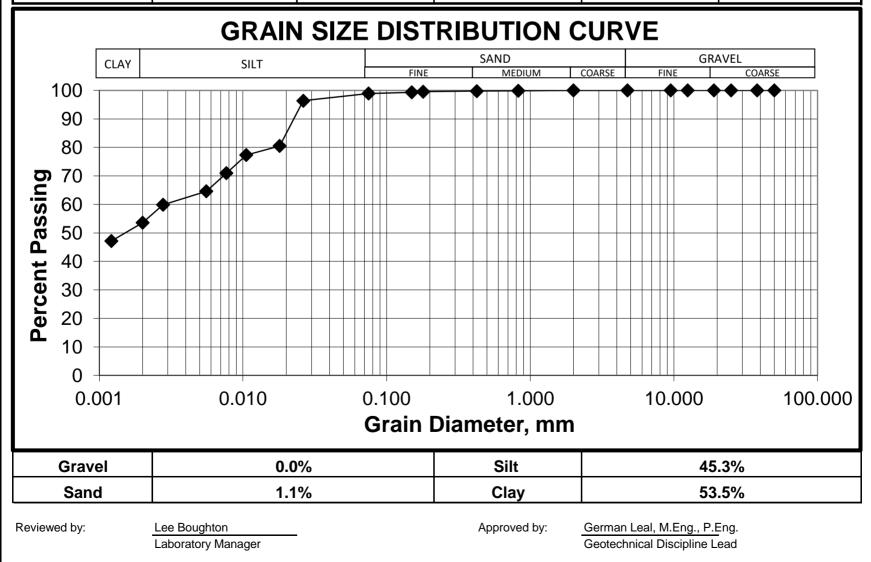
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	95.4	0.0750	61.7
38.0	100.0	2.00	91.4	0.0314	55.5
25.0	100.0	0.825	82.7	0.0206	45.9
19.0	100.0	0.425	75.3	0.0122	38.0
12.5	100.0	0.18	70.5	0.0088	33.2
9.5	99.0	0.15	66.3	0.0063	28.5
4.75	95.4	0.075	61.7	0.0031	22.1
				0.0020	18.1
				0.0013	15.8



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	6-Jun-24
Sample Depth :	5.94 - 6.10 m	Lab Technician:	JEnriquez
Sample Number:	G7	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

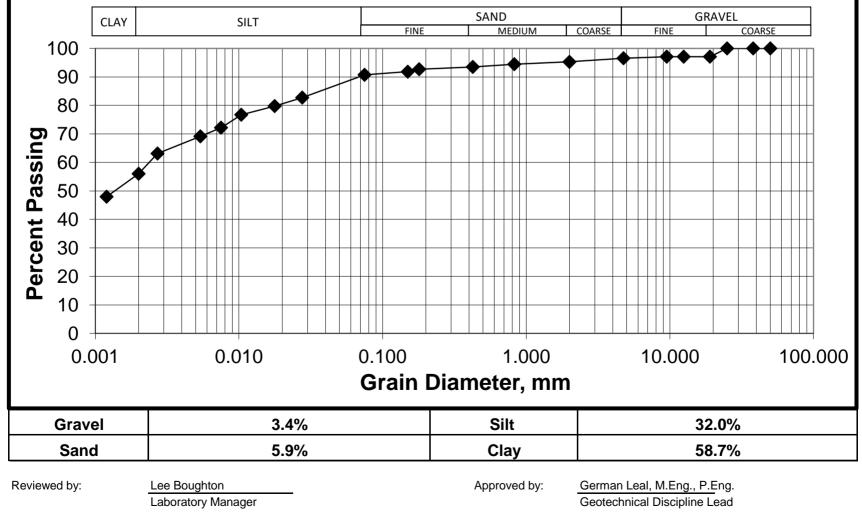
GRAVE	L SIZES	SAND	SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.3
38.0	100.0	2.00	100.0	0.0285	79.3
25.0	100.0	0.825	100.0	0.0183	76.1
19.0	100.0	0.425	99.9	0.0108	71.3
12.5	100.0	0.18	99.8	0.0077	69.7
9.5	100.0	0.15	99.6	0.0056	63.4
4.75	100.0	0.075	98.3	0.0028	55.5
				0.0020	50.6
				0.0012	45.9



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	6-Jun-24
Sample Depth :	8.99 - 9.14 m	Lab Technician:	JEnriquez
Sample Number:	G10	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

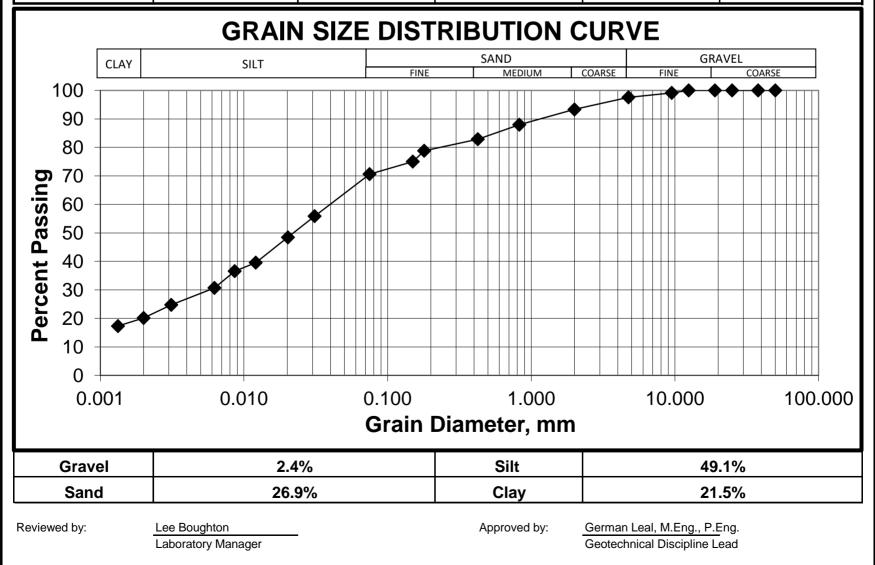
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.9
38.0	100.0	2.00	100.0	0.0263	96.4
25.0	100.0	0.825	99.9	0.0180	80.5
19.0	100.0	0.425	99.8	0.0105	77.3
12.5	100.0	0.18	99.6	0.0077	71.0
9.5	100.0	0.15	99.3	0.0056	64.6
4.75	100.0	0.075	98.9	0.0028	59.9
				0.0020	53.5
				0.0012	47.1



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	6-Jun-24
Sample Depth :	12.04 - 12.19 m	Lab Technician:	JEnriquez
Sample Number:	G13	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

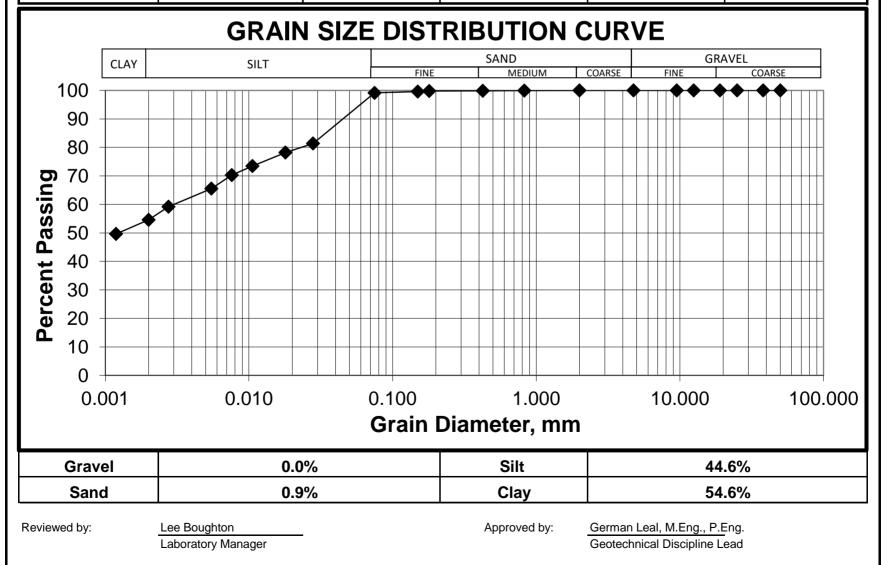
GRAVE	L SIZES	SAND	SIZES	FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	96.6	0.0750	90.7
38.0	100.0	2.00	95.3	0.0276	86.9
25.0	100.0	0.825	94.5	0.0177	83.7
19.0	97.1	0.425	93.5	0.0104	80.5
12.5	97.1	0.18	92.7	0.0075	75.7
9.5	97.1	0.15	91.8	0.0054	72.6
4.75	96.6	0.075	90.7	0.0027	66.2
				0.0020	58.7
				0.0012	50.3



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-04	Sample Date:	6-Jun-24
Sample Depth :	12.95 - 13.11 m	Lab Technician:	JEnriquez
Sample Number:	G14	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

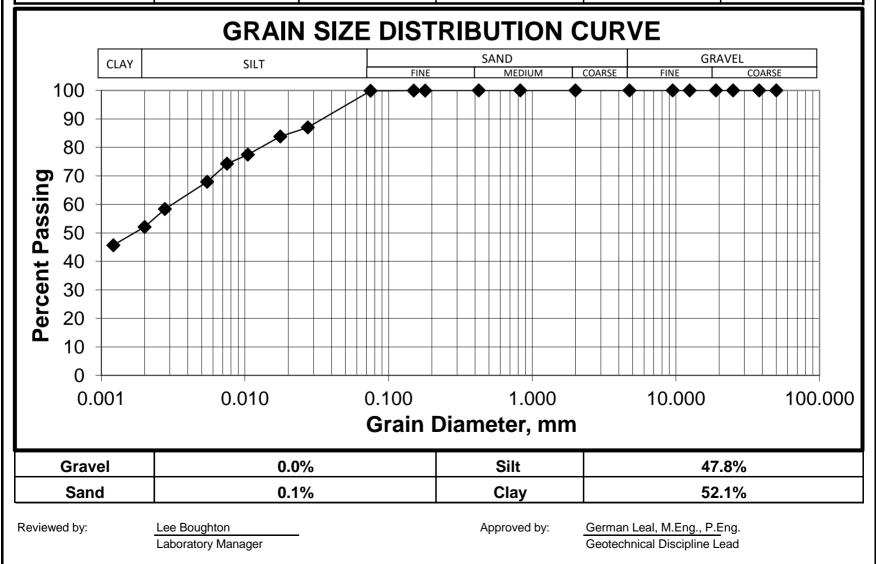
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	97.6	0.0750	70.6
38.0	100.0	2.00	93.3	0.0311	59.9
25.0	100.0	0.825	88.0	0.0202	51.9
19.0	100.0	0.425	82.9	0.0121	42.4
12.5	100.0	0.18	78.8	0.0086	39.2
9.5	99.1	0.15	75.0	0.0062	32.9
4.75	97.6	0.075	70.6	0.0031	26.5
				0.0020	21.5
				0.0013	18.6



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	6-Jun-24
Sample Depth :	0.76 - 0.91 m	Lab Technician:	JEnriquez
Sample Number:	G2	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

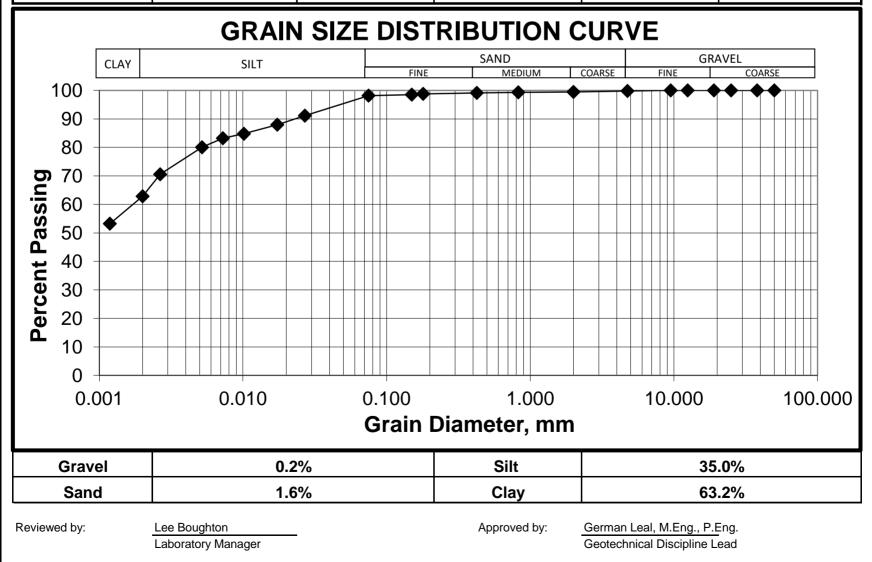
GRAVE	L SIZES	SAND	SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.1
38.0	100.0	2.00	100.0	0.0280	81.4
25.0	100.0	0.825	99.9	0.0179	78.2
19.0	100.0	0.425	99.9	0.0106	73.5
12.5	100.0	0.18	99.8	0.0076	70.3
9.5	100.0	0.15	99.6	0.0055	65.5
4.75	100.0	0.075	99.1	0.0028	59.2
				0.0020	54.6
				0.0012	49.6



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	6-Jun-24
Sample Depth :	4.42 - 4.57 m	Lab Technician:	JEnriquez
Sample Number:	G6	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

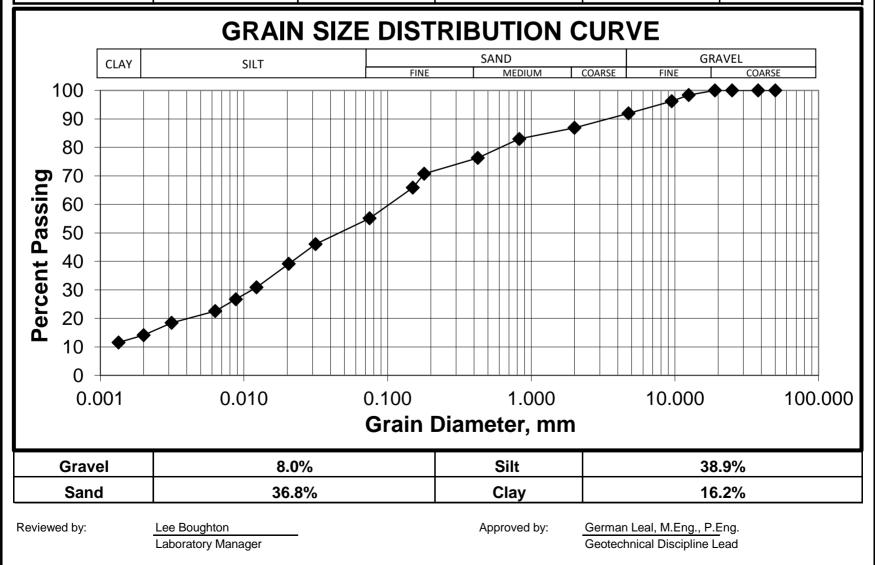
GRAVE	L SIZES	SAND	SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.9
38.0	100.0	2.00	100.0	0.0274	87.0
25.0	100.0	0.825	100.0	0.0176	83.8
19.0	100.0	0.425	100.0	0.0105	77.4
12.5	100.0	0.18	100.0	0.0075	74.3
9.5	100.0	0.15	99.9	0.0055	67.9
4.75	100.0	0.075	99.9	0.0028	58.4
				0.0020	52.1
				0.0012	45.7



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	6-Jun-24
Sample Depth :	10.52 - 10.67 m	Lab Technician:	JEnriquez
Sample Number:	G12	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

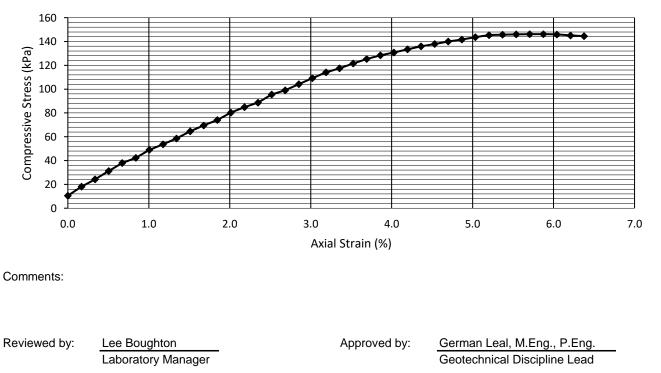
GRAVE	GRAVEL SIZES		SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.8	0.0750	98.2
38.0	100.0	2.00	99.5	0.0270	91.6
25.0	100.0	0.825	99.3	0.0173	88.4
19.0	100.0	0.425	99.1	0.0102	85.3
12.5	100.0	0.18	98.8	0.0072	83.7
9.5	100.0	0.15	98.5	0.0052	80.5
4.75	99.8	0.075	98.2	0.0027	71.0
				0.0020	63.2
				0.0012	53.5



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Supplier/Location:	Winnipeg, Manitoba
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	TH24-05	Sample Date:	6-Jun-24
Sample Depth :	13.56 - 13.72 m	Lab Technician:	JEnriquez
Sample Number:	G15	Date Tested:	11-Jun-24

Hydrometer (AASHTO T88)

GRAVE	GRAVEL SIZES		SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	92.0	0.0750	55.1
38.0	100.0	2.00	86.9	0.0315	53.0
25.0	100.0	0.825	83.0	0.0205	45.1
19.0	100.0	0.425	76.3	0.0122	35.5
12.5	98.4	0.18	70.7	0.0088	30.8
9.5	96.2	0.15	65.9	0.0063	26.0
4.75	92.0	0.075	55.1	0.0031	21.2
				0.0020	16.2
				0.0013	13.3

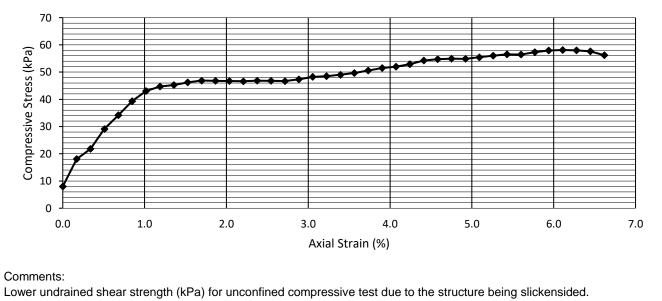


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 3, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 3, 2024
Sample Depth (m):	3.05 - 3.66 m	Submitted By:	GAcurin
Sample Location:	TH24-01	Date Tested:	June 7, 2024
Sample Number:	T5	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	otion: CLA	Y - grey, stiff, mo	ist, silty, h	igh plastici	ty, homogeneous	
Average Dia	meter (cm):	7.17	FAILU	RE SKET	CH 5 5W 70 W NW	
Average Len	gth (cm):	14.90			© 250°W (T) © 49°49′53″N, 97°12′53″W ±65ft ▲ 785ft	
Length/Diam	eter Ratio:	2.08			TOP and 3	
Moisture con	tent (%):	13.6			A STATE	
Bulk Density	(g/cm ³):	1.940				
Bulk Unit We	eight (kN/m ³):	19.0				
Bulk Unit We	eight (pcf):	121.1		65°		
Dry Unit Wei	ght (kN/m³):	16.74				
Torvane	Undrained Sh	near Strength (kP	a)	34.3		
Pocket Pen.	Undrained Sh	near Strength (kP	Pa)	95.8	11124-01 15 17.1.1.2024, 1345-38	
	Unconfined c	ompressive stren	ngth (kPa)	146.18	Undrained Shear Strength (kPa)	73.09
UCS	Unconfined c	ompressive stren	ngth (ksf)	3.053	Undrained Shear Strength (ksf)	1.526
	Avg. Rate of	Strain to Failure ((%/min):	1.01	Strain at Failure (%):	5.87



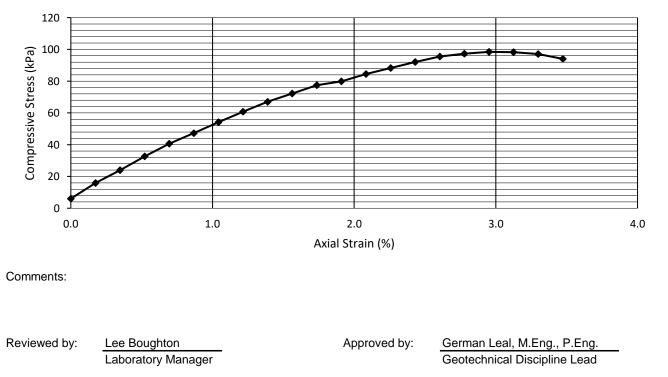
Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 3, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 3, 2024
Sample Depth (m):	6.10 - 6.71 m	Submitted By:	GAcurin
Sample Location:	TH24-01	Date Tested:	June 7, 2024
Sample Number:	Т8	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	ption: CLAY	′ - brown, stiff, n	noist, silty,	high plasticity	y, slickensided	
Average Dia	meter (cm):	7.10	FAILU	RE SKETCH		
Average Ler	gth (cm):	14.73			© 243°SW (T)	
Length/Diam	eter Ratio:	2.08	1 >			
Moisture cor	ntent (%):	15.0		60°	40	
Bulk Density	(g/cm ³):	1.797				
Bulk Unit We	eight (kN/m³):	17.6				
Bulk Unit We	eight (pcf):	112.2				
Dry Unit We	ight (kN/m³):	15.32				
Torvane	Undrained Sh	ear Strength (kP	Pa)	88.3		
Pocket Pen.	Undrained She	ear Strength (kP	Pa)	48.7	981/25228 11124-01-16 E7.4:1-2024,15-2726	
	Unconfined co	mpressive strer	ngth (kPa)	58.12	Undrained Shear Strength (kPa)	29.06
UCS	Unconfined co	mpressive strer	ngth (ksf)	1.214	Undrained Shear Strength (ksf)	0.607
	Avg. Rate of S	Strain to Failure	(%/min):	1.02	Strain at Failure (%):	6.11

Reviewed by:	Lee Boughton	Approved by:	German Leal, M.Eng., P.Eng.
	Laboratory Manager		Geotechnical Discipline Lead

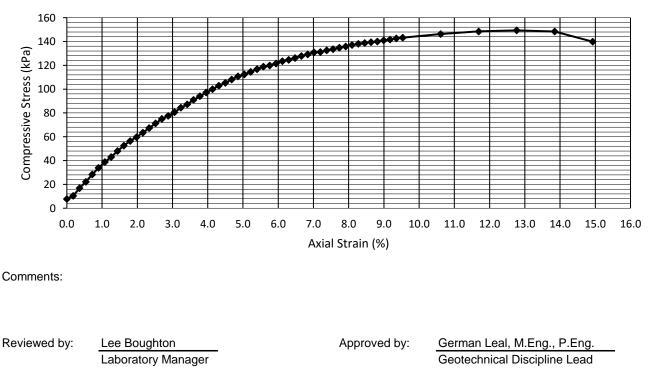


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 3, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 3, 2024
Sample Depth (m):	12.19 - 12.80 m	Submitted By:	GAcurin
Sample Location:	TH24-01	Date Tested:	June 18, 2024
Sample Number:	T14	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descr	iption: CLAY	· brown, stiff, m	noist, silty,	high plastic	sity, homogeneous	
Average Dia	ameter (cm):	7.20	FAILU	RE SKETC	H SW 200 NW 200	
Average Ler	ngth (cm):	14.40			© 260°W (T) ⊙ 49°49′53′N 97°12′53″W ±114h ▲ 782h	
Length/Dian	neter Ratio:	2.00		\backslash		
Moisture co	ntent (%):	47.3		\backslash		
Bulk Density	/ (g/cm³):	1.725		700		
Bulk Unit W	eight (kN/m³):	16.9				
Bulk Unit W	eight (pcf):	107.7				
Dry Unit We	eight (kN/m ³):	11.49			1 Banking H.	
Torvane	Undrained Shea	ar Strength (kP	'a)	58.8		
Pocket Pen.	Undrained Shea	ar Strength (kP	Pa)	47.9	81/27276 11624-21 114 116-11-22703	
	Unconfined con	npressive stren	ngth (kPa)	98.45	Undrained Shear Strength (kPa)	49.23
UCS	Unconfined con	npressive stren	ngth (ksf)	2.056	Undrained Shear Strength (ksf)	1.028
	Avg. Rate of St	rain to Failure ((%/min):	1.04	Strain at Failure (%):	2.95

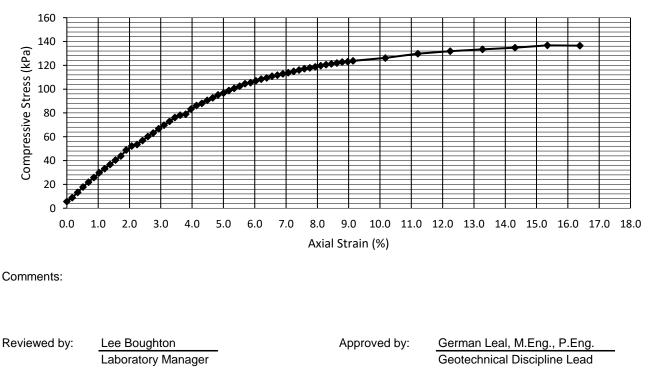


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 4, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 4, 2024
Sample Depth (m):	3.05 - 3.66 m	Submitted By:	GAcurin
Sample Location:	TH24-02	Date Tested:	June 18, 2024
Sample Number:	Τ5	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Average Dia	meter (cm):	7.20	FAILU	RE SKETCH	₩ 500 NW 2200 N 51 N	
Average Len		13.90		,	© 338*N (T) © 49*49*53*N, 97*12*53*W ±114h ▲ 783h	
Length/Diam	U ()	1.93		>	Cont 11	
Moisture con		33.4			the second se	
Bulk Density	(g/cm ³):	1.884		<i>†</i> 70⁰	L'AND A CONT	
Bulk Unit We	eight (kN/m ³):	18.5		1	C. P.	
Bulk Unit We	eight (pcf):	117.6				
Dry Unit Wei	ght (kN/m ³):	13.84			· ·	
Torvane	Undrained Shea	r Strength (kPa)		51.0		
Pocket Pen.	Undrained Shea	r Strength (kPa)		30.3	11/24-02 15 18.4: 0/2024, 14.8: 162	
	Unconfined com	pressive strength	(kPa)	149.31	Undrained Shear Strength (kPa)	74.65
UCS	Unconfined com	pressive strength	(ksf)	3.118	Undrained Shear Strength (ksf)	1.559
	Avg. Rate of Str	ain to Failure (%/n	nin):	1.08	Strain at Failure (%):	12.77

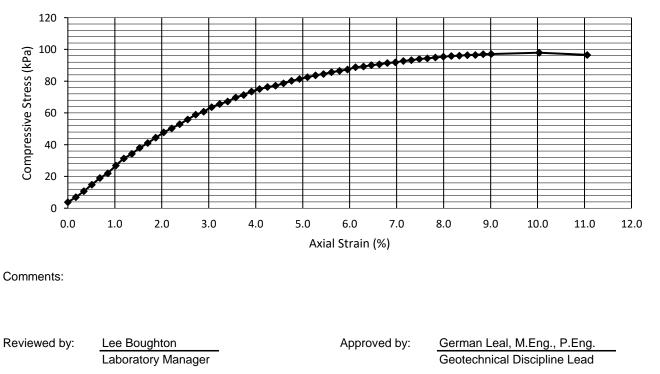


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 4, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 4, 2024
Sample Depth (m):	9.14 - 9.75 m	Submitted By:	GAcurin
Sample Location:	TH24-02	Date Tested:	June 18, 2024
Sample Number:	T11	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	ption:	CLAY -	grey, stiff, mo	ist, silty, h	gh plasticit	y, homogeneous	
Average Dia	meter (cr	m):	7.07	FAILU	RE SKETC	SW W NW 270 - 220 NW 270 NW 2	¢
Average Len	gth (cm):		14.50			© 263*W (T)	t
Length/Diam	eter Rati	0:	2.05				
Moisture cor	ntent (%):		32.7				
Bulk Density	(g/cm ³):		2.107			The second s	
Bulk Unit We	eight (kN/	′m³):	20.7				
Bulk Unit We	eight (pcf):	131.5				
Dry Unit Wei	ight (kN/r	n³):	15.57			16	
Torvane	Undrain	ed Shea	r Strength (kP	Pa)	49.0		
Pocket Pen.	Undrain	ed Shea	r Strength (kP	Pa)	54.3		
	Unconfi	ned com	pressive strer	ngth (kPa)	136.74	Undrained Shear Strength (kPa)	68.37
UCS	Unconfi	ned com	pressive strer	ngth (ksf)	2.856	Undrained Shear Strength (ksf)	1.428
	Avg. Ra	te of Stra	ain to Failure	(%/min):	1.03	Strain at Failure (%):	15.34

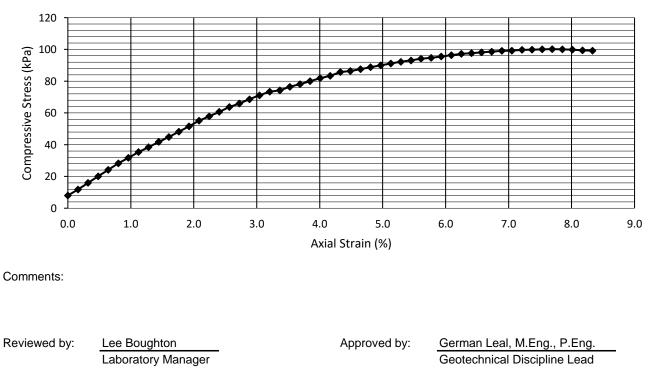


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 6, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 6, 2024
Sample Depth (m):	3.05 - 3.66 m	Submitted By:	GAcurin
Sample Location:	TH24-04	Date Tested:	June 7, 2024
Sample Number:	T5	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	ption: CLAY	′ - brown, stiff, m	noist, silty,	high plasticit	y, homogeneous	
Average Dia	meter (cm):	7.10	FAILU	RE SKETCH	S 210 200 № NT 190 2210 2243 W 300 NT 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
Average Ler	ngth (cm):	14.70				
Length/Diam	eter Ratio:	2.07				
Moisture cor	ntent (%):	14.6		<u>j</u>)		
Bulk Density	r (g/cm ³):	1.936		/		
Bulk Unit We	eight (kN/m³):	19.0				
Bulk Unit We	eight (pcf):	120.9				
Dry Unit We	ight (kN/m³):	16.57				
Torvane	Undrained Sh	ear Strength (kP	Pa)	66.7		
Pocket Pen.	Undrained Sh	ear Strength (kP	Pa)	39.9	11/24-04-15 17.01.02/074-14-04/2020	
	Unconfined co	ompressive strer	ngth (kPa)	97.93	Undrained Shear Strength (kPa)	48.97
UCS	Unconfined co	ompressive stren	ngth (ksf)	2.045	Undrained Shear Strength (ksf)	1.023
	Avg. Rate of S	Strain to Failure	(%/min):	1.02	Strain at Failure (%):	10.03

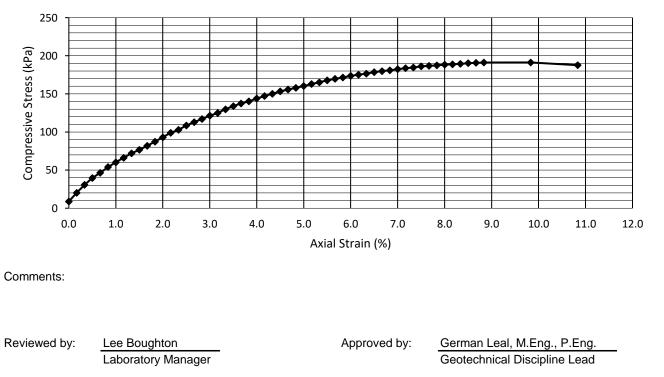


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 6, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 6, 2024
Sample Depth (m):	9.14 - 9.75 m	Submitted By:	GAcurin
Sample Location:	TH24-04	Date Tested:	June 18, 2024
Sample Number:	T11	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descrip	tion: CLAY -	grey, firm, mo	oist, silty, h	igh plasticity	v, homogeneous	
Average Dian	neter (cm):	7.10	FAILU	RE SKETCH		1
Average Leng	gth (cm):	15.60			© 249°W (T) @ 49°49′53°N 97°12′53°W ±114/t ▲ 782/t	t
Length/Diame	eter Ratio:	2.20				
Moisture cont	ent (%):	33.1		60°	2	
Bulk Density	(g/cm³):	1.961				
Bulk Unit Wei	ght (kN/m ³):	19.2				
Bulk Unit Wei	ght (pcf):	122.4				
Dry Unit Weig	ght (kN/m³):	14.45				
Torvane	Undrained Shea	r Strength (kP	a)	39.2		
Pocket Pen.	Undrained Shea	r Strength (kP	a)	39.9	81/28/274 11/24-06-111 18.4.1.9.212(4, 13.16.48	
	Unconfined com	pressive stren	ngth (kPa)	100.19	Undrained Shear Strength (kPa)	50.09
UCS	Unconfined com	pressive stren	ngth (ksf)	2.092	Undrained Shear Strength (ksf)	1.046
	Avg. Rate of Stra	ain to Failure ((%/min):	0.96	Strain at Failure (%):	7.69

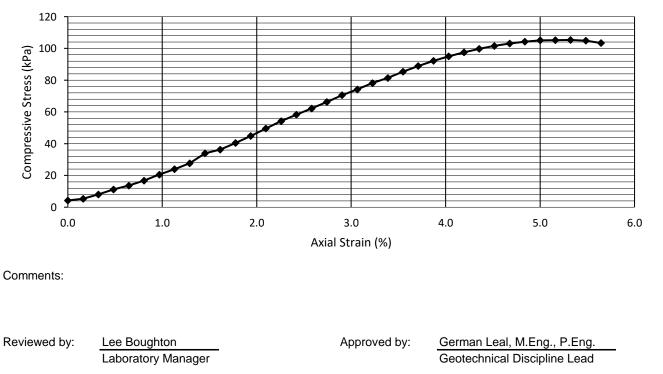


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 5, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 5, 2024
Sample Depth (m):	1.52 - 2.13 m	Submitted By:	GAcurin
Sample Location:	TH24-05	Date Tested:	June 7, 2024
Sample Number:	Τ4	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	iption: C	LAY - brown, stiff, m	noist, silty,	high plasticit	y, homogeneous	
Average Dia	meter (cm):	7.20	FAILU	RE SKETCH	S SW 200 W	
Average Ler	ngth (cm):	15.00			© 233*SW (T) ⊛ 49*49'53*N.97*12'53*W ±114ft ▲ 779ft	
Length/Diam	neter Ratio:	2.08				
Moisture cor	ntent (%):	14.2		<u>\</u>		
Bulk Density	/ (g/cm³):	1.912		7		
Bulk Unit W	eight (kN/m [:]	³): 18.8				
Bulk Unit W	eight (pcf):	119.4		/ 70 ⁰		
Dry Unit We	ight (kN/m³)	: 16.42			The second se	
Torvane	Undrained	Shear Strength (kP	Pa)	83.4		
Pocket Pen.	Undrained	Shear Strength (kP	Pa)	79.8	91/28/28 11/24-75-14 EZ.al-9/2024,14:12:29	
	Unconfine	d compressive strer	ngth (kPa)	191.25	Undrained Shear Strength (kPa)	95.63
UCS	Unconfine	d compressive strer	ngth (ksf)	3.994	Undrained Shear Strength (ksf)	1.997
	Avg. Rate	of Strain to Failure	(%/min):	1.00	Strain at Failure (%):	9.83

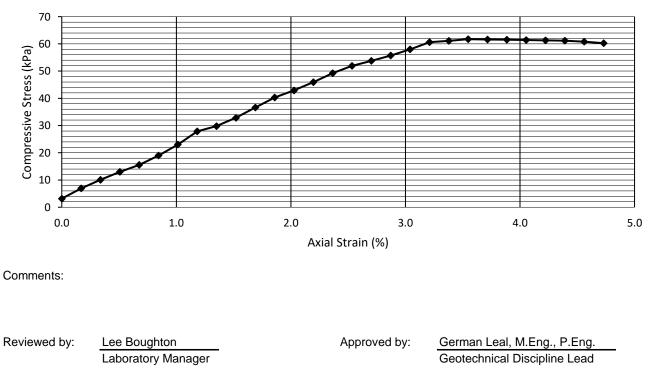


Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 5, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 5, 2024
Sample Depth (m):	7.62 - 8.23 m	Submitted By:	GAcurin
Sample Location:	TH24-05	Date Tested:	June 18, 2024
Sample Number:	T10	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	ption:	CLAY -	grey, stiff, mo	oist, silty, h	gh plasticit	y, homogeneous	
Average Dia	meter (cn	n):	7.07	FAILU	RE SKETC	₩ 200 ₩ 200	
Average Len	gth (cm):		15.50			© 256"W (T)	
Length/Diam	eter Ratio):	2.19	1	\backslash		
Moisture con	itent (%):		32.1				
Bulk Density	(g/cm ³):		2.020		75 <u></u> \$		
Bulk Unit We	eight (kN/	m³):	19.8				
Bulk Unit We	eight (pcf)		126.1			E -	
Dry Unit Wei	ght (kN/n	า ³):	14.99				
Torvane	Undrain	ed Shea	r Strength (kF	Pa)	66.7		
Pocket Pen.	Undrain	ed Shea	r Strength (kF	Pa)	54.3	81/28/28 14/24-55 113 18.4.6.2024, 12:50:02	
	Unconfir	ned com	pressive strer	ngth (kPa)	105.34	Undrained Shear Strength (kPa)	52.67
UCS	Unconfir	ned com	pressive strer	ngth (ksf)	2.200	Undrained Shear Strength (ksf)	1.100
	Avg. Ra	te of Str	ain to Failure	(%/min):	0.97	Strain at Failure (%):	5.32



Project Name:	FGSV Siphon Replacement		
Project Number:	60728226	Date Sampled:	June 5, 2024
Client:	City Of WInnipeg	Sampled By:	GAcurin
Supplier/Location:	Winnipeg, MB	Date Received:	June 5, 2024
Sample Depth (m):	10.67 - 11.28 m	Submitted By:	GAcurin
Sample Location:	TH24-05	Date Tested:	June 7, 2024
Sample Number:	T13	Tested By:	JEnriquez

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Descri	otion: CLAY	- grey, firm, mo	oist, silty, h	igh plasticity,	homogeneous	
Average Dia	meter (cm):	7.10	FAILU	RE SKETCH	S SW 241 W 242 W 2	
Average Len	gth (cm):	14.80			© 247*SW (T) S 49*49'53'N 97*12'53'W ±114ft ▲ 778ft	
Length/Diam	eter Ratio:	2.08				
Moisture con	tent (%):	16.1				
Bulk Density	(g/cm ³):	1.811		60°		
Bulk Unit We	eight (kN/m ³):	17.8				
Bulk Unit We	eight (pcf):	113.1			E ALLER A	
Dry Unit Wei	ght (kN/m³):	15.31				
Torvane	Undrained She	ar Strength (kF	Pa)	44.1		
Pocket Pen.	Undrained She	ar Strength (kF	°a)	23.9	B1/282/2 11/24-05 113 [77.617.2174] 15 55304	
	Unconfined con	npressive strer	ngth (kPa)	61.74	Undrained Shear Strength (kPa)	30.87
UCS	Unconfined con	npressive strer	ngth (ksf)	1.289	Undrained Shear Strength (ksf)	0.645
	Avg. Rate of St	rain to Failure	(%/min):	1.01	Strain at Failure (%):	3.55

Fax: 204 284 2040

Project Name:	FGSV Siphon Replacement	Supplier:	AECOM
Project Number:	60728226	Specification:	N/A
Client:	City Of Winnipeg	Field Technician:	GAcurin
Sample Location:	Winnipeg, Manitoba	Sample Date:	June 6, 2024
Sample Depth:	Varies	Lab Technician:	JEnriquez
Sample Number:	Varies	Date Tested:	June 6, 2024

Moisture Content (ASTM D2216-10)

Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

Location	Sample	Depth (m)	Moisture	Location	Sample	Depth (m)	Moisture
TH24-01	G1	0.15 - 0.30 m	Content (%) 31.4%	TH24-05	G1	0.15 - 0.30 m	Content (%) 35.6%
	G1 G2		31.4%	TH24-05	G1 G2		35.6%
TH24-01 TH24-01	G2 G3	0.61 - 0.76 m	34.7% 29.9%	TH24-05 TH24-05	G2 G3	0.76 - 0.91 m	35.6%
	G3 G4	1.37 - 1.52 m			G3 G5	1.37 - 1.52 m	
TH24-01	-	2.90 - 3.05 m	27.9%	TH24-05		2.90 - 3.05 m	31.2%
TH24-01	G6	4.42 - 4.57 m	42.0%	TH24-05	G6	4.42 - 4.57 m	31.2%
TH24-01	G7	5.94 - 6.10 m	43.7%	TH24-05	G8	5.94 - 6.10 m	32.3%
TH24-01	G9	7.47 - 7.62 m	49.6%	TH24-05	G9	7.47 - 7.62 m	31.5%
TH24-01	G10	8.99 - 9.14 m	44.5%	TH24-05	G11	8.99 - 9.14 m	39.3%
TH24-01	G12	10.52 - 10.67 m	49.3%	TH24-05	G12	10.52 - 10.67 m	44.4%
TH24-01	G13	12.04 - 12.19 m	46.5%	TH24-05	G14	12.04 - 12.19 m	39.7%
TH24-01	G15	13.56 - 13.72 m	51.3%	TH24-05	G15	13.56 - 13.72 m	15.5%
TH24-01	G16	15.09 - 15.24 m	50.1%	TH24-05	G16	14.48 - 14.63 m	11.4%
TH24-01	G17	16.61 - 16.76 m	13.8%			0.00 - 0.00 m	-
		0.00 - 0.00 m	-			0.00 - 0.00 m	-
TH24-02	G1	0.15 - 0.30 m	33.3%			0.00 - 0.00 m	-
TH24-02	G2	0.61 - 0.76 m	33.9%			0.00 - 0.00 m	-
TH24-02	G3	1.37 - 1.52 m	35.0%			0.00 - 0.00 m	-
TH24-02	G4	2.90 - 3.05 m	34.9%			0.00 - 0.00 m	-
TH24-02	G6	4.42 - 4.57 m	33.6%			0.00 - 0.00 m	-
TH24-02	G7	5.94 - 6.10 m	33.8%			0.00 - 0.00 m	-
TH24-02	G9	7.47 - 7.62 m	36.5%			0.00 - 0.00 m	-
TH24-02	G10	8.99 - 9.14 m	38.7%			0.00 - 0.00 m	-
TH24-02	G12	10.52 - 10.67 m	48.0%			0.00 - 0.00 m	-
TH24-02	G13	12.04 - 12.19 m	12.7%			0.00 - 0.00 m	-
TH24-02	G14	12.80 - 12.95 m	13.1%			0.00 - 0.00 m	-
		0.00 - 0.00 m	-			0.00 - 0.00 m	-
TH24-04	G1	0.15 - 0.30 m	32.8%			0.00 - 0.00 m	-
TH24-04	G2	0.61 - 0.76 m	35.0%			0.00 - 0.00 m	-
TH24-04	G3	1.37 - 1.52 m	35.6%			0.00 - 0.00 m	-
TH24-04	G4	2.90 - 3.05 m	31.2%			0.00 - 0.00 m	-
TH24-04	G6	4.42 - 4.57 m	32.4%			0.00 - 0.00 m	-
TH24-04	G7	5.94 - 6.10 m	38.1%			0.00 - 0.00 m	-
TH24-04	G9	7.47 - 7.62 m	42.0%			0.00 - 0.00 m	-
TH24-04	G10	8.99 - 9.14 m	32.7%		1	0.00 - 0.00 m	-
TH24-04	G12	10.52 - 10.67 m	38.4%		1	0.00 - 0.00 m	-
TH24-04	G13	12.04 - 12.19 m	39.7%			0.00 - 0.00 m	-
TH24-04	G14	12.95 - 13.11 m	18.5%			0.00 - 0.00 m	-
		0.00 - 0.00 m	-			0.00 - 0.00 m	_

420 Turenne Street Winnipeg, Manitoba R2J 3W8 engtech@mymts.net www.eng-tech.ca

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"

File No.:	24-027-01
Ref. No.:	24-27-1-8,9 R1

AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Submitted By:	Client	Page:	1 of 1
Date Cored:	-	Date Received:	Aug 1/24
Received By:	ENG-TECH (Kevin Dowbeta)	Tested By:	ENG-TECH (Kevin Dowbeta)
Core Conditioning:	As received moisture condition		
Specimen Temperature:	24.0°C (room temperature)	Method:	ASTM D2938-95

Core Client No. ID	Test Hole Location / Core Depth (m)	Length		Average	Rate of	Compressive	Date	
		Cored (mm)	Tested (mm)	Diameter (mm)	Loading (kN/s)	Strength (MPa)	Tested (m/d/y)	
1	C18	TH24-01, 18.3 - 18.5	191	157.25	63.00	0.7	78	Aug 7/24
2	C23	TH24-05, 23.75 - 24.2	445	136.50	63.00	0.7	128	Aug 7/24

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments:

Revision 1: Core No. 2 Client ID

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

Enclosure: Unconfined Compressive Strength Of Intact Rock Core Specimen Reports Ref. No.'s 24-27-1-8 and 9

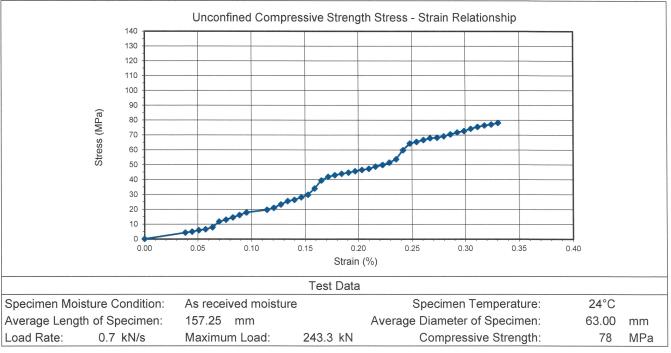
ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T. Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"


AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9
 File No.:
 24-027-01

 Ref. No.:
 24-27-1-8

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

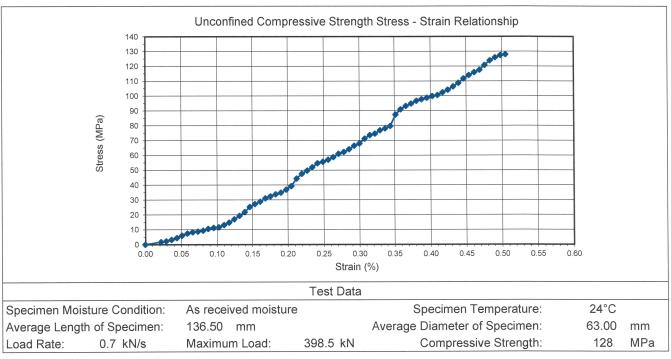
Client I.D.	C18		
Test Hole/Depth	TH24-01, 18.3 - 18.5 meters	Submitted By:	Client
Date Cored:	-	Date Tested:	Aug 7/24
Date Received:	Aug 1/24	Tested By:	ENG-TECH (Kevin Dowbeta)
Compression Machin	ne Model: Soil Test CT-710	Method:	ASTM D2938-95

Comments:

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per



UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"

AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9		File No.: Ref. No.:	24-027-01 24-27-1-9 R1
Attention:	Gene Acurin, E.I.T.		
Project:	PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIV	/ER CROSS	ING
Client I.D. Test Hole/Depth Date Cored: Date Received: Compression Ma	- Date Tester Aug 1/24 Tested E	by: Client d: Aug 7/24 by: ENG-TEC	23.75 - 24.2 CH (Kevin Dowbeta) 2938-95

Comments:

Revision 1: Test Hole, Depth

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"

AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9 File No.:24-027-01Ref. No.:24-27-1-10,11,12

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Submitted By:	Client	Page:	1 of 1
Date Cored:	-	Date Received:	Aug 16/24
Received By:	ENG-TECH (Jessica Bauer)	Tested By:	ENG-TECH (Kyle Zebiere)
Core Conditioning:	As received moisture condition		
Specimen Temperature:	24.0°C (room temperature)	Method:	ASTM D2938-95

Core		Client	Test Hole Location	Length		Average	Rate of	Compressive	Date
	No.	ID	/ Core Depth (m)	Cored (mm)	Tested (mm)	Diameter (mm)	Loading (kN/s)	Strength (MPa)	Tested (m/d/y)
	1	C20	TH24-03, 29.97 - 30.19	210	140.00	63.00	0.7	87.7	Aug 22/24
	2	C21	TH24-03, 31.43 - 31.65	212	154.00	63.00	0.7	50.6	Aug 22/24
	3	C22	TH24-03, 32.28 - 32.76	470	155.50	63.00	0.7	35.3	Aug 22/24

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments:

Deviation from test procedure: None

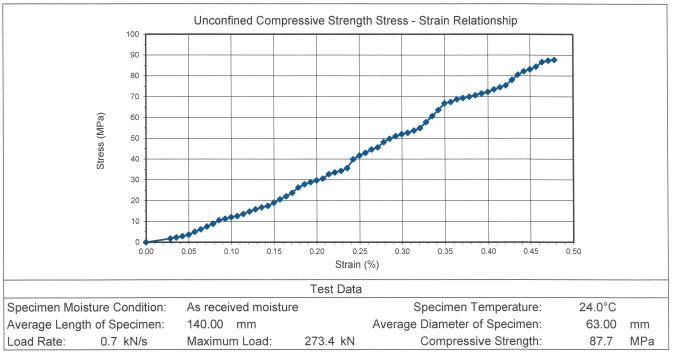
Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

Enclosure: Unconfined Compressive Strength of Intact Rock Core Specimen Reports Ref. No.'s 24-27-1-10, 11 and 12

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"


AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9
 File No.:
 24-027-01

 Ref. No.:
 24-27-1-10

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Client I.D.	C20			
Test Hole/Depth	TH24-03, 29.97 - 30.1	9 meters	Submitted By:	Client
Date Cored:	-		Date Tested:	Aug 22/24
Date Received:	Aug 16/24		Tested By:	ENG-TECH (Kyle Zebiere)
Compression Machin	e Model: Soil Test (CT-710	Method:	ASTM D2938-95

Comments:

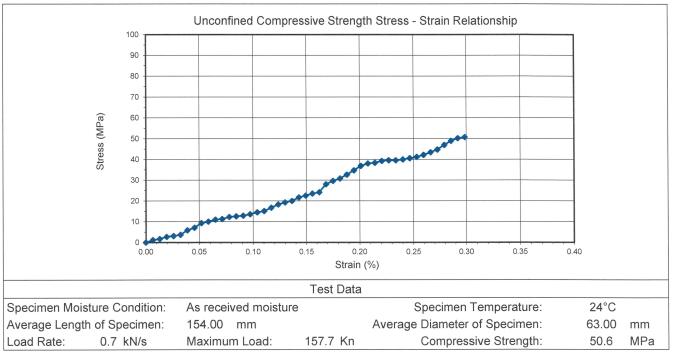
Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"


AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9
 File No.:
 24-027-01

 Ref. No.:
 24-27-1-11

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Client I.D.	C21		
Test Hole/Depth	TH24-03, 31.43 - 31.65 meters	Submitted By:	Client
Date Cored:	-	Date Tested:	Aug 22/24
Date Received:	Aug 16/24	Tested By:	ENG-TECH (Kyle Zebiere)
Compression Machin	ne Model: Soil Test CT-710	Method:	ASTM D2938-95

Comments:

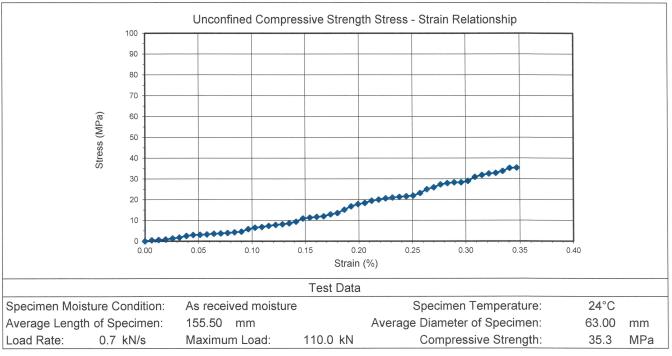
Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"


AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9
 File No.:
 24-027-01

 Ref. No.:
 24-27-1-12

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Client I.D.	C22		
Test Hole/Depth	TH24-03, 32.28 - 32.76 meters	Submitted By:	Client
Date Cored:	-	Date Tested:	Aug 22/24
Date Received:	Aug 16/24	Tested By:	ENG-TECH (Kyle Zebiere)
Compression Machir	ne Model: Soil Test CT-710	Method:	ASTM D2938-95

Comments:

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited Per

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"

AECOM Canada Inc.	File No.:	24-027-01
99 Commerce Drive		
Winnipeg, Manitoba	Ref. No.:	24-27-1-19, 20
R3P 1J9		

Attention: Gene Acurin, E.I.T.

Project: PROJECT NO. 60728226, FORT GARY / ST. VITAL SIPHON RIVER CROSSING

Submitted By:	Client	Page:	1 of 1
Date Cored:	Aug 13/24	Date Received:	Feb 7/25
Received By:	ENG-TECH (Rey Batac)	Tested By:	ENG-TECH (Kyle Zebiere)
Core Conditioning:	As received moisture condition		
Specimen Temperature:	23.0°C (room temperature)	Method:	ASTM D2938-95

Core No.	Client Test Hole Location		Length		Average	Rate of	Compressive	Date	
	No.	ID	/ Core Depth (m)	Cored (mm)	Tested (mm)	Diameter (mm)	Loading (kN/s)	Strength (MPa)	Tested (m/d/y)
	1	C09	TH24-03, 53'5.5" - 54'1.5"	198	134.50	63.25	0.12	93	Feb 14/25
	2	C10	TH24-03, 57'3.5" - 58'1.5"	248	156.50	63.00	0.12	235	Feb 14/25

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments:

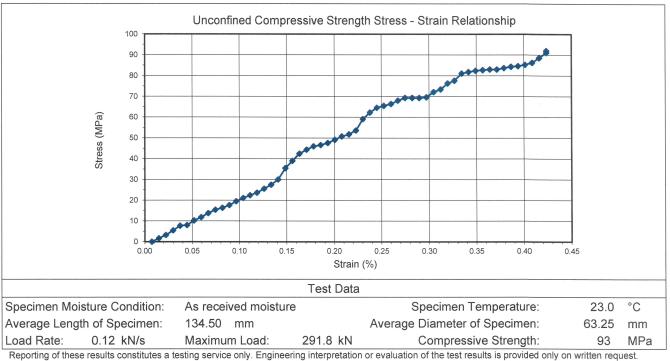
Deviation from test procedure: none

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per

Enclosure: Unconfined Compressive Strength of Intact Rock Core Specimen Reports Ref. No.'s 24-27-1-19 and 20



UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

"Engineering and Testing Solutions That Work for You"

AECOM Canada Inc. 99 Commerce Drive Winnipeg, Manitoba R3P 1J9			ile No.: Ref. No.:	24-027-01 24-27-1-19	
Attention:	Attention: Gene Acurin, E.I.T.				
Project:	PROJECT NO. 60728226, FORT GARY / ST. VITA	L SIPHON RIVE	R CROSSI	NG	
Client I.D.	C09				
Test Hole/Depth	TH24-03, 53' 5.5" to 54' 1.5"	Submitted By:	Client		
Date Cored:	Aug 13/24	Date Tested:	Feb 14/25		
Date Received:	Feb 7/25	Tested By:	ENG-TECH	H (Kyle Zebiere)	
Compression Ma	ASTM D29	938-95			

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments:

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

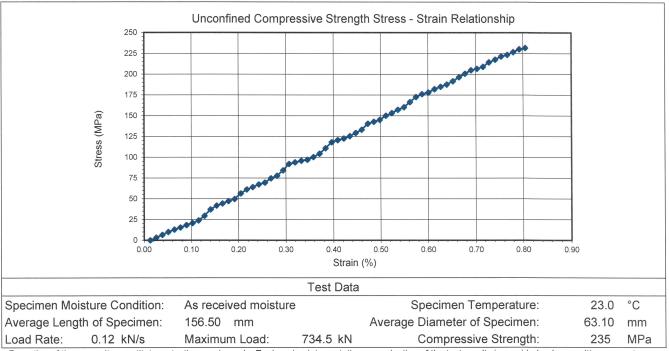
ENG-TECH Consulting Limited

Per

UNCONFINED COMPRESSIVE STRENGTH OF INTACT ROCK CORE SPECIMEN

24-027-01

24-27-1-20


"Engineering and Testing Solutions That Work for You"

Feb 7/25

AECOM Canad 99 Commerce Winnipeg, Man R3P 1J9	Drive		ile No.: ef. No.:	24- 24-
Attention:	Gene Acurin, E.I.T.			
Project:	PROJECT NO. 60728226, FORT GARY / ST. VITAL	SIPHON RIVER	R CROSSI	NG
Client I.D. Test Hole/Depth Date Cored:	C10 TH24-03, 57' 3.5" to 58' 1.5" Aug 13/24	Submitted By: Date Tested:	Client Feb 14/25	

Soil Test CT-710

Submitted By: Client Date Tested: Feb 14/25 Tested By: ENG-TECH (Kyle Zebiere) Method: ASTM D2938-95

Reporting of these results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request. *Denotes core Length/Diameter ratio not between 2.0 and 2.5.

Comments:

Date Received:

Compression Machine Model:

Deviation from test procedure: None

Email: AECOM Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T. Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Per

August 23, 2024

Gene Acurin AECOM 99 Commerce Drive Winnipeg, MB Canada, R3P 0Y7

Re: CERCHAR Abrasivity Testing (AECOM Project No. 60728226)

Dear Gene:

On July 17th, 2024 and August 16th, 2024 two (2) and three (3) HQ-sized core samples were received by Geomechanica Inc. via courier service. These samples were identified as being from AECOM project 60728226 (Replacement of FGSV Siphon Crossing the Red River Project). From these samples, a total of five (5) CERCHAR Abrasivity tests were completed.

Details regarding the steps of specimen preparation and testing along with the test results are presented in the accompanying laboratory report and summary spreadsheet.

Sincerely,

Bryan Tatone Ph.D., P. Eng.

Geomechanica Inc. Tel: (647) 478-9767 Email: bryan.tatone@geomechanica.com

Rock Laboratory Testing Results

A report submitted to:

Gene Acurin AECOM 99 Commerce Drive Winnipeg, MB Canada, R3P 0Y7

Prepared by:

Bryan Tatone, PhD, PEng

Omid Mahabadi, PhD, PEng Geomechanica Inc. #14-1240 Speers Rd. Oakville ON L6L 2X4 Canada Tel: +1-647-478-9767 lab@geomechanica.com

August 23, 2024 Project number: 60728226

Abstract

This document summarizes the results of rock laboratory testing, including 5 CERCHAR Abrasivity tests. The CERCHAR Abrasivity Index (CAI) value(s) are presented herein.

In this document:

1 CERCHAR Abrasivity Tests

1

Disclaimer:This report was prepared by Geomechanica Inc. for AECOM. The material herein reflects Geomechanica Inc.'s best judgment given the information available at the time of preparation. Any use which a third party makes of this report, any reliance on or decision to be made based on it, are the responsibility of such third parties. Geomechanica Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

1 CERCHAR Abrasivity Tests

1.1 Overview

This section summarizes the results of CERCHAR abrasivity testing. Testing was performed using a Type-2 CERCHAR apparatus as shown in Figure 1a. The tips of the styluses were sharpened to a conical angle of 90° using the setup shown in Figure 1b. The styluses used to perform the tests are shown in Figure 1c-d (Rockwell hardness 55 ± 1). A static force of 70 N was applied on top of the stylus by using a combination of weights. Details of the testing procedure are as follows:

- 1. The tips of the five styluses are sharpened using the grinding apparatus (Figure 1b).
- 2. The styluses are placed under a microscope (60x magnification) and three scaled photos (120° apart) are captured before the test is conducted to ensure the 90° point has been properly formed.
- 3. The test specimens are obtained by breaking core samples to expose a fresh fracture surface perpendicular to the core axis.
- 4. The specimen is secured in the cross-slide vise of the testing apparatus and the stylus is carefully lowered on to the surface of the rock.
- 5. A scratch measuring 10 mm in length is performed over a duration of 10 seconds. This process is repeated with all five styluses on undisturbed parts of the fracture surface (e.g., Figure 2a).
- 6. Lastly, the worn tips are re-examined under the microscope. From three scaled photos (120° apart), the wear flat, *d*, is measured (e.g., Figure 2c).

The length or the diameter of the wear flat, d, was measured from scaled microscope images using the image processing software Fiji (e.g., Figure 2b-c). The mean wear of the tip is calculated by taking the average d of all tests. The CERCHAR-Abrasivity-Index (CAI) of the sample is subsequently calculated by taking the mean wear and multiplying it by 10. The above testing procedure followed ASTM D7625.

1.2 Results

The results of CERCHAR abrasivity testing are provided in Table 1. Please note that additional specimen and testing details are available in the summary spreadsheet that accompanies this report.

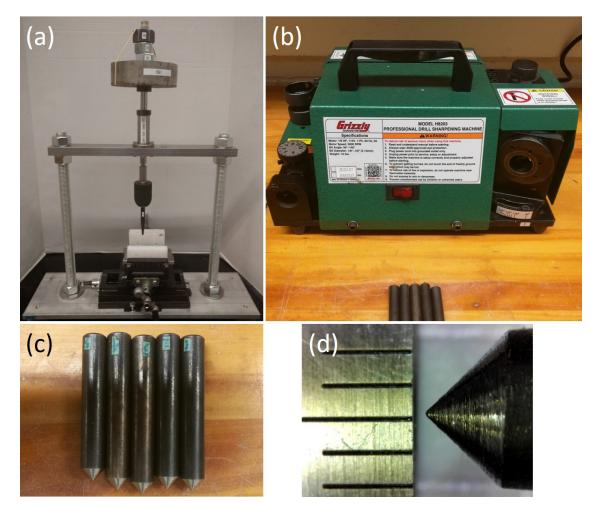


Figure 1: Photos showing (a) the CERCHAR apparatus, (b) tip sharpening setup, (c) the five styluses used to perform the test and (d) a microscope image of one of the stylus tips.

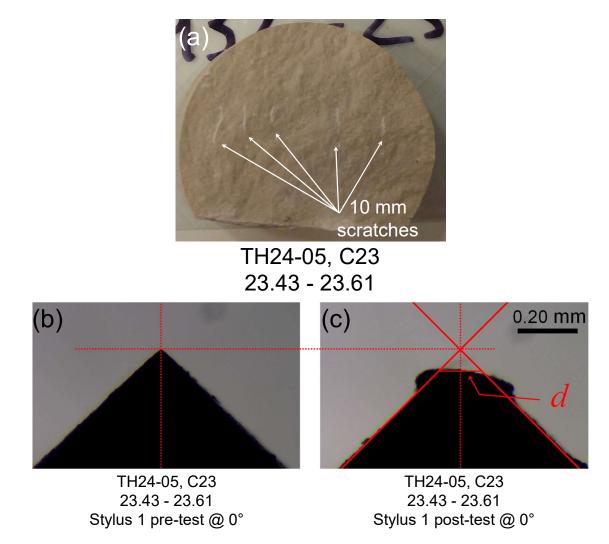


Figure 2: (a) Photograph showing an example of the five 10 mm scratches on a test specimen; (b) microscope image of select stylus prior to testing at the noted position; and (c) microscope image of the same stylus at the same position following testing with the wear flat, d, denoted.

Sample	Depth (m)	Test 1 Mean (mm)	Test 2 Mean (mm)	Test 3 Mean (mm)	Test 4 Mean (mm)	Test 5 Mean (mm)	Mean Wear (mm)	CAI	Lithology	ASTM Classification
TH24-01, C23	25.30 - 25.43	0.127	0.068	0.105	0.176	0.165	0.128	1.281	Lower Red River Formation - dolomitic mudstone, brecciated	Medium
TH24-05, C23	23.43 - 23.61	0.154	0.164	0.167	0.164	0.190	0.168	1.677	Lower Red River Formation - dolomitic mudstone, brecciated	Medium
TH24-03, C20	29.11 - 29.29	0.117	0.114	0.050	0.041	0.073	0.079	0.789	Lower Red River Formation - dolomitic mudstone, brecciated	Low
TH24-03, C21	31.13 - 31.32	0.059	0.055	0.029	0.034	0.034	0.042	0.423	Lower Red River Formation - dolomitic mudstone, brecciated	Very Low
TH24-03, C22	32.84 - 32.99	0.046	0.051	0.048	0.080	0.029	0.051	0.509	Lower Red River Formation - dolomitic mudstone, brecciated	Very Low

Table 1: Summary of CERCHAR abrasivity test results.

Rock Laboratory Testing Results

A report submitted to:

Gene Acurin AECOM 99 Commerce Drive Winnipeg, MB Canada, R3P 0Y7

Prepared by:

Bryan Tatone, PhD, PEng

Omid Mahabadi, PhD, PEng Geomechanica Inc. #14-1240 Speers Rd. Oakville ON L6L 2X4 Canada Tel: +1-647-478-9767 lab@geomechanica.com

February 20, 2025 Project number: 60728226

Abstract

This document summarizes the results of rock laboratory testing, including 2 CERCHAR Abrasivity tests. The CERCHAR Abrasivity Index (CAI) value(s) are presented herein.

In this document:

1 CERCHAR Abrasivity Tests

1

Disclaimer:This report was prepared by Geomechanica Inc. for AECOM. The material herein reflects Geomechanica Inc.'s best judgment given the information available at the time of preparation. Any use which a third party makes of this report, any reliance on or decision to be made based on it, are the responsibility of such third parties. Geomechanica Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

1 CERCHAR Abrasivity Tests

1.1 Overview

This section summarizes the results of CERCHAR abrasivity testing. Testing was performed using a Type-2 CERCHAR apparatus as shown in Figure 1a. The tips of the styluses were sharpened to a conical angle of 90° using the setup shown in Figure 1b. The styluses used to perform the tests are shown in Figure 1c-d (Rockwell hardness 55 ± 1). A static force of 70 N was applied on top of the stylus by using a combination of weights. Details of the testing procedure are as follows:

- 1. The tips of the five styluses are sharpened using the grinding apparatus (Figure 1b).
- 2. The styluses are placed under a microscope (60x magnification) and three scaled photos (120° apart) are captured before the test is conducted to ensure the 90° point has been properly formed.
- 3. The test specimens are obtained by breaking core samples to expose a fresh fracture surface perpendicular to the core axis.
- 4. The specimen is secured in the cross-slide vise of the testing apparatus and the stylus is carefully lowered on to the surface of the rock.
- 5. A scratch measuring 10 mm in length is performed over a duration of 10 seconds. This process is repeated with all five styluses on undisturbed parts of the fracture surface (e.g., Figure 2a).
- 6. Lastly, the worn tips are re-examined under the microscope. From three scaled photos (120° apart), the wear flat, *d*, is measured (e.g., Figure 2c).

The length or the diameter of the wear flat, d, was measured from scaled microscope images using the image processing software Fiji (e.g., Figure 2b-c). The mean wear of the tip is calculated by taking the average d of all tests. The CERCHAR-Abrasivity-Index (CAI) of the sample is subsequently calculated by taking the mean wear and multiplying it by 10. The above testing procedure followed ASTM D7625.

1.2 Results

The results of CERCHAR abrasivity testing are provided in Table 1. Please note that additional specimen and testing details are available in the summary spreadsheet that accompanies this report.

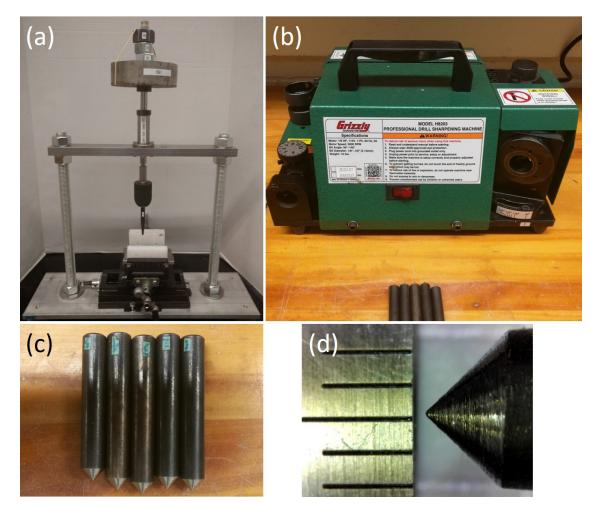


Figure 1: Photos showing (a) the CERCHAR apparatus, (b) tip sharpening setup, (c) the five styluses used to perform the test and (d) a microscope image of one of the stylus tips.

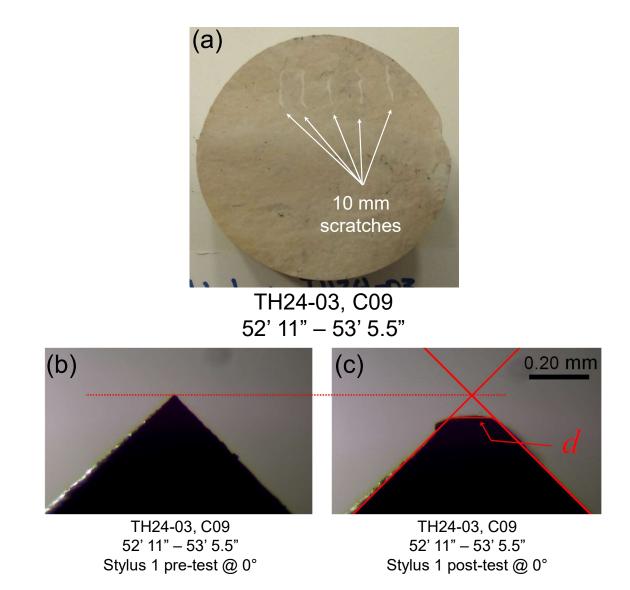


Figure 2: (a) Photograph showing an example of the five 10 mm scratches on a test specimen; (b) microscope image of select stylus prior to testing at the noted position; and (c) microscope image of the same stylus at the same position following testing with the wear flat, d, denoted.

Sample	Depth (ft' in")	Test 1 Mean (mm)	Test 2 Mean (mm)	Test 3 Mean (mm)	Test 4 Mean (mm)	Test 5 Mean (mm)	Mean Wear (mm)	CAI	Lithology	ASTM Classification
TH24-03, C10	56'8" - 57'3.5"	0.157	0.152	0.140	0.151	0.159	0.152	1.517	Lower Red River Formation - dolomitic mudstone,	Medium
TH24-03, C09	52'11" - 53'5.5"	0.138	0.165	0.179	0.186	0.179	0.169	1.694	brecciated Lower Red River Formation - dolomitic mudstone,	Medium
									brecciated	

Table 1: Summary of CERCHAR abrasivity test results.

Appendix 5

Seismic Hazard Values

Government of Canada

Gouvernement du Canada

Canada.ca > Natural Resources Canada > Earthquakes Canada

2020 National Building Code of Canada Seismic Hazard Tool

0

This application provides seismic values for the design of buildings in Canada under Part 4 of the National Building Code of Canada (NBC) 2020 as prescribed in Article 1.1.3.1. of Division B of the NBC 2020.

Seismic Hazard Values

User requested values

Code edition	NBC 2020
Site designation X _S	X _E
Latitude (°)	49.822
Longitude (°)	-97.143

Please select one of the tabs below.

NBC 2020 Additional Values Plots API

Background Information

The 5%-damped <u>spectral acceleration</u> ($S_a(T,X)$, where T is the period, in s, and X is the site designation) and <u>peak ground acceleration</u> (PGA(X))

<u>ground velocity</u> (PGV(X)) values are given in m/s. Probability is expressed in terms of percent exceedance in 50 years. Further information on the calculation of seismic hazard is provided under the *Background Information* tab.

The 2%-in-50-year seismic hazard values are provided in accordance with Article 4.1.8.4. of the NBC 2020. The 5%- and 10%-in-50-year values are provided for additional performance checks in accordance with Article 4.1.8.23. of the NBC 2020.

See the *Additional Values* tab for additional seismic hazard values, including values for other site designations, periods, and probabilities not defined in the NBC 2020.

NBC 2020 - 2%/50 years (0.000404 per annum) probability

S _a (0.2, X _E)	S _a (0.5, X _E)	S _a (1.0, X _E)	S _a (2.0, X _E)	S _a (5.0, X _E)	S _a (10.0, X _E)	PGA(X _E)	PGV(X _E)
0.112	0.106	0.0546	0.0214	0.0043	0.00125	0.0677	0.054

The log-log interpolated 2%/50 year S_a(4.0, X_E) value is : **0.0064**

▶ Tables for 5% and 10% in 50 year values

Download CSV

Go back to the seismic hazard calculator form

Date modified: 2021-04-06

Appendix 6

Technical Memorandum (AECOM, 2021)

AECOM 99 Commerce Drive 204 477 5381 tel Winnipeg, MB, Canada R3P 0Y7 204 284 2040 fax www.aecom.com

To: Armand Delaurier, Paul Bortoluzzi

Date:	March 17, 2021
Project #:	60645745
From:	Ryan Harras, B.Sc., P.Eng.
	Elliott Drumright, PhD, P.E.

cc: Adam Braun (AECOM)

Technical Memorandum

Subject: High Risk River Crossings – Phase 3 – Geotechnical Condition Assessment

1. Introduction

1.1 General

The City of Winnipeg (City) has retained AECOM Canada Ltd (AECOM) to provide consulting services related to the condition assessment of High Risk Sewer and Water River Crossings (HRRC's) contained within the Phase 3 assessment program. As part of the stipulated condition assessment, geotechnical review was required at seven high risk crossing sites (Site 4 to Site 10).

The objective of the geotechnical assessment was to characterize the potential risk of slope instability and erosion as it relates to the serviceability of specific buried sewer and water systems at each of these crossing sites. Although commentary is provided on slope instabilities and erosion observed along the banks at each of the sites, the risk characterizations were based solely on existing bank features and conditions present that have the potential to engage the underlying utilities being studied. The findings of this assessment will assist the City in evaluating the probability of failure and managing these assets. The seven sites include: Fort Garry Bridge Siphon Crossings (Site 4), West Perimeter Bridge Force Main Crossing (Site 5), Dakota Feeder Main Crossing (Site 6A and Site 6B), Rouge Road Feeder Main Crossing (Site 7), West End (Omand's) Feeder Main Crossing (Site 8), West End (Truro) Feeder Main Crossing (Site 9), and the Haney-Moray Feeder Main Crossing (Site 10). It is understood that the remaining three high risk crossing sites (Site 1 to 3) are bridge-mounted, and therefore did not require a riverbank assessment as part of this scope of work.

The geotechnical component of the condition assessment included a review of available background information, followed by completion of a visual field inspection within a 30 m influence zone of each of the pipeline crossing sites. The findings and conclusions derived from the desktop review and visual field inspection were used to assign a Slope Condition Grade (SCG) and Erosion Condition Grade (ECG) related specifically to the risks the existing bank conditions pose to the utility lines, and assisted in identifying the sites that would need to be subjected to further geotechnical investigation and/or slope stability analyses.

This Technical Memorandum (TM) presents the findings of the geotechnical condition assessment completed for Site 4 to Site 10 and includes a summary of the results of background information review, visual field inspection, and assigned slope and erosion condition grades, as well as the results of the geotechnical investigations and slope stability analyses completed.

1.2 Background

The following geotechnical reports and studies were referenced in conjunction with this TM:

Site 4 (Fort Garry/St. Vital Interceptor Siphons - Red River)

- AECOM Canada Ltd. (September 13, 2018) Technical Memorandum High Risk River Crossings Phase 2 Geotechnical Assessment for Site 5 and 6. Ref. AECOM Project Number 60549028.
- AECOM Canada Ltd (December 12, 2013) Technical Memorandum Preliminary Geotechnical Assessment Fort Garry Interceptor Sewer Crossing at the Red River.
- AECOM Canada Ltd (May 23, 2012) Technical Memorandum Test hole adjacent to Interceptor, Fort Garry to St. Vital Interceptor, East Bank of Red River at Bishop Grandin Boulevard.
- Klohn Leonoff Consultants Ltd (April 5, 1976) Report on Sub-Soil Investigation Fort Garry-St. Vital Corridor, Winnipeg, Manitoba.

Site 5 (West Perimeter Bridge Force Main - Assiniboine River)

• Geokwan Engineering Ltd. (October 25, 2000). Report on Sub-Soil Investigation. Proposed Perimeter West 600mm Outfall Sewer & 400mm Forcemain, Perimeter Hwy & Assiniboine River.

Site 7 (Rouge Road Feeder Main - Sturgeon Creek)

• KGS Group (October 2019). Report – Hamilton Avenue Bridge Outfalls - Preliminary Design Brief.

Site 8 (West End Feeder Main - Omand's Creek)

- UMA Engineering (August 5, 1987). Report West End Feedermain Geotechnical Investigation.
- TREK Geotechnical (September 23, 2015). Report Saskatchewan Avenue at Omand's Creek Bridge Replacement – Geotechnical Investigation.

<u>Site 9 (West End Feeder Main – Truro Creek)</u>

• UMA Engineering (August 5, 1987). Report - West End Feedermain Geotechnical Investigation.

The following sources of information (varying in availability) were also referenced in review and evaluation of each HRRC site:

- As-built records.
- Aerial photography.
- Historic reports.
- Geological survey maps.
- Anecdotal information.

1.3 Bank Classification System

AECOM reviewed the City of Winnipeg's *Riverbank Stability Characterization Study (May 2000)* and assessed the banks at each HRRC site based on the basic classifications defined within the document. The bank classifications from this document are summarized as follows:

- Failure Controlled Banks Are located in concave sections or outside bends of the river and are typically characterized by large deep-seated failures. Failures are typically within glaciolacustrine soils, and slopes generally achieve a quasi-stable configuration in the range of 6H:1V to 9H:1V
- Erosion Controlled Banks Are located in convex sections or inside bends of the river and are typically characterized by localized shallow bank failures that occur due to excessive toe erosion. Failures are typically within alluvial soils, and slopes generally achieve a quasi-stable configuration in the range of 1H:1V to 3H:1V.

- Transition Banks Are located in relatively straight river sections leading into convex/concave sections and are typically characterized by shallow and deep-seated failures. Failures may occur within alluvial and/or glaciolacustrine soils.
- Altered Banks Consist of any of the above banks that have undergone remedial works to improve bank slope stability. These remedial works may include slope regrading, erosion protection (i.e. riprap armoring), shear keys, granular ribs, rock fill caissons, or retaining walls. Failures may still occur within these banks depending on the types and efficacy of the stabilization measures implemented.

Classification of the banks at each HRRC site were selected based on the geometry of the waterway, the results of the background information review, and the observations made during the visual field inspection.

1.4 Slope Condition Grade and Erosion Condition Grade System

AECOM implemented a SCG and ECG evaluation system at each of the sites. The SCG is directly analogous to the pipe's structural condition and is related to the structural stability of the overall slope that could engage the pipe. The ECG is analogous to the pipe's service ratings and is related to the toe erosion potential of the banks at each site and its potential ability to initiate or progress larger slope failures that may engage the pipe over time. The grading system is similar to the existing 5-point structural condition system identified by the Water Research Centre (WRC) and is summarized as follows:

- 1 = new asset or no defects present
- 2 = defects present, but short-term potential for further deterioration is low
- 3 = defects present, short-term potential for further deterioration is highly likely
- 4 = defects present of such a nature that a random event could initiate failure.
- 5 = defects present to the degree that failure has occurred or is incipient.

Sites with an SCG and/or ECG rating of 3 or above were considered for preliminary slope stability modelling and analyses that is discussed in subsequent sections.

2. Background Information Review

The following section summarize the results of the background information review at each HRRC crossing site.

2.1 Site 4: Fort Garry/St. Vital Interceptor Siphons (Red River)

• Asset: 700 mm and 800 mm HDPE Siphons.

Site 4 is located along the Red River at the Bishop Grandin Bridge crossing in south Winnipeg. The Red River crossing at Bishop Grandin Boulevard currently consists of two bridge structures with an under-bridge pedestrian crossing at both banks. An aerial location view of the site is shown in **Figure 2-1**.

Figure 2-1 – Site 4 Location

The Red River flows north, with the crossing located near a gentle bend in the river. The west bank is on the inside of the bend (convex section) and the east bank is on the outside of the bend (concave section).

The Fort Garry/St. Vital interceptor siphon crossing is located within alluvial sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The alluvial soils that form the flood plain are comprised mainly of beds of clay, silt, sand, and gravel, which were deposited either directly on glacial till or on a layer of lacustrine clay. Existing test hole information indicates that the alluvial deposits are exposed over the full height of the subject riverbank throughout the study area.

The 700 mm and 800 mm buried siphons cross the river at approximate invert elevations ranging from 218.0 m to 219.5 m. The siphons rise significantly within the riverbank slopes to an invert elevation ranging from approximately 224.0 m to 226.0 m. The approximate locations of the siphons are shown on the as-built records attached in **Appendix A1**.

Klohn Leonoff Consultants Ltd. completed a subsurface geotechnical investigation at this site in 1975 and 1976 to determine subsurface ground and groundwater conditions at the site during design of the Bishop Grandin Bridges. An additional geotechnical investigation was completed by AECOM along the east bank in 2013 to provided subsurface information to assess the risk of slope instability with respect to the 800 mm siphon. The existing test hole logs and location plans that were available to AECOM at this site are attached in **Appendix B1**.

The geotechnical investigation completed by AECOM along the eastern riverbank slopes in 2013 concluded that slope conditions did not meet required factors of safety when assessed under short term conditions (i.e. rapid drawdown), which could potentially result in a slope failure engaging the existing 800 mm siphon within the eastern

riverbank slope. The report recommended placement of stone riprap in-conjunction with slope regrading to mitigate the adverse effects of rapid drawdown on the bank stability. This work was completed in spring of 2014, along with repairs to the 800 mm interceptor at the eastern bank. Records of this work are included in **Appendix A1**.

2.2 Site 5: West Perimeter Force Main (Assiniboine River)

• Asset: 400 mm Steel Force Main

Site 5 is located along the Assiniboine River at the West Perimeter Highway Bridge crossing located near the west end of Winnipeg. The Assiniboine River crossing at the West Perimeter Highway currently consists of a single bridge structure with an under-bridge roadway at the north bank (Oxbow Bend Road). An aerial view of the site is shown in **Figure 2-2**.

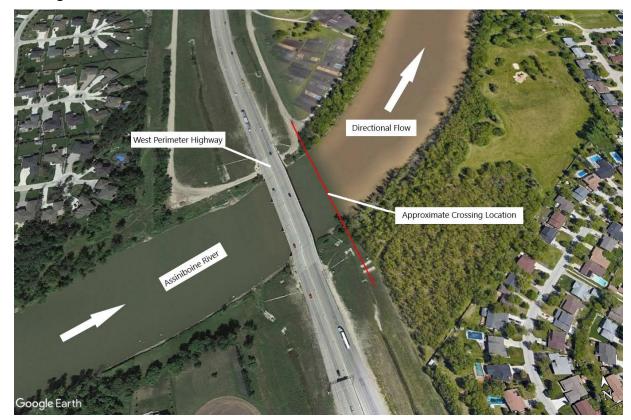


Figure 2-2 - Site 5 Location

The Assiniboine River flows approximately east, with the crossing located along a relatively straight stretch of the river, transitioning into a curve downstream of the crossing (with the south bank turning into an outside/concave bend, and the north bank turning into an inside/convex bend).

The West Perimeter Force Main crossing is located within an area of alluvial and glaciolacustrine sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The alluvial soils are typically comprised of beds of clay, silt, sand, and gravel, which were deposited either directly on glacial till or on a layer of lacustrine clay. The glaciolacustrine soils are comprised primarily of clays and silts, and were deposited from suspension within deep water of glacial Lake Agassiz. Existing test hole information indicates that alluvial and glaciolacustrine deposits were encountered within the study area.

The 400 mm buried force main crosses the river at an approximate invert elevation ranging from 226.6 m to 227.5 m. Within the north bank, the force main rises north of the riverbank slope crest to an approximate invert elevation

of 230.5 m. Within the south bank, the force main rises gradually at a grade of approximately 1.4%. The approximate location of the force main is shown on the as-built records attached in **Appendix A2**.

Geokwan Engineering Ltd. completed a subsurface geotechnical investigation at this site in 2000 to determine subsurface ground and groundwater conditions at the site during design of the 400 mm steel force main. The existing test hole logs and location plan that were made available to AECOM are attached in **Appendix B2**.

2.3 Site 6: Dakota Feeder Main (Seine River and Navin Drain)

• Asset: 600 mm PCCP Feeder Main

Site 6 is located along the Seine River and Navin Drain, located north of Bishop Grandin Boulevard in south Winnipeg. The Navin Drain crossing location has been identified as "Site 6A", while the Seine River crossing location has been identified as "Site 6B". An aerial view of both crossings is shown in **Figure 2-3**.

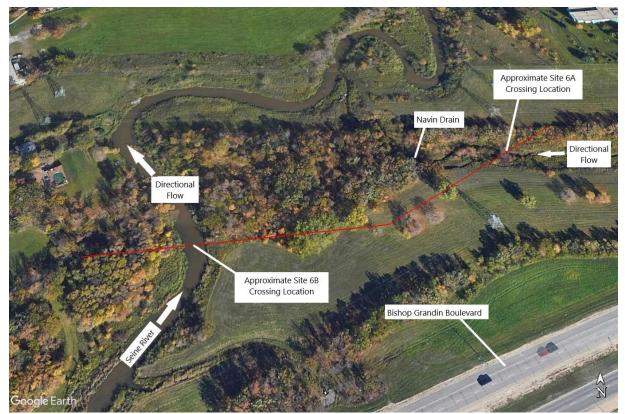


Figure 2-3 – Site 6 Location

The Navin Drain is a slightly meandering, man-made drainage channel that flows west and discharges into the Seine River. The Seine River flows generally north towards the Red River, with the Site 6B crossing located within a moderate bend in the river. The west bank is on the inside of the bend (convex section) and the east bank is on the outside of the bend (concave section).

Site 6A of the Dakota Feeder Main crosses the Navin Drain within glaciolacustrine sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). Glaciolacustrine soils are primarily comprised of clays and silts that were deposited from suspension within deep water of glacial Lake Agassiz.

Site 6B of the Dakota Feeder Main crosses the Seine River in an area of alluvial deposits as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The alluvial soils are comprised mainly of beds of clay, silt, sand, and gravel, which were deposited either directly on glacial till or on a layer of lacustrine clay.

The 600 mm feeder main crosses the Navin Drain and Seine River at approximate invert elevations of 224.0 m and 223.1 m, respectively. At points beyond the north and south bank slope crests of the Navin Drain (Site 6A), the feeder main rises to invert elevations ranging from 227.7 m to 228.0 m. Within the bank slopes of the Seine River (Site 6B), the feeder main rises to invert elevations ranging from 227.7 m to 228.0 m. The approximate location of the buried feeder main is shown on the as-built records attached in **Appendix A3**.

No existing geotechnical information at Site 6A and 6B was available for review.

2.4 Site 7: Rouge Road Feeder Main (Sturgeon Creek)

• Asset: 600 mm PCCP Feeder Main

Site 7 is located along Sturgeon Creek near the Hamilton Avenue Bridge in west Winnipeg. The Sturgeon Creek crossing at Hamilton Avenue currently consists of a single bridge structure with an under-bridge pedestrian crossing at both banks. An aerial view of the site is shown in **Figure 2-4**.

Figure 2-4 – Site 7 Location

Sturgeon Creek flows south towards the Assiniboine River, with the Site 7 crossing located within a straight portion of the creek immediately downstream of a creek bend.

The Rouge Road Feeder Main is located within an area of glaciolacustrine sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The glaciolacustrine soils are comprised primarily of clays and silts and were deposited from suspension within deep water of glacial Lake Agassiz. Existing test hole information north of the bridge site indicates that glaciolacustrine deposits were encountered in the vicinity of the study area.

The 600 mm feeder main crosses the creek at an approximate invert elevation of 228.9 m. Within the bank slopes, the feeder main rises within the slopes to an invert elevation of approximately 223.1 m at points just beyond the bank slope crests. The approximate location of the buried feeder main is shown on the as-built records attached in **Appendix A4**.

KGS Group completed a subsurface geotechnical investigation in the vicinity of this site in 2019 to determine subsurface ground and groundwater conditions at the site. The existing test hole logs and location plan that were made available to AECOM are attached in **Appendix B3**.

Information from the geotechnical investigation completed by KGS Group was used in developing slope stabilization measures on the north side of the bridge as part of the Hamilton Avenue Bridge Outfall Preliminary Design. The proposed works included regrading, placement of erosion protection, construction of a shear key, and filling of an observed sinkhole. This construction work is currently ongoing.

2.5 Site 8: West End Feeder Main (Omand's Creek)

• Asset: 900 mm PCCP Feeder Main

Site 8 is located along Omand's Creek at the Saskatchewan Avenue Bridge crossing. The Omand's Creek crossing currently consists of a relatively new roadway bridge structure (constructed in 2016) and two Canadian Pacific (CP) rail bridges upstream of it. An aerial view of the site is shown in **Figure 2-5**.

Figure 2-5 – Site 8 Location

Omand's Creek flows generally south towards the Assiniboine River, with the crossing located within a straight portion of the creek immediately downstream of a riprap-armoured creek bend.

The West End Feeder Main is located within an area of glaciolacustrine sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The glaciolacustrine soils are comprised primarily of clays and silts and were deposited from suspension within deep water of glacial Lake Agassiz. Existing test hole information indicates that glaciolacustrine deposits were encountered in the vicinity of the study area.

The 900 mm feeder main was installed within a hand-tunneled liner (backfilled with sand) in the vicinity of the crossing location, and crosses the creek at an approximate invert elevation of 228.5 m. At points beyond the east and west bank slope crests the feeder main rises to invert elevations ranging from 229.9 m to 230.9 m. The approximate location of the buried feeder main is shown on the as-built records attached in **Appendix A5**. However, it should be noted that the as-built information predates reconstruction of the Saskatchewan Avenue Bridge, and discrepancies were noted between information provided in the as-built drawings and observed site conditions at the crossing location with respect to bank geometry and riprap presence.

UMA Engineering Ltd. completed a subsurface geotechnical investigation along the feeder main alignment in the vicinity of this site in 1986 to determine subsurface ground and groundwater conditions during design of the West End Feeder Main. An additional geotechnical investigation was completed by TREK Geotechnical Inc. in 2015 to provide subsurface information for the purpose of design and reconstruction of the Saskatchewan Avenue Bridge. The existing test hole logs and location plans that were made available to AECOM have been attached in **Appendix B4**.

The 1986 geotechnical investigation by UMA included slope stability analyses at the Omand's Creek crossing, which indicated marginal factors of safety for shallow slip surfaces (consistent with observed over steepened bank conditions and observable instabilities), and adequate factors of safety for slip surfaces intersecting the proposed feeder main. The geotechnical investigation completed by TREK at the Saskatchewan Avenue Bridge site in 2015 also included slope stability analyses related to the proposed bridge infrastructure and existing feeder main. The results of the analysis indicated marginal factors of safety for the existing bank geometries and adequate factors of safety for slip surfaces intersecting the existing feeder main. As part of the bridge construction works, regrading and riprap armouring of the slopes to the south of the proposed bridge structure were proposed, and factors of safety for slip surfaces intersecting the existing feeder main were further improved. Construction of the proposed new bridge including regrading and riprap armouring to the south of the bridge was completed in 2016.

2.6 Site 9: West End Feeder Main (Truro Creek)

• Asset: 900 mm PCCP Feeder Main

Site 9 is located along Truro Creek southwest of the Silver Avenue Pathway pedestrian bridge, and east of the Assiniboine Golf course. An aerial view of the site is shown in **Figure 2-6**.

Figure 2-6 – Site 9 Location

Truro Creek flows south towards the Assiniboine River, with the pipeline crossing the creek on a skew within a straight portion of the creek immediately upstream of a gentle bend in the creek.

The West End Feeder Main is located within an area of glaciolacustrine sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The glaciolacustrine soils are comprised primarily of clays and silts and were deposited from suspension within deep water of glacial Lake Agassiz. Existing test hole information north of the bridge site indicates that glaciolacustrine deposits were encountered in the vicinity of the study area. The 900 mm feeder main crosses the creek at an approximate invert elevation of 227.7 m. Within the bank slopes, the feeder main rises within the slopes to an invert elevation ranging from approximately 231.1 m to 231.3 m at points near the bank slope crests. The approximate location of the buried feeder main is shown on the as-built records attached in **Appendix A6**.

UMA Engineering Ltd. completed a subsurface geotechnical investigation along the proposed feeder main in the vicinity of this site in 1986 to determine subsurface ground and groundwater conditions during design. The existing test hole logs and location plan that were made available to AECOM at this site have been attached in **Appendix B5**.

The geotechnical investigation by UMA included slope stability analyses at the Truro Creek crossing which indicated factors of safety for shallow slip surfaces and slip surfaces intersecting the pipe that were slightly below design factors of safety. Recommendations were made for the slopes to be regraded upon completion of construction.

2.7 Site 10: Haney-Moray Feeder Main (Assiniboine River)

• Asset: 450 CPP Feeder Main

Site 10 is located along the Assiniboine River at the William R. Clement Parkway Bridge crossing. The crossing currently consists of two bridge structures with an under-bridge pedestrian crossing at both banks. An aerial view of the site is shown in **Figure 2-7**.

Figure 2-7 – Site 10 Location

The Assiniboine River flows east, with the crossing located within a gentle bend in the river. The north bank is on the outside of the bend (concave section) and the south bank is on the inside of the bend (convex section).

The Haney-Moray Feeder Main crossing is located within an area of alluvial sediments as per the Surficial Geology map of Winnipeg (*MGS Geoscientific Map 2003-7*). The alluvial soils are typically comprised of beds of clay, silt, sand, and gravel, which were deposited either directly on glacial till or on a layer of lacustrine clay.

The 450 mm feeder main crosses the river at an approximate invert elevation ranging from 225.1 m to 225.2 m. Within the bank slopes, the feeder main rises to an approximate invert elevation ranging from 226.5 m to 229.2 m. The approximate locations of the buried siphons are shown on the as-built records attached in **Appendix A7**. However, it should be noted that the as-built information predates construction of the William R. Clement Parkway Bridge, and discrepancies were noted between information provided in the as-built drawings and observed site conditions at the crossing location with respect to slope regrading and riprap armouring near the river edge.

No existing geotechnical information was available for review at this site.

2.8 Site Surveys

Topographic surveys were not included as part of the geotechnical field program, and as such, all subsequent geotechnical analyses have been based on previous topographic surveys, LIDAR information (City of Winnipeg 2011 Data Set) and previous studies conducted within the crossing areas. The positions of known sewer and water systems have been inferred from as-built records and incorporated into the geotechnical analysis.

3. Visual Field Inspection

3.1 General

Field inspection of Sites 4 through 10 was undertaken between November 17 and 18, 2020 by AECOM geotechnical personnel to document and photograph existing site conditions as they related to the river/creek bank slopes (i.e. instabilities, tension cracking, erosion scarps, etc.), existing structures (i.e. detected displacement, detected damage, etc.), and vegetation (i.e. type of vegetation, density of vegetation, displacement of vegetation, etc.).

Results of the background information review and the visual field inspection at each site were used to assign appropriate SCG and ECG values and determine the need for subsequent geotechnical investigation, laboratory testing, instrumentation monitoring and slope stability analysis. Sites with an SCG and/or ECG greater than or equal to 3 were flagged for preliminary slope stability analysis.

Photographs taken throughout the course of the field inspection visits are presented as **Appendix C**. A summary of the observations noted during the site reconnaissance and the SCG and ECG ratings selected for each site are presented in **Appendix D**.

3.2 Site 4: Fort Garry/St. Vital Interceptor Siphons (Red River)

General observations of the west bank during the field inspection indicated minor erosion scarps, as well as a scarp near the crest of the riverbank likely resulting from shallow failures within over steepened portions of the riverbank. There was no evidence of deep-seated or rotational failures along this bank. The presence of localized riprap near the toe of the riverbank around the crossing alignment indicates that the west bank would be appropriately classified as an altered bank.

General observations of the east bank during the field inspection indicated minor erosion above the riprap armoured area near the bank toe. The riprap in this area was placed as part of the 2013 slope stabilization measures, and as a result, the east bank would be most appropriately classified as an altered bank.

3.2.1 Riverbank Slope Observations

3.2.1.1 Western Riverbank

- West of the asphalt sidewalk (orientated north to south), the ground surface between the Fort Garry bridges falls gently east towards the bridge abutments. The slope profile changes at a point almost in line with the bridge abutments within the study area, sloping more sharply towards the sidewalk, and then becomes more gradual between the sidewalk and the riverbank crest.
- The crest of the riverbank slope is approximately 20 m east of the sidewalk edge, and the surface of the riverbank was visible for approximately 10 m horizontally until intercepting the water's edge further downslope. The upper portion of the exposed riverbank slope was generally covered in shrubs and bushes, while the lower portion had riprap placed in close proximity to the crossing locations and exposed alluvial soils elsewhere.

- The profile of the riverbank slope from the crest down to the water's edge was estimated to range between 2H:1V to 3H:1V.
- Stone riprap was present around the two bridge abutments and was also observed to be present approximately 3 to 5 m on either side of the siphon crossing alignments (total length of armoring around crossing was between 6 and 10 m). The riprap was generally large (greater than 600 mm) and in places appeared to be moving down slope towards the river. Some loss of riprap around the bridge abutments has exposed the underlying alluvial soils.
- Erosion has resulted in gullying and material loss in and around the bridge abutment riprap as a consequence of surface water flow from the culverts west of the riverbank. Gullies measuring a depth of up to 400 mm were recorded.
- Erosion scarps were noted at the river edge and at various distances from the river edge, indicative of erosion occurring at different river levels. These erosional scarps were typically 100 mm to 150 mm in vertical height, and present in areas that were not amoured with riprap.
- Erosion horizontally into the riverbank was observed in localized areas that were not amoured with riprap.
- A vertical scarp approximately 300 mm in height was observed in a localized section of the riverbank near the crest. This scarp suggested the presence of shallow slope failures in areas where the riverbank was over steepened beyond 2H:1V.
- No evidence of deep-seated slope instabilities was noted within the riverbank slope.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.2.1.2 Eastern Riverbank

- East of the asphalt sidewalk (orientated north to south), the ground surface between the Fort Garry bridges gently falls west towards the bridge abutments. The slope profile changes at a point almost in line with the bridge abutments within the study area, sloping more sharply towards the sidewalk pavement and riverbank crest
- The crest of the riverbank slope was approximately 10 meters west of the sidewalk edge, and the surface of the riverbank was visible for approximately 15 m horizontally until intercepting the water's edge further downslope. The upper portion of the exposed riverbank slope was generally covered in shrubs and bushes, while the lower portion had riprap placed for the full length of riverbank between the two bridge structures.
- The profile of the riverbank slope from the crest down to the water edge was estimated to range between 3H:1V to 4H:1V.
- Stone riprap placed around the bridge piers was not noted to extend beyond the limits of the bridge by more than a few meters. Considerably less riprap was observed around the northern bridge pier as compared to the south bridge pier. Some loss of riprap around the bridge piers has exposed the underlying alluvial soils.
- Stone riprap was present along the lower portion of the riverbank for the full length between the bridge structures. The riprap was generally large (greater than 600 mm) and partially buried below fine-grained soils.
- Erosion scarps were noted at various distances from the river edge, indicative of erosion occurring at different river levels. These erosional scarps were typically 100 mm in vertical height, and present in areas above the riprap armoring.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- No evidence of animal burrows or infestations were noted within the riverbank slope. However, animal burrows were frequently observed within the ground surface to the east of the sidewalk.

3.2.2 Existing Structures

3.2.2.1 Western Riverbank

- The following structures were observed within and adjacent to the study area:
 - Bridge Structures (2) including superstructure and substructures (abutments and piers)
 - Lift station (and associated valve chambers)
 - Monitoring station(s)
 - o Drainage Culverts
 - o Hydro Tower
 - o Asphalt Sidewalk
- The existing sidewalk pavement showed signs of distress in some locations within the study area adjacent to the riverbank crest. Cracks within the asphalt surface were orientated in a north south direction running parallel to the riverbank crest.
- All other structures outlined above visually appeared in good condition.

3.2.2.2 Eastern Riverbank

- The following structures were observed within and adjacent to the study area:
 - Bridge Structures (2) including superstructure and substructures (abutments and piers)
 - Valve Chamber
 - o Drainage Culverts
 - o Hydro Tower
 - o Asphalt Sidewalk
 - Geotechnical Instrument Groundwater Monitoring Well
- The ground immediately surrounding the hydro tower appeared to be undermined due to a combination of animal burrows and over steepened side slopes. The foundation fill used to elevate the towers was sloped at an approximate profile of 2H:1V and showed signs of slope bulging near the toe. The towers are somewhat removed from the riverbank slopes in the immediate study area and are deemed not to have any direct impact upon riverbank stability.
- The existing sidewalk pavement showed signs of distress in some locations within the study area adjacent to the riverbank crest. Cracks within the asphalt surface were orientated in a north south direction running parallel to the riverbank crest.
- All other structures outlined above visually appeared in good condition.

3.2.3 Vegetation

3.2.3.1 Western Riverbank

- West of the sidewalk observed vegetation consisted of maintained grass lawn.
- East of the sidewalk and west of the riverbank crest the vegetation primarily consisted of shrubs and bushes.
- Several large mature trees were identified in clusters near the riverbank crest.
- The upper portion of the riverbank slope was covered with shrubs and brush.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.2.3.2 Eastern Riverbank

- East of the sidewalk observed vegetation consisted of maintained grass lawn.
- West of the sidewalk the vegetation primarily consisted of shrubs and bushes.
- Some trees were identified in clusters near the riverbank crest.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.2.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments	
West	3		Evidence of slope instabilities and erosion indicated need for further analysis. Slope stability analysis completed at this site and results presented in Section 5.	
East	1	2	No defects observed with slope condition. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	

Table 3-1: Summary of SCG and ECG Values (Site 4)

3.3 Site 5: West Perimeter Force Main (Assiniboine River)

General observations of the north bank during the field inspection indicated the presence of scarps of varying height mid-way up the riverbank, potentially due to a combination of riverbank erosion and shallow-seated slope instabilities driven by the erosion. There was no evidence of deep-seated or rotational failures along this bank. Riprap was not present within the crossing alignment but was observed around adjacent drainage infrastructure within the study area. Based on the background information review and results of the visual field inspection, the north bank would be appropriately classified as a transition bank.

General observations of the south bank during the field inspection indicated the presence of scarps of varying height near the river edge, potentially due to riverbank erosion. Riprap was observed near the toe of the riverbank slightly west of the approximate crossing alignment and appears to effectively prevent bank erosion due to surficial drainage discharge from two existing large-diameter CSP culverts. The gradually sloping nature of the area and the drainage features installed suggest that regrading work was likely done during construction of the Perimeter Highway bridge. Therefore, the south bank would be appropriately classified as an altered bank.

3.3.1 Riverbank Slope Observations

3.3.1.1 Northern Riverbank

- The ground surface along Oxbow Bend Road (east of the Perimeter Highway bridge) gently falls south towards the river.
- Within the eastern portion of the study area, the slope profile changes at the riverbank crest near the tree line, sloping more sharply towards the river at approximately 2.5H:1V before flattening out in advance of an observed scarp. The riverbank from the scarp to the water edge is at an approximate slope of 3H:1V. Within the western portion of the study area, the slope profiles changes at the riverbank crest located immediately south of the southern edge of Oxbow Bend Road, sloping more sharply down towards the river at approximately 3H:1V to 4H:1V.
- The upper portion of the exposed riverbank slope was generally covered in shrubs and bushes, while the lower portion had a thinner brush cover and some exposed alluvial soils.
- Stone riprap was observed around the bridge abutment and pier, within the discharge path of a concrete culvert crossing below Oxbow Bend Road near the bridge, and within the discharge path of a CSP culvert. The riprap was generally large (300 mm to 600 mm) and showed some displacement down the slope towards the river.
- Erosion has resulted in some gullying and material loss within the CSP culvert discharge path as a consequence of surface water flow.
- Scarps were noted approximately 2 to 3 m away from the river edge, indicative of potential erosion and/or shallow slope instabilities. These scarps typically ranged in vertical height from 300 mm to

900 mm within the study area (smaller to the west, larger to the east), but were not present in areas amoured with riprap.

- No evidence of deep-seated slope instabilities was noted within the riverbank slope.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.3.1.2 Southern Riverbank

- The ground surface between the eastern tree line and the Perimeter Highway bridge to the west slope steeply downwards into a riprap lined drainage channel. The steep slopes leading down to the drainage channel had large diameter rock drains installed within them. From the drainage channel, the site gradually falls north towards the river.
- The slope profile changes approximately 20 m south of the riverbank crest, sloping more sharply towards the river at approximately 5H:1V before flattening out in advance of an observed scarp. The riverbank from the scarp to the water edge is at an approximate slope of 2H:1V to 2.5H:1V.
- The upper portion of the exposed riverbank slope was generally covered in shrubs and bushes, while the lower portion had exposed alluvial or glaciolacustrine soils.
- Stone riprap was observed around the bridge abutment and pier, and within the discharge path of the two large diameter CSP culverts and was generally large (600 mm). Sporadic displaced riprap was also observed between the scarp and the river edge west of the crossing location within the flow path of the CSP culverts.
- Scarps were noted approximately 1 to 2 m away from the river edge, indicative of erosion. These scarps typically ranged in vertical height from 300 mm to 600 mm within the study area but were not present in areas amoured with riprap.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.3.2 Existing Structures

3.3.2.1 Northern Riverbank

- The following structures were observed within and adjacent to the study area:
 - o Bridge Structure including superstructure and substructures (abutments and piers)
 - o Drainage Culverts Concrete and CSP
 - Concrete Drainage Flume
 - Granular Roadway Oxbow Bend Road
 - o Jersey Barrier at Road Edge
 - o Traffic Signage
- One of the traffic signs was leaning towards the river, potentially due to slope movement, or more likely being struck by something (since sign directly beside it was vertical).
- All other structures outlined above visually appeared in good condition.

3.3.2.2 Southern Riverbank

- The following structures were observed within and adjacent to the study area:
 - Bridge Structures including superstructure and substructures (abutments and piers)
 - Drainage Culverts CSP
 - Lift Station
- South end of eastern CSP was observed to have a slight bend near its crest.
- All other structures outlined above visually appeared in good condition.

3.3.3 Vegetation

3.3.3.1 Northern Riverbank

- Mowed lawn west of Oxbow Bend Road (bridge abutment)
- Within the eastern portion of the study area the riverbank slopes were heavily vegetated with large mature trees and dense brush. Between the observed scarp and river's edge, the vegetation generally consisted of sparse brush.
- Within the western portion of the study area the riverbank slopes were primarily vegetated with brush and shrubs, becoming sparse between the observed scarp and river's edge. Multiple large mature trees were identified in clusters within the upper half of the riverbank.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.3.3.2 Southern Riverbank

- Within the eastern portion of the study area the riverbank slopes were heavily vegetated with large mature trees and dense brush. Between the observed scarp and river edge, vegetation was typically not observed.
- Within the western portion of the study area the riverbank slopes were primarily vegetated with brush and shrubs. Between the observed scarp and river edge, the vegetation generally consisted of sparse brush. A few large mature tree clusters were observed within the gradually sloping portion of the riverbank.
- A downed tree was observed in the vicinity of the crossing location, appearing to have been uprooted by progressive riverbank erosion.
- Other than the single downed tree, there was no widespread indication of significant vegetation movement resulting from slope instability within the study area.

3.3.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments	
North	2	2	Evidence of minor slope instabilities and erosion. Asset installed within glacial till at crossing. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	
South	2	2	Evidence of minor slope instabilities and erosion. Asset installed within glacial till at crossing. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	

Table 3-2: Summary of SCG and ECG Values (Site 5)

3.4 Site 6A: Dakota Feeder Main (Navin Drain)

During background information review, the north and south riverbanks of the Navin Drain were classified as altered banks given that the drain is not a naturally occurring waterway, but rather a constructed one.

General observations made at the north bank during the visual field inspection indicated the presence of over steepened slopes, scarps near the bank crest indicative of shallow or potentially deep slope instabilities, shallow slope instabilities near the bank toe, and erosion scarps at the toe of the bank. Identification of the slope instability mechanisms (i.e. tension cracks, bulging, scarps, etc.) could not be identified in detail due to the dense brush

cover at the time of the inspection. However, leaning, and displaced vegetation provided further indication of slope movement.

General observations made at the south bank during the visual field inspection indicated the presence of over steepened slopes, progressive slope failure at localized areas along the bank indicative of deep slope instabilities, shallow slope instabilities near the bank toe, and erosion scarps at the toe of the bank. Identification of the slope instability mechanisms (i.e. tension cracks, bulging, scarps, etc.) could not be identified in detail due to the dense brush cover at the time of the inspection.

3.4.1 Bank Slope Observations

3.4.1.1 Northern Bank

- The ground to the north of the tree line and riverbank crest was a relatively flat field that is used as a Manitoba Hydro right-of-way.
- Within the western portion of the study area, the slope profile changes at the bank crest near the tree line, sloping sharply towards the river at approximately 1.5H:1V to 2H:1V before flattening out to 3H:1v to 4H:1V above the observed bank toe scarp. Within the eastern portion of the study area, the slope profiles changes at the bank crest near the tree line, and slopes towards the river at approximately 2H:1V to 2.5H:1V.
- The exposed bank slopes were generally covered by dense shrubs, bushes, and mature trees.
- Riprap was not observed within the study area.
- Within the western portion of the study area, scarps were observed near the bank crest in over steepened areas, indicative of shallow and/or deep-seated slope instabilities. These scarps typically ranged in vertical height from 300 mm to 900 mm.
- Within the eastern portion of the study area, scarps were observed at various locations along the bank, indicative of shallower slope instabilities. These scarps were typically 300 mm in vertical height.
- Erosion scarps were observed at the toe of the banks, ranging in vertical height from 300 mm to 600 mm
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.4.1.2 Southern Bank

- The ground to the south of the tree line and riverbank crest was a relatively flat field that is used as a Manitoba Hydro right-of-way.
- Within the western portion of the study area, the slope profile changes at the bank crest near the tree line, sloping sharply towards the river at approximately 2H:1V. Within the eastern portion of the study area, the slope profiles changes at the bank crest near the tree line, and slopes towards the river at approximately 2H:1V to 2.5H:1V.
- The exposed bank slopes were generally covered by dense shrubs, bushes, and mature trees.
- Riprap was not observed within the study area.
- Within the western portion of the study area, a series of slope instabilities and scarps up the slope were observed, indicative of progressive shallow and deep slope instabilities propagating up the bank. These scarps typically ranged in vertical height from 600 mm to 900 mm. Shallow slope instabilities were also observed near the toe of the bank.
- Within the eastern portion of the study area, scarps were observed at various locations along the bank, indicative of shallower slope instabilities. These scarps were typically 300 mm in vertical height.
- Erosion scarps were observed at the toe of the banks, ranging in vertical height from 300 mm to 600 mm.

• No evidence of animal burrows or infestations were noted within the riverbank slope.

3.4.2 Existing Structures

- 3.4.2.1 Northern Bank
 - No structures were observed within the study area.

3.4.2.2 Southern Bank

• No structures were observed within the study area.

3.4.3 Vegetation

3.4.3.1 Northern Bank

- Mowed lawn north of the tree line within the Manitoba right-of-way.
- The bank slopes were heavily vegetated with large mature trees and dense brush and shrub cover.
- Trees within the bank and along the bank crest were observed to be leaning towards the drain to
 varying degrees. The severity of the leaning was typically most noticeable in over steepened bank
 areas within the western portion of the study area.

3.4.3.2 Southern Bank

- Mowed lawn south of the tree line within the Manitoba right-of-way.
- The bank slopes within the western portion of the study area were heavily vegetated with large mature trees and dense brush and shrub cover, while the bank slopes within the eastern portion of the study were observed to be similar but with less mature trees.
- Trees within the bank slopes in close proximity observed slope instabilities were observed to be leaning towards the drain.

3.4.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments
North	2	2	Evidence of slope instabilities and erosion. However, asset installed deep within banks. Therefore, short-term potential for further deterioration of asset due to slope instability and erosion is low.
South	2	2	Evidence of slope instabilities and erosion. However, asset installed deep within banks. Therefore, short-term potential for further deterioration of asset due to slope instability and erosion is low.

Table 3-3: Summary of SCG and ECG Values (Site 6A)

3.5 Site 6B: Dakota Feeder Main (Seine River)

General observations made at the west bank during the visual field inspection indicated minor erosion scarps at the riverbank toe and a very gradually sloping riverbank. There was no evidence of shallow or deep-seated failures along this bank. Based on the background information review and results of the visual field inspection the west bank would be appropriately classified as an erosion-controlled bank.

General observations made at the east bank during the visual field inspection indicated localized minor erosion scarps at the riverbank toe and a moderately sloped riverbank. There was no evidence of deep-seated failures along this bank. Based on the background information review and results of the visual field inspection the east bank would be appropriately classified as a failure-controlled bank.

3.5.1 Riverbank Slope Observations

3.5.1.1 Western Riverbank

- The ground surface slopes very gently eastward towards the Seine River.
- The riverbank profile has very little change in slope and was relatively flat up to approximately 2 m from the river edge, at which point the slope steepens to approximately 3H:1V to 4H:1V.
- The exposed bank slopes were generally covered by dense shrubs, bushes, and large mature trees.
- Riprap was not observed within the study area.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- Erosion scarps were observed at localized areas along the riverbank toe with a vertical height of approximately 300 mm.
- Animal burrows were frequently noted within the riverbank slope.

3.5.1.2 Eastern Riverbank

- The ground surface generally slopes westward towards the Seine River
- Within the southern portion of the study area, the slope profile is very gradual from the bank crest to approximately 5 m from the river edge, at which point the slope steepens to approximately 4H:1V to 5H:1V. The exposed riverbank slope was primarily covered in dense shrubs and bushes.
- Within the northern portion of the study area, the slope profile is relatively flat from the bank crest to approximately 10 m from the river edge, at which point the slope steepens to approximately 3H:1V down towards the river edge. The exposed bank slope was generally covered by dense shrubs, bushes, and large mature trees.
- Riprap was not observed within the study area.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- Erosion scarps were observed at localized areas along the riverbank toe with a vertical height of approximately 300 mm.
- Animal burrows were frequently noted within the riverbank slope.

3.5.2 Existing Structures

- 3.5.2.1 Western Riverbank
 - No structures were observed within the study area.
- 3.5.2.2 Eastern Riverbank
 - No structures were observed within the study area.

3.5.3 Vegetation

- 3.5.3.1 Western Riverbank
 - The riverbank slopes were heavily vegetated with large mature trees, dense brush, and shrubs within the relatively flat portion of the riverbank slope. Closer to the edge of the river, brush and shrub remained dense while the presence of large mature trees became less frequent.

• There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.5.3.2 Eastern Riverbank

- Within the southern portion of the study area, mowed lawn was observed east of the riverbank crest, with dense brush and shrubs being observed within the area between the riverbank crest and the river edge.
- Within the northern portion of the study area, the riverbank slopes were heavily vegetated with large mature trees, dense brush, and shrub.
- Some downed trees were observed in the vicinity of the crossing location but were broken part way up the trunk. It is unlikely that this occurred due to slope instability or erosion activities. Slight leaning of some trees towards the river was observed.
- There was no indication of significant vegetation movement resulting from slope instability within the study area.

3.5.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments	
West	1		No defects observed with slope condition. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	
East	1		No defects observed with slope condition. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	

Table 3-4: Summary of SCG and ECG Values (Site 6B)

3.6 Site 7: Rouge Road Feeder Main (Sturgeon Creek)

At the time of the visual field inspection, the level within Sturgeon Creek was much higher than typical conditions noted within the as-built documents. This was due to the presence of a beaver dam approximately 80 m south of the crossing location. As a result, much of the lower creek banks were not exposed at the time of the inspection, and observations were made based on the visible portions of the banks.

General observations made at the west bank during the visual field inspection indicated the presence of reasonably gradual slopes, becoming steeper close to the bridge abutment. There was no evidence of shallow or deep-seated failures along this bank, and minor erosion was observed at the creek edge. Grouted riprap was present around the bridge abutment side and head slopes as well as the exposed riverbank at the crossing location. Riprap was not observed within the study area to the south of the crossing location. Based on the background information review and results of the visual field inspection the west bank would be appropriately classified as an altered bank given the apparent slope regrading and riprap armouring likely completed during construction of the bridge structure and possibly the Sturgeon Creek Greenway Trail.

General observations made at the east bank during the visual field inspection indicated the presence of very gradual slopes becoming steeper close to the bridge abutment. There was no evidence of shallow or deep-seated failures along this bank, and minor erosion was observed at the creek edge. Grouted riprap was present around the bridge abutment side and head slopes as well as the exposed riverbank at the crossing location. Riprap was not observed within the study area to the south of the crossing location. Based on the background information review and results of the visual field inspection the west bank would be appropriately classified as an altered bank

given the apparent slope regrading and riprap armouring likely completed during construction of the bridge structure.

3.6.1 Bank Slope Observations

3.6.1.1 Western Bank

- The ground surface south of the Hamilton Avenue bridge along the Sturgeon Creek Greenway Trail slopes gradually southeastward towards the creek. Part way down the bank slope the trail splits, with the northern leg sloping northeastward below the bridge and towards the creek, while the southern leg slopes southeastward towards the creek.
- The northern portion of the study area included much of the bridge infrastructure and west of the trail was observed to have steeper bridge abutment side slopes (approximately 3H:1V to 2H:1V with grouted riprap on the steeper portions) and a more gradual abutment head slope (approximately 2.5H:1V to 3H:1V) beneath the bridge to the west of the trail. To the east of the trail, the exposed bank was observed to be fairly flat.
- A crack was observed near the bank crest west of the bridge abutment. This area was observed to be frequented by bicycle traffic, and the crack is likely the result of desiccation of the near-surface soils rather than slope instability.
- The southern portion of the study area consisted of gently-sloping ground from the bank crest down towards the north-south oriented portion of the trail (approx. 6H:1V), becoming flatter at the trail, and then very gradually steepening down towards the creek edge.
- The crossing alignment is approximately at the interface between the northern and southern study areas described above.
- The upper portion of the exposed bank slope (west of the trail) was generally covered in mowed grass (and grouted rip rap in specific areas near the bridge), while the lower portion (east of the trail) is covered with brush.
- Within the northern portion of the study area, stone riprap was observed on the steeper bridge abutment side slopes, the entirety of the bridge head slope (west of the trail), and along the exposed portion of the bank slope east of the trail. Cracking of the grout (oriented in various directions) was observed at various locations within the grouted riprap areas.
- Riprap was not observed within the southern portion of the study area.
- Erosion scarps were not observed near the exposed bank toe within the northern portion of the study area.
- Erosion scarps and localized erosion gulley areas were observed along the exposed bank toe within the southern portion of the study area. These scarps ranged in vertical height from 100 mm to 450 mm.
- No evidence of deep-seated slope instabilities was noted within the bank slopes.
- A beaver dam was observed approximately 50 m south of the crossing location along the bank edge, and a beaver dam was located approximately 80 m south of the crossing location within the creek.

3.6.1.2 Eastern Bank

- The ground surface south of the Hamilton Avenue bridge sloped very gradually southwestward towards the creek. Slopes were observed to be steeper along the rear property lines of the houses further east, but these slopes are considered to be outside of the study area.
- The northern portion of the study area included much of the bridge infrastructure and west of the
 pedestrian trail that loops below the bridge was observed to have steeper bridge abutment side
 slopes (approximately 3H:1V to 2H:1V with grouted riprap on the steeper portions) and a more
 gradual abutment head slope (approximately 2.5H:1V to 3H:1V) beneath the bridge to the east of
 the trail. To the west of the trail, the exposed bank was observed to be fairly flat.

- The southern portion of the study area consisted of very gradual ground slope leading to the creek edge.
- The crossing alignment is approximately at the interface between the northern and southern study areas described above.
- The majority of the bank was covered in mowed grass (and grouted rip rap in specific areas near the bridge), while the lower portion consisted of brush.
- Within the northern portion of the study area, stone riprap was observed on the steeper bridge abutment side slopes, the entirety of the bridge head slope (west of the trail), and along the exposed portion of the bank slope west of the trail. Cracking of the grout oriented in various directions was observed at various locations within the grouted riprap areas.
- Riprap was not observed within the southern portion of the study area.
- Erosion scarps were not observed near the exposed bank toe within the northern portion of the study area.
- Erosion scarps and localized erosion gulley areas were observed along the exposed bank toe within the southern portion of the study area. These scarps ranged in vertical height from 100 mm to 450 mm.
- No evidence of deep-seated slope instabilities was noted within the bank slopes.
- A beaver dam was observed approximately 80 m south of the crossing location.

3.6.2 Existing Structures

3.6.2.1 Western Bank

- The following structures were observed within and adjacent to the study area:
 - o Bridge Structure including superstructure and substructures (abutment and piers)
 - o Manhole MTS, located on sidewalk parallel to bridge
 - o Light Post
 - Wood Post Barriers
 - o Concrete Sidewalk Parallel to Hamilton Avenue Bridge
 - o Sidewalk Sturgeon Creek Greenway Trail
 - Houses Located southwest of crossing area and had chain link fenced-in backyard.
- Minor cracking of the concrete sidewalk pavement around the MTS manhole was observed (oriented in various directions).
- The trail pavement showed some signs of distress in localized areas within the study area. Cracks within the asphalt surface were generally orientated in a north south direction running approximately parallel to the creek.
- All other structures outlined above visually appeared in good condition.

3.6.2.2 Eastern Bank

- The following structures were observed within and adjacent to the study area:
 - o Bridge Structure including superstructure and substructures (abutment and piers)
 - o Manhole MTS, located on sidewalk parallel to bridge
 - Concrete Sidewalk Parallel to Hamilton Avenue Bridge
 - o Sidewalk Under-bridge walkway
- Minor cracking of the concrete sidewalk pavement around the MTS manhole was observed (oriented in various directions).
- The under-bridge sidewalk pavement showed minor signs of distress within the study area.
- All other structures outlined above visually appeared in good condition.

3.6.3 Vegetation

3.6.3.1 Western Bank

- Within the northern portion of the study area, the majority of the exposed slopes are covered with grouted riprap with minor vegetation growth occurring within the grout cracks.
- Within the southern portion of the study area, mowed lawn was observed west of the portion of the Sturgeon Creek Greenway trail that runs parallel to the creek. To the east of this trail, the vegetation consisted primarily of dense brush.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.6.3.2 Eastern Bank

- Within northern portion of the study area, majority of the exposed slopes are covered with grouted riprap with minor vegetation growth occurring within the grout cracks.
- Within the southern portion of the study area, mowed lawn was observed for the majority of the bank, becoming dense brush approximately 10 m east of the creek edge.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.6.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments
West	2	2	Damming of the creek caused elevated creek levels and inability to see much of lower banks. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.
East	2	2	Damming of the creek caused elevated creek levels and inability to see much of lower banks. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.

Table 3-5: Summary of SCG and ECG Values (Site 7)

3.7 Site 8: West End Feeder Main (Omand's Creek)

General observations made at the west bank during the visual field inspection indicated the presence of fairly steep slopes directly against the bridge abutment that quickly transition into gradual slopes southward from the bridge. There was no evidence of shallow or deep-seated failures along this bank within the entire study area, and minor erosion was observed at the creek edge. Riprap was observed along an approximately 10 to 15 m length of the bank measured from the bridge abutment, with no riprap observed along the bank south of the abutment. Based on the background information review and results of the visual field inspection, the west bank would be appropriately classified as an altered bank given the slope regrading and riprap armouring that was completed during construction of the bridge structure.

General observations made at the east bank during the visual field inspection indicated the presence of fairly steep slopes directly against the bridge abutment that quickly transition into gradual slopes southward from the bridge near the crossing location, becoming steeper again further south of the crossing location. There was evidence of shallow slope instabilities in over steepened portions of un-armoured bank several meters south of the crossing location, and minor erosion was observed at the creek edge. Riprap was observed along an

approximately 10 to 15 m length of the bank measured from the bridge abutment, with no riprap observed along the bank south of the abutment. Based on the background information review and results of the visual field inspection the east bank would be appropriately classified as an altered bank given the slope regrading and riprap armouring that was completed during construction of the bridge structure.

3.7.1 Bank Slope Observations

3.7.1.1 Western Bank

- The riprap amoured portion of the bank within the study area extended approximately 10 to 15 m from the bridge abutment, and was observed to have steeper slopes (approximately 2.5H:1V) near the bridge wingwall that quickly flattened out to 3.5H:1V to 4H:1V southward from the bridge. The riprap was generally large (greater than 600 mm).
- South of the riprap amoured portion of the bank within the study area, the slopes were observed to be approximately 3H:1V to 4H:1V. The bank crest is located adjacent to a paved roadway and is nearly flat.
- The crossing alignment is within the riprap amoured area of the bank.
- Riprap is located along the entirety of the exposed bank face (from crest to toe). In non-amoured areas, the bank slope was covered with dense brush. A portion of the bank crest was vegetated with packed-down grass (area between bank crest and Empress Street), while the remainder of the bank crest is a relatively flat, paved street (Empress Street).
- A narrow crack was observed along the bank crest within the grassed area between the bank crest and Empress Street This area was observed to be frequented by bicycle traffic, and the crack was more likely the result of desiccated surface soils and not a sign of slope instability.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- Erosion scarps were not observed near the exposed bank toe within the riprap amoured area. Minor erosion was observed within the non-amoured portion of the exposed bank toe, although the dense brush cover in this area made detailed visual inspection difficult.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.7.1.2 Eastern Bank

- The riprap armoured portion of the bank within the study area extended approximately 10 to 15 m from the bridge abutment, and was observed to have steeper slopes (approximately 2.5H:1V) near the bridge wingwall that quickly flattened out to 3.5H:1V to 4H:1V southward from the bridge. The riprap was generally large (greater than 600 mm).
- South of the riprap armoured portion of the bank within the study area, the slopes were observed to be over steepened at various locations, ranging from 2H:1V to 3H:1V. The bank crest was generally flat and extended into a private property driveway/parking lot immediately east of the site.
- The crossing alignment is within the riprap armoured area of the bank.
- Where observed, the riprap was located along the entirety of the exposed bank face (from crest to toe). In non-armoured areas, the bank slope was covered with dense brush. Brush and clusters of large mature trees were observed between the bank crest and the fence line of the neighboring property for the entirety of the study area.
- Localized slope instabilities were observed at various locations within the study area south of the riprap armoured banks. A scarp ridge was observed near the bank crest immediately south of the riprap with a vertical height of 75 mm, and underlying organic soils were exposed at ground surface in this area (brush vegetation was scarce).
- Erosion scarps were not observed near the exposed bank toe within the riprap armoured area. Minor erosion was observed within the non-armoured portion of the exposed bank toe, although the dense brush cover in this area made detailed visual inspection difficult.

• Animal burrows were frequently observed within the bank slope and crest south of the riprap armoured area.

3.7.2 Existing Structures

- 3.7.2.1 Western Bank
 - The following structures were observed within and adjacent to the study area:
 - o Bridge Structure including superstructure and substructures (abutment, wingwall)
 - o Hydro pole
 - o Paved street Empress Street
 - Street Signage Stop Sign
 - All structures outlined above visually appeared in good condition.

3.7.2.2 Eastern Bank

- The following structures were observed within and adjacent to the study area:
 - o Bridge Structure including superstructure and substructures (abutment)
 - o Hydro pole
 - o Granular Parking Lot Private property east of creek
 - Chain Link Fence Along edge of private property east of creek
- Hydro pole was approximately vertical, although an angled wood post support was observed to be leaning against the south side of the hydro pole to provide additional support. However, given that the wood post was supporting the hydro pole on the south side (support parallel to the bank crest), it is unlikely that past leaning of the hydro pole was related to the slope stability of the bank.
- All other structures outlined above visually appeared in good condition.

3.7.3 Vegetation

3.7.3.1 Western Bank

- Within the armoured portion of the study area, minor vegetation was observed through riprap along bank slope. A partially grassed area was observed between curb of Empress Street and bank crest.
- Outside of the armoured portion of the study area, dense brush vegetation was observed along the bank slope. A partially grassed area was observed between curb of Empress Street and bank crest.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.7.3.2 Eastern Bank

- Within the armoured portion of the study area, some vegetation growth was observed through riprap along the bank slope. The bank crest was comprised of dense brush and clusters of mature trees.
- Outside of the armoured portion of the study area, dense brush vegetation was observed along the bank slope. The bank crest was comprised of dense brush and clusters of large mature trees.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.7.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Table 3-6: Summary of SCG and ECG Values (Site 8)

Bank	SCG	ECG	Comments	
West	1	2	No defects observed with slope condition. Minor erosion observed south of riprap armoured slope within study area. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	
East	2	2	Evidence of slope instabilities and minor erosion observed south of riprap armoured slope within study area. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	

3.8 Site 9: West End Feeder Main (Truro Creek)

General observations made at the west bank during the visual field inspection indicated the presence of gradual to very gradual slopes from the bank crest (Assiniboine Golf Course) down to the creek. There was no evidence of shallow or deep-seated failures along this bank within the entire study area, and minor erosion was observed at the creek edge. Based on the background information review and results of the visual field inspection the west bank would be appropriately classified as an altered bank given the slope regrading that appears to have been done during construction of the feeder main, and likely during development of the Assiniboine Golf Course.

General observations made at the east bank during the visual field inspection indicated the presence of gradual to very gradual slopes from the bank crest (Silver Avenue) down to the creek. There was no evidence of shallow or deep-seated failures along this bank within the entire study area, and minor erosion was observed at the creek edge. Based on the background information review and results of the visual field inspection the west bank would be appropriately classified as an altered bank given the slope regrading that appeared to have been done during construction of the feeder main, and likely during development around Silver Avenue.

3.8.1 Bank Slope Observations

3.8.1.1 Western Bank

- The ground surface within the Assiniboine Golf Course is approximately flat, with a gentle southeastward slope towards Truro Creek.
- The bank profile within the study area changes from approximately flat along the crest (within the Assiniboine Golf Course) to a slope of approximately 4H:1V from the bank crest down to the creek edge.
- The exposed bank slopes around the crossing alignment were generally covered by shrubs, bushes, and some maturing trees.
- North of the crossing alignment, a pedestrian bridge (Silver Avenue Pathway) crosses Truro Creek. The banks of Truro Creek within 10 m of this bridge structure were observed to be graded at approximately 4H:1V and have a geotextile separator fabric as well as riprap armouring along the entirety of the slope face. The riprap was medium sized (less than 300 mm).
- Approximately half of the riprap along this bank was observed to be displaced down the slope, leaving a large area of exposed geotextile close to the bridge abutment. This may be due to an insufficient coefficient of friction between the fabric and the slope soil material.
- Riprap was not observed south of the riprap armoured banks near the bridge structure.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- Erosion scarps were not observed near the exposed bank toe within the riprap armoured area at the bridge. Minor erosion was observed within the non-armoured portion of the exposed bank toe, although the dense brush cover in this area made detailed visual inspection difficult.
- Animal burrows were frequently noted within the riverbank slope.

3.8.1.2 Eastern Bank

- The ground surface west and north of Silver Avenue within the study area has a gentle northwestern slope towards Truro Creek.
- The bank profile within the study area changes from a very gradual slope along the crest (area north of Silver Avenue) to a slope of approximately 4H:1V from the bank crest down to the creek edge.
- The bank crest primarily consisted of mowed grass, while the exposed bank slope was generally covered by shrubs, bushes, and some maturing trees down to the creek edge.
- North of the crossing alignment, a pedestrian bridge (Silver Avenue Pathway) crosses Truro Creek. The banks of Truro Creek within 10 m of this bridge structure were observed to be graded at approximately 4H:1V and have a geotextile separator fabric as well as riprap armouring along the entirety of the slope face. The riprap was medium sized (less than 300 mm).
- A small fraction of the riprap along this bank was observed to be displaced down the slope.
- Riprap was not observed south of the riprap armoured banks near the bridge structure.
- No evidence of shallow or deep-seated slope instabilities were noted within the bank slope.
- Erosion scarps were not observed near the exposed bank toe within the riprap armoured area at the bridge. Minor erosion was observed within the non-armoured portion of the exposed bank toe, although the dense brush cover in this area made detailed visual inspection difficult.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.8.2 Existing Structures

3.8.2.1 Western Bank

- The following structures were observed within and adjacent to the study area:
 - Pedestrian Bridge Structure including superstructure and substructures (abutments)
 - Fence Heavily damaged
 - o Geotechnical Instrument Pneumatic Piezometer (RST Instruments)
- The fence was observed to be heavily damaged down the bank. It is highly unlikely that this damage was incurred as a result of slope instabilities.
- All other structures outlined above visually appeared in good condition.

3.8.2.2 Eastern Bank

- The following structures were observed within and adjacent to the study area:
 - o Pedestrian Bridge Structure including superstructure and substructures (abutments)
 - o Paved Roadway Silver Avenue
 - Paved Pedestrian Walkway Silver Avenue Pathway
 - o Traffic Signage
- All structures outlined above visually appeared in good condition.

3.8.3 Vegetation

- 3.8.3.1 Western Bank
 - Mowed grass was observed beyond the bank crest within limits of the Assiniboine Golf Course. The upper bank slopes were moderately vegetated with brush, shrubs, and maturing trees. Closer to the edge of the creek, the density of brush and shrub increased while the presence of maturing trees became less frequent.
 - The riprap armoured banks in close proximity to the bridge did not show signs of vegetation growth through the geotextile fabric or riprap.

• There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.8.3.2 Eastern Bank

- Mowed grass was observed along the bank crest (north and west of Silver Avenue) right up to the point where the bank slopes start to steepen. The bank slopes were densely vegetated with brush, shrubs, and some clusters of maturing trees.
- The riprap armoured banks in close proximity to the bridge did not show signs of vegetation growth through the geotextile fabric or riprap.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.8.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments	
West	1		No defects observed with slope condition. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	
East	1		No defects observed with slope condition. Minor erosion observed. Short-term potential for further deterioration of asset due to slope instability and erosion is low.	

Table 3-7: Summary of SCG and ECG Values (Site 9)

3.9 Site 10: Haney-Moray Feeder Main (Assiniboine River)

General observations made at the north bank during the visual field inspection indicated the presence of scarps of varying height partway up the riverbank, likely due to a combination of riverbank erosion and shallow-seated slope instabilities driven by the erosion. There was no evidence of deep-seated or rotational failures along this bank. Riprap was not observed along the banks, although cobbles and boulders were observed within the study area near the bank toe. The gradually sloping nature of the area suggests that regrading work was likely done during construction of the William R. Clement Parkway bridges and associated pedestrian pathways. Therefore, the north bank would be appropriately classified as an altered bank.

General observations made at the south bank during the visual field inspection indicated the presence of scarps of varying height near the river edge, likely due to a combination of riverbank erosion and shallow seated slope instabilities driven by the erosion. Slope instabilities were also observed within over steepened portions of the riverbank within the eastern portion of the study area and at a localized area in close proximity to the crossing alignment. Riprap was observed in localized areas along the bank toe in close proximity to the crossing location, and cobbles and boulders were also observed within the study area near the bank toe. The gradually sloping nature of the area and the presence of a tree clearing along the feeder main alignment suggests that regrading work was likely done during construction of the feeder main and William R. Clement Parkway bridges. Therefore, the south bank would be appropriately classified as an altered bank.

3.9.1 Riverbank Slope Observations

3.9.1.1 Northern Riverbank

- The riverbank crest within the study area reaches a peak height in an area near the pedestrian staircase located at the north abutment of the east William R. Clement Parkway bridge. From this point, the slope gradually starts to increase to a slope of approximately 3.5H:1V until reaching an east-west oriented pedestrian pathway where the bank slope flattens out. To the south of the pedestrian pathway, the slope steepens to approximately 3H:1V down to an observed scarp approximately 2 to 3 m from the river edge. The exposed bank slope between the base of the observed scarp and the river edge was approximately 3H:1V.
- Between the observed scarp and the river edge vegetation was primarily absent, and exposed glacial soils were observed.
- Stone riprap was not observed along the banks, although cobbles and boulders were observed within the study area along the bank toe.
- Scarps were noted approximately 2 to 3 m away from the river edge, indicative of potential erosion and/or shallow slope instabilities. These scarps typically ranged in vertical height from 300 mm to 900 mm within the study area (smaller to the west, larger to the east).
- No evidence of deep-seated slope instabilities was noted within the riverbank slope.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.9.1.2 Southern Riverbank

- A gently sloping clearing through forested areas was observed along the crossing alignment leading northward towards the riverbank crest.
- Within the western portion of the study area, the riverbank crest sloped gently down towards the river, steepening slightly approximately 10 m south of an observed scarp near the river edge, and flattening out again approximately 2 m south of the scarp. The exposed bank slope between the base of the observed scarp and the river edge was approximately 3H:1V to 4H:1V.
- Within the eastern portion of the study area, the riverbank crest sloped very gently down towards the river, reaching a ground surface elevation approximately 1 to 2 m higher than that of the western portion of the study area. At a distance of approximately 4 m from the observed scarp at the river edge, the bank slope steepens to approximately 2H:1V, flattening out again approximately 0 to 1 m south of the scarp. The exposed bank slope between the base of the observed scarp and the river edge was approximately 3H:1V to 4H:1V.
- Between the observed scarp and the river edge vegetation was primarily absent, and exposed glacial soils were observed.
- Within the western portion of the study area large scarps were noted approximately 2 m away from the river edge, indicative of potential erosion and/or shallow slope instabilities. These scarps typically ranged in vertical height from 600 mm to 900 mm. A small scarp and tension crack were also observed approximately 2 m south of the large scarp within the flattened portion of the riverbank, indicative of potential slope instability. This smaller scarp had a vertical height of approximately 75 mm.
- Within the eastern portion of the study area a large scarp was noted approximately 2 m way from the river edge, indicative of potential erosion and/or shallow slope instabilities. This scarp typically ranged in vertical height from 600 mm to 900 m. An additional scarp was observed approximately 1 m south of the large scarp where the over steepened bank flattened out. This scarp had a vertical height of approximately 200 mm. Another larger scarp was observed slightly further east approximately 3 m south of the large scarp, and had a vertical height of approximately 600 mm. The instabilities noted in this area appeared to be indicative of progressive slope instability moving southward up the over steepened portion of the riverbank.

- Stone riprap was observed at localized locations near the bank toe in close proximity to the crossing location. Cobbles and boulders were observed within the study area along the bank toe.
- No evidence of animal burrows or infestations were noted within the riverbank slope.

3.9.2 Existing Structures

3.9.2.1 Northern Riverbank

- The following structures were observed within and adjacent to the study area:
 - o Bridge Structures (2) including superstructure and substructures (abutments and piers)
 - o Drainage Culverts- CSP Outfall
 - o Light Posts
 - o Pavement Sidewalk
 - o Steel Safety Barriers along Sidewalk Edge
 - o Masonry Retaining Walls
 - Chain Link Fence Along private property east of study area
 - o Information Sign
- Some blocks within the masonry retaining walls were observed to have undergone small movements. In general, the walls are in good condition.
- All other structures outlined above visually appeared in good condition.

3.9.2.2 Southern Riverbank

- The following structures were observed within and adjacent to the study area:
 - Bridge Structures (2) including superstructure and substructures (abutments and piers)
 - o Chain Link Fence Along private property east of study area (oriented north-south)
 - Farm Fence Along private property east of study area (oriented east-west)
 - House Located east of study area
- The farm fence was located within the eastern portion of the study area within the area undergoing progressive slope instabilities due to oversteepening. The farm fence supports were generally observed to be leaning towards the river.
- All other structures outlined above visually appeared in good condition.

3.9.3 Vegetation

3.9.3.1 Northern Riverbank

- The upper portion of the riverbank slope (north of the pedestrian pathway) was generally covered in mowed grass with some clusters of large mature trees. The lower portion of the riverbank slope (south of the pedestrian pathway) was generally covered in moderately dense brush, shrubs, and local clusters of large trees. Further east of the study area, the density of large trees increased.
- There was no indication of significant vegetation movement that would suggest slope instability within the study area.

3.9.3.2 Southern Riverbank

• The western portion of the study area was characterized by mowed grass along the bank crest within the cleared crossing alignment, and dense brush, shrubs, and clusters of mature trees along the bank west of the cleared area. Vegetation was primarily absent in the exposed bank area to the north of the observed scarp near the river edge.

- The eastern portion of the study area was characterized by dense brush, shrubs, and large trees. Vegetation was primarily absent in the exposed bank area to the north of the observed scarp near the river edge.
- Within the eastern portion of the study area, trees within the over steepened bank slope were observed to be leaning towards the river to varying degrees. Trees located north of the observed slope instabilities (founded within the failed soil masses) generally leaned more severely towards the river than those south of the observed instabilities.
- Within the western portion of the study, the vegetation did not show any indication of significant movement resulting from slope instability.

3.9.4 SCG and ECG Values

The following table provides a brief summary of the SCG and ECG ratings selected for each bank at this site. Additional information regarding selection of these values is provided within **Appendix D**.

Bank	SCG	ECG	Comments
North	2	2*	Evidence of erosion. Absence of available geotechnical information indicated need for investigation and further analysis. Geotechnical investigation at this site completed and results presented in Section 4. Slope stability analysis completed at this site and results presented in Section 5.
South	2*	2*	Evidence of slope instabilities and erosion. Absence of available geotechnical information indicated need for investigation and further analysis. Geotechnical investigation at this site completed and results presented in Section 4. Slope stability analysis completed at this site and results presented in Section 5.

Table 3-8: Summary of SCG and ECG Values (Site 10)

Notes: *Selected ratings revised from "3" to "2" following completion of the geotechnical investigation and slope stability analyses discussed in subsequent sections

4. Geotechnical Investigation

4.1 General

Based on the results of the background information review and the visual field inspection, the following two sites were determined to require geotechnical investigation, laboratory testing, and instrumentation installation/monitoring:

- Site 5: West Perimeter Force Main (Assiniboine River)
- Site 10: Haney-Moray Feeder Main (Assiniboine River)

For Site 5, the intent of the geotechnical investigation was to provide subsurface information and soil testing to support other disciplines in completion of their pipeline inspection as part of the project scope. For Site 10, the intent of the geotechnical investigation was to provide subsurface information and soil testing to be used in preliminary slope stability analyses to determine the minimum factor of safety of a slip surface intersecting the pipeline, as the north bank was characterized as having an ECG of 3 and the south bank was characterized as having an SCG and ECG of 3.

A job hazard assessment was prepared prior to the geotechnical investigation, and public utility clearance certificates at both sites were obtained by AECOM personnel from representatives of ClickBeforeYouDigMB and DigShaw. Subsurface conditions observed during drilling were documented by AECOM geotechnical personnel,

and recovered samples were classified according to the Modified Unified Classification System for soils. Other pertinent information such as groundwater and drilling conditions were also recorded during the field investigation.

4.2 Site 5: West Perimeter Force Main (Assiniboine River)

On January 25, 2021 two (2) test holes (TH21-01 and TH21-02) were drilled at the approximate locations shown on **Figure E1** in **Appendix E**. Drilling was completed by Maple Leaf Drilling Ltd. using a Mobile B54X drill rig equipped with 125 mm Solid Stem Augers (SSA's) to a maximum depth of 6.4 m below ground surface (BGS). Standard penetration tests (SPT) were performed at select depths within both test holes. Disturbed grab and split spoon samples and relatively undisturbed Shelby Tube samples were retrieved from test holes at select intervals. Upon completion of the drilling, standpipe piezometers were installed in both test holes.

Samples retrieved during the field investigation were tested in AECOM's Materials Testing Laboratory (soil index tests) and ALS Environmental's Materials Testing Laboratory (soil electrochemical tests), both located in Winnipeg, Manitoba.

Detailed test hole logs have been prepared for each test hole and are attached as **Appendix F**. The test hole logs include descriptions and depths of the soil units encountered, sample type, sample location, results of field and laboratory testing and other pertinent information such as seepage and sloughing related to groundwater conditions.

Table 4-1 summarizes the location, elevation, and depth of each test hole.

Test Hole ID	Northing (m)	Easting (m)	Surface Elevation (m)	Termination Depth (m BGS)
TH21-01	5525507	620346	233.85	6.40
TH21-02	5525365	620348	231.90	5.33

Table 4-1: Test Hole Information Summary (Site 5)

4.2.1 Laboratory Testing

Laboratory soil testing was conducted on select soil samples collected during the geotechnical investigation. The soil testing program included the determination of moisture content, grain size distribution (hydrometer/sieve analysis), Atterberg Limits, bulk unit weight, and undrained shear strength ("QU/2" unconfined compressive strength, "PP" pocket penetrometer, and "TV" Torvane methods). The electrochemical testing program included determination of resistivity/conductivity, sulphate content, pH, and chloride content. The laboratory test results are presented in **Appendix G**.

 Table 4-2 summarizes the number of each test completed, and Figure 4-1 illustrates the variation in moisture content and Atterberg Limits with depth.

Table 4-2: Summary of Laboratory Testing (Site 5)

Test	Number
SPT's	5
Moisture Content	15
Atterberg Limits	5
Grain Size Distribution (Hydrometer/Sieve Analysis)	4
Undrained Shear Strength (QU/2)	1
Undrained Shear Strength (PP)	2
Undrained Shear Strength (TV)	2
Bulk Unit Weight	1
Electrochemical (Resistivity/Conductivity, Sulphate, pH, Chloride)	6

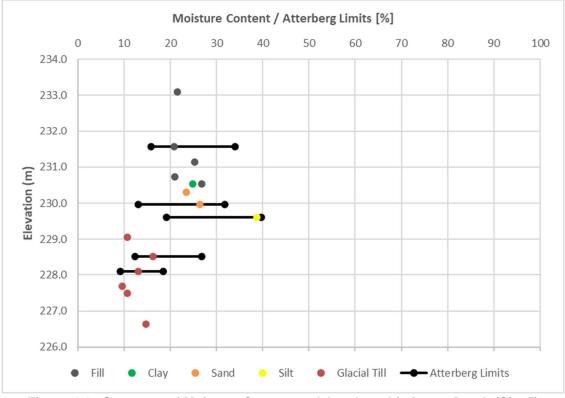


Figure 4-1 - Summary of Moisture Content and Atterberg Limits vs. Depth (Site 5)

4.2.2 Subsurface Conditions

The following sections describe the subsurface conditions encountered during the geotechnical investigation at Site 5. Information provided in this section is a summary of the findings from the investigation and laboratory testing.

In descending order from grade, the general soil profile consisted of:

- Topsoil (Fill)
- Fill
- Clay
- Sand
- Silt
- Glacial Till

Each of these units are described separately below.

<u>Topsoil (Fill)</u>

A layer of topsoil was encountered at ground surface in both test holes and was approximately 0.1 m thick. The topsoil was black and frozen at the time of the investigation. It was placed as part of finish grading during prior construction.

<u>Fill</u>

A layer of fill was encountered beneath the topsoil in both test holes, and ranged in thickness from 1.4 m to 3.2 m. In test hole TH21-01 the fill layer was classified as clay at depths ranging from 0.1 m to 0.9 m, sand from 0.9 m to 1.1 m, and silt from 1.1 m to 3.2 m. In test hole TH21-02 the fill layer was classified as clay from 0.1 m to 1.5 m.

The clay fill was generally silty, contained some sand, trace gravel, trace roots, was brown to grey, and was classified as firm to stiff, moist, and of intermediate to high plasticity at depths below 0.9 m. At depths above 0.9 m, the clay fill was frozen at the time of the investigation. Suspected cobbles were encountered during drilling of test hole TH21-02 at a depth of 1.2 m. A summary of the index properties of the clay fill is presented in **Table 4-3**.

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	22	27	3
Undrained Shear Strength, PP (kPa)	6	0	1
Undrained Shear Strength, TV (kPa)	3	1	

Table 4-3: Summary of Index Properties of Clay Fill (Site 5)

The sand fill was silty, contained trace to some clay, and was brown and frozen at the time of the investigation.

The silt fill was sandy, clayey, brown to mottled dark brown, firm, moist, and of intermediate plasticity. A summary of the index properties of the silt fill is presented in **Table 4-4**.

Table 4-4: Summary of Index Properties of Silt Fill (Site 5)

Test	Minimum Value Maximum Va	ue Number of Tests
Moisture Content (%)	21	2
SPT 'N' Blow Count (uncorrected)	5	1
Atterberg – Plastic Limit (%)	16	1
Atterberg – Liquid Limit (%)	34	1
Grain Size – Gravel (%)	0	1
Grain Size – Sand (%)	24	1
Grain Size – Silt (%)	53	1
Grain Size – Clay (%)	23	1

<u>Clay</u>

A layer of native clay was encountered beneath the fill in test hole TH21-01 with an approximate thickness of 0.3 m. The clay was silty, contained trace to some sand, and was brown, soft to firm, moist, and of intermediate plasticity. A summary of the index properties of the clay is presented in **Table 4-5**.

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	2	5	1
Undrained Shear Strength, QU/2 (kPa)	2	2	1
Undrained Shear Strength, PP (kPa)	3	6	1
Undrained Shear Strength, TV (kPa)	3	4	1
Bulk Unit Weight (kN/m ³)	19	.1	1

Table 4-5: Summary of Index Properties of Clay (Site 5)

<u>Sand</u>

A layer of sand was encountered beneath the clay in test hole TH21-01 with an approximate thickness of 1.0 m. The sand was silty, clayey, brown to grey, firm, moist to wet, and of intermediate plasticity. A summary of the index properties of the sand is presented in **Table 4-6**.

Table 4-6: Summary of Index Properties of Sand (Site 5)

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	24	26	2
Atterberg – Plastic Limit (%)	1	3	1
Atterberg – Liquid Limit (%)	32		1
Grain Size – Gravel (%)	0		1
Grain Size – Sand (%)	44		1
Grain Size – Silt (%)	30		1
Grain Size – Clay (%)	2	6	1

<u>Silt</u>

A layer of silt was encountered beneath the fill in test hole TH21-02 with an approximate thickness of 1.2 m. The silt was clayey, contained some sand, and was brown to mottled grey, soft to firm, moist, and of intermediate plasticity. A summary of the index properties of the silt is presented in **Table 4-7**.

Test	Minimum Value Maximum Value	Number of Tests
Moisture Content (%)	39	1
Atterberg – Plastic Limit (%)	19	1
Atterberg – Liquid Limit (%)	40	1
Grain Size – Gravel (%)	0	1
Grain Size – Sand (%)	13	1
Grain Size – Silt (%)	58	1
Grain Size – Clay (%)	30	1

Glacial Till

A layer of glacial till was encountered beneath the sand in test hole TH21-01 and beneath the silt in test hole TH21-02 at depths of 4.4 m and 2.7 m below ground surface, respectively. Both test holes were terminated within the glacial till layer due to auger refusal at depths ranging from 5.3 m to 6.4 m. The glacial till was generally classified as silty sand containing some gravel, some clay, and was light brown, firm to hard, dry to wet, and of low plasticity. A summary of the index properties of the glacial till is presented in **Table 4-8**.

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	10	16	6
SPT 'N' Blow Count (uncorrected)	6	>50	4
Atterberg – Plastic Limit (%)	9	12	2
Atterberg – Liquid Limit (%)	19	27	2
Grain Size – Gravel (%)	1	19	
Grain Size – Sand (%)	4	46	
Grain Size – Silt (%)	2	20	
Grain Size – Clay (%)	1	5	1

Table 4-8: Summary of Index Properties of Glacial Till (Site 5)

4.2.3 Sloughing and Groundwater Conditions

Sloughing was not encountered within test holes TH21-01 or TH21-02 during drilling. Seepage was not encountered in test hole TH21-02 but was observed during drilling of TH21-01 at depths below 4.6 m. Detailed information about the nature and location of the sloughing and/or seepage are provided on the test hole logs included in **Appendix F**.

Two (2) standpipe piezometers were installed in test holes TH21-01 and TH21-02. Short-term monitoring results of the groundwater level (GWL) are provided in **Table 4-9**.

Test Hole Number	TH21-01	TH21-02
Test Hole Elevation [m]	233.85	231.90
Tip Depth [m BGS]	6.25	2.44
Tip Elevation [m]	227.60	229.46
Tip Location	Glacial Till	Silt
Dates	GWL Depth Below Groun	d Surface (Elevation) [m]
*January 25, 2021	5.85 (228.00)	2.15 (229.75)
February 22, 2021	4.22 (229.62)	2.18 (229.72)

Table 4-9: Piezometer Monitoring Data (Site 5)

* Measurements taken immediately following installation

It should be noted that groundwater levels, seepage, and sloughing levels in excavations may vary seasonally, annually, or as a result of construction activities.

4.2.4 Electrochemical Test Results

Electrochemical testing was completed on six (6) soil samples collected from test holes TH21-01 and TH21-02 to determine water soluble sulphate in soil, pH of soil, water soluble chloride in soil, and soil resistivity/conductivity. A summary of the test results is provided in **Table 4-10**.

Soil Unit	Borehole	Sample ID / Depth (m)	Water Soluble Sulphate (mg/kg)	рН	Water Soluble Chloride (mg/kg)	Resistivity (ohm*cm)	Conductivity (mS/cm)
Clay Fill	TH21-01	G1 / 0.8	35	7.49	373	1210	0.824
Ciay Till	TH21-02	G1 / 0.8	58	7.65	64	1940	0.515
Sand	TH21-01	G5 / 3.8	118	7.76	306	1330	0.750
Silt	TH21-02	G3/2.3	128	7.67	116	1710	0.584
Glacial Till	TH21-01	S8 / 6.2	76	8.10	132	2420	0.414
Glacial Th	TH21-02	S6 / 4.4	177	8.03	120	1700	0.587

Table 4-10 – Summary of Electrochemical Tests (Site 5)

The results of the water-soluble sulphate testing indicate that the clay fill, sand, and silt soils tested are classified as moderate (S-3) class of exposure to sulphate attack according to CAN/CSA A23.1-M94 (*Concrete Materials and Methods of Concrete Construction*). However, it is known that alluvial and glaciolacustrine soils in the Winnipeg area commonly have a very severe (S-1) class of exposure to sulphate attack.

Based on the results of the resistivity/conductivity testing, the clay fill, sand, and silt soils tested are classified as highly corrosive to buried metal.

4.3 Site 10: Haney-Moray Feeder Main (Assiniboine River)

On January 26, 2021 two (2) test holes (TH21-03 and TH21-04) were drilled at the approximate locations shown on **Figure E2** in **Appendix E**. Drilling was completed by Maple Leaf Drilling Ltd. using a Mobile B54X drill rig equipped with 125 mm Solid Stem Augers (SSA's) to a maximum depth of 5.3 m below ground surface (BGS). Standard penetration tests (SPT) were performed at select depths within both test holes. Disturbed grab and split spoon samples and relatively undisturbed Shelby Tube samples were retrieved from the test holes at select intervals. Upon completion of the drilling, standpipe piezometers were installed in both test holes.

Samples retrieved during the field investigation were tested in AECOM's Materials Testing Laboratory (soil index tests) and ALS Environmental's Materials Testing Laboratory (soil electrochemical tests), both located in Winnipeg, Manitoba.

Detailed test hole logs have been prepared for each test hole and are attached as **Appendix F**. The test hole logs include descriptions and depths of the soil units encountered, sample type, sample location, results of field and laboratory testing and other pertinent information such as seepage and sloughing related to groundwater conditions.

Table 4-11 summarizes the location, elevation, and depth of each test hole.

Table 4-11: Test Hole Information Summary (Site 10)

Test Hole ID	Northing (m)	Easting (m)	Surface Elevation (m)	Termination Depth (m BGS)
TH21-03	5525903	624809	231.90	5.33
TH21-04	5525799	624792	229.78	3.35

4.3.1 Laboratory Testing

Laboratory soil testing was conducted on select soil samples collected during the geotechnical investigation. The soil testing program included the determination of moisture content, grain size distribution (hydrometer/sieve analysis), Atterberg Limits, bulk unit weight, and undrained shear strength ("QU/2" unconfined compressive strength, "PP" pocket penetrometer, and "TV" Torvane methods). The electrochemical testing program included determination of resistivity/conductivity, sulphate content, pH, and chloride content. The laboratory test results are presented in **Appendix G**.

 Table 4-12 summarizes the number of each test completed, and Figure 4-2 illustrates the variation in moisture content and Atterberg Limits with depth.

Test	Number
SPT's	4
Moisture Content	12
Atterberg Limits	4
Grain Size Distribution (Hydrometer/Sieve Analysis)	4
Undrained Shear Strength (QU/2)	1
Bulk Unit Weight	1
Electrochemical (Resistivity/Conductivity, Sulphate, pH, Chloride)	5

Table 4-12: Summary of Laboratory Testing (Site 10)

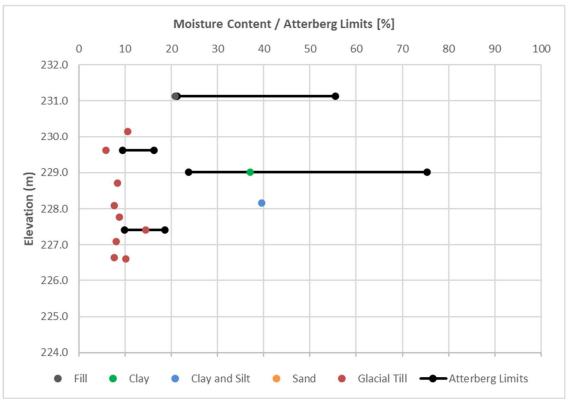


Figure 4-2 - Summary of Moisture Content and Atterberg Limits vs. Depth (Site 10)

4.3.2 Subsurface Conditions

The following sections describe the subsurface conditions encountered during the geotechnical investigation at Site 10. Information provided in this section is a summary of the findings from the investigation and laboratory testing.

In descending order below grade, the general soil profile consisted of:

- Topsoil (Fill)
- Clay and Silt (Fill)
- Clay
- Clay and Silt
- Sand
- Glacial Till

Each of these units are described separately below.

<u>Topsoil (Fill)</u>

A layer of topsoil was encountered at ground surface in both test holes and was approximately 0.1 m thick. The topsoil was black and frozen at the time of the investigation. It was placed as part of finish grading during prior construction.

Clay and Silt Fill

A layer of clay and silt fill was encountered beneath the topsoil in test hole TH21-03 with a thickness of 0.9 m. The clay and silt fill generally contained some sand, trace gravel, trace roots, and was dark brown and frozen at the time of the investigation. A summary of the index properties of the clay and silt fill is presented in **Table 4-13**.

Test	Minimum Value Maximum Value	Number of Tests
Moisture Content (%)	21	1
Atterberg – Plastic Limit (%)	21	1
Atterberg – Liquid Limit (%)	56	1
Grain Size – Gravel (%)	1	1
Grain Size – Sand (%)	18	1
Grain Size – Silt (%)	30	1
Grain Size – Clay (%)	51	1

Table 4-13: Summary of Index Properties of Clay and Silt Fill (Site 10)

<u>Clay</u>

A layer of native clay was encountered beneath the topsoil in test hole TH21-04 with an approximate thickness of 1.1 m. The clay was silty, contained trace roots, and was brown, frozen to 1.1 m, and firm, moist, and of high plasticity below 1.1 m. A summary of the index properties of the clay is presented in **Table 4-14**.

Table 4-14: Summary of Index Properties of Clay (Site 10)

Test	Minimum Value Maximum Val	ue Number of Tests
Moisture Content (%)	37	1
Atterberg – Plastic Limit (%)	24	1
Atterberg – Liquid Limit (%)	75	1
Grain Size – Gravel (%)	0	1
Grain Size – Sand (%)	0	1
Grain Size – Silt (%)	21	1
Grain Size – Clay (%)	79	1

Clay and Silt

A layer of clay and silt was encountered beneath the clay in test hole TH21-04 with an approximate thickness of 0.5 m. The clay and silt were grey, firm, moist, and of high plasticity. A summary of the index properties of the clay and silt is presented in **Table 4-15**.

Table 4-15: Summar	v of Index Pro	perties of Clay	v and Silt (Site 10)
	y ol mack i i o		y and one (once ro)

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	40	0	1

<u>Sand</u>

A layer of sand was encountered beneath the clay and silt in test hole TH21-04 with an approximate thickness of 0.2 m. The sand contained some clay to clayey, trace silt, and was grey to mottled brown, firm, moist, and of low plasticity.

Glacial Till

A layer of glacial till was encountered beneath the clay fill in test hole TH21-03 and beneath the sand in test hole TH21-04 at depths of 0.9 m and 1.9 m below ground surface, respectively. Both test holes were terminated within the glacial till layer due to auger refusal at depths ranging from 3.4 m to 5.3 m. The glacial till was generally classified as sand and silt containing some clay, trace to some gravel, and was light brown, soft to hard, dry to

moist, and of low plasticity. Suspected cobbles or boulders were encountered during drilling of test hole TH21-04 at a depth of 2.4 m. A summary of the index properties of the glacial till is presented in **Table 4-16**.

Test	Minimum Value	Maximum Value	Number of Tests
Moisture Content (%)	6	14	9
SPT 'N' Blow Count (uncorrected)	46	>50	4
Atterberg – Plastic Limit (%)	9	10	2
Atterberg – Liquid Limit (%)	16	19	2
Grain Size – Gravel (%)	6	16	2
Grain Size – Sand (%)	37	39	2
Grain Size – Silt (%)	35	38	2
Grain Size – Clay (%)	12	18	2
Undrained Shear Strength, QU/2 (kPa)	2	24	
Bulk Unit Weight (kN/m ³)	23	23.5	

Table 4-16: Summary of Index Properties of Glacial Till (Site 10)

4.3.3 Sloughing and Groundwater Conditions

Sloughing and seepage were not encountered within test holes TH21-03 or TH21-04 during drilling. Detailed information about the nature and location of the sloughing and/or seepage are provided on the test hole logs included in **Appendix F**. Two (2) standpipe piezometers were installed in test holes TH21-03 and TH21-04. Short-term monitoring results of the groundwater level (GWL) are provided in **Table 4-17**.

Test Hole Number	TH21-03	TH21-04			
Test Hole Elevation [m]	231.90	229.78			
Tip Depth [m BGS]	5.18	3.05			
Tip Elevation [m]	226.72	226.73			
Tip Location	Glacial Till	Glacial Till			
Dates	GWL Depth Below Ground Surface (Elevation) [m]				
*January 26, 2021	Dry (-)	Dry (-)			
February 22, 2021	Dry (-)	1.99 (227.79)			

Table 4-17: Piezometer Monitoring Data (Site 10)

* Measurements taken immediately following installation

It should be noted that groundwater levels, seepage, and sloughing depth in excavations may vary seasonally, annually, or as a result of construction activities.

4.3.4 Electrochemical Test Results

Electrochemical testing was completed on five (5) soil samples collected from test holes TH21-03 and TH21-04 to determine water soluble sulphate in soil, pH of soil, water soluble chloride in soil, and soil resistivity/conductivity. A summary of the test results is provided in **Table 4-18**.

Soil Unit	Borehole	Sample ID / Depth (m)	Water Soluble Sulphate (mg/kg)	рН	Water Soluble Chloride (mg/kg)	Resistivity (ohm*cm)	Conductivity (mS/cm)
Clay and Silt Fill	TH21-03	G1 / 0.8	21	7.44	32	2400	0.416
Clay	TH21-04	G1 / 0.8	126	7.83	<20	2040	0.489
	TH21-03	S4 / 3.2	192	8.14	35	2860	0.350
Glacial Till	TH21-03	G7 / 5.3	112	8.10	21	3190	0.313
	TH21-04	S4 / 3.2	62	8.03	27	3790	0.264

Table 4-18 - Summary of Electrochemical Tests (Site 10)

The results of the water-soluble sulphate testing indicate that the clay and silt fill, clay, and glacial till soils tested are classified as moderate (S-3) class of exposure to sulphate attack according to CAN/CSA A23.1-M94 (*Concrete Materials and Methods of Concrete Construction*). However, it is known that alluvial and glaciolacustrine clay soils in the Winnipeg area commonly have a very severe (S-1) class of exposure to sulphate attack.

With respect to buried metal, based on the results of the resistivity/conductivity testing, the clay and silt fill and clay encountered at this site are highly corrosive, and the glacial till encountered is corrosive to highly corrosive.

5. Slope Stability Assessment

5.1 General

The primary objective of the preliminary slope stability analysis is to assess the existing stability of the river/creek bank slopes determined to have an SCG and/or ECG value greater than or equal to 3, and to determine if prevailing slope conditions place the buried sewer/water systems at increased risk of damage from slope movement. Based on the results of the background information review and visual field inspection, slope stability analyses have been completed for the following two sites:

- Site 4: Fort Garry/St Vital Interceptor Siphons (Red River) West Riverbank
- Site 10: Haney-Moray Feeder Main (Assiniboine River) North and South Riverbanks

5.2 Limitations of Slope Stability Analyses

The primary objective of the stability assessment was to establish the levels of risk to the buried pipes at the crossings as a result of slope instability within the banks and is not necessarily a characterization of the stability of the banks themselves. Furthermore, slope stability analysis has been performed for each site based upon in some cases limited or old topographical information (i.e., LIDAR data and as-built record information), and limited pipe invert/condition information and positional information. The results should therefore be viewed as preliminary.

5.3 Methodology

5.3.1 Stability Analysis

Two-dimensional slope stability models were developed using GeoStudio 2019 (Slope/W) based on the Limit Equilibrium method of analysis. The riverbank geometries were established based on LIDAR survey provided by the City (City of Winnipeg 2011 Data Set), as-built record drawings, and existing geotechnical reports.

The soil stratigraphy for the stability models was derived from geological maps, available test hole information from previously existing geotechnical engineering reports, and information obtained from the geotechnical

investigation completed as part of this project (for Site 10). The pipe location at each crossing was taken from the record drawings, and the pipe profiles within the slope stability models were inferred where necessary.

Upon establishing a slope stability model for each site, the assessment was performed using Morgenstern-Price's general method of slices, which satisfies both moment and horizontal force equilibrium. More advanced methods (such as finite element analysis) were not used for this study as the uncertainties associated with material parameters, soil stratigraphy and piezometric conditions would not justify a more complex analysis method.

As part of the analysis, the following slip surfaces were considered of interest and are conceptually illustrated in **Figure 5-1**. A Factor of Safety (FS) was determined for each of the following:

- Global Slip Surface Engaging Pipe (GS+P): is defined as a slip surface that meets the criteria of a global slip surface and encompasses part of the buried pipe.
- Global Slip Surface (GS): is defined as a slip surface that largely encompasses the slope soil mass and has an entry and exit point at or just beyond the slope crest and/or toe.
- Toe Slip Surface (TS): is defined as a slip surface that is localized to the toe of the slope and which has a minimum depth of 0.5m. At some locations the FS of this slip surface may be lower than the critical or global FS. Instability at the toe of the slope may reduce the FS for the global or critical slip surfaces. Retrogressive failures starting at the toe will generally work towards the riverbank.

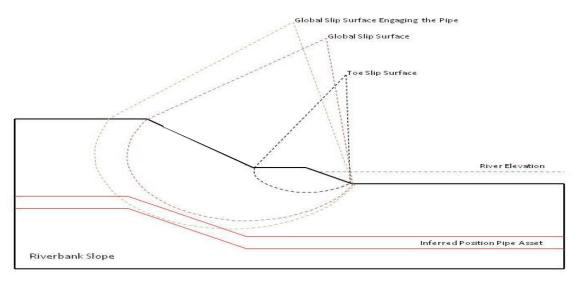


Figure 5-1 - Assessed Slip Surfaces

5.3.2 Slope Stability Cases

The following loading conditions have been considered as part of the slope stability analysis, and are outlined below:

- Long-term Conditions (Summer Water Level and Winter Water Level)
- Short-term Condition (Rapid Drawdown)

An acceptable FS can be defined between 1.3 and 1.5 depending on whether short-term or long-term conditions are being considered, and based on other factors including but not limited to associated impact of instability, risk management approach and related cost to improve the stability. For purposes of this TM and consistent with acceptable design practice, river/creek stability is assessed under the following design conditions and the corresponding target FS against slope instability:

- Long-term Condition: FS ≥ 1.50
- Short-term Condition (Rapid Drawdown): FS ≥ 1.30

The short-term rapid drawdown condition refers to a state in which the river level against the bank falls rapidly below its normal level while the piezometric conditions within the bank slope remain at their elevated levels.

5.3.3 Soil Parameters

Soil strength parameters used in the stability analyses are presented in **Table 5-1** and **Table 5-2** for Site 4 and Site 10, respectively. Soil parameters were selected based upon review of existing and collected laboratory testing data for each site, combined with local knowledge and prior experience.

5.3.3.1 Site 4: Fort Garry/St. Vital Interceptor Siphons (Red River)

In order to develop the slope stability model at the west riverbank, subsurface stratigraphy and groundwater conditions from the following available test hole logs were relied upon:

• Test Holes 1003, 1004, and 401: Klohn Leonoff Consultants Ltd (April 12, 1976), *Report on Sub-Soils Investigation for Fort Garry- St. Vital Corridor, Winnipeg, Manitoba.* These test hole logs are included in Appendix B1.

Further information regarding the subsurface ground conditions at this site are shown on the as-built drawings attached in **Appendix A1**.

Fully-softened shear strength values were assigned to the alluvial and glaciolacustrine clay soil layers for both the long-term and short-term cases. The bedrock was treated as an impenetrable layer within the analyses, and therefore was not assigned a shear strength value. Riprap armouring at the toe of the west bank was not considered within the analyses, as available as-built records did not indicate the extent (lateral and vertical) of the armouring, and observations from the visual field inspection suggested that it was only present within a small area immediately around the crossing alignment. The following table summarizes the parameters adopted as part of the slope stability analysis.

Stratum	tum Bulk Unit Weight (kN/m ³) Effective Angle of Internal Friction (Degrees)		Effective Cohesion (kPa)	
Alluvial Clay*	18	18	5.0	
Glaciolacustrine Clay	18	14	5.0	
Glacial Till	21	30	10.0	

Table 5-1: Soil Strength Parameters for Stability Analysis (Site 4)

Notes: *Inclusive of Upper and Lower Alluvial Clay.

5.3.3.2 Site 10: Haney-Moray Feeder Main (Assiniboine River)

In order to develop the slope stability model at the north and south riverbanks, subsurface stratigraphy and groundwater conditions were based on the geotechnical investigation completed by AECOM as part of this project.

Fully-softened shear strength values were assigned to the alluvial and glaciolacustrine soil layers for both the long term and short-term cases. The thickness of glacial till and bedrock contact depth were not confirmed during the drilling at this site. As such, it has been assumed that the glacial till layer extends from the contact elevation observed to the lowest elevation considered within the analysis. The following table summarizes the parameters adopted as part of the slope stability analysis at the site.

Stratum	Bulk Unit Weight (kN/m³)	Effective Angle of Internal Friction (Degrees)	Effective Cohesion (kPa)
Clay and Silt Fill	18.5	18	2.0
Clay / Clay and Silt	18	14	5.0
Sand	21	32	0.0
Glacial Till	21	36	0.0

Table 5-2: Soil Strength Parameters for Stability Analysis (Site 10)

5.3.4 River Water Levels

Levels for the Red River modeled in the slope stability analysis for Site 4 were selected based on information from the City of Winnipeg's online database (<u>http://www.winnipeg.ca/publicworks/pwddata/riverlevels/</u>) as well previous geotechnical reports associated with the site. Levels for the Assiniboine River modeled in the slope stability analysis for Site 10 were selected based on river elevation information presented in the as-built record. The normal winter water level (NWWL), normal summer water level (NSWL), and rapid drawdown (RDD) heights incorporated into the slope stability analyses are summarized in **Table 5-3** below.

Table 5-3: Summary of River Levels for Stability Analysis

Water Course	Site Reference	NWWL (m)	NSWL (m)	*RDD (m)	Reference Document
Red River	Site 4	221.76	223.74	1.98	City of Winnipeg Online Database Reference Levels Table
Assiniboine River	Site 10	227.84	228.40	0.56	City of Winnipeg As-Built Drawing D-846

*Notes: Difference between NWWL and NSWL levels.

5.4 Slope Stability Results

5.4.1 Site 4: Fort Garry / St. Vital Interceptor Siphons (Red River)

Slope stability analyses were completed for the west bank of Site 4 based on the established subsurface ground model and available topographic information along the pipe alignment. The FS values calculated from the analyses are presented in **Table 5-4**.

Slope Stability Case	Global Slip Stability (GS)	Global Stability Engaging the Pipe (GS+P)	Toe Slip Surface (TS)	File Output Reference	
	West	West	West	West	
Long Term (NWWL)	1.39	1.39	1.39	H-01	
Long Term (NSWL)	1.46	1.46	1.46	H-02	
Short Term (RDD)	1.30	1.30	1.30	H-03	

Table 5-4: Current Riverbank Stability Results Along Pipe Alignment (Site 4)

Based on the results of the preliminary slope stability assessment for Site 4, the following general conclusions and recommendations were drawn:

- For long-term analysis conditions (NWWL and NSWL) at the west bank, the 700 mm and 800 mm HDPE interceptor sewers are at risk of being engaged by a failure surface with a FS between 1.39 and 1.46. For short-term analysis conditions (RDD), the 700 mm and 800 mm HDPE interceptor sewers are engaged by a failure surface with a FS of 1.30.
- The short-term FS values meet the current industry accepted design standard FS of 1.30.
- Whilst the existing long-term FS values are somewhat below current industry-accepted design standards, the
 risk of immediate slope failure is considered low. A progressive reduction in the FS of the riverbank slope
 through erosion should be monitored regularly to mitigate the risk of reduction in slope stability through
 erosion.
- Consideration of slope improvements within the western riverbank should be assessed on a cost/benefit basis. Unless deemed critical, periodic visual inspection should be sufficient in the short term until such time that existing slope stability falls below a FS of about 1.3. Should the need for slope improvement to be required in the short term, consideration may be given to slope regrading and placement of stone riprap within a greater area around the crossing location.

5.4.2 Site 10: Haney-Moray Feeder Main (Assiniboine River)

Slope stability analyses were completed both banks of Site 10 based on the established subsurface ground model and available topographic information along the pipe alignment. The FS values calculated from the analyses for Site 10 are presented in **Table 5-5**.

River Conditions		Global Slip Stability (GS) Global Stability (GS+F		the Pipe	-	Surface S)	File Output Reference	
	North	South	North	South	North	South	North	South
Long Term (NWWL)	2.60	1.83	2.60	>2.50	2.60	1.83	H-04	H-05
Long Term (NSWL)	2.60	1.84	2.60	>2.50	2.60	1.84	H-06	H-07
Short Term (RDD)	2.56	1.83	2.56	>2.50	2.56	1.83	H-08	H-09

Table 5-5: Current Riverbank Stability Results Along Pipe Alignment (Site 10)

Based on the results of the preliminary slope stability assessment for Site 10, the following general conclusions and recommendations were drawn:

- For long-term analysis conditions (NWWL and NSWL) and short-term analysis conditions (RDD) at both banks, the 450 mm CPP feeder main was engaged by failure surfaces with a FS greater than 2.50.
- The long-term and short-term FS values meet the current industry accepted design standard FS's of 1.50 and 1.30, respectively.
- Geotechnical investigation completed by AECOM as part of this project indicated that the pipe was installed at least partially within the glacial till unit. Therefore, slope instabilities observed along the south bank are shallow in nature and unlikely to damage the pipeline.
- Based on the slope stability results, the SCG and ECG values at the north bank (at this time) are more appropriately selected as 1 and 2, respectively.
- Based on the slope stability results, the SCG and ECG values at the south bank (at this time) are more appropriately selected as 2 and 2, respectively.
- No further action is required unless the slope conditions deteriorate or significantly different hydraulic conditions (river level) are experienced.

6. Closing

The findings and conclusions contained within this TM were based on the results of as-built records, information contained within previous studies, and for Sites 5 and 10, new subsurface investigations. In some cases, soil conditions and groundwater levels were extrapolated based on existing data and AECOM's prior experience. If conditions are encountered that appear to be different from those shown within the existing documentation and described in this report, or if assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be review and justified, if necessary.

Soil conditions by their nature can be highly variable across a site. If conditions at any of the HRRC sites reviewed in this TM are encountered that appear to be different from those identified, or if the assumptions stated herein are not in keeping with the design and operations of the HRRC Crossings, this office should be notified in order to review and adjust (if necessary) the material contained within report.

If you have any questions, please do not hesitate to contact the undersigned.

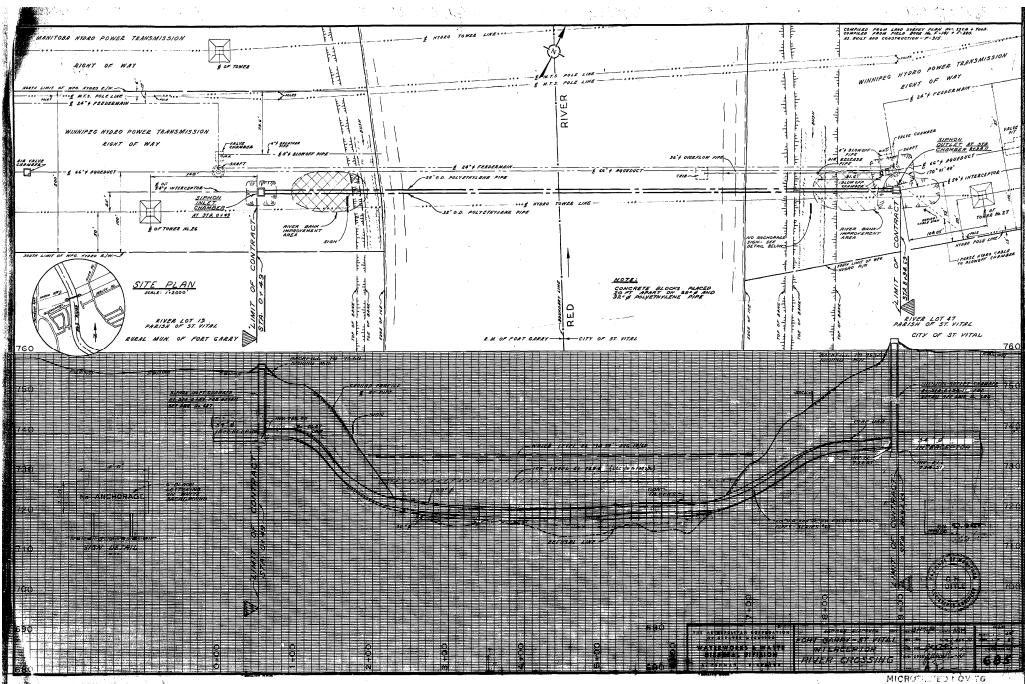
Respectfully submitted, **AECOM Canada Ltd.**

Prepared by:

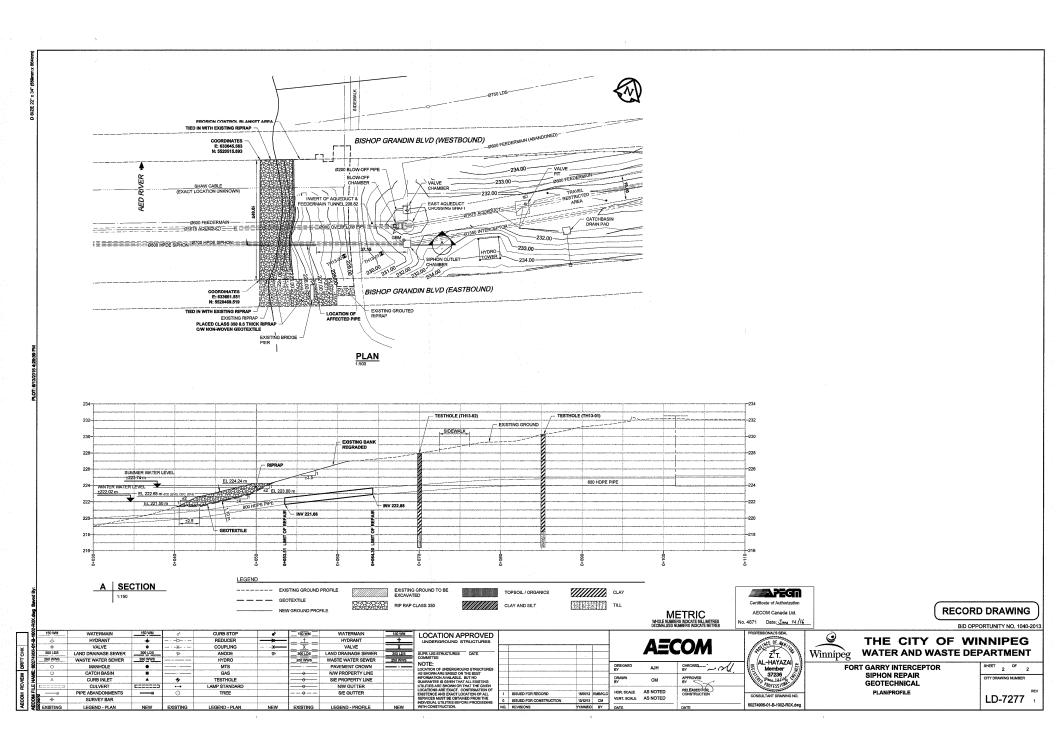
ianfland

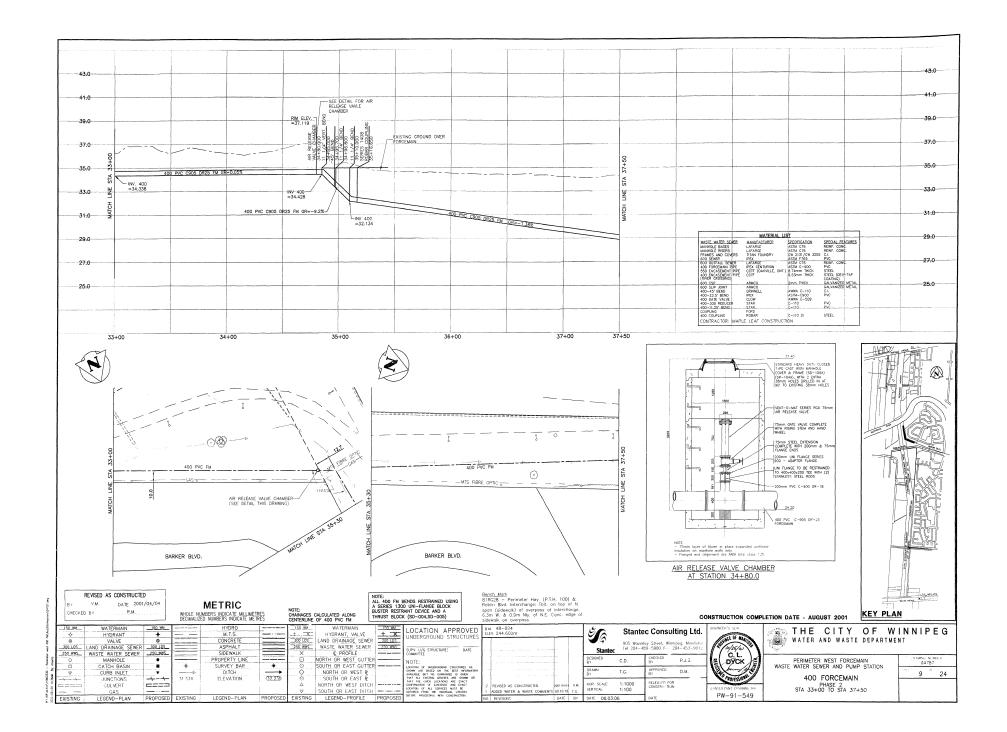
Ryan Harras, B.Sc. (Civil), P.Eng Geotechnical Engineer

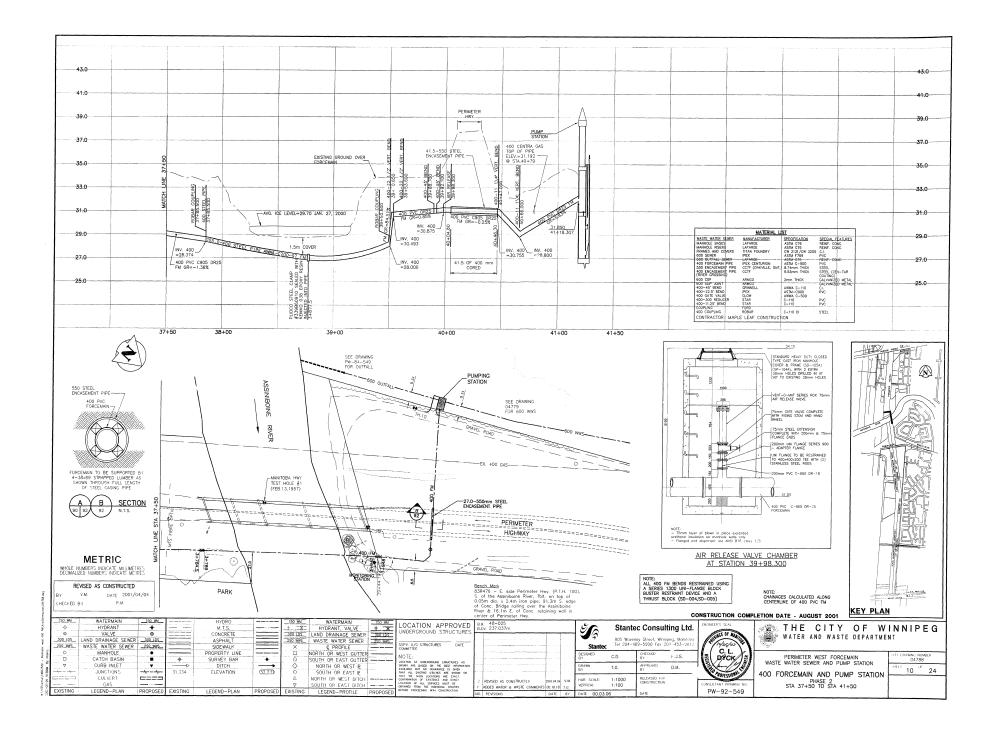
2021-03-17 19 Reviewed by:

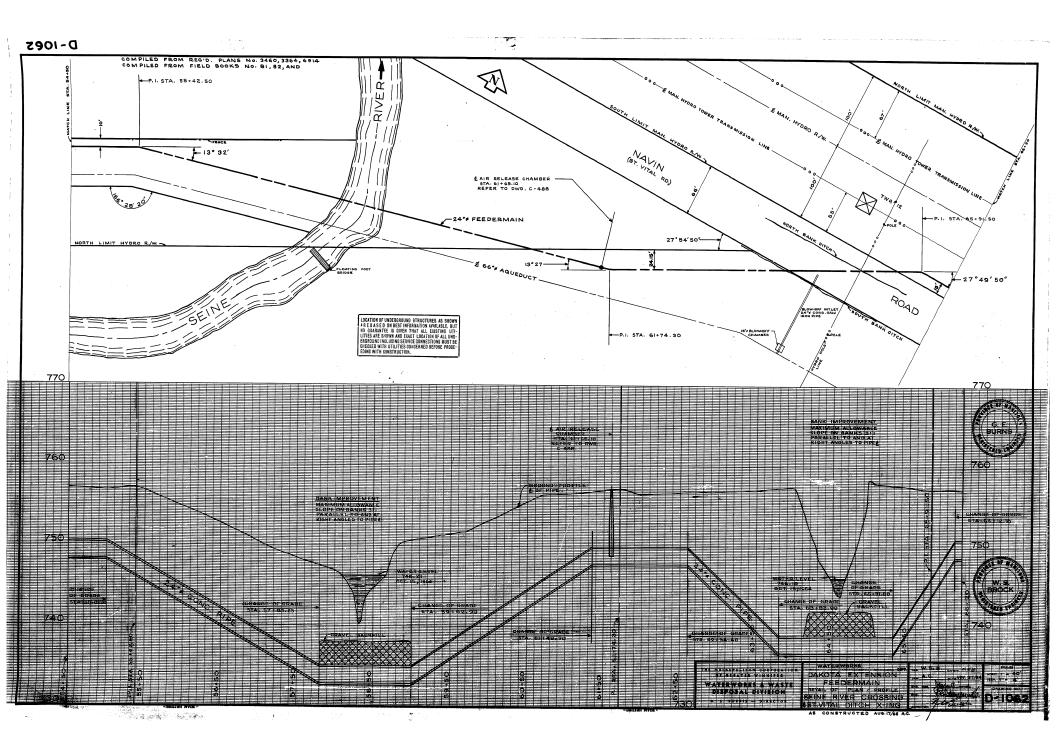

EN:ottE. Drunget

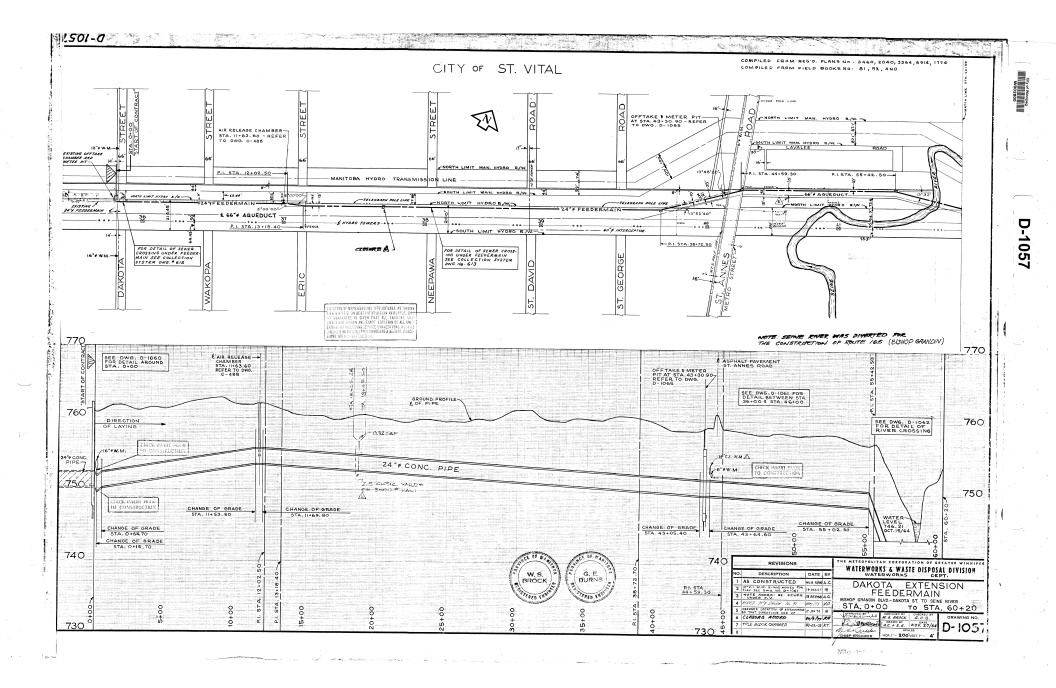
Elliott Drumright, PhD, P.E Associate Geotechnical Engineer

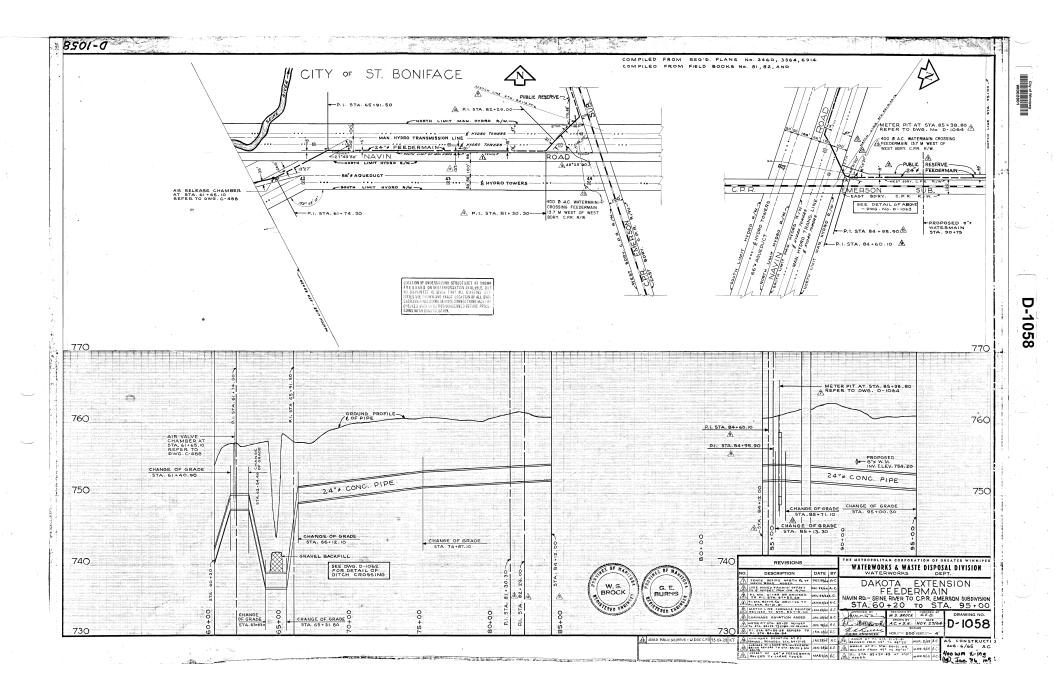


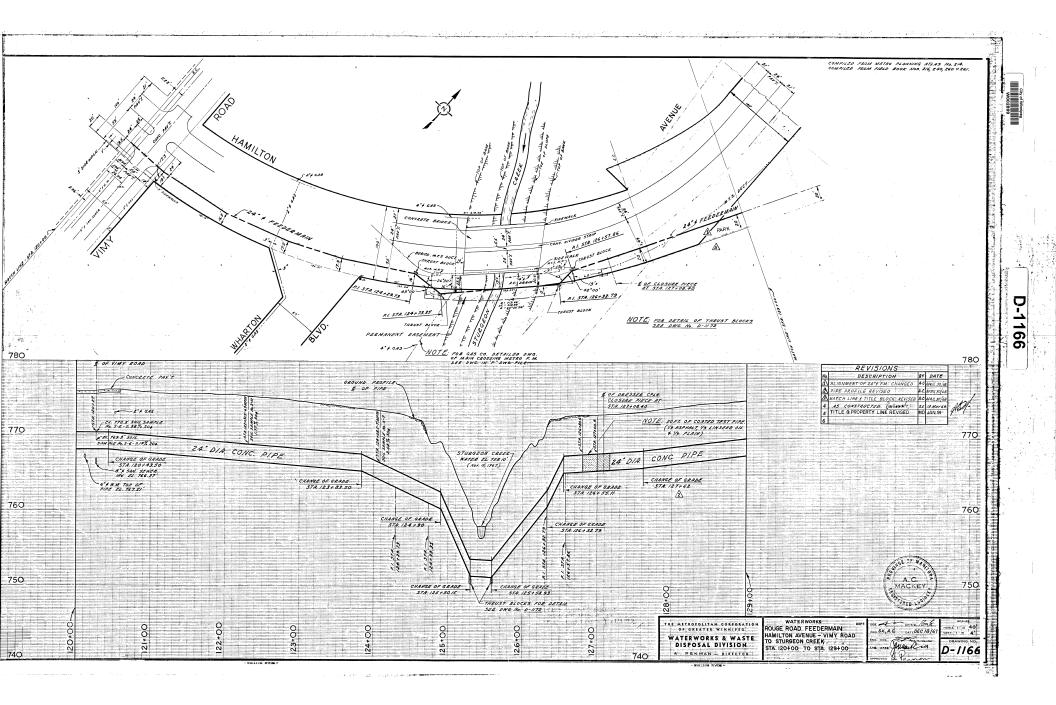

Appendix **A**

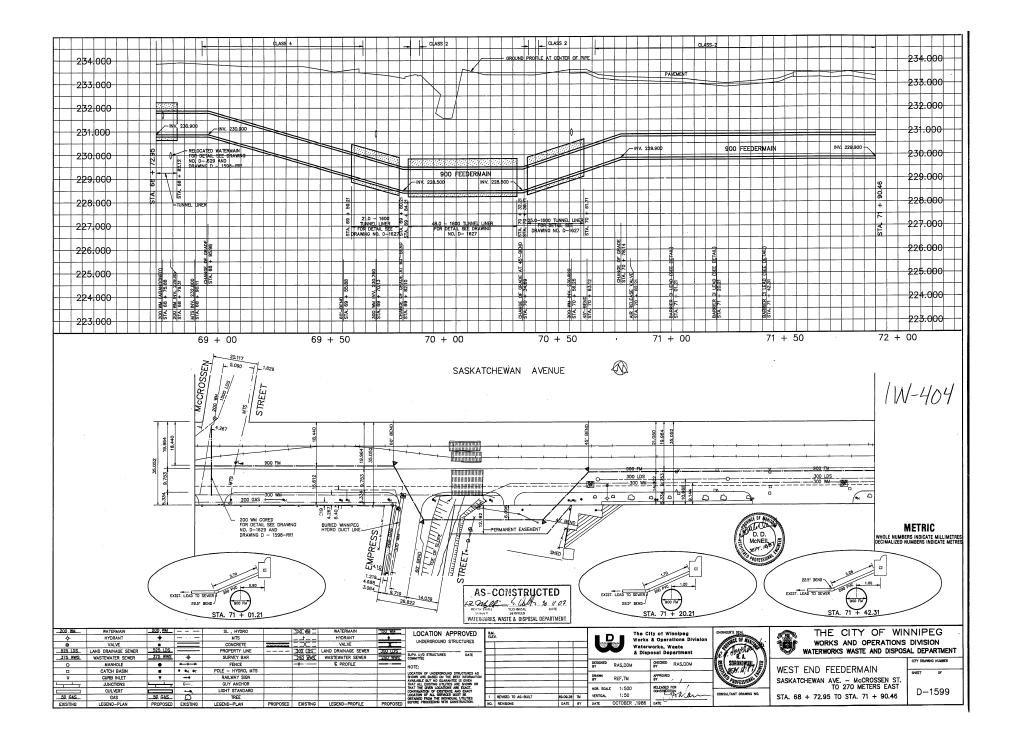

- A1: Site 4 As-Built Records
- A2: Site 5 As-Built Records
- A3: Site 6 As-Built Records
- A4: Site 7 As-Built Records
- A5: Site 8 As-Built Records
- A6: Site 9 As-Built Records
- A7: Site 10 As-Built Records

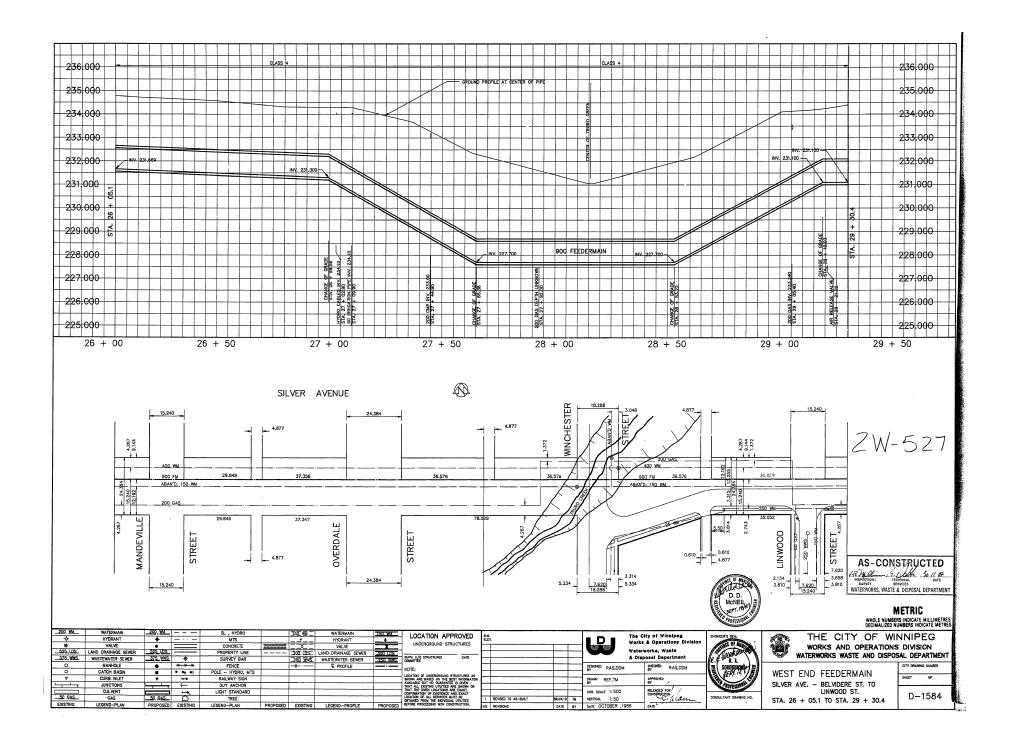


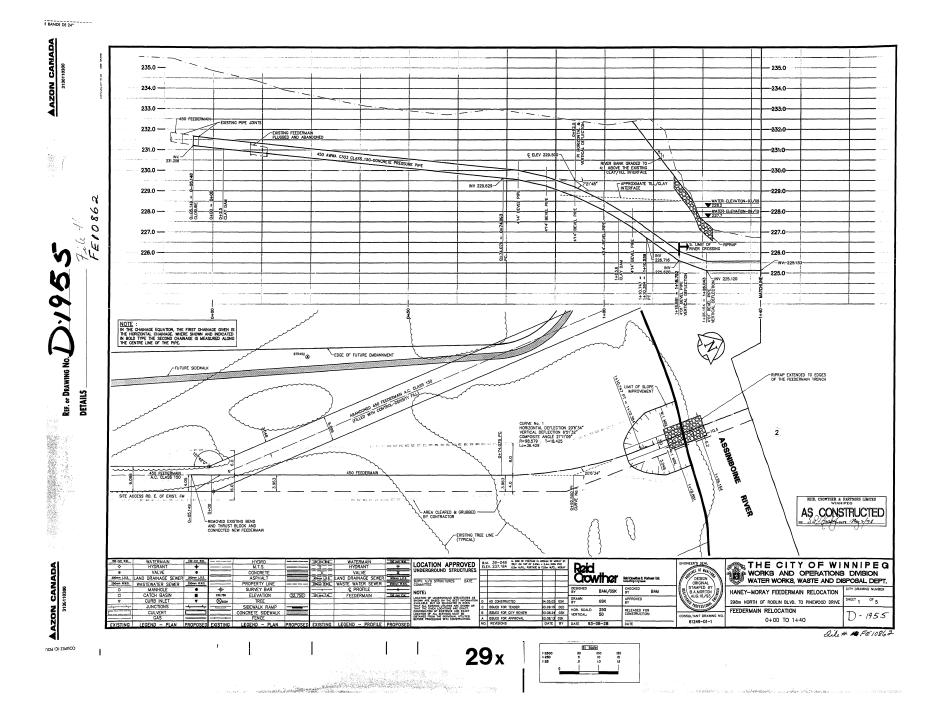

 $(x_{i}, x_{i}) \in (\mathbf{k}_{i} - \mathbf{1}) \in (1, 1)$

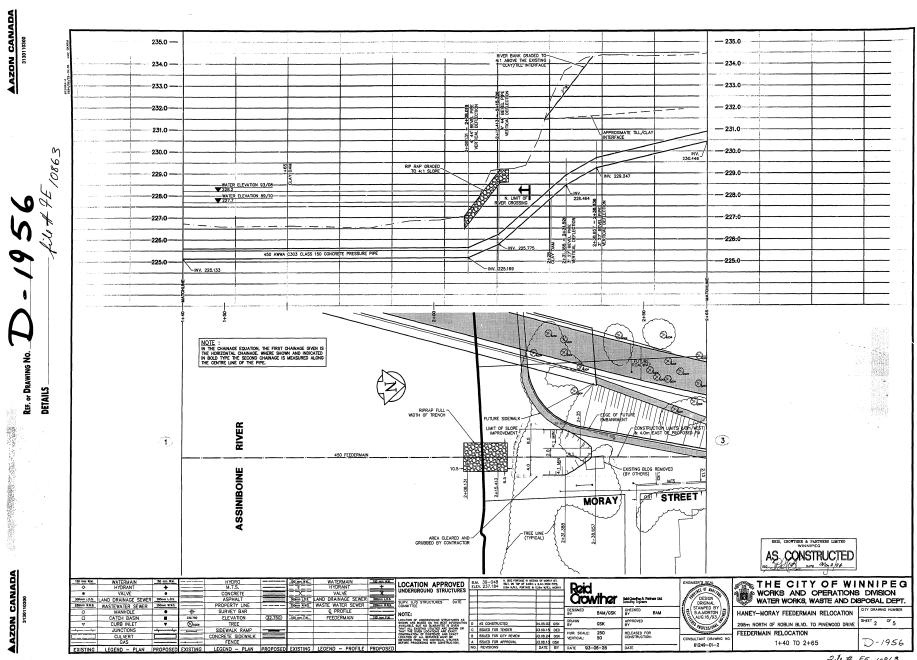










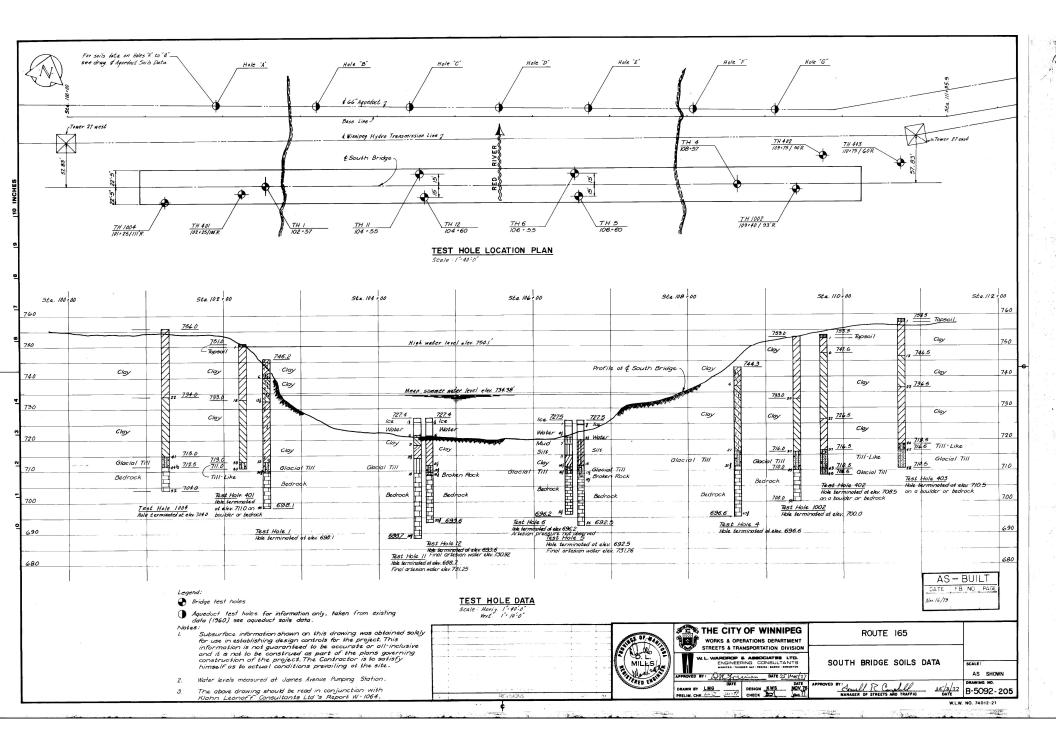


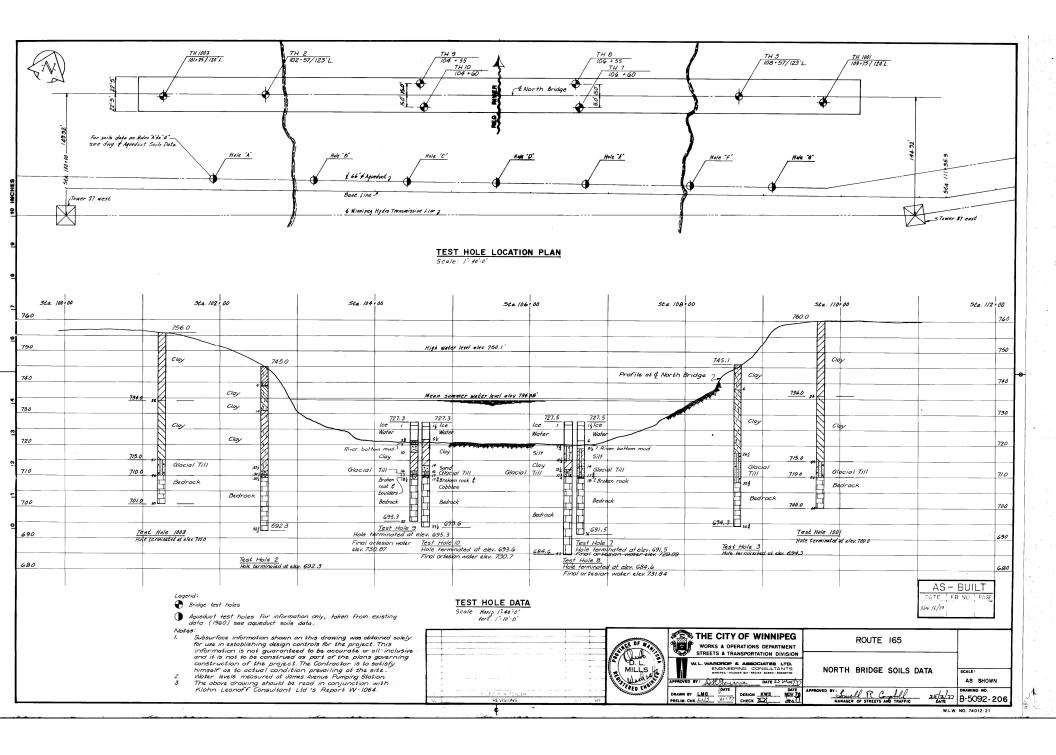
.

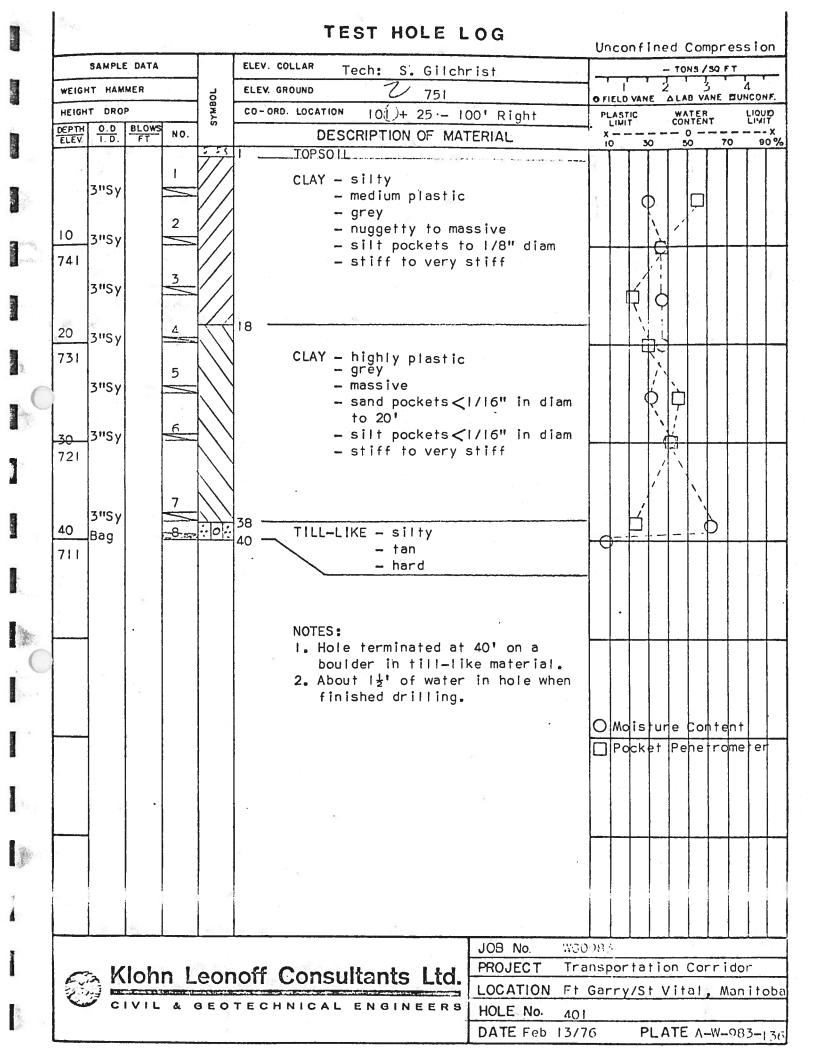
.

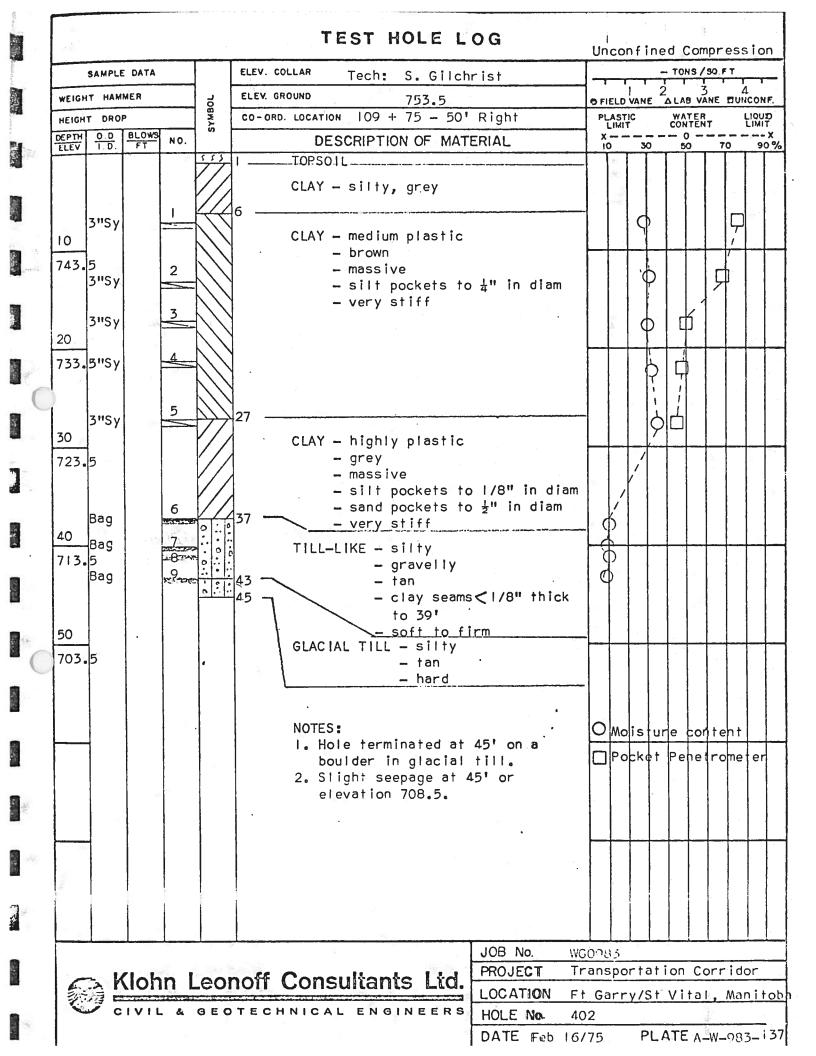
.

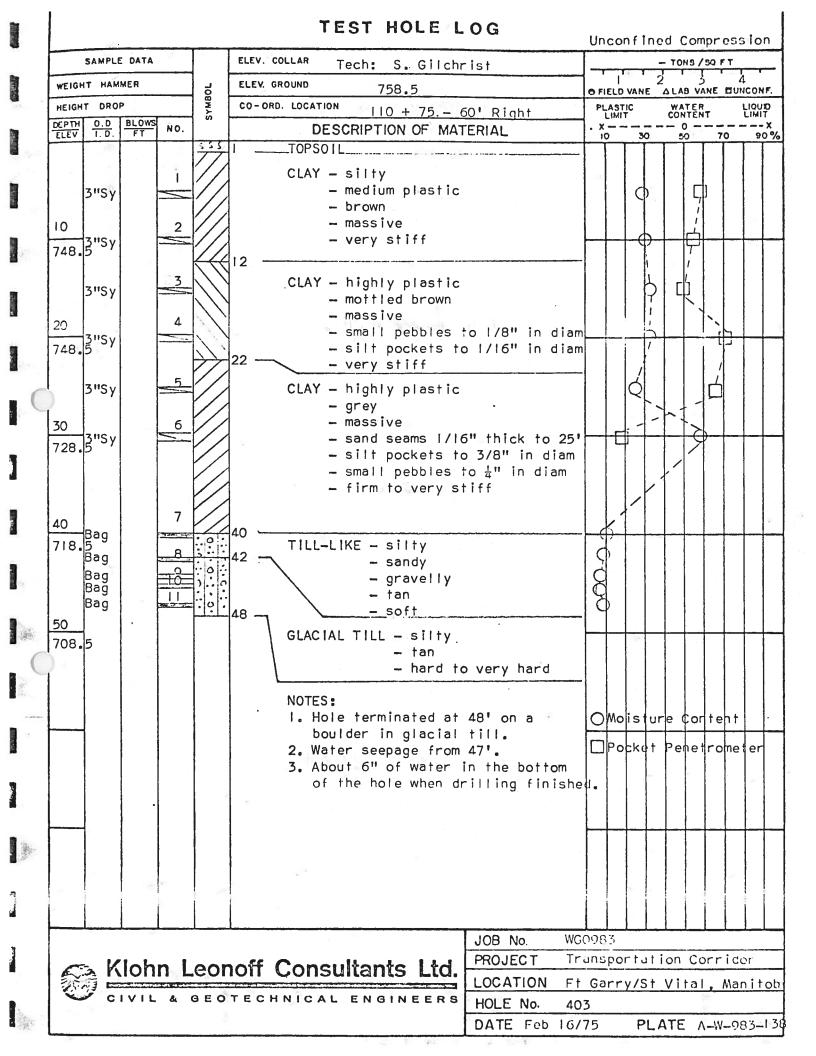
COLIPEZ ICI POL

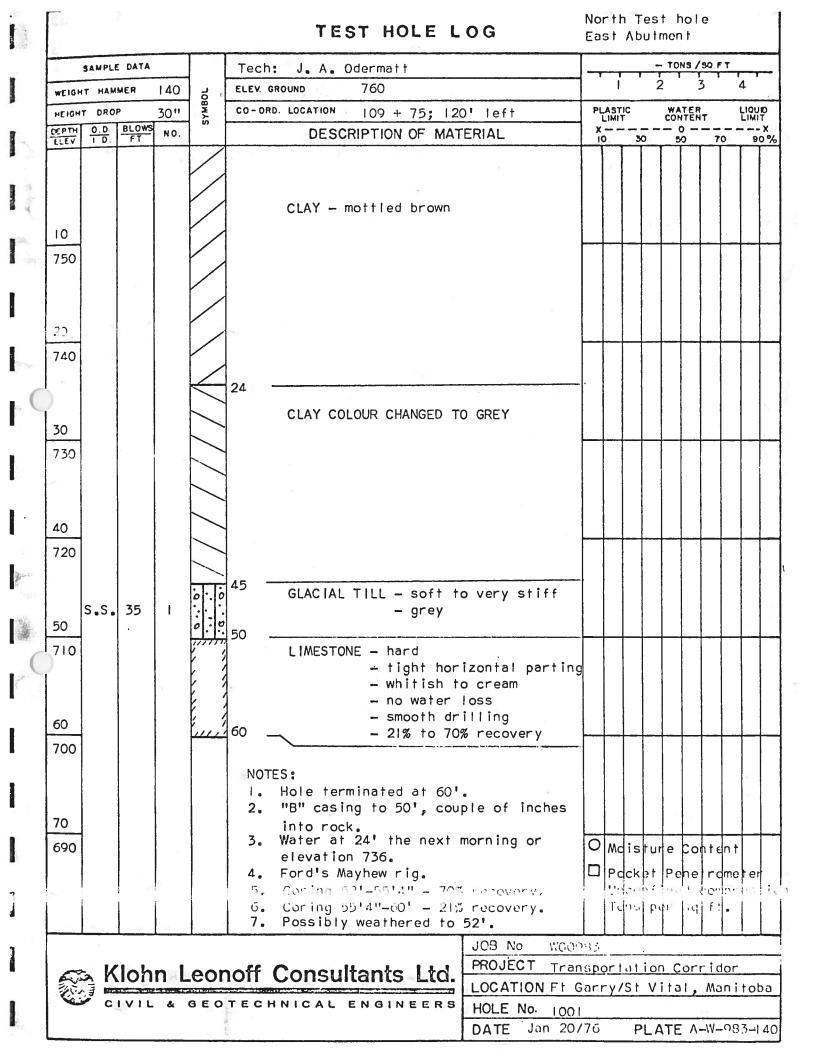

IR BANDE DE 24"

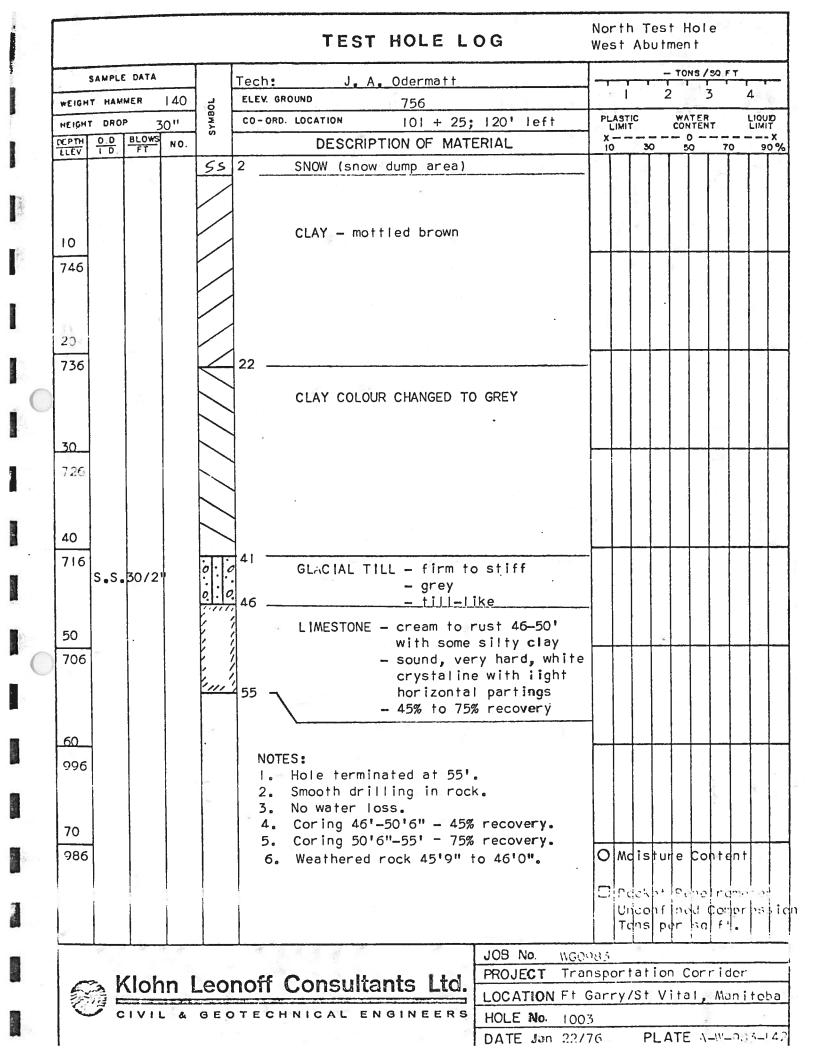

Que # FE 10863

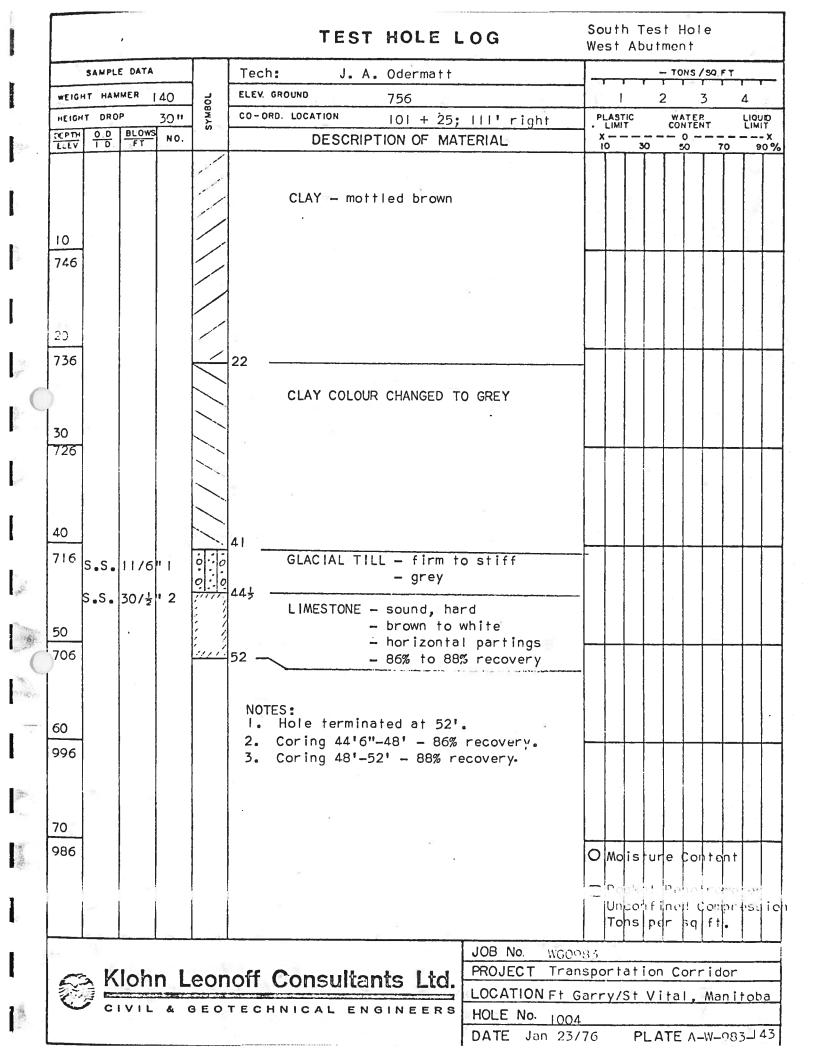


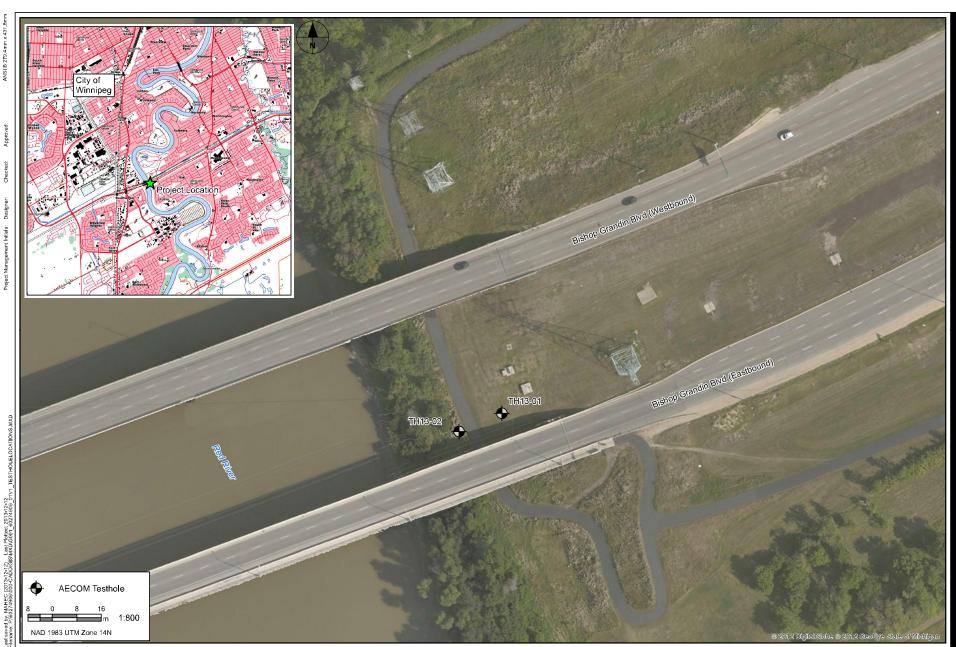

Appendix **B**


B1: Site 4 Existing Geotechnical Information
B2: Site 5 Existing Geotechnical Information
B3: Site 7 Existing Geotechnical Information
B4: Site 8 Existing Geotechnical Information
B5: Site 9 Existing Geotechnical Information








South Tesit Hole

5	AMPLE	DATA			Tech: J. A. Odermalt]+		- T		TONS	/90	<u>.ет</u> Т т	
WEIGHT	HAM	NER	40	2	ELEY. GROUND 753	1	ľ		2		3	L	1
HEIGHT		_	30"	SYMBOL	CO-ORD. LOCATION 109 + 40; 93' right	PL	AST	'IC T		WATE		1	
DEPTH		BLOWS	NO.	° v	DESCRIPTION OF MATERIAL	X		30		- 0 -		70	
ELEV	1.0					1-1		ΠĨ	Т	Ť	T		
							7						
			ł		CLAY - mottled brown						Ť		
					CEAT - MOTTIEG BLOWN								
10													
743				1/							T		
1-2				1/	16								
	1			Y,	15								
23 4					20				\downarrow		\downarrow	4_	
733													
				$\left \right\rangle$	CLAY COLOUR CHANGED TO GREY								
		-								2			
30			1					┼─┼	+	+	+-		
723				\square									
													-
]		\square									
40				01.10	37 GLACIAL TILL - soft to stiff 37-39'								
713	s.s.	30			- stiff to very stiff						+		
				0.0	43	_						ļ	
				1	LIMESTONE - sound					1			
				K.	- very hard								
50					- white crystaline - no water loss		_						
703				411									ļ
													-
					NOTES:								
60		1			I. Hole terminated at 53'.	-	+	+			-		+
793			1		2. "B" casing to 43'.								
					 No water loss in till and/or limestone. 								
					4. Ford's Mayhew rig.								
70					5. Coring 43'-48' - 25% recovery.								
			1		6. Coring 48'-53' - 80% recovery.			-	┝╼┦	\vdash	-		╀
783		1			7. Possibly weathered rock 41'6" to	0	M	olis	rur	e C	or	t en t	
					43'0".							ome	
		1			1		1	ntai ohs	1 1			oribr fith	
5		1		1		i				Ēľ	٦		
					JOB No. WGG)983			ليصل	ų			
					DOO LEGT T			tat	ion	Co	rr	idor	
6	5 M	loh	าท	Leo	noff Consultants Ltd. LOCATION FT		-						
100	(read)				TILUCATION FT	Gar	rv.	15 T	- V I	Tar	- A	wani	

The Repair of the Fort Garry Interceptor Sewer Crossing

ANSI B 279.4mm x 431.

			V Interceptor Siphon	1. 14 11 N 5500406 5			NT: C	ity of	Winr	npeg					HOLE NO: TH13-	
LOCATION: Upper Bank of Red River, UTM: 14 U, N 5520496, E C CONTRACTOR: Paddock Drilling						METHOD: Truck Mounted Acker MP-8							PROJECT NO.: 60274906			
															ATION (m):	
SAMPLE TYPE GRAB SHELBY TUBE				<u> </u>	_	IT SPC										
BACK	FILL	TYPE	BENTONITE	GRAVEL	Щ		UGH	1		GRO					SAND	_
DEPTH (m)	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DESC	CRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	♦ SF 0 2 16 1	₩ E	vs/300mr 0 60 al Unit W kN/m ³) 5 19 MC 1	n Test) ♦ n) 80 100 t ■ 20 21 Liquid	× (□ Lab △ Pock ● Fiek	rvane + QU X Vane □ vet Pen. △ d Vane € KPa)		COMMENTS	
0	3333		TOPSOIL and ORGANICS - se	ome clay	_				20 4	J 60	80 100	50	100 150	200		
			- brown, dry CLAY- silty, trace sand, trace of	organics trace sulphates		G01				· · · · · · · · · · · · · · · · · · ·	· · · { · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
1			- brown, dry, stiff	sigunios, ados odiplicatos					•		••••		••••••••••••			
		38	 high plasticity moderately fissured 			S02	10			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	221 ∴∴221	PT Blows: 4, 5, 5	
2						G03			٠				· · · · · · · · · · · · · · · · · · ·)% Recovery Gravel: 0 %, Sand: 0.5%, Silt:) 3%, Clay: 69.2%	
3	\mathcal{T}	2 A	CLAY and SILT - trace sand		-111	- T04					· · · · · · · · · · · · · · · · · · ·	A	×	(т	04): 60% Recovery	
		38	- brown, stiff, dry to moist - high plasticity			G05				••••••	· · · · · · · · · · · · · · · · · · ·	↓			- 17. 00 /0 NGOUVELY	
4		38	- mottled brown grey below 4.	l m						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
5						S06	11		1.					10 0,	PT Blows: 5, 4, 7 00% Recovery Gravel: 0%, Sand: 1.4%, Silt: 7.8%, Clay: 50.8%	
6 			- wet at 6.7 m			т07						×		(т	O7): 100% Recovery	Ţ
8			- fine sand lense (25 mm thick - grey below 7.8 m	ness) at 7.8 m	\times	S08	9					<u>A</u> .			PT Blows: 3, 4, 5)0% Recovery	
9 10			- trace gravel (rounded, 20 mr	n) at 9.1 m	\times	S09	11	٠	٠	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		PT Blows: 3, 5, 6 00% Recovery	
11			- fissuring at 10.7 m - trace silt, sand, and gravel be	elow 10.7m	X	S10	10								PT Blows: 4, 7, 3 00% Recovery	
12 13	00000		SILT (TILL) - sandy, some clay - tan, wet, compact	/, trace gravel		S11	17								PT Blows: 3, 6, 11 00% Recovery	
	000					G12	50/		••••••		· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
14	لانافزالذلنم	<u>, , , , , , , , , , , , , , , , , , , </u>	END OF TEST HOLE AT 13.8 Notes: 1. Power auger refusal at 13.8	m below ground surface.		= S13	51mm				**				⊃T Blows: 50/51mm, ⊃ Recovery	
14 15			 Seepage noted at 6.7 m bel drilling. Sloughing not observed. 	ow ground surface during						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••			
16			 Standpipe piezometer (SP1 completion with casagrande ti surface and 0.9 m stick-up. Test hole backfilled with siling 	o at 13.7 m below ground												
17			5. Test hole backfilled with silica sand from 13.7m to 11.3 m, bentonite chips from 11.3 to 6.1 m, auger cuttings from 6.1 to 1.2 m, and bentonite chips from 1.2 m to surface. 6. Water levels:						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
18			- Nov 8, 2013 (install): 12.95 n - Nov 19, 2013: 5.70 m - Nov 26, 2013: 6.02 m	1									· · · · · · · · · · · · · · · · · · ·			
19											aron Kal				ON DEPTH: 13.76 m	
			AECOM	Í							Alex Hil				ON DEPTH: 13.76 m ON DATE: 11/8/13	1
												Marvin McDc			Page	9 1

			/ Interceptor Siphon				IT: C	ity of	Winnipeg		TE	STHOLE NO: TH13-0)2
			er Bank of Red River, UTM	<i>I</i> : 14 U, N 5520490, E (OJECT NO.: 6027490	06
SAMP			Paddock Drilling				<u>IOD:</u> IT SPO		k Mounted Acker S		EL D RECOVE	EVATION (m):	
BACK			BENTONITE		_								
		SLOTTED PIEZOMETER				#	(N)	♦ SI	PENETRATION TESTS	UNDRAINED SHEAU + Torvan ×QU > □ Lab Var	R STRENGTH e + ×		H
DEPTH (m)	SOIL SYMBOL	DIEZO	SOIL DESC		SAMPLE TYPE	SAMPLE	SPT	16 1	(Blows/300mm) 20 40 60 80 100 ■ Total Unit Wt ■ (kN/m ³) (kN/m ³) 7 18 19 20 27 Plastic MC Liquid 20 40 60 180 100	Picket F	ne 🕈	COMMENTS	DEPTH
E 0			TOPSOIL and ORGANICS - so - brown, dry	me clay									
-1			CLAY- trace to some sand, trac - grey-brown, dry to moist, firm - Intermediate to high plasticity	ce silt, trace organics to stiff		G1			•	<u>A</u>	• • • • • • • • • • • • • • • • • • • •	SPT Blows: 3, 4, 5	1-
2	$\left \right $		CLAY and SILT - trace sand, tra			S2 G3	9		•	Δ		61% Recovery	2
-3			 brown, firm to stiff, dry to mois high plasticity 	it.		T4			••	Å		100% Recovery	3-
-4			- greyish brown below 3.5 m			G5			•			Gravel: 0.1 %, Sand: 5.2%, Silt: 44.0%, Clay: 50.7%	4
_5 ⊻			- grey, moist, silty, below 5.0 m			S6	15					SPT Blows: 3, 6, 9 100% Recovery Gravel: 0.0 %, Sand:	⊻ 5
6		Ţ							•			0.0%, Silt: 39.0%, Clay: 61.0% 100% Recovery	6
-7			 brown to greyish brown, firm, i high plasticity 	moist	μ	T8			■●	Δt	· · · · · · · · · · · · · · · · · · ·		7-
-8			- grey, wet below 7.2 m - intermittant sand seams (<25			S9	7	•	•	Δ		SPT Blows: 3, 4, 3 100% Recovery	8
-9			- fine sand layer (<76 mm thick 8.20 m	ness) between 8.10 m and				· · · · · · · · · · · · · · · · · · ·					9
-10			- grey, very soft below 9.1 m - trace gravel below 9.8 m			T10			ii ≀	Δ +		100% Recovery Gravel: 1.4 %, Sand: 10.6%, Silt: 27.9%, Clay:	
	0000		SILT (TILL) - gravelly, some sai - tan, wet, compact to very dens	nd, trace to some clay se		S11	61					60.1% SPT Blows: 20, 28, 33 78% Recovery	10-
E-11	000	· · · · · · · · · · · · · · · · · · ·	END OF TEST HOLE AT 11.6	m IN SILT (TILL)		S12						SPT Blows: 51/0 mm	11
12			Notes: 1. Power auger refusal at 11.6 suspected bedrock. 2. Seepage noted at 4.9 m belo	C C									12
			drilling. 3. No sloughing observed. 4. Standpipe piezometer (SP13	3-02) installed upon									13
LOG OF TEST HOLE TEST HOLE LOGS.GPJ UMA WINLIGOT 129/13			completion with casagrande tip surface and 0.91 m stick-up. 5. Test hole backfilled with silica m bentonite chine from 10.4 to	a sand from 11.6m to 10.4									14
15 15 15 15 15			m, bentonite chips from 10.4 to 6. Water levels: - Nov 19, 2013 (install): 10.2 - Nov 26, 2013: 5.97 m					· · · · · · · · · · · · · · · · · · ·					15
16 11 10 11 10 10 10 10 10 10 10 10													16-
													17
OF 1			AECOM						GGED BY: Sam Osha /IEWED BY: Alex Hil			ETION DEPTH: 11.58 m ETION DATE: 11/19/13	
									DJECT ENGINEER:				1 of 1

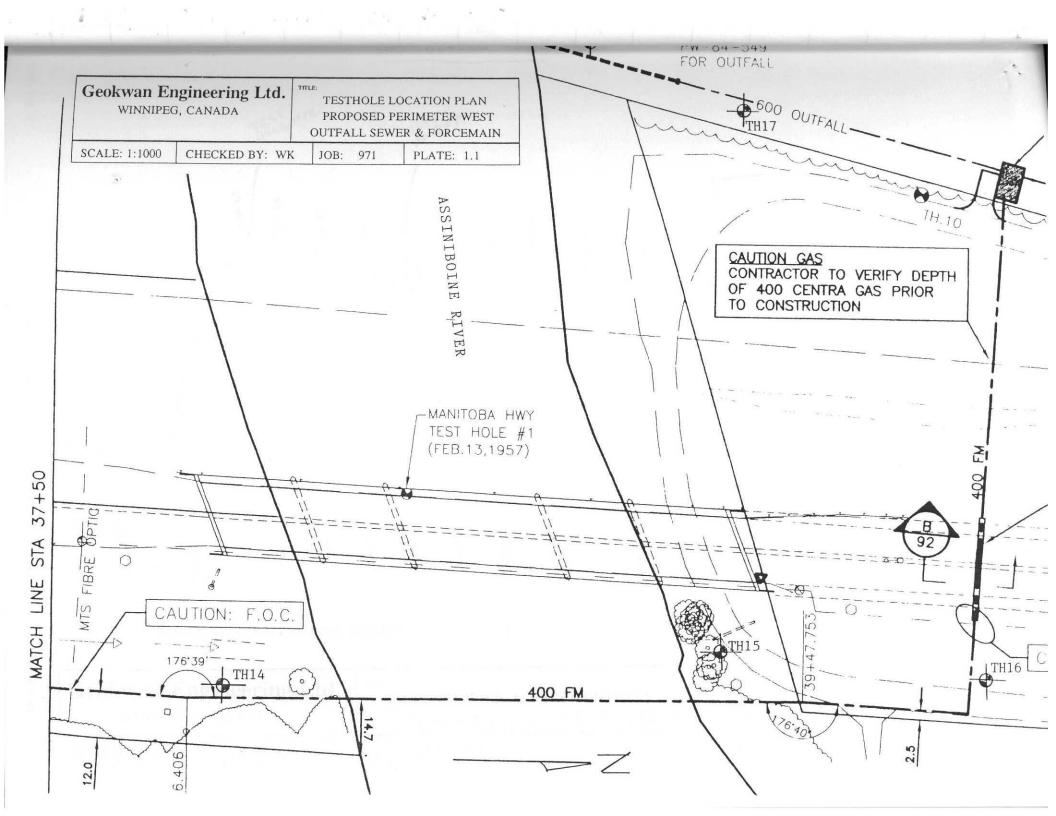


PLATE 2

TH14 (Elev. 234.565m)

0	-	4.88m	<u>CLAY</u> - firm, brown - crumbly, desiccated, some organics to 0.3m - trace to some gypsum & silt inclusions below 0.3m - stiff below 1.5m, firm below 3.8m - trace gravel below 2.3m, highly plastic
4.88	-	7.62m	<u>GLACIAL TILL</u> - soft to very soft - clayey, wet to saturated, slight seepage

- medium dense below 6.4m
- silty, sandy, gravelly
- trace of suspected cobble/boulder

End of testhole at 7.62m from grade.

Note: Groundwater table at 7.54m from grade upon completion of drilling.

	Soil Water	Penetrometer
Depth (m)	Content (%)	Reading (kPa)
0.76	36.6	75
1.52	39.1	125
2.28	41.0	130
3.05	40.5	130
3.81		75
4.57	41.1	75
4.88		0
5.33	20.8	0
6.10	16.5	30
6.86	9.8	-
7.62	10.8	-

TH15 (Elev. 233.350m)

\mathbf{n}		
v		
~		

3.00m <u>FILL</u>

- clay, stiff, desiccated
- sandy 2.7 3m
- crumbly, trace gravel to 1.5m
- trace organics to 2.7m
- some gravel from 1.5m to 2.7m
- soft and wet below 2.7m
- trace gypsum & silt inclusions

Testhole Log

PLATE 3

3.00	-	5.18m	<u>CLAY & SILT</u> - soft, sandy - saturated, heavy seepage & very soft below 3.7m - fill-like structure & trace rootlets to 3.9m - grey at 4.5m
5.18	-	7.93m	<u>GLACIAL TILL</u> - medium dense - silty, sandy, gravelly - trace of suspected boulders below 5.5m

End of testhole at 7.93m from grade.

Note: Groundwater table at 4.04m and testhole caved to 4.11m from grade upon completion of drilling.

	Soil Water	Penetrometer
Depth (ft)	Content (%)	Reading (kPa)
0.76	11.9	150
1.52	15.2	200
2.28	28.2	300
3.05	34.0	50
3.81	15.5	0
4.57	27.2	0
.5.33	9.7	175
6.10	7.5	-
6.71	9.1	-
7.93	10.0	-

TH16 (Elev. 233.865m)

0	-	0.91m	FILL
			- clay, gravel & organics
0.91	-	4.30m	CLAY
			- very stiff to stiff
			 black, brown & silty below 1.5m trace gypsum & silt inclusions soft, sandy & trace gravel below 3.1m
			- wet to saturated at 4.2m
4.30	-	6.00m	SAND & GRAVEL
			- heavy seepage

- some silt & clay

Testhole Log

6.00	-	7.62m	GLACIAL TILL
			- medium dense
			- silty, sandy, gravelly
			- trace boulders below 7m

End of testhole at 7.62m from grade.

Note: Groundwater table at 3.66m and testhole caved to 5.8m from grade upon completion of drilling.

	Soil Water	Penetrometer
Depth (m)	Content (%)	<u>Reading (kPa)</u>
0.76	32.1	275
1.22	-	215
1.52	23.8	175
2.28	32.2	260
3.05	30.1	250
3.20	-	50
3.81	-	
4.57	22.8	50
5.33	16.7	0
6.10	8.3	-
6.86	10.4	×

TH17 (Elev. 233.383m)

 \hat{p}

0	-	0.61m	TOPSOIL - soft, brown, organics
0.61	-	3.20m	<u>CLAY</u> - very stiff, dark brown - stiff, brown, silty, trace gypsum & silt inclusions below 1.1m
3.20	-	3.35m	SAND - fine to medium grained, wet to saturated, moderate seepage
3.35	-	3.51m	<u>CLAY</u> - soft, silty, brown, trace gypsum & silt inclusions
3.51	-	4.11m	SAND & GRAVEL - medium to coarse grained, heavy seepage
4.11	-	5.33m	CLAY - soft, silty, grey, trace gypsum & silt inclusions

Project #971

Testhole Log

5.33	-	7.62m	GLACIAL TILL
			- medium dense
			- silty, sandy, gravelly
			- trace of suspected cobble/boulder

End of testhole at 7.62m from grade.

Note: Groundwater table at 3.66m and testhole caved to 4.42m from grade upon completion of drilling.

Depth (ft)	Soil Water Content (%)	Penetrometer Reading (tsf)
0.76	26.8	325
1.52	27.7	175
2.28	29.3	175
3.05	29.0	150
3.43	-	100
4.57	59.6	0
5.33	10.0	125
6.10	9.5	125
6.86	8.1	-

TH18 (Elev. 234.606m)

0	-	4.57m	<u>CLAY</u> - very stiff, brown - stiff at 2.28m, soft below 3m - crumbly, desiccated to 1.8m - trace of some organics to 1.8m - silty, some gypsum & silt inclusions - sandy to 3m - frequent sand seams, moderate to heavy seepage below 3m
4.57	÷	5.49m	SAND & GRAVEL - medium to coarse grained, saturated, heavy seepage
5.49	÷	6.40m	<u>CLAY</u> - firm, soft below 6.2m - grey, trace gypsum & silt inclusions
6.40	-	7.62m	<u>GLACIAL TILL</u> - soft, clayey, saturated, moderate seepage to 6.8m - medium dense to dense below 6.8m - silty, sandy, gravelly - trace of suspected cobble/boulder

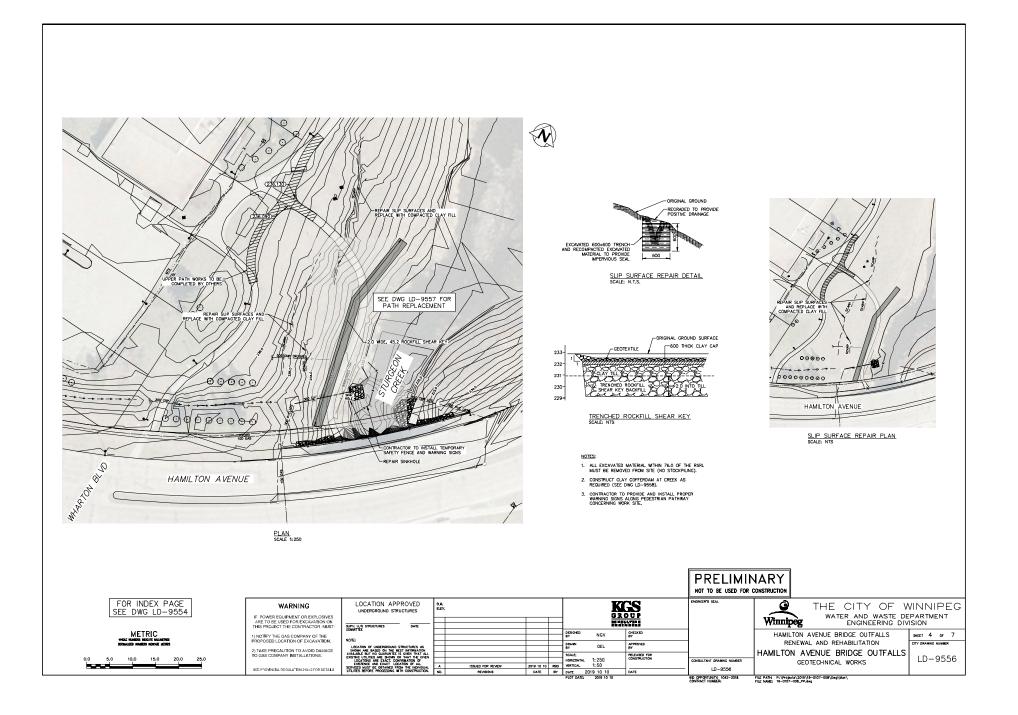
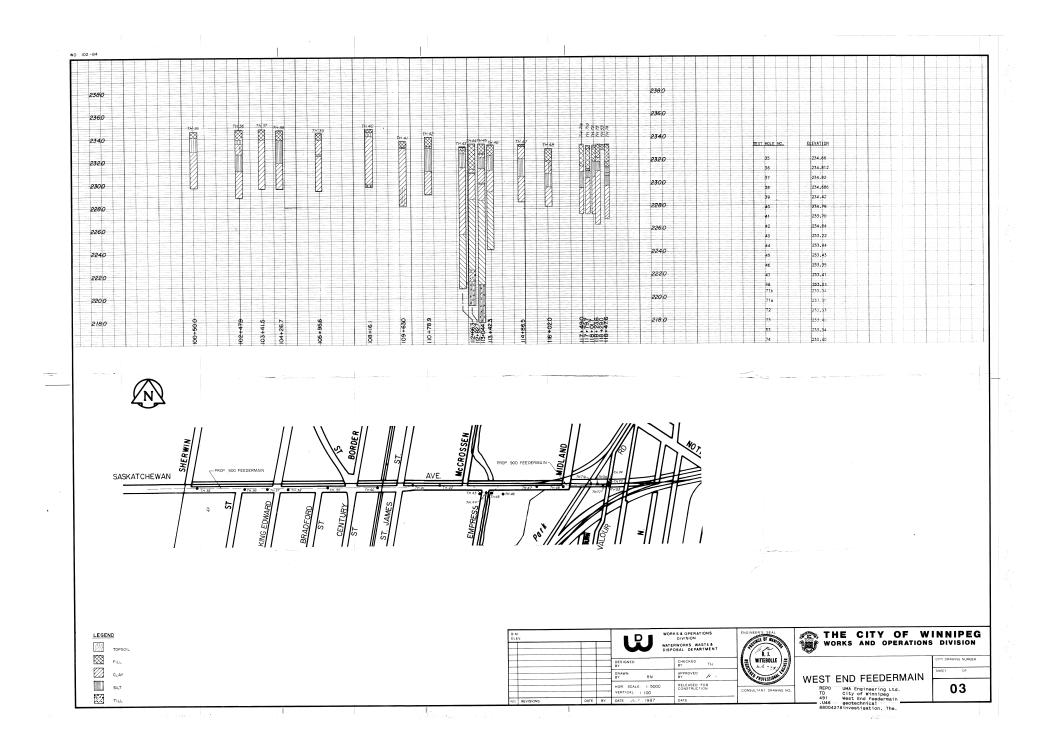
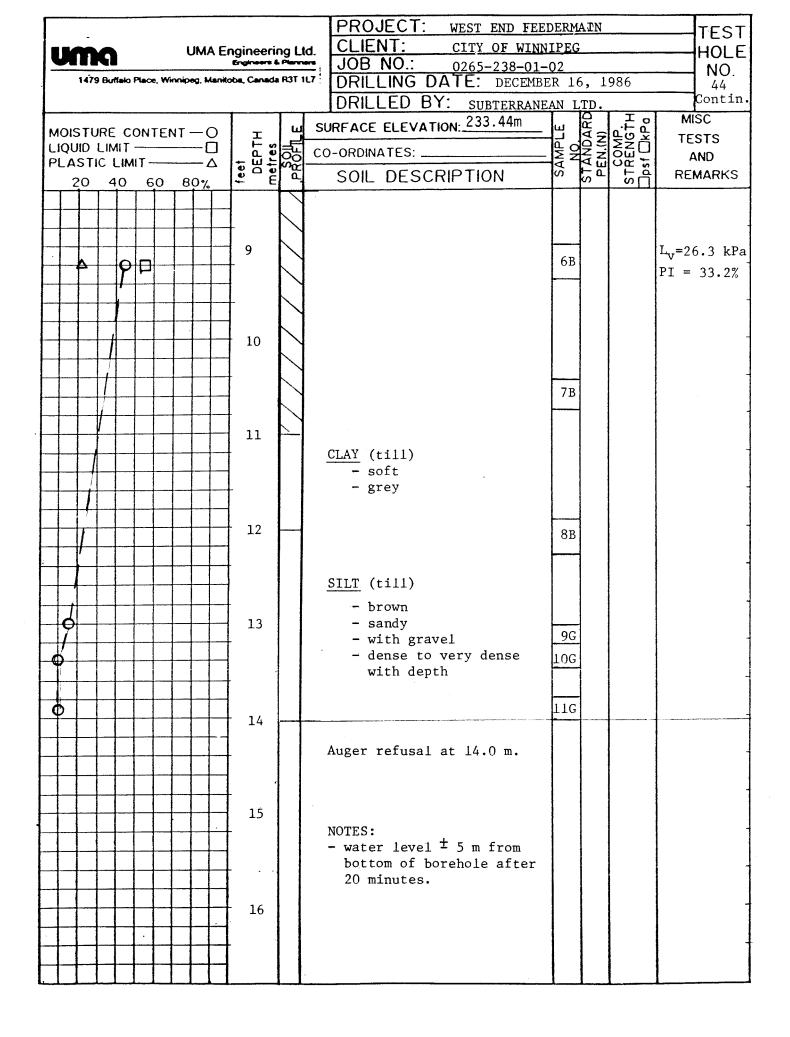

Testhole Log

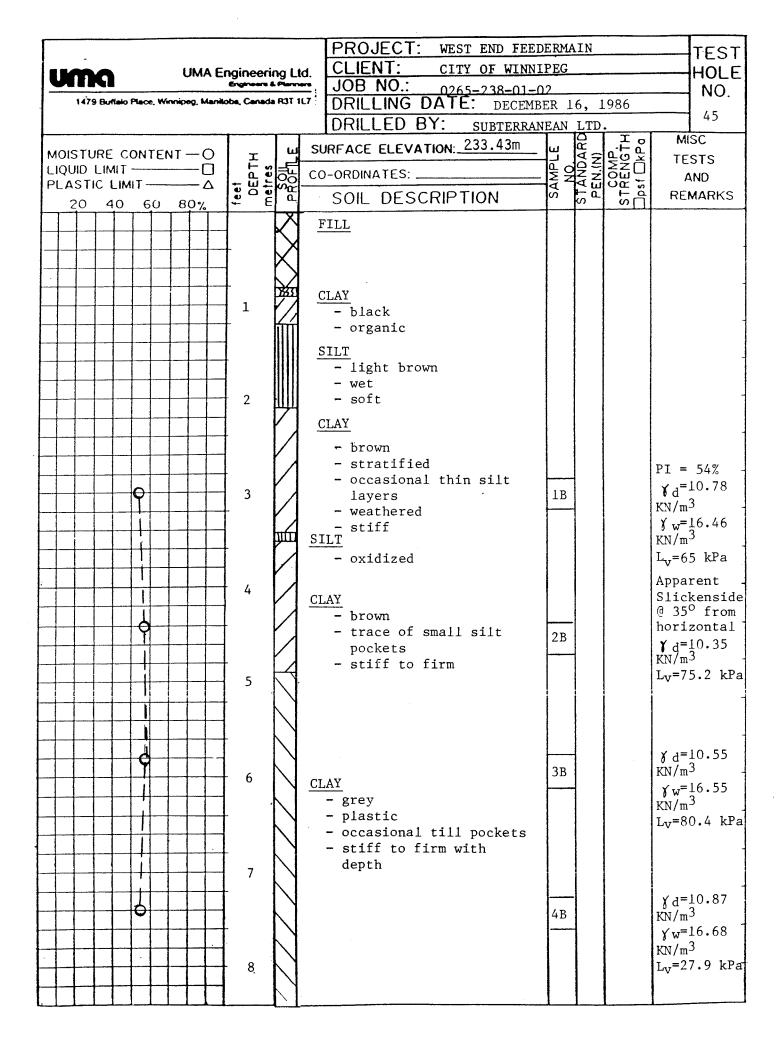
PLATE 6


End of testhole at 7.62m from grade.

Note: Groundwater table at 4.42m and testhole caved to 4.72m from grade upon completion of drilling.

	Soil Water	Penetrometer
Depth (ft)	Content (%)	Reading (tsf)
0.76	13.2	400
0.76	11.4	300
2.28	25.9	125
3.05	24.3	125
4.57	29.0	0
6.10	51.6	75
6.40	21.1	0
6.86	9.2	-
6.62	7.3	, .

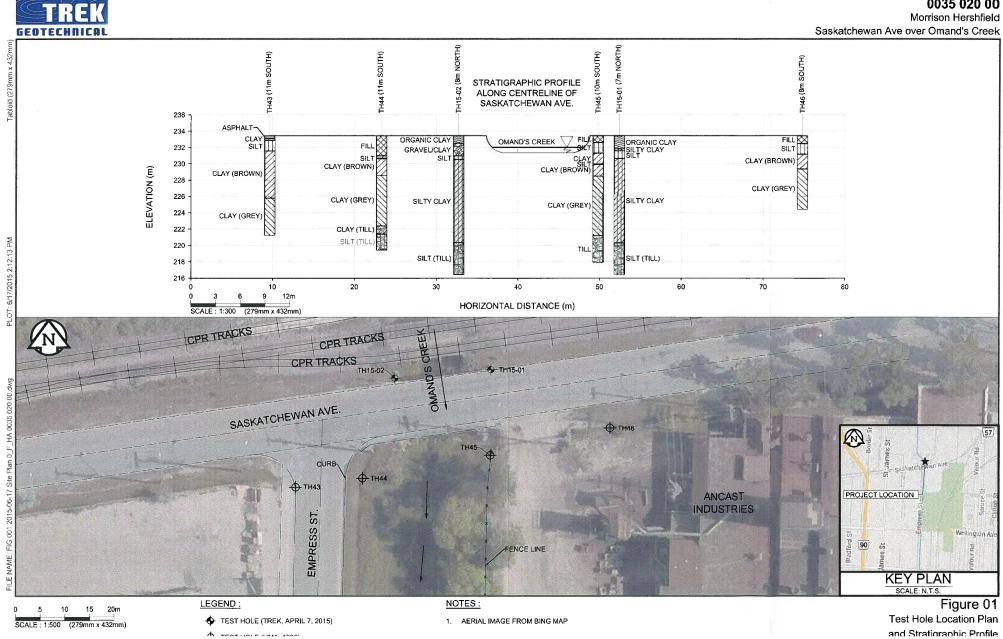

CLEENT PROJECT MANITOBA HOUSING & RENEWAL CORP. PROJECT JOB NO 18-141-100 (SROUND ELF.) 23-372 (SROUND ELF.) STTE 255 hanition A verue. Winnige, Manitoba Control M Mid Bank of Sturgeon Creek DATE DRILLED 452.019 DOBLILING 125 mm e Solid Stem Auger, Acker MP5-T UTM (m) N 552.218 Difference 125 mm e Solid Stem Auger, Acker MP5-T UTM (m) N 552.218 Difference 125 mm e Solid Stem Auger, Acker MP5-T UTM (m) N N 9	K	GS ROUP	•	REFERENCE NO.				NO. 9-0 ,	3	SHEE	T 1 of 1
Distriction 125 mm # 2 Solid Stem Auger, Acker MP5-T E 622,855 Unit Distriction Distread Distriction Districi	PRO SITI	JECT	Bruce 255 Ha	Oake Recovery Center milton Avenue, Winnipeg, Manitoba					GROUND ELEV. TOP OF CASING WATER ELEV. DATE DRILLED	235 ELEV. 230 4/5	5.72 6.86 5/2019
Composition Composition <thcomposition< th=""> <thcomposition< th=""></thcomposition<></thcomposition<>	DRI MET	LLING HOD	125 mn	n ø Solid Stem Auger, Acker MP5-T		_					
238.7 Image: Second	ELEVATION (m)		-	DESCRIPTION AND CLASSIFICATION	PIEZO. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY %	blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △	Cu TORVAI	NE (kPa) ◆ 0 60 80 MC LL ♥ %
 - Tan, soft to firm, increasing silt and sand content below 2.13 m. - Tan, soft to firm, increasing silt and sand content below 2.13 m. - Grey, soft below 4.27 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 4.57 m. - Transitioning to clay till (large wet pockets) below 6.10 m. - Increasing size of fine grained gravel below 6.10 m. - Auger shaking below 7.62 m. - Auger shaking below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. 	235.7				/ 		म	 S1			
 - 232 - 4 - 5 - 15 - 7 - 15 - 10 - 10 -				organics. Frozen to 1.22 m. - Brown, trace silt pockets, trace fine to coarse grained sand, trace fine grained gravel below 0.33 m.							
 - 229 - Increasing size of fine grained gravel below 6.10 m. - Auger shaking below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. - 228 - 228 - 225 - Auger shaking below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. 		3	0	- Tan, soft to firm, increasing silt and sand content below 2.13 m.		3.4 3.6	R	S3			
 - Increasing size of fine grained gravel below 6.10 m. - Increasing size of fine grained gravel below 6.10 m. - Auger shaking below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. 			5	- Transitioning to clay till (large wet pockets) below 4.57 m. <u>CLAY TILL</u> - Grey, wet, very soft, high plasticity, poorly graded fine							
- 228 - 228 - 228 - 228 - 228 - 228 - 228 - Auger shaking below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded fine grained gravel below 7.62 m. - Pockets of dry poorly graded fine grained sand, increase in well graded - 228 - 228 - 228 - 25 -		6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 Ø / L			60	म	S6			
		1 1	5 0	- Pockets of dry poorly graded fine grained sand, increase in well graded		8.0	R	S7			
226 10 - SPT refusal on suspected boulder at 9.27 m. 10 - SPT refusal on suspected boulder at 9.27 m. 10 - - SPT refusal on suspected boulder at 9.27 m. 10 - - - - 225 - - - - 11 - - - - 225 11 - - - 224 12 - - - 12 - 40 - S/N 038154 at 5.88 m below grade. - 3. Test hole was backfilled with sand, bentonite chips and cement-bentonite grout mix to grade. - - - 223 13 - - - - - 223 13 - - - - - 223 14 - - - - - - 14 - - - - - - - - 223 14 - - - - - - - <	- 227 226.4	9	6 0 0			8.6 8.9					
11 1			5	END OF TEST HOLE AT 9.27 m	J						
The second seco				 Hole open to 8.66 m after drilling. Installed 25 mm diameter standpipe piezometer, slotted from 8.62 to 8.92 m below grade. Installed two (2) pneumatic piezometers: 							
	ССНАГИ 223 – 223		0	 S/N 038155 at 3.44 m below grade. 3. Test hole was backfilled with sand, bentonite chips and 							
			5								
SAMPLE TYPE Auger Grab Split Spoon CONTRACTOR INSPECTOR APPROVED DATE Maple Leaf Enterprises L.CHALMERS D. ANDERSON 4/9/19	SAM	TRACTO	DR	INSPECTOR							



UM 147		Place, Wi	UMA E		& Planners	JOB NO.: 0265-238 DRILLING DATE:	WINNIPEG	TEST HOLE NO. 43
LIQUID PLAST	LIMIT IC LIM I	IT	NT — Ο — Δ δ	feet DEPTH metree	PROFIL	JRFACE ELEVATION: 233.2 D-ORDINATES: SOIL DESCRIPTION	AMPLE AMPLE ANDARD ANDARD EN.(N) EN.(N) EN.(N) EN.(N)	MISC TESTS AND REMARKS
						<u>MM ASPHALT</u> <u>AVEL (fill) - frozen</u> <u>AY</u> - black (topsoil) - organic <u>ILT</u> - light brown - wet - soft <u>ILAY</u> - brown - weathered in upper portion - some silt layering upper portion - plastic - firm	18	$\chi_{d} = 12.40$ KN/m^{3} $\chi_{w} = 17.46$ KN/m^{3} $L_{v} = 78.0$ kPa $\chi_{d} = 9.98$ KN/m^{3} $\chi_{w} = 15.75$ KN/m^{3} $L_{v} = 44.0$ kP

MOISTURE CONTENT — O LUQUO LIMIT — A 20 40 60 θ_{02x} JSURFACE ELEVATION 233.22m CO-ORDINATES: SOIL DESCRIPTIONJSC CO CO CO THEMisc TESTS AND REMARKS9900<	UMA Engi En 1479 Buffalo Place, Winnipog, Manitoba	gineering Ltd. Inghoors & Plannars a, Canada R3T 1L7	PROJECT:WEST END FEEDERMAINTESTCLIENT:CITY OF WINNIPEGHOLEJOB NO.:0265-238-01-02NO.DRILLING DATE:DECEMBER 16, 198643DRILLED BY:SUBTERRANEAN LTD.Contin.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LIQUID LIMIT	DEPTH DEPTH metres D2 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	JRFACE ELEVATION:233.22m JAP JAP JAP MISC JO-ORDINATES: JAP JAP JAP JAP JAP SOIL DESCRIPTION JAP JAP JAP JAP JAP JAP SOIL DESCRIPTION JAP JAP JAP JAP JAP JAP JAP
13 13 14 NOTES: 14 14 14 14 15 PROPERTY 06 THE Waterworks, Waste & Disposal Cepartment MALM OFFICE		9 10 11	$\frac{\text{CLAY}}{\text{- till inclusions}} - \text{firm to soft} 4B \qquad $
14 - no seepage during drilling. - no seepage during drilling. PROPERTY OF THE Waterworks, Waste & disposal Cepartment MAIN OFFICE		13	End of hole at 12.2 m.
PROPERTY OF THE Waterworks, Waste & Disposal Cepartment 16		14	- no seepage during
MAIN OFFICE		15	
		16	MAINOFFICE

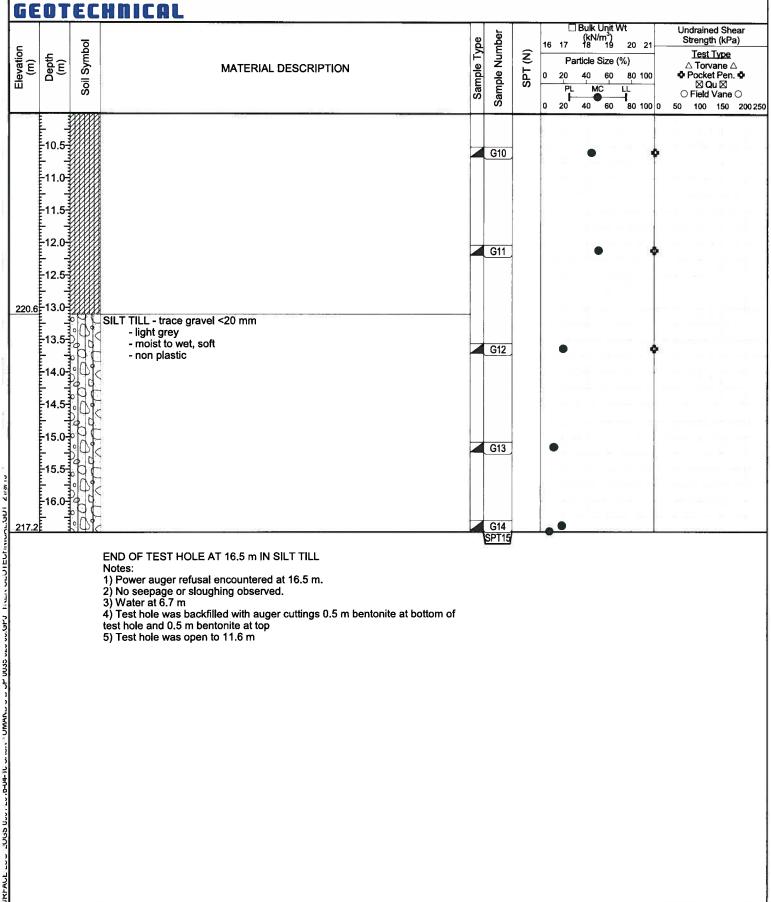
UMA E 1479 Buffalo Place, Winnipeg, Manik	ngineering Ltd. Engineers & Planars Sbe, Canada R3T 1L7		NIPEG	TEST HOLE NO. 44
MOISTURE CONTENT		JRFACE ELEVATION: 233.44m D-ORDINATES:	STANDARD STANDARD PEN.(N) STRENGTH Dsf □kPa	MISC TESTS AND REMARKS
		SOIL DESCRIPTION <u>FILL</u> - clay - topsoil - silt - stiff to firm	1B 2B	$\chi_{d} = 13.49$ $K_{N/m}^{4}$ $\chi_{w} = 18.06$ $K_{N/m}^{3}$ $L_{v} = 48.2$ kPa $\chi_{d} = 10.51$ $K_{N/m}^{3}$ $\chi_{w} = 16.31$ $K_{N/m}^{3}$ $L_{v} = 68.9$ kPa
	5		<u></u> <u>3</u> B	$\chi_{d}^{=9.34}$ KN/m ³ $\chi_{w}^{=15.58}$ KN/m ³ $L_{v}^{=47.9}$ kPa
	6	<pre>CLAY - grey - trace of silt pockets - firm to stiff with depth</pre>	4B	
	8	- till inclusions at 7.5 m	5B	γ _d =11.05 KN/m ³ γ _w =16.86 KN/m ³ L _v = 32.2 kPa



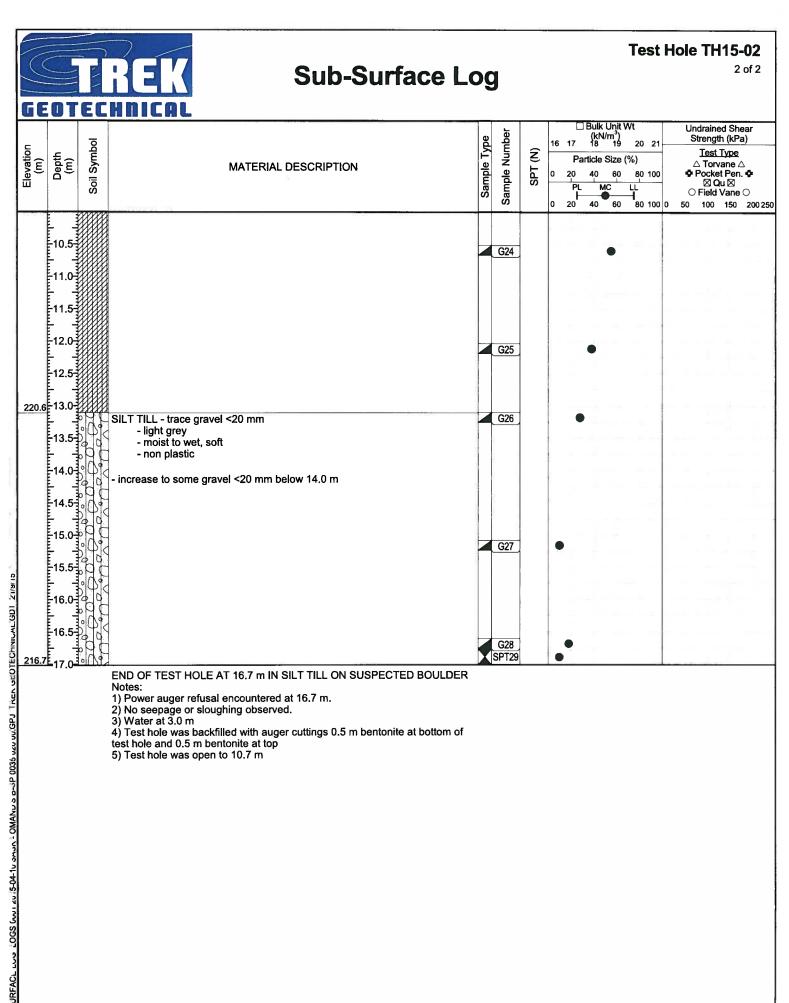
MOISTURE CONTENT -O	U	147		Ho Pia	UMA Engineering Ltd. Engineers & Planners acc, Winnipeg, Maniloba, Canada R3T 1L7					Planners	JOB NO.:0265-238-01-02NO.DRILLING DATE:DECEMBER 18, 198646DRILLED BY:SUBTERRANEAN LTD.46
FILL - gravel and slag - frozen 1 SILT - light brown - wet - soft - difference - differe - froze		QUID AST	LIMI IC L	T — IMIT			-C - 0		feet DEPTH metres	PROFILE C	SURFACE ELEVATION: 2.33.35m U 2 2 2 2 2 1 MISC
SILT									1		FILL - gravel and slag - frozen
- brown - highly plastic - trace of silt - trace of silt - - brown - highly plastic - grey - highly plastic - moist - firm to soft at 4.6 mm - occasional pebble and trace of silt at 6.0 m - B1 - B2 - B2 - B1 - B2 - B2									2		- light brown - wet
B2 B3									3		- brown - highly plastic - trace of silt - damp - stiff to firm with
CLAY - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td></t<>									4		
- moist - firm to soft at 4.6 mm - occasional pebble and trace of silt at 6.0 m - B3									5		- grey
									6		- moist - firm to soft at 4.6 mm - occasional pebble and
									7		

UM 1479	~~	UMA Engineering Ltd. Engineering Ltd. Ko Place. Winnipog. Manitoba. Canada R3T 1L7 No Place. Winnipog. Manitoba. Canada R3T 1L7 DRILLING DATE: DECEMBER 16, 1986 DRILLED BY: SUBTERRANEAN LTD.							TEST HOLE NO 46 Contin		
MOISTU LIQUID I PLASTI	LIMIT - C LIMI	Т —		- 🗆	feet DEPTH metres	PROFILE	SURFACE ELEVATION: 233.35m CO-ORDINATES:		STANDARD PEN.(N)		MISC TESTS AND REMARKS
	40		80	%	-	X		G1			
· .					9		End of hole at 9.0 m.				-
					10		NOTES: - some sloughing from silt layer during drilling.				
					11						
					- 12						
					13						
					- 14						
					- 15 -						
					- 16		:				
					-						

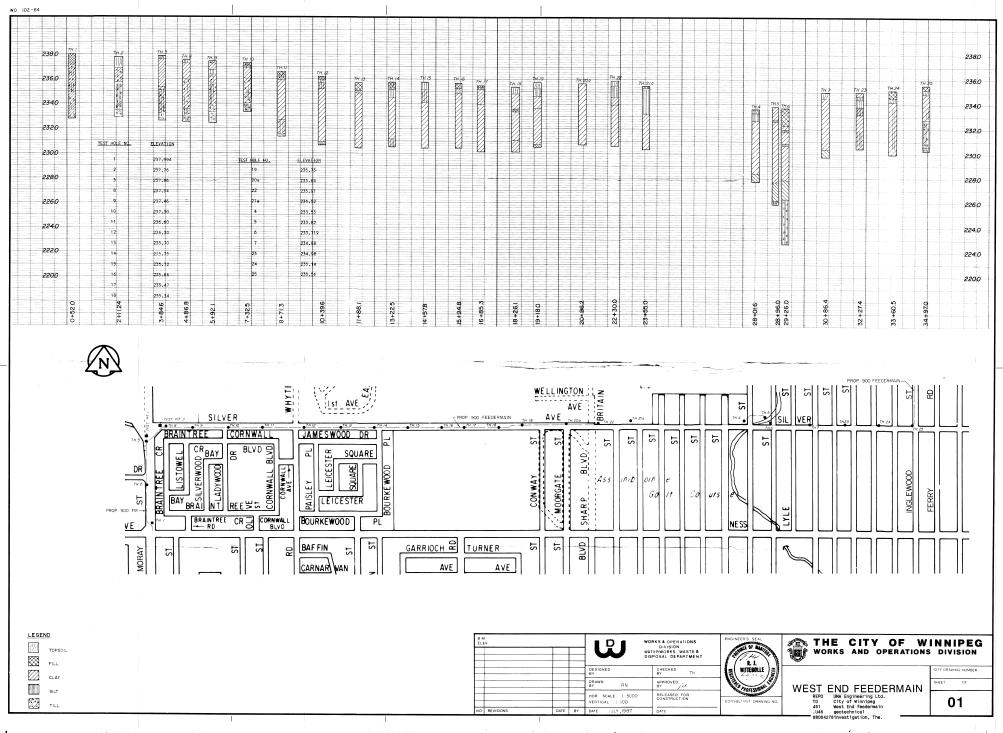
0035 020 00

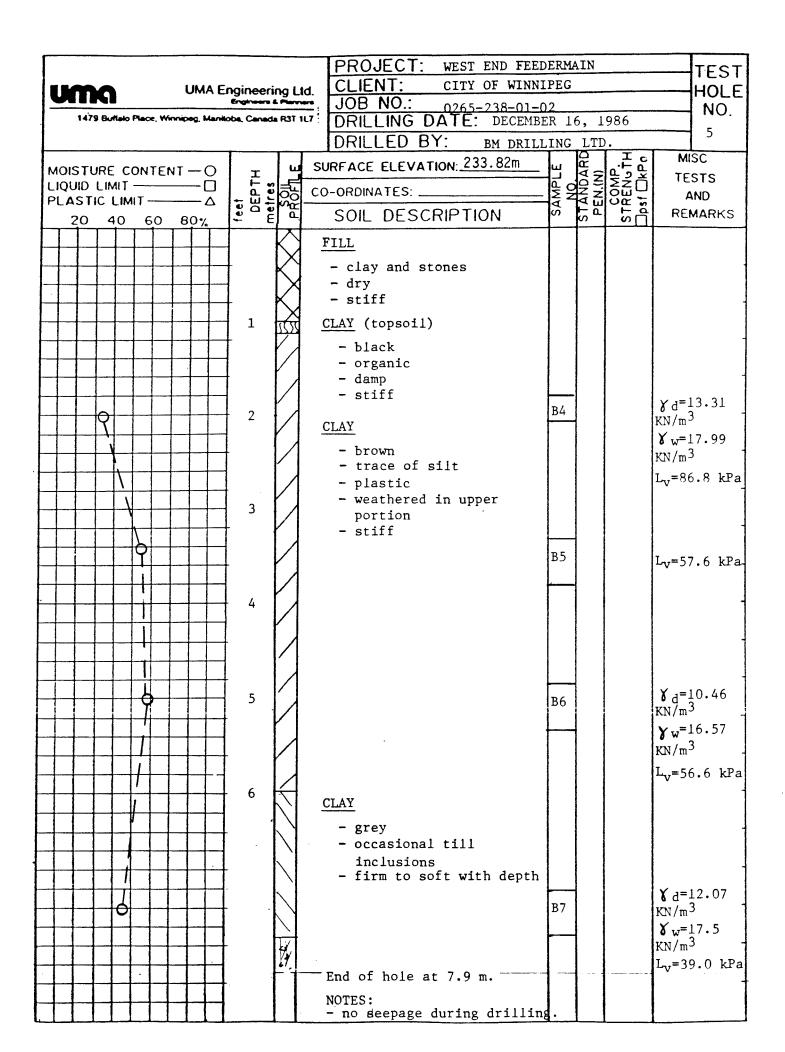

GE	OT	EC		urface Lo	bg			Test	Hole TH15-01 1 of 2
Client	:	M	orrison Hershfield	Project Number	: _0	035 (020 00		
Projec	ct Nam	e: <u>Sa</u>	askatchewan over Omand's Creek	Location:	ι	ЛТМ	N-55298	45.75, E-629659.55	
Contr	actor:	М	aple Leaf Drilling	Ground Elevation	on: _2	233.6	6 m Exist	ing Ground	
Metho	od:	12	5 mm Solid Stem Auger, B37X Track Mount	Date Drilled:	_7	' Apri	2015		
	Sampl	е Туре	e: Grab (G) Shelby Tube	T) 🔀 Split Spoor	ı (SS)	Split E	Barrel (SB)	ore (C)
	Particl	e Size	Legend: Fines Clay IIII Si	t 👬 Sand			Gravel	Cobbles	Boulders
Elevation (m)	Depth (m)	Soil Symbol		15	Sample Type	Sample Number	(N) LdS	□ Bulk Unit Wt (kN/m³) 17 18 19 20 21 Particle Size (%) 20 40 60 80 100 PL MC LL 20 40 60 80 100	<u>Test Type</u> △ Torvane △ Ф Pocket Pen. Ф ☑ Qu ☑ ○ Field Vane ○
232.1	-0.5- -1.0-		ORGANIC CLAY (FILL) - silty, trace sand, trace gravel < - black - moist to dry, stiff, frozen from 1.2 m to 1.5 m - intermediate to high plasticity	15 mm		G1		•	
231.8	-2.0-		CLAY - silty, brown - moist, stiff, intermediate plasticity SILT - trace clay - light brown - moist, firm to soft - low plasticity			G2 G3		•	_ <u>∕</u> ≎ ≎
230.9	-3.0 3.5 		CLAY - silty - mottled brown / grey - moist, very stiff - intermediate plasticity - trace oxidation, trace silt inclusions <5 mm below 3.7 m	1		G4		•	•
	-4.5 -5.0 -5.5		- firm to stiff below 4.3 m - grey below 5.2 m			т5		•	29 -2
	-6.0 6.5 		- soft below 6.1 m			G6		•	0 A
Logge	-7.0 -7.5 -8.0 -8.5 -9.0 -9.5		- trace till inclusions below 8.2 m			17 G8 G9		•	◆ ⊠ ◆
Logge	ed By:	Syl	Precourt Reviewed By:Micha	el Van Helden		P	roject Er	ngineer: _Michael V	an Helden

Sub-Surface Log


Test Hole TH15-01

2 of 2




Logged By: Syl Precourt

		EC	RE			S	ub-Su	rface L	οί	3		Tes	t Hole TH15-02 1 of 2
Client	t:	Mo	orrison Her	shfield				Project Numbe	r:	0035	020 00		
Proje	ct Narr	ne: Sa	skatchewa	n over Omai	nd's Creek			Location:		UTM	N-55298	42.53, E-629636.11	
	actor:		ple Leaf D					Ground Elevat	on:			ting Ground	
Metho				em Auger, B37)				Date Drilled:		63	1 2015		
		е Туре		Grab			helby Tube (T)			s) 🔼			Core (C)
	Particl	e Size	Legend:	Fine	s ///	Clay	Silt	Sand	_		Gravel	Bulk Unit Wt	Boulders
Elevation (m)	Depth (m)	Soil Symbol				AL DESCI			Sample Type	Sample Number	(N) LdS	(kN/m ³)	- <u>Test Type</u> △ Torvane △ 0 Ф Pocket Pen. Ф - ⊠ Qu ⊠ ○ Field Vane ○
			ORGANIC - blac	CLAY (FILL	.) - silty, tra	ce sand, tr	race gravel <15	mm					
	-0.5-		- moi - inte	st to dry, stif rmediate pla	f, frozen to isticity	0.6 m				G16		•	
232.8				CLAY (FILL	-	a cilty tra	co cand		-				
			- bro	wn	.) - < 20 mm	1, Silly, u al	ce sanu						
	-1.5-			st, stiff rmediate pla	sticity					G17		•	
	-2 0-												
231.2													
231.2	-2.5-		SILT - trac	e clay, light	brown	at _ 14			Ζ	G18		•	•
230.8	-3.0-			st, firm to so ty, trace sand						G19		•	•
	-3.5 -4.0 -4.5		- inte	wn st, stiff rmediate pla prown / grey,		3.5 m				T20		•	
	-5.0-												
	-5.5- 		- grey, sof	below 5.5 n	n								
	-6.5 									T21	þ	I I ●	
	-7.5-									G22		•	
	-8.0												
	-8.5												
	-9.5-									T23		•	• 8 4
Logg	ed By:	Syl F	recourt			Reviewed	By: Michael	/an Helden		F	roject Ei	ngineer: <u>Michael V</u>	/an Helden

Project Engineer: Michael Van Helden

UMA 1479 Buttalo Place, 1	UMA Engineering Lt Engineers & Plans Winnipeg, Manitoba, Canada R3T 1	<u>JOB_NO.: 0265-238-01-0</u>	IPEG D2 BER 5, 19 NEAN LTD.	6
MOISTURE CONTE LIQUID LIMIT PLASTIC LIMIT 20 40 60		SOIL DESCRIPTION	SAMPLE NO STANDARD PEN.(N)	H O MISC H O TEST3 WZ AND WZ AND C REMARKS
		<pre>FILL - clay and silt - concrete and asphalt pieces gravel - dry - stiff CLAY - brown - plastic - stiff to firm CLAY (topsoil) - black - organic CLAY - brown - plastic - trace of silt and sulphates - silty layer 2.9 - 3.0 m - stiff to firm at 3.0 m</pre>	1B 2B 3B	$ y_{d}=13.94 $ $ KN/m^{3} $ $ y_{w}=18.10 $ $ KN/m^{3} $ $ L_{v}=98.7 \text{ kPa} $ $ y_{d}=11.92 $ $ KN/m^{3} $ $ y_{w}=17.42 $ $ KN/m^{3} $ $ PI=49.7\% $ $ L_{v}=56.4 \text{ kPa} $ $ y_{d}=11.59 $ $ KN/m^{3} $ $ y_{w}=17.18 $ $ KN/m^{3} $ $ L_{v}=65.6 \text{ kPa} $
	6 7 7 8 8	<u>CLAY</u> - grey - occasional silt pockets and till inclusions - firm to soft with depth <u>SILT</u> (till) - wet - soft	4B 5B	PI=33.8% X d=13.18 KN/m ³ X w=18.05 KN/m ³ L _v =45.2 kPa

UMA 1479 Buffalo Place, We	UMA Engineering Engineers & P innipog, Manitoba, Canada F		PROJECT: WEST END FEEL CLIENT: CITY OF WINN JOB NO.: 0265-238-01- DRILLING DATE: DECEMBE DRILLED BY: SUBTERRANE	TEST HOLE NO. Contin			
MOISTURE CONTER LIQUID LIMIT PLASTIC LIMIT			URFACE ELEVATION: 233.72m D-ORDINATES: SOIL DESCRIPTION	SAMPLE	STANDARI PEN.(N)	STRENGTH Dpsf DkPa	MISC TESTS AND REMARKS
	9		- becoming dryer and denser at 8.5 m with cobbles	7G			13.5% Clay 36.5% Silt 33% Sand 17% Gravel
	11	• 1 	Auger regusal at 11.0 m.				
			NOTES: - no seepage during drilling.				
	13						
	14						
	16						
+ + + + + + + + + + + + + + + + + + +							

Appendix C

Visual Field Inspection Photos

Site 4 - Western
RiverbankGround between bridges gently sloping towards
river (facing E)

Site 4 - Western
RiverbankGently sloping riverbank crest covered in brush,
shrubs, and tree clusters (facing E)

Site 4 - WesternSteepened slopes around siphons inlet chamberRiverbankstructure (facing E)

Site 4 - Western
RiverbankGently sloping riverbank crest to the south of the
crossing alignment(facing SE)

Site 4 - Western
RiverbankGently sloping riverbank crest to the north of the
crossing alignment (facing NE)

Site 4 - Western
RiverbankDensely vegetated riverbank crest to the east of the
pedestrian pathway (facing E)

Site 4 - Western
RiverbankAsphalt paved pedestrian pathway. Minor cracking
observed parallel to bank crest (facing S)

Site 4 - Western
RiverbankSouth bridge pier near river edge surrounded in rip-
rap armouring (facing S)

Site 4 - Western
RiverbankObserved scarp near oversteepened riverbank crest
in adjacent to crossing alignment (facing N)

Site 4 - Western
RiverbankShort erosion scarps, localized rip-rap, gradual toe
slope adjacent to crossing alignment (facing S)

Site 4 - Western
RiverbankShort erosion scarps, localized rip-rap, gradual toe
slope within crossing alignment (facing N)

Site 4 - Western
RiverbankGenerally vertical oriented trees near riverbank
crest (facing S)

Site 4 - Eastern
RiverbankSteeper slopes around hydro tower showed signs of
slope instability and animal burrows (facing E)

Riverbank Chamber structure (facing W)

Site 4 - Eastern
RiverbankGround between bridges gently sloping towards
river (facing W)

Site 4 - Eastern
RiverbankAnimal burrows observed in front of siphons inlet
chamber structure (facing W)

Site 4 - Eastern
RiverbankGradually sloping riverbank crest east of pedestrian
pathway, groundwater well (facing S)

Site 4 - Eastern
RiverbankAsphalt paved pedestrian pathway. Minor cracking
observed parallel to bank crest (facing N)

Site 4 - EasternGradual riverbank crest slopes east of pedestrianRiverbankpathway (facing N)

Site 4 - EasternBrush and shrubs observed along riverbank crestRiverbankwest of pedestrian pathway (facing W)

Site 4 - Eastern
RiverbankRiverbank slightly steepening west of pedestrian
pathway, groundwater well (facing S)

Site 4 - Eastern
RiverbankRip-rap armouring around south bridge pier and
along gradually sloping bank toe (facing S)

Site 4 - Eastern
RiverbankRiverbank slightly steepening east of pedestrian
pathway, tree clusters (facing N)

Site 4 - Eastern
RiverbankRip-rap armouring along entire lower portion of
riverbank between bridges (facing N)

Site 5 - NorthernView of northern bank from top of bridge (facing
RiverbankNE)

Site 5 - Northern
RiverbankView from riverbank crest along approximate cross-
ing alignment (facing S)

Site 5 - NorthernGradually sloping ground down Oxbow Bend Rd. to-
wards river (facing S)

Site 5 - Northern
RiverbankGranular road along riverbank crest below bridge,
jersey barriers, traffic signs (facing W)

Site 5 - Northern
RiverbankSlightly steepening bank slope down towards river
within eastern portion of study area (facing E)

Site 5 - NorthernErosion scarp observed near bank toe withinRiverbankeastern portion of study area (facing E)

Site 5 - Northern
RiverbankFlattened bank slope near top of erosion scarp
within eastern portion of study area (facing E)

Site 5 - Northern
RiverbankSlightly steepened bank slope down towards river
within western portion of study area (facing W)

Site 5 - Northern
RiverbankErosion scarp observed near bank toe within
western portion of study area (facing W)

Site 5 - Northern
RiverbankCSP outfall daylighting along bank slope, some ero-
sion of bank material between rip-rap (facing N)

Site 5 - Northern
RiverbankRip-rap
along slope within discharge path of CSP
outfall in western portion of study area (facing W)

Site 5 - Northern
RiverbankTraffic signs located along bank crest near crossing
alignment. One leaning, one straight (facing W)

Site 5 - SouthernView of southern bank from top of bridge (facing
RiverbankRiverbankSE)

Site 5 - Southern No observed movement of lift station located at east Riverbank crest of rip-rap drainage channel (facing E)

Site 5 - Southern
RiverbankRock drains installed within steeper slopes of rip-
rap lined drainage channel (facing N)

Site 5 - Southern
RiverbankDrainage channel sloped towards CSP culverts
west of crossing alignment (facing NW)

Site 5 - Southern
RiverbankDischarge path of CSP culverts west of crossing
alignment, gradual bank slopes (facing NW)

Site 5 - Southern
RiverbankGradual slopes, brush, shrubs, and trees observed
along bank crest near crossing alignment (facing E)

Site 5 - SouthernView from riverbank crest along approximate cross-Riverbanking alignment (facing N)

Site 5 - Southern
RiverbankFlattened bank crest slope closer to river edge,
signs of pedestrian passage (facing E)

Site 5 - Southern
RiverbankGradual slopes, brush, trees observed along bank
crest west of crossing alignment (facing W)

Site 5 - Southern
RiverbankRip-rap armouring along bank slope between CSP
culverts and river edge (facing W)

Site 5 - Southern
RiverbankFallen tree in close proximity to crossing alignment
and erosion scarp at river edge (facing NE)

Site 5 - Southern
RiverbankSloped riverbank edge, erosion scarp, fallen tree in
close proximity to crossing alignment (facing E)

Site 5 - Southern
RiverbankIncreasing width of exposed bank further east from
the crossing alignment (facing E)

Site 5 - Southern
RiverbankView near river edge along approximate crossing
alignment (facing S)

Site 6A -View from bank crest along approximate crossingNorthern Bankalignment (facing SW)

Site 6A -Flatter slopes around drain, steepening sharplyNorthern Banktowards bank crest (facing SE)

Site 6A -Flatter slopes around drain, steepening sharplyNorthern Banktowards bank crest (facing W)

Site 6A -Oversteepened bank slopes, leaning trees, brush,Northern Bankshrub vegetation near bank crest (facing NW)

Site 6A -Scarps observed near flatter portion near drain inNorthern Bankvicinity of crossing alignment (facing W)

Site 6A -Northern Bank

Consistently sloping ground from crest to bank toe east of crossing alignment (facing NW)

Site 6A -Erosion scarp observed along drain edges, varyingNorthern Bankin height (facing W)

Site 6A -Flatter slopes around drain, steepening sharplySouthern Banktowards bank crest (facing E)

Site 6A -Progressive slope instabilities observed in closeSouthern Bankproximity to crossing alignment (facing W)

Site 6A -Southern Bank

Consistently sloping ground from crest to bank toenkeast of crossing alignment (facing E)

Site 6A -Progressive slope instabilities have progressed to-Southern Bankwards the bank crest (facing W)

Site 6A -Progressive slope instabilities have progressed to-Southern Bankwards the bank crest (facing E)

Site 6A -Progressive slope instabilities along bank slopeSouthern Banknear crossing alignment (facing SE)

Site 6A -
Southern BankSlope instability ridges observed near bank crest
west of the crossing alignment (facing W)

Site 6A -Shallow slope instabilities observed at localizedSouthern Bankareas along bank toe (facing S)

near crossing alignment (facing W)

Flatter slopes steepening slightly near river, dense brush along bank crest south of crossing (facing S) Western Bank

crest north of crossing (facing N) Western Bank

Site 6B -Minor erosion observed at localized areas along Western Bank bank toe (facing N)

Eastern Bank near crossing alignment (facing E)

Site 6B -Slightly steepening bank slope down towards riverEastern Bankwithin northern portion of study area (facing E)

Site 6B -Eastern Bank

Slopes steepening slightly near river, dense brush within southern portion of study area (facing S)

Site 6B -Steepened banks slope extends from bank crestEastern Bankdown to bank toe (facing N)

Site 6B -Minor erosion observed at localized areas alongEastern Bankbank toe (facing N)

Site 6B -Eastern Bank

Minor erosion observed at localized areas alon bank toe (facing S)

Site 6B -Animal burrows observed within the steeper bankEastern Bankslopes (facing E)

Site 6B -Bank slopes flatten out near the river edge north ofEastern Bankthe study area (facing N)

Site 7 - Western
BankSturgeon Creek Greenway Trail and gradual river-
bank slopes east of crossing (facing SE)

Bank Gradual slope, manicured grass, wood posts along riverbank crest beside bridge abutment (facing W)

Site 7 - Western
BankView from the west bank facing the east bank along
the approximate crossing alignment (facing E)

Site 7 - Western Western bridge abutment near bank crest (facing N) Bank

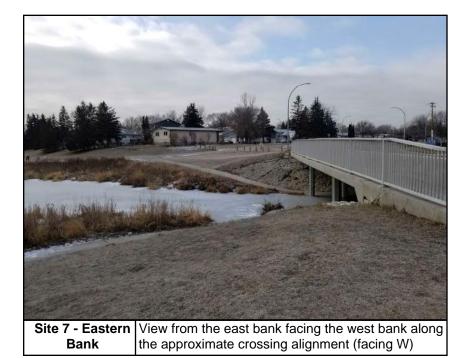
Site 7 - Western
BankGrouted rip-rap armouring along steeper banks in
close proximity to bridge abutment (facing N)

Site 7 - Western
BankSteeper slope around bridge abutment and minor
cracking along pedestrian pathway (facing NE)

Site 7 - Western
BankCracks observed within grouted rip-rap armoring at
various orientations

Site 7 - Western
BankGrouted rip-rap along abutment head slope below
bridge structure (facing NW)

Bank within southern portion of study area (facing N)



Site 7 - Western
BankExposed grouted rip-rap and brush vegetation east
of pathway near crossing alignment (facing S)

Site 7 - WesternLocalized scarps and gulley areas along exposed
bank toe in southern portion of study area (facing N)

Site 7 - Eastern
BankSteeper bank slopes close to bridge structure, un-
der-bridge pedestrian pathway (facing W)

Site 7 - Eastern
BankNear flat slopes and manicured grass within
southern portion of study area (facing SE)

Site 7 - Eastern
BankBrush and shrubs near bank edge within southern
portion of study area (facing S)

Site 7 - Eastern
BankSteeper slopes to the east of pedestrian pathway,
gradual slope to the west of it (facing NW)

Site 7 - Eastern
BankExposed grouted rip-rap and brush vegetation west
of pathway near crossing alignment (facing W)

Site 7 - Eastern
BankGrouted rip-rap armouring along steeper banks in
close proximity to bridge abutment (facing N)

Site 7 - Eastern
BankGrouted rip-rap along abutment head slope below
bridge structure (facing N)

Bank coe within southern portion of study area, indi Bank cating higher than usual water level (facing S)

Site 7 - Eastern
BankBank toe within southern portion of study area, indi-
cating higher than usual water level (facing NW)

Site 7 - Eastern
BankBeaver dam south of study area causing higher wa-
ter levels within the study area (facing W)

Site 8 - WesternView of western riverbank from eastern riverbankBankwithin study area (facing NW)

Site 8 - Western
BankRegraded and rip-rap armoured slope within cross-
ing alignment (facing S)


Site 8 - Western
BankDate of construction cast into Saskatchewan Ave.
bridge wingwall (facing N)

Site 8 - Western
BankRegraded and rip-rap armoured slope near bridge
structure. Steeper slope near abutment (facing N)

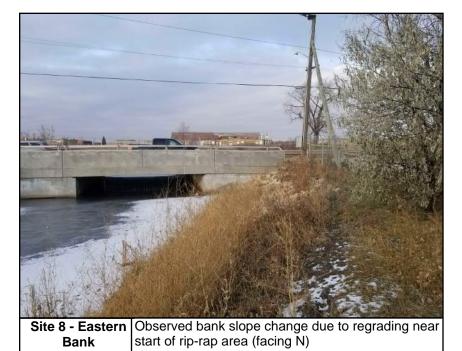
Site 8 - Eastern
BankApproximately vertical fenceline along adjacent pri-
vate property east of crossing (facing S)

Site 8 - Eastern
BankRegraded and rip-rap armoured slope within cross-
ing alignment (facing S)

Site 8 - Eastern
BankRegraded and rip-rap armoured slope near bridge
structure (facing N)

Site 8 - EasternBrush and trees along riverbank crest within south-
ern portion of study area (facing S)

Site 8 - Eastern
BankScarp ridge observed near bank crest at
oversteepened bank south of rip-rap area (facing S)



Site 8 - Eastern Animal burrows observed along bank slopes. Bank

Site 8 - Eastern
BankOversteepened banks observed within southern
portion of the study area (facing N)

Site 9 - Western View of western riverbank from pedestrian bridge Bank north of study area (facing W)

Site 9 - Western Displaced rip-rap and exposed geotextile at bridge abutment north of the crossing (facing NW) Bank

Site 9 - Western
BankModerate to dense brush vegetation along bank
slope, groundwater well near bridge (facing N)

Bank damaged fence (facing SW)

Site 9 - Western
BankGroundwater well near west bridge abutment con-
taining pneumatic piezometer

Site 9 - Western Animal burrows observed within bank slopes. Bank

Site 9 - Western
BankRelatively flat bank crest (Assiniboine Golf Course)
becoming steeper towards creek (facing SW)

Site 9 - Western
BankRelatively flat bank crest with manicured grass
(Assiniboine Golf Course (facing N)

Bank View of eastern riverbank from pedestrian bridge north of study area (facing S)

Site 9 - Eastern
BankRip-rap at bridge abutment north of the crossing
(facing NE)

Site 9 - Eastern
BankGradual bank slopes densely vegetated with brush,
shrubs, and trees (facing N)

Site 9 - Eastern Dense vegetation along bank slopes near creek Bank (facing W)

Site 10 - Northern View of northern bank from southern bank along ap-Riverbank proximate crossing alignment (facing N)

Site 10 - Northern
RiverbankPedestrian pathway with minor cracking and railing
along bank slope (facing SW)

Site 10 - NorthernBank slope located near edge of pedestrianRiverbankpathway within study area (facing S)

Site 10 - NorthernSlope that flattens out closer to the river edge withinRiverbanksouthern portion of study area (facing E)

Site 10 - NorthernSlope from pathway down towards river edge withinRiverbanknorthern portion of study area (facing W)

Site 10 - NorthernLower bank slope within northern portion of studyRiverbankarea (facing W)

Site 10 - Northern Lower bank slope within southern portion of study Riverbank area (facing E)

Site 10 - Northern
RiverbankScarp near river edge observed along full length of
bank toe within study area (facing W)

Site 10 - Northern
RiverbankScarp near river edge observed along full length of
bank toe within study area (facing E)

Site 10 - Northern
RiverbankMasonry retaining wall structure near pedestrian
pathway shows small signs of movement (facing W)

Site 10 - SouthernView of southern bank from eastern bank along ap-Riverbankproximate crossing alignment (facing S)

Site 10 - Southern Riverbank crest begins to slope more steeply closer Riverbank to the river (facing N)

Site 10 - Southern
RiverbankGradually sloped bank crest and clearing down to-
wards river along pipe alignment (facing N)

Site 10 - SouthernOversteepened banks and instabilities observedRiverbankwithin eastern portion of study area (facing E)

Site 10 - SouthernScarp face observed along oversteepened slopeRiverbankwithin eastern portion of study area

Site 10 - SouthernScarp near river edge observed within southernRiverbankportion of study area (facing E)

Site 10 - Southern
RiverbankLarger scarps and leaning trees observed along
banks in eastern portion of study area (facing SE)

Site 10 - SouthernGradually sloping bank crest within western portionRiverbankof study area (facing W)

Site 10 - SouthernScarp near river edge observed within easternRiverbankportion of study area (facing W)

Site 10 - Southern
RiverbankScarp near river edge observed within western por-
tion of study area (facing W)

Site 10 - Southern
RiverbankLocal rip-rap observed along the bank toe near the
crossing alignment (facing W)

Site 10 - Southern Small scarp and crack observed along flat portion of Riverbank bank crest near crossing alignment (facing S)

Appendix D

Site Reconnaissance Summary, SCG and ECG Values

APPENDIX D - SUMMARY OF VISUAL FIELD INSPECTION AND ASSIGNED SCG AND ECG RATINGS

REIDGE ADJACENT TO CROSSING BRIDGE ADJACENT RIP RAP AT BANK TOF BRIDGE ADJACENT OF CROSSING BRIDGE ADJACENT OF CROSSING	ASSIGNED RATING (1 TO 5) 	
NAME WATER CROSSING WATER CROSSING W	SCG ECG	
Model Model Model YES X <td>3 2</td> <td>Evidence of shallow instabilitie around the pipe crossing align analyses indicate FS for slip su analysis</td>	3 2	Evidence of shallow instabilitie around the pipe crossing align analyses indicate FS for slip su analysis
Site 4 - Fort Garry/St. Vital Pod Pivor Bishop Grandin East YES X	1 2	Some erosion observed along (regrading, rip-rap toe armour for slip surface engaging sipho
Interceptor Siphons Red River Boulevard Boulevard West YES X X X X X X X X X X X X X X X X X X X	3 2	Evidence of shallow instabilitie to be effective, but is localized around rip-rap-armoured area design criteria. Flagged for slo
East YES X X X X X X X X X X X X X	1 2	Some erosion observed along (regrading, rip-rap toe armour for slip surface engaging sipho
Site 5 - West Perimeter Force Assiniboine Perimeter Highway, 400 Steel 400 S	2 2	Feeder main installed within g criteria.Erosion observed near
Main River Oxbow Bend Road Vol Steel South YES X X X X X X X X X X X X X X X X	2 2	Feeder main installed within g criteria.Erosion observed near
Site 6A - Dakota Feeder Main Navin Drain Bishop Grandin 600 PCCP X	2 2	Pipe buried deep within the bac criteria. Instabilities due to ove crossing.
South Vieland Boulevard Boulevard No. NO. NO. NO. X.	2 2	Pipe buried deep within the back criteria. Instabilities due to ove crossing.
Site 6B - Dakota Feeder Main Seine River Bishop Grandin 600 PCCP West NO X <td>1 2</td> <td>Slope beyond bank crest very alignment.</td>	1 2	Slope beyond bank crest very alignment.
Site 66 - Dakota Peeder Iviality Selite River Boulevard 600 PCCP East NO East NO X X X X X X X X X X X X X X X X X X	1 2	Erosion observed near river e

COMMENTS
stabilities noted near bank crest. Rip-rap appears to be effective, but is localized to a small area ing alignment. Erosion into banks observed around rip-rap-armoured area. Previous stability r slip surface engaging siphons to be less than design criteria. Flagged for slope stability
ed along bank slope above rip-rap armoured area. Bank underwent slope stabilization armouring) in 2013, and slope stability analyses completed as part of these works indicate FS ng siphons meets design criteria. Design is consistent with site observations.
stabilities noted near bank crest. No deep-seated slope instabilities observed. Rip-rap appears localized to a small area around the pipe crossing alignment. Erosion into banks observed red area. Previous stability analyses indicate FS for slip surface engaging siphons to be less than d for slope stability analysis
ed along bank slope above rip-rap armoured area. Bank underwent slope stabilization armouring) in 2013, and slope stability analyses completed as part of these works indicate FS ng siphons meets design criteria. Design is consistent with site observations.
within glacial till, and is unlikely to be intercepted by slip surface with FS below design /ed near river edge, rip-rap not present within crossing alignment.
within glacial till, and is unlikely to be intercepted by slip surface with FS below design /ed near river edge, rip-rap not present within crossing alignment.
in the banks at this site, and unlikely to be engaged by slip surfaces with FS less than design ue to oversteepened banks and erosion observed do not pose a short-term risk to the pipe
in the banks at this site, and unlikely to be engaged by slip surfaces with FS less than design ue to oversteepened banks and erosion observed do not pose a short-term risk to the pipe
est very gradual. Erosion observed near river edge, rip-rap not present within crossing
r river edge, rip-rap not present within crossing alignment

APPENDIX D - SUMMARY OF VISUAL FIELD INSPECTION AND ASSIGNED SCG AND ECG RATINGS

Г Г	APPENDIX D - SUMMARY OF V	ISUAL FIELD INSP	ECTION AND ASSIGNED S	CG AND	ECG RATI	NGS															1			~					1								
	SITE INFORMATION				PIPE ASSE	-T		SQII	TYPE		SCARP PRESENT ON ALIGNMENT		SCARP PRESENT IN NEIGHBOURING	AREAS		BANK CREST INSTABILITES		Bank Slope instabilities		TOE EROSION		RIP RAP AT BANK TOE	F RIP RAP EXISTS, COVERAGE	EXTENDS SUFFICIENT DISTANCE AWAY FROM CROSSING		BRIDGE ADJACEN I TO CROSSING	ASSIGNED RATING (1 TO 5)	- (1 - DEFECTFREE) (5 - FAILED OR FAILING)									
	NAME	WATER CROSSING	NEIGHBOURING STREET(S)	PIPE DIAMETER (mm)	PIPE MATERIAL	BANK	EXISTING TH INFO AVAILABLE	ALLUVIAL	GLACIOLACUSTRINE	BOTH ALLUVIAL AND GLACIOLACUSTRINE		NOT EXIST	EXIST	NOT EXIST	EXIST	NOT EXIST	EXIST	NOT EXIST	EXIST	NOT EXIST	EXIST	NOT EXIST	YES	ON	EXIST	NOT EXIST	sce	ECG									
	Site 7 - Rouge Road Feeder	Sturgeon Creek	Hamilton Avenue	600	РССР	West	YES		х			Х		x		х		х	х		х			х	х		2	2	Cracking observed within grout armoured and non-armoured b view much of the lower bank slo								
	Main	Sturgeon creek		- Animon Avenue	Hamilton Avenue	Hamilton Avenue	Hamilton Avenue	Hamilton Avenue				000	TOOT	East	NO					х		x		х		х	х		х	x		x	х		2	2	Cracking observed within grout armoured and non-armoured b view much of the lower bank slo
	Site 9 West End Feeder Main		OmendiaCreak	Omond's Crock	Omand's Crock	Omond's Crock	Omand's Crock	Omand's Crock	Omand's Creek	Saskatchewan Avenue,	900	РССР	West	YES		х			х		x		х		х		х	х		x		x		1	2	Erosion observed near creek ed slope stabilization (regrading, rij completed as part of these worl consistent with site observation	
	ore o - West End Feeder Main		Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	Empress Street	900	PUUP	East	YES		х			Х	х		х		x			х	х		x		x		2	2
	Site O Mart End Fooder Main	Truno Oreali	Silver Averus	000	DCCD	West	YES		х			х		x		x		х	х			х		x	х		1	2	Erosion observed near creek ed as part of the pipe crossing desi consistent with site observation								
	site 9 - West End Feeder Main	TUTO CTEEK	HUIO OFEEK			nalo orcek	Truro Creek	THURO CLEEK	nui o creek	TUTO CLEEK	Silver Avenue	900	PCCP	East	YES		х			Х		x		х		х	x			x		x	х		1	2	Erosion observed near creek ed as part of the pipe crossing desi consistent with site observation
	Site 10 - Haney-Moray Feeder	Assiniboine	William R. Clement	450	(00	North	NO				x		х			х	х		х			х		х	х		2	3	Erosion scarp near river edge, ri absence of existing geotechnica on site. Flagged for geotech inve								
	Main	River	Parkway	450	CPP	South	NO				х		х		х		x		х		х			x	x		3	3	Slope instabilities observed with river edge, sparse rip-rap at bar existing geotechnical informatio Flagged for geotech investigatio								

COMMENTS
grouted rip-rap around bridge abutment. Crossing alignment near interface between red bank slope. Damming of the creek has resulted in elevated creek levels and inability to ink slope.
grouted rip-rap around bridge abutment. Crossing alignment near interface between red bank slope. Damming of the creek has resulted in elevated creek levels and inability to ank slope.
ek edge south of rip-rap armoured section of bank within the study area. Bank underwen ng, rip-rap armouring) as part of bridge construction, and slope stability analyses e works indicate FS for slip surface engaging siphons meets design criteria. Design is vations.
d in oversteepened banks and toe erosion observed south of the rip-rap armoured portion dy area. Bank underwent slope stabilization (regrading, rip-rap armouring) as part of bridge ability analyses completed as part of these works indicate FS for slip surface engaging pipe gn is consistent with site observations.
ek edge, rip-rap not present within crossing alignment. Slope stability analyses completed g design indicate FS for slip surface engaging pipe meets design criteria. Design is vations.
ek edge, rip-rap not present within crossing alignment. Slope stability analyses completed g design indicate FS for slip surface engaging pipe meets design criteria. Design is vations.
dge, rip-rap not present within crossing alignment. Subsurface conditions unknown due to hnical information. Discrepancies observed between as-built records and those observed h investigation and slope stability analysis
d within eastern portion of study area and near crossing alignment. Frosion scarp near

d within eastern portion of study area and near crossing alignment. Erosion scarp near at bank toe within crossing alignment. Subsurface conditions unknown due to absence of mation. Discrepancies observed between as-built conditions and those observed on site. tigation and slope stability analysis

AECOM 2021 Geotechnical Investigation: Test Hole Location Plans

HIGH RISK RIVER CROSSINGS PHASE 3 **CITY OF WINNIPEG** Project No.: 60645745 Date: 2021-03-16

Test Hole Location Plan Site 5 West Perimeter Bridge FRM (Assiniboine River)

Last saved by: COOPERKL[2021-02-02) Last Plotted: 2021-03-16 Filename: L:\DCS\PROJECTS\WTR\60645745_960_CAD_GIS\910_CAD\25-SKETCHES\60645745-SKE-30-0000-C-10001.DWG

ANSI A 215.9mm x 279.4mm

Approved:

Checked:

Designer:

Project Management Initials:

HIGH RISK RIVER CROSSINGS PHASE 3 CITY OF WINNIPEG Project No.: 60645745 Date: 2021-03-16

Test Hole Location Plan Site 10 Haney-Moray FM (Assiniboine River)

Figure: E2

AECOM 2021 Geotechnical Investigation: Test Hole Logs

AECOM Canada Ltd.

GENERAL STATEMENT

NORMAL VARIABILITY OF SUBSURFACE CONDITIONS

The scope of the investigation presented herein is limited to an investigation of the subsurface conditions as to suitability for the proposed project. This report has been prepared to aid in the evaluation of the site and to assist the engineer in the design of the facilities. Our description of the project represents our understanding of the significant aspects of the project relevant to the design and construction of earth work, foundations and similar. In the event of any changes in the basic design or location of the structures as outlined in this report or plan, we should be given the opportunity to review the changes and to modify or reaffirm in writing the conclusions and recommendations of this report.

The analysis and recommendations presented in this report are based on the data obtained from the borings and test pit excavations made at the locations indicated on the site plans and from other information discussed herein. This report is based on the assumption that the subsurface conditions everywhere are not significantly different from those disclosed by the borings and excavations. However, variations in soil conditions may exist between the excavations and, also, general groundwater levels and conditions may fluctuate from time to time. The nature and extent of the variations may not become evident until construction. If subsurface conditions differ from those encountered in the exploratory borings and excavations, are observed or encountered during construction, or appear to be present beneath or beyond excavations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

Since it is possible for conditions to vary from those assumed in the analysis and upon which our conclusions and recommendations are based, a contingency fund should be included in the construction budget to allow for the possibility of variations which may result in modification of the design and construction procedures.

In order to observe compliance with the design concepts, specifications or recommendations and to allow design changes in the event that subsurface conditions differ from those anticipated, we recommend that all construction operations dealing with earth work and the foundations be observed by an experienced soils engineer. We can be retained to provide these services for you during construction. In addition, we can be retained to review the plans and specifications that have been prepared to check for substantial conformance with the conclusions and recommendations contained in our report.

EXPLANATION OF FIELD & LABORATORY TEST DATA

The field and laboratory test results, as shown for each hole, are described below.

1. NATURAL MOISTURE CONTENT

The relationship between the natural moisture content and depth is significant in determining the subsurface moisture conditions. The Atterberg Limits for a sample should be compared to its natural moisture content and plotted on the Plasticity Chart in order to determine the soil classification.

2. SOIL PROFILE AND DESCRIPTION

Each soil stratum is classified and described noting any special conditions. The Modified Unified Classification System (MUCS) is used. The soil profile refers to the existing ground level at the time the hole was done. Where available, the ground elevation is shown. The soil symbols used are shown in detail on the soil classification chart.

3. TESTS ON SOIL SAMPLES

Laboratory and field tests are identified by the following and are on the logs:

- <u>Standard Penetration Test (SPT) Blow Count</u>. The SPT is conducted in the field to assess the in-situ consistency of cohesive soils and the relative density of non-cohesive soils. The N value recorded is the number of blows from a 63.5 kg hammer dropped 760 mm which is required to drive a 51 mm split spoon sampler 300 mm into the soil.
- SO₄ <u>Water Soluble Sulphate Content</u>. Expressed in percent. Conducted primarily to determine requirements for the use of sulphate resistant cement. Further details on the water-soluble sulphate content are given in Section 6.
- γ_D <u>Dry Unit Weight</u>. Usually expressed in kN/m³.
- γ_T <u>Total Unit Weight</u>. Usually expressed in kN/m³.
- Qu <u>Unconfined Compressive Strength</u>. Usually expressed in kPa and may be used in determining allowable bearing capacity of the soil.

- Cu <u>Undrained Shear Strength</u>. Usually expressed in kPa. This value is determined by either a direct shear test or by an unconfined compression test and may also be used in determining the allowable bearing capacity of the soil.
- C_{PEN} <u>Pocket Penetrometer Reading</u>. Usually expressed in kPa. Estimate of the undrained shear strength as determined by a pocket penetrometer.

The following tests may also be performed on selected soil samples and the results are given on separate sheets enclosed with the logs:

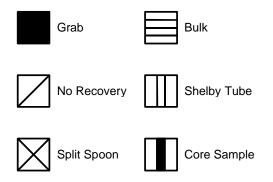
- Grain Size Analysis
- Standard or Modified Proctor Compaction Test
- California Bearing Ratio Test
- Direct Shear Test
- Permeability Test
- Consolidation Test
- Triaxial Test

4. SOIL DENSITY AND CONSISTENCY

The SPT test described above may be used to estimate the consistency of cohesive soils and the density of cohesionless soils. These approximate relationships are summarized in the following tables:

N	Consistency	C _u (kPa) approx.
0 - 1	Very Soft	<10
1 - 4	Soft	10 - 25
4 - 8	Firm	25 - 50
8 - 15	Stiff	50 - 100
15 - 30	Very Stiff	100 - 200
30 - 60	Hard	200 - 300
>60	Very Hard	>300

Table 1 Cohesive Soils


Table 2 Cohesionless Soils

N	Density
0 - 5	Very Loose
5 - 10	Loose
10 - 30	Compact
30 - 50	Dense
>50	Very Dense

5. SAMPLE CONDITION AND TYPE

The depth, type, and condition of samples are indicated on the logs by the following symbols:

6. WATER SOLUBLE SULPHATE CONCENTRATION

The following table, from CSA Standard A23.1-14, indicates the requirements for concrete subjected to sulphate attack based upon the percentage of water-soluble sulphate as presented on the logs. CSA Standard A23.1-14 should be read in conjunction with the table.

						Performance	e requirements	\$\$,§§	
Class of exposure		Water-soluble	Sulphate (SO₄)	Water soluble sulphate (SO ₄) in recycled	Cementing	Maximum er when tested CSA A3004-0 Procedure A	using	Maximum expansion when tested using CSA A3004-C8 Procedure B at 5 °C, % †††	
	Degree of exposure	sulphate (SO ₄)† in soil sample, %	in groundwater	aggregate sample, %	materials to be used§††	At 6 months	At 12 months††	At 18 months‡‡	
S-1	Very severe	> 2.0	> 10 000	> 2.0	HS** ,HSb, HSLb*** or HSe	0.05	0.10	0.10	
S-2	Severe	0.20–2.0	1500-10 000	0.60-2.0	HS**, HSb, HSLb*** or HSe	0.05	0.10	0.10	
S-3	Moderate (including seawater exposure*)	0.10-0.20	150–1500	0.20–0.60	MS, MSb, MSe, MSLb***, LH, LHb, HS**, HSb, HSLb*** or HSe	0.10		0.10	

Table 3 Requirements for Concrete Subjected to Sulphate Attack*

*For sea water exposure, also see Clause 4.1.1.5.

†In accordance with CSA A23.2-3B.

‡In accordance with CSA A23.2-2B.

§Where combinations of supplementary cementing materials and portland or blended hydraulic cements are to be used in the concrete mix design instead of the cementing materials listed, and provided they meet the performance requirements demonstrating equivalent performance against sulphate exposure, they shall be designated as MS equivalent (MSe) or HS equivalent (HSe) in the relevant sulphate exposures (see Clauses 4.1.1.6.2, 4.2.1.1, and 4.2.1.3, and 4.2.1.4).

**Type HS cement shall not be used in reinforced concrete exposed to both chlorides and sulphates, including seawater. See Clause 4.1.1.6.3.

††The requirement for testing at 5 °C does not apply to MS, HS, MSb, HSb, and MSe and HSe combinations made without portland limestone cement.

‡ If the increase in expansion between 12 and 18 months exceeds 0.03%, the sulphate expansion at 24 months shall not exceed 0.10% in order for the cement to be deemed to have passed the sulphate resistance requirement.

§§For demonstrating equivalent performance, use the testing frequency in Table 1 of CSA A3004-A1 and see the applicable notes to Table A3 in A3001 with regard to re-establishing compliance if the composition of the cementing materials used to establish compliance changes.

***Where MSLb or HSLb cements are proposed for use, or where MSe or HSe combinations include Portland-limestone cement, they must also contain a minimum of 25% Type F fly ash or 40% slag or 15% metakaolin (meeting Type N pozzolan requirements) or a combination of 5% Type SF silica fume with 25% slag or a combination of 5% Type SF silica fume with 20% Type F fly ash. For some proposed MSLb, HSLb, and MSe or HSe combinations that include Portland-limestone cement, higher SCM replacement levels may be required to meet the A3004-C8 Procedure B expansion limits. Due to the 18-month test period, SCM replacements higher than the identified minimum levels should also be tested. In addition, sulphate resistance testing shall be run on MSLb and HSLb cement and MSe or HSe combinations that include Portland-limestone cement at both 23 °C and 5 °C as specified in the table.

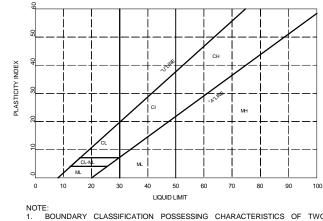
++++1f the expansion is greater than 0.05% at 6 months but less than 0.10% at 1 year, the cementing materials combination under test shall be considered to have passed.

7. SOIL CORROSIVITY

The following table, from the Handbook of Corrosion Engineering (Roberge, 1999) indicates the

corrosivity rating can be obtained from the soil resistivity, presented on the logs.

Soil Resistivity (ohm-cm)	Corrosivity Rating
>20,000	Essentially non-corrosive
10,000 - 20,000	Mildly corrosive
5,000 - 10,000	Moderately corrosive
3,000 - 5,000	Corrosive
1,000 - 3,000	Highly corrosive
<1,000	Extremely corrosive


Table 4 Corrosivity Ratings Based on Soil Resistivity

8. GROUNDWATER TABLE

The groundwater table is indicated by the equilibrium level of water in a standpipe installed in a testhole or test pit. This level is generally taken at least 24 hours after installation of the standpipe. The groundwater level is subject to seasonal variations and is usually highest in the spring. The symbol on the logs indicating the groundwater level is an inverted solid triangle ($\mathbf{\nabla}$).

	MAJOR DIVISION		LOG SYMBOLS	UCS	TYPICAL DESCRIPTION	LABORATORY CLA CRITER	
		CLEAN GRAVELS		GW	WELL GRADED GRAVELS, LITTLE OR NO FINES	$C_{u} = \frac{D_{e0}}{D_{10}} > 4 C_{c} = \frac{1}{D_{e0}}$	$\frac{(D_{30})^2}{(10 \times D_{60})^2} = 1 \text{ to } 3$
လု	GRAVELS (MORE THAN HALF COARSE GRAINS	(LITTLE OR NO FINES)		GP	POORLY GRADED GRAVELS AND GRAVEL- SAND MIXTURES, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS
SOILS	LARGER THAN 4.75 mm)	GRAVELS		GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	CONTENT OF FINES EXCEEDS	ATTERBERG LIMITS BELOW 'A' LINE W _P LESS THAN 4
AINED		WITH FINES		GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	12%	ATTERBERG LIMITS ABOVE 'A' LINE W _p MORE THAN 7
COARSE GRAINED		CLEAN SANDS	0 0 0 0 0 0 0 0 0 0	SW	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	$C_{u} = \frac{D_{60}}{D_{10}} > 6 C_{c} = \frac{D_{c}}{D_{c}}$	$(D_{30})^2 = 1 \text{ to } 3$
DARS	SANDS (MORE THAN HALF	(LITTLE R NO FINES)		SP	POORLY GRADED SANDS, LITTLE OR NO FINES	NOT MEETING ABOVE	REQUIREMENTS
ö	COARSE GRAINS SMALLER THAN 4.75 mm)	SANDS		SM	SILTY SANDS, SAND-SILT MIXTURES		ATTERBERG LIMITS BELOW 'A' LINE W _p LESS THAN 4
		WITH FINES		SC	CLAYEY SANDS, SAND-CLAY MIXTURES	FINES EXCEEDS 12%	ATTERBERG LIMITS ABOVE 'A' LINE W _P MORE THAN 7
	SILTS (BELOW 'A' LINE	W _L < 50		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	CLASSIFICATION IS PLASTICITY (SEE BEL	CHART
ILS	NEGLIGIBLE ORGANIC CONTENT)	W _L > 50		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS		
GRAINED SOILS		W _L < 30		CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY CLAYS, LEAN CLAYS		
RAINE	CLAYS (ABOVE 'A' LINE NEGLIGIBLE ORGANIC CONTENT)	30 < W _L < 50		CI	INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS	WHENEVER THE NATU CONTENT HAS NOT BE IT IS DESIGI BY THE LET	EN DETERMINED, NATED
FINE G		$W_L > 50$		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	E.G. SF IS A MIXTURE SILT OR C	OF SAND WITH
L L	ORGANIC	$W_L < 50$		OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
	SILTS & CLAYS (BELOW 'A' LINE)	W _L > 50		ОН	ORGANIC CLAYS OF HIGH PLASTICITY		
	HIGHLY ORGANIC S	SOILS		Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COLOUR O OFTEN FIBROUS	
	BEDROCK			BR	SEE REPORT DE	SCRIPTION	
	FILL			FILL	SEE REPORT DE	SCRIPTION	

NOTE: 1. BOUNDARY CLASSIFICATION POSSESSING CHARACTERISTICS OF TWO GROUPS ARE GIVEN GROUP SYMBOLS, E.G. GW-GC IS A WELL GRADED GRAVEL MIXTURE WITH CLAY BINDER BETWEEN 5% AND 12%

FRAG	FRACTION		SIZE (mm)	DEFINING RANGES OF PERCENTAGE BY WEIGHT OF MINOR COMPONENTS			
		PASSING RETAINED		PERCENT	IDENTIFIER		
GRAVEL	COARSE	75	19	50.05			
	FINE	19	4.75	50 - 35	AND		
SAND	COARSE	4.75	2.00	05 00			
	MEDIUM	2.00	0.425	35 – 20	Y		
	FINE	0.425	0.080	20 – 10	SOME		
SILT (no	n-plastic)			20 - 10	SOME		
	or (plastic)	0.	080	10 - 1	TRACE		
		OVERSIZE	MATERIALS				
ROUNDED OR SUB-ROUNDED COBBLES 75 mm TO 200 mm BOULDERS >200 mm				ANGULAR ROCK FRAGMEN (S > 0.75 m3 IN V			

MODIFIED UNIFIED SOIL CLASSIFICATION SYSTEM

August 2015

				River Crossing Phase		С	LIEN	IT: C	ity of	Winn	ipeg							STHOLE NO: TH21-0	
				North Bank (5525506 r Die Leaf Drilling	11 IN, 020343 III E)				T			1 4	25		^			OJECT NO.: 6064574	
SAMF			IVIA		SHELBY TUBE					k-Mou			25 m	m SS				EVATION (m): 233.85 RY)
-				GRAB		<u> </u>	3	T SPO	UN							O REC			
SACK		TYPE		BENTONITE	GRAVEL	_Ш	SLO	UGH			_	ROUT				UTTING		SAND	
DEPTH (m)	USC	SOIL SYMBOL			SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	♦ Dyna PT (Stan (Blow 0 40 ■ Tota (k 7 18	ecker mic Co dard P s/300r 60 I Unit V N/m ³) 19 MC	₩ one Pen Te mm) 0 8 Wt ■ 0 20 Liqui	est) ♦ 0 100		INED SHE/ + Torva × QU/2 □ Lab Va △ Pocket ◆ Field V2 (kPa 0 100	ne + 2 × ane □ Pen. △ ane ⊕))	200	COMMENTS	
0	OR			TOPSOIL (Fill) - black, fr		/													
-1	FILL			CLAY (Fill) - silty, some s - dark grey mottled brown SAND (Fill) - silty, trace to	n, frozen		G1			•							· · · · · · · · · · · · · · · · · · ·		2:
				- brown, frozen SILT (Fill) - sandy, clayey - brown mottled dark bro - intermediate plasticity	/ wn, firm, moist	7	S2	5	•									SPT Blows: [2/3/2],	2
2	FILL					/	G3) -							•••••	Spoon Recovery: 0% (G3): Gravel 0.0%, Sand 24.2%, Silt 52.7%, Clay 23.1%	
3	СІ			CLAY - silty, trace to som - brown, soft to firm, mois - intermediate plasticity	ne sand t	 	T4A T4B T4C							.×A				Tube Recovery: 100%	2
4	SM-SO		Ţ	SAND - silty, clayey - brown, firm, moist - intermediate plasticity - moist to wet below 3.8 r - light grey mottled brown	n below 4.0 m		G5			•							· · · · · · · · · · · · · · · · · · ·	(G5): Gravel 0.0%, Sand 44.2%, Silt 29.6%, Clay 26.2%	2
5		00-00-00 00-00-00-00-00-00-00-00-00-00 00-00-		SAND (Till) - silty, some (- light brown, stiff, moist t - low plasticity	gravel, some clay o wet		S6	9									· · · · · · · · · · · · · · · · · · ·	SPT Blows: [3/4/5], Spoon Recovery: 44%	2
6	TILL			- trace to some clay, hard	I, dry to moist below 5.5 m		G7			••••••							· · · · · · · · · · · · · · · · · · ·	(G7): Gravel 18.7%, Sand 46.0%, Silt 20.2%, Clay 15.1%	2
		0.0	<u>[]</u>	END OF TEST HOLE AT REFUSAL Notes:	6.40 m ON AUGER		S8	50/ 127mm					>>				· · · · · · · · · · · · · · · · · · ·	SPT Blows: [50 (140 mm)] Spoon Recovery: 140 mm	
7				 Sloughing not observed Seepage observed be Piezo installed with tip backfilled with sand from from 5.5 m to 0.6 m, augu 	low 6.1 m during augering. at 6.2 m bgs. Test hole 6.4 m to 5.5 m, bentonite er cuttings from 0.6 m to				· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·		2
3				 m. Above-ground protect 4. Groundwater monitorin January 25, 2021 - 5.85 													· · · · · · · · · · · · · · · · · · ·		2
9									· · · · · · · · · · · · · · · · · · ·								· · · · · · · · · · · · · · · · · · ·		2
10										GED	RV [.]	Ruar	Harr	 			 	ETION DEPTH: 6.40 m	2
				AECOM						/IEWE					ht			ETION DEPTH: 0.40111 ETION DATE: 1/25/21	
					l										cDonald			Page	1

PROJ	ECT:	High Ris	sk River Crossing Phas	e 3	С	LIEN	IT: C	ity of	Winr	nipeg						TE	STHOLE NO: TH21-0)2
			South Bank (5525366	m N, 620351 m E)				<u> </u>								PR	OJECT NO.: 6064574	45
			aple Leaf Drilling				IOD:					<u>5 m</u>	m SS				EVATION (m): 231.90)
SAMF			GRAB	SHELBY TUBE			IT SPO	ON		BL				<u> </u>		ECOVE		
BACK	FILL	TYPE	BENTONITE	GRAVEL	_Щ	SL0	UGH				ROUT				ситт		SAND	
DEPTH (m)	USC	SOIL SYMBOL	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1;	₩ E	Becker amic Co ndard P vs/300r 0 60 al Unit V kN/m ³) 19 MC	one Pen Tes mm) 0 80 Wt 20 Liquid	t) ♦ 100 21		+ Tor XQ □ Lab △ Pock ● Field (k	vane + U/2 X Vane [et Pen. Vane (Pa)] 	COMMENTS	ELEVATION
- 0	OR		TOPSOIL (Fill) - black, fr					4								150 200		-
-1	FILL		CLAY (Fill) - silty, some cobble, trace roots - brown, frozen to 0.9 m - firm to stiff, moist, interr below 0.9 m - cobble encountered at SILT - clayey, some san - brown mottled grey, so - intermediate plasticity - intermediate plasticity - light brown, firm, moist - low plasticity - hard below 4.0 m	nediate to high plasticity 1.2 m d ft to firm, moist		G1 T2A T2B G3 S4 G5 S6	6 50/ 102mm		•				+	ن			Tube Recovery: 50% (Damaged) (G3): Gravel 0.0%, Sand 12.8%, Silt 57.5%, Clay 29.6% SPT Blows: [7/3/3], Spoon Recovery: 0%	231
LOG OF TEST HOLE 80645745 - TEST HOLE LOGS.GPJ UMA WINN.GDT 3/16/21			 Piezo installed with tip backfilled with bentonite from 2.6 m to 1.8 m, and original ground surface. Move-ground protect Groundwater monitori January 25, 2021 - 2.11 m) 	F 5.33 m ON AUGER ed during augering. slow 4.6 m during augering. at 2.4 m bgs. Test hole from 5.3 m to 2.6 m, sand bentonite from 1.8 m to Piezometer stick-up of 0.9 tive casing installed.		G7											mm)] Spoon Recovery: 100 mm	227 226 225 224 223 223
OF TE			AECOM	l							Ryan 7: Ellio			ht			ETION DEPTH: 5.33 m ETION DATE: 1/25/21	
LOG											GINEE							1 of 1

				River Crossing Phase		C	LIEN	IT: C	ity of	Winr	nipeg							TESTHOLE NO: TH21-03 PROJECT NO.: 60645745		
				North Bank (5525903 le Leaf Drilling	111 ΙΝ, 024809 M E)		۱۳. ۲۰		T						•					
			: iviap	_				IOD:					25 mi	n SS				EVATION (m): 231.90)	
SAMF			_	GRAB			_	IT SPC	NUN		BU				<u> </u>		ECOVE			
SACK	FILL	TYP	-	BENTONITE	GRAVEL	Ш]slo	UGH	1		GF				ست ا	CUTT				
DEPTH (m)	USC	SOIL SYMBOL	SLOTTED PIEZOMETER	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1	◇ Dyna PT (Star (Blov 20 40 Tota (7 18 Plastic	Becker amic Co ndard P vs/300n 0 60 al Unit V kN/m) 19 MC	¥ one en Tes nm) 80 Vt ■ 20 Liquid	st) ♦ 0 100 21		+ Tor X QI □ Lab △ Pocke ● Field (kl	vane + J/2 X Vane E et Pen. Vane (Pa)	△	COMMENTS		
0	OR	***		TOPSOIL (Fill) - black, fr	ozen	7			2	20 40	0 6 0	80	100	5	0 1	00 :	150 20 :	00		
-1	FILL			CLAY and SILT (Fill) - so trace roots - dark brown, frozen - high plasticity SAND and SILT (Till) - so	me sand, trace gravel,		G1			•				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······	. (G1): Gravel 1.3%, Sand . 17.8%, Silt 30.3%, Clay	2	
				- light brown, hard, moist - low plasticity		X	S2	61						· · · · · · · · · · · · · · · · · · ·				50.6% SPT Blows: [12/26/35],		
2							G3		• -1					· · · · · · · · · · · · · · · · · · ·				Spoon Recovery: 33% (G3): Gravel 15.6%, Sand 38.6%, Silt 34.2%, Clay 11.7%	2	
3	TILL					X	S4	50/ 102mm	•				• • >>>					- - - - SPT Blows: [20/50 (140 - mm)], Spoon Recovery: - 152 mm		
4							G5		•					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		• • • •	2	
5				- dry to moist below 4.6 r	n	X	S6 G7	46			•		· · · · · ·	· · · · · · · · · · · · · · · · · · ·			÷····	SPT Blows: [18/21/25], Spoon Recovery: 78%	2	
6					d during augering. during augering.									· · · · · · · · · · · · · · · · · · ·				· · · · ·	2	
7				Flush-mount protective c 4. Groundwater monitorii January 26, 2021 - Dry - February 22, 2021 - Dry	asing installed. ng:									· · · · · · · · · · · · · · · · · · ·				· · · ·	2	
3														· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	2	
)																				
10										• •						·	COMPI	LETION DEPTH: 5.33 m		
				AECOM					RE\	/IEWE	ED BY	: Ellio	ott Dr	umrigl		(LETION DATE: 1/26/21		
			4						PR	JEC1	ENG	INEE	R: N	Narv N	cDona	ld		Page	1	

PROJECT: High Risk River Crossing Phase 3 OCATION: Site 10 - South Bank (5525799 m N, 624792 m E)					IT: C	ity of	CLIENT: City of Winnipeg									TESTHOLE NO: TH21-04 PROJECT NO.: 60645745		
CONTRACTOR: M	•	,	M	FTH	OD.	Trac	(-Moi	Inter	d - 1	25 m	m SS	Δ			EVATION (m): 229.78			
SAMPLE TYPE	GRAB	SHELBY TUBE			T SPO			В		2011	111 00		NO R	ECOVE				
BACKFILL TYPE	BENTONITE			SLO					ROU	Т			ситт		SAND			
DEPTH (m)	SOIL DES	SCRIPTION	SAMPLE TYPE	SAMPLE #	SPT (N)	◆ SF 0 2 16 1; F	Oyna T (Star (Blov 0 40 ■ Tota (Becker amic C ndard F vs/300 0 6 al Unit kN/m ³ 3 19 MC	Wt∎ Liqu	est) ♦ 30 100 0 21		+ Tor X Qi □ Lab Δ Pocke ♥ Field (ki	vane + U/2 X Vane E et Pen Vane 4 Pa)	Δ	COMMENTS			
CH CH CH CH CH CH CH CH CH CH CH CH CH C	CLAY - silty, trace roots - brown, frozen to 1.1 m - high plasticity - firm, moist below 1.1 m CLAY and SILT - some si - grey, firm, moist - high plasticity SAND - some clay to clay - grey mottled brown, firm - low plasticity SAND and SILT (Till) - so : trace cobble : - light brown, soft, moist : - low plasticity : - hard below 2.3 m - suspected cobble/bould : - during drilling END OF TEST HOLE AT REFUSAL Notes: 1. Sloughing not observed	and ey, trace silt , moist me clay, trace gravel, er encountered at 2.4 m 3.35 m ON AUGER d during augering. during augering. during augering. der encountered at 2.4 m t hole by 0.2 m and at 3.1 m bgs. Test hole 3.4 m to 2.4 m and riginal ground surface. 0 m. Above-ground I. g:		G1 T2A T2B T2C G3 S4	50/ 76mm										(G1): Gravel 0.0%, Sand 0.3%, Silt 20.8%, Clay 78.9% Tube Recovery: 100% (G3): Gravel 5.6%, Sand 38.8%, Silt 37.8%, Clay 17.8% SPT Blows: [16/50 (75 mm)], Spoon Recovery: 152 mm	2 2 2 2 2 2 2 2 2 2 2 2 2 2		
10	AECOM						GED	BY:		n Harr					.ETION DEPTH: 3.35 m .ETION DATE: 1/26/21	2		

AECOM 2021 Geotechnical Investigation: Laboratory Testing Results

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

Memorandum

То	Ryan Harras	Page 1
СС		
Subject	HRRC Phase 3 – City of Wir	nipeg –Test Results
From	Elliott E. Drumright	
Date	February 18, 2021	Project Number 60645745.22

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- Twenty-four (24) Moisture Content Determination Test.
- Nine (9) Atterberg Limits (3 Points) test.
- Eight (8) Grain Size Distribution (Hydrometer method) test.
- Two (2) Torvane, Pocket Penetrometer, Moisture Content, Bulk Density and Visual Description with Unconfined Compressive Strength on Shelby Tube Samples.

If you have any questions, please contact the undersigned.

Sincerely,

ENiottE. Drungelt

Elliott E. Drumright, Ph.D. Associate Geotechnical Engineer

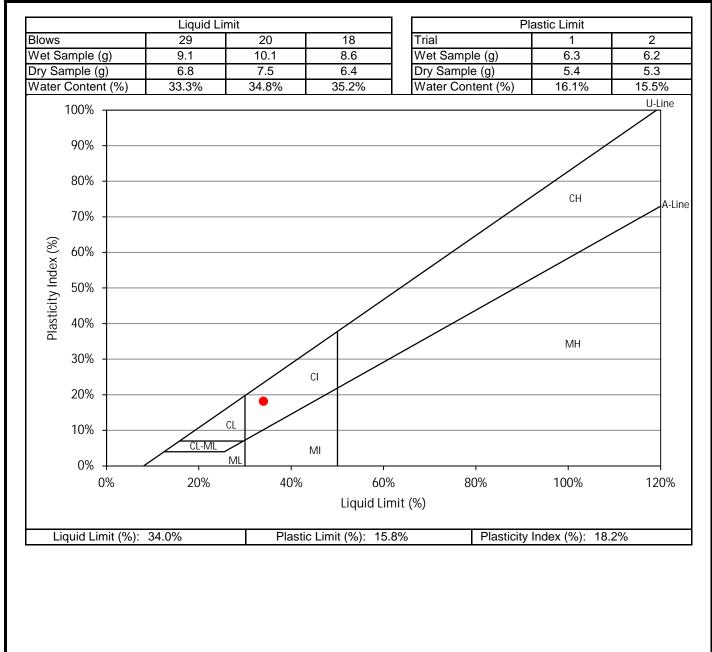
Att.

Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM	
Project Number:	60645745	Specification:	N/A	
Client:	City of Winnipeg	Field Technician:	RHarras	
Sample Location:	Varies	Sample Date:	1/25-26/2021	
Sample Depth:	Varies	Lab Technician:	EManimbao	
Sample Number:	Varies	Date Tested:	February 2, 2020	

Moisture Content (ASTM D2216-10)

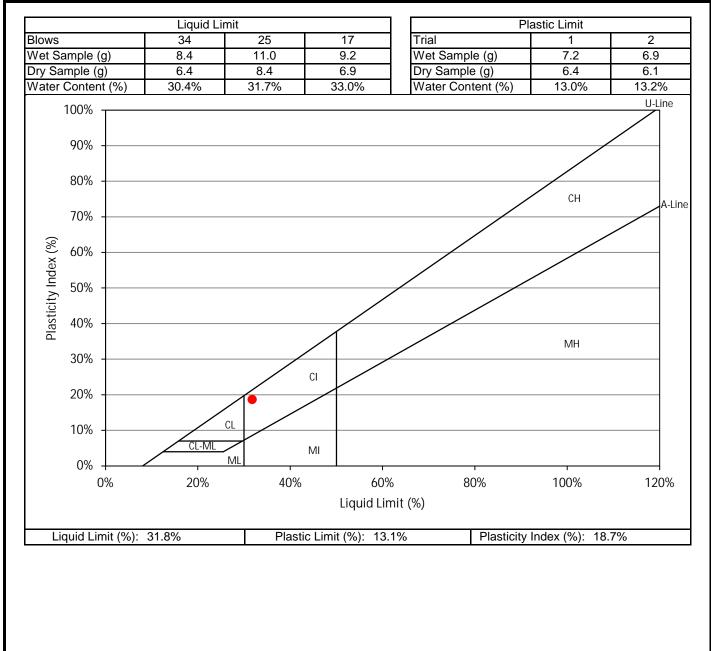
Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass


Location	Sample	Depth (m)	Moisture Content (%)	Location	Sample	Depth (m)	Moisture Content (%
TH21-01	G1	0.76 - 0.91 m	21.5%				
	S2	1.52 - 1.98 m	-				
	G3	2.29 - 2.44 m	20.8%		1		
	T4A	3.05 - 3.19 m	21.0%				
	T4B	3.19 - 3.44 m	24.8%		1		
	T4C	3.44 - 3.66 m	23.5%		1		1
	G5	3.81 - 3.96 m	26.4%		1		1
	S6	4.57 - 5.03 m	10.7%		1		1
	G7	5.33 - 5.49 m	16.2%				
	S8	6.10 - 6.55 m	-				
TH21-02	G1	0.76 - 0.91 m	25.2%		1		1
	T2	1.22 - 1.83 m	26.8%				1
	G3	2.29 - 2.44 m	38.7%		1		1
	S4	2.74 - 3.20 m	-		1		1
	G5	3.81 - 3.96 m	13.0%		1		1
	S6	4.27 - 4.72 m	-		1		1
	G7	5.33 - 5.49 m	14.7%		1		1
TH21-03	G1	0.76 - 0.91 m	20.8%		1		1
	S2	1.52 - 1.98 m	10.5%		1		1
	G3	2.29 - 2.44 m	5.9%				
	S4	3.05 - 3.51 m	8.3%		1		1
	G5	3.81 - 3.96 m	7.7%		1		1
	S6	4.57 - 5.03 m	8.0%				
	G7	5.33 - 5.49 m	7.7%				
TH21-04	G1	0.76 - 0.91 m	37.0%				
	T2A	1.52 - 1.70 m	39.5%				
	T2B	1.70 - 1.88 m	-				
	T2C	1.88 - 2.13 m	8.7%				
	G3	2.29 - 2.44 m	14.4%				
	S4	3.05 - 3.51 m	-				
					1 1		
					1 1		
			1				

Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-01	Sample Date:	1/25-26/2021
Sample Depth:	2.29 - 2.44 m	Lab Technician:	EManimbao
Sample Number:	G3	Date Tested:	February 16, 2021

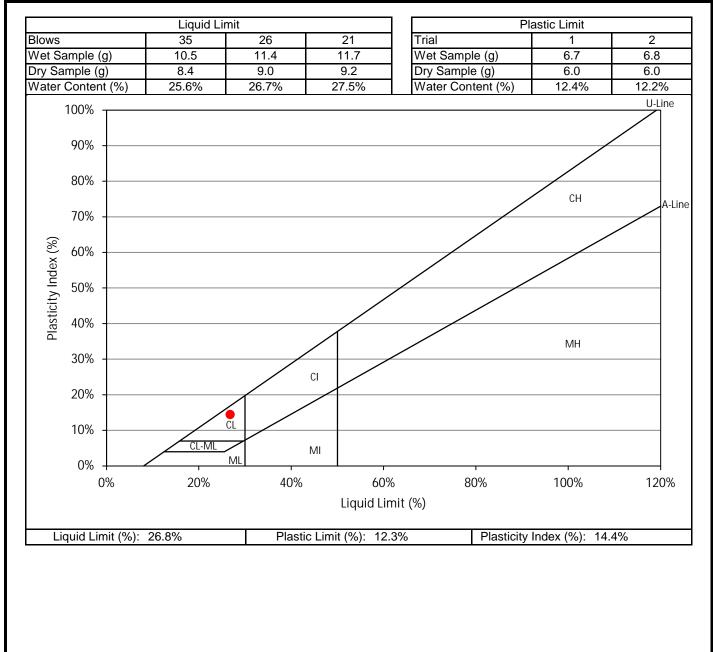
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-01	Sample Date:	1/25-26/2021
Sample Depth:	3.81 - 3.96 m	Lab Technician:	EManimbao
Sample Number:	G5	Date Tested:	February 16, 2021

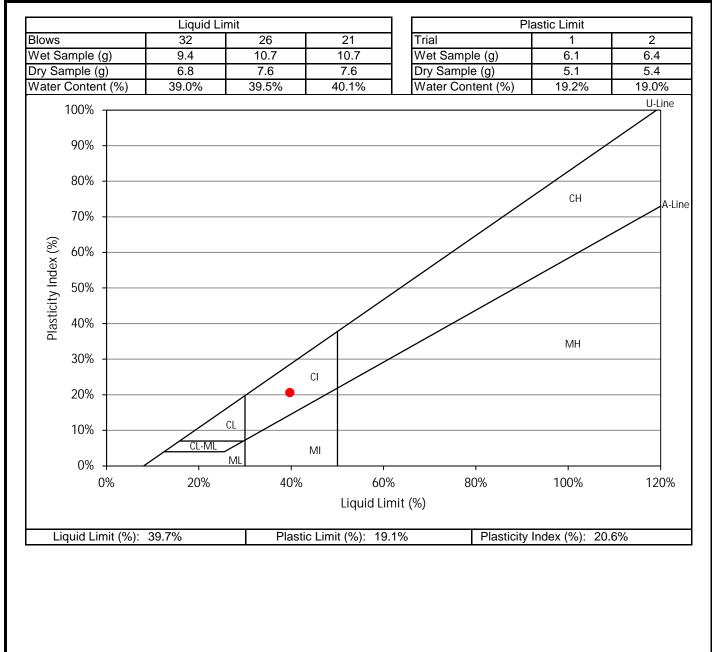
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-01	Sample Date:	1/25-26/2021
Sample Depth:	5.33 - 5.49 m	Lab Technician:	EManimbao
Sample Number:	G7	Date Tested:	February 16, 2021

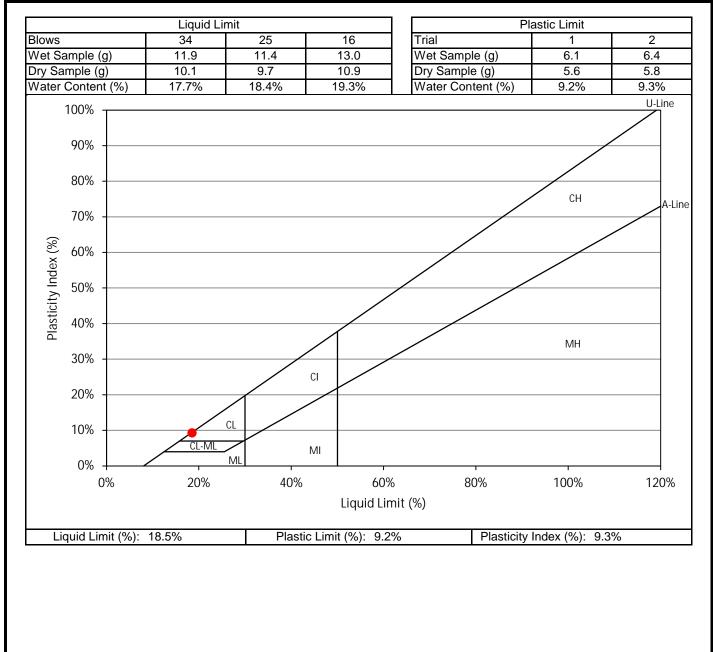
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-02	Sample Date:	1/25-26/2021
Sample Depth:	2.29 - 2.44 m	Lab Technician:	EManimbao
Sample Number:	G3	Date Tested:	February 16, 2021

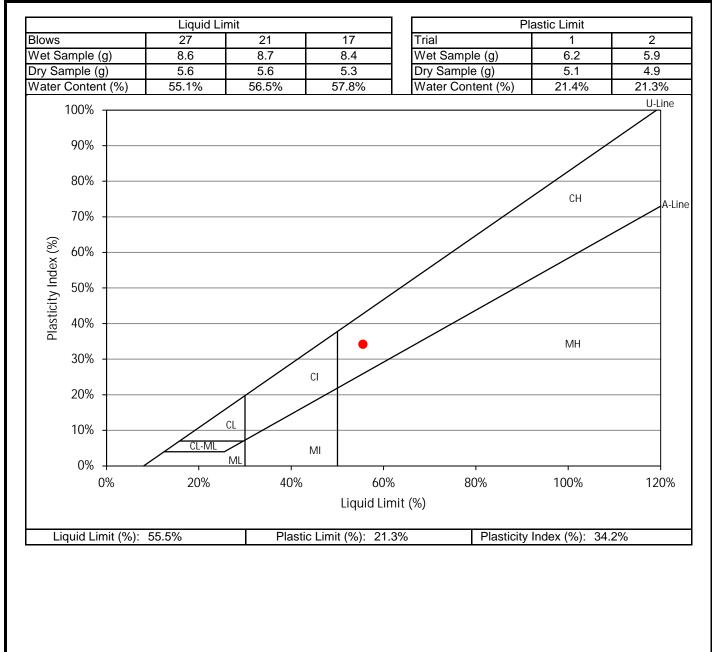
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-02	Sample Date:	1/25-26/2021
Sample Depth:	3.81 - 3.96 m	Lab Technician:	EManimbao
Sample Number:	G5	Date Tested:	February 16, 2021

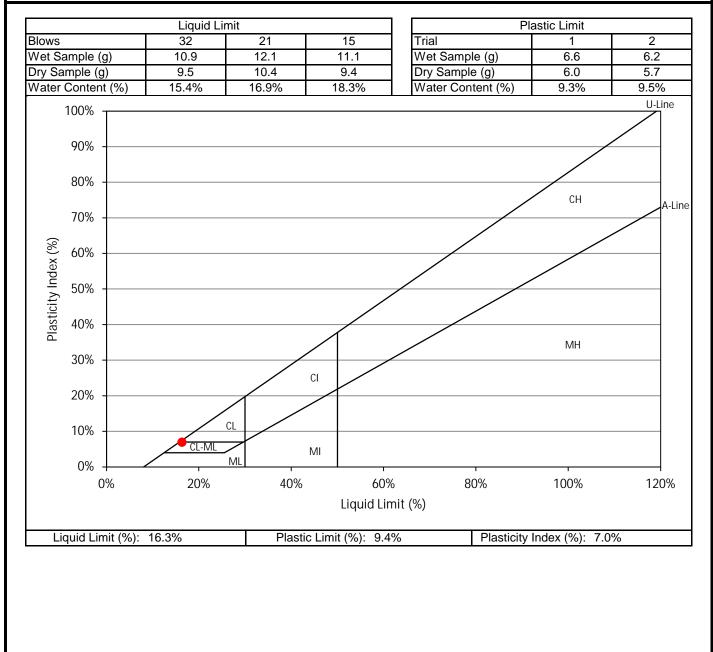
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-03	Sample Date:	1/25-26/2021
Sample Depth:	0.76 - 0.91 m	Lab Technician:	EManimbao
Sample Number:	G1	Date Tested:	February 16, 2021

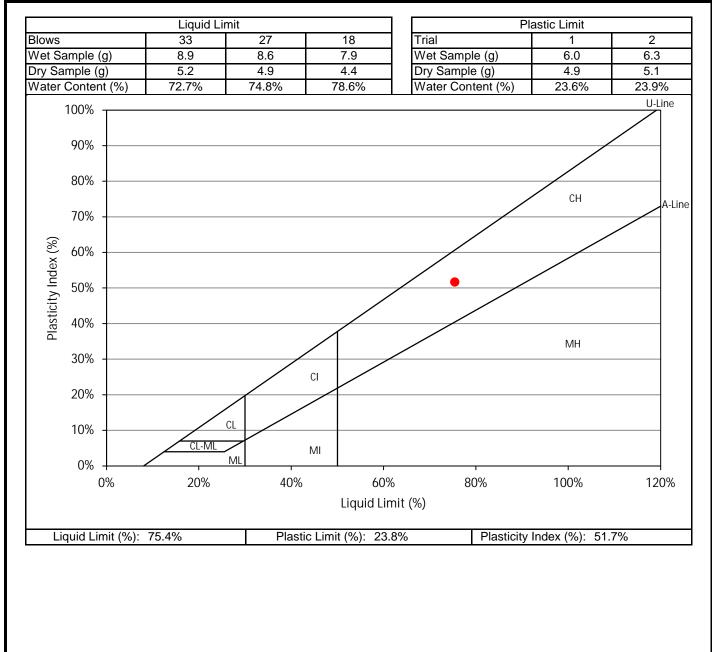
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-03	Sample Date:	1/25-26/2021
Sample Depth:	2.29 - 2.44 m	Lab Technician:	EManimbao
Sample Number:	G3	Date Tested:	February 16, 2021

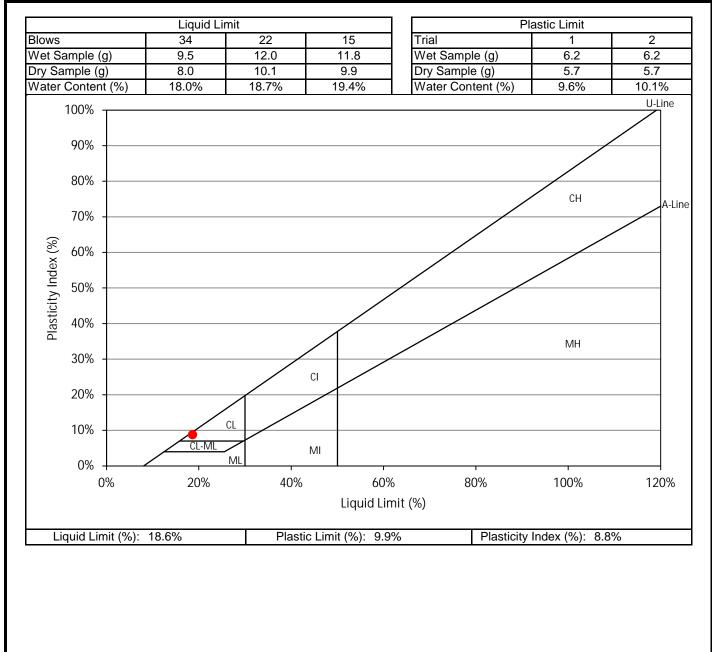
Atterberg Limits (ASTM D4318)



Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-04	Sample Date:	1/25-26/2021
Sample Depth:	0.76 - 0.91 m	Lab Technician:	EManimbao
Sample Number:	G1	Date Tested:	February 16, 2021

Atterberg Limits (ASTM D4318)

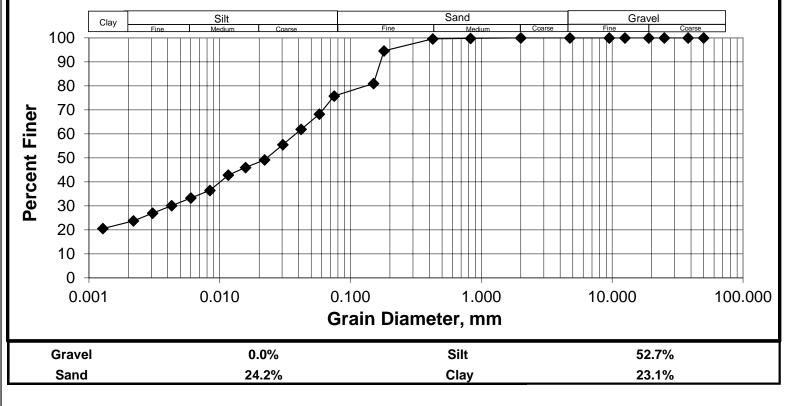


Fax: 204 284 2040

Project Name:	HRRC Phase 3	Supplier:	AECOM
Project Number:	60645745	Specification:	N/A
Client:	City of Winnipeg	Field Technician:	RHarras
Sample Location:	TH21-04	Sample Date:	1/25-26/2021
Sample Depth:	2.29 - 2.44 m	Lab Technician:	EManimbao
Sample Number:	G3	Date Tested:	February 16, 2021

Atterberg Limits (ASTM D4318)

(ASTM D422-63)

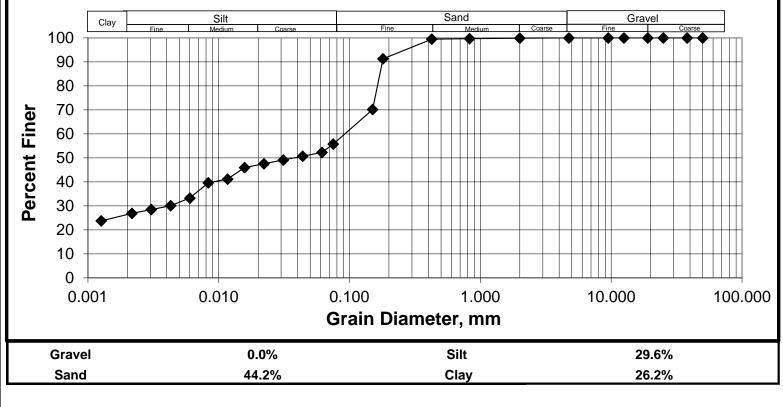

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-01
Sample No.:	G3
Depth:	2.29 - 2.44 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		GRAVEL SIZES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	75.8
38.0	100.0	2.00	100.0	0.0577	68.2
25.0	100.0	0.825	99.8	0.0419	61.9
19.0	100.0	0.425	99.6	0.0304	55.5
12.5	100.0	0.18	94.6	0.0220	49.2
9.5	100.0	0.15	81.0	0.0157	46.0
4.75	100.0	0.075	75.8	0.0116	42.8
				0.0084	36.5
				0.0060	33.3
				0.0043	30.1
				0.0031	26.9
				0.0022	23.8
				0.0013	20.6

(ASTM D422-63)

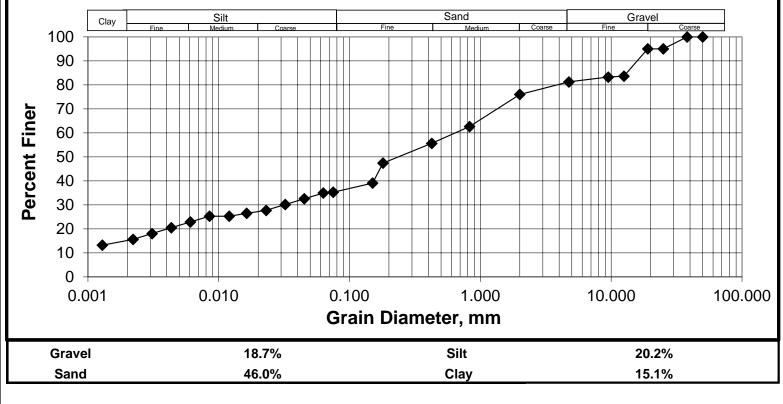

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-01
Sample No.:	G5
Depth:	3.81 - 3.96 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		GRAVEL SIZES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	55.8
38.0	100.0	2.00	99.9 99.7	0.0615	52.3
25.0 19.0	100.0 100.0	0.825 0.425	99.7	0.0437 0.0311	50.7 49.1
12.5	100.0	0.18	91.3	0.0221	47.5
9.5	100.0	0.15	70.1	0.0157	46.0
4.75	100.0	0.075	55.8	0.0117 0.0083	<u>41.2</u> 39.6
				0.0060	33.3
				0.0043	30.1
				0.0030	28.5
				0.0022	26.9
				0.0013	23.7

(ASTM D422-63)

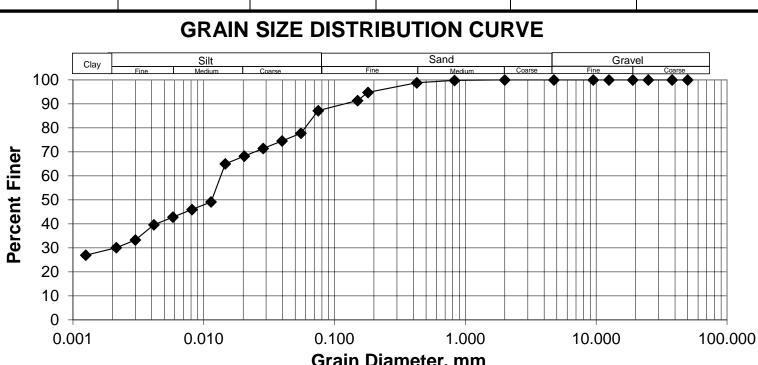

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-01
Sample No.:	G7
Depth:	5.33 - 2.44 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVE	L SIZES	SAN	D SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	81.3	0.0750	35.3
38.0	100.0	2.00	76.0	0.0629	35.0
25.0	95.0	0.825	62.7	0.0450	32.6
19.0	95.0	0.425	55.7	0.0322	30.1
12.5	83.7	0.18	47.4	0.0230	27.7
9.5	83.3	0.15	39.1	0.0164	26.5
4.75	81.3	0.075	35.3	0.0120	25.3
				0.0085	25.3
				0.0061	22.9
				0.0043	20.5
				0.0031	18.1
				0.0022	15.7
				0.0013	13.2

(ASTM D422-63)



MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

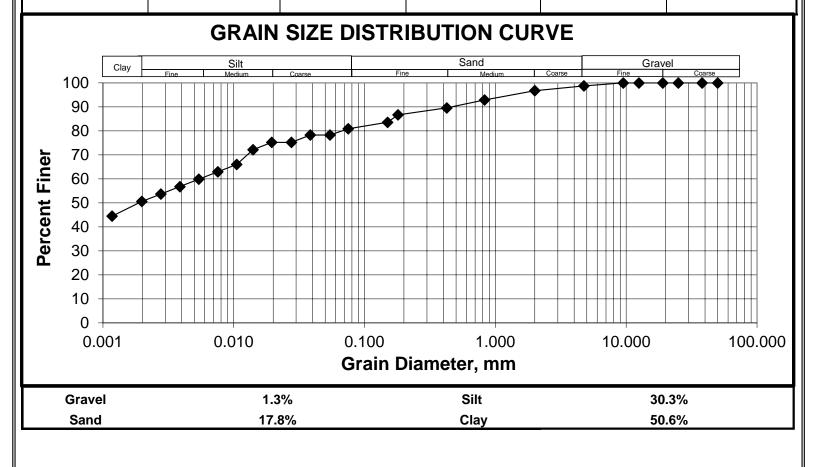
Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-02
Sample No.:	G3
Depth:	2.29 - 2.44 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		SAND SIZES		FIN	ES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	87.2
38.0	100.0	2.00	100.0	0.0552	77.8
25.0	100.0	0.825	99.8	0.0396	74.6
19.0	100.0	0.425	98.8	0.0284	71.4
12.5	100.0	0.18	94.8	0.0204	68.2
9.5	100.0	0.15	91.4	0.0146	65.1
4.75	100.0	0.075	87.2	0.0114	49.2
				0.0081	46.0
				0.0058	42.8
				0.0042	39.6
				0.0030	33.3
				0.0021	30.1
				0.0013	26.9

	Grain Diameter, min					
	Gravel	0.0%	Silt	57.5%		
	Sand	12.8%	Clay	29.7%		
11						

(ASTM D422-63)



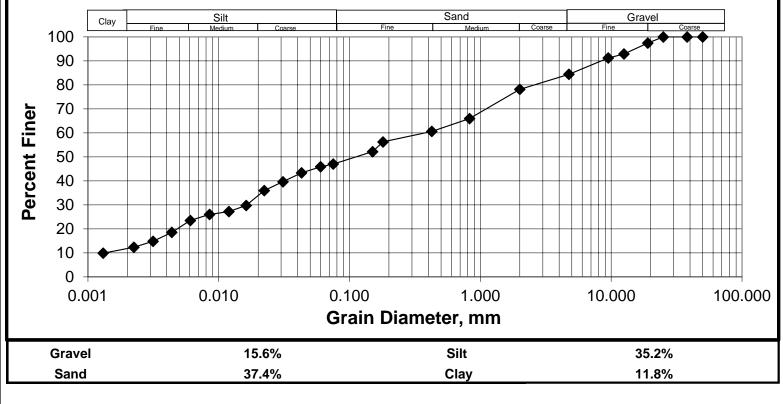
MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-03
Sample No.:	G1
Depth:	0.76 - 0.91 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0 38.0	100.0 100.0	4.75	98.7 96.8	0.0750 0.0544	80.9 78.3
25.0	100.0	0.825	92.9	0.0385	78.3
19.0 12.5	100.0 100.0	0.425	89.6 86.7	0.0276 0.0195	75.2 75.2
9.5	100.0	0.15	83.6	0.0140	72.2
4.75	98.7	0.075	80.9	0.0105	<u>66.0</u> 62.9
				0.0054	59.9
				0.0039	56.8
				0.0028	53.7
				0.0020	50.6 44.5

(ASTM D422-63)

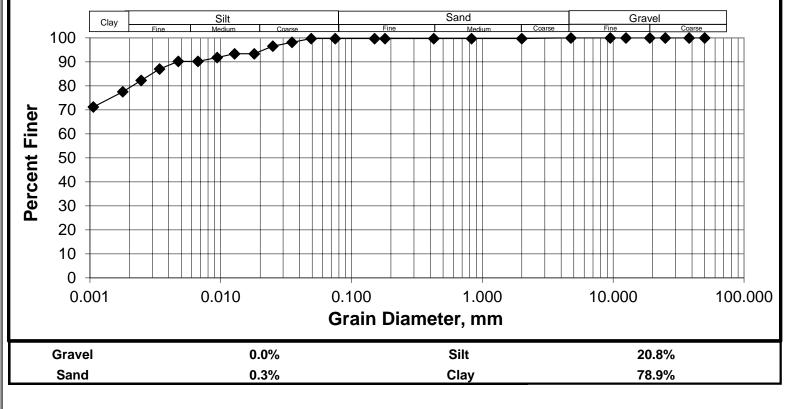

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-03
Sample No.:	G3
Depth:	2.29 - 2.44 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		D SIZES	FINES	
Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
100.0	4.75	84.4	0.0750	47.0
		-		45.9
				43.4
				39.7
				35.9
_		_		29.7
84.4	0.075	47.0		27.3
				26.0
			0.0061	23.5
			0.0044	18.6
			0.0031	14.8
			0.0022	12.4
			0.0013	9.9
	Total Percent Passing	Total Percent PassingGrain Size (mm.)100.04.75100.02.00100.00.82597.40.42592.90.1891.20.15	Total Percent PassingGrain Size (mm.)Total Percent Passing100.04.7584.4100.02.0078.1100.00.82565.997.40.42560.692.90.1856.391.20.1552.2	Total Percent Passing Grain Size (mm.) Total Percent Passing Grain Size (mm.) 100.0 4.75 84.4 0.0750 100.0 2.00 78.1 0.0600 100.0 0.825 65.9 0.0429 97.4 0.425 60.6 0.0309 92.9 0.18 56.3 0.0223 91.2 0.15 52.2 0.0162 84.4 0.075 47.0 0.0119 0.0085 0.0061 0.0061 0.0031 0 0.0031 0.0022 0.0022

(ASTM D422-63)

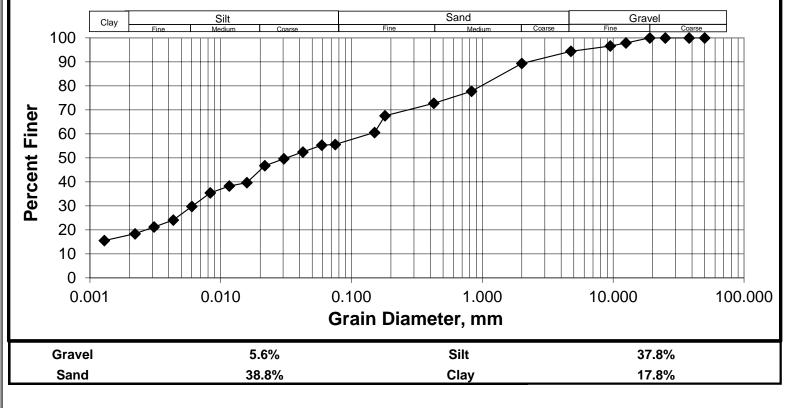

MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

Hole No.:	TH21-04
Sample No.:	G1
Depth:	0.76 - 0.91 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.7
38.0	100.0	2.00	99.7	0.0491	99.7
25.0 19.0	<u> </u>	0.825	99.7 99.7	0.0351 0.0250	<u>98.1</u> 96.6
12.5	100.0	0.18	99.7	0.0180	93.4
9.5	100.0	0.15	99.7	0.0127	93.4
4.75	100.0	0.075	99.7	0.0094	91.8
				0.0067	90.2
				0.0047	90.2
				0.0034	87.1
				0.0025	82.3
				0.0018	77.5
				0.0011	71.2

(ASTM D422-63)


MATERIALS LABORATORY AECOM 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (204) 284-2040

Job No.: Client: Project : Date Tested: Tested By:

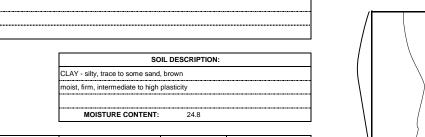
Hole No.:	TH21-04
Sample No.:	G3
Depth:	2.29 - 2.44 m
Date Sampled:	Varies
Sampled By:	AECOM

GRAVE	L SIZES	SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	94.4	0.0750	55.6
38.0	100.0	2.00	89.4	0.0592	55.3
25.0	100.0	0.825	77.8	0.0424	52.5
19.0	100.0	0.425	72.8	0.0304	49.6
12.5	97.9	0.18	67.6	0.0217	46.8
9.5	96.6	0.15	60.6	0.0158	39.7
4.75	94.4	0.075	55.6	0.0116	38.3
				0.0083	35.4
				0.0060	29.8
				0.0043	24.1
				0.0031	21.2
				0.0022	18.4
				0.0013	15.6

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

CLIENT: City of Winnipeg PROJECT: HRRC Phase 3 JOB NO.: 60645745

TH21-01
T4B
3.05 - 3.66 m
2-Feb-21
0.35
М
34.3
0.72
0.75
35.9
0.75
35.9
0.75
35.9
00.0
43.9
0.9
22.0
0.459
0.409
SG27
505.4
406.6
8.3
24.8
1216.1
7.20
7.20
7.30
7.23
15.20
15.20
15.30
15.23
626.0
24.8
1.943
19.1
121.3


AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

CLAY - silty, trace to some sand, brown

MOISTURE CONTENT:

AECOM

FAILURE SKETCH

SAMPLE DIAM.(Do):	72.33	(mm)	INITIAL AREA, Ao:		(mm²)
SAMPLE LENGTH, (Lo):	152.33	(mm)	PISTON RATE:	0.0002	(inches / minute)
L / D RATIO:	2.11	(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:		(0.5 <r<2 %="" minute)<="" th=""></r<2>

CLIENT: City of Winnipeg PROJECT: HRRC Phase 3

TH21-01

T4

3.05 - 3.66 m

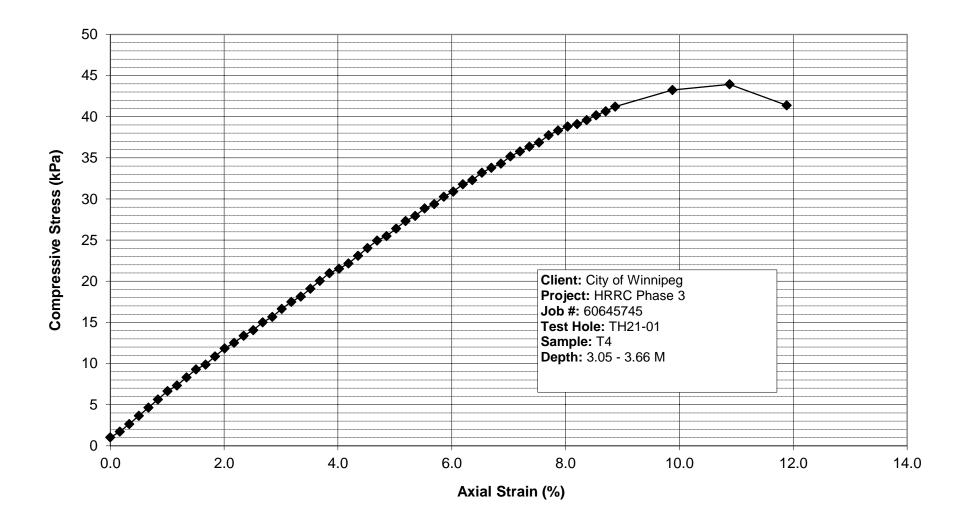
2-Feb-21

JOB NO.: 60645745

TEST HOLE NO .:

SAMPLE DEPTH:

SAMPLE DATE: TEST DATE:


SAMPLE NO .:

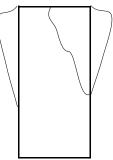
AXIAL COMPRESSION	READINGS PROVING RING	TOTAL AXIAL STRAIN, B1	AVERAGE CROSS-SECTIONAL AREA, A	LOAD, P		Jc	
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0001	0.00	6.37	0.94	0.15	0.021	1.0
0.02	0.0002	0.17	6.38	1.59	0.25	0.036	1.7
0.03	0.0003	0.33	6.39	2.44	0.38	0.055	2.6
0.04	0.0004	0.50	6.40	3.37	0.53	0.076	3.6
0.05	0.0005	0.67 0.84	<u>6.41</u> 6.42	4.31 5.25	0.67	0.097	4.6 5.6
0.06	0.0008	1.00	6.43	6.18	0.96	0.138	5.6 6.6
0.08	0.0007	1.00	6.44	6.84	1.06	0.153	7.3
0.09	0.0008	1.34	6.46	7.78	1.20	0.173	8.3
0.10	0.0009	1.51	6.47	8.71	1.35	0.194	9.3
0.11	0.0010	1.67	6.48	9.28	1.43	0.206	9.9
0.12	0.0011	1.84	6.49	10.21	1.57	0.227	10.9
0.13	0.0012	2.01	6.50	11.15	1.72	0.247	11.8
0.14	0.0013	2.18	6.51	11.81	1.81	0.261	12.5
0.15	0.0014	2.34	6.52	12.65	1.94	0.279	13.4
0.16	0.0014	2.51	6.53	13.31	2.04	0.293	14.0
0.17	0.0015	2.68	6.54	14.24	2.18	0.313	15.0
0.18	0.0016 0.0017	2.85	6.56	14.90 15.84	2.27	0.327	15.7
0.19 0.20	0.0017	3.01 3.18	6.57 6.58	15.84	2.41 2.54	0.347 0.365	16.6 17.5
0.20	0.0018	3.35	6.59	17.33	2.63	0.305	17.5
0.22	0.0019	3.52	6.60	18.27	2.03	0.399	19.1
0.23	0.0021	3.68	6.61	19.21	2.90	0.418	20.0
0.24	0.0022	3.85	6.62	20.15	3.04	0.438	
0.25	0.0022	4.02	6.64	20.71	3.12	0.449	21.0 21.5
0.26	0.0023	4.18	6.65	21.36	3.21	0.463	22.2
0.27	0.0024	4.35	6.66	22.30	3.35	0.482	23.1
0.28	0.0025	4.52	6.67	23.24	3.48	0.502	24.0
0.29	0.0026	4.69	6.68	24.17	3.62 3.70	0.521 0.532	24.9 25.5
0.30	0.0026	4.85	6.69	24.74	3.70		
0.31 0.32	0.0027	5.02 5.19	6.71 6.72	25.67 26.61	3.83 3.96	0.551 0.570	26.4 27.3
0.32	0.0028	5.36	6.73	27.27	4.05	0.583	27.9
0.34	0.0023	5.52	6.74	28.20	4.18	0.602	
0.35	0.0031	5.69	6.75	28.77	4.26	0.613	28.8 29.4
0.36	0.0032	5.86	6.77	29.70	4.39	0.632	30.3
0.37	0.0032	6.03	6.78	30.36	4.48	0.645	30.9
0.38	0.0033	6.19	6.79	31.30	4.61	0.664	31.8
0.39	0.0034	6.36	6.80	31.86	4.68	0.674	32.3 33.2
0.40	0.0035	6.53	6.81	32.80	4.81	0.693	33.2
0.41	0.0036	6.70	6.83	33.45	4.90	0.706	33.8
0.42	0.0036	6.86	6.84	34.01	4.97	0.716	34.3
0.43	0.0037	7.03	6.85	34.95	5.10	0.735	35.2
0.44 0.45	0.0038	7.20 7.37	6.86 6.88	35.61 36.26	5.19 5.27	0.747	35.8 36.4
0.46	0.0039	7.53	6.89	36.82	5.35	0.739	36.9
0.40	0.0033	7.70	6.90	37.76	5.47	0.778	37.7
0.48	0.0041	7.87	6.91	38.42	5.56	0.800	38.3
0.49	0.0042	8.03	6.93	38.98		0.810	38.8
0.50	0.0042	8.20	6.94	39.35	5.63 5.67	0.817	39.1
0.51	0.0043	8.37	6.95	39.92	5.74	0.827	39.6
0.52	0.0043	8.54	6.96	40.57	5.83	0.839	40.2
0.53	0.0044	8.70	6.98	41.13	5.90	0.849	40.7
0.54	0.0045	8.87	6.99 7.07	41.79	5.98 6.27	0.861	41.2 43.2
0.60 0.66	0.0047 0.0049	9.88 10.88	7.07	44.32 45.54	6.27	0.903 0.918	43.2 43.9
0.86	0.0049	10.88	7.15	43.38	6.00	0.918	43.9

UNCONFINED COMPRESSIVE STRENGTH, qu:	43.93	kPa
(based on maximum qu value)	0.918	ksf
UNDRAINED SHEAR STRENGTH, Su:	21.97	kPa
(based on maximum qu value)	0.459	ksf

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

AECOM - SOILS LABORATORY SHEAR STRENGTH, MOISTURE CONTENT & DENSITY CALCULATIONS

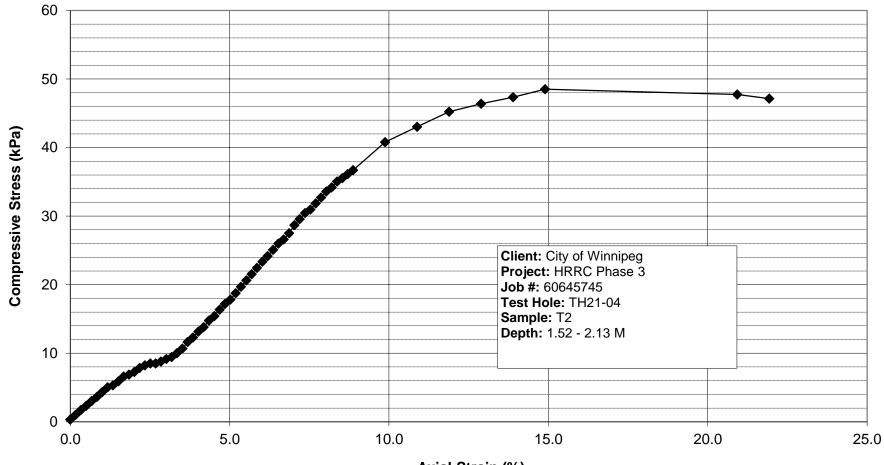

CLIENT: City of Winnipeg PROJECT: HRRC Phase 3 JOB NO.: 60645745

TEST HOLE NO.:	TH21-04
SAMPLE NO.:	T2C
SAMPLE DEPTH:	1.52 - 2.13 m
DATE TESTED:	2-Feb-21
SHEAR STRENGTH TESTS	
TORVANE	
Reading	0.00
Vane Size (S, M, L)	М
Undrained Shear Strength (kPa)	0.0
Undrained Shear Strength (ksf)	0.00
POCKET PENETROMETER	
Reading - Qu (tsf)	0.00
Undrained Shear Strength (kPa)	0.0
Booding Out (tof)	0.00
Undrained Shear Strength (kPa)	0.0
Reading - Qu (tsf)	0.00
Undrained Shear Strength (kPa)	0.0
UNCONFINED COMPRESSIVE STRENGTH TEST	
Unconfined compressive strength (kPa)	48.5
Unconfined compressive strength (ksf)	1.0
Undrained Shear Strength (kPa)	24.3
Undrained Shear Strength (ksf)	0.507
MOISTURE CONTENT	
Tare Number	T17
Wt. Sample wet + tare (g)	431.4
Wt. Sample dry + tare (g)	397.7
Wt. Tare (g)	8.8
Moisture Content %	8.7
BULK DENSITY	
Sample Wt. (g)	1500
Diameter 1 (cm)	7.20
Diameter 2 (cm)	7.20
Diameter 3 (cm)	7.30
Avg. Diameter (cm)	7.23
Length 1 (cm)	15.20
Length 2 (cm)	15.20
Length 3 (cm)	15.30
Avg. Length (cm)	15.23
Volume (cm ³)	626.0
Moisture content (%)	8.7
Bulk Density (g/cm ³)	2.396
Bulk Density (kN/m ³)	23.5
Bulk Density (pcf)	149.6
Dry Density (kN/m ³)	21.63

AECOM - SOILS LABORATORY UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

CLIENT:	City of Winnipeg	
PROJECT:	HRRC Phase 3	
JOB NO.:	60645745	
TEST HOLE NO .:	TH21-04	SOIL DESCRIPTION:
SAMPLE NO.:	T2	SILT (Till) - Some clay, some sand, trace to some gravel, light brown,
SAMPLE DEPTH:	1.52 - 2.13 m	moist, soft to firm, intermediate plasticity
SAMPLE DATE:		
TEST DATE:	2-Feb-21	MOISTURE CONTENT: 8.7


FAILURE SKETCH

SAMPLE DIAM.(Do):	12.00	(mm)	INITIAL AREA, Ao:	 (mm²)
SAMPLE LENGTH, (Lo):	152.33	(mm)	PISTON RATE:	 (inches / minute)
L / D RATIO:		(2 < L/D < 2.5)	AXIAL STRAIN RATE, R:	(0.5 <r<2 %="" minute)<="" td=""></r<2>

AXIAL COMPRESSION	READINGS PROVING AXIAL RING STRAIN, B	AXIAL	AVERAGE CROSS-SECTIONAL AREA, A	APPLIED AXIAL LOAD, P	СОМР	RESSIVE STRESS, C	F c
(inches)	(inches)	(%)	(inches2)	(lbs)	(psi)	(ksf)	(kPa)
0.01	0.0000	0.00	6.37	0.28	0.04	0.006	0.3
0.02	0.0001	0.17	6.38	0.94	0.15	0.021	1.0
0.03	0.0002	0.33	6.39	1.59	0.25	0.036	1.7
0.04	0.0002	0.50	6.40	2.16	0.34	0.048	2.3
0.05 0.06	0.0003 0.0004	0.67 0.84	6.41 6.42	2.81 3.37	0.44 0.53	0.063	3.0 3.6
0.07	0.0004	1.00	6.43	4.03	0.63	0.070	4.3
0.08	0.0005	1.17	6.44	4.69	0.73	0.105	5.0
0.09	0.0005	1.34	6.46	4.97	0.77	0.111	5.3
0.10	0.0006	1.51	6.47	5.53	0.85	0.111 0.123	5.9
0.11	0.0007	1.67	6.48	6.18	0.95	0.137	6.6
0.12	0.0007	1.84	6.49	6.47	1.00	0.143	6.9
0.13	0.0007	2.01	6.50	6.84	1.05	0.152	7.3
0.14 0.15	0.0008	2.18 2.34	6.51 6.52	7.40 7.78	1.14 1.19	0.164 0.172	7.8 8.2
0.15	0.0009	2.54	6.53	8.06	1.19	0.172	8.5
0.17	0.0009	2.68	6.54	8.06	1.23	0.177	8.5
0.18	0.0009	2.85	6.56	8.34	1.27	0.183	8.8
0.19	0.0009	3.01	6.57	8.71	1.33 1.37	0.191	9.1
0.20	0.0010	3.18	6.58	9.00		0.197	9.4
0.21	0.0010	3.35	6.59	9.56	1.45	0.209	10.0
0.22	0.0011	3.52	6.60	10.21	1.55	0.223	10.7
0.23 0.24	0.0012	3.68	6.61	11.15 11.81	1.69	0.243 0.257	11.6
0.24 0.25	0.0013 0.0014	3.85 4.02	6.62 6.64	11.81 12.65	1.78 1.91	0.257	12.3 13.1
0.26	0.0014	4.18	6.65	13.31	2.00	0.274	13.1
0.20	0.0015	4.35	6.66	14.24	2.00	0.308	14.7
0.28	0.0016	4.52	6.67	14.90	2.23	0.322	15.4
0.29	0.0017	4.69	6.68	15.84	2.37	0.341	16.3
0.30	0.0018	4.85	6.69	16.68	2.49	0.359	17.2
0.31	0.0019	5.02	6.71	17.33	2.58	0.372	17.8
0.32	0.0020	5.19	6.72	18.27	2.72	0.392	18.8
0.33 0.34	0.0021 0.0022	5.36	6.73 6.74	19.21	2.85	0.411	19.7
0.34	0.0022	<u>5.52</u> 5.69	6.74	20.15 21.08	2.99 3.12	0.430	20.6 21.5
0.36	0.0023	5.86	6.77	22.02	3.25	0.469	21.3
0.37	0.0025	6.03	6.78	22.96	3.39	0.488	23.4
0.38	0.0025	6.19	6.79	23.80	3.51	0.505	24.2
0.39	0.0026	6.36	6.80	24.74	3.64	0.524	25.1
0.40	0.0027	6.53	6.81	25.67	3.77	0.543	26.0
0.41	0.0028	6.70	6.83	26.33	3.86	0.555	26.6
0.42	0.0029 0.0030	6.86 7.03	6.84 6.85	27.27	3.99 4.16	0.574 0.599	27.5 28.7
0.43 0.44	0.0030		6.85	28.48 29.42	4.16	0.599	28.7 29.6
0.44	0.0031	7.20 7.37	6.88	29.42 30.36	4.29	0.636	29.0 30.4
0.46	0.0033	7.53	6.89	30.92	4.49	0.646	31.0
0.47	0.0034	7.70	6.90	31.86	4.62	0.665	31.8
0.48	0.0035	7.87	6.91	32.80	4.74	0.683	32.7
0.49	0.0036	8.03	6.93	33.73	4.87	0.701	33.6 34.2
0.50	0.0037	8.20	6.94	34.39	4.96	0.714	34.2
0.51 0.52	0.0038	8.37 8.54	6.95 6.96	35.32 35.89	5.08 5.15	0.732	35.0
0.52	0.0038	8.54	6.98	36.54	5 24	0.754	35.5 36.1
0.53	0.0039	8.87	6.99	37.20	5.32	0.766	36.7
0.60	0.0045	9.88	7.07	37.20 41.79	5.91	0.851	40.8
0.66	0.0048	10.88	7.15	44.60	6.24	0.899	43.0
0.72	0.0051	11.89	7.23	47.41	6.56	0.945	45.2
0.78	0.0053	12.89	7.31	49.19	6.73	0.969	46.4
0.84	0.0054	13.89	7.40	50.79	6.87	0.989	47.3
0.90	0.0056	14.90 20.92	7.48 8.05	52.66	7.04	1.013 0.997	48.5 47.7
1.26 1.33	0.0060	20.92 21.93	8.05 8.16	55.75 55.75	6.92 6.83	0.997 0.984	47.7 47.1
	4					0.304	47.1
CONFINED COMPRESS (based on maximur		48.51 1.013	kPa ksf	N	IOTES:		
	EAR STRENGTH, Su:		kPa				
UNDRAINED SHE	n q., value)	24.26 0.507	кгa				

AECOM UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOILS (ASTM D2166)

AECOM

Axial Strain (%)

AECOM Canada Ltd. ATTN: RYAN HARRAS 99 Commerce Drive Winnipeg MB R3P 0Y7 Date Received: 05-FEB-21 Report Date: 16-FEB-21 07:10 (MT) Version: FINAL

Client Phone: 204-477-5381

Certificate of Analysis

Lab Work Order #: L2555270 Project P.O. #: 60645745 Job Reference: 60645745 C of C Numbers: Legal Site Desc:

Hua Wo Chemistry Laboratory Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 1329 Niakwa Road East, Unit 12, Winnipeg, MB R2J 3T4 Canada | Phone: +1 204 255 9720 | Fax: +1 204 255 9721 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2555270-1 TH21-01; G1 @ 2.5'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	18.0		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	373		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	1210		1.0	ohm*cm		12-FEB-21	
Sulphate	35		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.824		0.0040	mS/cm		12-FEB-21	R5374140
pH	7.49		0.10	pH units		10-FEB-21	R5369804
L2555270-2 TH21-01; G5 @ 12.5'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	20.5		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	306		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	1330		1.0	ohm*cm		11-FEB-21	
Sulphate	118		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.750		0.0040	mS/cm		11-FEB-21	R5372222
рН	7.76		0.10	pH units		10-FEB-21	R5369804
L2555270-3 TH21-01; S8 @ 20'			0.1.0	P			
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	9.64		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	132		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	2420		1.0	ohm*cm		11-FEB-21	1007 1200
Sulphate	76		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.414		0.0040	mS/cm	1012021	11-FEB-21	R5372222
рН	8.10		0.10	pH units		10-FEB-21	R5369804
L2555270-4 TH21-02; G1 @ 2.5'			0.10	P			
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	19.3		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	64		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	1940		1.0	ohm*cm		11-FEB-21	
Sulphate	58		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.515		0.0040	mS/cm		11-FEB-21	R5372222
pH	7.65		0.0040	pH units		10-FEB-21	R5369804
L2555270-5 TH21-02; G3 @ 7.5'	1.00		0.10	P 01110			
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	26.5		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	116		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	1710		1.0	ohm*cm		11-FEB-21	1.007 1200
Sulphate	128		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.584		0.0040	mS/cm		11-FEB-21	R5371200
pH	7.67		0.0040	pH units		10-FEB-21	R5372222 R5369804
Ч	1.0/		0.10	priunits		IV-FED-21	10009804

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2555270-6 TH21-02; S6 @ 14'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	10.7		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	120		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	1700		1.0	ohm*cm		11-FEB-21	
Sulphate	177		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.587		0.0040	mS/cm		11-FEB-21	R5372222
pH	8.03		0.10	pH units		10-FEB-21	R5369804
L2555270-7 TH21-03; G1 @ 2.5'	0.00		0.10			101 20 21	110000004
Matrix: SOIL Miscellaneous Parameters							
% Moisture	17.9		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	32		0.25 20	mg/kg	10-FEB-21 10-FEB-21	10-FEB-21	R5369305 R5371260
Resistivity	2400		20 1.0	ohm*cm	10-FED-21	10-FEB-21 11-FEB-21	1200
Sulphate	2400		1.0 20		10-FEB-21	11-FEB-21 10-FEB-21	DE074000
-				mg/kg	10-FED-21		R5371260
Conductivity pH	0.416		0.0040	mS/cm		11-FEB-21 10-FEB-21	R5372222
,	7.44		0.10	pH units		10-FEB-21	R5369804
L2555270-8 TH21-03; S4 @ 10'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	8.36		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	35		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	2860		1.0	ohm*cm		12-FEB-21	
Sulphate	192		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.350		0.0040	mS/cm		12-FEB-21	R5374140
рН	8.14		0.10	pH units		10-FEB-21	R5369804
L2555270-9 TH21-03; G7 @ 17.5'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	7.32		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	21		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	3190		1.0	ohm*cm		12-FEB-21	
Sulphate	112		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.313		0.0040	mS/cm		12-FEB-21	R5374140
рН	8.10		0.10	pH units		10-FEB-21	R5369804
L2555270-10 TH21-04; G1 @ 2.5'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	26.7		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	<20		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	2040		1.0	ohm*cm		12-FEB-21	
Sulphate	126		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.489		0.0040	mS/cm		12-FEB-21	R5374140
pH	7.83		0.0040	pH units		10-FEB-21	R5369804
hii	1.03		0.10	priunits		IV-FED-21	10009004

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
_2555270-11 TH21-04; S4 @ 10'							
Sampled By: CLIENT							
Matrix: SOIL							
Miscellaneous Parameters							
% Moisture	10.2		0.25	%	10-FEB-21	11-FEB-21	R5369305
Chloride	27		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Resistivity	3790		1.0	ohm*cm	-	12-FEB-21	
Sulphate	62		20	mg/kg	10-FEB-21	10-FEB-21	R5371260
Conductivity	0.264		0.0040	mS/cm	-	12-FEB-21	R5374140
pH	8.03		0.10	pH units		10-FEB-21	R5369798
F	0.00		0.10	priante			

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Reference Information

ALS Test Code	Matrix	Test Description	Method Reference**
CL-WT	Soil	Chloride in Soil	EPA 300.0
5 grams of soil is mixed	l with 50 mL of	distilled water for a minimum of 3	0 minutes. The extract is filtered and analyzed by ion chromatography.
EC-WT	Soil	Conductivity (EC)	MOEE E3138
A representative subsa	mple is tumble	d with de-ionized (DI) water. The r	atio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a
Analysis conducted in a Protection Act (July 1, 2		n the Protocol for Analytical Metho	ds Used in the Assessment of Properties under Part XV.1 of the Environmental
MOISTURE-WT	Soil	% Moisture	CCME PHC in Soil - Tier 1 (mod)
PH-WT	Soil	рН	MOEE E3137A
separated from the soil Analysis conducted in a	and then analy	zed using a pH meter and electro	alcium chloride solution by shaking for at least 30 minutes. The aqueous layer i de. ds Used in the Assessment of Properties under Part XV.1 of the Environmental
Protection Act (July 1, 2 RESISTIVITY-CALC-W	,	Resistivity Calculation	APHA 2510 B
"Soil Resistivity (calcul rapid approximation for Method (ASTM G57) is	Soil Resistivity	. Where high accuracy results are	ctivity of a 2:1 water:soil leachate (dry weight). This method is intended as a e required, direct measurement of Soil Resistivity by the Wenner Four-Electrode
SO4-WT	Soil	Sulphate	EPA 300.0
5 grams of soil is mixed	l with 50 mL of	distilled water for a minimum of 3	0 minutes. The extract is filtered and analyzed by ion chromatography.
* ALS test methods may	/ incorporate m	odifications from specified referer	nce methods to improve performance.
The last two letters of th	he above test c	ode(s) indicate the laboratory that	performed analytical analysis for that test. Refer to the list below:
Laboratory Definition	Code Lab	oratory Location	
WT	ALS	ENVIRONMENTAL - WATERLOO	D, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Quality Control Report

			Workorder:	L255527	0	Report Date:	16-FEB-21	Pa	ige 1 of 3
onorn.	99 Comn	Canada Ltd. herce Drive MB R3P 0Y7							
Contact: Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Test			Reference	Result	Quaimer	onits	KFD	Linint	Analyzeu
CL-WT		Soil							
	5371260								
WG3486087-4 Chloride	CRM		AN-CRM-WT	99.8		%		70-130	10-FEB-21
WG3486087-2 Chloride	LCS			99.1		%		80-120	10-FEB-21
WG3486087-1 Chloride	MB			<20		mg/kg		20	10-FEB-21
EC-WT		Soil							
	5372222								
WG3486698-2 Conductivity	IRM		WT SAR4	106.0		%		70-130	11-FEB-21
WG3487076-1 Conductivity	LCS			102.3		%		90-110	11-FEB-21
WG3486698-1 Conductivity	MB			<0.0040		mS/cm		0.004	11-FEB-21
	5374140								
WG3487289-2 Conductivity	IRM		WT SAR4	104.8		%		70-130	12-FEB-21
WG3487666-1 Conductivity	LCS			99.0		%		90-110	12-FEB-21
WG3487289-1 Conductivity	МВ			<0.0040		mS/cm		0.004	12-FEB-21
MOISTURE-WT		Soil							
	5369305								
WG3486090-2 % Moisture	LCS			99.5		%		90-110	11-FEB-21
WG3486090-1 % Moisture	МВ			<0.25		%		0.25	11-FEB-21
PH-WT		Soil		-					
Batch R	5369798								
WG3486215-1 рН	LCS			6.99		pH units		6.9-7.1	10-FEB-21
Batch R	5369804								
WG3486214-1 рН	LCS			6.99		pH units		6.9-7.1	10-FEB-21
		•							

SO4-WT

Soil

Quality Control Report

			Workorder:	L255527	70	Report Date: 16	-FEB-21	Pa	ge 2 of 3
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SO4-WT		Soil							
Batch F	R5371260								
WG3486087-4 Sulphate	CRM		AN-CRM-WT	103.4		%		60-140	10-FEB-21
WG3486087-2 Sulphate	LCS			99.4		%		80-120	10-FEB-21
WG3486087-1 Sulphate	MB			<20		mg/kg		20	10-FEB-21

Quality Control Report

Workorder: L2555270

Report Date: 16-FEB-21

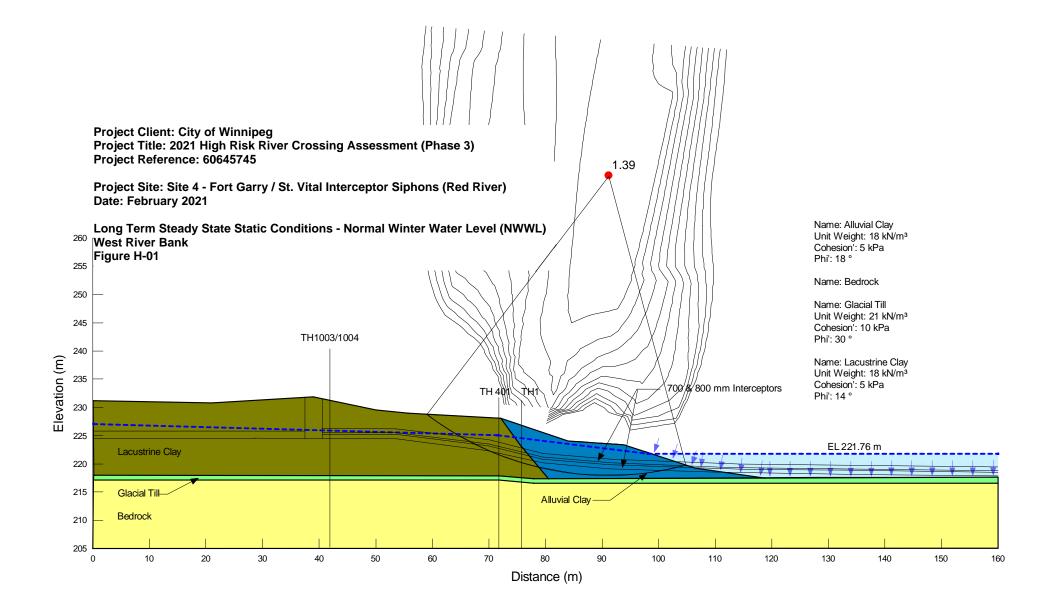
Legend:

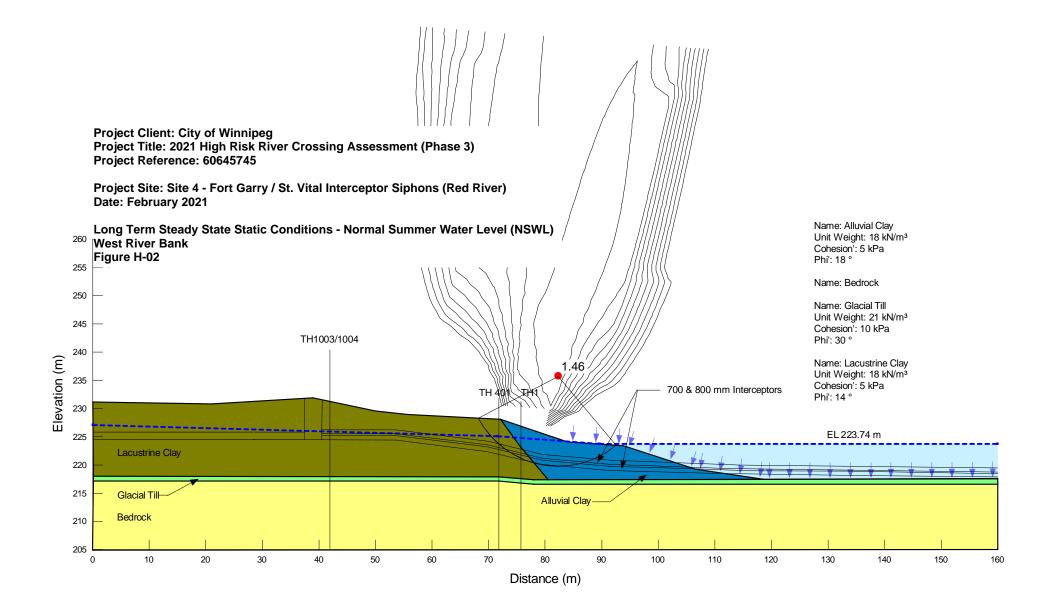
Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

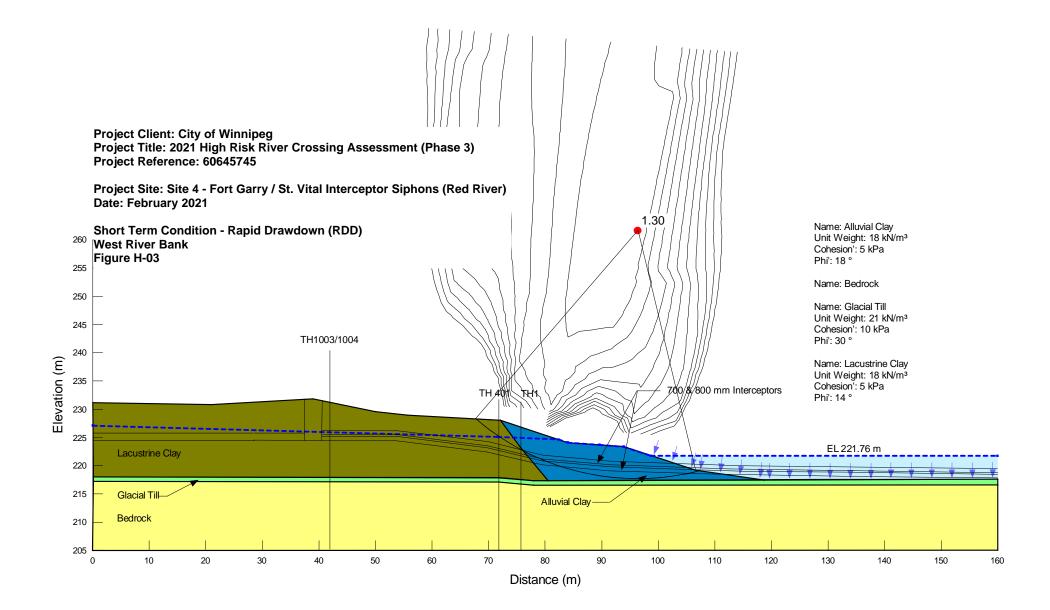
Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

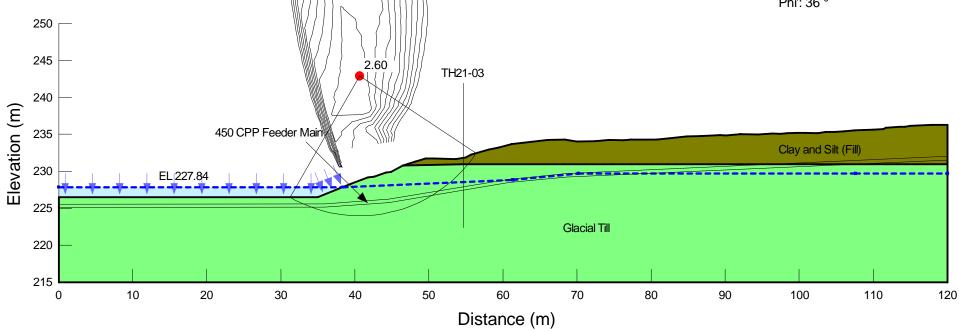
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.


The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.



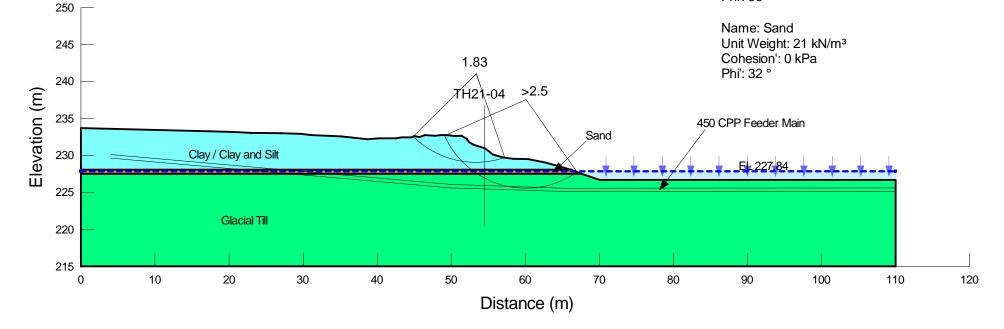
Slope Stability Analysis Output

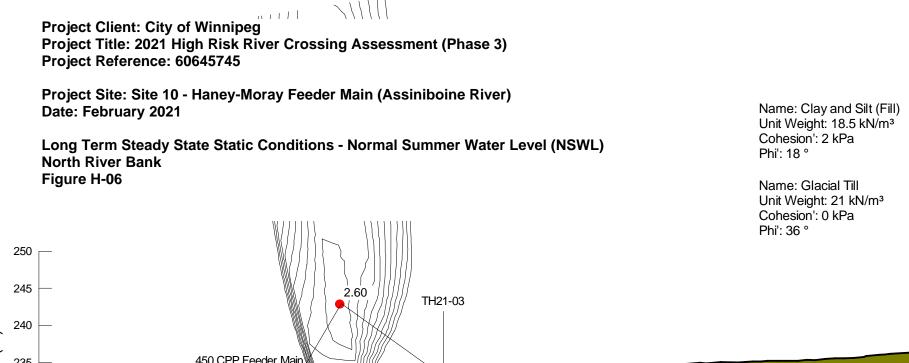

 $\|(|||) \sim |||||$

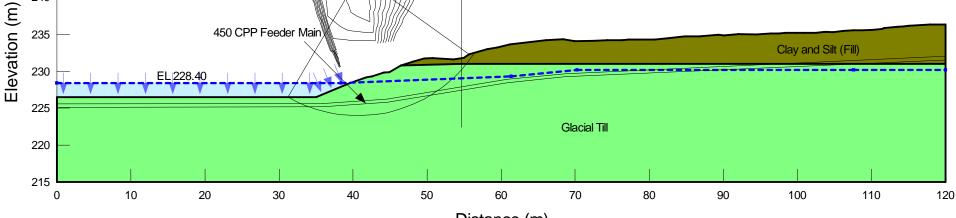
Project Client: City of Winnipeg Project Title: 2021 High Risk River Crossing Assessment (Phase 3) Project Reference: 60645745

Project Site: Site 10 - Haney-Moray Feeder Main (Assiniboine River) Date: February 2021

Long Term Steady State Static Conditions - Normal Winter Water Level (NWWL) North River Bank Figure H-04 Name: Clay and Silt (Fill) Unit Weight: 18.5 kN/m³ Cohesion': 2 kPa Phi': 18 °

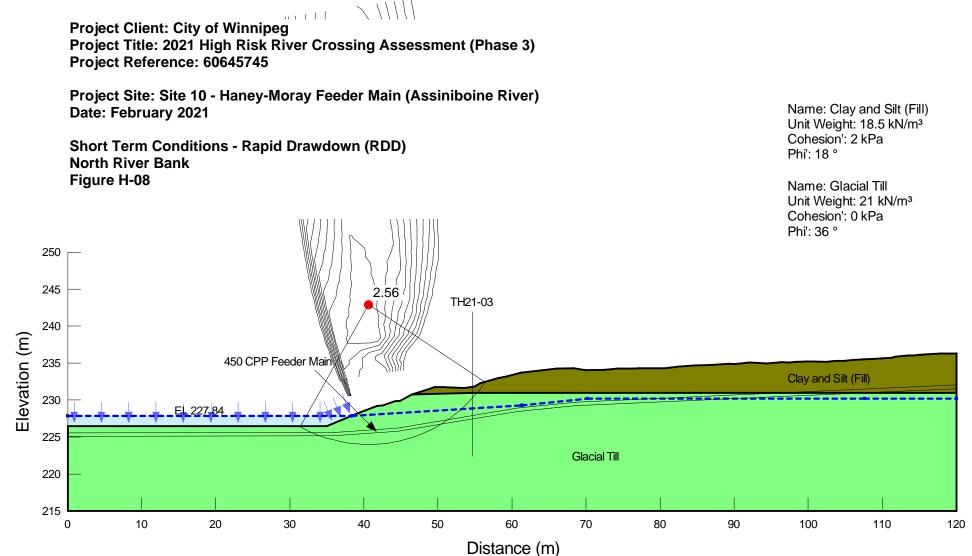

Name: Glacial Till Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 36 °

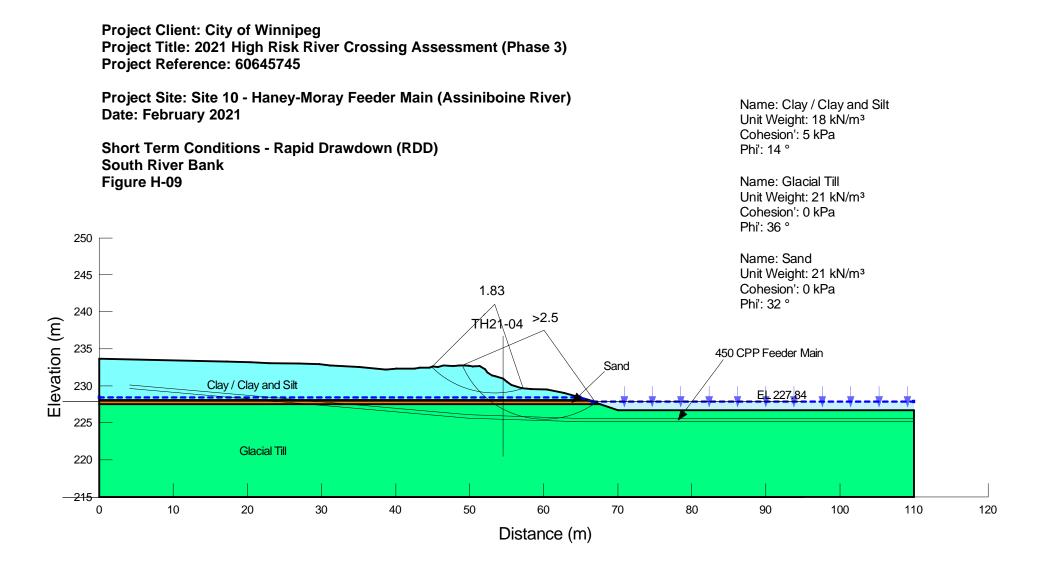



Project Client: City of Winnipeg Project Title: 2021 High Risk River Crossing Assessment (Phase 3) Project Reference: 60645745 Project Site: Site 10 - Haney-Moray Feeder Main (Assiniboine River) Date: February 2021

Long Term Steady State Static Conditions - Normal Winter Water Level (NWWL) South River Bank Figure H-05 Name: Clay / Clay and Silt Unit Weight: 18 kN/m³ Cohesion': 5 kPa Phi': 14 °

Name: Glacial Till Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 36 °





Distance (m)

Project Client: City of Winnipeg Project Title: 2021 High Risk River Crossing Assessment (Phase 3) Project Reference: 60645745 Project Site: Site 10 - Haney-Moray Feeder Main (Assiniboine River) Name: Clay / Clay and Silt Date: February 2021 Unit Weight: 18 kN/m³ Cohesion': 5 kPa Long Term Steady State Static Conditions - Normal Summer Water Level (NSWL) Phi': 14 ° South River Bank Figure H-07 Name: Glacial Till Unit Weight: 21 kN/m³ Cohesion': 0 kPa Phi': 36 ° 250 Name: Sand 1.84 Unit Weight: 21 kN/m³ 245 Cohesion': 0 kPa Phi': 32 ° 240 >2.5 TH21-04 Elevation (m) 235 450 CPP Feeder Main Sand Clay / Clay and Silt 230 EL 228.40 225 Glacial Till 220 215 30 50 60 70 90 10 20 100 110 40 80 120 0 Distance (m)

 \times 1111

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204.477.5381 M: 431.335.9734 E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

Appendix

Environmental Results

Table 1: Summary of Groundwater Analytical Results - Volatile Organic Compound and Petroleum Hydrocarbon Parameters

					Sample ID	TH24-01	TH24-02	DUP-01
					Sample Date	6-Feb-25	6-Feb-25	6-Feb-25
					Screen interval (mbgs)	18.3 - 25.2	15.5 - 24.7	15.5 - 24.7
					Lab sample ID	WP2501636-001	WP2501636-002	WP2501636-003
					Lab work order	WP2501636	WP2501636	WP2501636
					Sample type	N	N	FD
Parameter	Units	Minimum RDL	Winnipeg By-Law Schedule B ¹	Winnipeg By-Law Schedule D ²	Surface Water FAL WQG ³		Analytical Results	
Benzene	mg/L	0.00050	0.5	0.002	0.37	<0.00050	<0.00050	<0.00050
Ethylbenzene	mg/L	0.00050	0.024	0.002	0.002	<0.00050	<0.00050	<0.00050
Toluene	mg/L	0.00050	NG	NG	NG	<0.00050	<0.00050	<0.00050
Xylene, m+p-	mg/L	0.00040	NG	NG	NG	<0.00040	<0.00040	<0.00040
Xylene, o-	mg/L	0.00030	NG	NG	NG	<0.00030	<0.00030	<0.00030
Xylenes, total	mg/L	0.00050	1.4	0.044	NG	<0.00050	<0.00050	<0.00050
Styrene	mg/L	0.00050	NG	NG	NG	<0.00050	<0.00050	<0.00050
PHC F1 (C6-C10) minus BTEX	mg/L	0.10	NG	NG	NG	<0.10	<0.10	<0.10
PHC F2 (>C10-C16)	mg/L	0.10	NG	NG	NG	<0.10	<0.10	<0.10
PHC F2 (>C10-C16)	mg/L	0.10	NG	NG	NG	<0.10	<0.10	<0.10

Guidelines:

¹The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges into Wastewater System (2022)

²The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges to Land

Drainage System (2022) ³Manitoba Tier III Water Quality Guidelines for Surface Water: Freshwater Aquatic Life, Manitoba Water Quality Standards, Objectives, and Guidelines (2011)

Notes:

BOLD	= value exceeds Wastewater By-Law Schedule B Guideline
BOLD	= value exceeds Wastewater By-Law Schedule D Guideline
BOLD	= value exceeds MB Tier III Water Quality Guideline
-	= no data
mbgs	= metres below ground surface
NĞ	= No Guideline
N/A	= Not Applicable
RDL	= Reportable Detection Limit
GWQG	= Groundwater Quality Guidelines

AECOM

Table 2: Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbon Parameters

				Sample ID	TH24-01	TH24-05	DUP-01	
				Sample Date	6-Feb-25	6-Feb-25	6-Feb-25	
Screen interval (mbgs)								
				Lab sample ID	WP2501636-001	WP2501636-002	WP2501636-003	
				Lab work order	WP2501636	WP2501636	WP2501636	
				Sample type	N	FD	FD	
Units	Minimum RDL	Winnipeg By-Law Schedule B ¹	Winnipeg By-Law Schedule D ²	Surface Water FAL WQG ³	Analytical Results (µg/L)			
µg/L	0.010	NG	NG	5800	<0.010	<0.019	<0.010	
µg/L	0.010	NG	NG	NG	<0.010	<0.010	<0.010	
µg/L	0.010	NG	NG	4400	<0.016	<0.091	< 0.039	
µg/L	0.010	NG	NG	12	<0.010	<0.020	<0.010	
µg/L	0.010	NG	NG	18	<0.010	<0.010	<0.010	
µg/L	0.0050	NG	NG	15	<0.0050	<0.0050	<0.0050	
µg/L	0.010	NG	NG	NG	<0.010	<0.015	<0.010	
µg/L	0.015	NG	NG	NG	<0.015	<0.021	<0.015	
µg/L	0.010	NG	NG	NG	<0.010	<0.010	<0.010	
µg/L	0.010	NG	NG	NG	<0.010	<0.015	<0.010	
µg/L	0.010	NG	NG	NG	<0.010	<0.014	<0.010	
µg/L	0.0050	NG	NG	NG	<0.0050	<0.0050	<0.0050	
µg/L	0.010	NG	NG	40	0.015	<0.056	0.026	
µg/L	0.010	NG	NG	3000	<0.010	0.035	0.016	
µg/L	0.010	NG	NG	NG	<0.010	<0.010	<0.010	
µg/L	0.015	NG	NG	NG	0.059	0.127	0.063	
µg/L	0.010	NG	NG	NG	0.024	0.050	0.025	
µg/L	0.010	NG	NG	NG	0.035	0.077	0.038	
µg/L	0.050	NG	NG	1100	<0.050	0.059	<0.050	
µq/L	0.020	NG	NG	400	0.025	0.099	0.040	
µg/L	0.010	NG	NG	25	0.030	0.095	0.050	
µg/L	0.050	NG	NG	3400	<0.050	< 0.050	<0.050	
µg/L	0.010	NG	NG	NG	<0.010	<0.010	<0.010	
µg/L	0.030	NG	NG	NG	0.045	0.095	0.076	
	0.060	NG	NG	NG	<0.060	0.193	<0.060	
µq/L	0.070	NG	NG	NG	0.129	0.415	0.195	
	0.065	5	2	NG	0.070	0.288	0.132	
	µg/L µg/L	μg/L 0.010 μg/L 0.015 μg/L 0.010 μg/L 0.050 μg/L 0.050 μg/L 0.050 μg/L 0.050 μg/L 0.030 μg/L 0.030 μg/L 0.0660 μg/L 0.070	Onns Minimum RDL Schedule B) μg/L 0.010 NG μg/L 0.050 NG μg/L 0.050 NG μg/L 0.050 NG	Units Minimum RDL Winnipeg By-Law Schedule B' Winnipeg By-Law Schedule D' μg/L 0.010 NG NG μg/L 0.010 NG NG	Sample Date Screen interval (mbgs) Lab sork order Sample type Units Minimum RDL Winnipeg By-Law Schedule B ³ Winnipeg By-Law Schedule D ² Surface Water FAL WQG ³ µa/L 0.010 NG NG Schedule D ² µa/L 0.010 NG NG NG µa/L 0.010 NG NG NG µa/L 0.010 NG NG 4400 µa/L 0.010 NG NG 12 µa/L 0.010 NG NG 15 µa/L 0.010 NG NG NG µa/L 0.010 <td< td=""><td>Sample Date Screen interval (mbgs) 6-Feb-25 Screen interval (mbgs) Units Minimum RDL Winnipeg By-Law Schedule B¹ Winnipeg By-Law Schedule D² Surface Water FAL WQG³ WP2501636-001 ua/L 0.010 NG NG 5800 <0.010</td> µa/L 0.010 NG NG 5800 <0.010</td<>	Sample Date Screen interval (mbgs) 6-Feb-25 Screen interval (mbgs) Units Minimum RDL Winnipeg By-Law Schedule B ¹ Winnipeg By-Law Schedule D ² Surface Water FAL WQG ³ WP2501636-001 ua/L 0.010 NG NG 5800 <0.010	Sample Date Screen Interval (mbgs) 6-Feb-25 6-Feb-25 6-Feb-25 5-2-5 Screen Interval (mbgs) 18.3 - 28.2 18.5 - 24.7 WP2501636-001 WP2501636-001 WP2501636 WP2501636 WP2501636 Units Minimum RDL Winnipeg By-Law Schedule D ¹ Surface Water FAL WQG ³ Malytical Results (µg/ µg/L 0.010 NG NG NG < 0.010 < 0.010 µg/L 0.010 NG NG NG < 4400 < 0.010 < 0.010 µg/L 0.010 NG NG 12 < 0.010 < 0.010 µg/L 0.010 NG NG NG 18 < 0.010 < 0.010 µg/L 0.010 NG NG 18 < 0.010 < 0.010 µg/L 0.016 NG NG 18 < 0.010 < 0.010 µg/L 0.010	

Guidelines:

¹The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges into Wastewater System (2022)

²The City of Winnipeg Sewer By-Law No.

106/2018 Schedule B Concentration Limits for

³Manitoba Tier III Water Quality Guidelines for Surface Water: Freshwater Aquatic Life, Manitoba Water Quality Standards, Objectives, and Guidelines (2011)

Notes:

BOLD	= value exceeds Wastewater By-Law Schedule B Guideline
BOLD	= value exceeds Wastewater By-Law Schedule D Guideline
BOLD	= value exceeds MB Tier III Water Quality Guideline
-	= no data
mbgs	= metres below ground surface
NG	= No Guideline
N/A	= Not Applicable
RDL	= Reportable Detection Limit
GWQG	= Groundwater Quality Guidelines

Table 3: Summary of Groundwater Analytical Results - Nutrient Parameters

					Sample ID Date	TH24-01 6-Feb-25	TH24-05 6-Feb-25	DUP-01 6-Feb-25
				Scre	en interval (mbgs)	18.3 - 25.2	15.5 - 24.7	15.5 - 24.7
		WP2501636-001	WP2501636-002	WP2501636-003				
					Lab work order	WP2501636	WP2501636	WP2501636
					Sample type	Ν	N	FD
Parameter	Units	Minimum RDL	Winnipeg By-Law Schedule B ¹	Winnipeg By-Law Schedule D ²	Surface Water FAL WQG ³		Analytical Results	
Nutrients		•						
Ammonia, total (as N)	mg/L	0.0050	NG	NG	NG	0.891	0.882	0.882
Nitrate (as N)	mg/L	0.020	NG	NG	13	<1.00	<0.400	<0.400
Nitrite (as N)	mg/L	0.010	NG	NG	0.197	<0.500	<0.200	<0.200
Total Nitrogen	mg/L	0.5	60	NG	NG	1.641	1.182	1.182
Calcium (Dissolved)	mg/L	0.050	NG	NG	NG	257	239	245
Calcium (Total)	mg/L	0.050	NG	NG	NG	1070	4730	4180
Magnesium (Dissolved)	mg/L	0.0050	NG	NG	NG	137	151	144
Magnesium (Total)	mg/L	0.0050	NG	NG	NG	587	2400	2260
Phosphorus (Dissolved)	mg/L	0.050	NG	NG	Variable ^c	<0.050	<0.050	< 0.050
Phosphorus (Total)	mg/L	0.050	10	0.4	NG	3.96	14.2	12.6
Potassium (Dissolved)	mg/L	0.050	NG	NG	NG	41.9	33.6	33.9
Potassium (Total)	mg/L	0.050	NG	NG	NG	73.1	114	103
Sodium (Dissolved)	mg/L	0.050	NG	NG	NG	1110	935	921
Sodium (Total)	mg/L	0.050	NG	NG	NG	1090	959	870

Guidelines:

¹The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges into Wastewater System (2022)

²The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges to Land Drainage Systemn (2022)

³Manitoba Tier III Water Quality Guidelines for Surface Water: Freshwater Aquatic Life, Manitoba Water Quality Standards, Objectives, and Guidelines (2011)

Notes:

BOLD BOLD BOLD	 value exceeds Wastewater By-Law Schedule B Guideline value exceeds Wastewater By-Law Schedule D Guideline value exceeds MB Tier III Water Quality Guideline
-	= no data
mbgs	= metres below ground surface
NG	= No Guideline
RDL	= Reportable Detection Limit
GWQG	= Groundwater Quality Guidelines

ΑΞϹΟΜ

Table 4: Summary of Groundwater Analytical Results - Dissolved Metal Parameters

					Sample ID	TH24-01	TH24-05	DUP-01
					Date	6-Feb-25	6-Feb-25	6-Feb-25
					Screen interval (mbgs)	18.3 - 25.2	15.5 - 24.7	15.5 - 24.7
					Lab sample ID	WP2501636-001	WP2501636-002	WP2501636-003
					Lab work order	WP2501636	WP2501636	WP2501636
					Sample type	N	N	FD
Parameter	Units	Minimum RDL	Winnipeg By-Law	Winnipeg By-Law	Surface Water FAL		Analytical Results	
Parameter	Units		Schedule B ¹	Schedule D ²	WQG ³		Analytical Results	
Aluminum	mg/L	0.0010	NG	NG	0.005 ^A or 0.1 ^B	0.0015	0.0016	0.0014
Antimony	mg/L	0.00010	NG	NG	NG	<0.00010	0.00011	0.00012
Arsenic	mg/L	0.00010	NG	NG	5	0.00087	0.00076	0.00060
Barium	mg/L	0.00010	NG	NG	NG	0.0217	0.0321	0.0344
Beryllium	mg/L	0.000020	NG	NG	NG	<0.000020	<0.000020	<0.000020
Bismuth	mg/L	0.000050	NG	NG	NG	<0.000050	<0.000050	< 0.000050
Boron	µg/L	0.010	NG	NG	1.5	0.809	0.792	0.824
Cadmium	mg/L	0.0000050	NG	NG	0.00004 °	<0.0000050	0.0000111	0.0000111
Cesium	mg/L	0.000010	NG	NG	NG	0.000050	0.000070	0.000070
Chromium	mg/L	0.00050	NG	NG	NG	<0.00050	<0.00050	< 0.00050
Cobalt	mg/L	0.00010	NG	NG	NG	0.00137	0.00097	0.00090
Copper	mg/L	0.00020	NG	NG	0.002 °	<0.00020	<0.00020	< 0.00020
ron	mg/L	0.010	NG	NG	300	<0.010	<0.010	<0.010
_ead	mg/L	0.000050	NG	NG	0.001 °	< 0.000050	< 0.000050	< 0.000050
_ithium	mg/L	0.0010	NG	NG	NG	0.262	0.266	0.258
Manganese	mg/L	0.00010	NG	NG	Variable ^c	0.103	0.0941	0.0938
Molybdenum	mg/L	0.000050	NG	NG	73	0.00743	0.00386	0.00445
Nickel	mg/L	0.00050	NG	NG	0.025 °	0.00401	0.00377	0.00354
Rubidium	mg/L	0.00020	NG	NG	NG	0.0214	0.0131	0.0138
Selenium	mg/L	0.000050	NG	NG	1	< 0.000050	< 0.000050	< 0.000050
Silicon	mg/L	0.050	NG	NG	NG	4.24	6.31	6.30
Silver	mg/L	0.000010	NG	NG	0.25	<0.000010	<0.000010	<0.000010
Strontium	mg/L	0.00020	NG	NG	NG	3.53	3.02	3.06
Sulfur	mg/L	0.50	NG	NG	NG	347	297	311
Tellurium	mg/L	0.00020	NG	NG	NG	<0.00020	<0.00020	<0.00020
Thallium	mg/L	0.000010	NG	NG	0.8	0.000010	0.000022	0.000036
Thorium	mg/L	0.00010	NG	NG	NG	<0.00010	<0.00010	<0.00010
l'in 🛛	mg/L	0.00010	NG	NG	NG	0.00194	0.00070	0.00077
litanium	mg/L	0.00030	NG	NG	NG	< 0.00030	<0.00030	< 0.00030
Tungsten	mg/L	0.00010	NG	NG	NG	0.00042	0.00072	0.00098
Jranium	mg/L	0.000010	NG	NG	15	0.00247	0.00243	0.00259
/anadium	mg/L	0.00050	NG	NG	NG	<0.00050	<0.00050	<0.00050
Zinc	mg/L	0.0010	NG	NG	Variable ^c	0.0015	0.0021	0.0015
Zirconium	mg/L	0.00030	NG	NG	NG	< 0.00030	< 0.00030	< 0.00030

Guidelines:

¹The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges into Wastewater System (2022) ²The City of Winnipeg Sewer By-Law No. 106/2018 Schedule B Concentration Limits for Discharges to Land Drainage Systemn (2022) ³Manitoba Tier III Water Quality Guidelines for Surface Water: Freshwater Aquatic Life, Manitoba Water Quality Standards, Objectives, and Guidelines (2011)

Notes:

- = value exceeds Wastewater By-Law Schedule B Guideline BOLD BOLD = value exceeds Wastewater By-Law Schedule D Guideline
- = value exceeds MB Tier III Water Quality Guideline BOLD
- = no data -
- mbgs = metres below ground surface
- NG = No Guideline
- N/A = Not Applicable RDL
- = Reportable Detection Limit
- Α = If pH is < 6.5
- в = If pH is ≥ 6.5

С = Calculated guideline based on water hardness and/or other water quality parameters

AECOM

Replacement of the FGSV Siphon Geotechnical Baseline Report Appendix I City of Winnipeg

					Sample ID	TH24-01	TH24-05	DUP-01
					Date	6-Feb-25	6-Feb-25	6-Feb-25
					Screen interval (mbgs)	18.3 - 25.2	15.5 - 24.7	15.5 - 24.7
					Lab sample ID	WP2501636-001	WP2501636-002	WP2501636-003
					Lab work order	WP2501636	WP2501636	WP2501636
					Sample type	N	N	FD
Parameter	Units	Minimum RDL	Winnipeg By-Law Schedule B ¹	Winnipeg By-Law Schedule D ²	Surface Water FAL WQG ³		Analytical Results	
Aluminum	mg/L	0.0030	50	NG	NG	108	219	203
Antimony	mg/L	0.00010	5	NG	NG	0.00198	0.00293	0.00299
Arsenic	mg/L	0.00010	1	0.02	NG	0.0778	<u>0.171</u>	<u>0.153</u>
Barium	mg/L	0.00010	NG	NG	NG	1.31	3.64	3.23
Beryllium	mg/L	0.000020	NG	NG	NG	0.00623	0.0173	0.0156
Bismuth	mg/L	0.000050	NG	NG	NG	0.00179	0.00544	0.00457
Boron	µg/L	0.010	NG	NG	NG	1.18	1.43	1.42
Cadmium	mg/L	0.0000050	0.7	0.008	NG	0.00228	0.00942	0.00714
Cesium	mg/L	0.000010	NG	NG	NG	0.0201	0.0488	0.0423
Chromium	mg/L	0.00050	4	0.08	NG	0.234	0.889	0.706
Cobalt	mg/L	0.00010	5	NG	NG	0.0766	0.240	0.181
Copper	mg/L	0.00050	2	0.04	NG	0.219	0.747	0.584
Iron	mg/L	0.010	NG	NG	NG	187	583	473
Lead	mg/L	0.000050	1	0.08	NG	0.0944	0.276	0.235
Lithium	mg/L	0.0010	NG	NG	NG	0.469	0.775	0.660
Manganese	mg/L	0.00010	5	0.2	NG	3.00	17.8	12.2
Molybdenum	mg/L	0.000050	5	NG	NG	0.0142	0.0291	0.0283
Nickel	mg/L	0.00050	2.0	0.08	NG	0.228	0.714	0.544
Rubidium	mg/L	0.00020	NG	NG	NG	0.273	0.666	0.552
Selenium	mg/L	0.000050	1	0.02	NG	0.00215	0.00749	0.00631
Silicon	mg/L	0.10	NG	NG	NG	236	468	451
Silver	mg/L	0.000010	5	0.04	NG	0.000698	0.00288	0.00234
Strontium	mg/L	0.00020	NG	NG	NG	4.38	6.92	5.48
Sulfur	mg/L	0.50	NG	NG	NG	342	308	293
Tellurium	mg/L	0.00020	NG	NG	NG	<0.00200	< 0.00200	< 0.00200
Thallium	mg/L	0.000010	NG	NG	NG	0.00203	0.00617	0.00522
Thorium	mg/L	0.00010	NG	NG	NG	0.0435	0.126	0.106
Tin	mg/L	0.00010	5	NG	NG	0.0583	0.0268	0.0316
Titanium	mg/L	0.00030	5	NG	NG	2.05	2.96	2.88
Tungsten	mg/L	0.00010	NG	NG	NG	0.00288	0.00803	0.00895
Uranium	mg/L	0.000010	NG	NG	NG	0.0137	0.0511	0.0400
Vanadium	mg/L	0.00050	NG	NG	NG	0.310	0.684	0.627
Zinc	mg/L	0.0030	2	0.04	NG	0.756	2.68	<u>1.98</u>
Zirconium	mg/L	0.00020	NG	NG	NG	0.0150	0.0111	0.0109

 Table 5: Summary of Groundwater Analytical Results - Total Metal Parameters

Guidelines:

Notes:

TEXT

Table 6: Quality Assurance and Quality Control Results

			Sample ID Date Screen interval (mbgs) Lab sample ID	TH24-05 6-Feb-25 15.5 - 24.7 WP2501636-002	DUP-01 6-Feb-25 15.5 - 24.7 WP2501636-003	Greater Than 5x RDL	RPD (%)	Pass/Fail
			Lab work order Sample type	WP2501636 N	WP2501636 FD			
Parameter	Units	Minimum RDL	RPD Threshold (%)					
Aluminum (Total) Antimony (Total)	mg/L mg/L	0.0030 0.00010	20 20	219 0.00293	203 0.00299	Yes Yes	4.99 1.36	Pass Pass
Arsenic (Total) Barium (Total)	mg/L mg/L	0.00010 0.00010	20 20	0.171 3.64	0.153 3.23	Yes Yes	7.27 7.80	Pass Pass
Beryllium (Total) Bismuth (Total)	mg/L mg/L	0.000020 0.000050	20 20	0.0173 0.00544	0.0156 0.00457	Yes Yes	6.77 11.26	Pass Pass
Boron (Total) Cadmium (Total)	μq/L mg/L	0.000050	20 20 20	1.43	1.42 0.00714	Yes	0.47	Pass Pass
Cesium (Total)	mg/L	0.000010	20	0.0488	0.0423	Yes	9.29	Pass
Chromium (Total) Cobalt (Total)	mg/L mg/L	0.00050 0.00010	20 20	0.889 0.240	0.706 0.181	Yes Yes	14.73 17.85	Pass Pass
Copper (Total) Iron (Total)	mg/L mg/L	0.00050	20 20	0.747	0.584 473	Yes Yes	15.69 13.42	Pass Pass
Lead (Total) Lithium (Total)	mg/L mg/L	0.000050 0.0010	20 20	0.276	0.235	Yes Yes	10.42 10.41	Pass Pass
Manganese (Total) Molybdenum (Total)	mg/L mg/L	0.00010 0.000050	20 20	17.8 0.0291	12.2 0.0283	Yes Yes	23.43 1.85	Pass Pass
Nickel (Total) Rubidium (Total)	mg/L mg/L	0.00050 0.00020	20 20	0.714 0.666	0.544 0.552	Yes Yes	17.24 12.10	Pass Pass
Selenium (Total) Silicon (Total)	mg/L mg/L	0.000050 0.10	20 20	0.00749 468	0.00631 451	Yes Yes	11.09 2.45	Pass Pass
Silver (Total) Strontium (Total)	mg/L mg/L	0.000010	20 20 20	0.00288	0.00234 5.48	Yes	13.33 14.91	Pass Pass
Strontium (Total) Sulfur (Total) Tellurium (Total)	mg/L mg/L mg/L	0.00020	20 20 20	308 <0.00200	5.48 293 <0.00200	Yes	3.30 NC	Pass Pass Pass
Thallium (Total)	mg/L	0.000010	20	0.00617	0.00522	Yes	10.82	Pass
Thorium (Total) Tin (Total)	mg/L mg/L	0.00010 0.00010	20 20	0.126	0.106 0.0316	Yes Yes	11.17	Pass Pass
Titanium (Total) Tungsten (Total)	mg/L mg/L	0.00030	20 20	2.96 0.00803	2.88 0.00895	Yes Yes	1.82 7.36	Pass Pass
Uranium (Total) Vanadium (Total)	mg/L mg/L	0.000010 0.00050	20 20	0.0511 0.684	0.0400 0.627	Yes Yes	15.61 5.71	Pass Pass
Zinc (Total) Zirconium (Total)	mg/L mg/L	0.0030 0.00020	20 20	2.68 0.0111	1.98 0.0109	Yes Yes	19.07 1.21	Pass Pass
Aluminum (Dissolved) Antimony (Dissolved)	mg/L mg/L	0.0010	20 20	0.0016	0.0014 0.00012	No	NC NC	Pass Pass
Arsenic (Dissolved) Barium (Dissolved)	mg/L mg/L	0.00010	20 20 20	0.00076	0.00060	Yes	15.09	Pass
Beryllium (Dissolved)	mg/L	0.000020	20	< 0.000020	<0.000020	No	NC	Pass Pass
Bismuth (Dissolved) Boron (Dissolved)	mg/L mg/L	0.000050	20 20	<0.000050 0.792	<0.000050 0.824 0.0000111	No Yes	NC 2.66	Pass Pass
Cadmium (Dissolved) Cesium (Dissolved)	mg/L mg/L	0.0000050 0.000010	20 20	0.0000111 0.000070	0.000070	Yes Yes	0.00	Pass Pass
Chromium (Dissolved) Cobalt (Dissolved)	mg/L mg/L	0.00050 0.00010	20 20	<0.00050 0.00097	<0.00050 0.00090	No Yes	NC 4.93	Pass Pass
Iron (Dissolved) Lead (Dissolved)	mg/L mg/L	0.010 0.000050	20 20	<0.010 <0.000050	<0.010 <0.000050	No No	NC NC	Pass Pass
Lithium (Dissolved) Manganese (Dissolved)	mg/L mg/L	0.0010	20 20	0.266	0.258	Yes Yes	2.03	Pass Pass
Molybdenum (Dissolved) Nickel (Dissolved)	mg/L mg/L	0.000050	20 20 20	0.00386	0.00445 0.00354	Yes Yes	9.70 4.15	Pass Pass
Rubidium (Dissolved) Selenium (Dissolved)	mg/L mg/L	0.00020	20 20 20	0.00377	0.00334	Yes	3.50 NC	Pass
Selenium (Dissolved) Silicon (Dissolved) Silver (Dissolved)	mg/L	0.000050	20 20 20	<0.000050 6.31 <0.000010	<0.000050 6.30 <0.000010	Yes	0.11 NC	Pass Pass Pass
Strontium (Dissolved)	mg/L mg/L	0.00020	20	3.02	3.06	No Yes	0.88	Pass
Sulfur (Dissolved) Tellurium (Dissolved)	mg/L mg/L	0.50 0.00020	20 20	297 <0.00020	311 <0.00020	Yes No	3.09 NC	Pass Pass
Thallium (Dissolved) Thorium (Dissolved)	mg/L mg/L	0.000010 0.00010	20 20	0.000022 <0.00010	0.000036 <0.00010	No No	NC NC	Pass Pass
Tin (Dissolved) Titanium (Dissolved)	mg/L mg/L	0.00010 0.00030	20 20	0.00070	0.00077 <0.00030	Yes No	6.45 NC	Pass Pass
Tungsten (Dissolved) Uranium (Dissolved)	mg/L mg/L	0.00010 0.000010	20 20	0.00072 0.00243	0.00098 0.00259	Yes Yes	21.49 4.30	Pass Pass
Vanadium (Dissolved) Zinc (Dissolved)	mg/L mg/L	0.00050 0.0010	20 20	<0.00050 0.0021	<0.00050 0.0015	No No	NC NC	Pass Pass
Zirconium (Dissolved) Ammonia, total (as N)	mg/L mg/L	0.00030 0.0050	20 25	<0.00030 0.882	<0.00030 0.882	No Yes	NC 0.00	Pass Pass
Nitrate (as N) Nitrite (as N)	mg/L mg/L	0.020	10	<0.400	<0.400	No No	NC NC	Pass Pass
Total Nitrogen Calcium (Dissolved)	mg/L mg/L	0.010	10 10 20	1.182	1.182	No	NC	Pass
Calcium (Total)	mg/L	0.050	20	239 4730	4180	Yes Yes	1.66 8.06	Pass Pass
Magnesium (Dissolved) Magnesium (Total)	mg/L mg/L	0.0050	20 20	151 2400	144 2260	Yes Yes	3.14 3.97	Pass Pass
Phosphorus (Dissolved) Phosphorus (Total)	mg/L mg/L	0.050	20 20	<0.050 14.2	<0.050 12.6	No Yes	NC 7.80	Pass Pass
Potassium (Dissolved) Potassium (Total)	mg/L mg/L	0.050	20 20	33.6 114	33.9 103	Yes Yes	0.59 6.65	Pass Pass
Sodium (Dissolved) Sodium (Total)	ma/L ma/L	0.050 0.050	20 20	935 959	921 870	Yes Yes	1.00 6.38	Pass Pass
Acenaphthene Acenaphthylene	μα/L μα/L	0.010	50 50	<0.019 <0.010	<0.010 <0.010	No No	NC NC	Pass Pass
Acridine	μg/L μg/L	0.010	50 50 50	<0.091 <0.020	<0.039	No No	NC NC	Pass
Anthracene Benz(a)anthracene Benzo(a)pyrene	µg/L	0.010	50 50 50	<0.020 <0.010 <0.0050	<0.010 <0.010 <0.0050	NO NO NO	NC NC	Pass Pass Pass
Benzo(b+j)fluoranthene	μα/L μα/L	0.010	50	<0.015	<0.010	No	NC	Pass
Benzo(b+i+k)fluoranthene Benzo(g,h,i)perylene	μα/L μα/L	0.015 0.010	50 50	<0.021 <0.010	<0.015 <0.010	No No	NC NC	Pass Pass
Benzo(k)fluoranthene Chrysene	μα/L μg/L	0.010 0.010	50 50	<0.015 <0.014	<0.010 <0.010	No No	NC NC	Pass Pass
Dibenz(a,h)anthracene Fluoranthene	μg/L μq/L	0.0050 0.010	50 50	<0.0050 <0.056	<0.0050 0.026	No No	NC NC	Pass Pass
Fluorene Indeno(1,2,3-c,d)pyrene	μα/L μα/L	0.010 0.010	50 50	0.035	0.016	No No	NC NC	Pass Pass
Methylnaphthalene, 1+2- Methylnaphthalene, 1-	μα/L μα/L	0.015	50 50	0.127 0.050	0.063	No No	NC NC	Pass Pass
Methylnaphthalene, 2- Naphthalene	μα/L μg/L	0.010	50 50	0.077 0.059	0.038	No No	NC NC	Pass Pass
Phenanthrene Pyrene	µg/L µg/L µg/L	0.020	50 50 50	0.099	0.040	No Yes	NC 37.50	Pass
Quinoline	µg/L	0.050	50	<0.050	< 0.050	No	NC	Pass Pass
B(a)P total potency equiva PAHs, high molecular we	μα/L μα/L	0.010 0.030	50 50	<0.010 0.095	<0.010 0.076	No No	NC 14.29	Pass Pass
PAHs, low molecular weic PAHs, total (CCME sewe	μα/L μα/L	0.060 0.070	50 50	0.193 0.415	<0.060 0.195	No No	NC 42.93	Pass Pass
PAHs, total (EPA 16) Benzene	μα/L mg/L	0.065 0.00050	50 30	0.288	0.132	No No	44.07 NC	Pass Pass
Ethylbenzene Toluene	mg/L mg/L	0.00050	30 30	<0.00050 <0.00050	<0.00050 <0.00050	No No	NC NC	Pass Pass
Xylene, m+p- Xylene, o-	mg/L mg/L	0.00030	30 30 30	<0.00030	<0.00030	No No	NC NC	Pass Pass
Xylenes, total Styrene	mg/L mg/L mg/L	0.00050	30 30 30	<0.00030 <0.00050 <0.00050	<0.00030 <0.00050 <0.00050	N0 No No	NC NC	Pass Pass Pass
PHC F1 (C6-C10) minus	mg/L	0.00050	30 30 30	<0.10	<0.10	No	NC	Pass
PHC F2 (>C10-C16) PHC F2 (>C10-C16)	mg/L mg/L	0.10 0.10	30 30	<0.10 <0.10	<0.10 <0.10	No No	NC NC	Pass Pass

lot calculated meters below ground surface relative percent difference miligrams per litre micrograms per litre

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	· WP2501636	Page	: 1 of 17
Client	: AECOM Canada ULC	Laboratory	: ALS Environmental - Winnipeg
Contact	: Manny Papadimitropoulos	Account Manager	🧯 Judy Dalmaijer
Address	: 99 Commerce Drive Winnipeg MB Canada R3P 0Y7	Address	: 1329 Niakwa Road East, Unit 12 Winnipeg, Manitoba Canada R2J 3T4
Telephone	: 204 477 5381	Telephone	: +1 204 255 9720
Project	: 60728226	Date Samples Received	: 06-Feb-2025 16:33
PO	: 1687450	Date Analysis Commenced	: 07-Feb-2025
C-O-C number	:	Issue Date	: 11-Feb-2025 17:25
Sampler	:		
Site	:		
Quote number	: 2024 Standing offer		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Gingras	Supervisor - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Kevin Baxter		Inorganics, Winnipeg, Manitoba
Kevin Baxter		Metals, Winnipeg, Manitoba
Leila Conyard	Lab Assistant	Metals, Winnipeg, Manitoba
Michelle Michalchuk	Analyst	Organics, Winnipeg, Manitoba
Ryan Velasco	-	Organics, Winnipeg, Manitoba

General Comments

RRR

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

	Unit	Description
	>: greater than.	
	<: less than.	
	Red shading is applie	d where the result or the LOR is greater than the Guideline Upper Limit (or lower than the Guideline Lower Limit, if applicable).
	For drinking water sar	mples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit .
Qualifier	′S	
Qualifier		Description
DLM		Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
		colour, turbidity).

Refer to report comments for issues regarding this analysis.

Page	:	3 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analytical Results

			Client sample ID	TH24-01	_			
Sub Matrix Water		-		-				
Sub-Matrix: Water (Matrix: Water)		Sa	ampling date/time	06-Feb-2025 11:00				
Analyte	Method/Lab	LOR	Unit	WP2501636-001		 	 	
Anions and Nutrients								
Ammonia, total (as N)	E298/WP	0.0050	mg/L	0.891		 	 	
Nitrate (as N)	E235.NO3/WP	0.020	mg/L	<1.00	DLM	 	 	
Nitrite (as N)	E235.NO2/WP	0.010	mg/L	<0.500	DLM	 	 	
Total Metals								
Aluminum, total	E420/WP	0.0030	mg/L	108		 	 	
Antimony, total	E420/WP	0.00010	mg/L	0.00198		 	 	
Arsenic, total	E420/WP	0.00010	mg/L	0.0778		 	 	
Barium, total	E420/WP	0.00010	mg/L	1.31		 	 	
Beryllium, total	E420/WP	0.000020	mg/L	0.00623		 	 	
Bismuth, total	E420/WP	0.000050	mg/L	0.00179		 	 	
Boron, total	E420/WP	0.010	mg/L	1.18		 	 	
Cadmium, total	E420/WP	0.0000050	mg/L	0.00228		 	 	
Calcium, total	E420/WP	0.050	mg/L	1070		 	 	
Cesium, total	E420/WP	0.000010	mg/L	0.0201		 	 	
Chromium, total	E420/WP	0.00050	mg/L	0.234		 	 	
Cobalt, total	E420/WP	0.00010	mg/L	0.0766		 	 	
Copper, total	E420/WP	0.00050	mg/L	0.219		 	 	
Iron, total	E420/WP	0.010	mg/L	187		 	 	
Lead, total	E420/WP	0.000050	mg/L	0.0944		 	 	
Lithium, total	E420/WP	0.0010	mg/L	0.469		 	 	
Magnesium, total	E420/WP	0.0050	mg/L	587		 	 	
Manganese, total	E420/WP	0.00010	mg/L	3.00		 	 	
Molybdenum, total	E420/WP	0.000050	mg/L	0.0142		 	 	
Nickel, total	E420/WP	0.00050	mg/L	0.228		 	 	
Phosphorus, total	E420/WP	0.050	mg/L	3.96		 	 	
Potassium, total	E420/WP	0.050	mg/L	73.1		 	 	
Rubidium, total	E420/WP	0.00020	mg/L	0.273		 	 	
Selenium, total	E420/WP	0.000050	mg/L	0.00215		 	 	
Silicon, total	E420/WP	0.10	mg/L	236		 	 	
Silver, total	E420/WP	0.000010	mg/L	0.000698		 	 	
Sodium, total	E420/WP	0.050	mg/L	1090		 	 	
Strontium, total	E420/WP	0.00020	mg/L	4.38		 	 	

Page	:	4 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-001	 	 	
				(Continued)			
Total Metals - Continued							
Sulfur, total	E420/WP	0.50	mg/L	342	 	 	
Tellurium, total	E420/WP	0.00020	mg/L	<0.00200 DLM	 	 	
Thallium, total	E420/WP	0.000010	mg/L	0.00203	 	 	
Thorium, total	E420/WP	0.00010	mg/L	0.0435	 	 	
Tin, total	E420/WP	0.00010	mg/L	0.0583	 	 	
Titanium, total	E420/WP	0.00030	mg/L	2.05	 	 	
Tungsten, total	E420/WP	0.00010	mg/L	0.00288	 	 	
Uranium, total	E420/WP	0.000010	mg/L	0.0137	 	 	
Vanadium, total	E420/WP	0.00050	mg/L	0.310	 	 	
Zinc, total	E420/WP	0.0030	mg/L	0.756	 	 	
Zirconium, total	E420/WP	0.00020	mg/L	0.0150	 	 	
Dissolved Metals							
Aluminum, dissolved	E421/WP	0.0010	mg/L	0.0015	 	 	
Antimony, dissolved	E421/WP	0.00010	mg/L	<0.00010	 	 	
Arsenic, dissolved	E421/WP	0.00010	mg/L	0.00087	 	 	
Barium, dissolved	E421/WP	0.00010	mg/L	0.0217	 	 	
Beryllium, dissolved	E421/WP	0.000020	mg/L	Not Detected	 	 	
Bismuth, dissolved	E421/WP	0.000050	mg/L	Not Detected	 	 	
Boron, dissolved	E421/WP	0.010	mg/L	0.809	 	 	
Cadmium, dissolved	E421/WP	0.0000050	mg/L	<0.000050	 	 	
Calcium, dissolved	E421/WP	0.050	mg/L	257	 	 	
Cesium, dissolved	E421/WP	0.000010	mg/L	0.000050	 	 	
Chromium, dissolved	E421/WP	0.00050	mg/L	Not Detected	 	 	
Cobalt, dissolved	E421/WP	0.00010	mg/L	0.00137	 	 	
Copper, dissolved	E421/WP	0.00020	mg/L	<0.00020	 	 	
Iron, dissolved	E421/WP	0.010	mg/L	<0.010	 	 	
Lead, dissolved	E421/WP	0.000050	mg/L	Not Detected	 	 	
Lithium, dissolved	E421/WP	0.0010	mg/L	0.262	 	 	
Magnesium, dissolved	E421/WP	0.0050	mg/L	137	 	 	
Manganese, dissolved	E421/WP	0.00010	mg/L	0.103	 	 	
Molybdenum, dissolved	E421/WP	0.000050	mg/L	0.00743	 	 	
Nickel, dissolved	E421/WP	0.00050	mg/L	0.00401	 	 	
Phosphorus, dissolved	E421/WP	0.050	mg/L	Not Detected	 	 	
Potassium, dissolved	E421/WP	0.050	mg/L	41.9	 	 	
Rubidium, dissolved	E421/WP	0.00020	mg/L	0.0214	 	 	
Selenium, dissolved	E421/WP	0.000050	mg/L	<0.000050	 	 	

Page	:	5 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-001	 	 		
Analyte	Wiethou/Lab	LOIN	Onn	(Continued)	 	 	-	
Dissolved Metals - Continu	led			(Continued)				
Silicon, dissolved	E421/WP	0.050	mg/L	4.24	 	 		
Silver, dissolved	E421/WP	0.000010	mg/L	<0.00010	 	 		
Sodium, dissolved	E421/WP	0.050	mg/L	1110	 	 		
Strontium, dissolved	E421/WP	0.00020	mg/L	3.53	 	 		
Sulfur, dissolved	E421/WP	0.50	mg/L	347	 	 		
Tellurium, dissolved	E421/WP	0.00020	mg/L	Not Detected	 	 		
Thallium, dissolved	E421/WP	0.000010	mg/L	0.000010	 	 		
Thorium, dissolved	E421/WP	0.00010	mg/L	Not Detected	 	 		
Tin, dissolved	E421/WP	0.00010	mg/L	0.00194	 	 		
Titanium, dissolved	E421/WP	0.00030	mg/L	<0.00030	 	 		
Tungsten, dissolved	E421/WP	0.00010	mg/L	0.00042	 	 		
Uranium, dissolved	E421/WP	0.000010	mg/L	0.00247	 	 		
Vanadium, dissolved	E421/WP	0.00050	mg/L	<0.00050	 	 		
Zinc, dissolved	E421/WP	0.0010	mg/L	0.0015	 	 		
Zirconium, dissolved	E421/WP	0.00030	mg/L	<0.00030	 	 		
Dissolved metals filtration	EP421/WP		-	Laboratory	 	 		
location								
Volatile Organic Compour	nds							
Benzene	E611A/WP	0.00050	mg/L	<0.00050	 	 		
Ethylbenzene	E611A/WP	0.00050	mg/L	<0.00050	 	 		
Styrene	E611A/WP	0.00050	mg/L	<0.00050	 	 		
Toluene	E611A/WP	0.00050	mg/L	<0.00050	 	 		
Xylene, m+p-	E611A/WP	0.00040	mg/L	<0.00040	 	 		
Xylene, o-	E611A/WP	0.00030	mg/L	<0.00030	 	 		
Xylenes, total	E611A/WP	0.00050	mg/L	<0.00050	 	 		
Hydrocarbons								
F1 (C6-C10)	E581.F1/WP	0.10	mg/L	<0.10	 	 		
F2 (C10-C16)	E601/WP	0.10	mg/L	<0.10	 	 		
F1-BTEX	EC580/WP	0.100	mg/L	<0.100	 	 		
Bromobenzotrifluoride, 2-	E601/WP	1.0	%	76.4	 	 		
(F2-F4 surrogate)				00.7				
Dichlorotoluene, 3,4-	E581.F1/WP	1.0	%	92.7	 	 		
Bromofluorobenzene, 4-	E611A/WP	1.0	%	101	 	 		
Difluorobenzene, 1,4-	E611A/WP	1.0	%	102	 	 		
Polycyclic Aromatic Hydro								
Acenaphthene	E641A/WT	0.010	µg/L	<0.010	 	 		

Page	:	6 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-001	 	 	
				(Continued)			
Polycyclic Aromatic Hydroca	arbons - Continued	ł					
Acenaphthylene	E641A/WT	0.010	µg/L	<0.010	 	 	
Acridine	E641A/WT	0.010	µg/L	< 0.016 DLM RRR	 	 	
Anthracene	E641A/WT	0.010	µg/L	<0.010	 	 	
Benz(a)anthracene	E641A/WT	0.010	µg/L	<0.010	 	 	
Benzo(a)pyrene	E641A/WT	0.0050	µg/L	<0.0050	 	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	µg/L	<0.010	 	 	
Benzo(b+j+k)fluoranthene	E641A/WT	0.015	µg/L	<0.015	 	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	µg/L	<0.010	 	 	
Benzo(k)fluoranthene	E641A/WT	0.010	µg/L	<0.010	 	 	
Chrysene	E641A/WT	0.010	µg/L	<0.010	 	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	µg/L	<0.0050	 	 	
Fluoranthene	E641A/WT	0.010	µg/L	0.015	 	 	
Fluorene	E641A/WT	0.010	µg/L	<0.010	 	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	µg/L	<0.010	 	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	µg/L	0.059	 	 	
Methylnaphthalene, 1-	E641A/WT	0.010	µg/L	0.024	 	 	
Methylnaphthalene, 2-	E641A/WT	0.010	µg/L	0.035	 	 	
Naphthalene	E641A/WT	0.050	µg/L	<0.050	 	 	
Phenanthrene	E641A/WT	0.020	µg/L	0.025	 	 	
Pyrene	E641A/WT	0.010	µg/L	0.030	 	 	
Quinoline	E641A/WT	0.050	µg/L	<0.050	 	 	
B(a)P total potency equivalents [B(a)P TPE]	E641A/WT	0.010	µg/L	<0.010	 	 	
PAHs, high molecular weight (BC AWQ)	E641A/WT	0.030	µg/L	0.045	 	 	
PAHs, low molecular weight (BC AWQ)	E641A/WT	0.060	µg/L	<0.060	 	 	
PAHs, total (CCME sewer 18)	E641A/WT	0.070	µg/L	0.129	 	 	
PAHs, total (EPA 16)	E641A/WT	0.065	µg/L	0.070	 	 	
Chrysene-d12	E641A/WT	0.1	%	93.7	 	 	
Naphthalene-d8	E641A/WT	0.1	%	103	 	 	
Phenanthrene-d10	E641A/WT	0.1	%	108	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	7 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

No Breaches Found

Key:

Page	:	8 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analytical Results

,, ,				7110 4 0.5					
			Client sample ID	TH24-05					
Sub-Matrix: Water		Sa	ampling date/time	06-Feb-2025 12:00					
(Matrix: Water)	Method/Lab	LOR	Unit	WP2501636-002				1	1
Analyte	Method/Lab	LOR	Unit	WP2501656-002		 	 		
Anions and Nutrients									
Ammonia, total (as N)	E298/WP	0.0050	mg/L	0.882		 	 		
Nitrate (as N)	E235.NO3/WP	0.020	mg/L	<0.400	DLM	 	 		
Nitrite (as N)	E235.NO2/WP	0.010	mg/L	<0.200	DLM	 	 		
Total Metals									
Aluminum, total	E420/WP	0.0030	mg/L	219		 	 		
Antimony, total	E420/WP	0.00010	mg/L	0.00293		 	 		
Arsenic, total	E420/WP	0.00010	mg/L	0.171		 	 		
Barium, total	E420/WP	0.00010	mg/L	3.64		 	 		
Beryllium, total	E420/WP	0.000020	mg/L	0.0173		 	 		
Bismuth, total	E420/WP	0.000050	mg/L	0.00544		 	 		
Boron, total	E420/WP	0.010	mg/L	1.43		 	 		
Cadmium, total	E420/WP	0.0000050	mg/L	0.00942		 	 		
Calcium, total	E420/WP	0.050	mg/L	4730		 	 		
Cesium, total	E420/WP	0.000010	mg/L	0.0488		 	 		
Chromium, total	E420/WP	0.00050	mg/L	0.889		 	 		
Cobalt, total	E420/WP	0.00010	mg/L	0.240		 	 		
Copper, total	E420/WP	0.00050	mg/L	0.747		 	 		
Iron, total	E420/WP	0.010	mg/L	583		 	 		
Lead, total	E420/WP	0.000050	mg/L	0.276		 	 		
Lithium, total	E420/WP	0.0010	mg/L	0.775		 	 		
Magnesium, total	E420/WP	0.0050	mg/L	2400		 	 		
Manganese, total	E420/WP	0.00010	mg/L	17.8		 	 		
Molybdenum, total	E420/WP	0.000050	mg/L	0.0291		 	 		
Nickel, total	E420/WP	0.00050	mg/L	0.714		 	 		
Phosphorus, total	E420/WP	0.050	mg/L	14.2		 	 		
Potassium, total	E420/WP	0.050	mg/L	114		 	 		
Rubidium, total	E420/WP	0.00020	mg/L	0.666		 	 		
Selenium, total	E420/WP	0.000050	mg/L	0.00749		 	 		
Silicon, total	E420/WP	0.10	mg/L	468		 	 		
Silver, total	E420/WP	0.000010	mg/L	0.00288		 	 		
Sodium, total	E420/WP	0.050	mg/L	959		 	 		
Strontium, total	E420/WP	0.00020	mg/L	6.92		 	 		

Page	:	9 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-002	 	 	
				(Continued)			
Total Metals - Continued							
Sulfur, total	E420/WP	0.50	mg/L	308	 	 	
Tellurium, total	E420/WP	0.00020	mg/L	<0.00200 DLM	 	 	
Thallium, total	E420/WP	0.000010	mg/L	0.00617	 	 	
Thorium, total	E420/WP	0.00010	mg/L	0.126	 	 	
Tin, total	E420/WP	0.00010	mg/L	0.0268	 	 	
Titanium, total	E420/WP	0.00030	mg/L	2.96	 	 	
Tungsten, total	E420/WP	0.00010	mg/L	0.00803	 	 	
Uranium, total	E420/WP	0.000010	mg/L	0.0511	 	 	
Vanadium, total	E420/WP	0.00050	mg/L	0.684	 	 	
Zinc, total	E420/WP	0.0030	mg/L	2.68	 	 	
Zirconium, total	E420/WP	0.00020	mg/L	0.0111	 	 	
Dissolved Metals							
Aluminum, dissolved	E421/WP	0.0010	mg/L	0.0016	 	 	
Antimony, dissolved	E421/WP	0.00010	mg/L	0.00011	 	 	
Arsenic, dissolved	E421/WP	0.00010	mg/L	0.00076	 	 	
Barium, dissolved	E421/WP	0.00010	mg/L	0.0321	 	 	
Beryllium, dissolved	E421/WP	0.000020	mg/L	Not Detected	 	 	
Bismuth, dissolved	E421/WP	0.000050	mg/L	Not Detected	 	 	
Boron, dissolved	E421/WP	0.010	mg/L	0.792	 	 	
Cadmium, dissolved	E421/WP	0.0000050	mg/L	0.0000111	 	 	
Calcium, dissolved	E421/WP	0.050	mg/L	239	 	 	
Cesium, dissolved	E421/WP	0.000010	mg/L	0.000070	 	 	
Chromium, dissolved	E421/WP	0.00050	mg/L	Not Detected	 	 	
Cobalt, dissolved	E421/WP	0.00010	mg/L	0.00097	 	 	
Copper, dissolved	E421/WP	0.00020	mg/L	<0.00020	 	 	
Iron, dissolved	E421/WP	0.010	mg/L	<0.010	 	 	
Lead, dissolved	E421/WP	0.000050	mg/L	Not Detected	 	 	
Lithium, dissolved	E421/WP	0.0010	mg/L	0.266	 	 	
Magnesium, dissolved	E421/WP	0.0050	mg/L	151	 	 	
Manganese, dissolved	E421/WP	0.00010	mg/L	0.0941	 	 	
Molybdenum, dissolved	E421/WP	0.000050	mg/L	0.00386	 	 	
Nickel, dissolved	E421/WP	0.00050	mg/L	0.00377	 	 	
Phosphorus, dissolved	E421/WP	0.050	mg/L	<0.050	 	 	
Potassium, dissolved	E421/WP	0.050	mg/L	33.6	 	 	
Rubidium, dissolved	E421/WP	0.00020	mg/L	0.0131	 	 	
Selenium, dissolved	E421/WP	0.000050	mg/L	<0.000050	 	 	

Page	:	10 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-002	 	 	
				(Continued)			
Dissolved Metals - Continue	ed			(0000000)			<u> </u>
Silicon, dissolved	E421/WP	0.050	mg/L	6.31	 	 	
Silver, dissolved	E421/WP	0.000010	mg/L	Not Detected	 	 	
Sodium, dissolved	E421/WP	0.050	mg/L	935	 	 	
Strontium, dissolved	E421/WP	0.00020	mg/L	3.02	 	 	
Sulfur, dissolved	E421/WP	0.50	mg/L	297	 	 	
Tellurium, dissolved	E421/WP	0.00020	mg/L	Not Detected	 	 	
Thallium, dissolved	E421/WP	0.000010	mg/L	0.000022	 	 	
Thorium, dissolved	E421/WP	0.00010	mg/L	Not Detected	 	 	
Tin, dissolved	E421/WP	0.00010	mg/L	0.00070	 	 	
Titanium, dissolved	E421/WP	0.00030	mg/L	<0.00030	 	 	
Tungsten, dissolved	E421/WP	0.00010	mg/L	0.00072	 	 	
Uranium, dissolved	E421/WP	0.000010	mg/L	0.00243	 	 	
Vanadium, dissolved	E421/WP	0.00050	mg/L	<0.00050	 	 	
Zinc, dissolved	E421/WP	0.0010	mg/L	0.0021	 	 	
Zirconium, dissolved	E421/WP	0.00030	mg/L	<0.00030	 	 	
Dissolved metals filtration	EP421/WP		-	Laboratory	 	 	
location							
Volatile Organic Compoun							
Benzene	E611A/WP	0.00050	mg/L	<0.00050	 	 	
Ethylbenzene	E611A/WP	0.00050	mg/L	<0.00050	 	 	
Styrene	E611A/WP	0.00050	mg/L	<0.00050	 	 	
Toluene	E611A/WP	0.00050	mg/L	<0.00050	 	 	
Xylene, m+p-	E611A/WP	0.00040	mg/L	<0.00040	 	 	
Xylene, o-	E611A/WP	0.00030	mg/L	<0.00030	 	 	
Xylenes, total	E611A/WP	0.00050	mg/L	<0.00050	 	 	
Hydrocarbons							
F1 (C6-C10)	E581.F1/WP	0.10	mg/L	<0.10	 	 	
F2 (C10-C16)	E601/WP	0.10	mg/L	<0.10	 	 	
F1-BTEX	EC580/WP	0.100	mg/L	<0.100	 	 	
Bromobenzotrifluoride, 2-	E601/WP	1.0	%	81.8	 	 	
(F2-F4 surrogate)							
Dichlorotoluene, 3,4-	E581.F1/WP	1.0	%	89.5	 	 	
Bromofluorobenzene, 4-	E611A/WP	1.0	%	95.0	 	 	
Difluorobenzene, 1,4-	E611A/WP	1.0	%	105	 	 	
Polycyclic Aromatic Hydro							
Acenaphthene	E641A/WT	0.010	µg/L	<0.019 DLM	 	 	

Page	:	11 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-002 (Continued)		 	 	
Polycyclic Aromatic Hydroc	arbons - Continued	1						
Acenaphthylene	E641A/WT	0.010	µg/L	<0.010		 	 	
Acridine	E641A/WT	0.010	µg/L	<0.091 DLM RR	۲ <u></u>	 	 	
Anthracene	E641A/WT	0.010	µg/L	<0.020 DLM	1	 	 	
Benz(a)anthracene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benzo(a)pyrene	E641A/WT	0.0050	µg/L	<0.0050		 	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	µg/L	<0.015 DLM	۰ <u></u>	 	 	
Benzo(b+j+k)fluoranthene	E641A/WT	0.015	µg/L	<0.021		 	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benzo(k)fluoranthene	E641A/WT	0.010	µg/L	<0.015 DLM	<u> </u>	 	 	
Chrysene	E641A/WT	0.010	µg/L	<0.014 DLM	<u> </u>	 	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	µg/L	<0.0050		 	 	
Fluoranthene	E641A/WT	0.010	μg/L	<0.056 DLM	۰	 	 	
Fluorene	E641A/WT	0.010	μg/L	0.035		 	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	μg/L	<0.010		 	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	μg/L	0.127		 	 	
Methylnaphthalene, 1-	E641A/WT	0.010	μg/L	0.050		 	 	
Methylnaphthalene, 2-	E641A/WT	0.010	μg/L	0.077		 	 	
Naphthalene	E641A/WT	0.050	μg/L	0.059		 	 	
Phenanthrene	E641A/WT	0.020	μg/L	0.099		 	 	
Pyrene	E641A/WT	0.010	μg/L	0.095		 	 	
Quinoline	E641A/WT	0.050	μg/L	<0.050		 	 	
B(a)P total potency equivalents [B(a)P TPE]	E641A/WT	0.010	µg/L	<0.010		 	 	
PAHs, high molecular weight (BC AWQ)	E641A/WT	0.030	µg/L	0.095		 	 	
PAHs, low molecular weight (BC AWQ)	E641A/WT	0.060	µg/L	0.193		 	 	
PAHs, total (CCME sewer 18)	E641A/WT	0.070	µg/L	0.415		 	 	
PAHs, total (EPA 16)	E641A/WT	0.065	µg/L	0.288		 	 	
Chrysene-d12	E641A/WT	0.1	%	96.4		 	 	
Naphthalene-d8	E641A/WT	0.1	%	103		 	 	
Phenanthrene-d10	E641A/WT	0.1	%	110		 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	12 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

No Breaches Found

Key:

Page	:	13 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analytical Results

			Client sample ID	DUP-01	1			
Sub-Matrix: Water		0	ampling date/time	06-Feb-2025	-			
Matrix: Water)			amping date/time	13:00				
Analyte	Method/Lab	LOR	Unit	WP2501636-003		 	 	
Anions and Nutrients								
Ammonia, total (as N)	E298/WP	0.0050	mg/L	0.882		 	 	
Nitrate (as N)	E235.NO3/WP	0.020	mg/L	<0.400 DLM	1	 	 	
Nitrite (as N)	E235.NO2/WP	0.010	mg/L	<0.200 DLM	1	 	 	
Total Metals								
Aluminum, total	E420/WP	0.0030	mg/L	203		 	 	
Antimony, total	E420/WP	0.00010	mg/L	0.00299		 	 	
Arsenic, total	E420/WP	0.00010	mg/L	0.153		 	 	
Barium, total	E420/WP	0.00010	mg/L	3.23		 	 	
Beryllium, total	E420/WP	0.000020	mg/L	0.0156		 	 	
Bismuth, total	E420/WP	0.000050	mg/L	0.00457		 	 	
Boron, total	E420/WP	0.010	mg/L	1.42		 	 	
Cadmium, total	E420/WP	0.0000050	mg/L	0.00714		 	 	
Calcium, total	E420/WP	0.050	mg/L	4180		 	 	
Cesium, total	E420/WP	0.000010	mg/L	0.0423		 	 	
Chromium, total	E420/WP	0.00050	mg/L	0.706		 	 	
Cobalt, total	E420/WP	0.00010	mg/L	0.181		 	 	
Copper, total	E420/WP	0.00050	mg/L	0.584		 	 	
Iron, total	E420/WP	0.010	mg/L	473		 	 	
Lead, total	E420/WP	0.000050	mg/L	0.235		 	 	
Lithium, total	E420/WP	0.0010	mg/L	0.660		 	 	
Magnesium, total	E420/WP	0.0050	mg/L	2260		 	 	
Manganese, total	E420/WP	0.00010	mg/L	12.2		 	 	
Molybdenum, total	E420/WP	0.000050	mg/L	0.0283		 	 	
Nickel, total	E420/WP	0.00050	mg/L	0.544		 	 	
Phosphorus, total	E420/WP	0.050	mg/L	12.6		 	 	
Potassium, total	E420/WP	0.050	mg/L	103		 	 	
Rubidium, total	E420/WP	0.00020	mg/L	0.552		 	 	
Selenium, total	E420/WP	0.000050	mg/L	0.00631		 	 	
Silicon, total	E420/WP	0.10	mg/L	451		 	 	
Silver, total	E420/WP	0.000010	mg/L	0.00234		 	 	
Sodium, total	E420/WP	0.050	mg/L	870		 	 	
Strontium, total	E420/WP	0.00020	mg/L	5.48		 	 	

Page	:	14 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-003	 	 	
				(Continued)			
Total Metals - Continued							
Sulfur, total	E420/WP	0.50	mg/L	293	 	 	
Tellurium, total	E420/WP	0.00020	mg/L	<0.00200 DLM	 	 	
Thallium, total	E420/WP	0.000010	mg/L	0.00522	 	 	
Thorium, total	E420/WP	0.00010	mg/L	0.106	 	 	
Tin, total	E420/WP	0.00010	mg/L	0.0316	 	 	
Titanium, total	E420/WP	0.00030	mg/L	2.88	 	 	
Tungsten, total	E420/WP	0.00010	mg/L	0.00895	 	 	
Uranium, total	E420/WP	0.000010	mg/L	0.0400	 	 	
Vanadium, total	E420/WP	0.00050	mg/L	0.627	 	 	
Zinc, total	E420/WP	0.0030	mg/L	1.98	 	 	
Zirconium, total	E420/WP	0.00020	mg/L	0.0109	 	 	
Dissolved Metals							
Aluminum, dissolved	E421/WP	0.0010	mg/L	0.0014	 	 	
Antimony, dissolved	E421/WP	0.00010	mg/L	0.00012	 	 	
Arsenic, dissolved	E421/WP	0.00010	mg/L	0.00060	 	 	
Barium, dissolved	E421/WP	0.00010	mg/L	0.0344	 	 	
Beryllium, dissolved	E421/WP	0.000020	mg/L	Not Detected	 	 	
Bismuth, dissolved	E421/WP	0.000050	mg/L	Not Detected	 	 	
Boron, dissolved	E421/WP	0.010	mg/L	0.824	 	 	
Cadmium, dissolved	E421/WP	0.0000050	mg/L	0.0000111	 	 	
Calcium, dissolved	E421/WP	0.050	mg/L	245	 	 	
Cesium, dissolved	E421/WP	0.000010	mg/L	0.000070	 	 	
Chromium, dissolved	E421/WP	0.00050	mg/L	Not Detected	 	 	
Cobalt, dissolved	E421/WP	0.00010	mg/L	0.00090	 	 	
Copper, dissolved	E421/WP	0.00020	mg/L	<0.00020	 	 	
Iron, dissolved	E421/WP	0.010	mg/L	<0.010	 	 	
Lead, dissolved	E421/WP	0.000050	mg/L	<0.000050	 	 	
Lithium, dissolved	E421/WP	0.0010	mg/L	0.258	 	 	
Magnesium, dissolved	E421/WP	0.0050	mg/L	144	 	 	
Manganese, dissolved	E421/WP	0.00010	mg/L	0.0938	 	 	
Molybdenum, dissolved	E421/WP	0.000050	mg/L	0.00445	 	 	
Nickel, dissolved	E421/WP	0.00050	mg/L	0.00354	 	 	
Phosphorus, dissolved	E421/WP	0.050	mg/L	Not Detected	 	 	
Potassium, dissolved	E421/WP	0.050	mg/L	33.9	 	 	
Rubidium, dissolved	E421/WP	0.00020	mg/L	0.0138	 	 	
Selenium, dissolved	E421/WP	0.000050	mg/L	<0.000050	 	 	

Page	:	15 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-003 (Continued)					
Dissolved Metals - Continued									
Silicon, dissolved	E421/WP	0.050	mg/L	6.30					
Silver, dissolved	E421/WP	0.000010	mg/L	<0.00010					
Sodium, dissolved	E421/WP	0.050	mg/L	921					
Strontium, dissolved	E421/WP	0.00020	mg/L	3.06					
Sulfur, dissolved	E421/WP	0.50	mg/L	311					
Tellurium, dissolved	E421/WP	0.00020	mg/L	Not Detected					
Thallium, dissolved	E421/WP	0.000010	mg/L	0.000036					
Thorium, dissolved	E421/WP	0.00010	mg/L	Not Detected					
Tin, dissolved	E421/WP	0.00010	mg/L	0.00077					
Titanium, dissolved	E421/WP	0.00030	mg/L	<0.00030					
Tungsten, dissolved	E421/WP	0.00010	mg/L	0.00098					
Uranium, dissolved	E421/WP	0.000010	mg/L	0.00259					
Vanadium, dissolved	E421/WP	0.00050	mg/L	<0.00050					
Zinc, dissolved	E421/WP	0.0010	mg/L	0.0015					
Zirconium, dissolved	E421/WP	0.00030	mg/L	<0.00030					
Dissolved metals filtration	EP421/WP		-	Laboratory					
location									
Volatile Organic Compounds									
Benzene	E611A/WP	0.00050	mg/L	<0.00050					
Ethylbenzene	E611A/WP	0.00050	mg/L	<0.00050					
Styrene	E611A/WP	0.00050	mg/L	<0.00050					
Toluene	E611A/WP	0.00050	mg/L	<0.00050					
Xylene, m+p-	E611A/WP	0.00040	mg/L	<0.00040					
Xylene, o-	E611A/WP	0.00030	mg/L	<0.00030					
Xylenes, total	E611A/WP	0.00050	mg/L	<0.00050					
Hydrocarbons									
F1 (C6-C10)	E581.F1/WP	0.10	mg/L	<0.10					
F2 (C10-C16)	E601/WP	0.10	mg/L	<0.10					
F1-BTEX	EC580/WP	0.100	mg/L	<0.100					
Bromobenzotrifluoride, 2-	E601/WP	1.0	%	70.3					
(F2-F4 surrogate)				00.0					
Dichlorotoluene, 3,4-	E581.F1/WP	1.0	%	89.2					
Bromofluorobenzene, 4-	E611A/WP	1.0	%	103					
Difluorobenzene, 1,4-	E611A/WP	1.0	%	111					
Polycyclic Aromatic Hydroca									
Acenaphthene	E641A/WT	0.010	µg/L	<0.010					

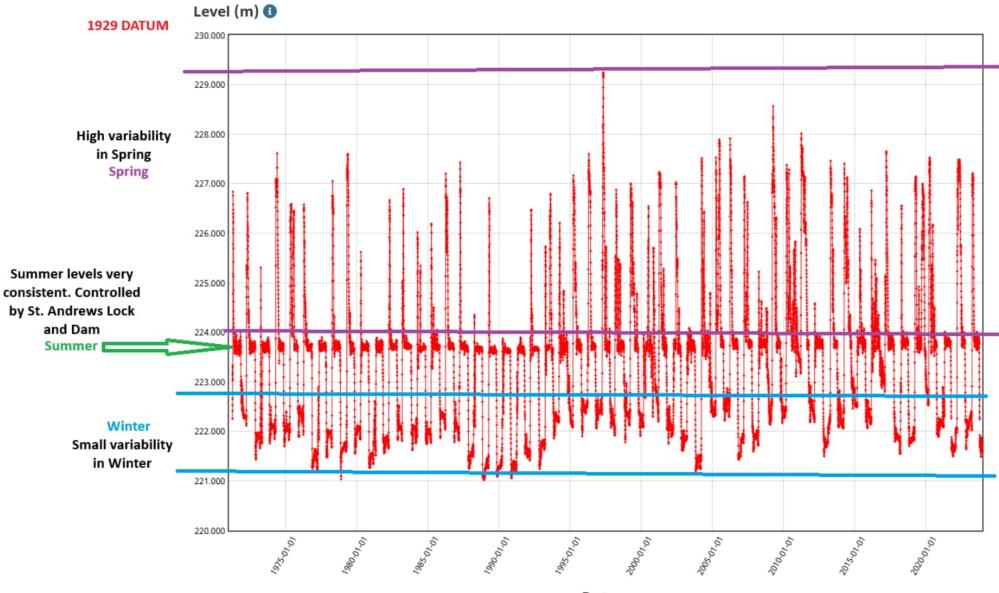
Page	:	16 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226

Analyte	Method/Lab	LOR	Unit	WP2501636-003 (Continued)		 	 	
Polycyclic Aromatic Hydroc	arbons - Continue	d						
Acenaphthylene	E641A/WT	0.010	µg/L	<0.010		 	 	
Acridine	E641A/WT	0.010	µg/L	<0.039 DLM R	RR	 	 	
Anthracene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benz(a)anthracene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benzo(a)pyrene	E641A/WT	0.0050	µg/L	<0.0050		 	 	
Benzo(b+j)fluoranthene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benzo(b+j+k)fluoranthene	E641A/WT	0.015	µg/L	<0.015		 	 	
Benzo(g,h,i)perylene	E641A/WT	0.010	µg/L	<0.010		 	 	
Benzo(k)fluoranthene	E641A/WT	0.010	µg/L	<0.010		 	 	
Chrysene	E641A/WT	0.010	µg/L	<0.010		 	 	
Dibenz(a,h)anthracene	E641A/WT	0.0050	µg/L	<0.0050		 	 	
Fluoranthene	E641A/WT	0.010	µg/L	0.026		 	 	
Fluorene	E641A/WT	0.010	µg/L	0.016		 	 	
Indeno(1,2,3-c,d)pyrene	E641A/WT	0.010	µg/L	<0.010		 	 	
Methylnaphthalene, 1+2-	E641A/WT	0.015	µg/L	0.063		 	 	
Methylnaphthalene, 1-	E641A/WT	0.010	µg/L	0.025		 	 	
Methylnaphthalene, 2-	E641A/WT	0.010	µg/L	0.038		 	 	
Naphthalene	E641A/WT	0.050	µg/L	<0.050		 	 	
Phenanthrene	E641A/WT	0.020	µg/L	0.040		 	 	
Pyrene	E641A/WT	0.010	µg/L	0.050		 	 	
Quinoline	E641A/WT	0.050	µg/L	<0.050		 	 	
B(a)P total potency equivalents [B(a)P TPE]	E641A/WT	0.010	µg/L	<0.010		 	 	
PAHs, high molecular weight (BC AWQ)	E641A/WT	0.030	µg/L	0.076		 	 	
PAHs, low molecular weight (BC AWQ)	E641A/WT	0.060	µg/L	<0.060		 	 	
PAHs, total (CCME sewer 18)	E641A/WT	0.070	µg/L	0.195		 	 	
PAHs, total (EPA 16)	E641A/WT	0.065	µg/L	0.132		 	 	
Chrysene-d12	E641A/WT	0.1	%	102		 	 	
Naphthalene-d8	E641A/WT	0.1	%	108		 	 	
Phenanthrene-d10	E641A/WT	0.1	%	116		 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page	:	17 of 17
Work Order	:	WP2501636
Client	:	AECOM Canada ULC
Project	:	60728226


No Breaches Found

Key:

Appendix

Daily Water Level Grap

Date

Gene Acurin, E.I.T., B.Eng. Geotechnical, EIT M: 204.471.0136 E: gene.acurin@aecom.com

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204.477.5381 M: 431.335.9734 E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com