

WSP Canada Group Ltd.

2024 Local Street Renewal (24-K-01, 24-R1-01)

Prepared for:

Mark Vogt, M.Sc., P.Eng. WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

Project Number: 1000-043-25

Date: March 21, 2024

Quality Engineering | Valued Relationships

March 21, 2024

Our File No. 1000-043-25

Mark Vogt, M.Sc., P.Eng. WSP Canada Group Ltd. 111-93 Lombard Avenue Winnipeg, MB R3B 3B1

RE: 2024 Local Street Renewal (24-K-01, 24-R1-01) - Revised

TREK Geotechnical Inc. is pleased to submit our Final Report for the geotechnical investigation for 2024 Local Street Renewal (24-K-01, 24-R1-01) project.

Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	KF	March 21, 2024	Final Report
1	KF	March 21, 2024	Revision 1

Authorization Signatures

Prepared By:

Tal H

Kate Franklin M.Sc. (Geotechnical Engineering) Technical Support Specialist

Reviewed By:

Nelson John Ferreira, Ph.D., P.Eng. Senior Geotechnical Engineer

Table of Contents

List of Tables

Table 1: Road Investigation Program	1
Table 2: CBR Testing Summary	
Table 3: Concrete Core Compressive Strength Results	3

List of Figures

Figure 01	Test Hole Location Plan – Adamar Rd
Figure 02	Test Hole and Pavement Core Location Plan – Dudley Ave, Daly St, and Lorette Ave
Figure 03	Test Hole and Pavement Core Location Plan – Irene St
Figure 04	Pavement Core Location Plan – Harrow St and Sparling Ave

List of Appendices

- Appendix A Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos Adamar Rd – Pembina Hwy to End
 Appendix B Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos – Daly St N – Lorette Ave to Pembina Hwy
- Appendix C Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos– Dudley Ave – Pembina Hwy to Daly St N.
- Appendix D Test Hole Logs, Summary Table & Lab Testing Results and Pavement Core Photos– Irene St – Clarence Ave to Waller Ave
- Appendix E Summary Table and Pavement Core Photos Daly St N Lorette to Pembina Hwy

Appendix F	Summary Table and	l Pavement Core Photo	os – Dudlev Ave	– Dalv St N to End
	,			

Appendix G	Summary Tabl	e and Pavement	t Core Photos	- Harrow St -	– Sparling A	Ave to Harrow St
					~r	

- Appendix H Summary Table and Pavement Core Photos Irene St Waller Ave to Sony Pl
- Appendix I Summary Table and Pavement Core Photos Lorette Ave Pembina Hwy to Daly St N
- Appendix J Summary Table and Pavement Core Photos Sparling Ave End (Walmart Parking Lot) to Harrow St

1.0 Introduction

This report summarizes the results of the road investigation completed for the 2024 Local Streets Renewal (23-K-01, 24-R1-01) project. The project included drilling test holes and collecting pavement cores along several streets. The test hole information collected describes the pavement structure of the existing road as well as the soil stratigraphy beneath the pavement structure. The investigation was carried out following the City of Winnipeg RFP No. 751-2023 (Section E3 – Site Investigation Requirements).

2.0 Road Investigation

The investigation included coring of pavement at 32 locations on 7 different Local streets with drilling of test holes occurring at 12 of the cored locations along four streets. The investigation locations are shown on Figures 01 to 04 (attached) and the table below summarizes the investigation program per street.

24-K-01, 24-RI-01 Pavement and Geotechnical Investigation	# of Locations	Investigation
Adamar Rd – Pembina Hwy to End	4	4 Test holes to 3.0m
Daly St N - Lorette Ave to Pembina Hwy	1	1 Test hole to 3.0m 3 Cores
Dudley Ave – Pembina Hwy to Daly St N.	2	2 Test holes to 3.0m
Dudley Ave – Daly St N to End	1	1 Core
Harrow St – Sparling Ave to Harrow St.	3	3 Cores
Irene St – Clarence Ave to Waller Ave	5	5 Test holes to 3.0m
Irene St – Waller Ave to Sony Pl	4	4 Cores
Lorette Ave – Pembina Hwy to Daly St N	3	3 Cores
Sparling Ave – End (Walmart Parking Lot) to Harrow St.	6	6 Cores

Table I – Road Investigation Program

The road investigation was conducted between February 20, 2024 to February 26, 2024. The pavement structure (asphalt/concrete) was cored by Tyler Green of TREK Geotechnical Inc. (TREK) using a portable coring press equipped with a hollow 150 mm diameter diamond core drill bits. The test holes were drilled by Paddock Drilling Ltd to a depth of approximately 3.0 m below road surface using a truck mounted drill rig equipped with 125 mm diameter solid stem augers. The sub-surface conditions

were observed during drilling and visually classified by Kate Franklin of TREK. Other pertinent information such as groundwater and drilling conditions were also recorded during the drilling investigation. Disturbed (auger cuttings) samples and bulk samples retrieved during the sub-surface investigation were transported to TREK's material testing laboratory for further testing. Pavement core samples were also retrieved and logged at TREK's material testing laboratory.

Core and test hole logs noted on the summary tables and test hole locations are based on UTM coordinates obtained using a hand-held GPS, and their location relative to the nearest address or intersection, measured distance from the edge of pavement, or other permanent features.

The laboratory testing program consisted of moisture content determination on all samples, as well as Atterberg Limits, and grain size analysis (mechanical sieve and hydrometer methods) on select samples between 0.6 and 0.9 m below pavement as well as Standard Proctor and CBR testing. Information gathered for each street package is included in separate appendices (Appendices A to J). The information provided in the Appendices includes test hole logs, laboratory testing summary tables and results, photos of the concrete cores, and summary of pavement core compressive strength.

Six CBR's were completed on bulk samples of the soil units present below the pavement. Tests were performed on clay and silt layers encountered within the prescribed sample depth for CBR testing and the results are shown in the table below.

Soil Unit	Street	Depth (m)	SPMDD (kg/m³)	Opt. Moisture (%)	Percent Proctor (%)	Moisture Content (%)	CBR Value at 2.54 mm	CBR Value at 5.08 mm
Clay	Irene St: TH24-01 & TH24-02 Combined	1.4 - 2.0	1385	31.5	95.4	31.8	1.7%	1.3%
Clay	Irene St: TH24-03 & TH24-04 Combined	0.9 - 2.0	1390	30.3	94.8	29.7	1.7%	1.3%
Silt	Dudley Ave: TH24-06 & TH24-07 Combined	0.9 – 1.5	1864	14.3	94.9	14.4	6.8%	5.7%
Clay	Dudley Ave: TH24-06 & TH24-07 Combined	1.5 – 2.0	1397	30.8	94.7	30.7	1.5%	1.3%
Silt	Adamar Rd: TH24-09 & TH24-11 Combined	0.9 - 1.5	1704	15.4	94.8	15.1	3.5%	2.9%
Clay	Adamar Rd: TH24-11 & TH24-12 Combined	1.5 - 2.0 0.9 - 2.0	1421	28.5	96.7	27.6	1.5%	1.3%

Table 1: CBR Testing Summary

The test hole logs include a description of the soil units encountered during drilling and other pertinent

information such as groundwater conditions and a summary of the laboratory testing results. The soils were classified in general accordance with the Unified Soil Classification System (USCS) and the AASHTO soil classification system (American Association of state highway and transportation officials). The AASHTO system classifies soils based on laboratory testing results from Atterberg Limits and grain size testing methods (hydrometer and mechanical sieve method). Where laboratory testing was not conducted, the AASHTO classification of the soils were interpreted based on a visual assessment as indicated with a (I) on the test hole logs and attached tables. For cohesive soils, the AASHTO system uses a combination of testing results to determine the Group Index of the soils and thus, were only determined where sufficient laboratory test data was available.

Ten concrete cores were selected for concrete compressive strength breaks and the length to diameter ratio ranged between 1.00 to 1.30 for the cores collected. The core compressive strength tests were tested in accordance with CSA A23.2-14C – wet dried condition. The measured compressive strengths were also corrected based on an adapted ACI 214.4R-03 Standard to estimate the in-place concrete strengths. The table below summarizes the compressive strength results while the compressive strength testing details and the correction factor methodology are included in Appendix A and D through F.

Core ID (Location)	Uncorrected Compressive Strength (MPa)	Corrected Compressive Strength (MPa)
PC24-06 (Daly Street)	41.57	43.67
PC24-10 (Daly Street)	58.68	63.07
PC24-12 (Harrow Street)	62.48	66.02
PC24-17 (Harrow Street)	47.91	49.59
PC24-01 (Irene Street)	35.91	39.83
PC24-03 (Irene Street)	53.29	55.86
PC24-07 (Lorette Avenue)	61.79	65.05
PC24-11 (Lorette Avenue)	63.83	66.68
PC24-14 (Sparling Avenue)	52.38	56.61
PC24-20 (Sparling Avenue)	60.62	63.08

Table 2: Concrete	e Core Compressive Strength Res	ults
-------------------	---------------------------------	------

3.0 Closure

The information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field

investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of WSP Canada Group Ltd. (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

SCALE = 1 : 600 (279 mm x 432 mm)

1000 043 025

WSP

2024 Local Streets Renewal Package

PAVEMENT CORE (TREK, 2024)

1000 043 025

WSP

2024 Local Streets Renewal Package

Test Hole and Pavement Core Location Plan

SCALE = 1 : 1 750 (279 mm x 432 mm)

PAVEMENT CORE (TREK, 2024)

NOTES: 1. AERIAL IMAGERY FROM CITY OF WINNIPEG (2021) .

1000 043 025

WSP

2024 Local Streets Renewal Package

Figure 03 Test Hole and Pavement Core Location Plan

0

1000 043 025 WSP 2024 Local Streets Renewal Package

Appendix A

Test Hole Logs, Summary Table, Lab Testing Results and Pavement Core Photos

Adamar Rd – Pembina Hwy to End

Client:	:	WSP						Project Number: 10			1000-043-25									
Projec	t Name:	2024 Local	Street Rer	newal (24	-K-01, 24	I-R1-01)	Loca	tion:	UTM	N-552	0803	8, E-6329	51 - A	damar	Rd				
Contra	actor:	Paddock Dri	lling Ltd.					Grou	nd Elevation	: Top c	Top of Pavement									
Metho	d:	150 mm Solid	Stem Auger	r, M10 Truc	k Mount			Date	Drilled:	Febru	ary 27	7, 202	24							
S	Sample T	ype:		Grab (G)			Shelby Tube (T)		Split Spoon (S	SS) / SP	т 🕨		Split Barr	el (SB) / LPT		Cor	e (C		
F	Particle S	ize Legend:		Fines		Clay	Silt		Sand		Gra	vel	67	Cobb	es		_ Boulde	rs		
Uepth (m)	Soil Symbol			Μ	IATERIA	L DESC	RIPTION			Sample Type	ample Num	0 2	Particle S 20 40 PL MC	n ³) 19 2 ize (%) 60 8 ; LL	20 21 - 30 100	St 	drained rength (<u>Test Ty</u> Torvar Pocket F ⊠ Qu I Field Va 100 1	(kPa) / <u>pe</u> ∩e ∆ Pen. • ⊠ ane C		
0.5	CL - d - fr - ir - A SII - li	SPHALT AY (FILL) - s lark grey rozen, moist, ntermediate to ASHTO: A-7 LT - trace to s ght brown rozen, moist,	firm when b high plas -6(I) some clay,	n thawed sticity , trace sar		(<20 m	m diam.)				G52		•			\$				
-1.0	- lo	WSHTO: A-6	diate plast	ticity							G53 G54									
-1.5	- g - n - h	AY - silty, tra rrey noist, stiff nigh plasticity ASHTO: A-7									G55 G56						•			
2.0-		-					oximately 100 mr		t 2.0 m											
2.5-		race sulphate	inclusions	s (<10 mr	n aiam.),	iirm to	stiff below 2.3 m				G57					•		_		
-3 0-											G58					•				
0.0	No 1. 2. 3. 4. 5.	Bulk samples	loughing r en to 3.0 r ckfilled wit s were coll ated on A	not observ m immedia th cuttings lected bet	ved. ately afte s, granula ween 0.9	ar fill and m and	l. d cold patch aspl 1.4 m depth (silt embina Highway) (L24-61	-05). und Lane, 1.6	5 m		1	<u> </u>		I			<u> </u>		
							d By: _Angela F								on Ferr					

GEOTECHNICAL

Client:	:	WSP						Project Number:	1000	-043-2	5					
Projec	t Name:	2024 Local S	Street Re	enewal (24-	K-01, 24-	R1-01)		Location:	UTM	N-552	1685,	E-63193	38 - Adar	nar Rd		
Contra	actor:	Paddock Dri	lling Ltd.					Ground Elevation:	Top c	of Pave	ment					
Metho	d:	150 mm Solid	-		Mount			Date Drilled:	Febru	uary 27	, 202	4				
S	Sample T	vpe:		Grab (G)		s	helby Tube (T)	Split Spoon (S	S) / SF	т 📐	l s	plit Barre	I (SB) / L	.pt [Co	re (C)
		Size Legend:		Fines		Clay	Silt	Sand				-	Cobbles		Boulde	
<u> </u>		JZC LOGCIU.	иш	1 1103		лау							nit Wt		Undrained	
Depth (m)	Soil Symbol	SPHALT		М	ATERIAL	DESCI	RIPTION		Sample Type		16 17 0 20	(kN/m 7 18 Particle Siz 0 40 (PL MC	3) 19 20 2 ze (%) 50 80 10	21	Strength <u>Test T</u> △ Torva Pocket ⊠ Qu ○ Field V	(kPa) ype ne ∆ Pen. I⊠ ∕ane ⊖
-0.5-	C - 1 - 1 - 1 - 1 - 1	LAY (FILL) - s dark grey frozen, moist, intermediate to AASHTO: A-7- stiff below 0.7	firm whe high pla 6(53)	en thawed	æ gravel (∙	<20 mr	n diam.)			G59 G60 G61		•				
-1.5-		LAY - silty, tra dark brown moist, firm to s high plasticity AASHTO: A-7- trace gravel (<	stiff -6(I)	diam.) betw	een 1.8 m	and 2.	1 m			G62 G63		•				
-2.0- -2.5- -2.5-										G64 G65		•			\ 0	
<u>-3.0</u>	N 1. 2. 3. 4.	ND TEST HOL otes: Seepage or s Test Hole ope Test Hole bac Test Hole loc orth of South o	loughing en to 3.0 ckfilled w ated on <i>i</i>	not observ m immedia vith cuttings	ed. ately after , granular	fill and	cold patch asph	nalt. , Eastbound Lane, 1.4	m							
	d Dun	Kate Franklin			Bai		By: _Angela F	idlar Kligwar		Droioo	t Eng	ineer:	Noloon F	orroiro		

Client:	WSP				Project Number:	1000-	043-25					
Project Nam	e: 2024 Local S	Street Renewal (24-	K-01, 24-R1-01)	Location:		N-55208	863, E-633	064 - Adamar	Rd		
Contractor:	Paddock Dril	lling Ltd.			Ground Elevation:	Top of	Pavem	ent				
Method:	150 mm Solid S	Stem Auger, M10 Truck	Mount	Date Drilled:	February 27, 2024							
Sample	е Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	S) / SP	г 📉	Split Bar	rel (SB) / LPT	C C	ore (C)	
Particle	Size Legend:	Fines	Clay	Silt	Sand Sand		Grave	67	Cobbles	Bould	ders	
Depth (m) Soil Symbol	ASPHALT	M	ATERIAL DESC	RIPTION		Sample Type	Sample Number	□ Bulk (kN/ 5 17 18 Particle 3 20 40 PL M 20 40	(m ³) 19 20 21 Size (%) 60 80 100	Strengt <u>Test</u> △ Torv ● Pocke ⊠ C ○ Field	<u>Type</u> ⁄ane ∆ t Pen. Φ	
	CLAY (FILL) - s - dark grey - frozen, moist, s - intermediate to - AASHTO: A-7- SILT - trace clay - grey - frozen, moist, v - low plasticity - AASHTO: A-6(6(I) /, trace to some fine very soft when thaw	sand to 0.9 m		3 m		G66 G67 G68					
2.0-	CLAY - silty, trad - brown and grey - moist, stiff - high plasticity - AASHTO: A-7- - silt seam, light - brown below 2	y 6(I) brown. moist. trace	oxidation, appro	oximately 100 mr	n thick, at 2.0 m		G69 G70	•				
-2.5-	- trace silt inclus	ions (<20 mm diam	.), firm to stiff b	elow 2.4 m			G71 G72	•				
	Notes: 1. Seepage or sl 2. Test Hole ope 3. Test Hole bac 4. Bulk samples between 1.5 m a		ed. tely after drilling granular fill an /een 0.9 m and ly) (L24-061-06	d cold patch asph 1.5 m depth (silt).	nalt.) (L24-61-05) and y, Eastbound Lane, 1.3	<u> i i</u>						
Logged By:	Kate Franklin		Reviewe	d By: _Angela Fi	dler-Kliewer	F	Project	Engineer:	Nelson Ferr	eira		

TREK
GEOTECHNICAL

Client:	WSP				Project Number:	1000	-043-25					
Project Name	2024 Local S	Street Renewal (24	-K-01, 24-R1-	01)	Location:	UTM	N-5521	855, E-6	631836 - Adam	nar Rd		
Contractor:	Paddock Dri	lling Ltd.			Ground Elevation:	Тор с	of Paverr	nent				
Method:	Solid \$	Stem Auger, M10 Truc	k Mount		Date Drilled:	Febru	uary 27,	2024				
Sample 7	Гуре:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	S) / SF	т 🔼	Split I	Barrel (SB) / Ll	рт	Core	e (C)
Particle S	Size Legend:	Fines	Clay	Silt	Sand Sand		Grave		Cobbles		Boulders	s
44 (u) 10 (u)	SPHALT LAY (FILL) - s dark grey frozen to 1.5 rr high plasticity AASHTO: A-7- MD TEST HOL otes: Seepage or si . Test Hole ope	Ittp://trace.gravel (n, moist, stiff when -6(I) -6(I) -6(I) -6(I) -6(I) -6(I) -6(I) -6(I)	AY.	SCRIPTION	nalt.	Sample Type	5	6 17 Partii 20 4 PL	Mik Unit Wt (kN/m³) 18 19 20 2 cle Size (%) 40 60 80 10 MC LL 40 60 80 10		drained S trength (k Test Typ △ Torvane Pocket Pe S Qu E Field Var 100 15 	Shear kPa) <u>⊃e</u> en. ∎ ⊴ ne ⊖

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Maj	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Class	sification (Criteria		ŝS				
	action	gravel no fines)	GW	8	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater that	an 4; C _C = [_]	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		Sieve sizes		#10 to #4 #40 to #10	#200 to #40	< #200
sieve size)	Gravels than half of coarse fraction s larger than 4.75 mm)	Clean gravel (Little or no fines)	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all gradat	tion require	ments for GW	υ	STM		#10 #40	#200	*
No. 200 s	Gra than half c larger tha	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size ci than No. g dual sym	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-	Particle Size					
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: N, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater that	e "A" n 7	line cases requiring use of dual symbols	Part			u g	25	
Coarse-Grained soils material is larger than No. 200 sieve size)	fraction nm)	sands no fines)	SW	\$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve, depending on percentages of fines (fraction smaller than No. 200 sieve) coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater that	an 6; C _C =-	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		mm		2.00 to 4.75 0.425 to 2.00	0.075 to 0.425	< 0.075
Coarse- More than half the material		Clean sands (Little or no fines)	SP		Poorly-graded sands, gravelly sands, little or no fines	iges of sar intage of fa s are class centG rcent	Not meeting all gradat	tion require	ments for SW					0	
(More thar	Sands than half of coarse smaller than 4.75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil: han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-						Clay
	(More t is s	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determin dependin coarse-gr Less t More 6 to 13	Atterberg limits above line or P.I. greater that		line cases requiring use of dual symbols	Matarial	INIALE	Sand	Coarse Medium	Fine	Silt or Clay
size)	õ	-	ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity		Plastici chart for solid fraction with particles				e Sizes		Ē	. <u>ci</u>	Ŀ
Fine-Grained soils tterial is smaller than No. 200 sieve size)	ts and Clay	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 70 - 60 -	nan 0.425 mm		UU INE		⁻ M Sieve	> 12 in.	3 in. to 12 in.	3/4 in. to 3 in.	#4 to 3/4 in.
oils r than No.	iis "	<u>=</u>	OL	==	Organic silts and organic silty clays of low plasticity	(%) 50 -				Particle Size	ASTM		_		
-Grained s al is smalle	s	50)	МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	PLASTICITY INDEX (%)				Par	mm	300	75 to 300	19 to 75	to 19
Fine-Gra (More than half the material is	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-	10		MH OR OH		μ	^	91 G/	191	4.75
than half	, ΩΪ) gre	ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUIE	60 7 D LIMIT (%)	0 80 90 100 110			ers	se _		
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>76 76 7</u>	Peat and other highly organic soils	Von Post Clas	sification Limit	, v	olour or odour, n fibrous texture	Matarial	INIALE	Boulders	Cobbles Gravel	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

	Asphalt	Bedrock (undifferentiated)	67	Cobbles
A CA	Concrete	Limestone Bedrock		Boulders and Cobbles
	Fill	Cemented Shale		Silt Till
		Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

2024 Local Street Renewal (24-K-01, 24-R1-01) Adamar Rd - Pembina Hwy to end Sub-Surface Investigation

Test Hole Test Hole Location	Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysis	8	At	Atterberg Limits		
No.	lest Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	55	Concrete	-	Clay, AASHTO: A-7-6 (I)	0.5	0.6	27							
	UTM : 5520803 N,					Silt, AASHTO: A-4 (I)	0.8	0.9	20							
	632951 E Located on Adamar Rd.					Silt, AASHTO: A-4 (I)	1.1	1.2	16							
TH24-09	75 m East of Pembina					Clay, AASHTO: A-7-6 (I)	1.4	1.5	36							
	Highway, Westbound Lane, 1.6 m South of					Clay, AASHTO: A-7-6 (I)	1.8	2.0	44							
	North curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	47							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	53							
		Asphalt	105	Concrete	-	Clay, AASHTO: A-7-6 (53)	0.5	0.6	35							
	UTM : 5521685 N,					Clay, AASHTO: A-7-6 (53)	0.8	0.9	27							
	631938 E Located on Adamar Rd,					Clay, AASHTO: A-7-6 (53)	1.1	1.2	32	60	22	10	8	22	82	60
TH24-10	15 m East of Pembina					Clay, AASHTO: A-7-6 (I)	1.4	1.5	41							
	Highway, Eastbound Lane, 1.4 m North of					Clay, AASHTO: A-7-6 (I)	1.8	2.0	39							
	South curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	39							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	46							
		Asphalt	60	Concrete	-	Clay, AASHTO: A-7-6 (I)	0.5	0.6	32							
	UTM : 5520863 N,					Silt, AASHTO: A-6 (11)	0.8	0.9	45							
	633064 E Located on Adamar Rd,					Silt, AASHTO: A-6 (11)	1.1	1.2	29	17	75	8	0	17	30	13
TH24-11	140 m East of Pembina					Silt, AASHTO: A-6 (11)	1.4	1.5	23							
	Highway, Eastbound Lane, 1.3m North of					Clay, AASHTO: A-7-6 (I)	1.8	2.0	39							<u> </u>
	South curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	37							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	43							<u> </u>
		Asphalt	80	Concrete	-	Clay, AASHTO: A-7-6 (I)	0.5	0.6	34							1
	UTM : 5521855 N,					Clay, AASHTO: A-7-6 (I)	0.8	0.9	35							
	631836 E Located on Adamar Rd,					Clay, AASHTO: A-7-6 (I)	1.1	1.2	34			_				
TH24-12	207 m East of Pembina					Clay, AASHTO: A-7-6 (I)	1.4	1.5	36							
	Highway, Westbound Lane, 2.0m South of					Clay, AASHTO: A-7-6 (I)	1.8	2.0	44							
	North curb		ļ	ļ		Clay, AASHTO: A-7-6 (I)	2.3	2.4	49							───
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	50							

Project No.	1000-043-25
Client	WSP
Project	2024 Local Street Renewal (24-K-01, 24-R1-01)-Adamar Rd.

Sample Date27-Feb-24Test Date01-Mar-24TechnicianKF

Test Hole	TH24-09	TH24-09	TH24-09	TH24-09	TH24-09	TH24-09
Depth (m)	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4
Sample #	G52	G53	G54	G55	G56	G57
Tare ID	H43	F69	Z32	H65	F153	P12
Mass of tare	8.6	8.6	9.0	8.9	8.5	8.7
Mass wet + tare	249.7	210.2	178.7	174.2	217.9	230.9
Mass dry + tare	198.4	176.9	155.2	130.8	153.6	159.6
Mass water	51.3	33.3	23.5	43.4	64.3	71.3
Mass dry soil	189.8	168.3	146.2	121.9	145.1	150.9
Moisture %	27.0%	19.8%	16.1%	35.6%	44.3%	47.2%

Test Hole	TH24-09	TH24-10	TH24-10	TH24-10	TH24-10	TH24-10
Depth (m)	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0
Sample #	G58	G59	G60	G61	G62	G63
Tare ID	AA20	N40	AB40	J85	H4	H38
Mass of tare	6.6	8.7	6.8	6.9	8.6	8.6
Mass wet + tare	254.6	236.6	278.5	449.3	277.1	250.2
Mass dry + tare	168.7	178.0	220.9	342.8	199.2	181.8
Mass water	85.9	58.6	57.6	106.5	77.9	68.4
Mass dry soil	162.1	169.3	214.1	335.9	190.6	173.2
Moisture %	53.0%	34.6%	26.9%	31.7%	40.9%	39.5%

Test Hole	TH24-10	TH24-10	TH24-11	TH24-11	TH24-11	TH24-11
Depth (m)	2.3 - 2.4	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5
Sample #	G64	G65	G66	G67	G68	G69
Tare ID	F31	E114	M18	F131	E88	H59
Mass of tare	8.6	8.5	7.0	8.7	6.9	8.7
Mass wet + tare	272.9	265.7	217.9	244.0	470.1	268.4
Mass dry + tare	198.6	184.1	167.1	171.2	366.7	219.4
Mass water	74.3	81.6	50.8	72.8	103.4	49.0
Mass dry soil	190.0	175.6	160.1	162.5	359.8	210.7
Moisture %	39.1%	46.5%	31.7%	44.8%	28.7%	23.3%

Project No.	1000-043-25
Client	WSP
Project	2024 Local Street Renewal (24-K-01, 24-R1-01)-Adamar Rd.

Sample Date27-Feb-24Test Date01-Mar-24TechnicianKF

Test Hole	TH24-11	TH24-11	TH24-11	TH24-12	TH24-12	TH24-12
Depth (m)	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2
Sample #	G70	G71	G72	G73	G74	G75
Tare ID	Z84	AB08	Z67	W106	N28	K7
Mass of tare	8.5	6.9	8.4	8.4	6.9	8.7
Mass wet + tare	289.0	250.0	274.0	202.3	225.1	246.3
Mass dry + tare	210.2	184.3	193.7	153.2	168.6	185.8
Mass water	78.8	65.7	80.3	49.1	56.5	60.5
Mass dry soil	201.7	177.4	185.3	144.8	161.7	177.1
Moisture %	39.1%	37.0%	43.3%	33.9%	34.9%	34.2%

	1				
Test Hole	TH24-12	TH24-12	TH24-12	TH24-12	
Depth (m)	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7	
Sample #	G76	G77	G78	G79	
Tare ID	D50	AB63	W32	C30	
Mass of tare	8.5	6.9	8.5	8.6	
Mass wet + tare	152.7	272.4	218.2	245.0	
Mass dry + tare	114.4	191.1	149.0	166.1	
Mass water	38.3	81.3	69.2	78.9	
Mass dry soil	105.9	184.2	140.5	157.5	
Moisture %	36.2%	44.1%	49.3%	50.1%	

Atterberg Limits ASTM D4318-10e1

Project No.	1000-043-25				CERTIFIED BY	
Client	WSP	at Deneurs 1/04 1/ 04		n a r D d		
Project	2024 Local Stre	eet Renewal (24-K-01	, 24-RI-01) - Adar	nar Rd.		ndependent Laboratories listed on www.ccil.com
est Hole	TH24-10				For specific tests as	isted on www.ccit.com
ample #	th (m) 1.1 - 1.2					
epth (m)						
ample Date					Liquid Limit	82
est Date	07-Mar-24				Plastic Limit	22
echnician	PC				Plasticity Index	60
iquid Limit						
rial #		1	2	3		
umber of Bl	ows (N)	15	22	26		
lass Tare (g)		14.109	13.961	14.175		
lass Wet Soi		19.605	20.625	20.776		
lass Dry Soil		17.022	17.598	17.815		
Mass Water (2.583	3.027	2.961		
Mass Dry Soil		2.913	3.637	3.640		
Noisture Con		88.671	83.228	81.346		
blasticity Index (%)	smaller than 0.	425 mm	C1	CH	" Line "A" Line	
20		- 61	0.	MH or (Н	
10 · 0 ·	0 10	ML	or OL 0 50	60 70	H 80 90	100

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.838	14.105			
Mass Wet Soil + Tare (g)	19.130	20.100			
Mass Dry Soil + Tare (g)	18.155	19.033			
Mass Water (g)	0.975	1.067			
Mass Dry Soil (g)	4.317	4.928			
Moisture Content (%)	22.585	21.652			

Note: Additional information recorded/measured for this test is available upon request.

Atterberg Limits ASTM D4318-10e1

Project No. Client Project	1000-043-25 WSP 2024 Local Stree			mar Rd.	Canadian Council of For specific tests as	Itsted on www.ccil.com
est Hole	TH24-11					
Sample #	G68		-			
Depth (m)	bith (m) 1.1 - 1.2 mple Date 27-Feb-24		-			
Sample Date			-		Liquid Limit	30
Test Date	07-Mar-24		-		Plastic Limit	17
Technician	PC		-		Plasticity Index	13
_iquid Limit			_			
Frial #		1	2	3		
Number of Bl	ows (N)	15	24	35		
/lass Tare (g)		13.938	14.045	13.958		
lass Wet Soi		21.711	21.670	20.709		
lass Dry Soi		19.857	19.924	19.203		
lass Water (g		1.854	1.746	1.506		
lass Dry Soi		5.919	5.879	5.245		
Noisture Con	tent (%)	31.323	29.699	28.713		
 70 60 50 50 40 40 30 30 20 10 0 	Plasticity Chart smaller than 0.4	- CL	vith particles	CH MH or 0	The second secon	
() ·	0 10 2	20 30 4	40 50	60 70	80 90	100 110

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.034	14.119			
Mass Wet Soil + Tare (g)	20.981	20.798			
Mass Dry Soil + Tare (g)	19.965	19.829			
Mass Water (g)	1.016	0.969			
Mass Dry Soil (g)	5.931	5.710			
Moisture Content (%)	17.130	16.970			

Note: Additional information recorded/measured for this test is available upon request.

(-01, 24-RI-01) - Adamar Ave.	Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Gravel	7.8%
Sand	9.7%
Silt	22.2%
Clay	60.3%
	Gravel Sand Silt

62.87

60.08 52.16

0.0026

0.0019

0.0012

Project No. Client Project	1000-043-25 WSP 2024 Local Street Renewal (24-K-01, 24-RI-01)- Adamar Ave.		CERTIFIED BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH24-011		
Sample #	G68		
Depth (m)	1.0 - 1.2	Gravel	0.0%
Sample Date	27-Feb-24	Sand	7.8%
Test Date	07-Mar-23	Silt	75.1%
Technician	DS	Clay	17.1%

27.89 24.49

21.68

19.32

17.80

15.37

0.0089

0.0064 0.0045

0.0031

0.0023

0.0013

Project Client Project		1000-043-25 WSP 2024 Local Street F			CERTIFI	ED BY
-		(24-K-01, 24-RI-01)	- Adamar Rd.			
Sample		L24-061-05				
Source		TH24-09 and TH24	-11 (0.9m to 1.5m)			
Materia		Silt				
Sample		27-Feb-24		Maximum Day Day	oite (leg (m 2)	4707
Test Da Technie		06-Mar-24 AD		Maximum Dry Den Optimum Moisture		1797 15.4
Trial Nu		1	2	3	4	
	ensity (kg/m ³)	1936	2045	2092	2076	
	nsity (kg/m ³)	1735	1788	1798	1752	
Moistu	re Content (%)	11.6	14.4	16.4	18.5	
	1860					
(1	1820				Zero Air Voids	
(kg/m³	1800				(Saturation Curve)	
DRY DENSITY (kg/m³)	1780					
sy dei	1760					
Ō	1740	-				
	1720					
	1700	12	14	16 1	B 20	22
			MOISTURE	E CONTENT (%)		
				available upon reques		

Project No.	1000-043-25	Source	Adamar Rd: TH24-09 & TH24-11 (0.9 m - 1.5 m)
Client	WSP	Material	Silt
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-27
Sample #	L24-061	Test Date Technician	2024-03-09 DS

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1797 kg/m3	Dry Density	1704 kg/m3
Optimum Moisture Content	15.4 %	Initial Moisture Content	15.1 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	94.8 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	2 = 0/
Garonargo	4.04 Kg	CDR at 2.54 mm	3.5 %
Swell	0.7 %	CBR at 5.08 mm	3.5 % 2.9 %
6	8		

Comments:

Project	t No.	1000-043-25			CERTIF				
Client		WSP				. L L 🕊			
Project	t	2024 Local Street R (24-K-01, 24-RI-01)-			Canadian For speci	Council of Independent Laboratories fic tests as listed on www.ccil.com			
Sample	e #	L24-061-06							
Source)	TH24-11 (1.5m - 2.0	m) and TH23-12 (0	.9m - 2.0m)					
Materia	al	Clay							
Sample	e Date	27-Feb-24							
Fest Da	ate	07-Mar-24		Maximum Dry Der	nsity (kg/m3)	1421			
[echni	cian	AD		Optimum Moisture	e (%)	28.5			
Frial Nu		1	2	3	4				
	ensity (kg/m ³)	1749	1793	1827	1848				
-	nsity (kg/m³)	1409	1417	1422	1418				
Moistu	re Content (%)	24.1	26.6	28.4	30.3				
	1440			Zero Air (Saturatio					
m³)	1430								
DRY DENSITY (kg/m³)	1420								
RY DEN	1415								
Δ	1410								
	1405								
	1400								
	22	24	26	28 3	0 32	34			
			WOISTURE	CONTENT (%)					

Project No.	1000-043-25	Source	Adamar Rd: TH24-11 (1.5 m -2.0 m) & TH24-12 (0.9 m - 2.0 m)
Client	WSP	Material	Clay
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-27
Sample #	L24-061	Test Date	2024-03-11
		Technician	DS

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1421 kg/m3	Dry Density	1374 kg/m3
Optimum Moisture Content	28.5 %	Initial Moisture Content	27.6 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	96.7 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	1.5 %
Swell	2.5 %	CBR at 5.08 mm	1.3 %
			_
Moisture Content in top 25 mm	50.4 %	Zero Correction	0 mm

Photo 1: Pavement Core Sample at TH24-09

Photo 2: Pavement Core Sample at TH24-10

Project No. 1000 043 25 March 2024

Photo 3: Pavement Core Sample at TH24-11

Photo 4: Pavement Core Sample at TH24-12

Appendix B

Test Hole Logs, Summary Table, Lab Testing Results and Pavement Core Photos

Daly St N – Lorette Ave to Pembina Hwy

	_													Те	st H	lole	• TH	-	
					S	ub-Su	rface Log	J										1 0	f 1
Client:		WSP					Project Number:			13-2									
		: <u>2024 Local </u>		wal (24-K-0	1, 24-R1-01)	<u> </u>						<i>.</i>	33291	- Dal	/ St N	1			
Contrac		Paddock Dri	-				Ground Elevation:												
Method:	:	150 mm Solid	Stem Auger, N	M10 Truck Mou	int		Date Drilled:	Feb	ruar	y 26	6, 202	24							
Sa	ample T	Гуре:	G	rab (G)	S	Shelby Tube (T)	Split Spoon (SS	S) / S	PΤ			Split E	Barrel	(SB) /	LPT		Co	re (C)
Pa	article S	Size Legend:	Fi	ines	🖉 Clay	Silt	Sand			Gra\	vel	Б	ulk Unit	obbles Wt	•		Bould		ar
-	-								<u>p</u> .	lber	16 ·	17 {	(kN/m ³) 18 19	20	21		Strength	(kPa)	
Depth (m)	Soil Symbol			T. Jamo	oampre rype	Nun		Particle Size (%) 20 40 60 80 100 PL MC LL			100	<u>Test Type</u>			•				
		avement						0	° (0 2	20 4	10 60	80	00 0		100		
	\$∷¦s	AND (FILL) - s	some gravel	(<50 mm di	am.), trace s	silt, trace clay													
	 - -	frozen to 1.5 n poorly graded,	n, moist whe medium gra	en thawed ained, round	ed to subang	glular													
-0.5-		no plasticity AASHTO: A-1	(I)																
									Ģ	651									
-1.0-																			
3/21/24																			
1.5																			
A_KF 1000-043-25																			
₩ -2.5- ¥																			
		ND TEST HOL	E AT 3.0 m	n IN SAND.															
Pabbon process 2024-02-27 2024 LOCAL STREET PACKAGE 0 DRAFT	1. 2. 3. 4. 5.	. Seepage not . Sloughing obs . Test Hole ope . Test Hole bac . Bulk samples	served durir en to 1.8 m i ckfilled with were collec	immediately cuttings, gra	nular fill and 0.9 m and 2	l cold patch aspł 2.0 m depth.	alt.												
-ACE LOG LC	7.	. Difficult to ob . Test Hole loc: .5 m East of W	ated at cent	re of interse	ction of Daly	St N and Dudle	/ Ave, Southbound Lan	ie,											
Logged	Ву: _	Kate Franklin			Reviewed	l By: _ Angela Fi	dler-Kliewer	_	Pro	ojec	t En	ginee	er: _N	lelson	Ferre	eira			
EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Maj	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Class	sification (Criteria		ŝS				
	action	gravel no fines)	GW	8	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater that	an 4; C _C = [_]	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		Sieve sizes		#10 to #4 #40 to #10	#200 to #40	< #200
sieve size)	Gravels than half of coarse fraction s larger than 4.75 mm)	Clean gravel (Little or no fines)	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all gradat	tion require	ments for GW	υ	STM		#10 #40	#200	*
No. 200 s	Gra than half c larger tha	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size ci than No. g dual sym	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-	Particle Size					
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: N, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater that	e "A" n 7	line cases requiring use of dual symbols	Part			u g	25	
Coarse-Grained soils material is larger than No. 200 sieve size)	fraction nm)	sands no fines)	SW	\$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve, depending on percentages of fines (fraction smaller than No. 200 sieve) coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater that	an 6; C _C =-	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		mm		2.00 to 4.75 0.425 to 2.00	0.075 to 0.425	< 0.075
Coarse- More than half the material		Clean sands (Little or no fines)	SP		Poorly-graded sands, gravelly sands, little or no fines	iges of sar intage of fa s are class centG rcent	Not meeting all gradat	tion require	ments for SW					0	
(More thar	Sands than half of coarse smaller than 4.75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil: han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-						Clay
	(More t is s	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determin dependin coarse-gr Less t More 6 to 13	Atterberg limits above line or P.I. greater that		line cases requiring use of dual symbols	Matarial	INIALE	Sand	Coarse Medium	Fine	Silt or Clay
size)	õ	-	ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity		Plastici chart for solid fraction with particles				e Sizes		Ē	. <u>ci</u>	Ŀ
Fine-Grained soils tterial is smaller than No. 200 sieve size)	ts and Clay	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 60 -	nan 0.425 mm		UU INE		⁻ M Sieve	> 12 in.	3 in. to 12 in.	3/4 in. to 3 in.	#4 to 3/4 in.
oils r than No.	iis "	<u>=</u>	OL	==	Organic silts and organic silty clays of low plasticity	(%) 50 -				Particle Size	ASTM		_		
-Grained s al is smalle	s	50)	МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	PLASTICITY INDEX (%)				Par	mm	300	75 to 300	19 to 75	to 19
Fine-Gra (More than half the material is	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-	10		MH OR OH		μ	^	91 G/	191	4.75
than half	, ΩΪ) gre	ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUIE	60 7 D LIMIT (%)	0 80 90 100 110			ers	se _		
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>76 76 7</u>	Peat and other highly organic soils	Von Post Clas	sification Limit	, v	olour or odour, n fibrous texture	Matarial	INIALE	Boulders	Cobbles Gravel	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	67	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

2024 Local Street Renewal (24-K-01, 24-R1-01) Daly St N - Lorette Ave to Pembina Hwy Sub-Surface Investigation

Test Hole	Test Hele Lesstin	Paveme	ent Surface	Pavement Stru	ucture Material		Sample	Depth (m)			Grain Size	e Analysis	6	At	terberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
	UTM : 5525613 N, 633291 E	Asphalt	110	Concrete	-	Sand, AASHTO: A-1 (I)	0.8	0.9	-	-	-	-	-	-	-	-
TH24-08	Located at centre of intersection of Daly St N															
	and Dudley Ave, Southbound Lane, 1.5 m															
	East of West curb															

Photo 1: Pavement Core Sample at TH24-08

Appendix C

Test Hole Logs, Summary Table, Lab Testing Results and Pavement Core Photos

Dudley Ave – Pembina Hwy to Daly St N.

Client:		WSP						Project Number:	1000	-043-2	25							
Project I	Name:	2024 Local	Street Re	enewal (24	-K-01, 24	4-R1-01)		Location:	UTM	N-552	25606	6, E-63	3275	- Dudle	y Ave			
Contract	or:	Paddock Dr	illing Ltd.					Ground Elevation	: <u>Top c</u>	of Pave	emen	t						
Method:		150 mm Solid	Stem Aug	er, M10 Truc	k Mount			Date Drilled:	Febru	uary 20	6, 202	24						
Sar	nple T	уре:		Grab (G)		s	helby Tube (T)	Split Spoon (S	SS) / SP	т 🕨		Split Ba	arrel (SB) / LF	νт [Core	(C)
Par	ticle S	ize Legend:		Fines		Clay	Silt	Sand		Gra	ivel	67	7 0	bbles	• •	Βοι	ulders	
		_				-				e _		Bul	k Unit N/m ³)	Wt		Undrai		
	Indinite								Sample Type	Sample Number	16 1		N/m ³) 19				gth (kl st Type	
Depth (m)	l h			Ν	IATERIA	L DESCI	RIPTION		- ble	e N	0 2	Particle 20 40		. ,		∆ To Poc	orvane ket Pe	
									am	ld m			MC			\boxtimes	Qu ⊠ Id Van	1
	-								0	Sa	0 2	20 40	60	80 100	0 5	0 10		
X		SPHALT																
		_AY (FILL) - ଏ dark grey	silty, trac	e sand														
· - * * *	// - f	rozen, moist, nigh plasticity	stiff whe	en thawed														
\mathbb{X}		ASHTO: A-7	-6(I)															
-0.5-										G37								
		LT - some cla	ay, trace :	sand							1				1			
	- _ f	ight brown rozen to 1.5 r	n. moist	firm when	thawed										-			
1	-	ow to interme	diate pla	sticity	lianoa					G38		•			/0			
1.0-	- /	ASHTO: A-6	(11)															
]										G39			Ш		•			
										000		Π			•			
1																		
-1.5-										G40		•						
			· · · ·								1							
	/ - t	_AY - silty, tra prown	ace sand															
		noist, stiff nigh plasticity									-							
	// -/	ASHTO: A-7	-6(I)							G41		•			1	۵		
-2.0-											1				1			
											1				1			
-//															-			
- V										G42			•		4	Þ		
-2.5-	// -t	race oxidatior	below 2	2.4 m							<u> </u>				-			_
										G43	1							
· - 1/													-		-			
- V																		
-3.0-																		
		ND TEST HO	LE AT 3.	0 m IN CL	AY.													
	1.	otes: Seepage or s	loughina	not observ	ved.													
	2.	Test Hole op	en to 3.0	m immedi	ately afte	r drilling.	cold patch aspl	alt										
	4.	Bulk samples	s were co	ollected bet	ween 0.9) m and 1	.5 m depth (silt) (L24-061-04) and										
	be 5	etween 1.5 m Test Hole loo	and 2.0 i ated in fi	m depth (cl ront of #61	lay) (L24 4 Dudlev	-061-03) Ave We	stbound lane 1	.4 m South of North c	urb.									
	0.				uuuy													

Client:	WSP				Project Number:	1000-	-043-25								
Project Name:	2024 Local S	treet Renewal (24-	K-01, 24-R1-0)1)	Location:	UTM	N-55255	88, E-63	3254 - Di	Idley Ave	•				
Contractor:	Paddock Drilli	ing Ltd.			Ground Elevation:	Тор о	f Pavem	ent							
Method:		tem Auger, M10 Truck	Mount	Date Drilled:F			February 26, 2024								
Sample Ty	/pe:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	6) / SP	т 📉	Split Ba	arrel (SB)	/ LPT		Core (C)			
Particle Si	ze Legend:	Fines	Clay	Silt	Sand		Gravel	67	Cobble	es 🖬	Boul	ders			
	-		<u></u>				er		Unit Wt			ed Shear			
Symbol						Sample Type	Sample Number			21		th (kPa) Type			
Depth (m) il Symt		M	ATERIAL DES	CRIPTION		ple			e Size (%) 60 80	100		vane ∆ et Pen. ●			
Soil						am	d m	PL I		100	\boxtimes (Qu⊠ I Vane ⊖			
						0	° Sa	20 40	60 80	100 0	50 100				
P. 6. 4	PHALT														
	NCRETE AY - silty, trac	o cand													
- d	ark grey														
100 - h	igh plasticity	rm when thawed													
-0.5 - A	ASHTO: A-7-6					\Box	G44			4					
	_T - trace to so ght brown	ome clay, trace san	d												
- fr	ozen, moist, s	oft when thawed					<u> </u>								
] - IC] - A	w to intermedi ASHTO: A-6(I)					G45	•		٩					
	rm below 0.9 r														
1							G46								
							G40								
1111															
, 1							G47								
	AY - silty, trac	e sand													
- b	rown noist, stiff														
h	igh plasticity	2/1)													
	ĂSHTO: A-7-6	D(I)					G48								
2.0-							—								
- fi	rm to stiff belo	w 2.3 m					G49		•		•				
2.5-							——								
							G50		•						
·3.U-		E AT 3.0 m IN CLA	Y												
No	tes:														
2.	Test Hole oper	bughing not observen to 3.0 m immedia	tely after drilli												
3.	Test Hole back	filled with cuttings.	granular fill a	nd cold patch asp	halt. :) (L24-061-04) and										
be	tween 1.5 m a	nd 2.0 m depth (cla	ay) (L24-061-0)3).											
	Test Hole loca South curb.	ted on Dudley Ave,	30 m East of	Pembin Hwy, Eas	tbound Lane, 1.5 m Nor	th									
J	courrourd.														
	ate Franklin			ed By: _ Angela F			- · · ·	Engineer		- ·					

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Maj	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Class	sification (Criteria		ŝS				
	action	gravel no fines)	GW	8	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater that	an 4; C _C = [_]	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		Sieve sizes		#10 to #4 #40 to #10	#200 to #40	< #200
sieve size)	Gravels than half of coarse fraction s larger than 4.75 mm)	Clean gravel (Little or no fines)	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all gradat	tion require	ments for GW	υ	STM		#10 #40	#200	*
No. 200 s	Gra than half c larger tha	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size ci than No. g dual sym	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-	Particle Size					
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: N, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater that	e "A" n 7	line cases requiring use of dual symbols	Part			u g	25	
Coarse-Grained soils material is larger than No. 200 sieve size)	fraction nm)	sands no fines)	SW	\$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$. \$	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve, depending on percentages of fines (fraction smaller than No. 200 sieve) coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater that	an 6; C _C =-	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		mm		2.00 to 4.75 0.425 to 2.00	0.075 to 0.425	< 0.075
Coarse- More than half the material		Clean sands (Little or no fines)	SP		Poorly-graded sands, gravelly sands, little or no fines	iges of sar intage of fa s are class centG rcent	Not meeting all gradat	tion require	ments for SW					0	
(More thar	Sands than half of coarse smaller than 4.75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil: han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-						Clay
	(More t is s	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determin dependin coarse-gr Less t More 6 to 13	Atterberg limits above line or P.I. greater that		line cases requiring use of dual symbols	Matarial	INIALE	Sand	Coarse Medium	Fine	Silt or Clay
size)	õ	-	ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity		Plastici chart for solid fraction with particles				e Sizes		Ē	. <u>ci</u>	Ŀ
Fine-Grained soils tterial is smaller than No. 200 sieve size)	ts and Clay	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 60 -	nan 0.425 mm		UU INE		⁻ M Sieve	> 12 in.	3 in. to 12 in.	3/4 in. to 3 in.	#4 to 3/4 in.
oils r than No.	iis "	<u>=</u>	OL	==	Organic silts and organic silty clays of low plasticity	(%) 50 -				Particle Size	ASTM		_		
-Grained s al is smalle	s	50)	МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	PLASTICITY INDEX (%)				Par	mm	300	75 to 300	19 to 75	to 19
Fine-Gra (More than half the material is	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-	10		MH OR OH		μ	^	91 G/	191	4.75
than half	, ΩΪ) gre	ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUIE	60 7 D LIMIT (%)	0 80 90 100 110			ers	se _		
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>76 76 7</u>	Peat and other highly organic soils	Von Post Clas	sification Limit	, v	olour or odour, n fibrous texture	Matarial	INIALE	Boulders	Cobbles Gravel	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

	Asphalt	Bedrock (undifferentiated)	67	Cobbles
A CA	Concrete	Limestone Bedrock		Boulders and Cobbles
	Fill	Cemented Shale		Silt Till
		Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

2024 Local Street Renewal (24-K-01, 24-R1-01) Dudley Ave - Pembina Hwy to Daly St N Sub-Surface Investigation

Test Hole	T (11) () ()	Paveme	ent Surface	Pavement Str	ucture Material		Sample	Depth (m)	Moisture		Grain Siz	e Analysis	6	A	tterberg L	imits
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	60	Concrete	-	Clay, AASHTO: A-7-6 (I)	0.5	0.6	45							
	UTM : 5525606 N,					Silt, AASHTO: A-6 (11)	0.8	0.9	24							
	633275 E					Silt, AASHTO: A-6 (11)	1.1	1.2	24	18	75	7	0	17	30	13
TH24-06	Located in front of #614 Dudley Ave, Westbound					Silt, AASHTO: A-6 (11)	1.4	1.5	23							
	lane, 1.4 m South of					Clay, AASHTO: A-7-6 (I)	1.8	2.0	40							
	North curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	54							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	44							
		Asphalt	60	Concrete	110	Silt, AASHTO: A-6 (I)	0.5	0.6	28							
	UTM : 5525588 N,					Silt, AASHTO: A-6 (I)	0.8	0.9	24							
	633254 E					Silt, AASHTO: A-6 (I)	1.1	1.2	23							
TH24-07	Located on Dudley Ave, 30 m East of Pembin					Silt, AASHTO: A-6 (I)	1.4	1.5	22							
	Hwy, Eastbound Lane,					Clay, AASHTO: A-7-6 (I)	1.8	2.0	44							
	1.5 m North of South curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	51							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	53							

Project No.	1000-043-25
Client	WSP
Project	2024 Local Street Renewal (24-K-01, 24-R1-01)- Dudley Ave.

Sample Date26-Feb-24Test Date01-Mar-24TechnicianKF

Test Hole	TH24-06	TH24-06	TH24-06	TH24-06	TH24-06	TH24-06
Depth (m)	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4
Sample #	G37	G38	G39	G40	G41	G42
Tare ID	Z77	W27	M13	AB88	Z58	AC28
Mass of tare	8.6	8.3	6.9	6.8	8.7	6.6
Mass wet + tare	222.9	287.7	461.8	313.1	260.8	242.1
Mass dry + tare	156.8	234.2	372.8	255.0	188.4	159.9
Mass water	66.1	53.5	89.0	58.1	72.4	82.2
Mass dry soil	148.2	225.9	365.9	248.2	179.7	153.3
Moisture %	44.6%	23.7%	24.3%	23.4%	40.3%	53.6%

Test Hole	TH24-06	TH24-07	TH24-07	TH24-07	TH24-07	TH24-07
Depth (m)	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0
Sample #	G43	G44	G45	G46	G47	G48
Tare ID	P10	E80	F135	P31	P85	172
Mass of tare	8.2	8.5	8.6	8.4	8.6	7.0
Mass wet + tare	247.7	229.3	247.5	232.8	283.2	255.6
Mass dry + tare	175.0	181.0	201.6	191.1	234.6	179.3
Mass water	72.7	48.3	45.9	41.7	48.6	76.3
Mass dry soil	166.8	172.5	193.0	182.7	226.0	172.3
Moisture %	43.6%	28.0%	23.8%	22.8%	21.5%	44.3%

F			
Test Hole	TH24-07	TH24-07	
Depth (m)	2.3 - 2.4	2.6 - 2.7	
Sample #	G49	G50	
Tare ID	D500	M80	
Mass of tare	6.8	7.0	
Mass wet + tare	261.5	281.0	
Mass dry + tare	175.5	185.6	
Mass water	86.0	95.4	
Mass dry soil	168.7	178.6	
Moisture %	51.0%	53.4%	

Atterberg Limits ASTM D4318-10e1

Project No. Client Project	1000-043-25 WSP 2024 Local Stree	et Renewal (24-K-01	, 24-RI-01)- Dudi	ey Ave.	Certified By- Canadian Council of For specific tests as	Independent Laboratories
est Hole	TH24-06					
Sample #	G39					
Depth (m)	1.1 - 1.2					
Sample Date	26-Feb-24				Liquid Limit	30
est Date	07-Mar-24				Plastic Limit	17
echnician	PC				Plasticity Index	13
_iquid Limit						
rial #		1	2	3		
Number of Blo	ows (N)	23	27	35		
/lass Tare (g)		14.221	14.219	13.721		
lass Wet Soil		20.994	21.979	22.193		
lass Dry Soil		19.407	20.200	20.326		
/lass Water (g		1.587	1.779	1.867		
lass Dry Soil		5.186	5.981	6.605		
loisture Cont	tent (%)	30.602	29.744	28.266		
 Blasticity Index (%) 50 - 60 - 60 - 60 - 60 - 70 -<	Plasticity Chart smaller than 0.4 CL-ML	- CL	vith particles	CH MH or 0	The second secon	
0 -						

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.964	14.102			
Mass Wet Soil + Tare (g)	20.840	20.227			
Mass Dry Soil + Tare (g)	19.851	19.356			
Mass Water (g)	0.989	0.871			
Mass Dry Soil (g)	5.887	5.254			
Moisture Content (%)	16.800	16.578			

Note: Additional information recorded/measured for this test is available upon request.

Project No. Client Project	1000-043-25 WSP 2024 Local Street Renewal (24-K-01, 24-RI-01)- Dudley Ave.		Certified BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH24-06		Por specific tests as fisted of www.ccit.com
Sample #	G39		
Depth (m)	1.0 - 1.2	Gravel	0.0%
Sample Date	26-Feb-24	Sand	6.6%
Test Date	07-Mar-23	Silt	75.1%
Technician	DS	Clay	18.3%

37.5	100.00	2.00	100.00	0.0559	84.11	
25.0	100.00	0.850	99.91	0.0421	69.69	
19.0	100.00	0.425	99.79	0.0311	58.70	
12.5	100.00	0.180	99.61	0.0208	42.48	
9.50	100.00	0.150	99.52	0.0167	37.48	
4.75	100.00	0.075	93.43	0.0124	32.17	
				0.0089	28.10	
				0.0064	24.08	
				0.0045	21.94	
				0.0031	21.14	
				0.0023	19.31	
				0.0013	15.86	

Client WSP Project 2024 Local Street Renewal (24-K-01, 24-RI-01)- Dudley Ave. Luber Control of Indep Per specific tests as listed Sample # L24-061-03 Source TH24-06 and TH24-07 (1.5m - 2.0m) Material Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Maximum Dry Density (kg/m3) 7 Trial Number 1 2 3 4 Wet Density (kg/m³) 1754 1800 1830 1843 Dry Density (kg/m³) 1374 1393 1395 1378	•		CERTIFIE						3-25	0-043	1000		t No.	Project
Project 2024 Local Street Renewal (24-K-01, 24-RI-01)- Dudley Ave. Control Control Water (24-K-01, 24-RI-01)- Dudley Ave. Sample # L24-061-03 Control Control Water (24-K-01, 24-RI-01)- Dudley Ave. Maximum Dry Density (kg/m3) Sample Date 27-Feb-24 Maximum Dry Density (kg/m3) Maximum Dry Density (kg/m3) Maximum Moisture (%) Trial Number 1 2 3 4 Wet Density (kg/m ³) 1754 1800 1830 1843 Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8														Client
Source TH24-06 and TH24-07 (1.5m - 2.0m) Material Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Maximum Dry Density (kg/m3) Technician AD Optimum Moisture (%) Trial Number 1 2 3 4 Met Density (kg/m ³) 1754 1800 1830 1843 Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8 Ufustor 140 Care Air Voids Care Air Voids 1400 1400 1400 Care Air Voids Care Air Voids 1300 1374 1393 1314 1395 1376 Moisture Content (%) 27.7 29.2 31.1 33.8 Ufustor Care Air Voids Care Air Voids Care Air Voids 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 14	dent Laboratories on www.ccil.com	adian Council of Independent l pecific tests as listed on w	Canadian Co For specific										t	
Material Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Technician AD Trial Number 1 2 3 4 Wet Density (kg/m ³) 1754 1800 1830 1843 Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8									03	-061-	L24-		e #	Sample
Sample Date 27-Feb-24 Test Date 07-Mar-24 Maximum Dry Density (kg/m3) Optimum Moisture (%) Trial Number 1 2 3 4 Wet Density (kg/m3) 1754 1800 1830 1843 Dry Density (kg/m3) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8						- 2.0m)	7 (1.5m	TH24-0	and T	4-06	TH2)	Source
Test Date 07-Mar-24 Maximum Dry Density (kg/m3) Trial Number 1 2 3 4 Wet Density (kg/m³) 1754 1800 1830 1843 Dry Density (kg/m³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8									Clay		al	Materia		
Technician AD Optimum Moisture (%) Trial Number 1 2 3 4 Wet Density (kg/m ³) 1754 1800 1830 1843 Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8						?7-Feb-24							e Date	Sample
Trial Number 1 2 3 4 Wet Density (kg/m ³) 1754 1800 1830 1843 Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8	397	139	ity (kg/m3)	ximum Dry Dens	N)7-Mar-24					07-N		ate	Test Da
Wet Density (kg/m³) 1754 1800 1830 1843 Dry Density (kg/m³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8	30.8	30.	(%)	timum Moisture	<u>c</u>						AD		cian	Techni
Dry Density (kg/m ³) 1374 1393 1395 1378 Moisture Content (%) 27.7 29.2 31.1 33.8 1440 1430 1420 1410 1410 1400 1410 1400 1410 1400 1300						2						-		
Moisture Content (%) 27.7 29.2 31.1 33.8														
A Constraints of the second se												-		
1430 1420 1410 1410 1400 1390 1380 1380 1370			33.8	31.1		9.2	2		7.7	2		ent (%)	re Cont	Moistu
1420 1410 1410 1400 1400 1390 1380 1380 1370													1440	
1410 Zero Air Voids (Saturation Curve) 1400 1390 1380 1380 1380 1370													1430	
Image: Second													1420	
		ido 1											1410	(e
													1400	kg/m
													1390	SITY (
													1380 -	DEN
1360									/				1370 -	DRY
									/				1360	
1350										$\left \right $			1350	
										4	/			
24 26 28 30 32 34 36 MOISTURE CONTENT (%)	38	6	34 36		= C.(28		26				
Note: Additional information recorded/measured for this test is available upon request.														

Project No.	1000-043-25	Source	Dudley Ave: TH24-06 & TH24-07 (1.5 m - 2.0 m)
Client	WSP	Material	Clay
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-27
Sample #	L24-061	Test Date	2024-03-11
		Technician	DS

Proctor Results (ASTM D698)		CBR Sample Compaction							
Maximum Dry Density	1397 kg/m3	Dry Density	1323 kg/m3						
Optimum Moisture Content	30.8 %	Initial Moisture Content	30.7 %						
Material Retained on 19 mm Sieve	0.0 %	Relative Density	94.7 % SPMDD						
Soaking Results		CBR Results							
Surcharge	4.54 kg	CBR at 2.54 mm	1.5 %						
Swell	4.1 %	CBR at 5.08 mm	1.3 %						
Moisture Content in top 25 mm	54.2 %	Zero Correction	0 mm						
Immersion Period	96 h								

	Test Data		Load/Penetration Curve
Penetration (mm)	Measured Pressure (MPa)	Corrected Pressure (MPa)	0.18
0.64	0.04	0.04	0.16
1.27	0.07	0.07	e 0.14
1.91	0.09	0.09	€ 0.12 € 0.12
2.54	0.11	0.11	(WD) 0.12 0.10 0.10
3.18	0.12	0.12	5 0.08 /
3.81	0.13	0.13	
4.45	0.13	0.13	
5.08	0.13	0.13	
7.62	0.13	0.13	
10.16	0.14	0.14	0 2 4 6 8 10 12 14 16
12.70	0.15	0.15	Penetration (mm)

Comments:

Project Client Project		1000-043-25 WSP 2024 Local Street R (24-K-01, 24-RI-01)			Canadiar For speci	Council of Independent Laboratories			
Sample Source)	L24-061-04 TH24-06 and TH24	-07 (0.9m - 1.5m)						
Materia		Silt							
Fest Da	e Date	26-Feb-24 08-Mar-24		Maximum Dry Den	sity (ka/m2)	4004			
Techni		AD		Optimum Moisture		1864 14.3			
	umber	1	2	3	4				
	ensity (kg/m ³)	2088	2144	2133	2088				
-	nsity (kg/m ³)	1851	1867	1824	1756				
Moistu	re Content (%)	12.8	14.8	16.9	18.9				
DENSITY (kg/m³)	1940					Air Voids ion Curve)			
DRY	1780								
Noto: A	8	10		14 16 CONTENT (%) available upon reques		20			

Project No.	1000-043-25	Source	Dudley Ave: TH24-06 & TH24-07 (0.9 m - 1.5 m)
Client	WSP	Material	Silt
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-26
Sample #	L24-061	Test Date Technician	2024-03-09 IA

Proctor Results (ASTM D698)		CBR Sample Compaction						
Maximum Dry Density	1864 kg/m3	Dry Density	1769 kg/m3					
Optimum Moisture Content	14.3 %	Initial Moisture Content	14.4 %					
Material Retained on 19 mm Sieve	0.0 %	Relative Density	94.9 % SPMDD					
Soaking Results		CBR Results						
Surcharge	4.54 kg	CBR at 2.54 mm	6.8 %					
Swell	0.4 %	CBR at 5.08 mm	5.7 %					
Owen			•••• •••					
Moisture Content in top 25 mm	19.4 %	Zero Correction	0 mm					

Comments:

Photo 1: Pavement Core Sample at TH24-06

Photo 2: Pavement Core Sample at TH24-07

Appendix D

Test Hole Logs, Summary Table, Lab Testing Results and Pavement Core Photos

Irene St - Clarence Ave to Waller Ave

Client:	WSP						Proj	ect Nu	mber:	1000-	043-2	5						
Project Name	e: 2024 Local	Street Re	enewal (24-	K-01, 24-F	R1-01)		Loca	ation:		UTM	N-552	160	6, E-6319	974 - li	rene S	St		
Contractor:	Paddock Dr	illing Ltd.					Grou	und Ele	vation:	Тор о	f Pave	emer	ıt					
Method:	150 mm Solid	-		Mount			Date	Drille	d:	Febru	ary 26	5, 20	24					
Sample	Туре:		Grab (G)		Sh	elby Tube (T)	\boxtimes	Split S	poon (S	S) / SP	т 🕨		Split Bar	rel (SB) / LP	тΓ		Core (C)
Particle	Size Legend:		Fines	c 🕅	lay	Silt	 }	S S	and		Gra	vel	FA	Cobb	les		Boul	ders
	5	VVVV			,		<u>نا</u>	<u>> </u>					Bulk	Jnit Wt			Undrain	ed Shea
										Sample Type	Sample Number	16	(kN/ 17 18	m) 19 :	20 21			th (kPa) Type
Depth (m) il Symbol			М	ATERIAL [DESCR	IPTION				le T	Nu		Particle \$)		∆ Tor	vane \triangle
Soil S										dm	aldr	0	20 40 PL M		80 100		\boxtimes (et Pen. 🖣 Qu 🖾
Ň										Sa	San	0				0 5		I Vane C 150 2
-	ASPHALT											0	20 40		50 100	0 0	0 100	130 2
	CONCRETE																	
	CLAY (FILL) - :	silty, trace	e sand, trac	e gravel (<	:10 mm	diam.)												
	dark brown frozen, moist,	firm whe	en thawed															
-0.5-	 high plasticity AASHTO: A-7 										<u> </u>			_				
											G1					\triangle		
	CLAY - silty, tra · dark brown	ace sand																
	frozen to 1.5 i		stiff, when	thawed							G2					/	\ •	
	 high plasticity AASHTO: A-7 	'- 6(39)									52							
1.0															+++++			
	with silt, light	brown, m	ottled grey,	firm, belov	v 1.0 m						G3			 		∠ •		
	silty, brown, s	tiff bolou	v 1 4 m															
-1.5-	• Silly, DIOWII, S		v 1.4 (1)								G4		•				$\triangle \Phi$	
											_							
	trace silt inclu	sions /~	5 mm diam) holow 1 0	t m													
	trace silt inclu	SIONS (<5	o mini diam.		0 (11						G5						∆Φ	
2.0-																		
-///																		
											G6			•		2		
2.5																		
											07							
											G7			•		Q	!	
·3.U-	END TEST HO	ΙΕΔΤ 3	0 m IN CL 4	Y														
	Notes:																	
:	1. Seepage or s 2. Test Hole op	en to 3.0	m immedia	ately after c	Irilling.													
	3. Test Hole ba 4. Bulk sample	ckfilled w	ith cuttings	, granular f	fill and o	cold patch aspl	nalt.	061_01)									
	5. Test Hole loc																	

Client:	WSP				Project Number:	1000-	043-25					
Project Name:	2024 Local S	treet Renewal (24-	K-01, 24-R1-0	01)	Location:	UTM	N-55216	85, E-631938	- Irene St			
Contractor:	Paddock Drill				Ground Elevation:							
Method:		item Auger, M10 Truck	Mount		Date Drilled:		ary 26, 2					
Sample T		Grab (G)		Shelby Tube (T)	Split Spoon (S	S) / SP	т	Split Barrel	(SB) / LPT		Core (C	;)
Particle Si	ze Legend:	Fines	Clay	Silt	Sand	P	Grave	িনি ০	obbles	Во	ulders	
Depth (m) Soil Symbol		M	ATERIAL DES	SCRIPTION		Sample Type	ample Number	□ Bulk Unit (kN/m³) 5 17 18 19 Particle Size 20 40 60 PL MC	20 21	<u>Strer</u> <u>Te</u> ∆ T ● Poo	ained Shea agth (kPa) orvane ∆ cket Pen. ∎ Qu ⊠ eld Vane C	•
- CL - d - fr	SPHALT AY (FILL) - sil ark brown rozen, moist, fi igh plasticity, f ASHTO: A-7-6	rm when thawed rozen					ος ος ος ος ος ος ος ος ος ος		80 100 0	250 10 250 10		
-1.0	igh plasticity ASHTO: A-7-6 <i>v</i> ith silt, light br	, moist, firm to stiff 6(I) rown, mottled grey, f, below 1.4 m					G10 G11 G12	•		¢ 20		
-1.5-							G13	•		•		
-2.5-							G14			•		
							G15	•		<u>.</u> 0		
No 1. 2. 3. 4.	otes: Seepage or slo Test Hole oper Test Hole back Bulk samples	E AT 3.0 m IN CLA bughing not observ n to 3.0 m immedia filled with cuttings were collected betw ted in front of #10	ed. tely after drilli , granular fill a veen 1.4 m ar	and cold patch aspl nd 2.0 m depth (cla	nalt. y) (L24-061-01). 5 m West of East curb.							<u> </u>
	ate Franklin				idler-Kliewer			Engineer: <u>N</u>				

Client:	WSP				Project Number:	1000-	043-25				
Project Name	: 2024 Local St	treet Renewal (24-I	K-01, 24-R1-0)1)	Location:	UTM	N-55217	42, E-631901	- Irene St		
Contractor:	Paddock Drilli	ing Ltd.			Ground Elevation:	Тор о	f Paveme	ent			
Method:	150 mm Solid S	tem Auger, M10 Truck	Mount		Date Drilled:	Febru	iary 26, 2	2024			
Sample ⁻	Туре:	Grab (G)		Shelby Tube (T) Split Spoon (S	S) / SP	т 📉	Split Barrel	(SB) / LPT		Core (C)
Particle \$	Size Legend:	Fines	Clay	Silt	Sand Sand		Gravel	67 c	_	В	oulders
Depth (m) Soil Symbol		MA	ATERIAL DES	SCRIPTION		Sample Type	ample Num	□ Bulk Uni (kN/m) 17 18 19 Particle Size 20 40 60 PL MC 20 40 60	20 21 2(%)	Stree	ained Shea angth (kPa) est Type Torvane ∆ cket Pen. ⊠ Qu ⊠ eld Vane ⊖ 00 150 2
	SPHALT CONCRETE CLAY (FILL) - sil dark brown frozen, moist, fil high plasticity AASHTO: A-7-6 CLAY - trace silt	rm when thawed					G16	•			
	dark brown	, moist, firm to stiff 6(78)	when thawed				G17 G18	•			
-1.5	-	own, mottled grey,	below 1.2 m				G19	•			
	silty, brown, bel	ow 1.5 m					G20	•		0	
							G21	•		•	
-2.5-							G22			•	
N 1 2 3 4	lotes: . Seepage or slo . Test Hole oper . Test Hole back . Bulk samples \	E AT 3.0 m IN CLA bughing not observe n to 3.0 m immedia cfilled with cuttings, were collected betw ted in front of #77	ed. tely after drillin granular fill a veen 0.9 m an	nd cold patch as d 2.0 m depth (c	ohalt. ay) (L24-061-02). 7 m East of West curb.						<u> </u>
	Kate Franklin		Review								

Client:		WSP				Project Number:	1000-	043-25				
Projec	t Name	: 2024 Local S	Street Renewal (24-k	<u>-01, 24-R1-01</u>)	Location:	UTM I	V-5521	855, E	-631836 - Irene	e St	
Contra	ctor:	Paddock Dril	ling Ltd.			Ground Elevation:	Top of	Paven	nent			
Metho	d:	_150 mm Solid S	Stem Auger, M10 Truck I	Vlount		Date Drilled:	Febru	ary 26,	2024			
S	Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (SS	S) / SP		Spli	Split Barrel (SB) / LPT		Core (C)
F	Particle	Size Legend:	Fines	Clay	Silt	 Sand		Grave		Cobbles		Boulders
Depth (m)	Soil Symbol		MA	TERIAL DESC	RIPTION		Sample Type	Sample Number	6 17 Par	Bulk Unit Wt (kN/m ³) 18 19 20 ticle Size (%) 40 60 80 1 MC LL	21 S	drained Shear trength (kPa) <u>Test Type</u> ∆ Torvane ∆ Pocket Pen. ● ⊠ Qu ⊠ Field Vane ◯
-0.5-		high plasticity AASHTO: A-7- CLAY - silty dark brown	irm to stiff when tha					623 G24		40 60 80 1		
		high plasticity AASHTO: A-7-	t, brown, 50 mm thic					G25 G26		•		•
2.0		firm to stiff belo	w 2.7 m					G27 G28 G29		•	•••	
-3.0-		END TEST HOL Votes: I. Seepage or sl 2. Test Hole ope 3. Test Hole bac 4. Bulk samples	E AT 3.0 m IN CLA oughing not observe n to 3.0 m immediat kfilled with cuttings, were collected betw	d. ely after drilling granular fill and een 0.9 m and	d cold patch asph 2.0 m depth (cla	nalt. y) (L24-061-02). ' m East of West curb.						
-oaae	d Bv:	Kate Franklin		Reviewee	d By: _Angela Fi	dler-Kliewer	F	roject	Engin	eer: Nelson I	erreira	

Client:	WSP				Project Number:	1000-	-043-25	5					
Project Name	: 2024 Local S	Street Renewal (24-I	K-01, 24-R1-01)	Location:	UTM	N-552	1785, E	E-631882	- Irene S	St		
Contractor:	Paddock Dril	ling Ltd.			Ground Elevation:	Тор о	f Pavei	ment					
Method:	150 mm Solid S	Stem Auger, M10 Truck	Mount		Date Drilled:	Febru	ary 26	, 2024					
Sample	Туре:	Grab (G)		Shelby Tube (T)	Split Spoon (S	S) / SP	т 🔼	Sp	lit Barrel (SB) / LP	т 🗌	Со	e (C)
Particle	Size Legend:	Fines	Clay	Silt	Sand		Grav	el	67 Co	bbles		Boulde	rs
Depth (m) Soil Symbol	ASPHALT	MA	ATERIAL DESC	RIPTION		Sample Type		16 17		20 21 (%) 80 100 LL	s • •	drained trength <u>Test Ty</u> Torva Pocket I ⊠ Qu Field V 100	(kPa) / <u>pe</u> ne ∆ Pen. Ф ⊠ ane ⊖
0.5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	CONCRETE SAND (fill) - son brown frozen, moist, (poorly graded, no to low plasti AASHTO: A-1(CLAY (FILL) - s grey	l) ilty, trace sand, trace n, moist, firm to stiff	ed unded to suban e gravel (<10 m	glular			G30 G31 G32 G33 G33					•	
· -/////-	CLAY - silty, trac dark brown moist, firm to s high plasticity AASHTO: A-7-	tiff					G35 G36		•		9 9		
N 1 2 3	Notes: 2. Seepage or sl 2. Test Hole ope 3. Test Hole bac	E AT 3.0 m IN CLA oughing not observe in to 3.0 m immedia kfilled with cuttings, ated in front of #77 I	ed. tely after drilling granular fill and	d cold patch aspł	nalt. n West of East curb.								
.ogged By:	Kate Franklin		Reviewed	d By: _ Angela F	idler-Kliewer	_ 1	Project	t Engii	neer: Ne	elson Fe	rreira		

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Maj	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Class	sification (Criteria		ŝS				
	action	gravel no fines)	GW	8	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater that	an 4; C _C = [_]	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		Sieve sizes		#10 to #4 #40 to #10	#200 to #40	< #200
sieve size)	Gravels than half of coarse fraction s larger than 4.75 mm)	Clean gravel (Little or no fines)	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all gradat	tion require	ments for GW	υ	STM		#10 #40	#200	*
No. 200 s	Gra than half c larger tha	Gravel with fines (Appreciable amount of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size ci than No. g dual sym	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-	Particle Size					
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: N, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater that	e "A" n 7	line cases requiring use of dual symbols	Part			u g	25	
Coarse-Grained soils material is larger than No. 200 sieve size)	fraction nm)	sands no fines)	SW	\$ • • • •	Well-graded sands, gravelly sands, little or no fines	Determine percentages of sand and gravel from grain size curve, depending on percentages of fines (fraction smaller than No. 200 sieve) coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 6 to 12 percent Borderline case4s requiring dual symbols*	$C_{U} = \frac{D_{60}}{D_{10}}$ greater that	an 6; C _C =-	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		mm		2.00 to 4.75 0.425 to 2.00	0.075 to 0.425	< 0.075
Coarse- More than half the material		Clean sands (Little or no fines)	SP		Poorly-graded sands, gravelly sands, little or no fines	iges of sar intage of fa s are class centG rcent	Not meeting all gradat	tion require	ments for SW					0	
(More thar	Sands than half of coarse smaller than 4.75 n	Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil: han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4		Above "A" line with P.I. between 4 and 7 are border-						Clay
	(More t is s	Sands w (Appre amount	SC		Clayey sands, sand-clay mixtures	Determin dependin coarse-gr Less t More 6 to 13	Atterberg limits above line or P.I. greater that		line cases requiring use of dual symbols	Matarial	INIALE	Sand	Coarse Medium	Fine	Silt or Clay
size)	õ	-	ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity		Plastici chart for solid fraction with particles				e Sizes		Ē	. <u>ci</u>	Ŀ
Fine-Grained soils tterial is smaller than No. 200 sieve size)	ts and Clay	(Liquid limit less than 50)	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 70 - 60 -	nan 0.425 mm		UU INE		⁻ M Sieve	> 12 in.	3 in. to 12 in.	3/4 in. to 3 in.	#4 to 3/4 in.
oils r than No.	iis "	<u>=</u>	OL	==	Organic silts and organic silty clays of low plasticity	(%) 50 -				Particle Size	ASTM		_		
-Grained s al is smalle	s	50)	МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts	PLASTICITY INDEX (%)				Par	mm	300	75 to 300	19 to 75	to 19
Fine-Gra (More than half the material is	ts and Cla	(Liquid limit greater than 50)	СН		Inorganic clays of high plasticity, fat clays	20-	10		MH OR OH		μ	^	91 G/	191	4.75
than half	, ΩΪ) gre	ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUIE	60 7 D LIMIT (%)	0 80 90 100 110			ers	se _		
(More	Highly	Organic Soils	Pt	<u>6 76 76</u> <u>76 76 7</u>	Peat and other highly organic soils	Von Post Clas	sification Limit	, v	olour or odour, n fibrous texture	Matarial	INIALE	Boulders	Cobbles Gravel	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

	Asphalt	Bedrock (undifferentiated)	67	Cobbles
A CA	Concrete	Limestone Bedrock		Boulders and Cobbles
	Fill	Cemented Shale		Silt Till
		Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>						
Very loose	< 4						
Loose	4 to 10						
Compact	10 to 30						
Dense	30 to 50						
Very dense	> 50						

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

2024 Local Street Renewal (24-K-01, 24-R1-01) Irene St - Clarence Ave to Waller Ave Sub-Surface Investigation

Test Hole		Pavement Surface		Pavement Structure Material			Sample Depth (m)		Moisture		Grain Siz	e Analysis	5	At	terberg L	imits
No.	No. Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	90	Concrete	190	Clay, AASHTO: A-7-6 (I)	0.5	0.6	36							
	UTM : 5521606 N,					Clay, AASHTO: A-7-6 (39)	0.8	0.9	37							
	631974 E					Clay, AASHTO: A-7-6 (39)	1.1	1.2	38	38	61	1	0	21	56	35
TH24-01	Located in front of #121 Irene St, Southbound					Clay, AASHTO: A-7-6 (39)	1.4	1.5	39							
	Lane, 1.5 m East of West					Clay, AASHTO: A-7-6 (39)	1.8	2.0	47							
	curb					Clay, AASHTO: A-7-6 (39)	2.3	2.4	55							
						Clay, AASHTO: A-7-6 (39)	2.6	2.7	59							
		Asphalt	90	Concrete	195	Clay, AASHTO: A-7-6 (I)	0.5	0.6	36							
						Clay, AASHTO: A-7-6 (I)	0.8	0.9	40							
	UTM : 5521685 N,					Clay, AASHTO: A-7-6 (I)	1.1	1.2	44							
TH24-02	631938 E Located in front of #101					Clay, AASHTO: A-7-6 (I)	1.2	1.4	40							
1 1124-02	Irene St, Northbound Lane, 1.5 m West of East					Clay, AASHTO: A-7-6 (I)	1.4	1.5	42							
	curb					Clay, AASHTO: A-7-6 (I)	1.8	2.0	51							
						Clay, AASHTO: A-7-6 (I)	2.3	2.4	53							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	53							
		Asphalt	80	Concrete	210	Clay, AASHTO: A-7-6 (I)	0.5	0.6	35							
	UTM : 5521742 N,					Clay, AASHTO: A-7-6 (78)	0.8	0.9	38							
	631901 E					Clay, AASHTO: A-7-6 (78)	1.1	1.2	42	91	8	1	0	27	95	67
TH24-03	H24-03 Located in front of #77 Irene St, Southbound					Clay, AASHTO: A-7-6 (78)	1.4	1.5	42							
	Lane, 1.7 m East of West					Clay, AASHTO: A-7-6 (78)	1.8	2.0	50							
	curb					Clay, AASHTO: A-7-6 (78)	2.3	2.4	55							
						Clay, AASHTO: A-7-6 (78)	2.6	2.7	55							

2024 Local Street Renewal (24-K-01, 24-R1-01) Irene St - Clarence Ave to Waller Ave Sub-Surface Investigation

Test Hole		Paveme	ent Surface	Pavement Stru	ucture Material		Sample Depth (m)		Moisture	Grain Size Analysis			Atterberg Limits			
No.	Test Hole Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Subgrade Description	Top (m)	Bottom (m)	Content (%)	Clay (%)	Silt (%)	Sand (%)	Gravel (%)	Plastic	Liquid	Plasticity Index
		Asphalt	80	Concrete	180	Clay, AASHTO: A-7-6 (I)	0.5	0.6	33							
	UTM : 5521855 N,					Clay, AASHTO: A-7-6 (I)	0.8	0.9	32							
	Lane, 1.7 m East of West					Clay, AASHTO: A-7-6 (I)	1.1	1.2	34							
TH24-04						Clay, AASHTO: A-7-6 (I)	1.4	1.5	40							
						Clay, AASHTO: A-7-6 (I)	1.8	2.0	48							
	curb					Clay, AASHTO: A-7-6 (I)	2.3	2.4	52							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	50							
		Asphalt	90	Concrete	220	Sand, AASHTO: A-1 (I)	0.5	0.6	11							
	UTM : 5521785 N,					Clay, AASHTO: A-7-6 (I)	0.8	0.9	16							
	631882 E					Clay, AASHTO: A-7-6 (I)	1.1	1.2	37							
TH24-05	Located in front of #77 Irene St, Northbound					Clay, AASHTO: A-7-6 (I)	1.4	1.5	32							
	Lane, 1.5 m West of East curb					Clay, AASHTO: A-7-6 (I)	1.8	2.0	22							
						Clay, AASHTO: A-7-6 (I)	2.3	2.4	52							
						Clay, AASHTO: A-7-6 (I)	2.6	2.7	57							

Project No.	1000-043-25
Client	WSP
Project	2024 Local Street Renewal (24-K-01, 24-R1-01)- Irene St.

Sample Date26-Feb-24Test Date01-Mar-24TechnicianKF

Test Hole	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01
Depth (m)	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4
Sample #	G1	G2	G3	G4	G5	G6
Tare ID	Z44	M92	E64	W111	F50	AC08
Mass of tare	8.5	6.8	6.9	8.5	8.7	6.9
Mass wet + tare	232.9	295.0	453.7	282.1	271.5	260.6
Mass dry + tare	173.8	217.3	330.4	205.3	187.5	170.3
Mass water	59.1	77.7	123.3	76.8	84.0	90.3
Mass dry soil	165.3	210.5	323.5	196.8	178.8	163.4
Moisture %	35.8%	36.9%	38.1%	39.0%	47.0%	55.3%

Test Hole	TH24-01	TH24-02	TH24-02	TH24-02	TH24-02	TH24-02
Depth (m)	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2	1.2 - 1.4	1.4 - 1.5
Sample #	G7	G8	G9	G10	G11	G12
Tare ID	C3	A37	Z08	E10	AB75	W87
Mass of tare	8.6	8.4	8.4	6.8	6.8	8.6
Mass wet + tare	261.2	236.1	259.0	435.8	270.8	281.8
Mass dry + tare	167.7	175.9	187.4	304.1	195.7	201.5
Mass water	93.5	60.2	71.6	131.7	75.1	80.3
Mass dry soil	159.1	167.5	179.0	297.3	188.9	192.9
Moisture %	58.8%	35.9%	40.0%	44.3%	39.8%	41.6%

Test Hole	TH24-02	TH24-02	TH24-02	TH24-03	TH24-03	TH24-03
Depth (m)	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9	1.1 - 1.2
Sample #	G13	G14	G15	G16	G17	G18
Tare ID	Z99	Z74	N22	Z56	Z109	M12
Mass of tare	8.4	8.5	8.5	8.5	8.6	6.8
Mass wet + tare	265.9	288.3	275.2	264.2	226.3	492.6
Mass dry + tare	179.1	191.1	182.6	198.2	166.0	349.7
Mass water	86.8	97.2	92.6	66.0	60.3	142.9
Mass dry soil	170.7	182.6	174.1	189.7	157.4	342.9
Moisture %	50.8%	53.2%	53.2%	34.8%	38.3%	41.7%

Project No.	1000-043-25
Client	WSP
Project	2024 Local Street Renewal (24-K-01, 24-R1-01)- Irene St.

Sample Date26-Feb-24Test Date01-Mar-24TechnicianKF

Test Hole	TH24-03	TH24-03	TH24-03	TH24-03	TH24-04	TH24-04
Depth (m)	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7	0.5 - 0.6	0.8 - 0.9
Sample #	G19	G20	G21	G22	G23	G24
Tare ID	A16	F89	K39	E29	Z114	N42
Mass of tare	8.5	8.5	8.4	8.7	8.6	8.6
Mass wet + tare	263.5	276.8	310.4	274.3	215.6	240.4
Mass dry + tare	188.6	186.9	203.5	179.8	164.6	183.9
Mass water	74.9	89.9	106.9	94.5	51.0	56.5
Mass dry soil	180.1	178.4	195.1	171.1	156.0	175.3
Moisture %	41.6%	50.4%	54.8%	55.2%	32.7%	32.2%

Test Hole	TH24-04	TH24-04	TH24-04	TH24-04	TH24-04	TH24-05
Depth (m)	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7	0.5 - 0.6
Sample #	G25	G26	G27	G28	G29	G30
Tare ID	E98	W98	W35	D56	Z70	AB03
Mass of tare	7.0	8.7	8.5	8.9	8.7	6.6
Mass wet + tare	455.1	245.7	258.7	236.2	278.3	274.0
Mass dry + tare	341.2	178.4	177.1	158.9	188.3	247.4
Mass water	113.9	67.3	81.6	77.3	90.0	26.6
Mass dry soil	334.2	169.7	168.6	150.0	179.6	240.8
Moisture %	34.1%	39.7%	48.4%	51.5%	50.1%	11.0%

Test Hole	TH24-05	TH24-05	TH24-05	TH24-05	TH24-05	TH24-05
Depth (m)	0.8 - 0.9	1.1 - 1.2	1.4 - 1.5	1.8 - 2.0	2.3 - 2.4	2.6 - 2.7
Sample #	G31	G32	G33	G34	G35	G36
Tare ID	E39	E25	E04	E	H22	E49
Mass of tare	6.9	6.9	6.8	6.7	6.8	6.8
Mass wet + tare	332.8	240.5	252.7	292.4	262.4	267.7
Mass dry + tare	287.5	177.5	192.5	240.4	175.0	172.7
Mass water	45.3	63.0	60.2	52.0	87.4	95.0
Mass dry soil	280.6	170.6	185.7	233.7	168.2	165.9
Moisture %	16.1%	36.9%	32.4%	22.3%	52.0%	57.3%

Project No. Client Project	1000-043-25 WSP 2024 Local Stree	et Renewal (24-K-01	, 24-RI-01)- Irene	St.	Canadian Council of	Independent Laboratories
Fest Hole	TH24-01				For specific tests a	s listed on www.ccil.com
Sample #	G03					
Depth (m)	1.1 - 1.2					
Sample Date	26-Feb-24				Liquid Limit	56
Fest Date	06-Mar-24				Plastic Limit	21
Fechnician	PC				Plasticity Index	35
_iquid Limit						
Frial #		1	2	3		
Number of Bl		15	21	35		
Mass Tare (g		13.716	14.039	13.906		
Mass Wet So		22.311	19.845	21.294		
Mass Dry Soi		19.140	17.749	18.717		
Mass Water (3.171	2.096	2.577		
	Mass Dry Soil (g) 5.424		3.710	4.811		
Noisture Cor	itent (%)	58.462	56.496	53.565		
80	T					
70	Plasticity Chart smaller than 0.4	for solid fraction w 25 mm	vith particles		, ine	
% ⁶⁰	-			···U	"Line	
Plasticity Index (%) 00 00 00 00 00 00 00 00 00 0	-			CH	"A" Line	
	-			0.	"A	
³⁰	-	//	CI			
_ 20		- 61		MH or C	ЮН	
10	CL · ML		or OL			
0						

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.176	14.173			
Mass Wet Soil + Tare (g)	20.235	20.689			
Mass Dry Soil + Tare (g)	19.205	19.551			
Mass Water (g)	1.030	1.138			
Mass Dry Soil (g)	5.029	5.378			
Moisture Content (%)	20.481	21.160			

Note: Additional information recorded/measured for this test is available upon request.

Project No. Client Project	1000-043-25 WSP 2024 Local Street Renewal (24-K-01, 24-RI-01)- Irene St.		Certified By Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH24-01		For specific tests as listed on www.ccit.com
Sample #	G3		
Depth (m)	1.0 - 1.2	Gravel	0.0%
Sample Date	26-Feb-24	Sand	0.8%
Test Date	05-Mar-23	Silt	60.9%
Technician	DS	Clay	38.4%

44.85

39.05 34.44

0.0029

0.0021

0.0013

Project No. Client Project	1000-043-25 WSP 2024 Local Stre	et Renewal (24-K-0'	1, 24-RI-01)- Irene	St.	Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com		
Fest Hole	TH24-03						
Sample #	G18		-				
Depth (m)	1.1 - 1.2		-				
Sample Date	26-Feb-24		-		Liquid Limit	95	
Fest Date	06-Mar-24		-		Plastic Limit	27	
Fechnician	PC		-		Plasticity Index	67	
_iquid Limit							
Frial #		1	2	3			
Number of Blo	ows (N)	20	27	31			
Mass Tare (g)		14.130	14.129	13.886			
Mass Wet Soi		21.042	20.575	20.719			
Mass Dry Soil	+ Tare (g)	17.636	17.450	17.441			
Mass Water (g		3.406	3.125	3.278			
Mass Dry Soil		3.506	3.321	3.555			
Moisture Con	tent (%)	97.148	94.098	92.208			
 - 08 - 07 - 08 - 108 - 108	Plasticity Chart smaller than 0.4	- 61	vith particles	CH MH or (" Line "A" Line DH		
	0 10 2	20 30 4	40 50 Liquid Lin	60 70 nit (%)	80 90	100 110	

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.030	13.968			
Mass Wet Soil + Tare (g)	19.816	20.041			
Mass Dry Soil + Tare (g)	18.580	18.725			
Mass Water (g)	1.236	1.316			
Mass Dry Soil (g)	4.550	4.757			
Moisture Content (%)	27.165	27.664			

Note: Additional information recorded/measured for this test is available upon request.

Project No. Client Project	1000-043-25 WSP 2024 Local Street Renewal (24-K-01, 24-RI-01)- Irene St.		Certified BY Canadian Council of Independent Laboratories For specific tests as listed on www.ccil.com
Test Hole	TH24-03		To specific tests as taked on www.cert.com
Sample #	G18		
Depth (m)	1.0 - 1.2	Gravel	0.0%
Sample Date	26-Feb-24	Sand	0.7%
Test Date	05-Mar-23	Silt	8.2%
Technician	DS	Clay	91.1%

86.66

0.0010

Project	t No.	1000-043-25			CERT	
Client		WSP				
Project	t	2024 Local Street F (24-K-01, 24-RI-01)			Canadii For spec	in Council of Independent Laboratories cific tests as listed on www.ccil.com
Sample	e #	L24-061-01				
Source	•	TH24-01 and TH24	-02 (1.4m - 2.0m)			
Materia	al	Clay				
Sample	e Date	26-Feb-24				
Test Da	ate	08-Mar-24		Maximum Dry Den	sity (kg/m3)	1385
Fechni	cian	AD		Optimum Moisture	e (%)	31.5
Trial Nu		1	2	3	4	
	ensity (kg/m ³)	1751	1795	1828	1828	
-	nsity (kg/m ³)	1359	1381	1379	1362	
Moistu	re Content (%) 28.8	30.0	32.5	34.2	
DRY DENSITY (kg/m³)	1400 1395 1395 1390 1380 1380 1375 1370 1365					sir Voids on Curve)
	1360					
	1355					
	1350	28 29	30 31	32 33	3 34	35 36
			MOISTURE	CONTENT (%)		

Project No.	1000-043-25	Source	Irene St: TH24-01 & TH24-02 (1.4 m - 2.0 m)
Client	WSP	Material	Clay
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-26
Sample #	L24-061	Test Date Technician	2024-03-11 IA

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1385 kg/m3	Dry Density	1321 kg/m3
Optimum Moisture Content	31.5 %	Initial Moisture Content	31.8 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	95.4 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	1.7 %
Surcharge Swell	4.54 kg 2.8 %	CBR at 2.54 mm CBR at 5.08 mm	1.7 % 1.3 %
6	0		

	Test Data		Load/Penetration Curve
Penetration (mm)	Measured Pressure (MPa)	Corrected Pressure (MPa)	0.20
0.64	0.05	0.05	0.18
1.27	0.08	0.08	(m) 0.16 (€) 0.14
1.91	0.11	0.11	
2.54	0.12	0.12	
3.18	0.13	0.13	
3.81	0.13	0.13	
4.45	0.14	0.14	0.08 0.08 0.00 0.00 0.00 0.00 0.00 0.00
5.08	0.14	0.14	
7.62	0.15	0.15	
10.16	0.16	0.16	0 2 4 6 8 10 12 14 16
12.70	0.17	0.17	Penetration (mm)

Comments:

Www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

(24-K-01, 24-RI-01) - Irene St. Sample # L24-081-02 Source TH24-03 and TH 24-04 (0.9m - 2.0m) Material Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Technician AD Optimum Moisture (%) Trial Number 1 2 3 4 Wet Density (kg/m ³) 1769 1807 1834 1844 Dry Density (kg/m ³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 1400			
Project 2024 Local Street Renewal (24-K-01, 24-RI-01) - Irene St. Description Sample # L24-061-02 Events <	¯il⋞		
(24-K-01, 24-RI-01) - Irene St. Sample # L24-061-02 Source TH24-03 and TH 24-04 (0.9m - 2.0m) Waterial Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Material AD Optimum Moisture (%) 0 Trial Number 1 2 3 4 Net Density (kg/m ³) 1769 1807 1834 1844 Dry Density (kg/m ³) 1385 1388 1390 1376 Woisture Content (%) 27.8 30.2 32.0 34.0 (guidance of the second	1		
Source TH24-03 and TH 24-04 (0.9m - 2.0m) Material Clay Sample Date 27-Feb-24 Test Date 07-Mar-24 Material Clay Trial Number 1 2 3 4 Net Density (kg/m ³) 1769 1807 1834 1844 Dry Density (kg/m ³) 1385 1388 1390 1376 Woisture Content (%) 27.8 30.2 32.0 34.0	as listed on www.ccil.co		
Naterial Clay Sample Date 27-Feb-24 Fest Date 07-Mar-24 Technician AD Maximum Dry Density (kg/m3) Optimum Moisture (%) Trial Number 1 Q 3 4 Met Density (kg/m3) 1769 1807 Dry Density (kg/m3) 1385 1388 Optimum Moisture Content (%) 27.8 30.2 Value Content (%) 27.8 30.2 32.0 Moisture Content (%) 27.8 30.2 32.0 34.0			
Sample Date 27-Feb-24 Test Date 07-Mar-24 Maximum Dry Density (kg/m3) D Trial Number 1 2 3 4 Net Density (kg/m3) 1769 1807 1834 1844 Dry Density (kg/m3) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 1420 Image: Content (%) 1420 Image: Content (%) Image: Conten (%)			
Test Date 07-Mar-24 Maximum Dry Density (kg/m3) Trial Number 1 2 3 4 Net Density (kg/m³) 1769 1807 1834 1844 Dry Density (kg/m³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 Image: Second colspan="2">Image: Second colspan="2" <td <="" colspan="2" th=""><th></th></td>	<th></th>		
Technician AD Optimum Moisture (%) Trial Number 1 2 3 4 Net Density (kg/m³) 1769 1807 1834 1844 Dry Density (kg/m³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0			
Trial Number 1 2 3 4 Net Density (kg/m³) 1769 1807 1834 1844 Dry Density (kg/m³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 1420 1410 Zero Air V 1410 Zero Air V 1400 1400 1390 1380 1390 1380 1380 1380 1370	1390		
Vet Density (kg/m³) 1769 1807 1834 1844 Dry Density (kg/m³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 1420 1410 Image: Content (%) Image: Content (%) <t< th=""><th colspan="3">30.3</th></t<>	30.3		
Dry Density (kg/m³) 1385 1388 1390 1376 Moisture Content (%) 27.8 30.2 32.0 34.0 1420			
Moisture Content (%) 27.8 30.2 32.0 34.0			
1420 1410 1410 1400 1300 1300 1300 1370			
1410 1400 1300 1300 1300 1370			
E 1400 1390 1380 1380 1370			
(E 1400 1390 1380 1380 137			
(E 1400 1390 1380 1380 137			
1400 Image: state st			
1400 1400 1390 1390 1380 1380 1370 1370			
1380 1380 1370 1370			
1380 1380 1370 1370			
1380 1380 1370 1370			
Y 1380 1370 1370			
Y 1380 1370 1370			
Y 1380 1370 1370			
Y 1380 1370 1370			
В 130 1370			
1370			
	<u></u>		
	\mathbf{X}		
	X		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36		

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	1000-043-25	Source	Irene St: TH24-03 & TH24-04 (0.9 m - 2.0 m)
Client	WSP	Material	Clay
Project	2024 Local Street Renewal (24-K-01, 24-RI-01)	Sample Date	2024-02-26
Sample #	L24-061	Test Date Technician	2024-03-09 IA

Proctor Results (ASTM D698)		CBR Sample Compaction	
Maximum Dry Density	1390 kg/m3	Dry Density	1318 kg/m3
Optimum Moisture Content	30.3 %	Initial Moisture Content	29.7 %
Material Retained on 19 mm Sieve	0.0 %	Relative Density	94.8 % SPMDD
Soaking Results		CBR Results	
Surcharge	4.54 kg	CBR at 2.54 mm	1.7 %
Swell	3.0 %	CBR at 5.08 mm	1.3 %
	10 0 0/	Zana Cannastian	0 mm
Moisture Content in top 25 mm	48.6 %	Zero Correction	U IIIII

	Test Data		Load/Penetration Curve
Penetration (mm)	Measured Pressure (MPa)	Corrected Pressure (MPa)	0.20
0.64	0.05	0.05	0.18
1.27	0.08	0.08	(m) 0.16 ≥ 0.14
1.91	0.11	0.11	
2.54	0.12	0.12	
3.18	0.13	0.13	
3.81	0.13	0.13	
4.45	0.14	0.14	U0.12 U0 0.10 U0 0.08 0.06 0.04 0.04
5.08	0.14	0.14	0.08 0.08 0.06 0.04 0.02 0.02
7.62	0.15	0.15	0.00
10.16	0.16	0.16	0 2 4 6 8 10 12 14 16
12.70	0.17	0.17	Penetration (mm)

Comments:

Photo 1: Pavement Core Sample at TH24-01

Photo 2: Pavement Core Sample at TH24-02

Project No. 1000 043 25 March 2024

Photo 3: Pavement Core Sample at TH24-03

Photo 4: Pavement Core Sample at TH24-04

Photo 5: Pavement Core Sample at TH24-05

Appendix E

Summary Table and Pavement Core Photos

Daly St N – Lorette Ave to Pembina Hwy

GEOTE	2024 Local Street Renewal (24-K-01, 24-R Daly St N - Lorette Ave to Pembina Hv					
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location		Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
DC24.06	UTM : 5525644 m N, 633276 m E; Located at #370 Daly St N, Northbound Lane, 1.3 m West of East curb	Asphalt	-	Concrete	180	43.67
FC24-00	UTM : 5525044 III N, 655270 III E, LUCAIEU AL #370 D'AIY SL N, NOTITIDUUTU L'AITE, T.S III WEST OF EAST CUID					
PC24.00	UTM : 5525556 m N, 633321 m E; Located at #398 Daly St N, Southbound Lane, 1.3 m East of West curb	Asphalt	70	Concrete	200	
F 624-09						
PC24-10	UTM : 5525602 m N, 633303 m E; Located 10 m South of Dudley Ave, Northbound Lane, 0.7 m West of East curb	Asphalt	90	Concrete	210	63.07

Photo 1: Pavement Core Sample PC24-06

Photo 2: Pavement Core Sample PC24-09

Photo 3: Pavement Core Sample PC24-10

CSA A23.2-14C

Project No. 1000-043-25

Date March 6, 2024

FIGEC 2024 Local Street Fackage (24-R-01, 24-R1-01)	Project	2024 Local Street Package (24-K-01, 24-R1-01)
--	---------	---

Technician TG

Client WSP Group Canada Inc.

		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break	(Correc	tion F	actors	;*
Core Location	Core ID	Received	Break	Break	(mm)	0	Conditioning	$\frac{\text{Uncorrected}}{\text{f}_{\text{conc}}}$	Corrected* f _c	Туре	F _{I/d}	F _{dia}	F_{mc}	F_{D}	F _{reinf}
Daly Street	PC24-06	2024-02-21	2024-03-06	-	145	166	Soaked 48 h	41.57	43.67	1	0.93	0.98	1.09	1.06	1.00
Daly Street	PC24-10	2024-02-22	2024-03-06	-	145	182	Soaked 48 h	58.68	63.07	1	0.95	0.98	1.09	1.06	1.00

Comments

*Correction factors $F_{I/d}$, F_{dia} , F_{mc} , and F_D calculated as per ACI 214.4R-03, and correction factor F_{reinf} calculated as per Khoury et al. (2014): $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$						
	Туре 1	Type 2	Туре 3	Type 4	Type 5	Туре 6

Reviewed by (print):

Angela Fidler-Kliewer, C.Tech.

Signature: _____

List	Code/standard	Edition	Factors Considered										
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction					
1 Egyptian Code/St	Egyptian Code/Standard Specification	2008	\checkmark		\checkmark			\checkmark					
2	British Code/Standard Specification	2003	V		V			V					
3	American Concrete Institute ACI	1998	V										
		2012	V	\checkmark		\checkmark	\checkmark						
4	European Standard Specification	1998	V	V	\checkmark	and the second second	V						
		2009	V		V		5 (S.						
5	Japanese Standard	1998	V										
6	Concrete Society	1987	V		V		V	1					

Table 1 Factors involved in interpretation of core results by different code

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where f_{cy} is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{l/d})$; however, the code gives different values for this term that is associated with different aspect ratios (l/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (l/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, 1/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

where f_c is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, F_{dia} is strength correction factors for diameter, F_{mc} is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3Strength correction factors according to ACI 214.4R-03.

List	Factors	Mean values
(1) ^b	F_{Ud} : l/d ratio	
	As-received	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{core}\} (2 - \frac{l}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	Al
Al	+0	•	+0				•		THE P		•	문제						500
A2																		
A3						-				-								
A4																		
A5																		
A6								-40										
A7								-40										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14		•		•														
A15		•																
A16	••																	
A17	•																	
A18												le						

▲ Distance of steel bar from nearly end of core. ■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r \text{ as follows:}$

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm^2) .

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d). Figure 20

Appendix F

Summary Table and Pavement Core Photos

Dudley Ave – Daly St N to End

GEOTE	2024 Local Street Renewal (24-K-01, 24-F Dudley Ave - Daly St N to End	R1-01)				
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC24-05	UTM : 5525629 m N, 633321 m E; Located at #580 Dudley Ave, Westbound Lane, 1.3 m South of North curb.	Asphalt	-	Concrete	180	

Note: Core too fractured and short for compressive strength test

Photo 1: Pavement Core Sample PC24-05

Appendix G

Summary Table and Pavement Core Photos

Harrow St - Sparling Ave to Harrow St.

GEOTE	2024 Local Street Renewal (24-K-01, 24-F Harrow St - Sparling Ave to Harrow S					
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC24-12	UTM : 5524302 m N, 632630 m E; Located 90 m South of Taylor Ave, Southbound Lane, 1.1 m East of West curb	Asphalt	45	Concrete	200	66.02
1 024-12						
PC24-17	UTM : 5524258 m N, 632655 m E; Located 90 m North of Sparling Ave, Southbound Lane, 1.3 m East of West curb	Asphalt	-	Concrete	175	49.59
1 024-11						
PC24-18	UTM : 5524216 m N, 632684 m E; Located 35 m North of Sparling Ave, Northbound Lane, 1.0 m West of East curb	Asphalt	-	Concrete	190	
1 024-10						

Photo 1: Pavement Core Sample PC24-12

Photo 2: Pavement Core Sample PC24-17

Photo 3: Pavement Core Sample PC24-18

CSA A23.2-14C

Project No. 1000-043-25

Date March 6, 2024

FIGEC 2024 Local Street Fackage (24-R-01, 24-R1-01)	Project	2024 Local Street Package (24-K-01, 24-R1-01)
--	---------	---

Technician TG

Client WSP Group Canada Inc.

		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break	(Correc	tion F	actors	;*
Core Location	Core ID	Received	Break	Break	(mm)	0	Conditioning	Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F _{dia}	F_{mc}	F_{D}	F _{reinf}
Harrow Street	PC24-12	2024-02-22	2024-03-06	-	145	165	Soaked 48 h	62.48	66.02	1	0.93	0.98	1.09	1.06	1.00
Harrow Street	PC24-17	2024-02-23	2024-03-06	-	145	153	Soaked 48 h	47.91	49.59	1	0.91	0.98	1.09	1.06	1.00

Comments

*Correction factors $F_{I/d}$, F_{dia} , F_{mc} , and F_D calculated as per ACI 214.4R-03, and correction factor F_{reinf} calculated as per Khoury et al. (2014): $f_c = f_{conc}F_{I/d}F_{dia}F_{mc}F_DF_{reinf}$						
	Type 1	Type 2	Туре 3	Type 4	Type 5	Туре 6

Reviewed by (print):

Angela Fidler-Kliewer,C.Tech.

Signature: _____

List	Code/standard Edition Factors Considered							
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction
1	Egyptian Code/Standard Specification	2008	\checkmark		\checkmark			\checkmark
2	British Code/Standard Specification	2003	V		V			V
3	American Concrete Institute ACI	1998	V					
		2012	V	\checkmark		\checkmark	\checkmark	
4	European Standard Specification	1998	V	V	\checkmark	and the second second	V	
		2009	V		V		5 (S.	
5	Japanese Standard	1998	V					
6	Concrete Society	1987	V		V		V	1

Table 1 Factors involved in interpretation of core results by different code

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where f_{cy} is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{l/d})$; however, the code gives different values for this term that is associated with different aspect ratios (l/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (l/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, 1/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

where f_c is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, F_{dia} is strength correction factors for diameter, F_{mc} is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3Strength correction factors according to ACI 214.4R-03.

List	Factors	Mean values
(1) ^b	F_{Ud} : l/d ratio	
	As-received	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{core}\} (2 - \frac{l}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	Al
Al	+0	•	+0				•		THE P		•	문제						500
A2																		
A3						-				-								
A4																		
A5																		
A6								-40										
A7								-40										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14		•		•														
A15		•																
A16	••																	
A17	•																	
A18												le						

▲ Distance of steel bar from nearly end of core. ■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r \text{ as follows:}$

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm^2) .

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d). Figure 20

Appendix H

Summary Table and Pavement Core Photos

Irene St – Waller Ave to Sony Pl

TEOTE	2024 Local Street Renewal (24-K-01, 24-F Irene St - Waller Ave to Sony PI	R1-01)				
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC24-01	UTM : 5522028 m N, 631743 m E; Located 15 m South of Sony PI, Southbound Lane, 1.5 m East of West curb	Asphalt	45	Concrete	150	39.83
1 024-01						
PC24-02	UTM : 5521952 m N, 631784 m E; Located 100 m South of Sony PI, Southbound Lane, 1.5 m East of West curb	Asphalt	60	Concrete	140	-
1 024-02						
PC24-03	UTM : 5521911 m N, 631811 m E; Located 40 m North of Waller Ave, Northbound Lane, 1.3 m West of East curb	Asphalt	50	Concrete	170	55.86
1 024-03						
BC24.04	UTM : 5521999 m N, 631762 m E; Located 45 m South of Sony PI, Northbound Lane, 1.3 m West of East curb	Asphalt	130	Concrete	140	-
F 024-04	UTW - 552 1955 III N, 05 1702 III E, EUCAICU 45 III SUUUI OI GONY FI, NUTUIDUUIIU EAIR, 1.5 III WEST OI EAST CUID					

Photo 1: Pavement Core Sample PC24-01

Photo 2: Pavement Core Sample PC24-02

Photo 3: Pavement Core Sample PC24-03

Photo 4: Pavement Core Sample PC24-04

CSA A23.2-14C

Project No. 1000-043-25

Date March 6, 2024

Project 2024 Local Street Package (24-K-01, 24-R1-07	1)
--	----

Technician TG

Client WSP Group Canada Inc.

		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break		Correc	tion F	actors	;*
Core Location	Core ID	Received	Break	Break	(mm)	(mm)	Conditioning	$\frac{\text{Uncorrected}}{\text{f}_{\text{conc}}}$	Corrected* f _c	Туре	F _{I/d}	F _{dia}	F_{mc}	F_{D}	F _{reinf}
Irene Street	PC24-01	2024-02-20	2024-03-06	-	145	145	Soaked 48 h	35.91	39.83	1	0.90	0.98	1.09	1.06	1.09
Irene Street	PC24-03	2024-02-20	2024-03-06	-	145	161	Soaked 48 h	53.29	55.86	1	0.93	0.98	1.09	1.06	1.00

Comments

Reviewed by (print):

Angela Fidler-Kliewer, C.Tech.

Signature:_Angela Fidler-Kliewer

List	Code/standard	Edition	Factors Considered									
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction				
1	Egyptian Code/Standard Specification	2008	\checkmark		\checkmark			\checkmark				
2	British Code/Standard Specification	2003	V		V			V				
3	American Concrete Institute ACI	1998	V									
		2012	V	\checkmark		\checkmark	\checkmark					
4	European Standard Specification	1998	V	V	\checkmark	and the second second	V					
		2009	V		V		5 (S.					
5	Japanese Standard	1998	V									
6	Concrete Society	1987	V		V		V	1				

Table 1 Factors involved in interpretation of core results by different code

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where f_{cy} is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{l/d})$; however, the code gives different values for this term that is associated with different aspect ratios (l/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (l/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, 1/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

where f_c is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, F_{dia} is strength correction factors for diameter, F_{mc} is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3Strength correction factors according to ACI 214.4R-03.

List	Factors	Mean values
(1) ^b	F_{Ud} : l/d ratio	
	As-received	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{core}\} (2 - \frac{l}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	Al
Al	+0	•	+0				•		THE P		•	문제						500
A2																		
A3						-				-								
A4																		
A5																		
A6								-40										
A7								-40										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14		•		•														
A15		•																
A16	••																	
A17	•																	
A18												le						

▲ Distance of steel bar from nearly end of core. ■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r \text{ as follows:}$

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm^2) .

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d). Figure 20

Appendix I

Summary Table and Pavement Core Photos

Lorette Ave – Pembina Hwy to Daly St N

GEOTE	2024 Local Street Renewal (24-K-01, 24-F Lorette Ave - Pembina Hwy to Daly St	•				
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
PC24-07	UTM : 5525504 m N, 633271 m E; Located at #620 Lorette Ave, Westbound Lane, 1.1 m South of North curb.	Asphalt	-	Concrete	180	65.05
1 024-07						
PC24-08	UTM : 5525530 m N, 633324 m E; Located at #614 Lorette Ave, Eastbound Lane, 1.1 m North of South curb.	Asphalt	-	Concrete	160	-
1 024-00						
PC24-11	UTM : 5525471 m N, 633217 m E; Located 20 m East of Pembina Highway, Eastbound Lane, 1.3 m North of South curb.	Asphalt	-	Concrete	170	66.68

Photo 1: Pavement Core Sample PC24-07

Photo 2: Pavement Core Sample PC24-08

Photo 3: Pavement Core Sample PC24-11

CSA A23.2-14C

Project No. 1000-043-25

Date March 6, 2024

FIGEC 2024 Local Street Fackage (24-R-01, 24-R1-01)	Project	2024 Local Street Package (24-K-01, 24-R1-01)
--	---------	---

Technician TG

Client WSP Group Canada Inc.

		Date	Date of	Age at	Diam.	Length	Moisture	Compressive S	Strength (MPa)	Break		Correc	tion F	actors	;*
Core Location	Core ID	Received	Break	Break	(mm)	U U	Conditioning	Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F _{dia}	F_{mc}	F_{D}	F _{reinf}
Lorette Avenue	PC24-07	2024-02-22	2024-03-06	-	145	162	Soaked 48 h	61.79	65.05	1	0.93	0.98	1.09	1.06	1.00
Lorette Avenue	PC24-11	2024-02-22	2024-03-06	-	145	155	Soaked 48 h	63.83	66.68	1	0.92	0.98	1.09	1.06	1.00

Comments

Reviewed by (print):

Angela Fidler-Kliewer, C.Tech.

Signature: Angela Fidler-Kliewer

List	Code/standard	Edition	Factors Considered									
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction				
1	Egyptian Code/Standard Specification	2008	\checkmark		\checkmark			\checkmark				
2	British Code/Standard Specification	2003	V		V			V				
3	American Concrete Institute ACI	1998	V									
		2012	V	\checkmark		\checkmark	\checkmark					
4	European Standard Specification	1998	V	V	\checkmark	and the second second	V					
		2009	V		V		5 (S.					
5	Japanese Standard	1998	V									
6	Concrete Society	1987	V		V		V	1				

Table 1 Factors involved in interpretation of core results by different code

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where f_{cy} is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{l/d})$; however, the code gives different values for this term that is associated with different aspect ratios (l/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (l/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, 1/d	
	1.00	1.25	1.50	1.75
$F_{l/d}$	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

where f_c is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, F_{dia} is strength correction factors for diameter, F_{mc} is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3Strength correction factors according to ACI 214.4R-03.

List	Factors	Mean values
(1) ^b	F_{Ud} : l/d ratio	
	As-received	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{core}\} (2 - \frac{l}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	Al
Al	+0	•	+0				•		THE P		•	문제						500
A2																		
A3						-				-								
A4																		
A5																		
A6								-40										
A7								-40										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14		•		•														
A15		•																
A16	••																	
A17	•																	
A18												le						

▲ Distance of steel bar from nearly end of core. ■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r \text{ as follows:}$

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm^2) .

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d). Figure 20

Appendix J

Summary Table and Pavement Core Photos

Sparling Ave – End (Walmart Parking Lot) to Harrow St

GEOTE	2024 Local Street Renewal (24-K-01, 24-R Sparling Ave - End (Walmart Parking Lot) to H					
		Paveme	ent Surface	Pavement	Structure Material	
Pavement Core No.	Pavement Core Location	Туре	Thickness (mm)	Туре	Thickness (mm)	Corrected Compressive Strength (Mpa)
BC24 13	UTM : 5524138 m N, 632629 m E; Located at #100 Sparling Ave, Eastbound Lane, 0.8 m North of South curb.	Asphalt	-	Concrete	185	
F 024-13						
DC24 14	UTM : 5524164 m N, 632668 m E; Located 30 m West of Harrow St, Westbound Lane, 1.2 m South of North curb.	Asphalt	-	Concrete	200	56.61
F 024-14						
DC24 15	UTM : 5524119 m N, 632587 m E; Located 125 m West of Harrow St, Westbound Lane, 1.5 m South of North curb.	Asphalt	-	Concrete	215	
PG24-15						
DC24 16	UTM : 5524164 m N, 632668 m E; Located 173 m West of Harrow St, Westbound Lane, 1.5 m South of North curb.	Asphalt	-	Concrete	150	
PC24-10	01M - 5524164 m N, 652666 m E, Located 175 m West of Harrow St, Westbound Lane, 1.5 m South of North Curb.					
DC24 40	ITML EEGADOA w.N. 600400 w.E. Laastad 400 w.Eastaf William Ot. Eastheuwed Lang. 4.4 w.Nthf.Outhsuit.	Asphalt	-	Concrete	150	
PG24-19	UTM : 5524064 m N, 632493 m E; Located 100 m East of Wilton St, Eastbound Lane, 1.1 m North of South curb.					
DC24 20	UTM : 5524044 m N, 632450 m E; Located 50 m East of Wilton St, Westbound Lane, 1.2 m South of North curb.	Asphalt	-	Concrete	160	63.08
PG24-20	UTM - 3324044 III N, 032430 III E; LUCALEU SU III EASL OF WIILON SL, WESLDOUND LANE, T.2 III SOUTH OF NORTH CURD.					

Photo 1: Pavement Core Sample PC24-13

Photo 2: Pavement Core Sample PC24-14

Photo 3: Pavement Core Sample PC24-15

Photo 4: Pavement Core Sample PC24-16

Project No. 1000 043 25 March 2024

Photo 5: Pavement Core Sample PC24-19

Photo 6: Pavement Core Sample PC24-20

CSA A23.2-14C

Project No. 1000-043-25

Date March 6, 2024

Project 2024 Local Street Package (24-K-01, 24-R1-	01)
--	-----

Technician TG

Client WSP Group Canada Inc.

Γ		Core Location Core ID	Moisture			rength (MPa) Break		Correction Factors*								
	Core Location		Received	Break	U		(mm)	Conditioning	Uncorrected f _{conc}	Corrected* f _c	Туре	F _{I/d}	F_{dia}	F_{mc}	F_{D}	F _{reinf}
ſ	Sparling Ave	PC24-14	2024-02-22	2024-03-06	-	145	189	Soaked 48 h	52.38	56.61	1	0.95	0.98	1.09	1.06	1.00
	Sparling Ave	PC24-20	2024-02-23	2024-03-06	-	145	153	Soaked 48 h	60.62	63.08	1	0.92	0.98	1.09	1.06	1.00

Comments

Reviewed by (print):

Angela Fidler-Kliewer, C.Tech.

Signature: Angela Fidler-Kliewer

List	Code/standard	Edition	Factors Considered											
			Aspect ratio	Diameter	Reinforcing	Moisture	Damage	Direction						
1	Egyptian Code/Standard Specification	2008	\checkmark		\checkmark			\checkmark						
2	British Code/Standard Specification	2003	V		V			V						
3	American Concrete Institute ACI	1998	V											
		2012	V	\checkmark		\checkmark	\checkmark							
4	European Standard Specification	1998	V	V	\checkmark	and the second second	V							
		2009	V		V									
5	Japanese Standard	1998	V											
6	Concrete Society	1987	V		\checkmark		V	V						

 Table 1
 Factors involved in interpretation of core results by different code:

In addition, for core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect should be assessed by replacing the term $(\Phi_r * d)$ by the term $(\sum \Phi_r * d)$.

It should be pointed out that above equations used to interpret the core concrete strength to the in-situ concrete cube strength have been developed based on a set of assumptions and through many converting process. It is also of interest to note that the damage effect is considered in the development of the formulas in indirect way. The subject derivation and detailed formulas may be seen elsewhere [14].

3.2. American Concrete Institute (ACI)

3.2.1. Former ACI Code (2002) & Current ASTM (2009)

The methodology of core interpretation given in the former ACI code was remained without changes for decades and up to Year (2003). The in-place strength of concrete cylinder at the location from which a core test specimen was extracted can be computed using the equation:

$$f_{\rm cy} = F_{l/d} \cdot f_{\rm core} \tag{4}$$

where f_{cy} is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, and $F_{l/d}$ is the strength correction factor for aspect ratio.

The former ACI code does not include any equation to calculate the correction factor $(F_{l/d})$; however, the code gives different values for this term that is associated with different aspect ratios (l/d) as given in Table 2. It should also be noted that the approach of current ASTM is similar to that mentioned above. The only considered variable is the aspect ratio (l/d). It should be noted that identical approach to that mentioned above is still effective in ASTM C42/C42M-03 [10].

3.2.2. Current ACI Code (2012) [15]

Starting from Year 2003, significant changes have been made to the relevant ACI Code provisions regarding the interpreta-

Table 2 Mean values for factor $F_{l/d}$ according to ACI Code (1998) and ASTM.

	Specimen	length-to-dian	neter ratio, 1/d	
	1.00	1.25	1.50	1.75
F _{I/d}	0.87	0.93	0.96	0.98

tion of core strength test results. New factors have been considered. These include core diameter, moisture content of core sample, core damage associated with drilling, in addition to the effect of aspect ratio that was previously considered in the former ACI edition (1998). According to the ACI 214.4R-03, the in-place concrete strength can be computed using the equation:

where f_c is the equivalent in-place concrete cylinder strength, f_{core} is concrete core strength, $F_{l/d}$ is strength correction factor for aspect ratio, F_{dia} is strength correction factors for diameter, F_{mc} is strength correction factor for moisture condition of core sample, and F_D is the strength correction factor that accounts for effect of damage sustained during core drilling including micro-cracking and undulations at the drilled surface and cutting through coarse-aggregate particles that may subsequently pop out during testing.

The ACI committee considered the correction factors presented in Table 3 for converting core strengths into equivalent in-place strengths based on the work reported by Bartlett and MacGregor [6]. It should be noted that the magnitude of

Table 3Strength correction factors according to ACI 214.4R-03.

List	Factors	Mean values
(1) ^b	$F_{I/d}$: I/d ratio	
	As-received	$1 - \{0.130 - \alpha f_{core}\} \left(2 - \frac{l}{d}\right)^2$
	Soaked 48 h	$1 - \{0.117 - \alpha f_{core}\} \left(2 - \frac{1}{d}\right)^2$
	Air dried ^a	$1 - \{0.144 - \alpha f_{core}\} (2 - \frac{l}{d})^2$
(2)	F _{dia} : core diameter	
	50 mm	1.06
	100 mm	1.00
	150 mm	0.98
(3)	$F_{\rm mc}$: core moisture content	
	As-received	1.00
	Soaked 48 h	1.09
	Air dried ^a	0.96
(4)	F_D : damage due to drilling	1.06

^a Standard treatment specified in ASTM C 42/C 42M.

^b Constant α equals 4.3(10⁻⁴) 1/MPa for f_{core} in MPa.

	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	Al
Al	+0	•	+0				•				•	19						503
A2																		
A3						-												
A4																		
A5																		
A6								-40										
A7								-40										
A8		•	•	•	•													
A9																		
A10																		
A11																		
A12		•		•	•													
A13																		
A14		•		•														
A15		•																
A16	••																	
A17	•																	
A18												le						

▲ Distance of steel bar from nearly end of core. ■ Number of steel bars and spacing between bars.

• Distance of steel bar from vertical axis of specimen.

This brief review indicated that the various proposed relationships for correction factors are all nonlinear. It should be noted that the equations given by the Egyptian Code takes into account most variables that may affect the interpretation of the results; however, the code ignores the deterioration of steel-concrete bond that may occur and also the position of the reinforcement from vertical axis of core specimens.

Weighted nonlinear regression analysis has been performed to determine the factor (F_{reinf}) with the use of the software "SAS" package and "Data Fit." This shows that the correction factor for reinforcement (F_{reinf}) is given by the following expression:

• For core specimen containing two bars no further apart than the diameter of the larger bar, only the bar corresponding to the higher value of $(\Phi_r * d)$ is considered. If the bars are further apart, their combined effect is assessed by replacing the term $(\Phi_r * r)$ by $(\sum \Phi_r * r \text{ as follows:}$

where F_{reinf} is the correction factor for reinforcement, Φ_r is the diameter of the reinforcement, Φ_c is the diameter of the concrete specimen, r is the distance of axis of bar from nearer end of specimen, S is the distance of axis of bar from axis of core specimen, L is the length of the specimen after end preparation by grinding or capping, and f_{core} is the concrete core strength (kg/cm^2) .

6.1.6. Effect of moisture condition of core

Results of about 100 cores indicate that the strength of cores left to dry in air for 7 days is on average 13% greater than that of cores soaked at least 40 h before testing. The strength of cores with negligible moisture gradient and tested after cutting is found to be 7-9% larger than that of soaked cores as shown in Fig. 20. The authors strongly recommend to use a correction factor accounting for moisture condition (F_m) equals to 1.09 and 0.96, respectively, for cores tested after 48 h soaked in water and for those tested after 7 days dry in air.

Effect of core moisture condition on core strength for different aspect ratios (l/d). Figure 20