

CITY OF WINNIPEG, WATER AND WASTE DEPARTMENT
FERRY ROAD AND RIVERBEND CSR PROJECT
CONTRACT 6 – RUTLAND TRUNK SEWER
GEOTECHNICAL DATA REPORT
WINNIPEG, MANITOBA

Prepared for:

Tetra Tech Canada Inc. Winnipeg, Manitoba

May 2022

File #143691.7

May 4, 2022

File No. 143691.7

Tetra Tech Canada Inc. 161 Portage Avenue East, Suite 400 Winnipeg, MB R3B 0Y4

Attn: Kirby McRae, P.Eng.

RE: City of Winnipeg Ferry Road and Riverbend CSR Project – Contract 6 Rutland Trunk Sewer Geotechnical Investigation

Dyregrov Robinson Inc. is pleased to submit our final geotechnical data report from the geotechnical investigation that has been completed for the proposed Rutland Trunk Sewer in Winnipeg, Manitoba.

If we can be of further assistance, please contact the undersigned directly.

Sincerely,

DYREGROV ROBINSON INC.

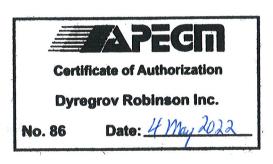
hei C

Gil Robinson, M.Sc., P.Eng

President

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
0	Yes	Tetra Tech Canada Inc.


DYREGROV ROBINSON INC.

Report Prepared By:

Gil Robinson, M.Sc., P.Eng.

Senior Geotechnical Engineer

Table of Contents

1.0 INTRO		DUCTION	. 1						
2.0 PROJE		CT UNDERSTANDING							
3.0	BACK	GROUND INFORMATION	. 1						
	3.1	Regional Geology	1 1 2						
4.0	FIELD	INVESTIGATION	. 3						
5.0	SUBSI	JRFACE CONDITIONS	5						
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Pavement, Topsoil and Fill Materials Alluvium Silt Silty Clay (Glaciolacustrine). Glacial Silt Till. Bedrock. Test Hole Stability and Groundwater Conditions	5 6 6 8						
6.0	REFE	RENCES	. 1						
7.0	CLOS	JRE							
		Test Hole Location Plan and Test Hole Summary Table							
		2019 / 2020 Test Hole Logs and 2012 Test Hole Logs							
APPE	NDIX C:	Glacial Till and Bedrock Core Sample Photographs and							
		Bedrock Core Sample Summary							
APPE	NDIX D:	Laboratory Testing Results							
APPE	NDIX E:	Laboratory Testing Plots							
APPE	NDIX F:	Standard Penetration Testing Results							
APPE	NDIX G:	SINTEF Soil Abrasion Testing (SAT), Cerchar Abrasivity Index (CAI) testing, Uniaxial Compressive Strength (UCS) testing, Petrographic Analysis							
APPE	NDIX H:	Ferry Road and Riverbend CSR – Rutland Trunk Sewer - Geophysical Survey							
APPE	NDIX I:	Ferry Road Piezometer Hydraulic Conductivity Testing							

1.0 INTRODUCTION

Dyregrov Robinson Inc. (DRI) was retained by Tetra Tech Inc. to perform a geotechnical investigation for the proposed Rutland Trunk Sewer which will be installed as part of the Ferry Road and Riverbend Combined Sewer Relief (CSR) Project in Winnipeg, Manitoba.

The purpose of the geotechnical investigation was to explore the subsurface conditions (i.e. soil and groundwater) along the general route of the proposed trunk sewer. This geotechnical data report describes the geotechnical investigation program and presents the field and laboratory testing results from the investigation.

2.0 PROJECT UNDERSTANDING

It is our understanding the trunk sewer pipe will be approximately 2400 mm in diameter and will be about 1600 m long with preliminary (estimated) pipe invert depths that are about 8 to 9 m below ground surface. Much of the pipe alignment will be located in the right-of-way along Rutland Street from Silver Avenue to Portage Avenue. The pipe will extend approximately 345 m north of Silver Avenue across the grounds of the Rods Football Club. South of Portage Avenue the pipe alignment will run through the St. James Collegiate property and the Bourkevale Community Centre site down to the Assiniboine River where an outfall structure will be constructed.

3.0 BACKGROUND INFORMATION

3.1 Regional Geology

Winnipeg is centered around the confluence of the Red and Assiniboine Rivers in the Red River Valley.

3.1.1 Bedrock Geology

The overburden stratigraphy is underlain by an extensive regional fractured bedrock aquifer consisting of limestones and dolomites of the Stony Mountain and Red River Formations. Due to pre-glacial erosion and subsequent deposition, the bedrock surface may include features such as infilled caverns, sinkholes and crevasses. These features may be infilled with clays, sands and glacial till materials.

3.1.2 Surficial Geology

The general soil stratigraphy in Winnipeg includes an upper complex zone overlying a thick deposit of glaciolacustrine clay. Glacial till is typically present beneath the clay deposit. In some locations, alluvial deposits are also present along the riverbanks and can overlay the clay and/or glacial till deposits.

The upper complex zone is generally about 1.5 to 3 m thick and can extend to depths of 4.5 m. The soils often encountered in the complex zone include black clays with trace organics, silt and silty clays. The silt and silty clays may have a laminated structure. The silt layers vary significantly in thickness (a few mm to 3 m) and lateral extent and may be water bearing (i.e. perched water table).

Glaciolacustrine silty clays are present beneath the upper complex zone and can vary in thickness from a few metres to 15 m (approx.). The clay is generally found to be brown and/or mottled brown / grey to depths of 5 to 7 m below grade and is grey below. The brown and mottled brown / grey clays usually have a stiff consistency, and the grey clays are usually firm to stiff. In some areas of Winnipeg, the consistency

of the clay can be relatively soft. The clay is known to have high plasticity and is expansive. Although infrequent, boulders have been encountered within the clay layer. Towards the bottom of the clay deposit, the composition may change including higher silt content and an increasing number of glacial till inclusions; this is sometimes referred to as a clay – till transition zone. (Teller, 1976 and Department of Geologic Engineering, 1983)

Glacial till is typically present beneath the silty clay deposit. The thickness of the till deposit is variable ranging from nothing to more than 9 m; it is often found to be 3 to 6 m thick. The glacial till deposit in the Winnipeg area is typically a heterogeneous mixture of sand, gravel, cobble and boulder size materials within a predominantly silt matrix that has a low but variable clay content. The boulders can range in size from 300 mm to 1500 mm, or more. Pockets of non-combustible gas are sometimes encountered and may be under pressure. The nature of the gas does not appear to be well documented, but the author is aware that at least one person died in the 1960's while working in a caisson shaft in downtown Winnipeg.

Alluvial soil deposits occur along various stretches of the banks of the Red and Assiniboine Rivers. The alluvium is a non-homogeneous combination fine grained soils including clay, silt and sand. The gradation of the soil can vary significantly over short distances (horizontally and vertically). Deposits with lower clay content are often saturated with a loose compactness condition. Deposits with higher clay contents are known to have water bearing layers of sand within the clay.

3.1.3 Hydrogeology

The overburden stratigraphy is underlain by an extensive regional fractured bedrock aquifer consisting of limestones and dolomites of the Stony Mountain and Red River Formations. The upper portion of the bedrock is highly fractured and forms an extensive aquifer referred to as the Carbonate Aquifer which underlies the City of Winnipeg. Published information (Render, 1970 and Department of Geologic Engineering, 1983) indicate that the regional transmissivity of this aquifer typically ranges from 1.4 x 10⁻³ to 7.1 x 10⁻³ m²/s (8,100 to 41,000 lgpd/ft). However, it is known that transmissivities can vary substantially over very short distances depending on the degree and interconnectivity of the fracturing.

3.2 Previous Geotechnical Investigations

In 2011 / 2012, a Phase 1 geotechnical investigation was undertaken by Dyregrov Robinson Inc. for the Ferry Road and Riverbend Combined Sewer Relief Works project in the City of Winnipeg. The purpose of the 2011/2012 geotechnical investigation was to provide preliminary geotechnical data relative to the design and installation of storm relief sewers within the Ferry Road and Riverbend areas. The area extends west from St. James Street to the Winnipeg James Armstrong Richardson International Airport and Winchester Street and from the Assiniboine River north to approximately Saskatchewan Avenue. Test holes were drilled to provide subsurface stratigraphy and groundwater conditions at representative locations within the general study area and to obtain soil samples for laboratory testing. Three test holes were drilled along Rutland Street (Test Holes 12-11, 12-12 and 12-13, see Appendix B).

3.3 Site Conditions

The route of the Rutland Trunk Sewer follows Rutland Street from a point about 345 m North of Silver Avenue to the Assiniboine River south of Portage Avenue.

North of Silver Avenue, the proposed route of the trunk sewer crosses an undeveloped area that includes the St. James Rods Football Club property. The property is relatively flat lying, vegetated with grass and has some playing fields, paved parking and a clubhouse structure.

The stretch between Silver Avenue and Portage Avenue is an older residential area that is relatively flat lying and has several existing underground utility lines in the right-of-way along Rutland Street and across Portage Avenue. There are a number of mature trees along the boulevards.

South of Portage Avenue, the proposed route of the trunk sewer crosses the St. James Collegiate property, which owned by the St. James Assiniboia School Division. The school property is relatively flat lying and contains some paved areas and outdoor facilities (e.g. paved running track).

South of the school property is the Bourkevale Community Centre (BCC) property where there is a sharp change in site grade (+/- 1.5 m) from the school's running track down to the BCC outdoor soccer fields. From the soccer fields to the riverbank there is a gradual grade down to the river.

The total height of the riverbank about 6.5 m and the average slope angle is about 5H:1V. The riverbank has three general areas, the lower bank area along the river, a relatively flat mid-bank area and the upper bank area that blends into prairie level behind the riverbank. The lower bank area is about 2.5 m tall and has a slope that is about 3.5H:1V. The flatter mid-bank area is about 1.2 m tall and 11 m long yielding a slope angle of about 9H:1V. The upper bank is about 3 m tall with a slope angle around 4.75H:1V. The bank is well vegetated with grass and there are no obvious signs of deep-seated movements of the riverbank. The lower bank area along the river may have some shallow localized slip surfaces which are likely affected by erosion along the river's edge. There is an existing outfall located about 150 m downstream of the proposed trunk sewer outfall location.

It is not known if any areas along the route of the proposed trunk sewer were previously developed. If some areas were previously developed it is possible that some features of the former buildings, for example, were not removed (e.g. footings, piles, basement walls and floor slabs etc.) and the backfill used may not have been well compacted and may contain some demolition debris (e.g. bricks, wood).

4.0 <u>FIELD INVESTIGATION</u>

Twenty-nine test holes (Test Holes 19-147 to 19-173 and 19-239 and 19-240) were drilled along the trunk sewer route (from the Assiniboine River to Silver Avenue) between July 26th and August 21st, 2019. In December 2020, five additional test holes (Test Holes 20-244 to 20-248) were drilled north of Silver Avenue. The test hole depths were targeted to be about 3 m below the expected invert of the proposed trunk sewer pipe. The test hole locations and pipe invert depths were provided by Tetra Tech. The final test hole locations were adjusted to avoid buried utilities amongst other considerations (e.g. drill rig access). The test holes were not drilled directly on the proposed tunnel alignment to avoid potential construction issues that can arise when tunnel boring machines pass through test holes backfilled with auger cuttings and bentonite. A summary of the test hole locations and survey information is provided on Table A1 (Appendix A) and illustrated on the Test Hole Location drawing in Appendix A.

The test holes were drilled by Paddock Drilling Ltd. using a track mounted Acker SS drill rig or a truck mounted Acker MP8 drill rig equipped with 125 mm solid stem augers, 200 mm hollow stem augers and an HQ coring system with casing advancer tools.

General site supervision and logging of the test holes was performed by DRI. Representative disturbed (auger cuttings, split barrel sampler) and undisturbed (Shelby tube) soil samples were collected. In Test Holes 19-166 to 19-173, auger refusal occurred before the target test hole depth was achieved. These eight test holes, and Test Holes 20-244 to 20-248, were finished by coring below the depth of auger refusal. Test Holes 19-173 and 20-248 were cored into bedrock to determine the depth to bedrock. The HQ core samples (65 mm diameter) of the glacial till and bedrock were recovered and placed in core boxes. Standard Penetration Tests (SPT's) were performed in the glacial till by driving a split barrel sampler 450 mm into the base of the test hole using an automatic slide hammer weighing 63.5 kg and dropped from a height of 760 mm. The number of blows for every 150 mm of penetration was recorded. The SPT N values are the number of hammer blows required to drive the split barrel sampler 300 mm deep after the initial 150 mm of penetration. The test holes were backfilled to grade with auger cuttings and bentonite chips. Excess auger cuttings were bagged and removed from site. Twelve holes were drilled through a core hole in the sidewalk, these core holes were repaired with concrete.

The soil samples and coring samples (glacial till and bedrock) were returned to our Soils Testing Laboratory for testing including additional visual classification and determination of moisture contents on all soil samples. Representative samples of the soils encountered along the route of the trunk sewer were tested to determine the plasticity characteristics (Atterberg Limits), gradation (hydrometer analysis), soil chemistry and swelling characteristics. Bulk densities and undrained shear strengths of the clay soil were measured from the Shelby tube samples. Fourteen samples from the Shelby tubes were preserved with wax and can be used for additional testing, if required. Three of the waxed samples from the Shelby tubes were submitted for swell testing. The glacial till and bedrock core samples were photographed and the bedrock core samples were logged.

In addition to the above testing, some soil and rock samples were submitted to the Colorado School of Mines in Denver, Colorado, USA for specialized testing relating to abrasion characteristics of the soil that the tunnelling equipment will have to work through. Two composite samples of the clay soil and two composite samples of the glacial till (one of each soil type from test holes south of Silver Avenue and one of each soil type from the test holes north of Silver Avenue) and one sample of alluvial sand were submitted for SINTEF Soil Abrasion Testing (SAT). The alluvial sand was collected from a tunnel shaft that was drilled on Ferry Road in early 2021 and was also tested for petrographic analysis. Three samples of the cobbles and boulders recovered during coring in the glacial till were submitted for Cerchar Abrasivity Index (CAI) testing, thin section petrographic analysis and uniaxial compressive strength (UCS) testing.

The test hole logs are provided in Appendix B and include a description of the soil and bedrock conditions encountered, laboratory testing results and comments on the subsurface conditions observed at the time of drilling. Appendix C includes photographs of the glacial till and bedrock core samples (Figures C1 to C13) and a summary of the bedrock core samples (Table C1). The laboratory testing results are provided in Appendix D and charts of the test results are provided on Figures E1 to E18 in Appendix E. The standard penetration testing results are provided on Table F1 and Figures F1 to F3 in Appendix F. The test results for the soil and rock samples tested for abrasion characteristics, unconfined compressive strength and petrographic analysis are provided in Appendix G.

A geophysical survey was conducted by Tetra Tech Canada Inc. along the trunk alignment in the summer of 2020. The final report prepared by Tetra Tech Canada Inc. is attached in Appendix H and includes seismic profiles that illustrate the interpreted / inferred glacial till interface.

5.0 SUBSURFACE CONDITIONS

The general stratigraphy encountered in the test holes from grade includes topsoil, fill and pavement materials, alluvial soils, silt, silty clay, glacial silt till and bedrock. A general description of the stratigraphic units is provided below and is based on the test hole logs (Test Holes 19-147 to 19-173, 19-239, 19-240 and Test Holes 20-244 to 20-248) in Appendix B. Refer to the test hole logs and laboratory testing results for additional information.

5.1 Pavement, Topsoil and Fill Materials

Topsoil was encountered in several test holes and is about 50 to 100 mm thick.

Test Holes 19-155 to 19-162 and Test Hole 19-239 were drilled through the sidewalk on the west side of Rutland Street. The sidewalk concrete ranged in thickness from 100 to 125 mm and was supported on clay soil or sand and gravel.

No significant fill layers were encountered in the test holes. The fill materials were typically encountered directly below the concrete sidewalk and were less than 300 mm thick.

5.2 Alluvium

Alluvial soil deposits were encountered in Test Holes 19-147 to 19-151, which are closest to the Assiniboine River. No alluvial deposits were encountered in the other test holes. The alluvium is a non-homogeneous combination fine grained soils including clay, silt and sand. The composition of the soils changed with depth in the test holes and between the test holes. The alluvial soil encountered in the test holes was mainly clay with intermittent layers of silt and a few layers of sand.

The clay contains variable amounts of silt (some silt to silty) and is brown in color, dry to moist with a firm to stiff consistency in the upper portion of the test holes. With depth, the clay trended towards being moist to wet and soft to firm. A few thin layers of sand were observed within the clay zones and the sand was saturated. The various clay layers encountered in the test holes range in thickness from 0.6 m to 6.5 m and the moisture contents ranged from about 15 to 41 percent with an average of 29 percent. The moisture content profiles with depth and elevation are provided on Figures E1 and E2 (Appendix E). Undrained shear strengths of the clay from the Shelby tube samples were measured using Torvane, penetrometer, and unconfined compressive strength methods. The strengths ranged from about 20 to 50 kPa with an average value around 30 kPa. The bulk unit weight of the clay is about 17.5 kN/m³. The undrained shear strength profile with depth and elevation are provided on Figures E3 and E4 (Appendix E).

The silt layers contain variable amounts of clay (trace to some) and traces of sand. It is brown to grey in color and moist becoming wet with depth. The silt has low to medium plasticity, depending on the clay content, and it has a loose (soft) condition. The moisture contents ranged from about 12 to 33 percent with an average of 26 percent. The moisture content profiles with depth and elevation are provided on Figures E5 and E6 (Appendix E).

Five samples of the clay alluvium (TH 19-148 - sample T296, TH 19-149 - sample G289, TH 19-150 - sample G277, TH 19-151 samples T269 and G272) were tested to evaluate the plasticity characteristics of the soil. The clay has intermediate plasticity with plastic limits ranging from 15 to 23, liquid limits ranging from 33 to 46 percent and plasticity indices of 13 to 26. The liquidity indices range from 0.3 to 1.1. The results are summarized in Table D1 along with the laboratory test reports (Appendix D).

Five samples of the clay alluvium (TH 19-148 - sample T296, TH 19-149 - sample G289, TH 19-150 - sample G277, TH 19-151 samples T269 and G272) were tested to evaluate the particle size distribution of the soil. The samples contained 46 to 53 percent clay sized particles, 40 to 53 percent silt sized particles and 0.7 to 6.4 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test reports (Appendix D).

Two samples of the alluvium soil (TH 19-149 - sample G286 and TH 19-151 - sample G267) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 along with the laboratory test report from Bureau Veritas Laboratories (see Appendix D).

Sand layers were encountered in Test Holes 19-148 and 19-150 at depths of 6.4 m and 8.2 m, respectively. The sand was 300 to 600 mm thick and is brown, wet (saturated), coarse grained and has a loose compactness condition. The moisture contents from two samples were 12.1 percent and 14.6 percent. The moisture contents with depth and elevation are provided on Figures E7 and E8 (Appendix E).

A composite sample of sand alluvium, collected from a tunnel shaft that was drilled south of Portage Avenue on Ferry Road, in early 2021, was submitted for SINTEF-SAT testing and petrographic analysis at the Colorado School of Mines in the USA. The SAT test resulted in an SAT value of 11.1. The Abrasivity Classification in the testing report is noted as being medium for SAT values between 7 and 22. The laboratory test report is provided in Appendix G. The petrographic analysis report indicates the sand grains were fine in size and comprised of quartz, feldspar and rock fragments with a coating of clay minerals. Refer to the petrographic analysis report in Appendix G for detailed information.

5.3 Silt

Silt was encountered in 13 test holes (in the area from Test Holes 19-152 to 19-168). It was typically encountered within 1 m of ground level and was generally around 600 mm thick but ranges in thickness from 600 mm to 2100 mm. It is light brown in color and dry to moist with a loose compactness condition. The moisture contents of the silt ranged from about 11 to 26 percent with an average of 18 percent. The moisture content profiles with depth and elevation are provided on Figures E9 and E10 (Appendix E).

One sample of the silt (TH 19-240 - sample G427) was tested to evaluate the plasticity characteristics of the soil. The silt has low plasticity with a plastic limit of 17 percent, a liquid limit of 22 percent and a plasticity index 5. The liquidity index is 1. The results are summarized in Table D1 along with the laboratory test report (see Appendix D).

5.4 Silty Clay (Glaciolacustrine)

Lake Agassiz glaciolacustrine silty clay was encountered in all test holes north of Test Hole 19-151 (i.e. Test Holes 19-152 to 19-168, 19-239 and 19-240 and 20-244 to 20-248)). In Test Hole 19-148, a 900 mm

thick layer of glaciolacustrine clay was encountered beneath the alluvium at a depth of 7 m, glacial till was present below the clay layer.

An upper layer of clay was encountered in the test holes having a shallow silt layer. The thickness of the upper clay layer is about 1 m thick but ranges from 0.3 m to 1.8 m. The main clay deposit, below the silt layer, typically begins at depths of 1.2 to 1.5 m below grade.

The main clay deposit (i.e. excluding the upper clay layer) ranges in thickness from 4 to 12 m thick. The clay is on the order of 10 to 12 m thick in Test Holes 19-152 to 19-159 (i.e. south of Bruce Avenue). The clay is on the order of 7 to 9 m thick in Test Holes 19-160 to 19-165, including Test Hole 19-239 (i.e. north of Bruce Avenue to Ness Avenue). North of Ness Avenue (i.e. Test Holes 19-166 to 19-173 and including TH19-240) the clay is about 6.5 m thick and is 5 m thick at Test Hole 19-173. North of Silver Avenue (i.e. Test Holes 20-244 to 20-248) the clay is about 5.5 m thick and is 4 m thick at Test Hole 20-248.

The upper clay layer, and the upper 1.5 m of the main clay deposit where no silt layer is present, is black in color and contains traces of organics. Below the black clay, it is mottled brown and grey to a depth of about 6 to 7 m below which it is grey. It is moist with a stiff consistency to a depth of about 6 m and below it has a firm consistency. The clay typically has high plasticity, contains trace silt inclusions, traces of sand and gravel and trace till inclusions. The till inclusions occur towards the bottom of the clay deposit. Of interest is Test Hole 19-157, where a 1.7 m thick layer of glacial till was encountered in the clay at a depth of 9.9 m and clay was present below the till down to 12.2 m. The first test holes south (Test Hole 19-156) and north (Test Hole 19-158) of Test Hole 19-157 both had clay down to 12.2 m and no till was encountered when the target test hole depth was achieved. Till layers within the clay are not common but may be a result of a large pocket of glacial till falling off the glacial ice sheet after glacial Lake Agassiz formed. Boulders are also occasionally encountered in the clay layer and are likely deposited in a similar manner as this till layer found within the clay. The moisture contents of the clay are in the range of 20 to 40 percent in the upper 2 m of the test holes. Below 2 m, the moisture contents range from 40 to 60 percent with an average 48 percent. Some of the clay samples at depth in the test holes have moisture contents in the range of 20 to 40 percent, which is attributed to the till inclusions observed in the clay at depth. The moisture content profiles with depth and elevation are provided on Figures E11 and E12 (Appendix E).

Undrained shear strengths of the clay from the Shelby tube samples were measured using Torvane, penetrometer, and unconfined compressive strength methods. The strengths range from about 25 to 75 kPa with an average value around 50 kPa to a depth of 6 m. Below this depth the strengths range from about 25 to 50 kPa with an average value around 35 to 40 kPa. The undrained shear strength profile with depth and elevation are provided on Figures E13 and E14 (Appendix E). The bulk unit weight of the clay ranges from 16 to 19 kN/m³ with an average of 17 kN/m³. The bulk unit weight profile with depth and elevation are provided on Figures E15 and E16 (Appendix E).

Eight samples of the glaciolacustrine clay (TH19-152 sample G240, TH19-156 sample T326, TH19-157 sample T377, TH19-162 sample T394, TH19-166 sample G439, TH19-173 sample G492, TH20-245 sample G18 and TH20-248 sample T55) were tested to evaluate the plasticity characteristics of the soil. The clay typically has high plasticity with plastic limits ranging from 13 to 32, liquid limits ranging from 43 to 91 percent and plasticity indices of 30 to 59. The liquidity indices range from 0.3 to 0.9. The two samples north of Silver Avenue (i.e. TH's 20-245 and 20-248) have intermediate plasticity. The results are summarized in Table D1 along with the laboratory test reports (Appendix D).

Six samples of the glaciolacustrine clay (TH19-152 sample G240, TH19-156 sample T326, TH19-157 sample T377, TH 19-162 sample T394, TH 19-166 sample G439 and TH 19-173 sample G492) were tested to evaluate the particle size distribution of the soil. The samples contained 52 to 100 percent clay sized particles, 0 to 37 percent silt sized particles and up to 11 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test reports (Appendix D).

Four samples of the clay soil (TH 19-153 sample G248, TH 19-161 sample G383, TH 19-167 sample G456 and TH20-244 sample T5) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 and the laboratory test reports from Bureau Veritas Laboratories is provided in Appendix D.

Three samples of the clay soil (TH 19-156 - sample T326, TH 19-162 - sample T394 and TH 19-173 - sample T493) were submitted for testing to evaluate the potential for swelling and the swell pressure. The swell percentages were 1.3, 1.6 and 2.2 percent and the estimated swell pressures were 40, 41 and 68 kPa. The results are summarized in Table D4 and the laboratory test reports from WOOD PLC are provided in Appendix D.

Two composite samples of the clay soil were submitted for SINTEF-SAT testing at the Colorado School of Mines in the USA. One sample was made up of clay samples from the test holes south of Silver Avenue (sample ID 'Clay-1') and the other sample (sample ID 'Clay-2') was made up from bulk samples of the auger cuttings collected during drilling of the test holes north of Silver Avenue (i.e. TH's 20-244 to 20-248). The SAT tests resulted in SAT values of 3.45 and 1.4 for samples Clay-1 and Clay-2, respectively. The Abrasivity Classification in the testing report is noted as being low for SAT values less than 7. The laboratory test reports are provided in Appendix G.

5.5 Glacial Silt Till

Glacial till was not encountered in Test Holes 19-151, 19-152, 19-156, 19-158 and 19-159. In the other test holes, glacial silt till was encountered below the alluvial soils or the silty clay deposit. In Test Holes 19-173 and 20-248, which were drilled into bedrock the glacial till is 8 m and 11.3 m thick, respectively. The till contact depth in the four test holes located closest to the Assiniboine River (Test Holes 19-147 to 19-150) ranged from 5 to 10 m. South of Ness Avenue (Test Holes 19-153 to 19-165, including 19-239) the depth to glacial till is about 9 to 12 m. North of Ness Avenue (Test Holes 19-166 to 19-173, including 19-240) the depth to glacial till decreases in a northerly direction from 9 to 5 m. North of Silver Avenue (Test Holes 20-244 to 20-248), the depth to glacial till was about 5.5 m decreasing to 4 m at Test Hole 20-248. The geophysical survey conducted by Tetra Tech Canada Inc. (see report in Appendix H) was used to interpret / infer the interface between the silty clay and glacial till along the route of the trunk sewer. The results are provided on Figures 2 and 3 of the attached geophysical survey report and show that the interface between the silty clay and the glacial till is not flat and generally rises in a northward direction.

The glacial till deposit in the Winnipeg area is typically a heterogeneous mixture of sand, gravel, cobble and boulder size materials within a predominantly silt matrix that has a low but variable clay content. The silt till encountered in the test holes typically contains traces of sand and gravel. No cobbles and boulders were confirmed in the test holes during augering due to the small diameter of augers used for drilling. During coring at Test Holes 19-166 to 19-173 and 20-244 to 20-248, a few cobbles and boulders were recovered from the core barrel (see Figures C1 to C13 in Appendix C). The till is grey or brown in color, moist to wet and loose to compact in the upper 1 to 2 m (variable) and becomes dry to moist and

dense to very dense with depth. The moisture content of the till ranges from 3 to 29 percent with an average of 11 percent. The moisture content profiles with depth and elevation are provided on Figures E17 and E18 (Appendix E).

In Test Holes 19-161 and 19-162, a gas pocket was encountered near the bottom of the test holes. There was no odour, the 'gas' flowed out of the test holes under pressure for at least 10 to 15 minutes.

Sixty-five standard penetration tests (SPT) were attempted and fifty-eight were successfully completed. The SPT's ranged from 2 to 154 with an average of 57. The test results are summarized on Table F1 in Appendix F. The SPT profiles with depth and elevation are provided on Figures F1 and F2 (Appendix F). Figure F3 shows the SPT-N values versus moisture content.

Auger refusal was encountered in 19 test holes. In Test Holes 19-147 to 19-149, which are located at the south end of the trunk sewer near the Assiniboine River, auger refusal was encountered in the glacial till at depths of 6.7 m, 9.6 m and 10 m, respectively. These depths correspond to an elevation of 221.5 m (+/- 0.5). In Test Holes 19-160 to 19-165 and 19-239 (approx. from Bruce Avenue to Ness Avenue), the auger refusal depths ranged from 10 to 12.3 m which correspond to elevations of 222.3 m to 224.1 m. The typical elevation at auger refusal was around 223 m. In Test Holes 19-166 to 19-173 and 19-240 (approx. from Ness Avenue to Silver Avenue), the auger refusal depths ranged from 7.5 to 9 m with a trend of shallower refusal occurring from south to north. These refusal depths correspond to elevations of 226 m to 228.5 m with a typical elevation around 227 m. Test Holes 20-244 to 20-248 were not drilled to auger refusal before the drilling method was switched over to the casing advancer and HQ coring.

Nine samples of the glacial till (TH19-148 sample G302, TH19-161 sample G386, TH19-166 sample S443, TH19-173 sample S496, TH20-244 sample G7, TH20-245 sample G20, TH20-246 sample S36, TH20-247 sample S46 and TH20-248 sample S56) were tested to evaluate the particle size distribution of the soil. The samples contained 32 to 49 percent clay sized particles, 47 to 60 percent silt sized particles and 4 to 8 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test report (Appendix D).

Two samples of the glacial till (TH19-172 sample G486 and TH20-248 sample S57) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 and the laboratory test report from Bureau Veritas Laboratories is provided in Appendix D.

Two composite samples of the glacial till soil were submitted for SINTEF-SAT testing at the Colorado School of Mines in the USA. One sample was made up of till samples from the test holes south of Silver Avenue (sample ID 'Till-1') and the other sample (sample ID 'Till-2') was a bulk sample made from the auger cuttings collected during drilling of the test holes (i.e. TH's 20-244 to 20-248) north of Silver Avenue. The SAT tests resulted in SAT values of 6.25 and 8.2 for samples Till-1 and Till-2, respectively. The Abrasivity Classification in the testing report is noted as being low for SAT values less than 7 and medium for SAT values of 7 to 22. The laboratory test reports are provided in Appendix G.

Three samples of the cobbles and boulders recovered during coring in the glacial till were submitted for Cerchar Abrasivity Index (CAI) testing, thin section petrographic analysis and uniaxial compressive strength (UCS) testing. The samples were taken from Test Hole 19-168 (core sample C550), Test Hole 19-173 (Core sample C518) and Test Hole 20-244 (core sample C8). The samples submitted for testing

are identified on Figures C3, C8 and C9 in Appendix C. The Cerchar CAI, petrographic and UCS results are summarized in Table 5.1:

Table 5.1 – Rock Type, CAI and UCS Results

Test Hole	Sample ID	Depth (m / ft)	Rock Type	Cerchar Abrasivity Index (CAI)	Uniaxial Compressive Strength (UCS) (MPa)
TH 19-168	C550	8.2 / 27	Alkali-Feldspar Granite	3.24	n/a sample too short
TH 19-173	C518	7.9 / 26	Limestone (Crystalline Carbonate/Sparstone)	3.29	99.5
TH 20-244	C8	7.3 / 24	Tonalite	3.36	205.7

5.6 Bedrock

Test Holes 19-173 and 20-248 were drilled into bedrock using HQ size coring tools. Bedrock was encountered beneath the glacial silt till at a depths of 13.2 m (elevation 221.9 m) and 15.3 m (elevation 220.8 m) in Test Holes 19-173 and 20-248, respectively. The bedrock geology maps in this area of Winnipeg (Manitoba Geological Survey's Geologic Scientific Report GR2002-1) classify the bedrock as a dolomite mudstone belonging to the Upper Fort Garry Member of the Red River Formation. The geology map suggests that Test Hole 19-173 is on the boundary between the Upper Fort Garry Member of the Red River Formation to the east and Gunn Member of the Stony Mountain Formation to the west and south.

The colour of the bedrock is generally whitish grey color and has horizontal and vertical joints with some evidence of water flow. The length of bedrock core recovered from each core run was typically greater than about 90 percent of the cored length and the Rock Quality Designation (RQD) for the bedrock ranged from about 30 to 90 percent, indicating poor to good quality. The bedrock recovered from the test holes is strong and has close to moderately close discontinuity spacing and gapped to open joint apertures. Appendix C includes photographs of the bedrock core samples recovered (see Figure C8 and C13) and a tabular summary (Table C1) of the core samples.

5.7 Test Hole Stability and Groundwater Conditions

In Winnipeg, groundwater usually occurs in shallow perched water tables within fill layers and silt deposits that are quite permeable and underlain by the relatively impermeable Lake Agassiz clays. A groundwater table is not apparent during drilling within the clay soil due to its low permeability.

Sloughing and seepage conditions were observed in Test Holes 19-147 to 19-151 which were drilled into the alluvial soils. No significant seepage and sloughing were observed from the remaining test holes, which were not drilled into alluvial soils. Some minor seepage and sloughing were encountered from the shallow silt layer in Test Hole 19-239 and from the glacial till in Test Holes 19-160, 19-161, 19-164, 19-168 and 19-240. Refer to the notes on each test hole log for additional information.

Standpipe piezometers were installed in Test Holes 19-147, 19-148, 19-155, 19-173, 19-239, 19-240 and 20-248. The piezometer installation details and measured ground water levels are provided on the test hole logs and summarized in Table 5.2 below. The initial water levels were taken on September 23, 2019 (January 7, 2021 for TH20-248) and the second set of water levels were taken on November 13, 2019. After a dry summer, the months of September and October 2019 had a lot of precipitation, and the river levels were high. The water levels from November 13, 2019 are relatively high compared to September 23, 2019 and are attributed to the wet weather in the fall of 2019. The water levels on June 11, 2021 were taken following a dry fall (2020) and winter (2020/2021) but also after some recent rain events.

In May 2020, hydraulic conductivity testing was performed by Tetra Tech Canada Inc. using the standpipe piezometers installed in Test Holes 19-147, 19-148, 19-155, 19-173, 19-239 and 19-240. The testing procedures and results are presented in Tetra Tech's final report (Appendix H). The results indicate that the hydraulic conductivities are consistent with the soil types (alluvial clay, silt till) and the dolomite bedrock encountered in the test holes (refer to Table 1 of the report in Appendix H).

In general, the water level in the limestone bedrock aquifer below the glacial till has been rising since the early 1970's. In some areas of the City of Winnipeg (e.g. downtown area) the bedrock water levels have risen by about 3 m since that time to around elevation 225 to 226 m with local spikes approaching 227 m. The local spikes are assumed to be associated with spring freshet and flooding events. The rise in the bedrock aquifer levels has been attributed, by others, to the reduced demand for groundwater by industrial users in the greater Winnipeg area.

Groundwater conditions should be expected to vary seasonally, from year to year and possibly as a result of construction activities.

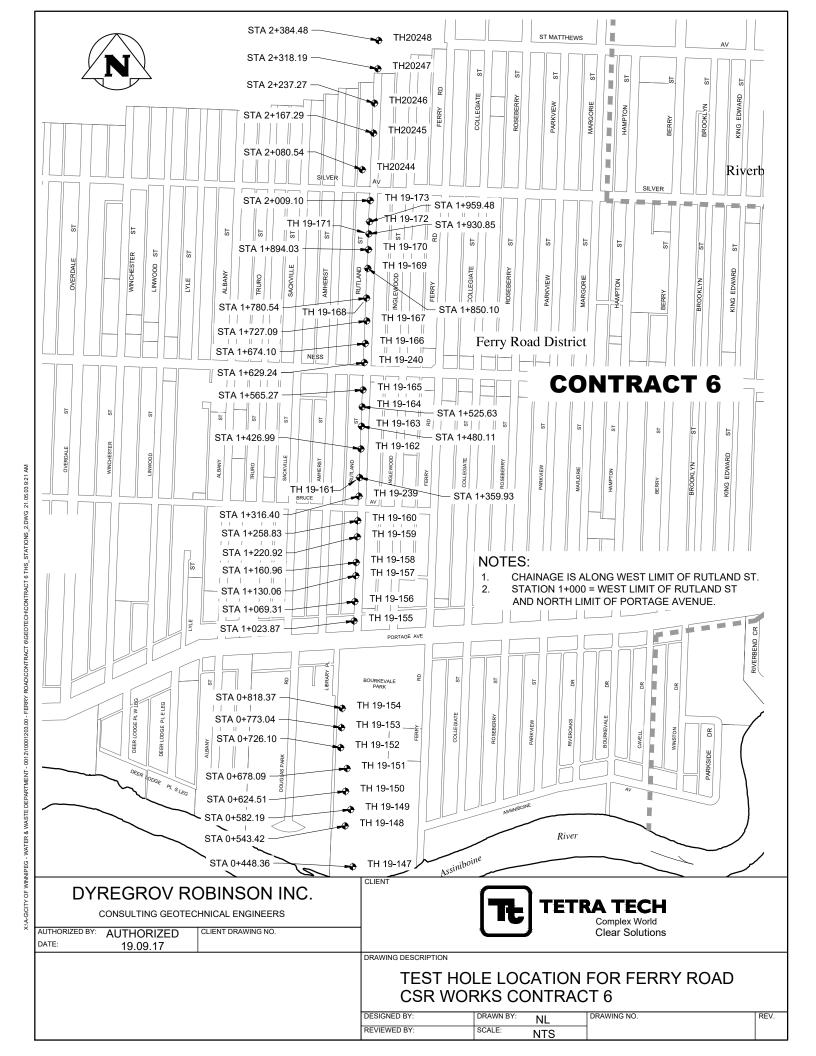
Table 5.2 – Standpipe Piezometer Monitoring Results

Test Hole	19-147	19-148	19-155	19-173	19-239	19-240	19-248		
Ground Elev. (m)	228.62	230.57	233.63	235.16	234.08	235.11	236.03		
Tip Elevation (m)	221.90	221.00	221.30	219.60	223.00	225.70	225.3		
Monitoring Zone	Alluvium / Till	Alluvium / Till	Till	Bedrock	Till	Till	Till		
<u>Date</u>	Piezometric Elevation (m)								
23 Sept 2019	9 225.60	226.39	226.29	226.68	226.37	226.61	n/a		
13 Nov 2019	226.83	227.00	228.46	228.67	228.53	227.26	n/a		
25 May 2020	226.28 226.99		226.97	227.46	227.09	228.61	n/a		
7 January 2021	n/a	n/a	n/a	n/a	n/a	n/a	228.63		
11 June 2021	225.33	226.80	226.00	226.53	226.08	227.76	228.64		

6.0 REFERENCES

- 1. Department of Geological Engineering, University of Manitoba (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 2. Dyregrov Robinson Inc., Phase 1 Geotechnical Investigation Ferry Road and Riverbend Combined Sewer Relief Works, August 2012.
- 3. Render, F.W., 1970, Geohydrology of the Metropolitan Winnipeg Area as Relates to Groundwater Supply and Construction, Canadian Geotechnical Journal, 7, pp 243-274.
- 4. Teller, J.T., 1976, Lake Agassiz Deposits in the Main Offshore Basin of Southern Manitoba, Canadian Journal of Earth Sciences, 134, pp. 27-43.
- 5. Manitoba Geological Survey's Geologic Scientific Report GR2002-1, Bedrock mineral resources of Manitoba's capital region.

7.0 CLOSURE


This report and its findings were prepared based on the subsurface conditions encountered in the random representative sample of test holes drilled in July and August of 2019 and December 2020 for the sole purpose of this geotechnical investigation and our understanding of the proposed Rutland Trunk Sewer at the time of this report. Subsurface conditions are inherently variable and should be expected to vary along the route of the trunk sewer.

This report was prepared for the sole and exclusive use of Tetra Tech Canada Inc. and The City of Winnipeg for the Rutland Trunk Sewer which will be installed as part of the Ferry Road and Riverbend Combined Sewer Relief Project in Winnipeg, Manitoba. The information and recommendations contained in this report are for the benefit of Tetra Tech Canada Inc. and The City of Winnipeg only and no other party or entity shall have any claim against Dyregrov Robinson Inc., or the author, nor may this report be used for any other projects, including but not limited to changes in the proposed Rutland Trunk Sewer Project without the consent of Dyregrov Robinson Inc. The findings and recommendations in this report have been prepared in accordance with generally accepted geotechnical engineering principles and practises. No other warranty, expressed or implied, is provided.

APPENDIX A

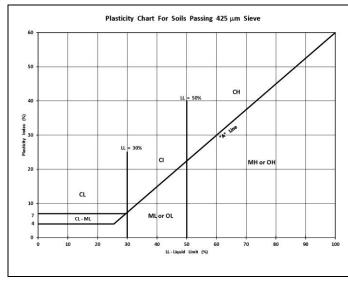
Test Hole Location Plan and Test Hole Location and Survey (Table A1)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer

Table A1) Test Hole Location and Survey

Test Hole ID	General Location	*UTM Cod	ordinates	*Geodetic
		Northing	Easting	Elevation
		(m)	(m)	(m)
TH 19-147	Bourkevale Park	5,526,115.1	627,781.6	228.62
TH 19-148	Bourkevale Park	5,526,210.9	627,763.6	230.57
TH 19-149	Bourkevale Park	5,526,249.2	627,776.8	231.01
TH 19-150	Bourkevale Park	5,526,292.0	627,764.9	231.91
TH 19-151	Bourkevale Park	5,526,345.5	627,768.0	231.04
TH 19-152	Bourkevale Park	5,526,394.1	627,753.1	232.70
TH 19-153	Bourkevale Park	5,526,441.0	627,755.0	232.56
TH 19-154	Bourkevale Park	5,526,486.3	627,756.8	232.64
TH 19-155	Between Portage Ave. & Bruce Ave.	5,526,690.9	627,784.7	233.63
TH 19-156	Between Portage Ave. & Bruce Ave.	5,526,736.3	627,786.6	233.70
TH 19-157	Between Portage Ave. & Bruce Ave.	5,526,797.0	627,788.9	233.79
TH 19-158	Between Portage Ave. & Bruce Ave.	5,526,827.9	627,789.6	233.73
TH 19-159	Between Portage Ave. & Bruce Ave.	5,526,887.8	627,792.2	233.82
TH 19-160	Between Portage Ave. & Bruce Ave.	5,526,925.7	627,793.2	233.93
TH 19-161	Between Bruce Ave. & Ness Ave.	5,527,026.7	627,797.8	234.20
TH 19-162	Between Bruce Ave. & Ness Ave.	5,527,093.7	627,800.6	234.34
TH 19-163	Between Bruce Ave. & Ness Ave.	5,527,146.8	627,802.2	234.62
TH 19-164	Between Bruce Ave. & Ness Ave.	5,527,192.3	627,803.7	234.64
TH 19-165	Between Bruce Ave. & Ness Ave.	5,527,231.9	627,805.5	234.67
TH 19-166	Between Ness Ave. & Silver Ave.	5,527,340.6	627,810.9	234.94
TH 19-167	Between Ness Ave. & Silver Ave.	5,527,393.5	627,814.3	234.59
TH 19-168	Between Ness Ave. & Silver Ave.	5,527,447.0	627,814.0	234.97
TH 19-169	Between Ness Ave. & Silver Ave.	5,527,516.5	627,816.8	234.92
TH 19-170	Between Ness Ave. & Silver Ave.	5,527,560.4	627,818.5	235.01
TH 19-171	Between Ness Ave. & Silver Ave.	5,527,597.2	627,819.6	234.99
TH 19-172	Between Ness Ave. & Silver Ave.	5,527,625.8	627,821.1	235.07
TH 19-173	Between Ness Ave. & Silver Ave.	5,527,675.4	627,822.5	235.16
TH 19-239	Between Bruce Ave. & Ness Ave.	5,526,983.2	627,796.2	234.09
TH 19-240	Between Ness Ave. & Silver Ave.	5,527,295.8	627,808.6	235.11
TH 20-244	North of Silver Ave.	5,527,747.6	627,803.8	235.22
TH 20-245	North of Silver Ave.	5,527,833.4	627,830.3	235.31
TH 20-246	North of Silver Ave.	5,527,903.4	627,832.4	235.43
TH 20-247	North of Silver Ave.	5,527,984.0	627,840.4	235.64
TH 20-247	North of Silver Ave.	5,528,050.3	627,842.2	236.03

^{*} Test hole survey by Tetra Tech



APPENDIX B

2019 / 2020 Test Hole Logs & 2012 Test Hole Logs

EXPLANATION OF TERMS & SYMBOLS

Descriptio				TH Log	USCS	Laboratory Classification Criteria					
		Descripti	ion		Symbols	Classification	Fines (%)	Grading	Plasticity	Notes	
AINED SOILS		CLEAN GRAVELS	Well graded sandy gravels or no f	s, with little	2727	GW	0-5	C _U > 4 1 < C _C < 3			
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravel or no f	s, with little		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-	
	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and	
		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>	
COARSE GRAINED		CLEAN SANDS	Well grade gravelly sand or no f	s, with little		SW	0-5	C _U > 6 1 < C _C < 3		$C_U = \frac{D_{60}}{D_{10}}$	
00	SANDS (More than 50% of	(Little or no fines)	Poorly grad- gravelly sand or no f	s, with little		SP	0-5	Not satisfying SW requirements		$C_U = \frac{D_{60}}{D_{10}}$ $C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$	
	coarse fraction of sand size)		Silty sa sand-silt n		000	SM	> 12		Atterberg limits below "A" line or W _P <4		
			Clayey s sand-clay			SC	> 12		Atterberg limits above "A" line or W _P <7		
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML					
	negligible organic content)	W _L >50	Inorganic si plasti			МН					
SOILS	CLAYS (Above 'A'	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL					
FINE GRAINED SOILS	line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clar clays of n plasti	nedium		CI			Classification is Based upon Plasticity Chart		
FINE (content)	W _L >50	Inorganic cla plasticity,			СН					
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL					
	(Below 'A' line) W _L >50		Organic cla plasti			ОН					
HIGHLY ORGANIC SOILS		NIC SOILS	Peat and ot organic			Pt		on Post fication Limit	Strong colour or odour, and often fibrous texture		
	Asphalt		Asphalt Gla		acial Till	^^^ ^^^	Bedrock (Igneous)				
		Concrete		CI	ay Shale			edrock nestone)	DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEER:		
×		Fill					Bedrock (Undifferentiated)				

FRACTION			CLE SIZE mm) Max.	RELATIVE PROPORTIONS (by weight)		
Davi	ldara		iviax.	Doroont	Deceriator	
БОИ	lders	>300		Percent	Descriptor	
Cob	bles	75	300	>35%	main fraction	
Gravel	Coarse	19	75	35 - 50	"and"	
Graver	Fine	4.75	19	35 - 50		
	Coarse	2.0	4.75		Adjective	
Sand	Medium	0.425	2.0	20 – 35	e.g. silty, clayey	
	Fine	0.075	0.425	10 – 20	"some"	
Silt (non-plastic) or Clay (plastic)		< 0.075 mm		10 – 20	Some	
				1 - 10	"trace"	

Soil Classification Example

Clay 50% (main fraction), Silt 25%, Sand 17%, Gravel 8%

Clay – silty, some sand, trace gravel

TERMS and SYMBOLS

Laboratory and field tests are identified as follows:

Unconfined Comp.: undrained shear strength (kPa or psf) derived from unconfined compression testing.

Torvane: undrained shear strength (kPa or psf) measured using a Torvane

Pocket Pen.: undrained shear strength (kPa or psf) measured using a pocket penetrometer.

Unit Weight bulk unit weight of soil or rock (kN/m³ or pcf).

SPT – N Standard Penetration Test: The number of blows (N) required to drive a 51 mm O.D. split barrel sampler 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

DCPT Dynamic Cone Penetration Test. The number of blows (N) required to drive a 50 mm diameter cone 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

M/C insitu soil moisture content in percentPL Plastic limit, moisture content in percentLL Liquid limit, moisture content in percent

The undrained shear strength (Su) of cohesive soil is related to its consistency as follows:

Su (kPa)	Su (psf)	CONSISTENCY
<12	250	very soft
12 – 25	250 – 525	soft
25 – 50	525 – 1050	firm
50 – 100	1050 – 2100	stiff
100 – 200	2100 – 4200	very stiff
200	4200	hard

The SPT - N of non-cohesive soil is related to compactness condition as follows:

N - Blows / 300 mm	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50 +	very dense

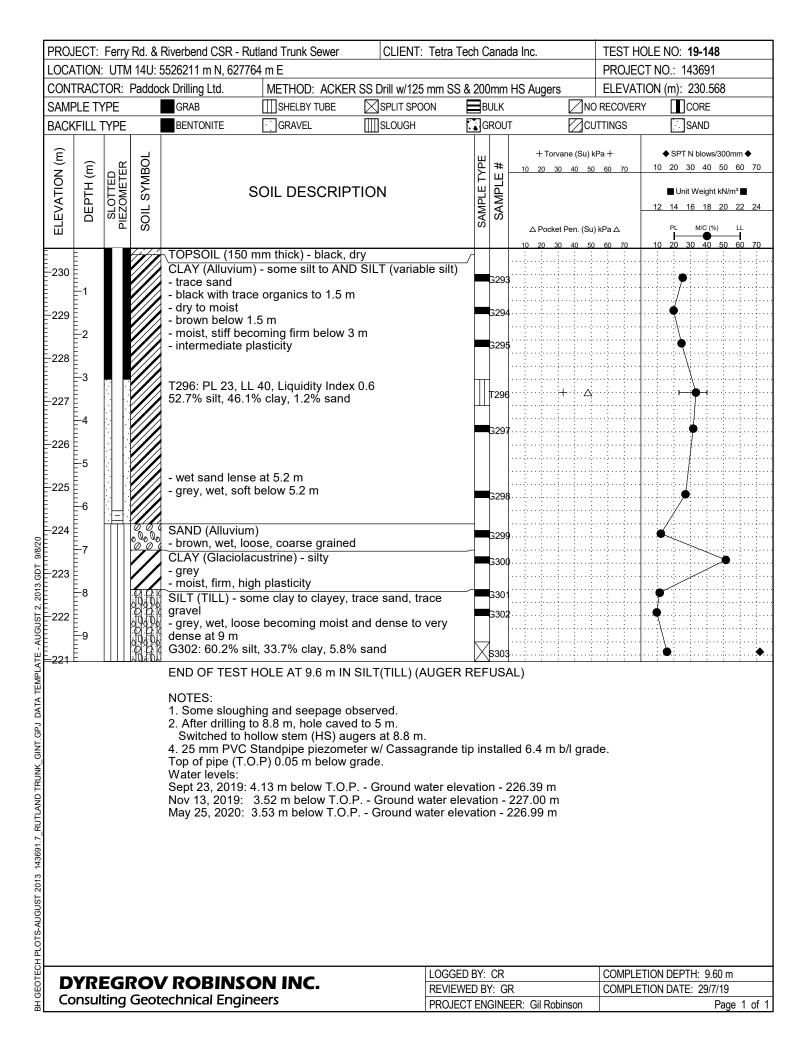
References:

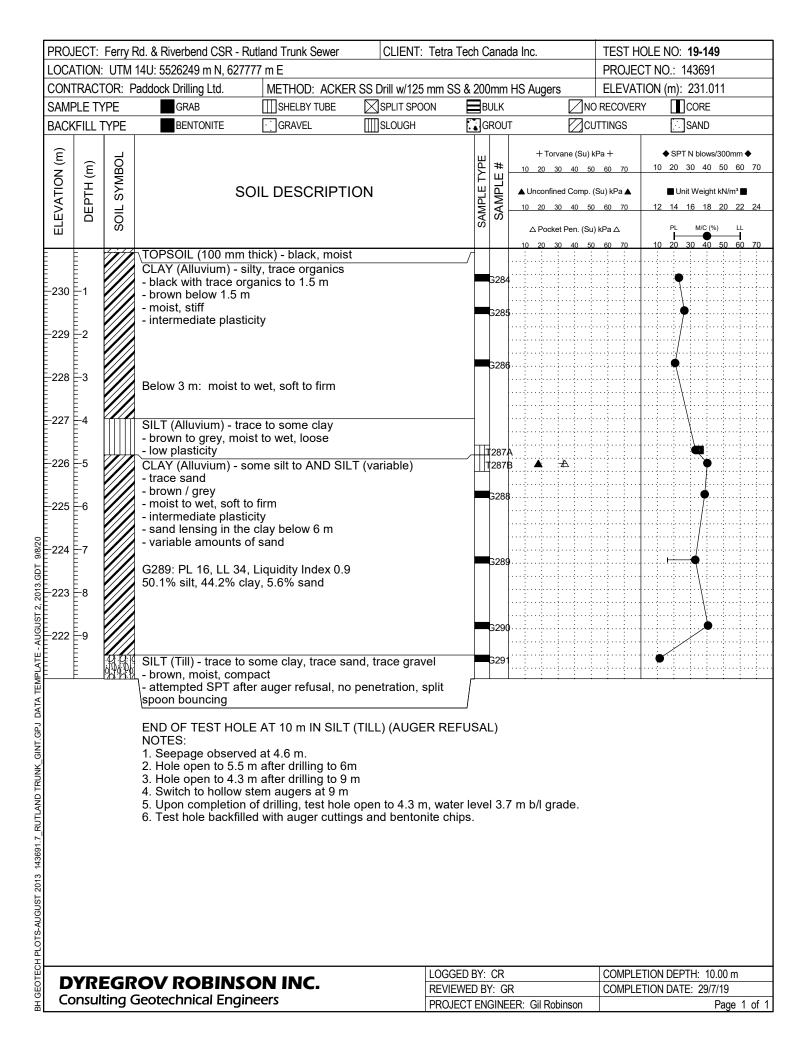
ASTM D2487 - Classification of Soils For Engineering Purposes (Unified Soil Classification System)

Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society, 2006

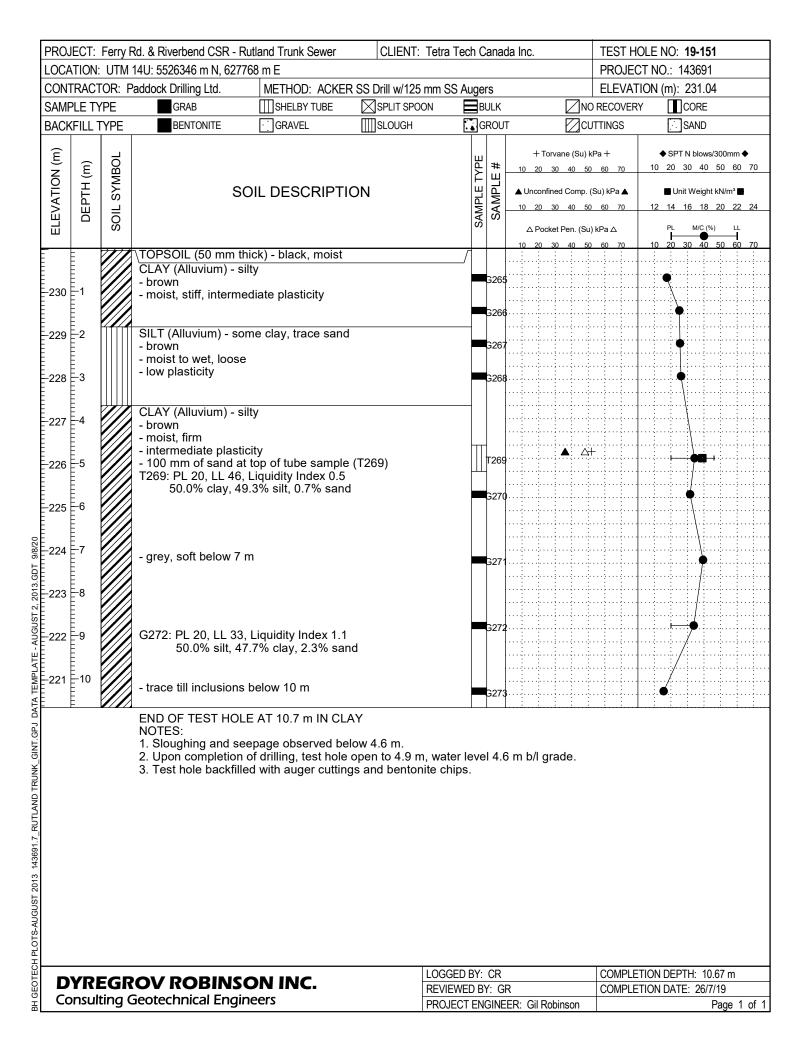
NOTES:

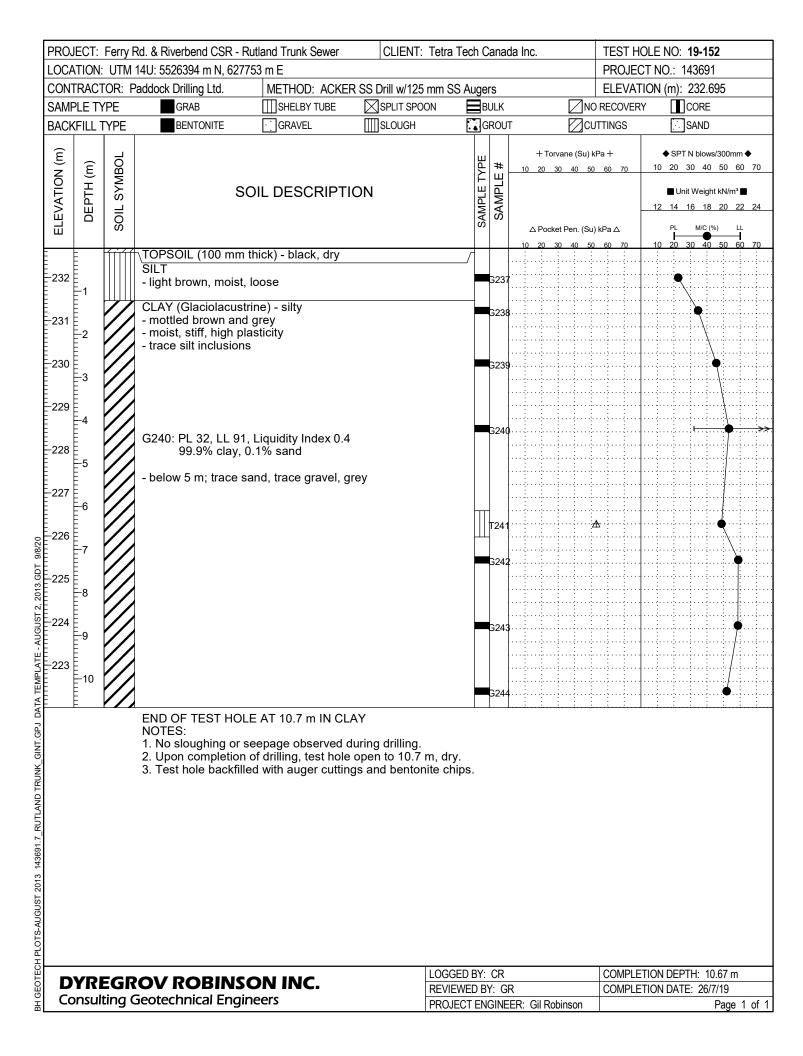
- 1. Some sloughing and seepage observed at 4 m.
- 2. After drilling to 5.8 m, hole caved to 4 m. Switched to hollow stem (HS) augers at 5.8 m.
- 3. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 6.7 m b/l grade. Top of pipe (T.O.P) 0.91 m above grade.

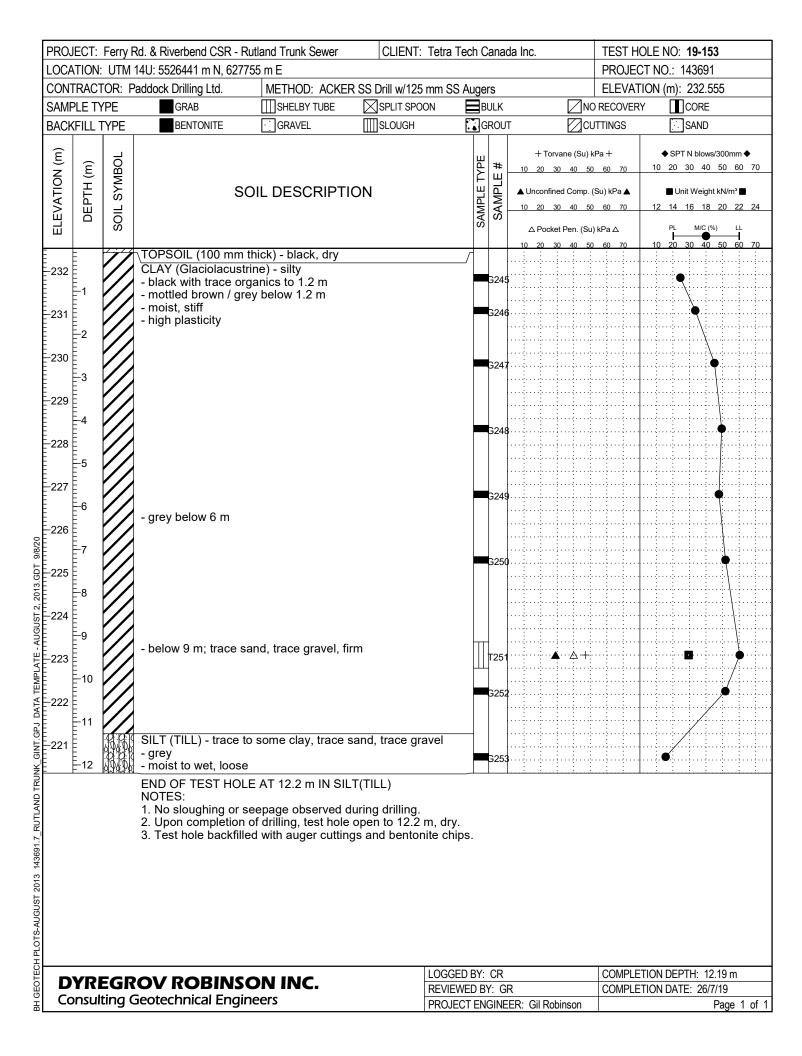

Water levels:

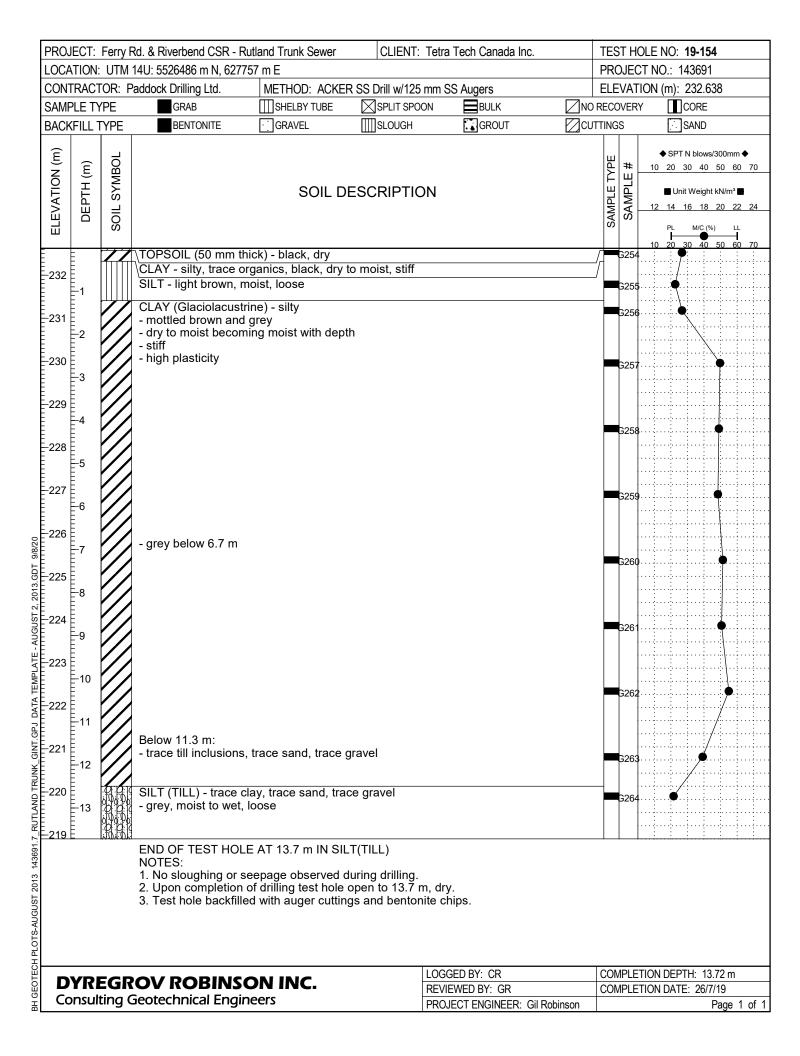

Sept 23, 2019: 3.93 m below T.O.P. - Ground water elevation - 225.60 m Nov 13, 2019: 2.70 m below T.O.P. - Ground water elevation - 226.83 m May 25, 2020: 3.25 m below T.O.P. - Ground water elevation - 226.28 m

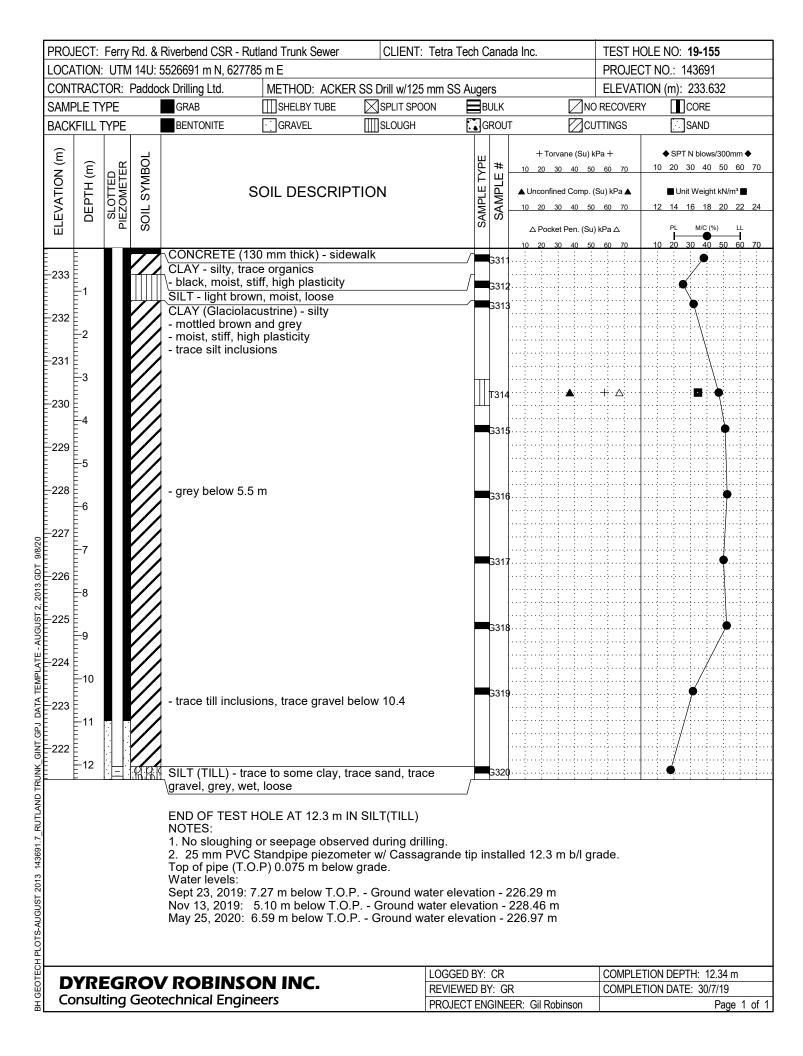
DYREGROV ROBINSON INC.

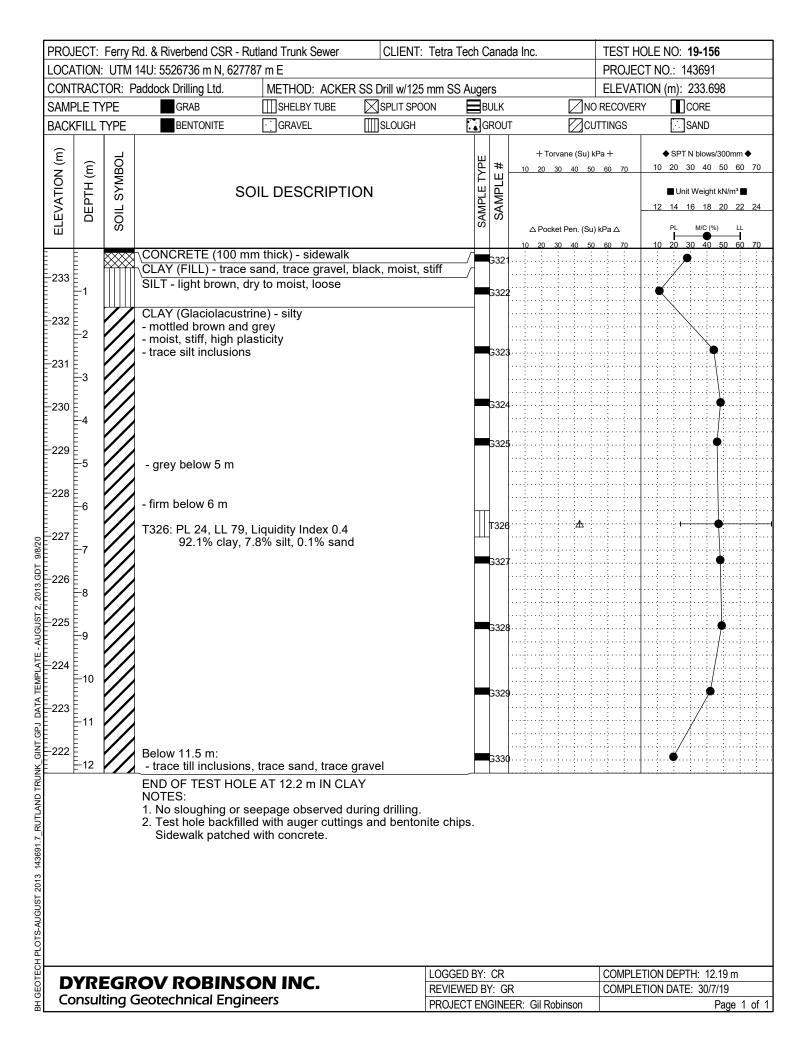

Consulting Geotechnical Engineers

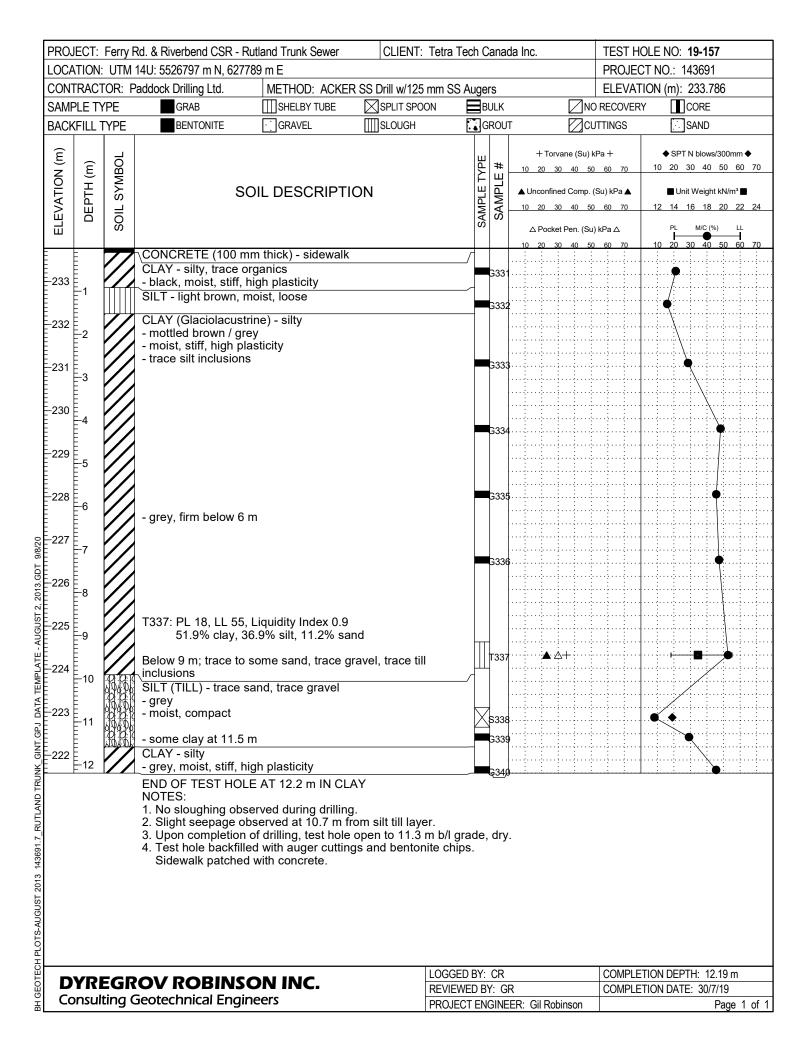

LOGGED BY: CR COMPLETION DEPTH: 6.71 m COMPLETION DATE: 30/7/19 REVIEWED BY: GR PROJECT ENGINEER: Gil Robinson Page 1 of 1

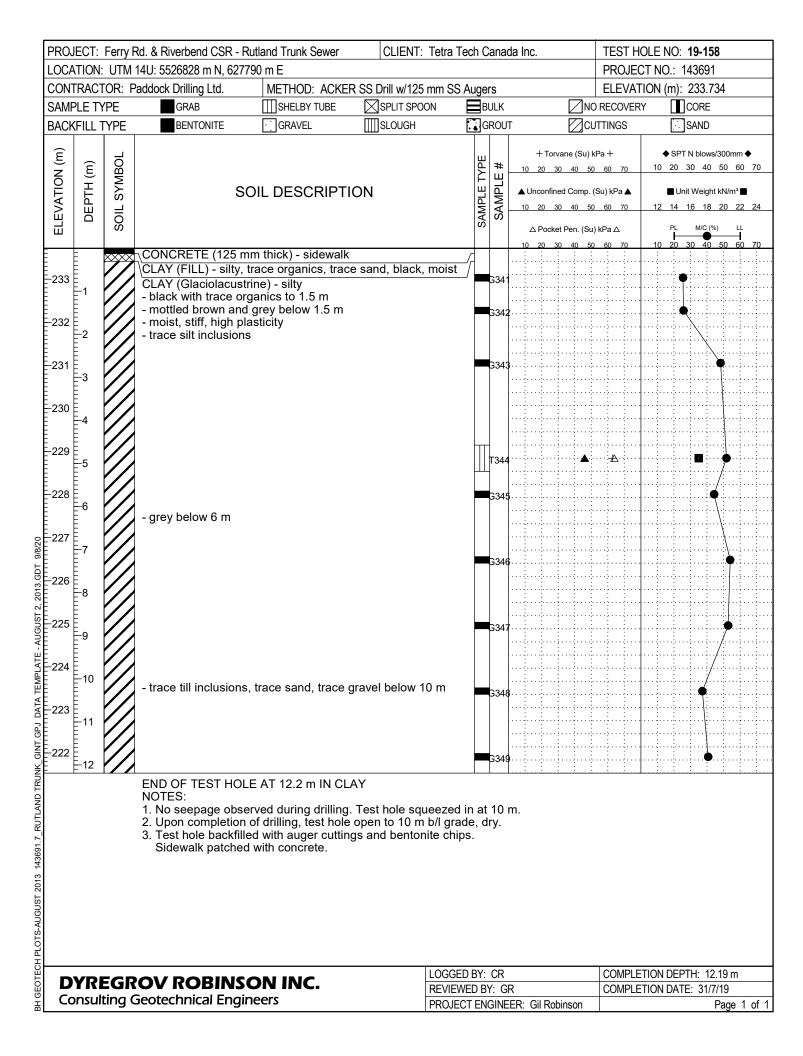


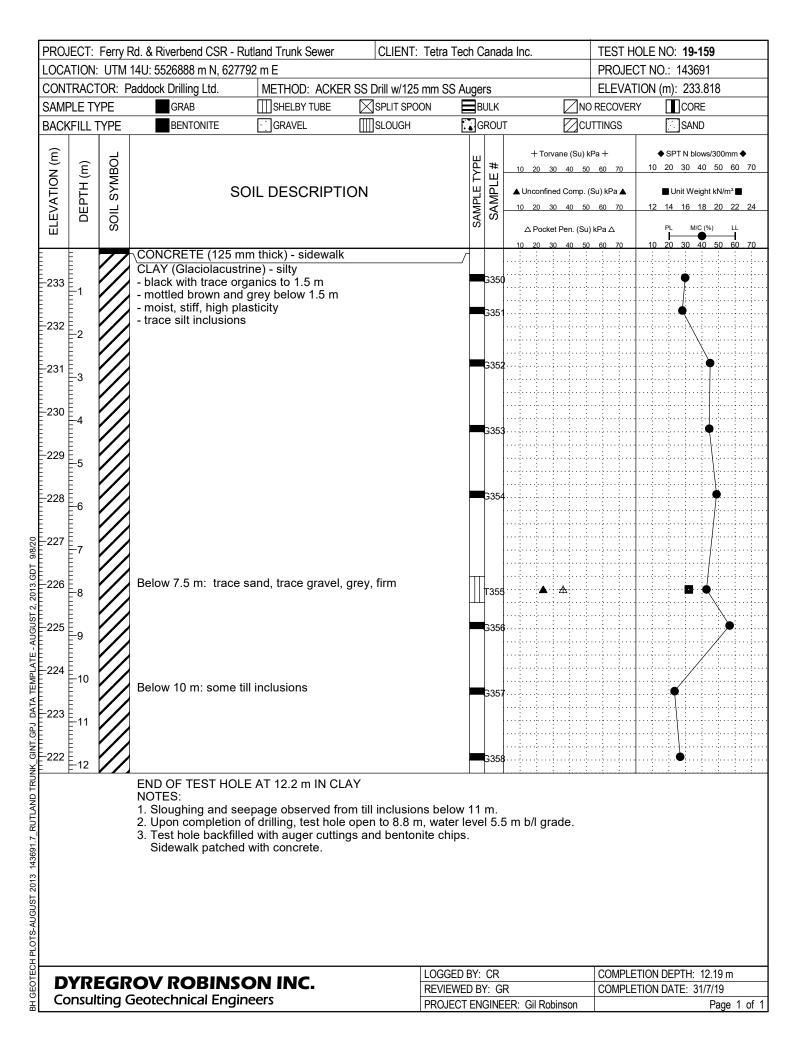


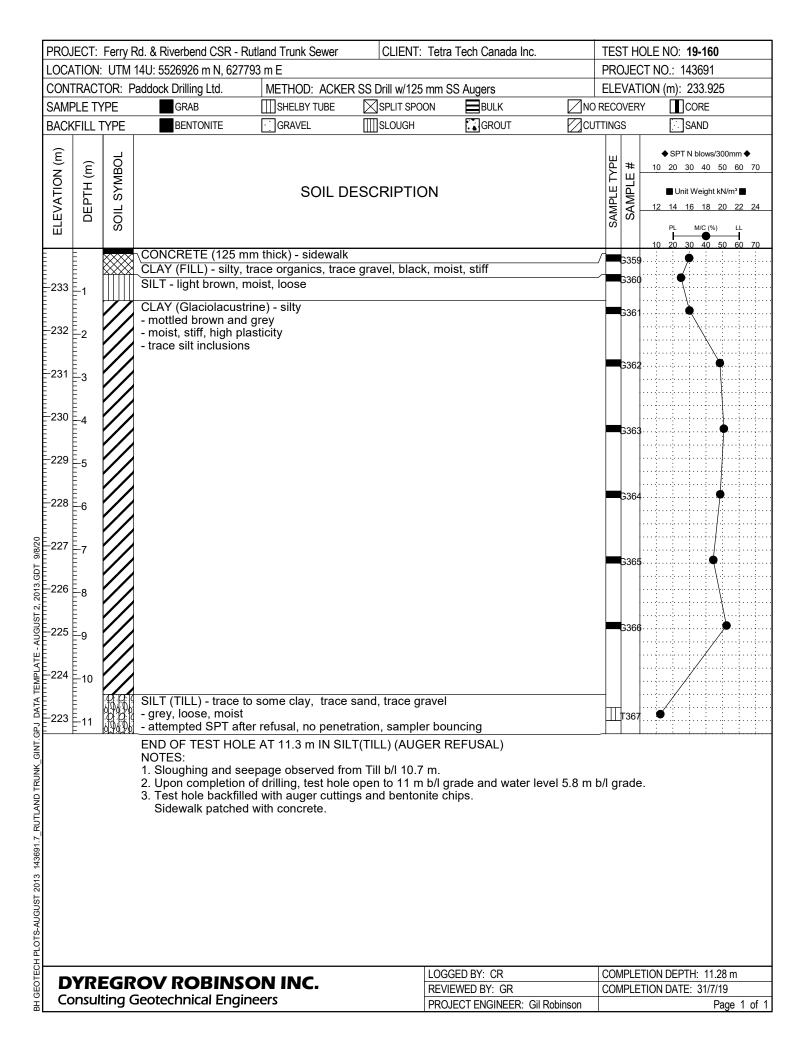

PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc.										TEST HOLE NO: 19-150						
	LOCA	DCATION: UTM 14U: 5526292 m N, 627765 m E										PROJECT NO.: 143691				
	CON	TRACT	TOR: I	Paddock Drilling Ltd.	METHOD: ACKER	RSS	Drill w/125 mm S	S Augers		ELEVATION (m): 231.907						
	SAME	PLE TY	/PE	GRAB	SHELBY TUBE	\boxtimes	SPLIT SPOON	BULK	✓NO	RECOVERY CORE						
	BACK	KFILL T	TYPE	BENTONITE	TTINGS SAND											
	ELEVATION (m)	DEPTH (m)	SOIL SYMBOL		SAMPLE TYPE	SAMPLE #	◆ SPT N blows/300mm 10 20 30 40 50 60 ■ Unit Weight kN/m³ ■ 12 14 16 18 20 22 PL M/C (%) LL	70								
		E	friff	TOPSOIL (100 mm t						\overline{A}		10 20 30 40 50 60	70			
	231	1		SILT (Alluvium) - trad black to brown, dry to	o moist, loose	able					G274					
	Ē	Ē		CLAY (Alluvium) - si - brown	lty											
	230	_2		- moist, stiff												
	Ē	Ē		- intermediate plastic	city											
	229	<u>-</u> 3									G276	†	;			
	Ē	Ē		CLAY (Alluvium) - so - trace sand	ome silt to AND SIL	Τ.										
	- -228	Ē,		- brown / grey, wet, s												
	Ė	= 7		- intermediate plastic	city							<u> </u>				
		Ē_		G277: PL 15, LL 37,	Liquidity Index 0.3						G277					
	E'	5		53.3% clay, 40	0.3% silt, 6.4% san	d										
		Ē														
	226	6		SILT (Alluvium) - tra	ce sand						G278	\$				
0	Ē	Ē		- brown												
3/8/5	225	<u>-</u> 7		- loose, wet - low plasticity							0076					
וחפ	Ē	Ē									G279					
2013.	224	8		CLAY (Alluvium) - si - grey, moist, firm, in	ıty termediate plasticit	y					2000					
51 2,		Ē	00	SAND (Alluvium) - b	rown, wet, loose, co	oarse	•				G280 G281	l . -				
เบอก	223	9		SILT (Alluvium) - trad	ce sand											
I = - A	Ē	Ē		- loose, wet												
IPLA		10		- low plasticity							G282					
A IEN			99	SILT (TILL) - trace to	some clay trace	and	trace gravel o	rev wet loose			G283					
Ä		-	TELLVECUT		, como day, hade s	Jui iU,	, adoc graver, g	110y, WCL, 1003C				1				
. Gr				END OF TEST HOLI Notes:	E AT 10.7 m IN SIL	IT) T.	ILL)									
5 5				1. Sloughing and see	epage observed be	low 6	3 m.									
KUNK		 Upon completion of drilling test hole open to 6 m, water level 5.2 m b/l grade. Test hole backfilled with auger cuttings and bentonite chips. 														
וו טא	o. Tool holo backing with dayor outlings and portonite onlys.															
JIG																
۲_																
51.7																
SI 21																
1060																
1-6-IC																
H PL																
וב	D	VDI		ROV ROBINS				ED BY: CR				ETION DEPTH: 10.67 m				
ו פבר				Geotechnical Engir				WED BY: GR	lahin	CON	MPLE	ETION DATE: 29/7/19	1 1			
_							1 1 1 1 1 1 1 1 1	-, , , , , , , , , , , , , , , , , , ,	CHILLISTON	1		יי באפים	t the i			

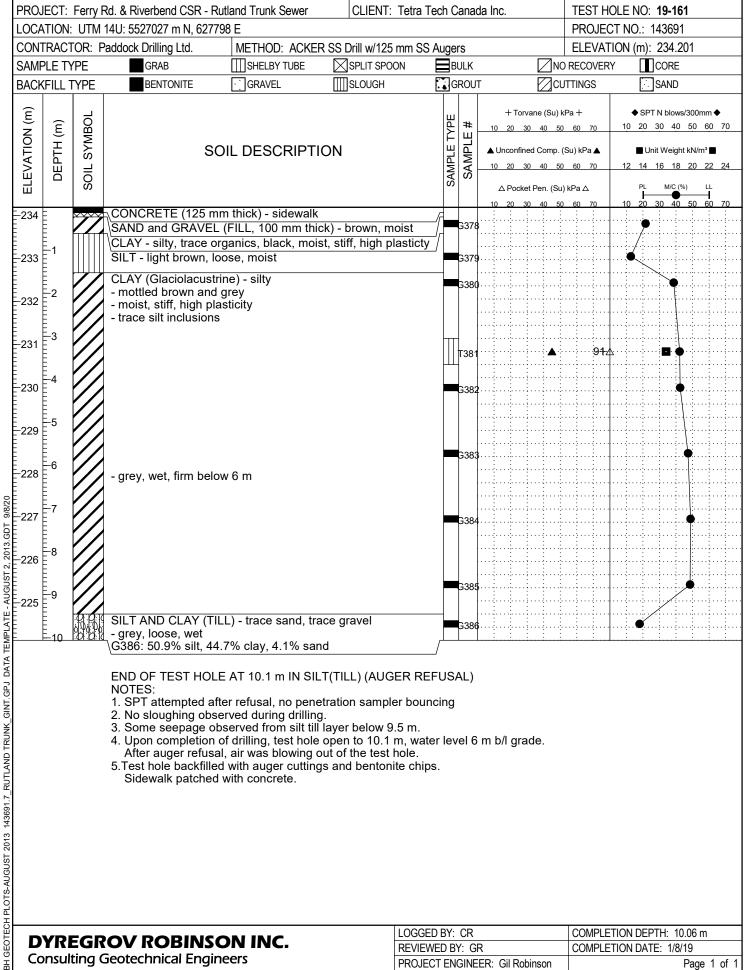


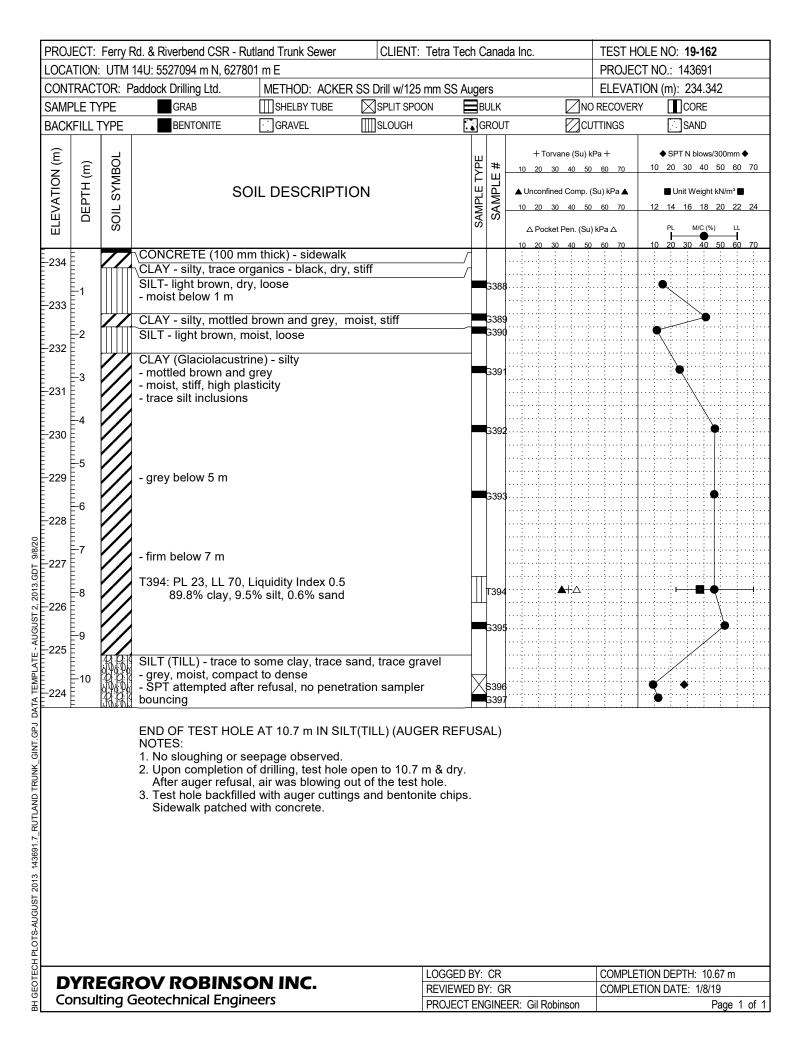


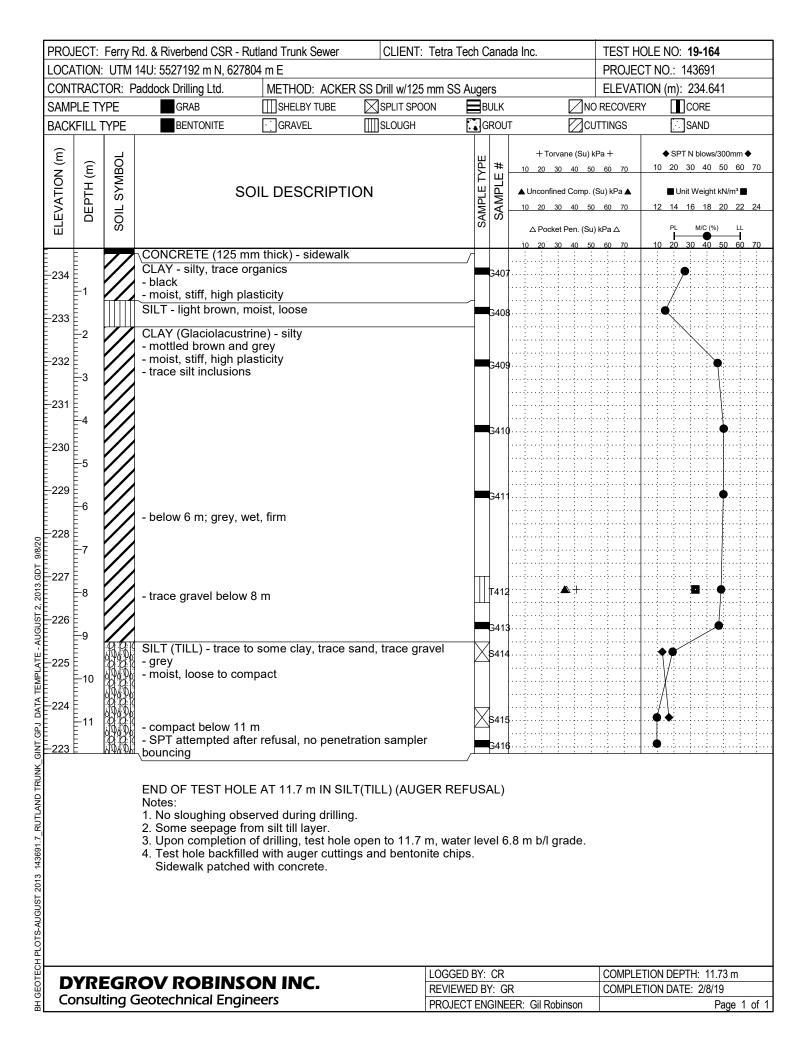


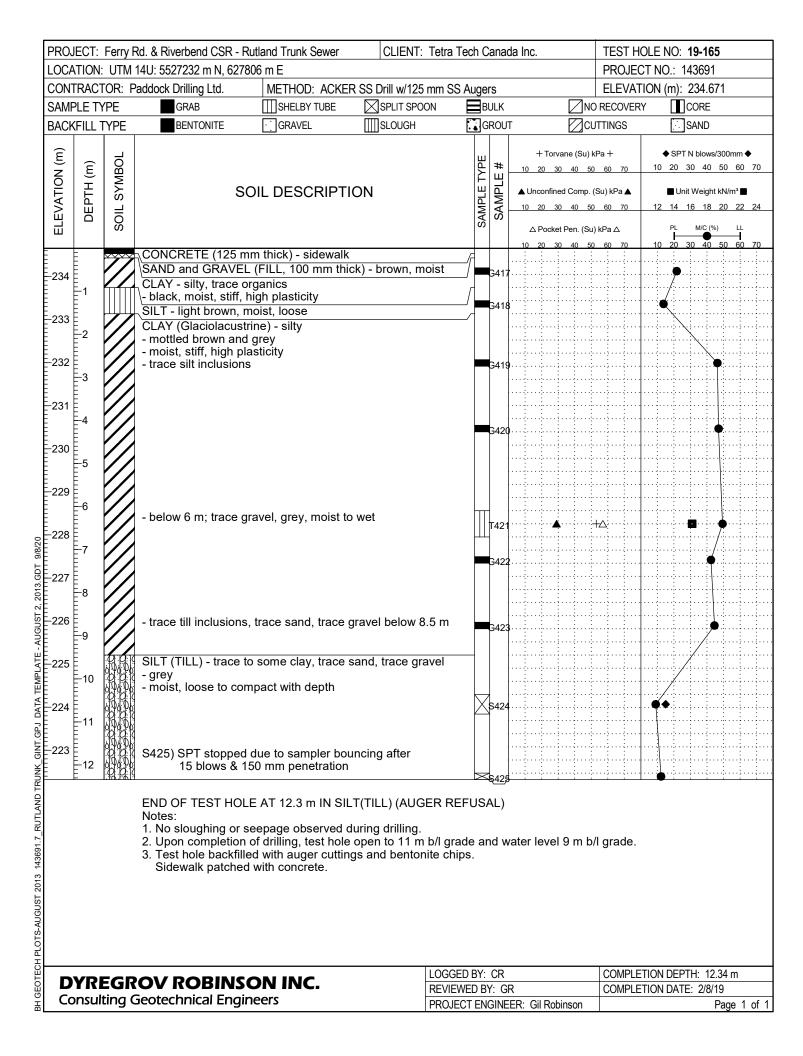


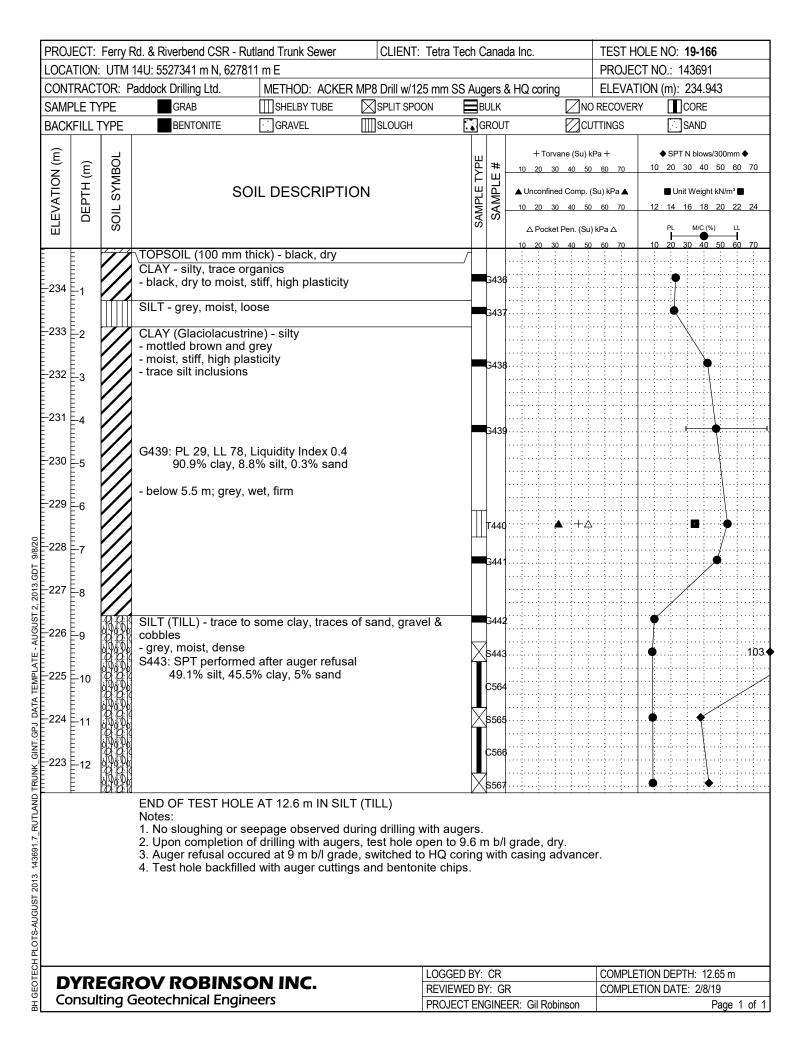


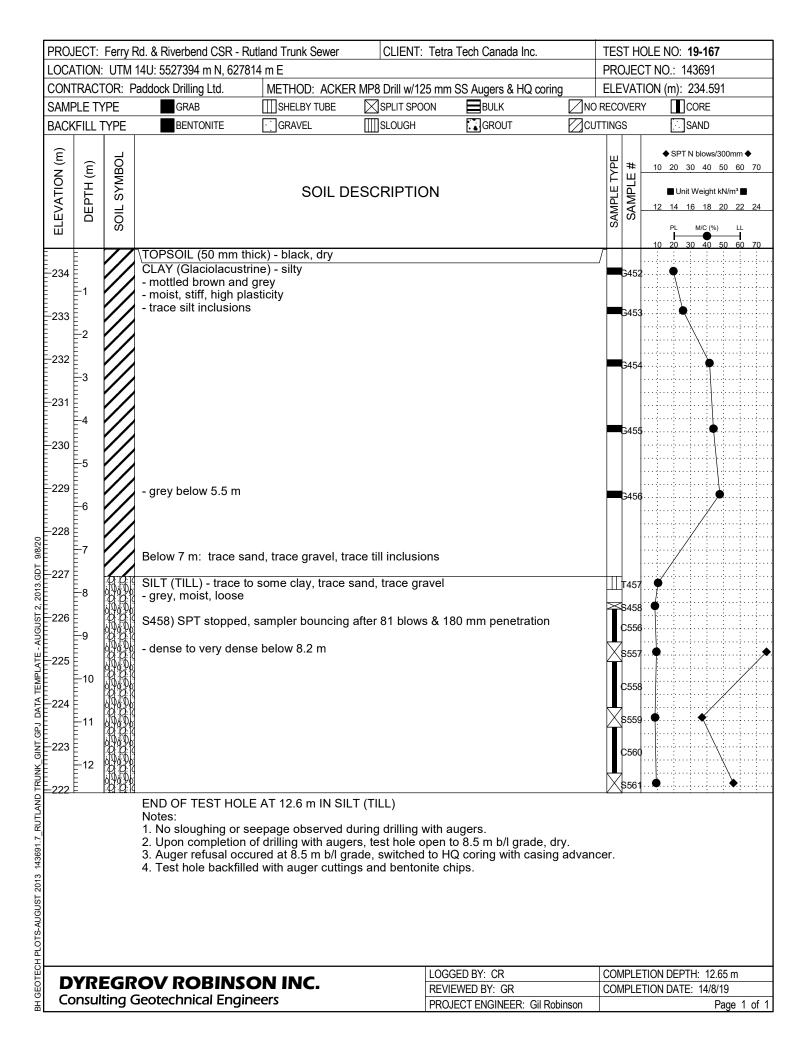


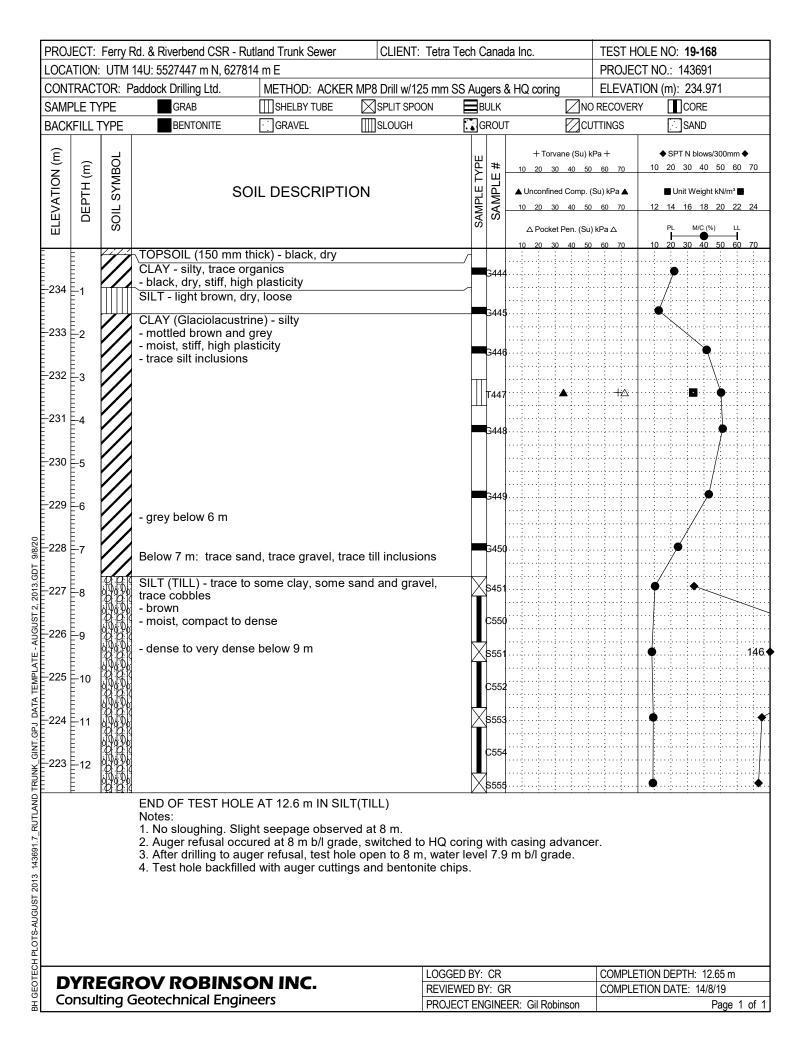


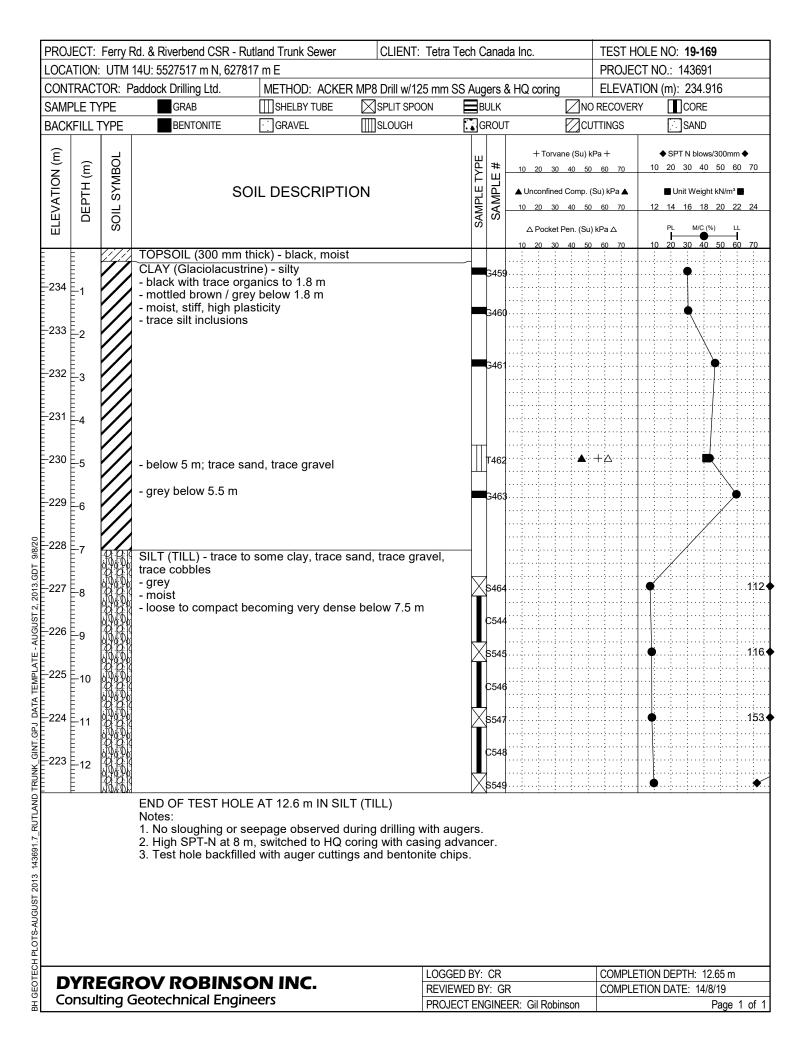


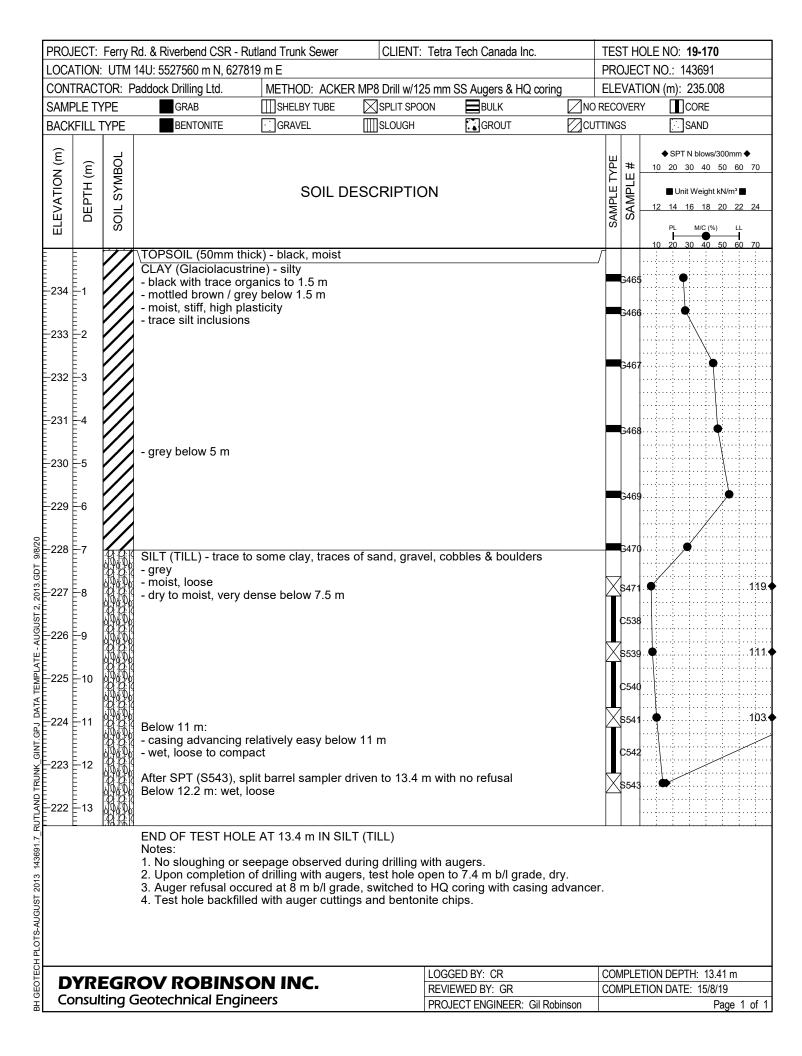


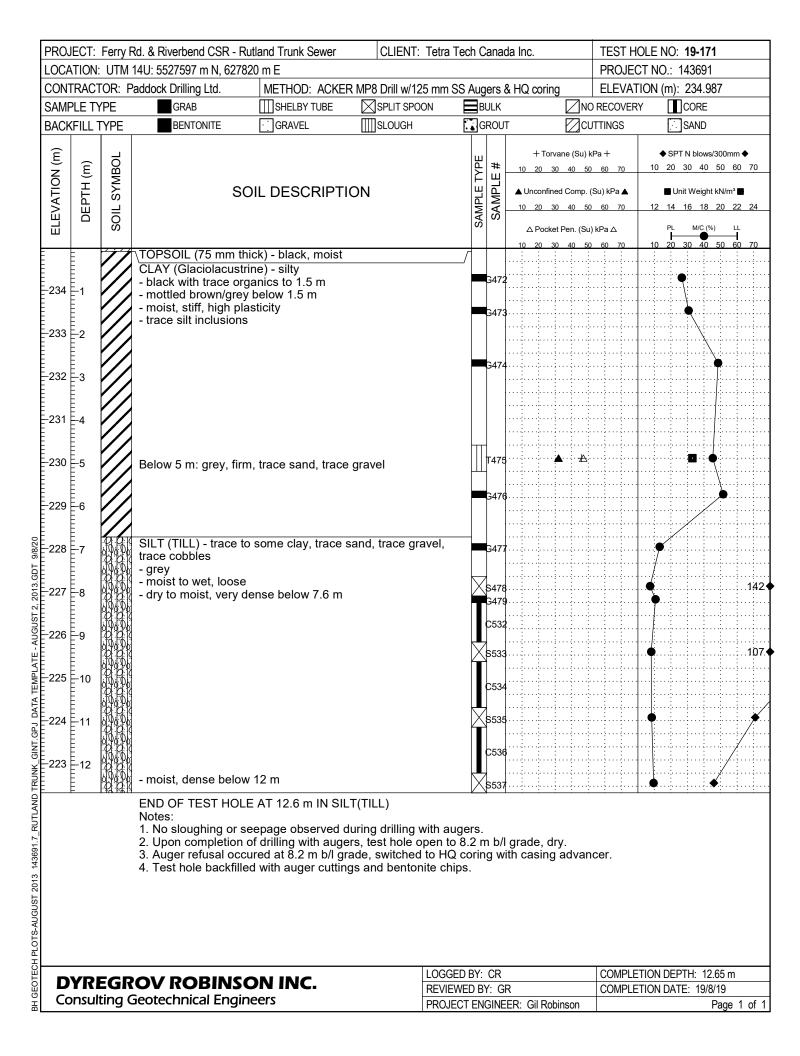


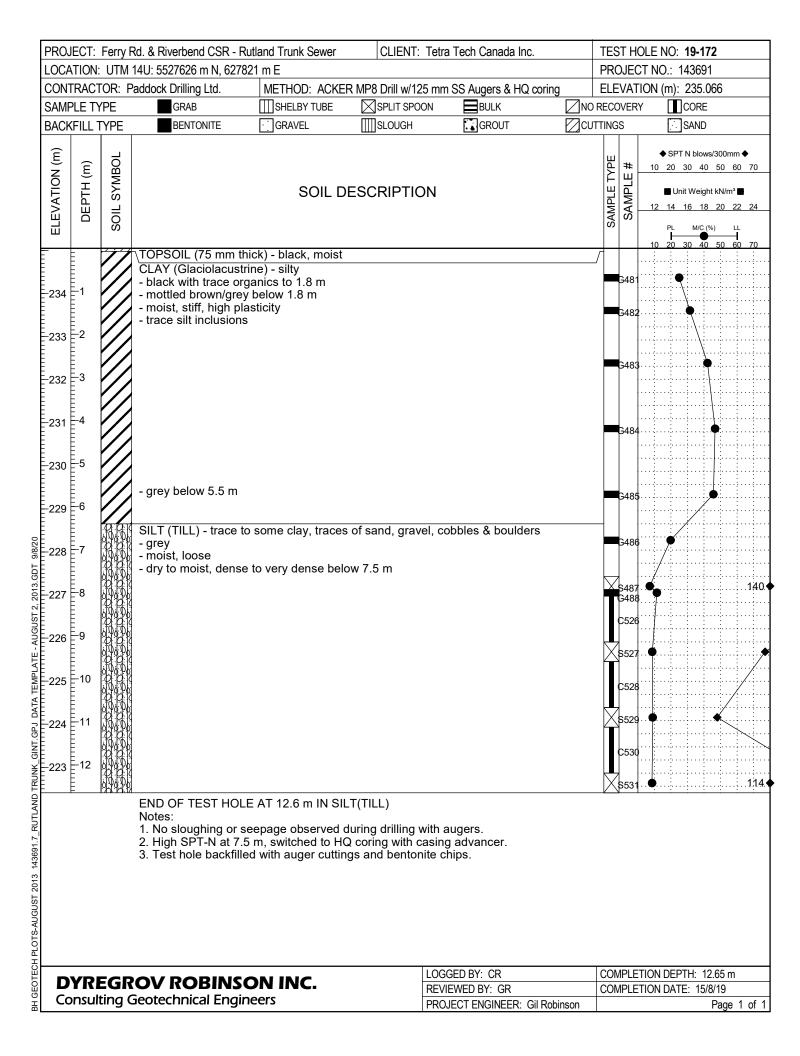


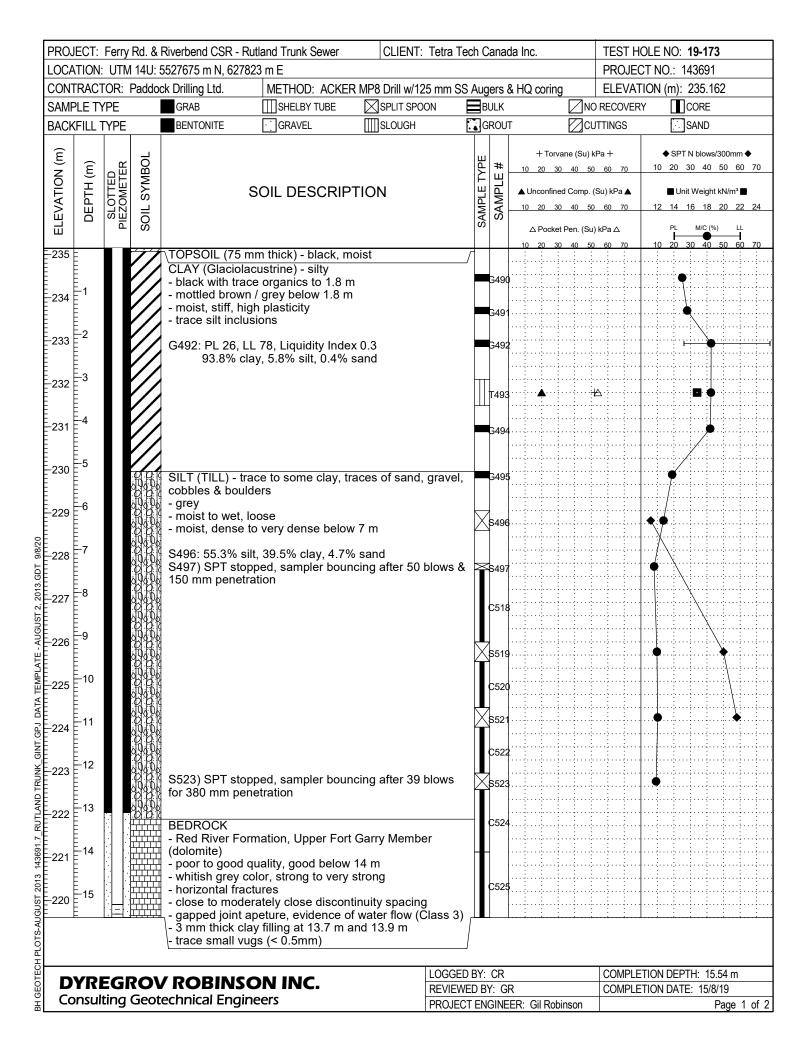




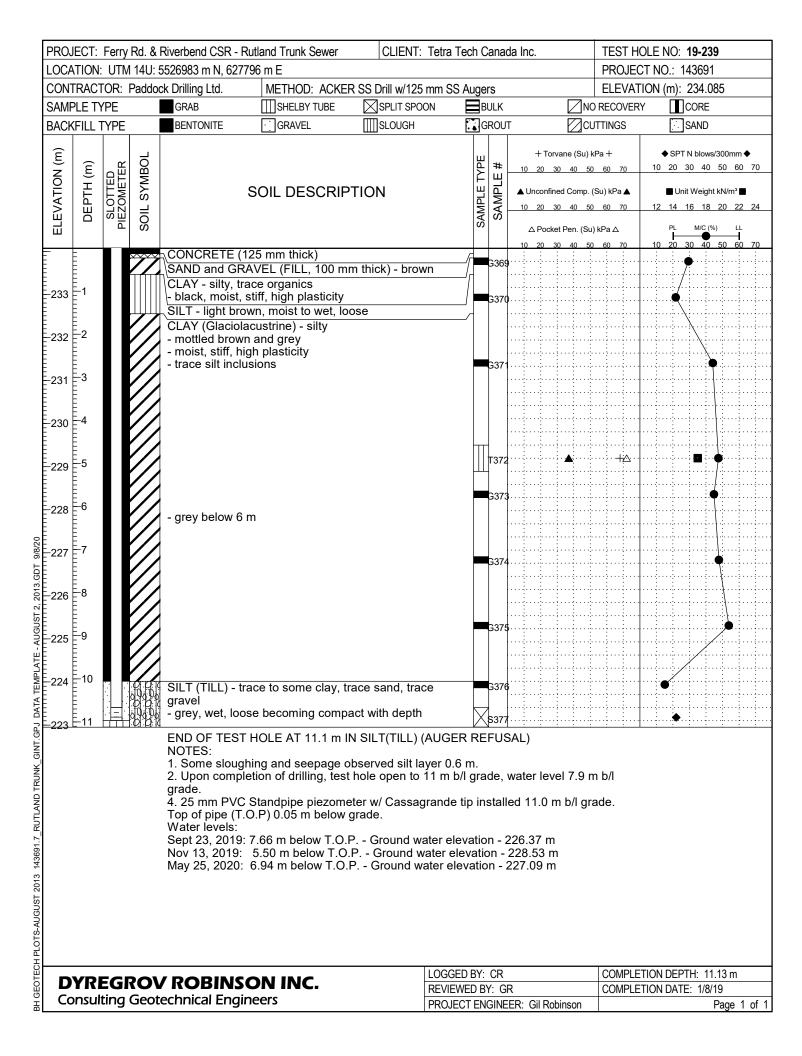


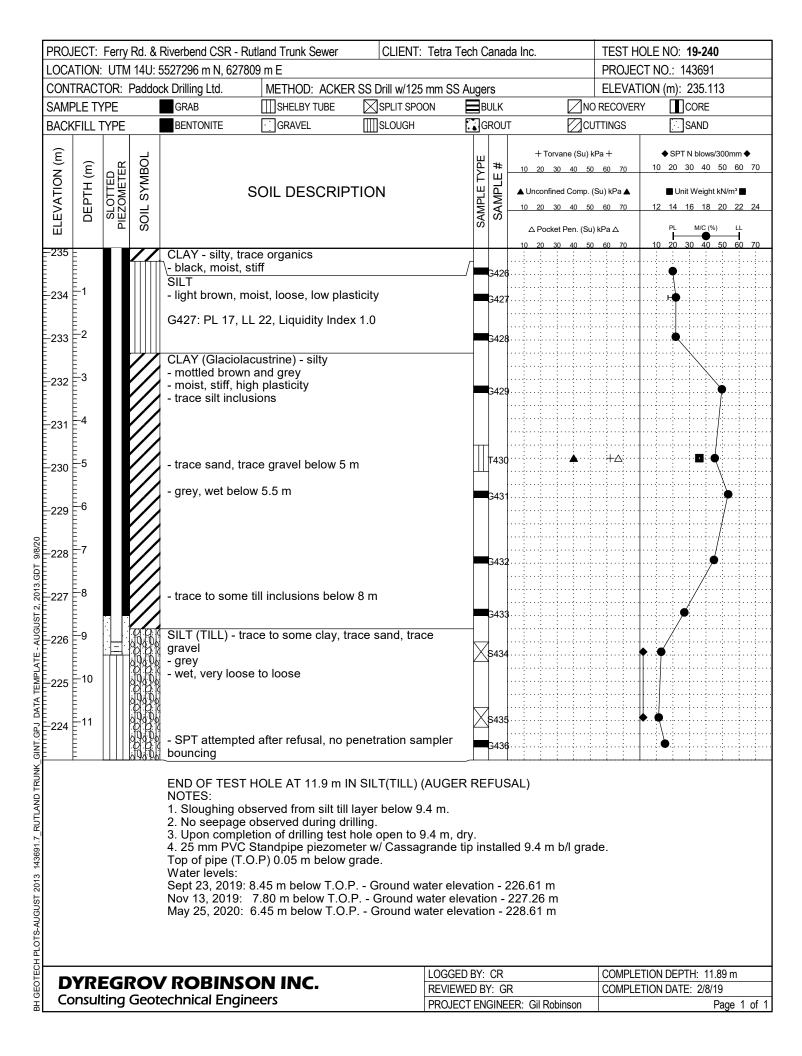


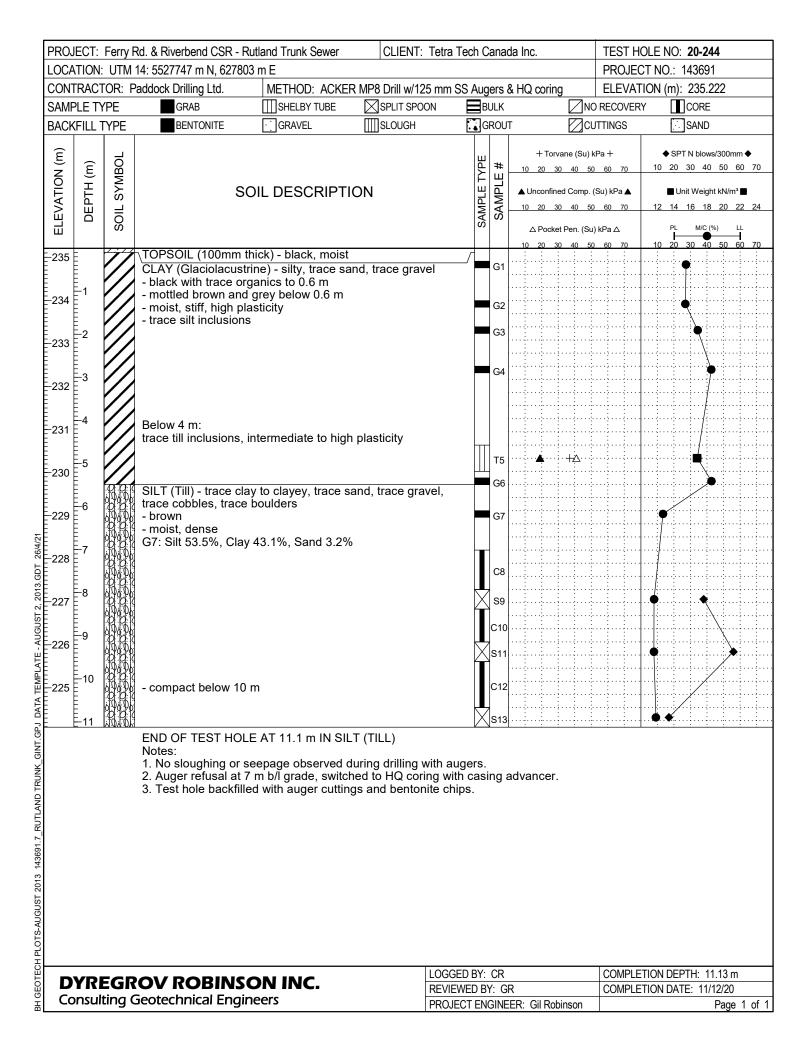


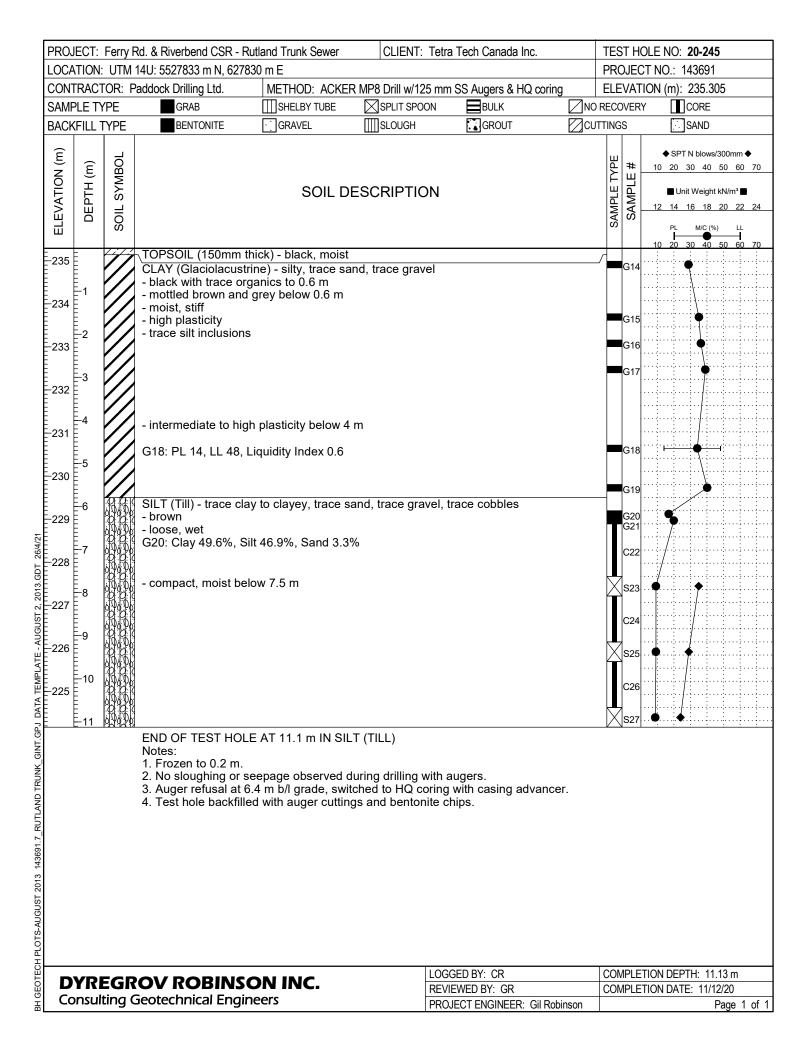


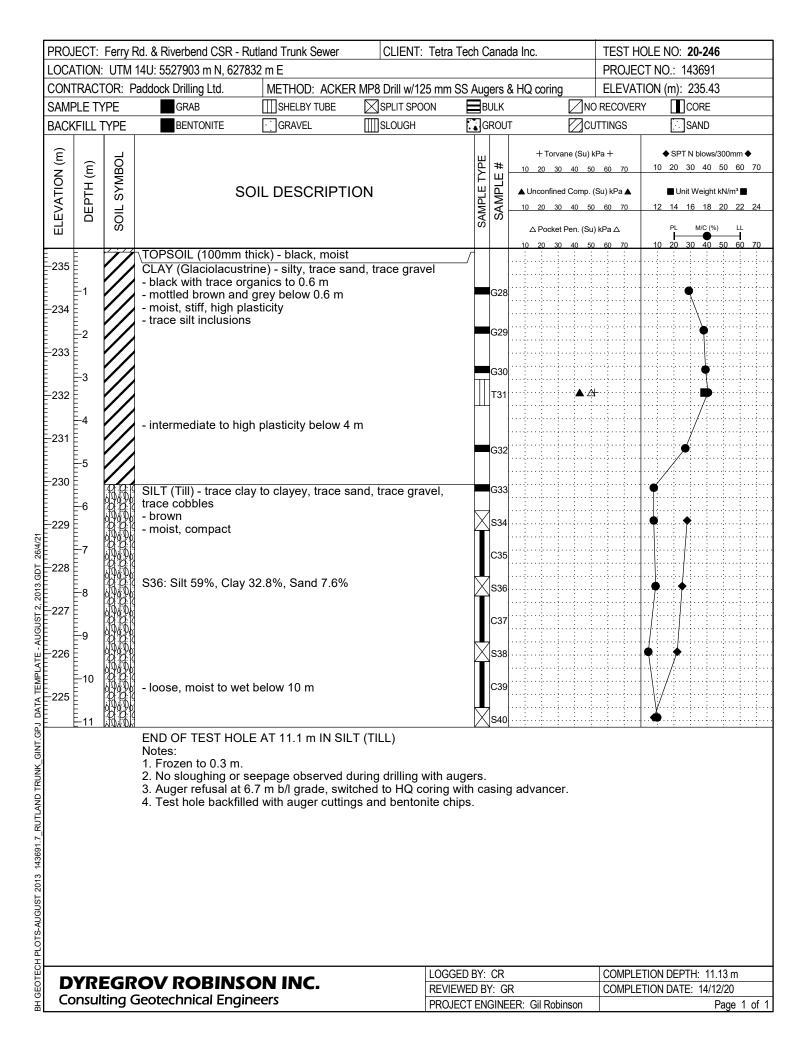
END OF TEST HOLE AT 15.5 m IN BEDROCK

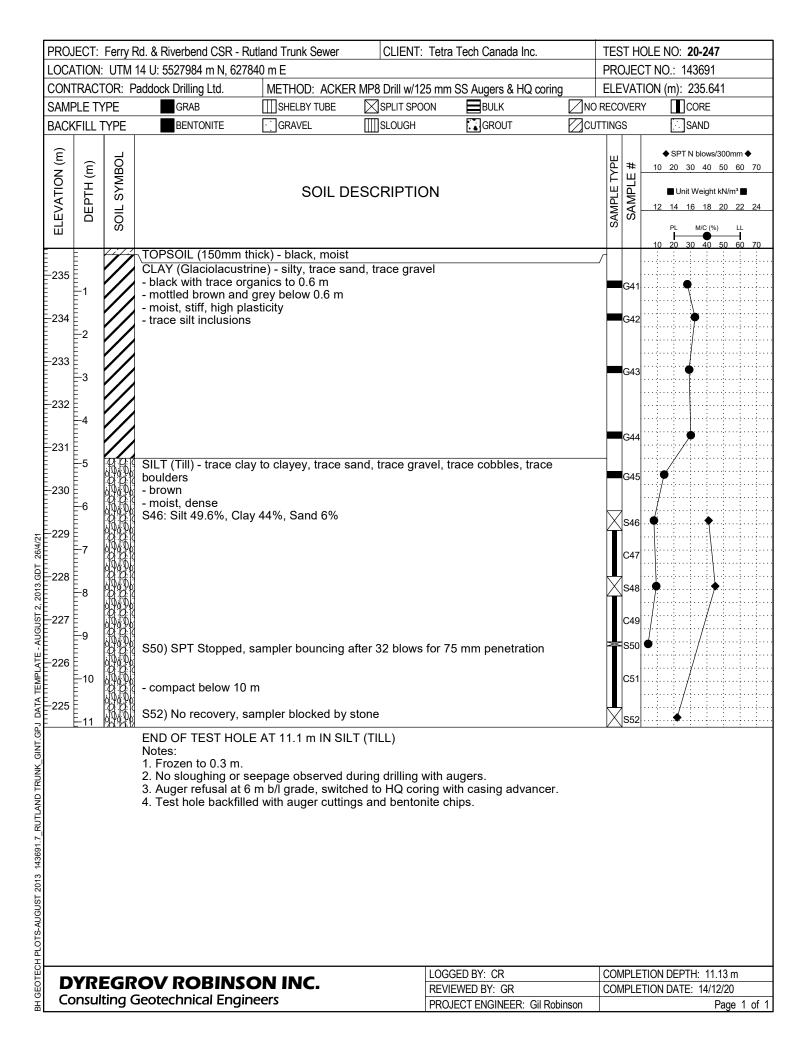

Notes:

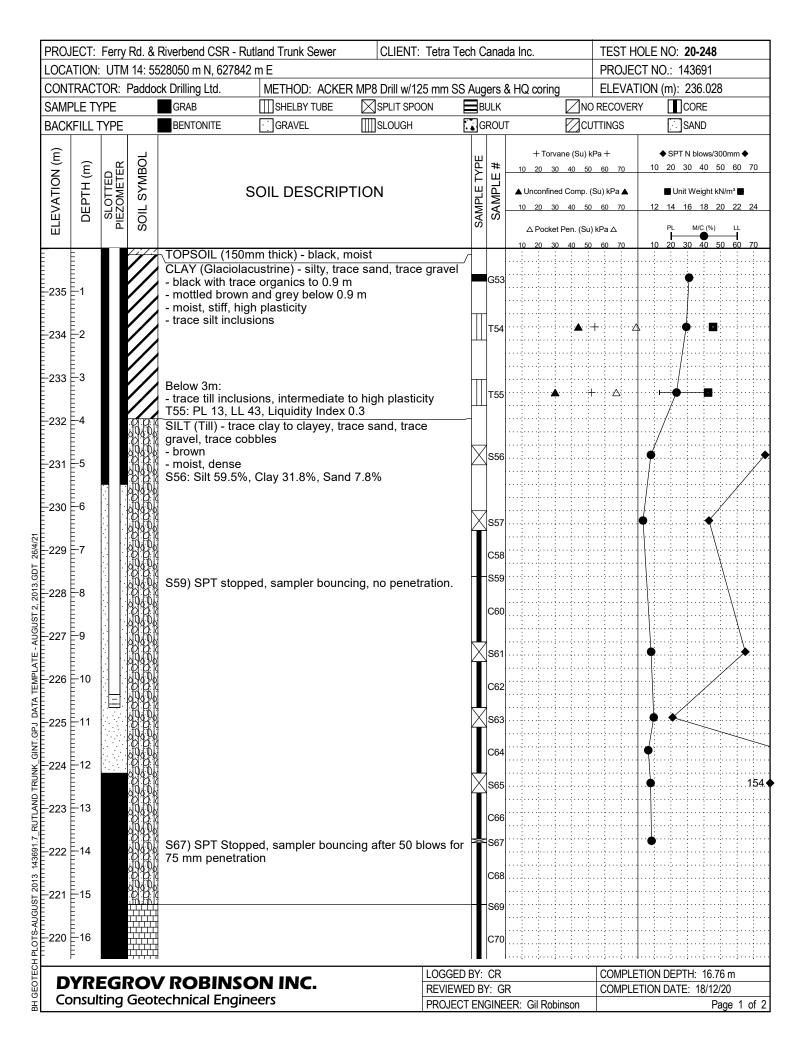

- 1. No sloughing or seepage observed during driling with augers.
- 2. Upon completion of drilling with augers, test hole open to 7.5 m b/l grade, dry.
- 3. Auger refusal occured at 7.5 m, switched to HQ coring with casing advancer.
- 4. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 15.5 m b/l grade. Top of pipe (T.O.P) 0.05 m below grade.


Water levels:


Sept 23, 2019: 8.43 m below T.O.P. - Ground water elevation - 226.68 m Nov 13, 2019: 6.44 m below T.O.P. - Ground water elevation - 228.67 m May 25, 2020: 7.65 m below T.O.P. - Ground water elevation - 227.46 m


SH GEOTECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 9/8/20





PROJ	ECT:	Ferry	Rd. &	Riverbend CSR -	- Rutland Trunk Sewer	С	LIENT: Tetra	Tech C	anac	da Inc.	TEST HO	DLE NO: 20-248	
LOCA	TION:	UTM	14: 55	528050 m N, 627	842 m E						PROJEC	CT NO.: 143691	
CONT	CONTRACTOR: Paddock Drilling Ltd. METHOD: ACKER MP8 Drill w/125 mm SS							SS Aug	S Augers & HQ coring ELEVATION (m): 236.028				
SAMF	PLE TY	/PE		GRAB	SHELBY TUBE	SF	PLIT SPOON	■BULK NO RECOVERY ■CORE				Y TCORE	
BACK	FILL 7	ГҮРЕ		BENTONITE	GRAVEL	∭ SL	_OUGH	G	ROU	г 🛮 🖾 СС	ITTINGS	SAND	
ELEVATION (m)	DEPTH (m)	SLOTTED PIEZOMETER	SOIL SYMBOL		SOIL DESCRIP	TION		SAMPLE TYPE	SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su) 10 20 30 40 50	60 70 Su) kPa ▲ 60 70	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70	
				7	Formation, Upper Fort	Garry I	Member						

END OF TEST HOLE AT 16.8 m IN BEDROCK

- fair quality, whitish grey color, strong to very strong - horizontal fractures, very close to moderately close

- gapped joint apeture, evidence of water flow (Class 3)

Notes:

1. Frozen to 0.6 m.

discontinuity spacing

continued from previous page

2. No sloughing or seepage observed during driling with augers.

3. Upon completion of drilling to auger refusal, test hole open to 6.5 m b/l grade, dry.

4. Auger refusal occured at 6.5 m, switched to HQ coring with casing advancer.

5. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 10.7 m b/l grade. Top of pipe (T.O.P) 0.05 m below grade.

Water levels:

Jan 7, 2021: 7.37 m b/l T.O.P. - Ground water elevation - 228.61 m

BH GEOTECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 26/4/2′

DYREGROV ROBINSON INC.Consulting Geotechnical Engineers

LOGGED BY: CR COMPLETION DEPTH: 16.76 m

REVIEWED BY: GR COMPLETION DATE: 18/12/20

PROJECT ENGINEER: Gil Robinson Page 2 of 2

	1.		DYREGROV ROBINSON INC.	PROJECT #	‡	TEST HOLE NO.			
	PRO	IECT:	CONSULTING GEOTECHNICAL ENGINEERS Ferry Road LDS		113324		12-11 LOGGED BY: RB		
			Rutland St. at Ness Ave.				VIEWED BY: AOD		
C			Paddock Drilling Ltd.				DRILL DATE: April 20, 2012		
	MET	HOD:	Acker Soil Sentry - 125 mm SSA			STATE OF THE PARTY OF	DEPTH (m): 12.2		
DEРТН (m)	ELEVATION (m)	SOIL SYMBOL	SOIL DESCRIPTION	PIEZOMETER	UNDRAINED SH STRENGTH Su UNCONF COMPRE TV TORVANI PP POCKET Y UNIT WE	INED SSIONE E PEN.	Test Results		
0.00	234.77	DP	0 - 0.17 m CONCRETE		8 01111 112		0.00		
0.50	234.27	\propto	0.17 - 0.46 m CLAY (Fill) - silty, trace sand, trace gravel - dark brown, stiff, moist, high plasticity 0.46 - 1.7 m SILT				0.50		
1.00	233.77		- tan				1.00		
1.50	233.27		- loose, wet				1.50		
2.00	232.77	1	1.7 - 2.7 m CLAY - silty - brown - firm to stiff, moist				2.00		
2.50	232.27	1	- high plasticity		1 -9,		2.50		
3.00	231.77		2.7 - 3.0 m SILT - tan, loose, wet 3.0 - 8.5 m CLAY - silty				3.00		
3.50	231.27	1	brownstiff, moist, high plasticity				3.50		
	230.77	1					4.00		
	230.27		- trace sand, trace gravel, grey below 4.6 m				4.50		
	229.77 229.27	M				kPa kPa	5.50		
18 F 18 18 18 18 18 18 18 18 18 18 18 18 18	228.77						6.00		
	228.27	1					6.50		
	227.77		- some till inclusions, wet, firm below 6.7 m	-	TV = 33	kPa	7.00		
	227.27	M					7.50		
8.00	226.77	1					8.00		
8.50	226.27	14	8.5 - 12.2 m SILT (Till) - some sand - trace gravel, trace cobbles				8.50		
9.00	225.77	S. C.	- light grey - loose, wet				9.00		
9.50	225.27	1					9.50		
10.00	224.77		- dense, dry below 10.0 m				10.00		
10.50	224.27	N					10.50		
11.00	223.77	17					11.00		
	223.27	1					11.50		
	222.77	中心	12.2 m END OF TEST HOLE AT 12.2 m IN SILT TILL				12.00		
12.50	222.27		Notes: 1. Squeezing below 7.0 m in clay layer.				12.50		
			 Seepage below 8.5 m in silt till layer. Standpipe piezometer with Casagrande tip installed to 9.4 m. 						
			4. Water level measured at 6.44 m below ground surface on May 10, 2012 and 8.46 m on June 12, 2012.	 - 					
			Test hole backfilled with sand to 7.0 m, bentonite chips to 5.8 m and auger cuttings to ground surface.						
			Piezometer protected with a flushmount cover.						
1									
V				W.					

				ROV ROBINSON INC. NG GEOTECHNICAL ENGINEERS	F	113324	#		TEST HOLE NO. 12-12
	PRO	JECT:	Ferry Road LD	S			T	LOGGED BY:	
	LOCA	TION:	Rutland St. at E	Bruce Ave.			RI	EVIEWED BY:	: AOD
CC			Paddock Drillin						: April 20, 2012
	MET	HOD:	Acker Soil Sent	try - 125 mm SSA	_		THE OWNER OF TAXABLE PARTY.	L DEPTH (m):	12.2
(E	(m) N	BOL				AINED S TRENGT Su			Test Results
DEPTH (m)	ELEVATION (m)	SOIL SYMBOL		SOIL DESCRIPTION	QU TV	UNCON COMPR TORVA	ESSIO		Moisture Content (%)
	ш	0)			PP	POCKE	T PEN.		
		1			Y	UNIT W	EIGHT	0.0 1	10.0 20.0 30.0 40.0 50.0 60.0 70
0.00	233.79		0 - 0.051 m	ASPHALT				0.00	+
			0.051 - 0.14 m	CONCRETE					
.50	233.29	XX	0.14 - 0.76 m	CLAY (Fill) - silty, trace sand, trace gravel - dark brown to black, stiff, moist, high plasticity				0.50	,
.00	232.79	YY	0.76 - 1.5 m	SILT				1.00	
.00	202.73		0.70 - 1.0111	- tan, loose, moist to wet				1.00	
50	232.29	, /	1.5 - 9.8 m	CLAY - silty	Qu =	83	kPa	1.50	
-		i r		- brown, mottled brown and grey below 2.4 m	TV =	106	kPa		
00	231.79			- very stiff, stiff below 2.1 m	PP =		kPa	2.00	
	224 20			- moist, high plasticity	γ =	20.8	kN/m		
50	231.29	IN						2.50	
00	230.79							3.00	
		1							
50	230.29	1						3.50	
		1			TV =		kPa		
00	229.79	1			PP =	37	kPa	4.00	
50	229.29							4.50	
ا	229.29							4.30	
00	228.79							5.00	
		1		- firm, trace sand, trace gravel below 5.2 m	TV =	29	kPa		
50	228.29	1			PP =	25	kPa	5.50	
	007.70								
00	227.79							6.00	
50	227.29	/						6.50	
	LL7.LU	1			TV =	35	kPa	0.50	
00	226.79				PP =	20	kPa	7.00	
50	226.29	1						7.50	
00	225.79	1		- soft below 7.6 m	1			0.00	
	223.79	11			TV=	20	kPa	8.00	
50	225.29				''		iti u	8.50	,
		1							
00	224.79	(1)						9.00	
UC	224.29	1.1	9.8 - 12.2 m	SILT (Till) - some sand, trace gravel				9.50	
00	223.79	"	0.0 - 12.2 III	- light grey				10.00	
-	0.70	37		- loose, wet	1 1 1			20.00	
50	223.29	1						10.50	
	-,	7				ecovery	below		
00	222.79	4/21		and adding help the control of	10.7 m			11.00	
50	222.29	13		- some cobbles below 11.3 m				11.50	
50	222.29	6 6						11.50	
00	221.79	A						12.00	Para Control of the C
	10		12.2 m	END OF TEST HOLE AT 12.2 m IN SILT TILL					
50	221.29			Notes: 1. Squeezing below 5.2 m in clay layer. 2. Seepage below 7.6 m from clay layer.				12.50	
				Water level at 4.9 m 5 minutes after drilling. 3. No soil recovery below 10.7 m. 4. Test hole backfilled with auger cuttings, capped with concrete core and cold patch.					

			DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS		OJECT : 13324	#		TES	Γ HOLE 12-13	NO.	
	DDO	IECT.	Ferry Road LDS		10021	1	OGGED BY:	RB			
							IEWED BY:				
	LOCA	HON:	St. James Collegiate				RILL DATE:		12		
CC			Paddock Drilling Ltd.								
	MET	HOD:	Acker MP8 - 125 mm SSA			The Real Property lies and the Persons lies and the	DEPTH (m):	10.7		377837433333334334434	*******************
(E	N (m)	BOL			RENGTI Su	1		Test R		A (0/)	
DЕРТН (m)	ELEVATION (m)	SOIL SYMBOL	SOIL DESCRIPTION	QU UNCONFINED COMPRESSION TV TORVANE PP POCKET PEN.			1				
				γι	JNIT WE	IGHT		0.0 20.0	30.0 40	.0 50.0	60.0 70
0.00	232.81	55	0 - 0.3 m CLAY (Topsoil) - silty, trace sand				0.00	1			A
) (- black, stiff, moist, high plasticity					/			
0.50	232.31		0.3 - 1.2 m SILT - some sand				0.50	•			
			- brown, loose, moist								
1.00	231.81		- clayey below 0.6 m	_			1.00	,	\		
		. \	1.2 - 10.7 m CLAY - silty								
1.50	231.31	VI,	- mottled brown and grey				1.50				
			- firm, moist, high plasiticity				2.00				
2.00	230.81	11	- trace silt inclusions	DD -	27	kDa.	2.00	***************************************		1	
		11	- trace gypsum inclusions	PP =	37	kPa	250			7	
2.50	230.31	1					2.50				
		1		0	00	kDa.	2.00				
3.00	229.81	,	- grey below 3.0 m	Qu =	28	kPa	3.00				
		1		TV =	56	kPa	3.50				
3.50	229.31	X		PP =	89	kPa	3.50			7	
				γ =	16.9	kN/m³	4.00				
4.00	228.81						4.00				
		11					4.50	-			
4.50	228.31	11					4.50				
		X					5.00				
5.00	227.81			T) / -	07	LD.	5.00				
	104000000000000000000000000000000000000			TV =	37	kPa	5.50			•	
5.50	227.31	/		PP =	25	kPa	5.50				
							6.00				
6.00	226.81	1					6.00				
		V									
6.50	226.31						6.50				
		1/		TV =	26	kPa					
7.00	225.81	1					7.00			1	
		1					7.50				
7.50	225.31	IN					7.50			T 1	
			- trace till inclusions, trace sand, trace gravel				0.00				
8.00	224.81		below 7.6 m	TV =	25	kPa	8.00				
0.5-	0015			'V-	23	NEd	8.50			•	
8.50	224.31	I					0.30				
0.00	000 0	11	wet helew 0.0 m				9.00				
9.00	223.81	X	- wet below 9.0 m				3.00				
0.50	202.01						9.50	ļ			
ə.50	223.31	1									
0.00	222.04	11					10.00				9
U.UU	222.81										
0 50	222.31	/					10.50			ļ	
0.50	222.31		10.7 m END OF TEST HOLE AT 10.7 m IN CLAY								
11.00	221.81	1	Notes:				11.00	1		L	
1.00	221.01		Squeezing below 6.7 m in clay layer. Test hole backfilled with auger cuttings.								

APPENDIX C

Glacial Till and Bedrock Core Sample Photographs
(Figures C1 to C13)
&
Bedrock Core Sample Summary (Table C1)

C562) Core Depth: 25 – 30 ft (7.6 – 9.1 m) – 8% recovery C564) Core Depth: 30.8 – 35 ft (9.3 – 10.7 m) – 45% recovery C566) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 33% recovery

		BINSON INC. INICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-166
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	

November 2019

143691.7

NTS

AA

GR

C556) Core Depth: 25 – 30 ft (7.6 – 9.1 m) – 18% recovery C558) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) – 33% recovery C560) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 57% recovery

DYREGROV ROBINSON INC.
CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-167

SCALE: NTS

MADE BY:

CHKD BY: GR PROJECT NO. 143691.7

DATE: November 2019

Sample submitted for CAI and petrographic analysis

THIP-168 Rufferd Aug 120, 2018

C550) Core Depth: 25 – 30 ft (7.6 – 9.1 m) - 30% recovery including granite cobble

C552) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) – 28% recovery C554) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 48% recovery

		BINSON INC.			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-168	
SCALE: NTS	MADE BY: AA	CHKD BY: GR	PROJECT NO. 143691.7	DATE: November 2019		FIGURE C3

C544) Core Depth: 26 – 30 ft (7.9 – 9.1 m) – 20% recovery C546) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) – 12% recovery C548) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 43% recovery

		BINSON INC.			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-169
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	FIGURE C4
NTS	AA	GR	143691.7	November 2019	FIGURE C4

C538) Core Depth: 23 – 30 ft (7.0 – 9.1 m) - 20% recovery including limestone cobble / boulder

C540) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - No sample recovery C542) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - No sample recovery

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-170			BINSON INC. INICAL ENGINEERS		
FIGURE CS	DATE: November 2019	PROJECT NO. 143691.7	CHKD BY: GR	MADE BY: AA	SCALE: NTS

C532) Core Depth: 26 – 30 ft (7.9 – 9.1 m) - 25% recovery C534) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 24% recovery C536) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 40% recovery

DYREGROV ROBINSON I	NC.
CONSULTING GEOTECHNICAL ENGINE	EEDC

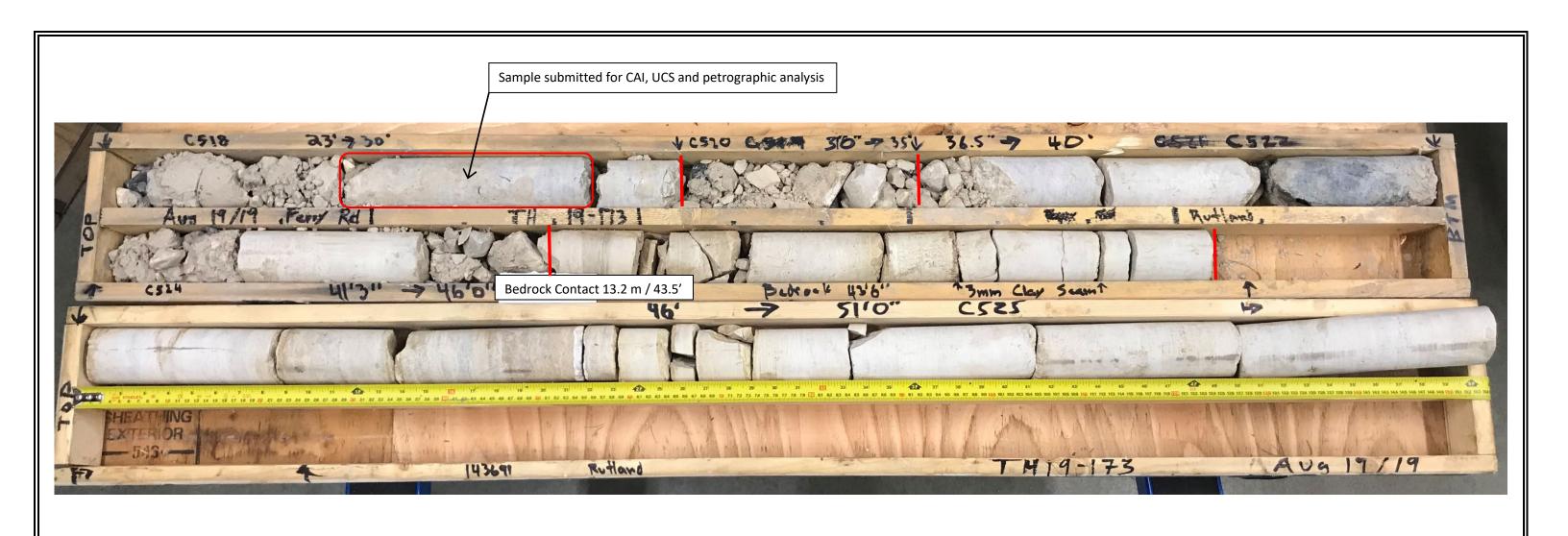
CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer **Glacial Till Core Photograph – Test Hole 19-171**

SCALE: MADE BY: CHKD BY: PROJECT NO. NTS AA GR 143691.7

November 2019

DATE:



C526) Core Depth: 26 – 30 ft (7.9 – 9.1 m) - 16% recovery

C528) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 76% recovery including limestone cobble / boulder

C530) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 23% recovery

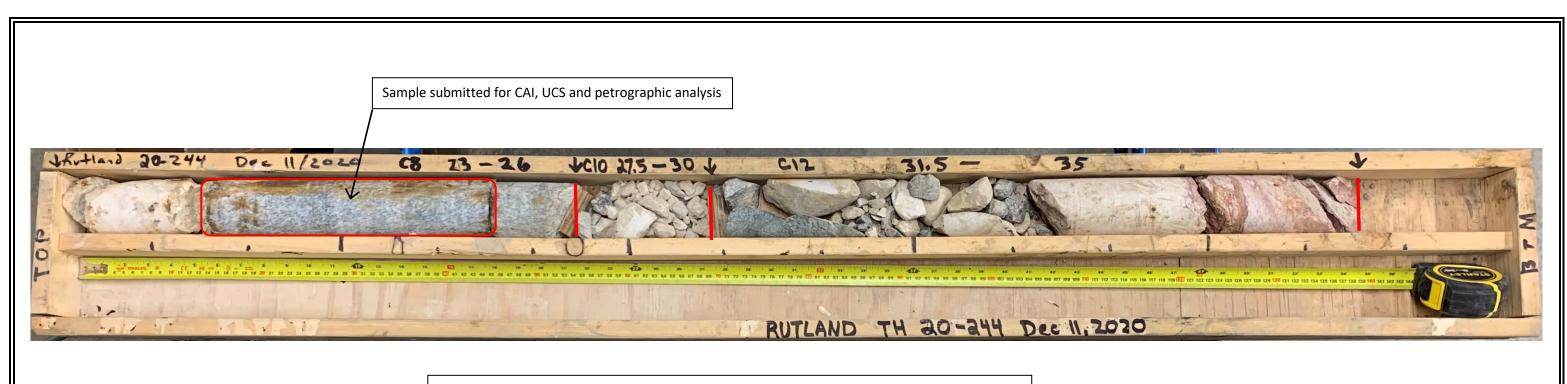
		BINSON INC. HNICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-172
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	FIGURE C
NTS	AA	GR	143691.7	November 2019	FIGURE C.

C518) Core Depth: 23 – 30 ft (7.0 – 9.1 m) - 31% recovery including limestone boulder

C520) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 24% recovery

C522) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 57% recovery including limestone & granite cobbles

C524) Core Depth: 41.3 - 43.5 ft (12.6 - 13.2 m) - 76% recovery including limestone cobble C524) Core Depth: 43.5 - 46 ft (13.2 - 14.0m) - bedrock % Recovered = 100, RQD = 87% C525) Core Depth: 46 - 51 ft (14.0 - 15.5 m) - bedrock % Recovered = 100, RQD = 87%


CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Bedrock Core Photograph – Test Hole 19-173

SCALE: NTS MADE BY:

CHKD BY: GR PROJECT NO. 143691.7

DATE: December 2020

C8) Core Depth: 23 – 26 ft (7.0 – 7.9 m) - 60% recovery including granite cobble

C10) Core Depth: 27.5 – 30 ft (8.4 – 9.1 m) - 20% recovery

C12) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 62% recovery including limestone cobble

	Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 20-244			BINSON INC. HNICAL ENGINEERS			
1	FIGURE C9		DATE:	PROJECT NO. 143691.7	CHKD BY:	MADE BY:	SCALE: NTS

C22) Core Depth: 21 – 25 ft (6.4 – 7.6 m) - 52% recovery including limestone & granite cobbles

C24) Core Depth: 26.5 - 30 ft (8.1 - 9.1 m) - 38% recovery C26) Core Depth: 31.5 - 35 ft (9.6 - 10.7 m) - 31% recovery

DYREGROV ROBINSON INC.

CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 20-245

SCALE: NTS MADE BY: AA CHKD BY: GR PROJECT NO. 143691.7

DATE: December 2020

FIGURE C10

C35) Core Depth: 21.5 – 25 ft (6.5 – 7.6 m) - 43% recovery C37) Core Depth: 26.5 – 30 ft (8.1 – 9.1 m) - 12% recovery C39) Core Depth: 31.5 – 35 ft (9.6 – 10.7 m) - 24% recovery

DYREGROV ROBINSON INC	l / =

CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 20-246

 SCALE:
 MADE BY:
 CHKD BY:
 PROJECT NO.
 DATE:

 NTS
 AA
 GR
 143691.7
 December 2020

FIGURE C11

C47) Core Depth: 21.5 – 25 ft (6.5 – 7.6 m) - 15% recovery C49) Core Depth: 26.5 – 30 ft (8.1 – 9.1 m) - 33% recovery

C51) Core Depth: 30.3 – 35 ft (9.1 – 10.7 m) - 49% recovery including limestone

		BINSON INC. HNICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 20-247	
SCALE: NTS	MADE BY: AA	CHKD BY: GR	PROJECT NO. 143691.7	DATE: December 2020		FIGURE C12

C58) Core Depth: 21.5 – 25 ft (6.6 – 7.6 m) - 38% recovery C60) Core Depth: 25 – 30 ft (7.6 – 9.1 m) - 42% recovery

C62) Core Depth: 31.5 – 35 ft (9.6 – 10.7 m) - 0% recovery

C64) Core Depth: 36.5 – 40 ft (11.2 – 12.2 m) - 69% recovery

C66) Core Depth: 41.5 – 45 ft (12.7 – 13.7 m) - 33% recovery

C68) Core Depth: 45.3 – 50 ft (13.8 – 15.2 m) - 58% recovery

C70) Core Depth: 50 – 55 ft (15.2 – 16.8 m) – bedrock, 100 % recovery, RQD = 68%

DYREGROV ROBINSON INC.

CONSULTING GEOTECHNICAL ENGINEERS

Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till & Bedrock Core Photograph – Test Hole 20-248

 SCALE:
 MADE BY:
 CHKD BY:
 PROJECT NO.
 DATE:

 NTS
 AA
 GR
 143691.7
 December 2020

Table C1) Bedrock Core Sample Summary

			C	oring Details		_	Core Sample		%Recovery	RQD
Test Hole	Sample #	Dept	h (m)	Dept	h (ft)	Length	Lrecovered	L > 4"		
		from	to	from	to	(inches)	(inches)	(inches)		
19-173	C524	13.26	14.02	43.50	46.00	30	28	9	93%	30%
19-173	C525	14.02	15.54	46.00	51.00	60	60	52	100%	87%
20-248	C70	15.24	16.76	50.00	55.00	60	60	41	100%	68%
20-248										

APPENDIX D

Laboratory Testing Results

Tables D1 to D4
Moisture Contents
Strength and Unit Weight Testing (Shelby Tube Samples)
Atterberg Limits
Particle Size Distribution
Soil Chemistry (Bureau Veritas Laboratories)
Swell Testing (Wood PLC)

Table D1) Summary of Plastic Limits, Liquid Limits, Plasticity Indices and Liquidity Indices (ASTM D4318)

Test Hole	Sample		Soil Type	In-Situ Moisture	Plastic Limit	Liquid Limit	Plasticity Index	Liquidity Index	Classification (see plasticity chart)
	No.	Depth (m)		(%)	(%)	(%)			, , ,
19-148	T296	3.4	Clay (Alluvium)	33	23	40	17	0.6	CI
19-149	G289	7.3	Clay (Alluvium)	33	16	34	18	0.9	Cl
19-150	G277	4.6	Clay (Alluvium)	22	15	37	22	0.3	Cl
19-151	T269	5.0	Clay (Alluvium)	33	20	46	26	0.5	CI
19-151	G272	8.8	Clay (Alluvium)	34	20	33	13	1.1	Cl
19-152	G240	4.3	Clay (Glaciolacustrine)	53	32	91	59	0.4	СН
19-156	T326	6.5	Clay (Glaciolacustrine)	47	24	79	55	0.4	CH
19-157	T337	9.5	Clay (Glaciolacustrine)	53	18	55	37	0.9	CH
19-162	T394	7.9	Clay (Glaciolacustrine)	46	23	70	47	0.5	CH
19-166	G439	4.3	Clay (Glaciolacustrine)	47	29	78	49	0.4	CH
19-173	G492	2.3	Clay (Glaciolacustrine)	43	26	78	52	0.3	CH
19-240	G427	1.2	Silt	22	17	22	5	1.0	ML
20-245	G18	4.6	Silty Clay (Glaciolacustrine)	34	14	48	34	0.6	Cl
20-248	T55	3.4	Silty Clay (Glaciolacustrine)	23	13	43	30	0.3	Cl

Refer to Lab Testing Reports in Appendix D

City of Winnipeg - Ferry Road Riverbend CSR - Rutland Trunk PLASTICITY CHART

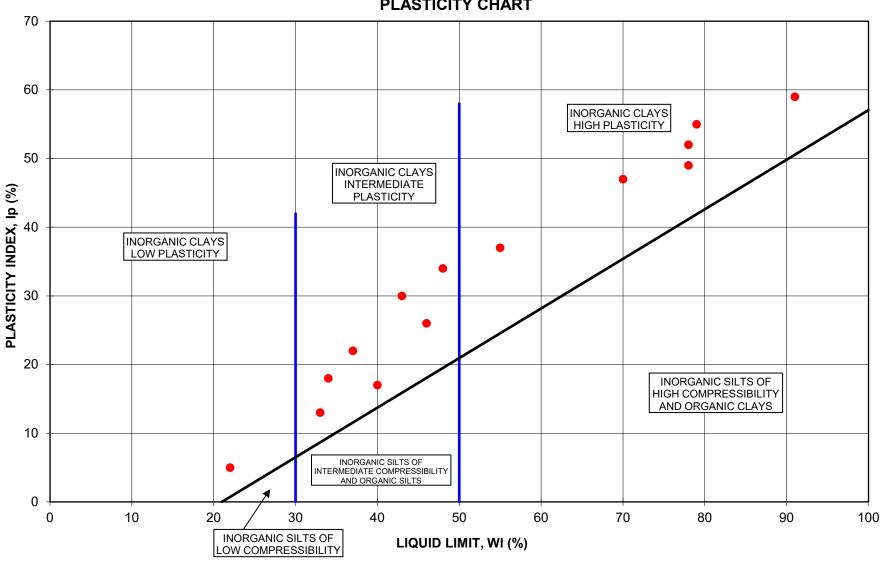


Table D2) Summary of Particle Size Distribution Tests (ASTM D422)

Test Hole	Sample		Soil Type	Clay	Silt	Sand	Classification (see plasticity chart)
	No.	Depth (m)		(%)	(%)	(%)	(coo placed by charty
19-148	T296	3.4	Clay (Alluvium)	46.1	52.7	1.2	Cl
19-148	G302	8.5	Glacial Till	33.7	60.2	5.8	n/a
19-149	G289	7.3	Clay (Alluvium)	44.2	50.1	5.6	Cl
19-150	G277	4.6	Clay (Alluvium)	53.3	40.3	6.4	Cl
19-151	T269	5.0	Clay (Alluvium)	50.0	49.3	0.7	CI
19-151	G272	8.8	Clay (Alluvium)	47.7	50.0	2.3	Cl
19-152	G240	4.3	Clay (Glaciolacustrine)	99.9	0.0	0.1	CH
19-156	T326	6.5	Clay (Glaciolacustrine)	92.1	7.8	0.1	CH
19-157	T337	9.5	Clay (Glaciolacustrine)	51.9	36.9	11.2	CH
19-161	G386	9.8	Glacial Till	44.7	50.9	4.1	n/a
19-162	T394	7.9	Clay (Glaciolacustrine)	89.8	9.5	0.6	CH
19-166	G439	4.3	Clay (Glaciolacustrine)	90.9	8.8	0.3	CH
19-166	S443	9.3	Glacial Till	45.5	49.1	5.0	n/a
19-173	G492	2.3	Clay (Glaciolacustrine)	93.8	5.8	0.4	CH
19-173	S496	6.3	Glacial Till	39.5	55.3	4.7	n/a
20-244	G7	6.2	Glacial Till	43.1	53.5	3.2	n/a
20-245	G20	6.2	Glacial Till	49.6	46.9	3.3	n/a
20-246	S36	7.8	Glacial Till	32.8	59.0	7.6	n/a
20-247	S46	6.3	Glacial Till	44.0	49.6	6.0	n/a
20-248	S56	4.8	Glacial Till	31.8	59.5	7.8	n/a

Refer to Lab Testing Report in Appendix D

Table D3) Summary of Soil Chemistry Test Results

Test Hole	Soil S	Sample	Soil Type	Calculated Sulphate (SO4)	Soluble Sulphate (SO4)	Soluble Chloride (CL)	Soluble Conductivity	Resistivity (calculated)	рН
	No.	Depth (m)		%	mg/L	mg/L	dS/m	ohm-m	
19-149	G286	2.7	Clay (Alluvium)	0.017	300	30	1.2	8.7	7.55
19-151	G267	2.2	Silt (Alluvium)	0.0010	21	18	0.29	35	7.81
19-153	G248	4.1	Clay (Glaciolacustrine)	0.34	3200	490	6.1	1.6	7.59
19-161	G383	5.7	Clay (Glaciolacustrine)	0.20	2100	220	3.9	2.6	7.68
19-167	G456	5.7	Clay (Glaciolacustrine)	0.13	1500	17	2.6	3.8	7.81
19-172	G486	6.6	Glacial Till	0.064	1500	850	5.3	1.9	7.83
20-244	T5	4.9	Clay (Glaciolacustrine)	0.11	1500	470	3.7	2.7	7.89
20-248	S57	6.4	Glacial Till	0.006	280	150	1.2	8.5	8.29

Refer to Lab Testing Reports in Appendix D

Table D4) Summary of Swell Testing (ASTM D4546-14 Method A)

Test Hole	San	nple	Soil Type	Swell	Est. Swell
163111016	Juli	p.o	Con Type	Owen	Pressure
	No.	Depth (m)		%	kPa
19-156	T326	6.4	Clay (Glaciolacustrine)	2.2	68
19-162	T394	7.9	Clay (Glaciolacustrine)	1.6	40
19-173	T493	3.4	Clay (Glaciolacustrine)	1.3	41

Refer to Lab Testing Report in Appendix D

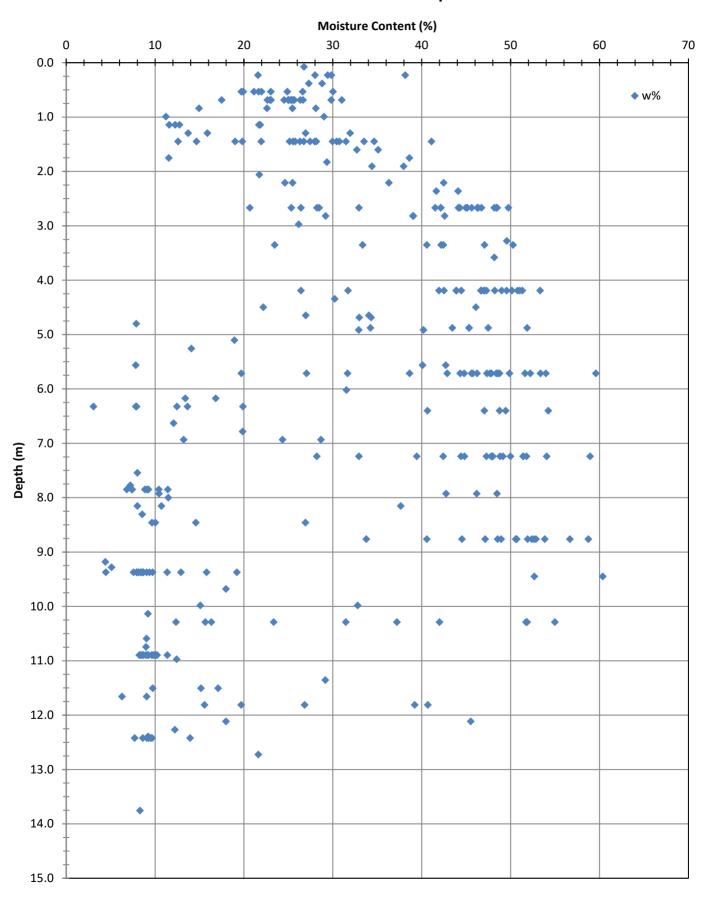
SOIL SAMPLE MOISTURE CONTENTS

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-147	G304	0.7	227.93	25.7
19-147	G305	1.4	227.17	19.0
19-147 19-147	G306 G307	2.7 4.2	225.95 224.43	26.4 26.4
19-147	G308	4.2 5.7	222.91	19.7
19-147	S309	6.3	222.30	12.5
19-148	G293	0.7	229.88	25.3
19-148	G294	1.4	229.12	19.8
19-148	G295	2.2	228.36	24.6
19-148 19-148	T296	3.4	227.22	33.3
19-148	G297 G298	4.2 5.7	226.38	31.7 27.0
19-148	G299	6.6	224.86 223.94	12.1
19-148	G300	7.2	223.33	51.4
19-148	G301	7.8	222.72	11.4
19-148	G302	8.5	222.11	9.6
19-148	S303	9.4	221.20	15.8
19-149	G284	0.7	230.32	23.0
19-149 19-149	G285 G286	1.4 2.7	229.56	26.3 20.7
19-149	T287A	4.7	228.34 226.32	33.0
19-149	T287B	4.7	226.32	40.2
19-149	G288	5.7	225.30	38.6
19-149	G289	7.2	223.77	32.9
19-149	G290	8.8	222.25	40.6
19-149	G291	9.4	221.64	11.4
10 450	0074	~ ~	004.04	05.0
19-150 19-150	G274 G275	0.7 1.1	231.21 230.76	25.3 12.3
19-150	G275 G276	2.7	230.76	28.2
19-150	G277	4.5	227.40	22.2
19-150	G278	6.0	225.88	31.5
19-150	G279	7.2	224.66	28.2
19-150	G280	8.2	223.75	37.6
19-150	G281	8.5	223.44	14.6
19-150	G282	10.0	221.92	32.8
19-150	G283	10.3	221.61	16.3
19-151	G265	 ∩ 7	230.35	17.5
19-151	G266	0.7 1.4	229.59	25.1
19-151	G267	2.2	228.83	25.5
19-151	G268	3.0	228.07	26.1
19-151	T269A	4.7	226.35	34.3
19-151	T269B	4.9	226.13	32.9
19-151	G270	5.7	225.33	31.6
19-151 19-151	G271	7.2	223.80	39.4
19-151	G272 G273	8.8 10.3	222.28 220.75	33.8 15.6
19-101	0213	10.5	220.73	13.0
19-152	G237	0.7	232.00	22.6
19-152	G238	1.4	231.24	34.6
19-152	G239	2.7	230.02	45.6
19-152	G240	4.2	228.50	53.3
19-152	T241	6.4	226.29	48.8
19-152	G242	7.2	225.45	58.9
19-152 19-152	G243 G244	8.8 10.3	223.93	58.7 51.9
10-104	U244	10.3	222.40	31.8
19-153	G245	0.7	231.86	24.5
19-153	G246	1.4	231.10	33.5
19-153	G247	2.7	229.88	45.1
19-153	G248	4.2	228.36	49.5
19-153	G249	5.7	226.84	47.8
19-153	G250	7.2	225.31	51.8
19-153 19-153	T251 G252	9.4 10.3	223.10 222.26	60.4 51.7
19-153	G252 G253	11.8	222.26	15.6
10-100	<u> </u>	11.0		10.0
19-154	G254	0.1	232.56	26.7
19-154	G255	0.8	231.80	22.6
19-154	G256	1.4	231.19	26.7
19-154	G257	2.7	229.97	49.7
19-154	G258	4.2	228.45	49.0
19-154	G259	5.7	226.93	48.4
19-154 19-154	G260	7.2	225.40	51.4 50.6
19-154 19-154	G261 G262	8.8 10.3	223.88 222.35	50.6
19-11-12-	G263	11.8	220.83	39.2
19-154	U			
	G264	12.7	219.91	21.6
19-154		12.7	219.91	21.6
19-154		12.7	219.91	21.6

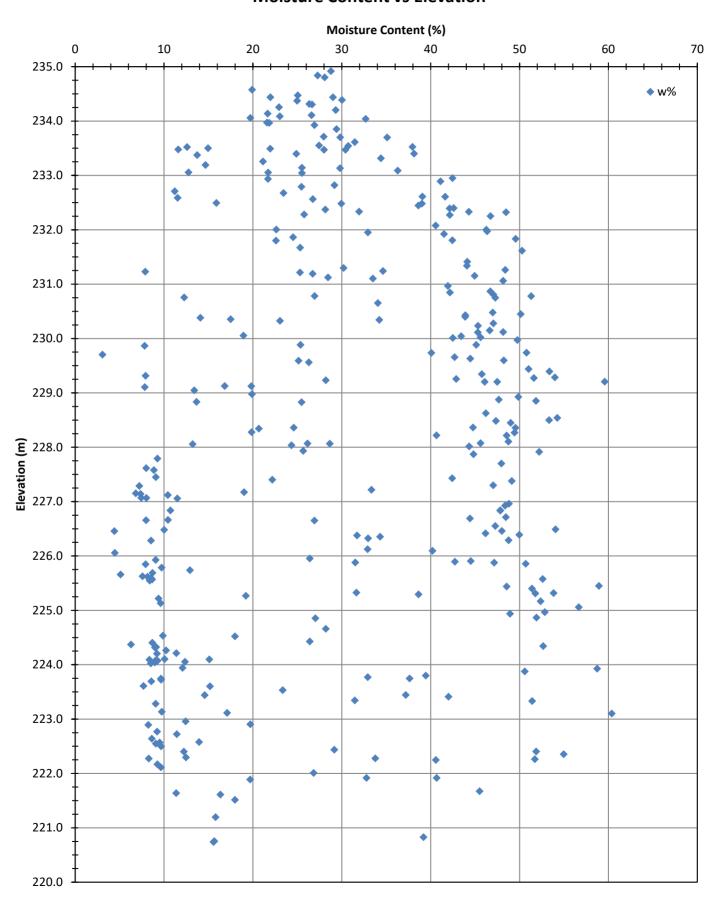
Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-155	G311	0.2	233.40	38.1
19-155	G312	0.8	232.79	25.5
19-155 19-155	G313 T314	1.3 3.4	232.33 230.28	31.9 47.1
19-155	G315	4.2	229.44	51.0
19-155	G316	5.7	227.92	52.2
19-155	G317	7.2	226.39	50.0
19-155	G318	8.8	224.87	51.9
19-155 19-155	G319 G320	10.3 12.1	223.34 221.51	31.5 18.0
19-100	0020	12.1	221.01	10.0
19-156	G321	0.2	233.47	28.0
19-156	G322	1.0	232.71	11.2
19-156	G323	2.4	231.34	44.1
19-156 19-156	G324 G325	3.6 4.5	230.12 229.20	48.2 46.1
19-156	T326	6.4	227.30	47.0
19-156	G327	7.2	226.46	48.0
19-156	G328	8.8	224.94	48.9
19-156	G329	10.3	223.41	42.0
19-156	G330	11.8	221.89	19.7
19-157	G331	0.5	233.26	21.1
19-157	G332	1.3	232.49	15.9
19-157	G333	2.7	231.12	28.5
19-157	G334	4.2	229.60	48.2
19-157 19-157	G335 G336	5.7 7.2	228.08 226.55	45.6 47.3
19-157	T337	9.4	224.34	52.7
19-157	S338	10.9	222.89	8.2
19-157	G339	11.4	222.44	29.1
19-157	G340	12.1	221.67	45.5
19-158	G341	0.7	233.04	25.5
19-158	G342	1.4	232.28	25.8
19-158	G343	2.7	231.06	48.2
19-158	T344	4.9	228.85	51.8
19-158	G345	5.7	228.02	44.3
19-158 19-158	G346 G347	7.2 8.8	226.49 224.97	54.0 52.8
19-158	G348	10.3	223.44	37.2
19-158	G349	11.8	221.92	40.7
19-159 19-159	G350 G351	0.7 1.4	233.13 232.37	29.8 28.1
19-159	G352	2.7	232.37	44.9
19-159	G353	4.2	229.63	44.4
19-159	G354	5.7	228.11	48.8
19-159	T355	7.9	225.90	42.7
19-159 19-159	G356 G357	8.8	225.06	56.7 23.4
19-159	G358	10.3 11.8	223.53 222.01	26.8
19-160	G359	0.2	233.70	29.8
19-160	G360	0.5	233.40	24.9
19-160 19-160	G361 G362	1.4 2.7	232.48 231.26	30.0 48.4
19-160	G362 G363	4.2	231.26	50.8
19-160	G364	5.7	228.22	48.6
19-160	G365	7.2	226.69	44.4
19-160	G366	8.8	225.17	52.4
19-160	T367	11.0	222.96	12.4
19-161	G378	0.2	233.97	21.6
19-161	G379	1.1	233.06	12.7
19-161	G380	1.8	232.45	38.6
19-161	T381	3.4	230.85	42.2
19-161 19-161	G382 G383	4.2 5.7	230.01 228.49	42.5 47.3
19-161	G384	7.2	226.49	48.8
19-161	G385	8.8	225.44	48.5
19-161	G386	9.7	224.52	18.0
10 160	C300	0.0	222 50	15.0
19-162 19-162	G388 G389	0.8 1.4	233.50 232.89	15.0 41.1
19-162	G390	1.4 1.8	232.59	11.5
19-162	G391	2.7	231.67	25.3
19-162	G392	4.2	230.15	46.6
19-162	G393	5.7	228.63	46.2
19-162 19-162	T394 G395	7.9 8.8	226.42 225.58	46.2 52.6
19-162	S396	10.1	224.21	9.2
19-162	G397	10.3	224.05	12.3

SOIL SAMPLE MOISTURE CONTENTS

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-163	G398	0.5	234.09	23.0
19-163	G399	1.1	233.48	11.6
19-163	G400	2.7	231.95	32.9
19-163	G401	4.2	230.43	43.9
19-163	T402	6.4	228.22	40.6
19-163	G403	7.2	227.38	49.1
19-163	G404	8.8	225.86	50.7
19-163	S405	10.9	223.72	9.7
19-163	G406	11.5	223.11	17.1
19-164	G407	0.5	234.11	26.6
19-164	G408	1.4	233.19	14.7
19-164	G409	2.7	231.97	46.4
19-164	G410	4.2	230.45	50.1
19-164	G411	5.7	228.93	49.9
19-164	T412	7.9	226.72	48.5
19-164	G413	8.8	225.88	47.1
19-164	G414	9.4	225.27	19.2
19-164 19-164	S415 G416	10.9	223.74	9.7
19-104	G4 IU	11.5	223.13	9.7
19-165	G417	0.5	234.14	21.7
19-165	G418	1.3	233.37	13.7
19-165	G419	2.7	232.00	46.3
19-165	G420	4.2	230.48	47.0
19-165	T421	6.4	228.27	49.4
19-165	G422	7.2	227.43	42.4
19-165	G423	8.8	225.91	44.5
19-165	S424	10.6	224.08	9.0
19-165	S425	12.3	222.40	12.2
19-166	G436	0.7	234.25	22.9
19-166	G437	1.4	233.49	21.9
19-166	G438	2.7	232.27	42.1
19-166	G439	4.2	230.75	47.3
19-166	T440	6.4	228.54	54.2
19-166	G441	7.2	227.70	47.9
19-166	G442	8.5	226.48	10.0
19-166	S443	9.4	225.57	8.7
19-166	S563	9.3	225.66	5.1
19-166	S565	10.9	224.04	9.0
19-166	S567	11.7	223.28	9.1
19-167	G452	0.5	234.06	19.7
19-167	G453	1.4	233.14	25.5
19-167	G454	2.7	231.92	41.5
19-167	G455	4.2	230.40	43.9
19-167	G456	5.7	228.88	47.7
19-167	T457	7.9	226.67	10.4
19-167	S458	8.3	226.28	8.5
19-167	S557	9.4	225.22	9.4
19-167	S559	10.9	223.69	8.6
19-167	S561	12.4	222.17	9.3
	~			
19-168	G444	0.5	234.44	22.0
19-168	G445	1.4	233.52	12.6
19-168	G446	2.4	232.61	41.6
19-168 19-168	T447	3.4	231.62	50.3 51.3
19-168	G448 G449	4.2	230.78	42.9
19-168		5.7	229.26	24.3
	G450	6.9	228.04	
19-168	S451 S551	7.8	227.12	10.4
10 160		9.4	225.60	8.5
19-168 19-168			224 07	0.3
19-168 19-168 19-168	S553 S555	10.9 12.4	224.07 222.55	9.3 9.1


Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-169	G459	0.5	234.39	30.0
19-169	G460	1.4	233.47	30.4
19-169	G461	2.7	232.25	46.7
19-169	T462	4.9	230.04	43.4
19-169	G463	5.7	229.21	59.6
19-169	S464	7.8	227.07	7.4
19-169	S545	9.4	225.55	8.4
19-169	S547	10.9	224.02	8.5
19-169	S549	12.4	222.50	9.7
19-170	G465	0.7	22/1 21	26.3
19-170	G466	1.4	234.31 233.55	27.4
19-170	G467	2.7	232.33	44.3
19-170	G468	4.2	230.81	47.1
19-170	G469	5.7	229.29	54.0
19-170	G470	6.9	228.07	28.7
19-170	S471	7.8	227.15	6.8
19-170	S539	9.4	225.63	7.6
19-170	S541	10.9	224.10	10.1
19-170	S543	12.4	222.58	13.9
10 171	C 470	Λ 7	22422	26.6
19-171 19-171	G472 G473	0.7 1.4	234.30	26.6 30.7
19-171	G473	2.7	233.54 232.32	48.5
19-171	T475	4.9	230.11	45.3
19-171	G476	5.7	229.28	51.6
19-171	G477	6.9	228.06	13.2
19-171	S478	7.8	227.14	7.4
19-171	G479	8.2	226.84	10.7
19-171	S533	9.4	225.62	8.1
19-171	S535	10.9	224.09	8.4
19-171	S537	12.4	222.57	9.5
19-172	G481	0.7	224 27	25.0
19-172	G482	1.4	234.37 233.61	31.5
19-172	G483	2.7	232.39	42.1
19-172	G484	4.2	230.87	46.7
19-172	G485	5.7	229.35	45.7
19-172	G486	6.8	228.28	19.8
19-172	S487	7.8	227.29	7.2
19-172	G488	8.0	227.06	11.5
19-172	S527	9.4	225.69	8.7
19-172	S529	10.7	224.32	9.0
19-172	S531	12.4	222.64	8.6
19-173	G490	0.7	234.47	25.0
19-173	G490 G491	1.4	233.71	28.0
19-173	G492	2.2	232.95	42.5
19-173	T493	3.4	231.81	42.4
19-173	G494	4.2	230.97	41.9
19-173	G495	5.1	230.05	18.9
19-173	S496	6.3	228.84	13.7
19-173	S497	7.5	227.62	8.0
19-173	S519	9.4	225.79	9.7
19-173	S521	10.9	224.26	10.2
19-173	S523	12.4	222.77	9.2
19-239	G369	0.2	233.85	29.4
19-239	G370	1.1	232.94	21.7
19-239	G371	2.7	231.41	44.1
19-239	T372	4.9	229.20	47.5
19-239	G373	5.7	228.37	44.8
19-239	G374	7.2	226.84	47.8
19-239	G375	8.8	225.32	53.8
19-239	G376	10.0	224.10	15.1

SOIL SAMPLE MOISTURE CONTENTS


Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-240	G426	0.5	234.58	19.9
19-240	G427	1.1	233.97	21.8
19-240	G428	2.1	233.05	21.7
19-240	G429	3.3	231.83	49.6
19-240	T430	4.9	230.23	45.3
19-240	G431	5.7	229.40	53.4
19-240	G432	7.2	227.87	44.8
19-240	G433	8.5	226.65	26.9
19-240	S434	9.4	225.74	12.9
19-240	S435	10.9	224.21	11.4
19-240	G436	11.5	223.60	15.2
20-244	G1	0.4	234.84	27.3
20-244	G2	1.3	233.92	26.9
20-244	G3	1.9	233.32	34.4
20-244	G4	2.8	232.40	42.6
20-244	T5	4.9	230.34	34.2
20-244	G6	5.6	229.66	42.7
20-244	G7	6.2	229.05	13.4
20-244	C8	7.5	227.75	n/a
20-244	S9	8.2	227.07	8.0
20-244	C10	8.8	226.46	n/a
20-244	S11	9.4	225.85	7.9
20-244	C12	10.1	225.09	n/a
20-244	S13	10.9	224.32	9.1
20-245	G14	0.4	234.92	28.8
20-245	G15	1.6	233.70	35.1
20-245	G16	2.2	233.09	36.3
20-245	G17	2.8	232.48	39.0
20-245	G18	4.6	230.65	34.1
20-245	G19	5.6	229.74	40.1
20-245	G20	6.2	229.13	16.8
20-245	G21	6.3	228.98	19.9
20-245	C22	7.0	228.29	n/a
20-245	S23	7.8	227.45	9.1
20-245	C24	8.6	226.69	n/a
20-245	S25	9.4	225.93	9.1
20-245	C26	10.1	225.17	n/a
20-245	S27	10.9	224.40	8.7
	••••••			

Test Hole	est Hole Sample		Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
20-246	G28	1.0	234.44	29.0
20-246	G29	1.9	233.53	38.0
20-246	G30	2.8	232.61	39.1
20-246	T31	3.4	232.08	40.6
20-246	G32	4.6	230.78	26.9
20-246	G33	5.6	229.87	7.8
20-246	S34	6.3	229.11	7.8
20-246	C35	7.1	228.34	n/a
20-246	S36	7.8	227.58	8.9
20-246	C37	8.6	226.82	n/a
20-246	S38	9.4	226.06	4.5
20-246	C39	10.1	225.30	n/a
20-246	S40	10.9	224.53	9.9
20-247	G41	0.8	234.80	28.1
20-247	G42	1.6	234.04	32.7
20-247	G43	2.8	232.82	29.2
20-247	G44	4.3	231.30	30.2
20-247	G45	5.3	230.38	14.1
20-247	S46	6.3	229.32	7.9
20-247	C47	7.1	228.55	n/a
20-247	S48	7.8	227.79	9.3
20-247	C49	8.6	227.03	n/a
20-247	S50	9.2	226.46	4.4
20-247	C51	9.9	225.70	n/a
20-247	S52	10.9	224.74	n/a
20-248	G53	0.7	235.34	31.0
20-248	T54	1.8	234.20	29.3
20-248	T55	3.4	232.68	23.4
20-248	S56	4.8	231.23	7.9
20-248	S57	6.3	229.71	3.1
20-248	C58	7.1	228.94	n/a
20-248	S59	7.6	228.41	n/a
20-248	C60	8.4	227.65	n/a
20-248	S61	9.4	226.66	8.0
20-248	C62	10.1	225.90	n/a
20-248	S63	10.9	225.13	9.6
20-248	C64	11.7	224.37	6.3
20-248	S65	12.4	223.61	7.7
20-248	C66	13.2	222.85	n/a
20-248	S67	13.8	222.28	8.3
			1	

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Moisture Content vs Depth

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Moisture Content vs Elevation

UNCONFINED COMPRESSION TEST

DATE: y-Aug 2019 / Dec 20

PROJECT: Contract 6 - Rutland Trunk Sewer 143691.7

Test Hole	19-148	<u>Depth</u>	10-12	feet		Test Hole	n/a	<u>Depth</u>	feet
_		Sample No.	T296	_		_		Sample No.	
Wet + Tare Wt.	290.86 g	Length		mm		Wet + Tare Wt.	g	Length	mm
Dry + Tare Wt.	225.88 g	Diameter		mm		Dry + Tare Wt.	g	Diameter	mm
Tare Wt.	31.00 g	Area		mm²		Tare Wt.	g	Area	mm²
Wt. Water	64.98 g	Weight		g		Wt. Water	g	Weight	g
Dry Wt.	194.88 g	Strain		%		Dry Wt.	g	Strain	%
Moisture Cont.	33.3 %	Avg. Area		mm²		Moisture Cont.	%	Avg. Area	mm²
Wet Density	#DIV/0! lb/ft³	#DIV/0!	kN/m³			Wet Density	lb/ft³	ı	kN/m³
Pocket Pen: Rdg	1.00 tsf	Torvane: Rdg	0.33	tsf		Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf
Su	1.00 ksf	Std vane Su	0.68	ksf		Su	ksf	Std vane Su	ksf
Sυ	47.9 kPa	Su	32.4	kPa		Su	kPa	Su	kPa
Qu: Displacement	n/a mm					Qu: Displacement	mm		
Load Cell	kN					Load Cell	kN		
Su	kPa					Su	kPa		
Su	ksf					Su	ksf		
Test Hole	19-149	Donth	15-15.8	foot		Test Hole	19-149	Donth	15.8-16.5 feet
<u>restrible</u> _	19-149	Sample No.		1661		<u>restrible</u>	13-143	Sample No.	T287B
Wet + Tare Wt.	282.53 g	Length	12017	mm		Wet + Tare Wt.	269.84 g	Length	175 mm
Dry + Tare Wt.	220.30 g	Diameter		mm		Dry + Tare Wt.	203.29 g	Diameter	72 mm
Tare Wt.	31.51 g	Area		mm²		Tare Wt.	37.75 g	Area	4072 mm²
Wt. Water	62.23 g	Weight				Wt. Water	66.55 g	Weight	1243.72 g
Dry Wt.	188.79 g	Strain		g %		Dry Wt.	165.54 g	Strain	15.00 %
Moisture Cont.	33.0 %	Avg. Area		mm²		Moisture Cont.	40.2 %	Avg. Area	4790 mm²
Wet Density	#DIV/0! lb/ft³	#DIV/0!	kN/m³			Wet Density	108.97 lb/ft³	17.12	
Pocket Pen: Rdc	0.50 tsf	Torvane: Rdg	0.22	tsf	1	Pocket Pen: Rdc	0.70 tsf	Torvane: Rdg	0.33 tsf
Su	0.50 ksf	Std vane Su	0.45			Su	0.70 ksf	Std vane Su	0.68 ksf
Su	23.9 kPa	Su	21.6			Su	33.5 kPa	Su	32.4 kPa
Qu: Displacemer	n/a mm			7 0.		Qu: Displacemer	26.25 mm		02.7 7.1 0
Load Cell	kN					Load Cell			
Su	kPa					Su	17.7 kPa		
Su	ksf					Su	0.37 ksf		
Test Hole	19-151		15-15.8	feet		Test Hole	19-151		15.8-16.5 feet
		Sample No.	T269A	-				Sample No.	T269B
Wet + Tare Wt.	229.69 g	Length		mm		Wet + Tare Wt.	242.55 g	Length	175 mm
Dry + Tare Wt.	178.97 g	Diameter		mm		Dry + Tare Wt.	190.05 g	Diameter	72 mm
Tare Wt.	31.13 g	Area		mm²		Tare Wt.	30.50 g	Area	4072 mm²
Wt. Water	50.72 g	Weight		g		Wt. Water	52.50 g	Weight	1291.13 g
Dry Wt.	147.84 g	Strain		%		Dry Wt.	159.55 g	Strain	15.00 %
Moisture Cont.	34.3 %	Avg. Area	1 1 1 / 3	mm²	-	Moisture Cont.	32.9 %	Avg. Area	4790 mm²
Wet Density	lb/ft³		kN/m³		-	Wet Density	113.12 lb/ft³	17.77	
Pocket Pen: Rdg	0.40 tsf	Torvane: Rdg	0.20			Pocket Pen: Rdg	1.00 tsf	Torvane: Rdg	0.53 tsf
Su	0.40 ksf	Std vane Su	0.41			Su	1.00 ksf	Std vane Su	1.09 ksf
Su O DiI	19.2 kPa	Su	19.6	кРа	-	Su	47.9 kPa	Su	52.0 kPa
Qu: Displacemer	n/a mm					Qu: Displacemer	26.25 mm		
Load Cell	kN /-D-					Load Cell	0.349 kN		
Su	kPa Leef					Su	36.4 kPa		
Su	ksf					Su	0.76 ksf		
<u>L</u>									

UNCONFINED COMPRESSION TEST

DATE: y-Aug 2019 / Dec 20

PROJECT: Contract 6 - Rutland Trunk Sewer 143691.7

Test Hole	19-152	Depth	20-22	feet		Test Hole	19-153	<u>Depth</u>	30-32	feet
_		Sample No.	T241	•		_		Sample No.	T251	_
Wet + Tare Wt.	188.07 g	Length		mm		Wet + Tare Wt.	320.53 g	Length	175	mm
Dry + Tare Wt.	136.47 g	Diameter		mm		Dry + Tare Wt.	211.48 g	Diameter	72	mm
Tare Wt.	30.65 g	Area		mm²		Tare Wt.	30.84 g	Area	4072	mm²
Wt. Water	51.60 g	Weight		g		Wt. Water	109.05 g	Weight	1152.62	g
Dry Wt.	105.82 g	Strain		%		Dry Wt.	180.64 g	Strain	3.71	%
Moisture Cont.	48.8 %	Avg. Area		mm²		Moisture Cont.	60.4 %	Avg. Area	4229	mm²
Wet Density	lb/ft³		kN/m³			Wet Density	100.99 lb/ft ³	15.86	kN/m³	
Pocket Pen: Rdg	1.10 tsf	Torvane: Rdg	0.54	tsf		Pocket Pen: Rdg	0.84 tsf	Torvane: Rdg	0.48	tsf
Su	1.10 ksf	Std vane Su	1.11	ksf		Su	0.84 ksf	Std vane Su	0.98	ksf
Su	52.7 kPa	Su	53.0	kPa	_	Su	40.2 kPa	Su	47.1	kPa
Qu: Displacemer	N/A mm					Qu: Displacemer	6.50 mm			
Load Cell	kN					Load Cell	0.245 kN			
Su	kPa					Su	29.0 kPa			
Su	ksf				-	Su	0.61 ksf			
Test Hole	19-155	Depth	10-12	feet	1	Test Hole	19-156	Depth	20-22	feet
		Sample No.	T314	•				Sample No.	T326	-
Wet + Tare Wt.	255.86 g	Length	178	mm		Wet + Tare Wt.	269.16 g	Length		_ mm
Dry + Tare Wt.	186.56 g	Diameter	71	mm		Dry + Tare Wt.	195.38 g	Diameter		mm
Tare Wt.	39.28 g	Area	3959	mm²		Tare Wt.	38.54 g	Area		mm²
Wt. Water	69.30 g	Weight	1216.98	g		Wt. Water	73.78 g	Weight		g
Dry Wt.	147.28 g	Strain	5.48	%		Dry Wt.	156.84 g	Strain		%
Moisture Cont.	47.1 %	Avg. Area	4189	mm²		Moisture Cont.	47.0 %	Avg. Area		mm²
Wet Density	107.80 lb/ft ³	16.93	kN/m³			Wet Density	lb/ft³	I	kN/m³	
Pocket Pen: Rdg	1.40 tsf	Torvane: Rdg	0.59	tsf		Pocket Pen: Rdg	0.90 tsf	Torvane: Rdg	0.44	tsf
Su	1.40 ksf	Std vane Su	1.21	ksf		Su	0.90 ksf	Std vane Su	0.90	ksf
Su	67.0 kPa	Su	57.9	kPa	_	Su	43.1 kPa	Su	43.1	kPa
Qu: Displacemer	9.75 mm					Qu: Displacemer	N/A mm			
Load Cell	0.312 kN					Load Cell	kN			
Su	37.2 kPa					Su	kPa			
Su	0.78 ksf				_	Su	ksf			
Test Hole	19-157	Depth	30-32	feet	1	Test Hole	19-158	Depth	15-17	feet
		Sample No.	T337	•				Sample No.	T344	_
Wet + Tare Wt.	251.96 g	Length	175	mm		Wet + Tare Wt.	308.88 g	Length	176	mm
Dry + Tare Wt.	177.64 g	Diameter	71	mm		Dry + Tare Wt.	216.19 g	Diameter	71	mm
Tare Wt.	36.52 g	Area	3959	mm²		Tare Wt.	37.42 g	Area	3959	mm²
Wt. Water	74.32 g	Weight	1195.50	g		Wt. Water	92.69 g	Weight	1209.78	g
Dry Wt.	141.12 g	Strain	5.57	%		Dry Wt.	178.77 g	Strain	5.11	%
Moisture Cont.	52.7 %	Avg. Area	4193	mm²		Moisture Cont.	51.8 %	Avg. Area	4173	mm²
Wet Density	107.72 lb/ft ³	16.92	kN/m³			Wet Density	108.38 lb/ft ³	17.03	kN/m³	
Pocket Pen: Rdg	0.63 tsf	Torvane: Rdg	0.36	tsf		Pocket Pen: Rdg	1.33 tsf	Torvane: Rdg	0.64	tsf
Su	0.63 ksf	Std vane Su	0.74	ksf		Su	1.33 ksf	Std vane Su	1.31	ksf
Su	30.2 kPa	Su	35.3	kPa		Su	63.7 kPa	Su	62.8	kPa
Qu: Displacemer	9.75 mm					Qu: Displacemer	9.00 mm			
Load Cell	0.195 kN					Load Cell	0.388 kN			
Su	23.3 kPa					Su	46.5 kPa			
Su	0.49 ksf					Su	0.97 ksf			

Qu: Displacemer

Load Cell

Su

Su

10.00 mm

0.324 kN

38.6 kPa

0.81 ksf

UNCONFINED COMPRESSION TEST

DATE: y-Aug 2019 / Dec 20

PROJECT: Contract 6 - Rutland Trunk Sewer
PROJECT No.: 143691.7

Test Hole 19-159 **Depth** 25-27 feet **Test Hole** 19-160 **Depth** 35-36 feet T355 Sample No. T367 Sample No. Wet + Tare Wt. Wet + Tare Wt. 330.02 q Length 172 mm 302.40 g Length mm Dry + Tare Wt. 242.48 g Diameter 71 mm Dry + Tare Wt. 273.11 g Diameter mm Tare Wt. 37.60 g 3959 mm² Tare Wt. Area 37.32 g Area mm² Wt. Water Wt. Water 87.54 a Weight 1137.45 g 29.29 g Weiaht g Dry Wt. 204.88 g 6.54 % Dry Wt. 235.79 g Strain Strain % **Moisture Cont.** Avg. Area **Moisture Cont.** 42.7 % Avg. Area 4236 mm² 12.4 % mm² lb/ft³ **Wet Density** 104.27 lb/ft3 16.38 kN/m3 **Wet Density** kN/m³ Pocket Pen: Rdg 0.75 tsf Torvane: Rdg 0.37 tsf Pocket Pen: Rdg tsf Torvane: Rdg tsf 0.75 ksf Su Std vane Su 0.76 ksf Su ksf Std vane Su ksf Sι 35.9 kPa Su 36.3 kPa Su kPa Su kPa Qu: Displacement Qu: Displacemer 11.25 mm mm Load Cell 0.205 kN Load Cell kΝ Silt Till - trace sand, gravel Su 24.2 kPa Su grey, moist, loose kPa 0.51 ksf Su ksf **Test Hole** 19-161 Depth 10-12 feet **Test Hole** 19-162 Depth 25-27 feet Sample No. T381 Sample No. T394 246.89 g Wet + Tare Wt. Length 170 mm Wet + Tare Wt. 344.60 g Length 176 mm Dry + Tare Wt. 182.84 g Diameter 71 mm Dry + Tare Wt. Diameter 70 mm 245.88 g Tare Wt. 30.96 g 3959 mm² Tare Wt. 32.06 g Area 3848 mm² Area Wt. Water Wt. Water 64.05 g Weight 1149.77 g Weight 1210.40 g 98.72 g Dry Wt. 151.88 g Strain 5.15 % Dry Wt. 213.82 g Strain 5.11 % 42.2 % 4174 mm² Avg. Area 4056 mm² **Moisture Cont.** Avg. Area 46.2 % **Moisture Cont. Wet Density** 106.64 lb/ft3 **16.75** kN/m³ **Wet Density** 111.56 lb/ft3 17.52 kN/m³ Pocket Pen: Rdg 1.90 tsf 0.77 tsf Pocket Pen: Rdg 0.90 tsf 0.39 tsf Torvane: Rdg Torvane: Rdg 1.90 ksf Sυ Std vane Su 1.58 ksf Su 0.90 ksf Std vane Su 0.80 ksf 91.0 kPa 43.1 kPa 75.5 kPa Su 38.2 kPa Su Qu: Displacemer 8.75 mm Qu: Displacemer 9.00 mm Load Cell 0.377 kN Load Cell 0.273 kN Su 45.2 kPa Su 33.7 kPa 0.94 ksf 0.70 ksf Su Su 19-163 20-22 feet 19-164 25-27 **Test Hole** Depth **Test Hole** Depth feet Sample No. T402 Sample No. T412 Wet + Tare Wt. 365.65 q 175 mm Wet + Tare Wt. 358.12 q 176 mm Length Length Dry + Tare Wt. Dry + Tare Wt. 268.77 g Diameter 71 mm 253.72 g Diameter 71 mm Tare Wt. 30.43 g Area 3959 mm² Tare Wt. 38.28 g Area 3959 mm² Wt. Water 96.88 g Weight 1197.26 g Wt. Water Weight 1179.00 g 104.40 g Dry Wt. 238.34 g Strain 5.71 % Dry Wt. 215.44 g Strain 5.11 % 4199 mm² 4173 mm² **Moisture Cont.** 40.6 % Avg. Area **Moisture Cont.** 48.5 % Avg. Area **Wet Density** 107.88 lb/ft³ 16.95 kN/m³ **Wet Density** 105.63 lb/ft³ 16.59 kN/m³ 1.03 tsf Pocket Pen: Rdg Torvane: Rdg 0.45 tsf Pocket Pen: Rdg 0.73 tsf 0.42 tsf Torvane: Rdg 1.03 ksf Std vane Su 0.73 ksf 0.92 ksf Su Std vane Su 0.86 ksf 35.0 kPa Su 49.3 kPa 44.1 kPa 41.2 kPa Su Su

Qu: Displacemer

Load Cell

Su

Su

9.00 mm

33.3 kPa

0.70 ksf

0.278 kN

UNCONFINED COMPRESSION TEST

DATE: y-Aug 2019 / Dec 20

PROJECT: Contract 6 - Rutland Trunk Sewer 143691.7

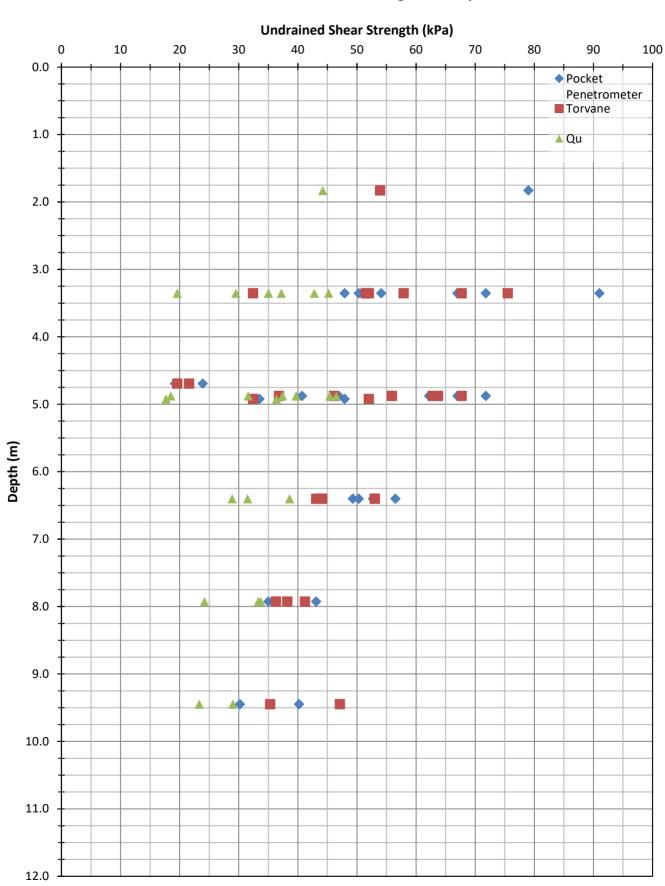
Test Hole	19-165	<u>Depth</u>	20-22	feet	Test Hole	19-166	<u>Depth</u>	20-22	feet
		Sample No.	T421	•	_		Sample No.	T440	_
Wet + Tare Wt.	251.93 g	Length	176	mm	Wet + Tare Wt.	283.40 g	Length	176	mm
Dry + Tare Wt.	181.16 g	Diameter	71	mm	Dry + Tare Wt.	194.61 g	Diameter	71	mm
Tare Wt.	38.01 g	Area	3959	mm²	Tare Wt.	30.91 g	Area	3959	mm²
Wt. Water	70.77 g	Weight	1147.98	g	Wt. Water	88.79 g	Weight	1199.60	g
Dry Wt.	143.15 g	Strain	7.10	%	Dry Wt.	163.70 g	Strain	4.55	%
Moisture Cont.	49.4 %	Avg. Area	4262	mm²	Moisture Cont.	54.2 %	Avg. Area	4148	mm²
Wet Density	102.85 lb/ft ³	16.16	kN/m³		Wet Density	107.47 lb/ft ³	16.88 /	kN/m³	
Pocket Pen: Rdg	1.18 tsf	Torvane: Rdg	0.54	tsf	Pocket Pen: Rdg	1.05 tsf	Torvane: Rdg	0.45	tsf
Su	1.18 ksf	Std vane Su	1.11	ksf	Su	1.05 ksf	Std vane Su	0.92	ksf
Su	56.5 kPa	Su	53.0	kPa	Su	50.3 kPa	Su	44.1	kPa
Qu: Displacemer	12.50 mm				Qu: Displacemer	8.00 mm			
Load Cell	0.246 kN				Load Cell	0.261 kN			
Su	28.9 kPa				Su	31.5 kPa			
Su	0.60 ksf				Su	0.66 ksf			
Test Hole	19-167	Depth	25-27	feet	Test Hole	19-168	Depth	10-12	feet
		Sample No.	T457				Sample No.	T447	
Wet + Tare Wt.	351.05 g	Length		mm	Wet + Tare Wt.	297.14 g	Length		mm
Dry + Tare Wt.	320.72 g	Diameter		mm	Dry + Tare Wt.	208.08 g	Diameter	71	mm
Tare Wt.	30.43 g	Area		mm²	Tare Wt.	30.92 g	Area	3959	mm²
Wt. Water	30.33 g	Weight		g	Wt. Water	89.06 g	Weight	1187.81	q
Dry Wt.	290.29 g	Strain		%	Dry Wt.	177.16 g	Strain	3.55	•
Moisture Cont.	10.4 %	Avg. Area		mm²	Moisture Cont.	50.3 %	Avg. Area		mm²
Wet Density	#DIV/0! lb/ft³	#DIV/0!	kN/m³		Wet Density	106.42 lb/ft³	16.72		
Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf	Pocket Pen: Rdg	1.50 tsf	Torvane: Rdg	0.69	tsf
Su	ksf	Std vane Su		ksf	Su	1.50 ksf	Std vane Su	1.41	ksf
Su	kPa	Su		kPa	Su	71.8 kPa	Su	67.7	kPa
Qu: Displacement	t mm				Qu: Displacemer	6.25 mm			
Load Cell	kN	Silt Till - trace sa	and, grav	el	Load Cell	0.287 kN			
Su	kPa	grey, moist, loos	se		Su	35.0 kPa			
Su	ksf				Su	0.73 ksf			
Test Hole	19-169	Depth	15-17	feet	Test Hole	19-171	Depth	15-17	feet
<u> </u>	13-103	Sample No.	T462	leet	<u> </u>	10-171	Sample No.	T475	1001
Wet + Tare Wt.	414.27 g	Length		mm	Wet + Tare Wt.	312.05 g	Length		mm
Dry + Tare Wt.	298.04 g	Diameter		mm	Dry + Tare Wt.	224.37 g	Diameter		mm
Tare Wt.	30.41 g	Area	3959		Tare Wt.	30.84 g	Area		mm²
Wt. Water	116.23 g		1298.37		Wt. Water	87.68 g	Weight	1213.14	
Dry Wt.	267.63 g	Strain	6.11	-	Dry Wt.	193.53 g	Strain	4.69	•
Moisture Cont.	43.4 %	Avg. Area	4217		Moisture Cont.	45.3 %	Avg. Area		mm²
Wet Density	116.32 lb/ft³	18.27			Wet Density	105.69 lb/ft³	16.60		
Pocket Pen: Rdg	1.30 tsf	Torvane: Rdg	0.57	tsf	Pocket Pen: Rdg	0.98 tsf	Torvane: Rdg	0.47	tsf
Su	1.30 ksf	Std vane Su	1.17		Su	0.98 ksf	Std vane Su	0.96	
Su	62.2 kPa	Su	55.9		Su	46.9 kPa	Su	46.1	
Qu: Displacemer	10.75 mm				Qu: Displacemer	8.25 mm			
Load Cell	0.383 kN				Load Cell	0.270 kN			
Su	45.4 kPa				Su	31.6 kPa			
Su	0.95 ksf				Su	0.66 ksf			
		•					•		

UNCONFINED COMPRESSION TEST

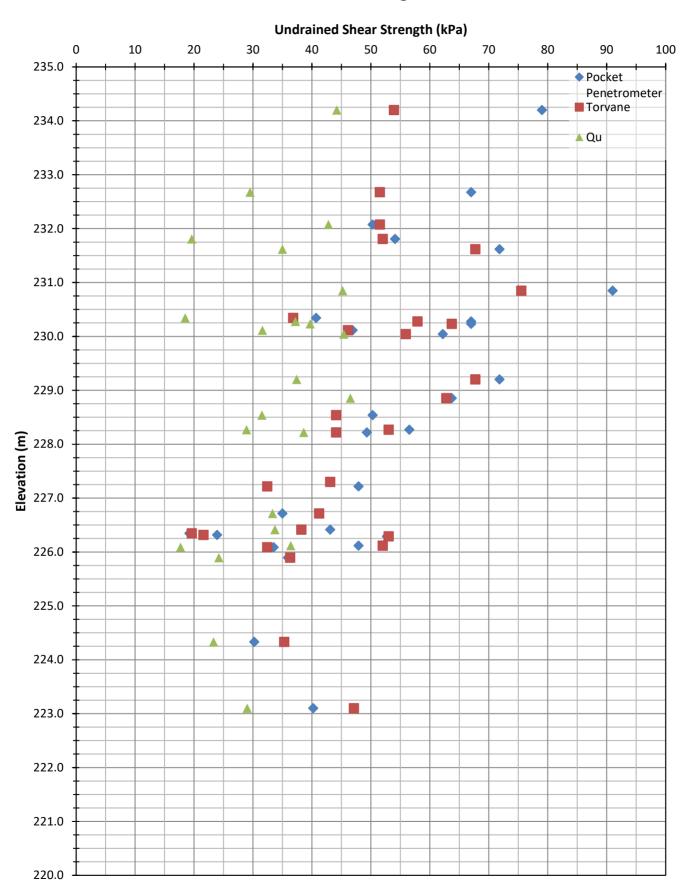
DATE: y-Aug 2019 / Dec 20

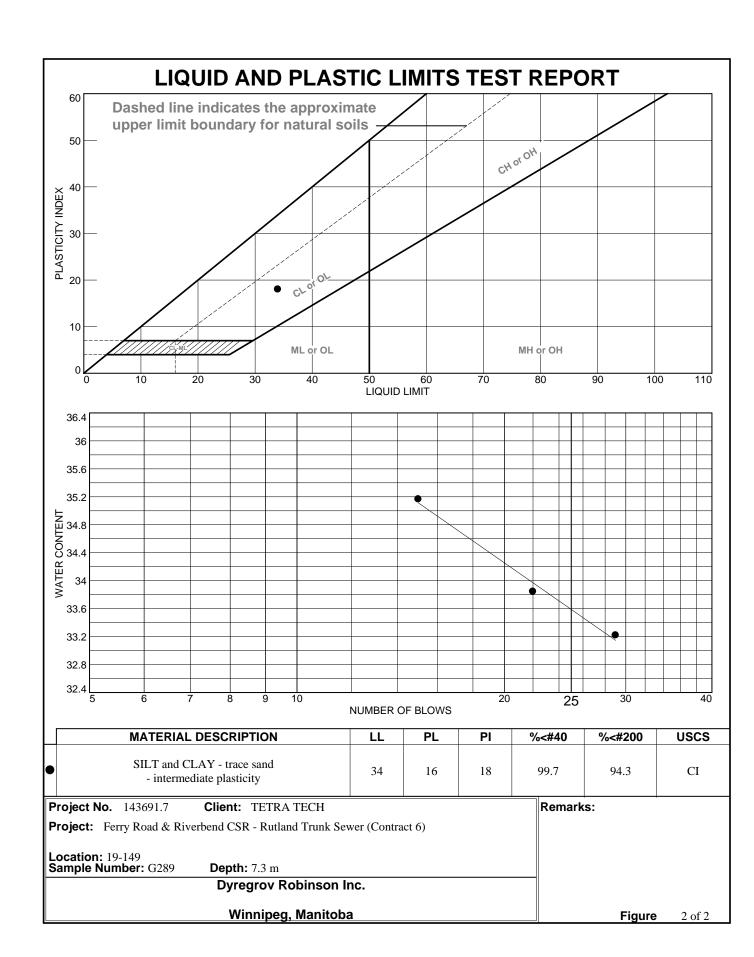
PROJECT: Contract 6 - Rutland Trunk Sewer 143691.7

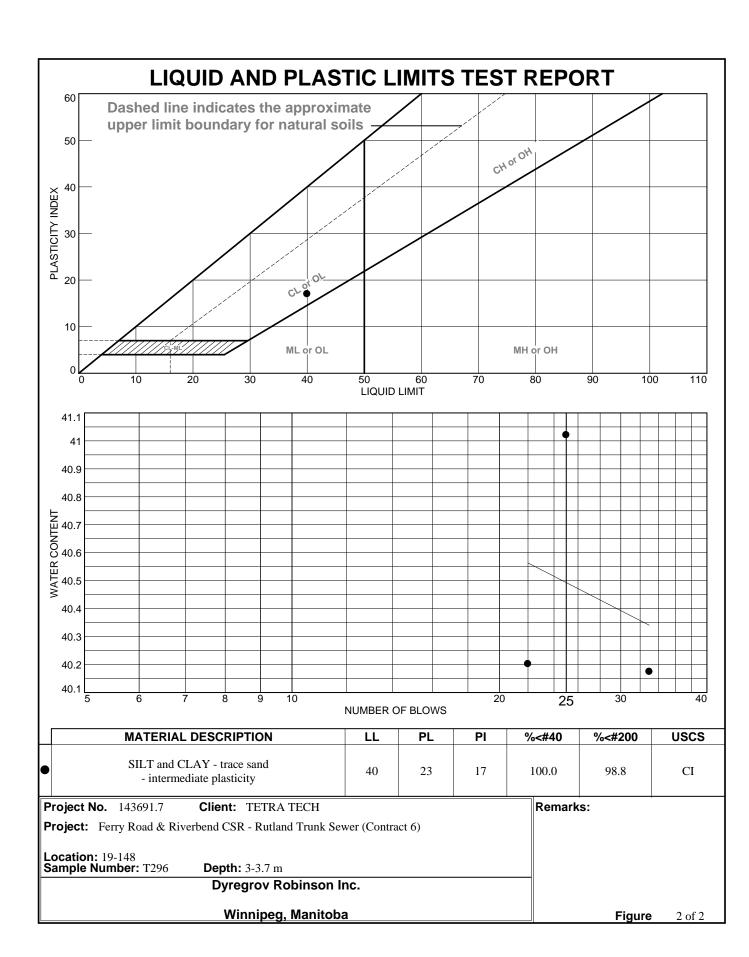
Test Hole	19-173	<u>Depth</u>	10-12	feet	Test Hole	19-239	<u>Depth</u>	15-17 fe	et
_		Sample No.	T493		_		Sample No.	T372	
Wet + Tare Wt.	216.71 g	Length	169	mm	Wet + Tare Wt.	257.71 g	Length	175 m	ım
Dry + Tare Wt.	161.37 g	Diameter	72	mm	Dry + Tare Wt.	184.60 g	Diameter	71 m	ım
Tare Wt.	30.95 g	Area	4072	mm²	Tare Wt.	30.61 g	Area	3959 m	nm²
Wt. Water	55.34 g	Weight	1180.12	g	Wt. Water	73.11 g	Weight	1197.99 g	
Dry Wt.	130.42 g	Strain	2.22	%	Dry Wt.	153.99 g	Strain	4.86 %	,)
Moisture Cont.	42.4 %	Avg. Area	4164	mm²	Moisture Cont.	47.5 %	Avg. Area	4161 m	nm²
Wet Density	107.07 lb/ft ³	16.82	kN/m³		Wet Density	107.94 lb/ft³	16.96	kN/m³	
Pocket Pen: Rdg	1.13 tsf	Torvane: Rdg	0.53	tsf	Pocket Pen: Rdg	1.50 tsf	Torvane: Rdg	0.69 tst	sf
Su	1.13 ksf	Std vane Su	1.09	ksf	Su	1.50 ksf	Std vane Su	1.41 ks	sf
Su	54.1 kPa	Su	52.0	kPa	Su	71.8 kPa	Su	67.7 kF	Pa
Qu: Displacemer	3.75 mm				Qu: Displacemer	8.50 mm			
Load Cell	0.163 kN				Load Cell	0.311 kN			
Su	19.6 kPa				Su	37.4 kPa			
Su	0.41 ksf	<u> </u>			Su	0.78 ksf			
Test Hole	19-240	Depth	15-17	feet	Test Hole		Depth	fe	et
		Sample No.	T430				Sample No.		
Wet + Tare Wt.	270.66 g	Length	178	mm	Wet + Tare Wt.	g	Length	m	nm
Dry + Tare Wt.	197.60 g	Diameter	71	mm	Dry + Tare Wt.	g	Diameter	m	nm
Tare Wt.	36.43 g	Area	3959	mm²	Tare Wt.	g	Area	0 m	nm²
Wt. Water	73.06 g	Weight	1235.92	g	Wt. Water	g	Weight	g	
Dry Wt.	161.17 g	Strain	3.51	-	Dry Wt.	g	Strain	%	
Moisture Cont.	45.3 %	Avg. Area	4103	mm²	Moisture Cont.	%	Avg. Area	m	nm²
Wet Density	109.48 lb/ft ³	17.20	kN/m³		Wet Density	lb/ft³		kN/m³	
Pocket Pen: Rdg	1.40 tsf	Torvane: Rdg	0.65	tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg	tst	f
Su	1.40 ksf	Std vane Su	1.33	ksf	Su	ksf	Std vane Su	ks	sf
Su	67.0 kPa	Su	63.7	kPa	Su	kPa	Su	kF	Pa
Qu: Displacemer	6.25 mm	""			Qu: Displacement	mm			
Load Cell	0.326 kN				Load Cell	kN			
Su	39.7 kPa				Su	kPa			
Su	0.83 ksf				Su	ksf			
Test Hole		Depth		feet	Test Hole		Depth	fe	et
		Sample No.					Sample No.		,,,,
Wet + Tare Wt.	g	Length		mm	Wet + Tare Wt.	g	Length	m	ım
Dry + Tare Wt.	g	Diameter		mm	Dry + Tare Wt.	g	Diameter		ım
Tare Wt.	g	Area		mm²	Tare Wt.	g	Area	0 m	
Wt. Water	g	Weight		g	Wt. Water	g	Weight	g	
Dry Wt.	g	Strain		%	Dry Wt.	g	Strain	%	, D
Moisture Cont.	%	Avg. Area		mm²	Moisture Cont.	%	Avg. Area		ım²
Wet Density	lb/ft³	<u>-</u>	kN/m³		Wet Density	lb/ft³		kN/m³	
Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf	Pocket Pen: Rdg	tsf	Torvane: Rdg	tst	sf
Su	ksf	Std vane Su		ksf	Su	ksf	Std vane Su	ks	sf
Su	kPa	Su		kPa	Su	kPa	Su	kF	Pa
Qu: Displacement	mm				Qu: Displacement	mm			
Load Cell	kN				Load Cell	kN			
Su	kPa				Su	kPa			
Su	ksf				Su	ksf			
		•					•		

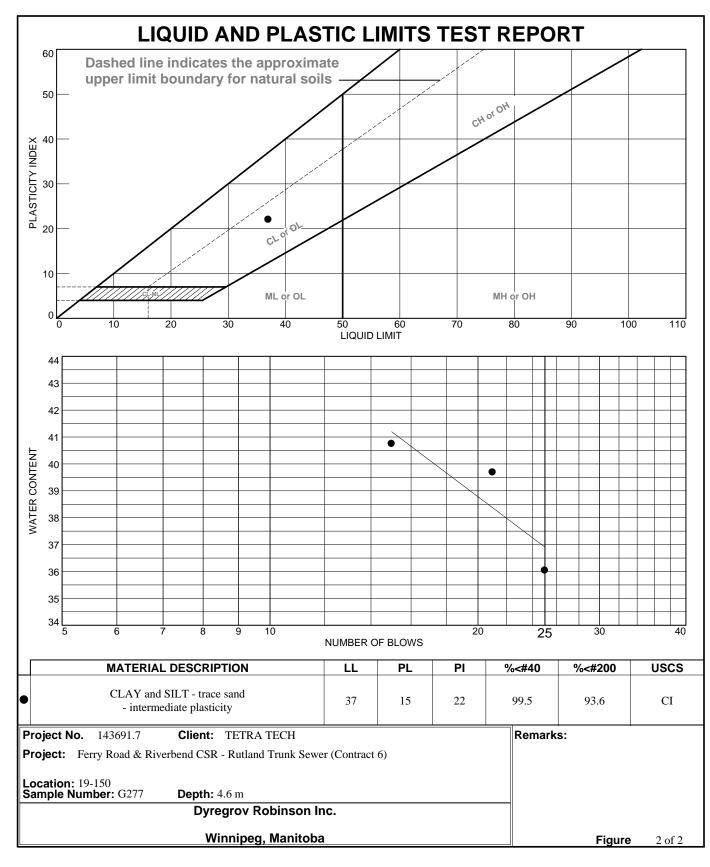

UNCONFINED COMPRESSION TEST

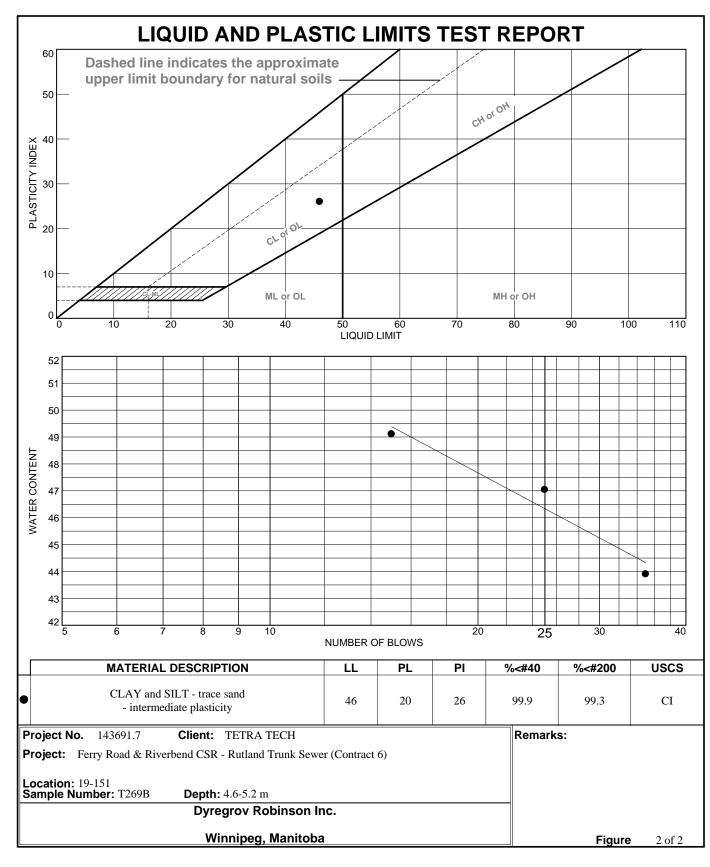
DATE: December 2020

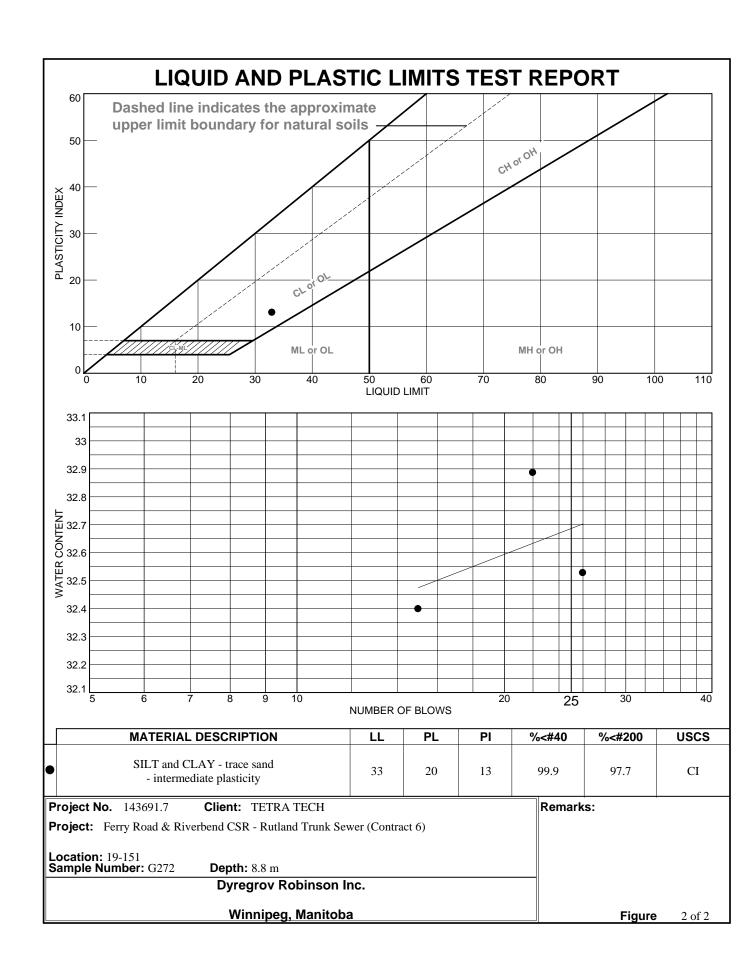

PROJECT: Contract 6 - Rutland Trunk Sewer **PROJECT No.:** 143691.7

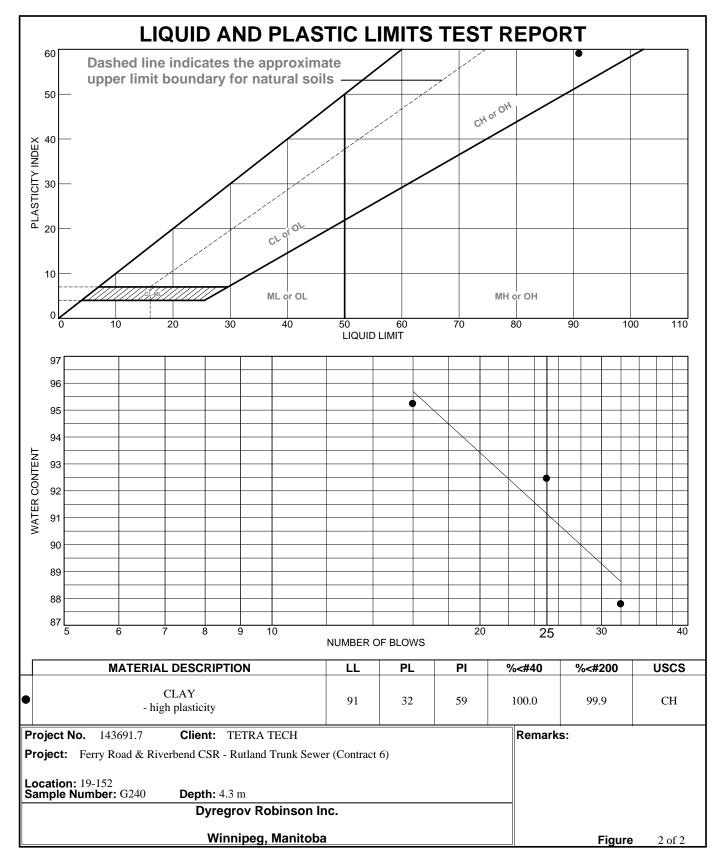

Test Hole	20-244	Depth	15-17 feet		Test Hole	20-246	Depth	10-12 feet
		Sample No.					Sample No.	T31
Wet + Tare Wt.	425.37 g	Length	176 mm		Wet + Tare Wt.	355.35 g	Length	177 mm
Dry + Tare Wt.	324.95 g	Diameter	72 mm		Dry + Tare Wt.	261.63 g	Diameter	72 mm
Tare Wt.	31.56 g	Area	4072 mm²		Tare Wt.	30.60 g	Area	4072 mm²
Wt. Water	100.42 g	Weight	1225.05 g		Wt. Water	93.72 g	Weight	1298.38 g
Dry Wt.	293.39 g	Strain	8.52 %		Dry Wt.	231.03 g	Strain	5.65 %
Moisture Cont.	34.2 %	Avg. Area	4451 mm²		Moisture Cont.	40.6 %	Avg. Area	4315 mm²
Wet Density	106.72 lb/ft³	16.77		1	Wet Density	112.47 lb/ft ³	17.67	
Pocket Pen: Rdg	0.85 tsf	Torvane: Rdg	0.38 tsf		Pocket Pen: Rdg	1.05 tsf	Torvane: Rdg	0.53 tsf
Su	0.85 ksf	Std vane Su	0.77 ksf		Su	1.05 ksf	Std vane Su	1.08 ksf
Su	40.7 kPa	Su	36.8 kPa		Su	50.3 kPa	Su	51.5 kPa
Qu: Displacemer	15.00 mm				Qu: Displacemer	10.00 mm		
Load Cell	0.165 kN				Load Cell	0.369 kN		
Su	18.5 kPa				Su	42.8 kPa		
Su	0.39 ksf				Su	0.89 ksf		
Ta-411-1	00.040	B 41	F 7		T411-1	00.040	B .:	40.40 5 1
Test Hole	20-248	Depth Sample No.	5-7 feet		Test Hole	20-248	Depth Sample No.	10-12 feet
_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	264.05	Sample No.	T54		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	466.00	Sample No.	T55
Wet + Tare Wt.	364.95 g	Length	176 mm		Wet + Tare Wt.	466.23 g	Length	175 mm
Dry + Tare Wt.	289.25 g	Diameter	72 mm		Dry + Tare Wt.	383.72 g	Diameter	72 mm
Tare Wt.	31.08 g	Area	4072 mm²		Tare Wt.	31.80 g	Area	4072 mm²
Wt. Water	75.70 g	-	1394.98 g		Wt. Water	82.51 g	Weight	1341.50 g
Dry Wt.	258.17 g	Strain	5.68 %		Dry Wt.	351.92 g	Strain	6.57 %
Moisture Cont.	29.3 %	Avg. Area	4317 mm²	4	Moisture Cont.	23.4 %	Avg. Area	4358 mm²
Wet Density	121.53 lb/ft³ 1.65 tsf	19.09		-	Wet Density	117.54 lb/ft³ 1.40 tsf	18.46	0.53 tsf
Pocket Pen: Rdg	1.65 ksf	Torvane: Rdg	0.55 tsf		Pocket Pen: Rdg Su	1.40 tsi	Torvane: Rdg	
Sı Sı	79.0 kPa	Std vane Su	1.13 ksf		Su	67.0 kPa	Std vane Su	1.08 ksf
Qu: Displacemer	10.00 mm	Su	53.9 kPa	4	Qu: Displacement	11.50 mm	Su	51.5 kPa
Load Cell	0.382 kN				Load Cell	0.257 kN		
Su	44.2 kPa				Su	29.5 kPa		
Su	0.92 ksf				Su	0.62 ksf		
Su	0.92 KSI	<u> </u>		1	Su	0.02 KSI	<u> </u>	
<u>Test Hole</u>		<u>Depth</u>	feet		Test Hole		<u>Depth</u>	feet
		Sample No.					Sample No.	
Wet + Tare Wt.	g	Length	mm		Wet + Tare Wt.	g	Length	mm
Dry + Tare Wt.	g	Diameter	mm		Dry + Tare Wt.	g	Diameter	mm
Tare Wt.	g	Area	mm²		Tare Wt.	g	Area	0 mm²
Wt. Water	g	Weight	g		Wt. Water	g	Weight	g
Dry Wt.	g	Strain	%		Dry Wt.	g	Strain	%
Moisture Cont.	%	Avg. Area	mm²		Moisture Cont.	%	Avg. Area	mm²
Wet Density	lb/ft³		kN/m³		Wet Density	lb/ft³		kN/m³
Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf		Pocket Pen: Rdg	tsf	Torvane: Rdg	tsf
Su	ksf	Std vane Su	ksf		Su	ksf	Std vane Su	ksf
Su	kPa	Su	kPa		Su	kPa	Su	kPa
Qu: Displacement	mm				Qu: Displacement	mm		
Load Cell	kN				Load Cell	kN		
Su	kPa				Su	kPa		
Su	ksf	<u> </u>			Su	ksf		

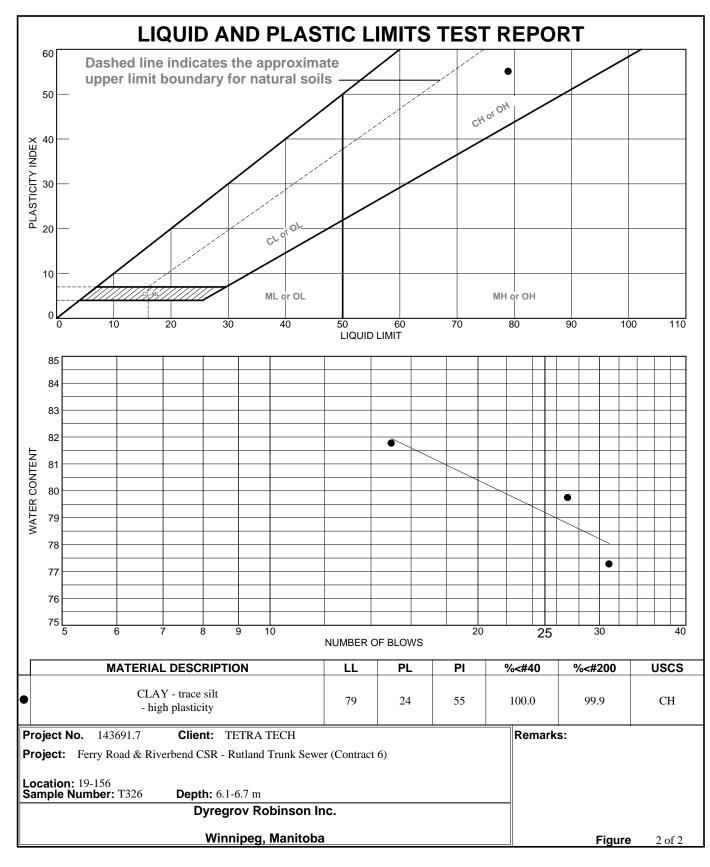

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Undrained Shear Strength vs Depth

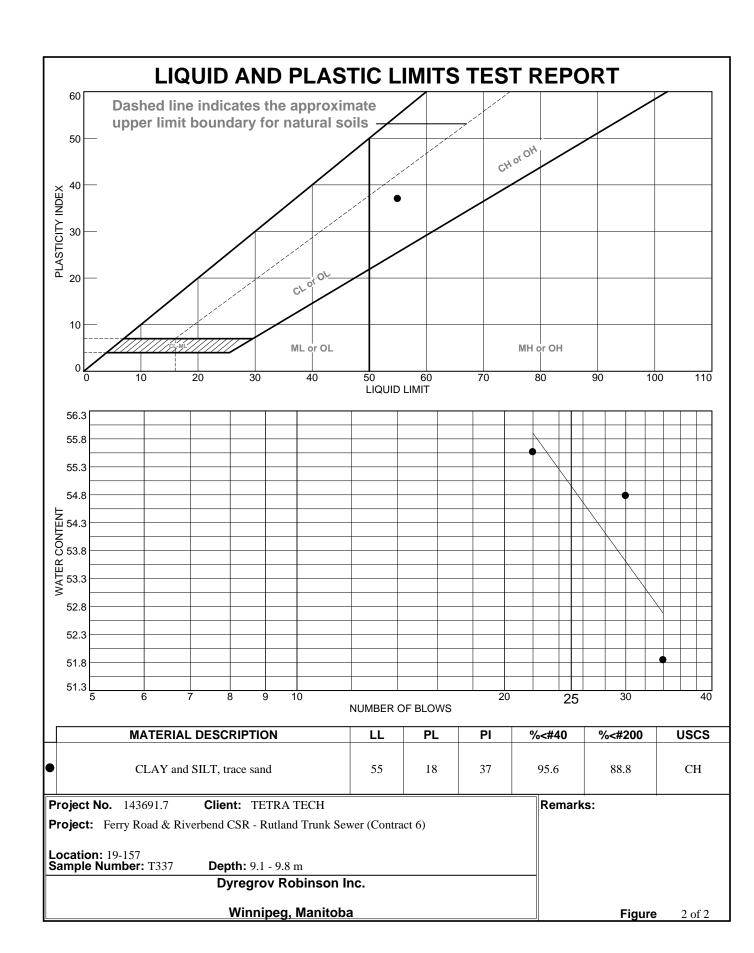


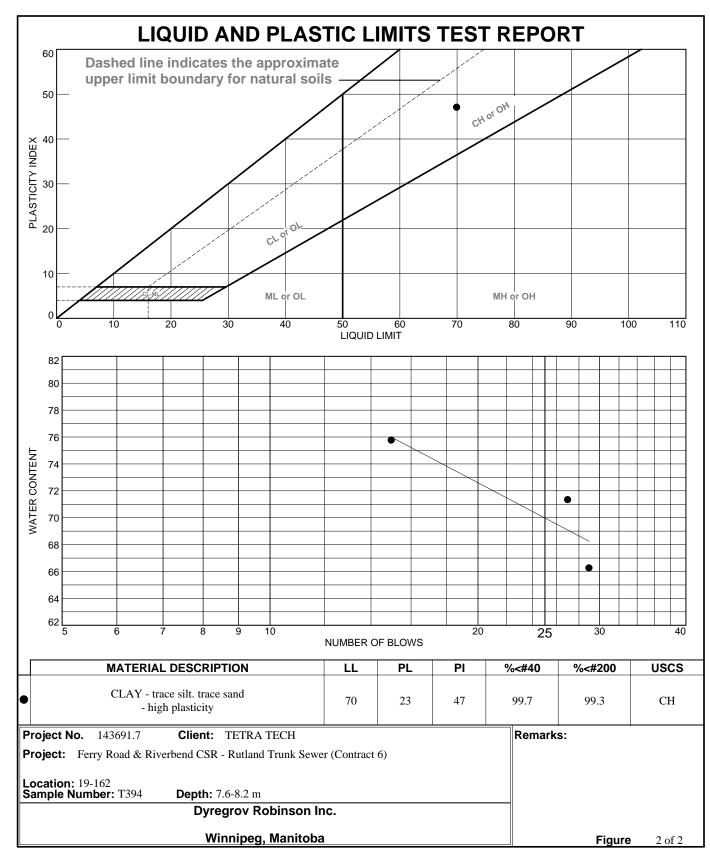

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Undrained Shear Strength vs Elevation

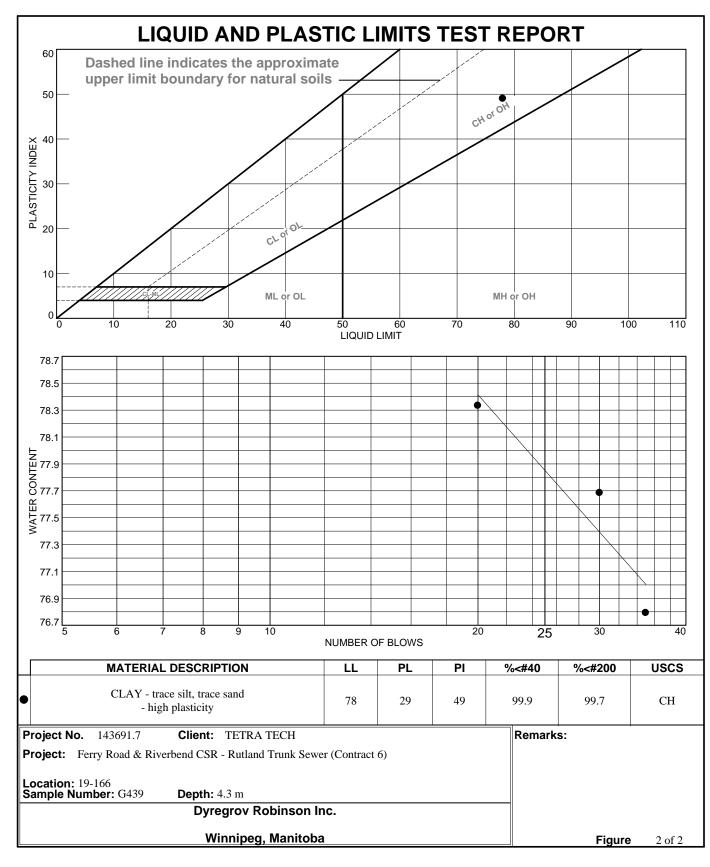


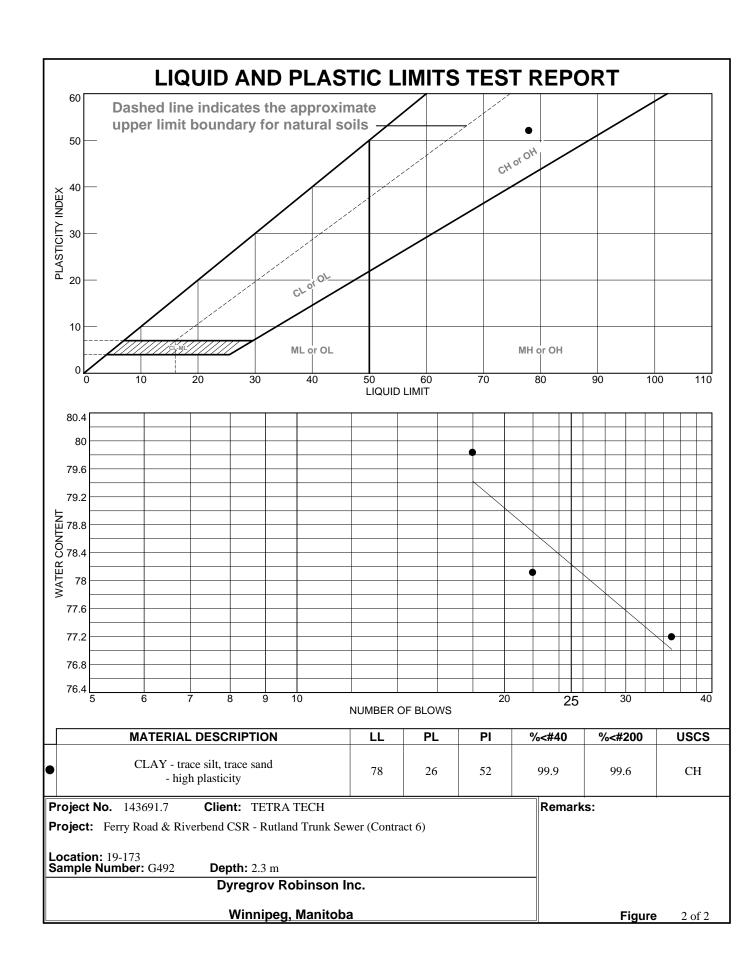


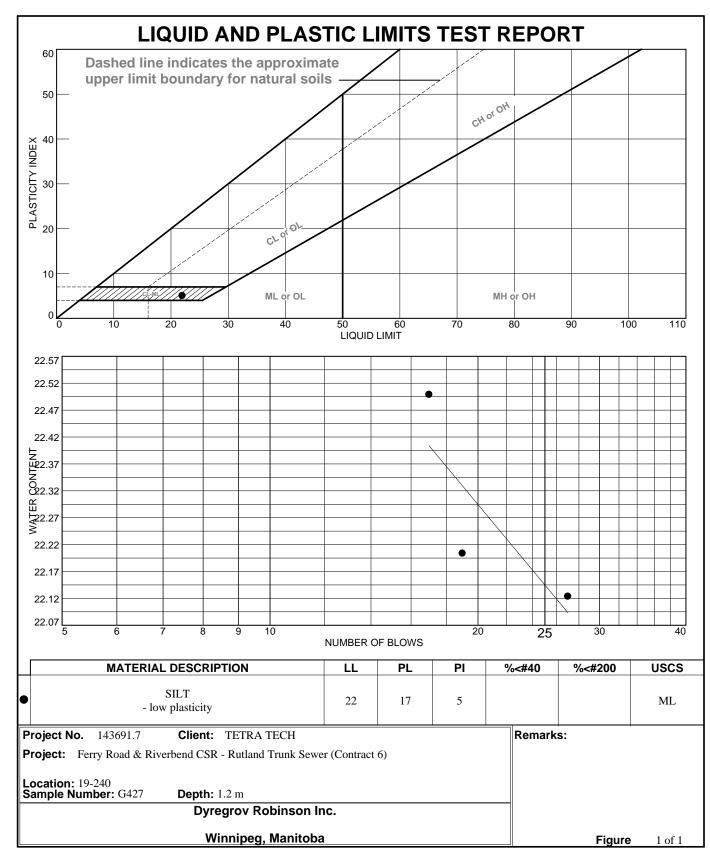


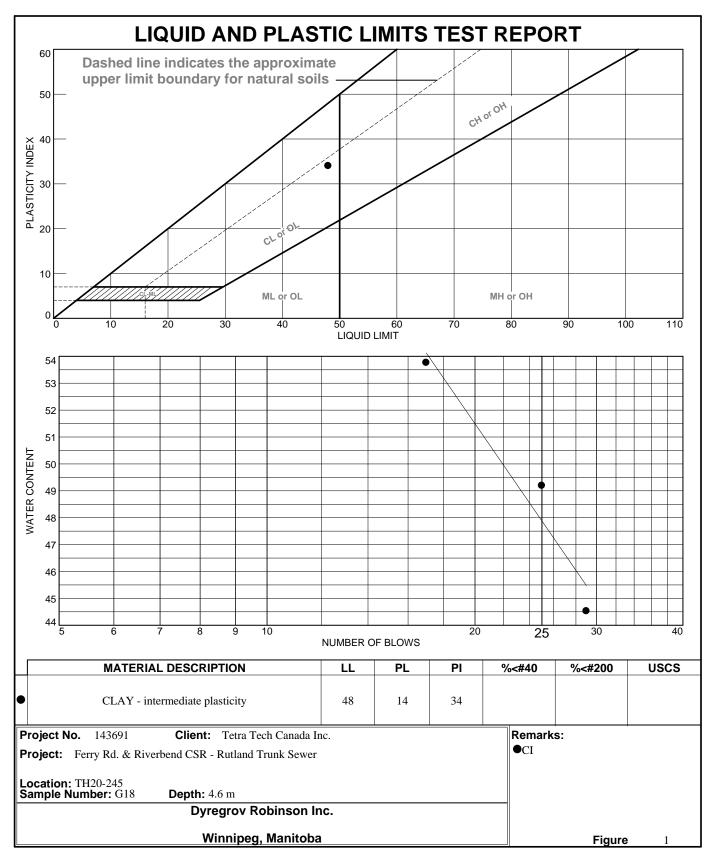


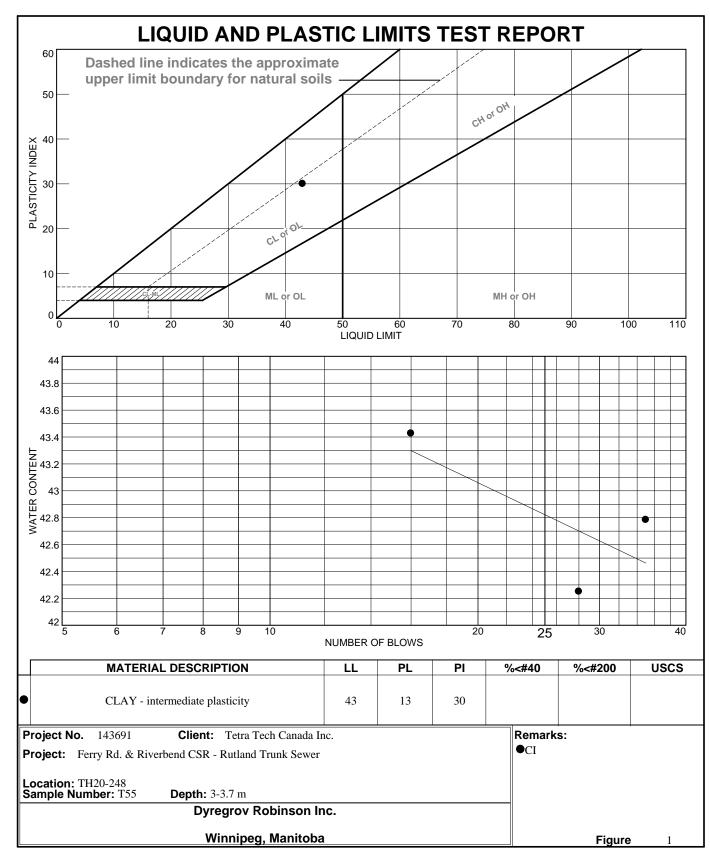


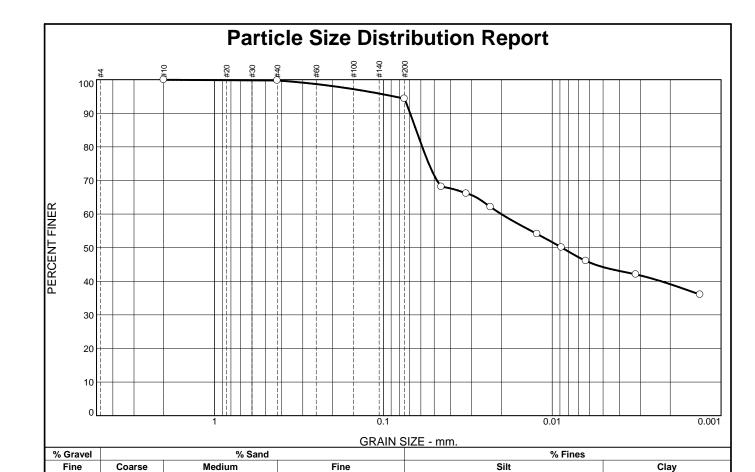












<u>5.4</u>

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.9		
#40	99.7		
#200	94.3		
0.0454 mm.	68.1		
0.0323 mm.	66.1		
0.0232 mm.	62.1		
0.0123 mm.	54.1		
0.0088 mm.	50.1		
0.0063 mm.	46.1		
0.0032 mm.	42.0		
0.0013 mm.	36.0		

0.2

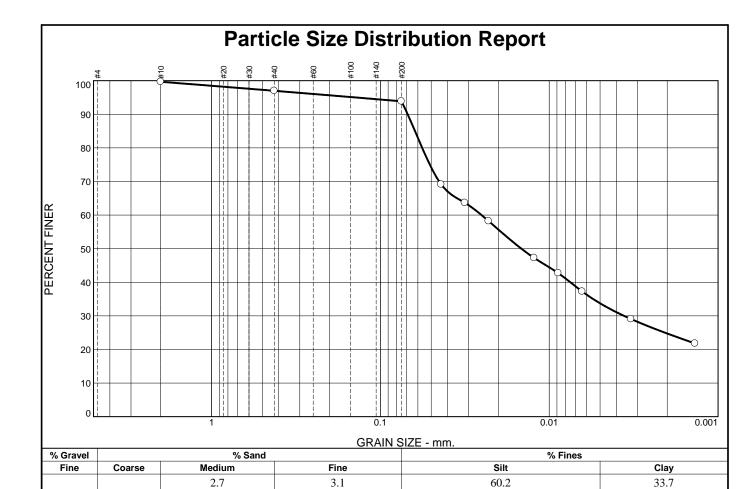
	Soil Description SILT and CLAY - trace sand - intermediate plasticity			
PL= 16	Atterberg Limits LL= 34	PI= 18		
D ₉₀ = 0.0695 D ₅₀ = 0.0088 D ₁₀ =	Coefficients D ₈₅ = 0.0639 D ₃₀ = C _u =	D ₆₀ = 0.0200 D ₁₅ = C _c =		
USCS= CI	Classification AASHTC)= A-6(16)		
	<u>Remarks</u>			

44.2

50.1

* (no specification provided)

Location: 19-149 Sample Number: G289 **Date:** 2019-7-29 **Depth:** 7.3 m


Dyregrov Robinson Inc.

Winnipeg, Manitoba

Client: TETRA TECH

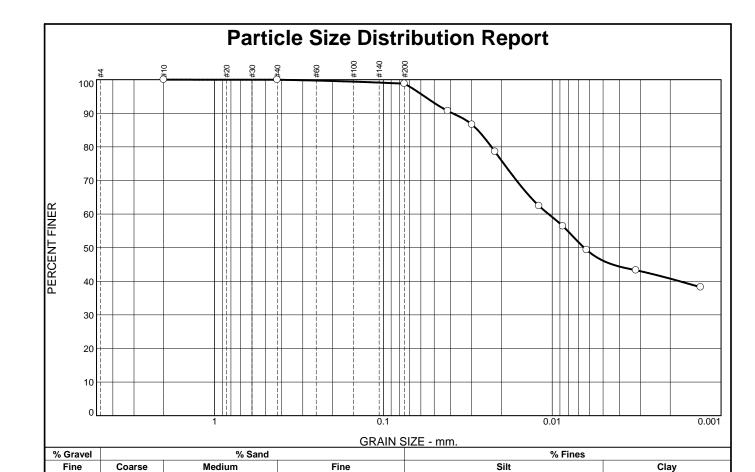
Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.7		
#40	97.0		
#200	93.9		
0.0436 mm.	69.1		
0.0316 mm.	63.7		
0.0228 mm.	58.2		
0.0123 mm.	47.3		
0.0088 mm.	42.7		
0.0064 mm.	37.3		
0.0033 mm.	29.1		
0.0014 mm.	21.8		

Soil Description SILT(Till) - clayey, trace sand				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.0689 D ₅₀ = 0.0146 D ₁₀ =	Coefficients D ₈₅ = 0.0624 D ₃₀ = 0.0036 C _u =	D ₆₀ = 0.0252 D ₁₅ = C _c =		
USCS= ML	Classification AASHT	O=		
	<u>Remarks</u>			

Location: 19-148 **Sample Number:** G302 **Date:** 2019-7-29 **Depth:** 8.5 m


Dyregrov Robinson Inc.

Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 1 Project No: 143691.7 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	100.0		
#200	98.8		
0.0415 mm.	90.7		
0.0299 mm.	86.6		
0.0218 mm.	78.6		
0.0120 mm.	62.4		
0.0086 mm.	56.4		
0.0063 mm.	49.3		
0.0032 mm.	43.3		
0.0013 mm.	38.2		

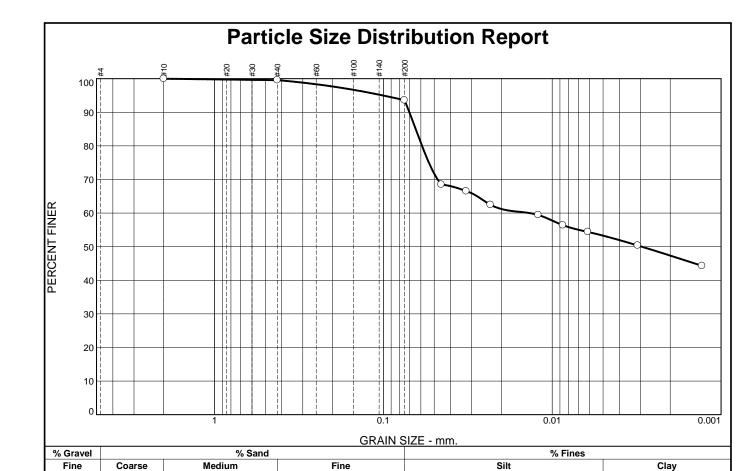
0.0

	Soil Description SILT and CLAY - trace sand - intermediate plasticity			
PL= 23	Atterberg Limits LL= 40	Pl= 17		
D ₉₀ = 0.0390 D ₅₀ = 0.0065 D ₁₀ =	Coefficients D ₈₅ = 0.0276 D ₃₀ = C _u =	D ₆₀ = 0.0105 D ₁₅ = C _c =		
USCS= CI	Classification AASHTC)= A-6(19)		
	<u>Remarks</u>			

46.1

52.7

* (no specification provided)


Location: 19-148 Sample Number: T296 **Date:** 2019-7-19 **Depth:** 3-3.7 m

Dyregrov Robinson Inc. Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.5		
#200	93.6		
0.0454 mm.	68.5		
0.0323 mm.	66.5		
0.0232 mm.	62.5		
0.0121 mm.	59.4		
0.0086 mm.	56.4		
0.0062 mm.	54.4		
0.0031 mm.	50.3		
0.0013 mm.	44.3		

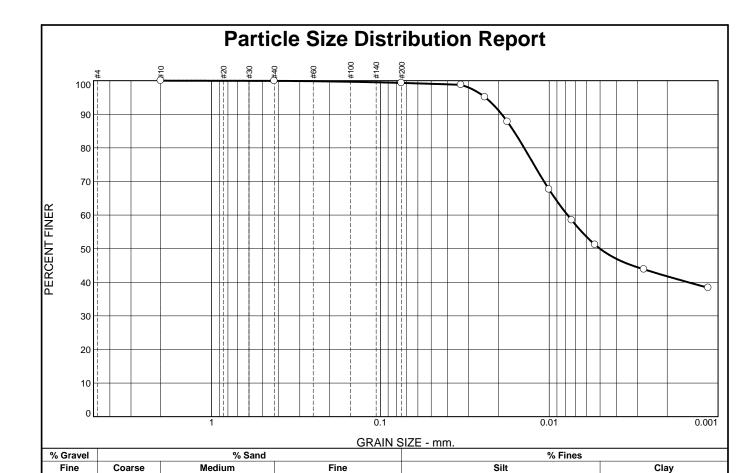
0.5

	Soil Description CLAY and SILT - trace sand - intermediate plasticity			
PL= 15	Atterberg Limits LL= 37	PI= 22		
D ₉₀ = 0.0702 D ₅₀ = 0.0030 D ₁₀ =	Coefficients D ₈₅ = 0.0643 D ₃₀ = C _u =	D ₆₀ = 0.0136 D ₁₅ = C _c =		
USCS= CI	Classification AASHTO	= A-6(20)		
	<u>Remarks</u>			

53.3

40.3

(no specification provided)


Location: 19-150 Sample Number: G277 **Date:** 2019-7-29 **Depth:** 4.6 m

Dyregrov Robinson Inc. Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: 143691.7 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.9		
#200	99.3		
0.0333 mm.	98.8		
0.0241 mm.	95.1		
0.0177 mm.	87.8		
0.0100 mm.	67.6		
0.0074 mm.	58.5		
0.0054 mm.	51.2		
0.0027 mm.	43.8		
0.0011 mm.	38.4		

0.1

	Soil Description CLAY and SILT - trace sand - intermediate plasticity			
PL= 20	Atterberg Limits LL= 46	PI= 26		
D ₉₀ = 0.0191 D ₅₀ = 0.0050 D ₁₀ =	Coefficients D ₈₅ = 0.0162 D ₃₀ = C _u =	D ₆₀ = 0.0078 D ₁₅ = C _c =		
USCS= CI	Classification AASHTC)= A-7-6(28)		
	<u>Remarks</u>			

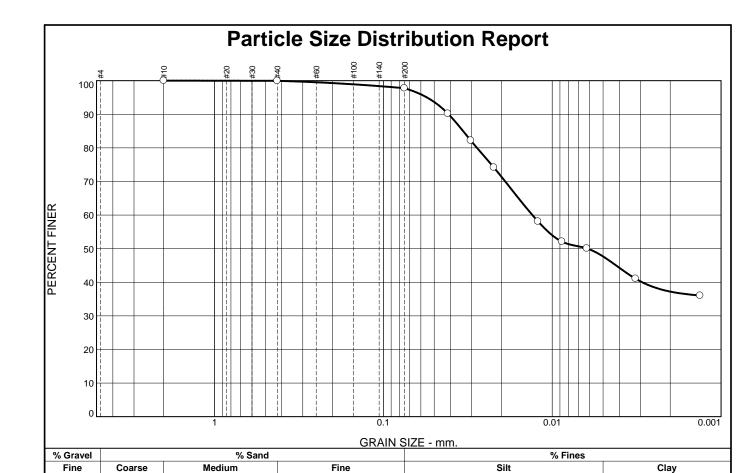
50.0

1 of 2

Figure

49.3

* (no specification provided)


Location: 19-151 Sample Number: T269B **Date:** 2019-7-26 **Depth:** 4.6-5.2 m

Dyregrov Robinson Inc.

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

Winnipeg, Manitoba Project No: 143691.7

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.9		
#200	97.7		
0.0415 mm.	90.2		
0.0304 mm.	82.2		
0.0222 mm.	74.2		
0.0121 mm.	58.1		
0.0088 mm.	52.1		
0.0062 mm.	50.1		
0.0032 mm.	41.0		
0.0013 mm.	36.0		

0.1

	Silt and CLAY - trace sand - intermediate plasticity			
PL= 20	Atterberg Limits LL= 33	Pl= 13		
D ₉₀ = 0.0411 D ₅₀ = 0.0062 D ₁₀ =	Coefficients D ₈₅ = 0.0337 D ₃₀ = C _u =	D ₆₀ = 0.0131 D ₁₅ = C _c =		
USCS= CL	Classification AASHTO:	= A-6(13)		
	<u>Remarks</u>			

47.7

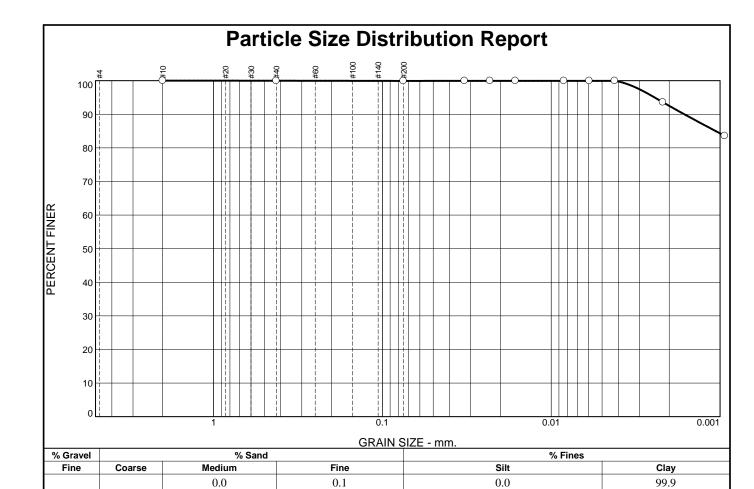
50.0

* (no specification provided)

0.0

0.0

Location: 19-151 **Sample Number:** G272 **Date:** 2019-7-26 **Depth:** 8.8 m


Dyregrov Robinson Inc.

Winnipeg, Manitoba

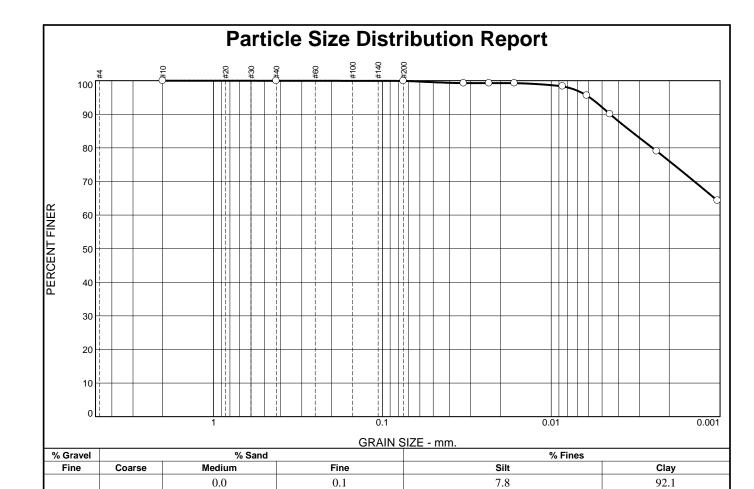
Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: 143691.7 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	100.0		
#200	99.9		
0.0326 mm.	99.9		
0.0230 mm.	99.9		
0.0163 mm.	99.9		
0.0084 mm.	99.9		
0.0059 mm.	99.9		
0.0042 mm.	99.9		
0.0022 mm.	93.6		
0.0009 mm.	83.6		

CLAY - high plasticity	Soil Description	
PL= 32	Atterberg Limits LL= 91	PI= 59
D ₉₀ = 0.0016 D ₅₀ = D ₁₀ =	Coefficients D85= 0.0011 D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHTO=	A-7-5(71)
	<u>Remarks</u>	


Location: 19-152 Sample Number: G240 **Date:** 2019-7-26 **Depth:** 4.3 m

Dyregrov Robinson Inc. Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

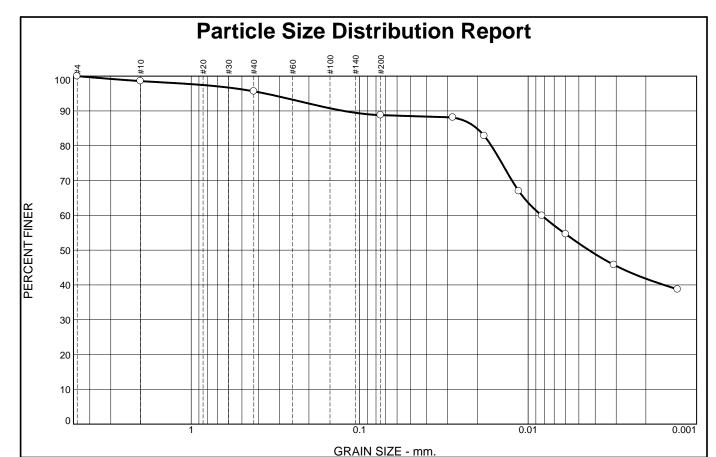
1 of 2 Project No: 143691.7 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	100.0		
#200	99.9		
0.0330 mm.	99.3		
0.0233 mm.	99.3		
0.0165 mm.	99.3		
0.0086 mm.	98.3		
0.0062 mm.	95.6		
0.0045 mm.	90.1		
0.0024 mm.	79.0		
0.0010 mm.	64.3		

CLAY - trace silt - high plasticity	Soil Description	
PL= 24	Atterberg Limits LL= 79	PI= 55
D ₉₀ = 0.0045 D ₅₀ = D ₁₀ =	Coefficients D85= 0.0034 D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHTO=	A-7-6(64)
	<u>Remarks</u>	

Location: 19-156 Sample Number: T326 **Depth:** 6.1-6.7 m Date:

Dyregrov Robinson Inc.


Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

Winnipeg, Manitoba

Project No: 143691.7

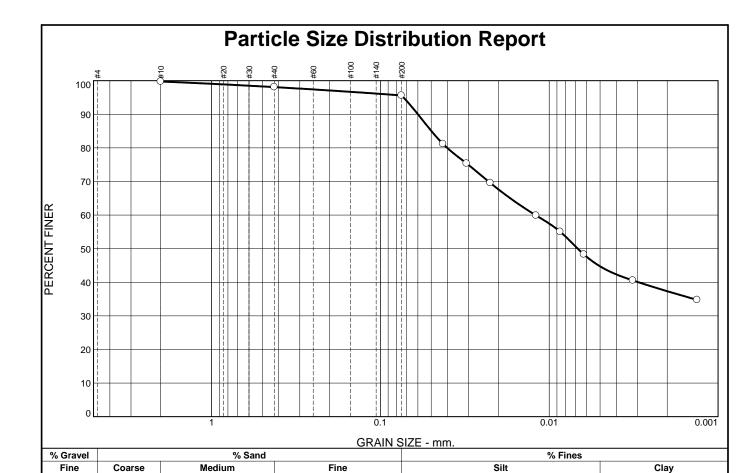
1 of 2 **Figure**

% Gravel % Sand		% Fines			
Fine	Coarse	Medium	Fine	Silt	Clay
0.0	1.4	3.0	6.8	36.9	51.9

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100.0		
#10	98.6		
#40	95.6		
#200	88.8		
0.0280 mm.	88.1		
0.0182 mm.	82.8		
0.0114 mm.	67.0		
0.0083 mm.	59.9		
0.0060 mm.	54.6		
0.0031 mm.	45.8		
0.0013 mm.	38.7		

CLAY and SILT,	Soil Description CLAY and SILT, trace sand				
PL= 18	Atterberg Limits LL= 55	PI= 37			
D ₉₀ = 0.1243 D ₅₀ = 0.0044 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0201 D ₃₀ = C _u =	D ₆₀ = 0.0083 D ₁₅ = C _c =			
USCS= CH	Classification AASHT	O= A-7-6(35)			
	<u>Remarks</u>				

Date: July 2019


(no specification provided)

Location: 19-157 **Sample Number:** T337 **Depth:** 9.1 - 9.8 m

Dyregrov Robinson Inc. Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

Winnipeg, Manitoba 1 of 2 **Project No:** 143691.7 Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.7		
#40	98.1		
#200	95.6		
0.0426 mm.	81.2		
0.0309 mm.	75.4		
0.0223 mm.	69.6		
0.0120 mm.	59.9		
0.0086 mm.	55.1		
0.0062 mm.	48.3		
0.0032 mm.	40.5		
0.0013 mm.	34.7		

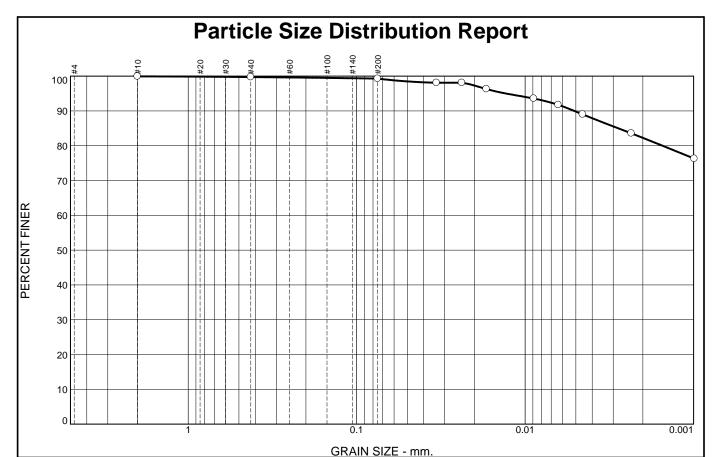
1.6

SILT and CLAY(T	Soil Description (TILL) - trace sand	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.0600 D ₅₀ = 0.0068 D ₁₀ =	Coefficients D ₈₅ = 0.0499 D ₃₀ = C _u =	D ₆₀ = 0.0121 D ₁₅ = C _c =
USCS= MH	Classification AASHT	O=
	<u>Remarks</u>	

44.7

50.9

* (no specification provided)

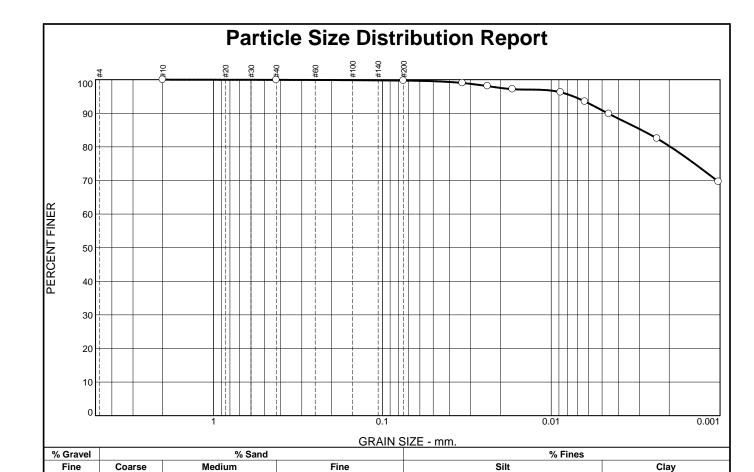

Location: 19-161 **Sample Number:** G386 **Date:** 2019-8-1 **Depth:** 9.8 m

Dyregrov Robinson Inc.

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

Winnipeg, Manitoba 1 of 1 Project No: 143691.7 Figure


% Gravel % Sand		% Fines			
Fine	Coarse	Medium	Fine	Silt	Clay
		0.2	0.4	9.5	89.8

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.9		
#40	99.7		
#200	99.3		
0.0336 mm.	98.1		
0.0237 mm.	98.1		
0.0170 mm.	96.3		
0.0089 mm.	93.6		
0.0063 mm.	91.7		
0.0046 mm.	89.0		
0.0023 mm.	83.6		
0.0010 mm.	76.3		

	Soil Description	
CLAY - trace silt high plasticity	trace sand	
PL= 23	Atterberg Limits LL= 70	PI= 47
D ₉₀ = 0.0051 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0028 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHTC)= A-7-6(53)
	<u>Remarks</u>	

Location: 19-162 Sample Number: T394 **Date:** 2019-8-1 **Depth:** 7.6-8.2 m

Dyregrov Robinson Inc.	Client: TETRA TECH	
- , .	Project: Ferry Road & Riverbend CSR - Rutland T	Frunk Sewer (Contract 6)
Winnipeg, Manitoba	Project No: 143691.7	Figure 1 of 2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.9		
#200	99.7		
0.0336 mm.	99.0		
0.0239 mm.	98.1		
0.0170 mm.	97.2		
0.0088 mm.	96.2		
0.0063 mm.	93.5		
0.0046 mm.	89.8		
0.0024 mm.	82.5		
0.0010 mm.	69.6		

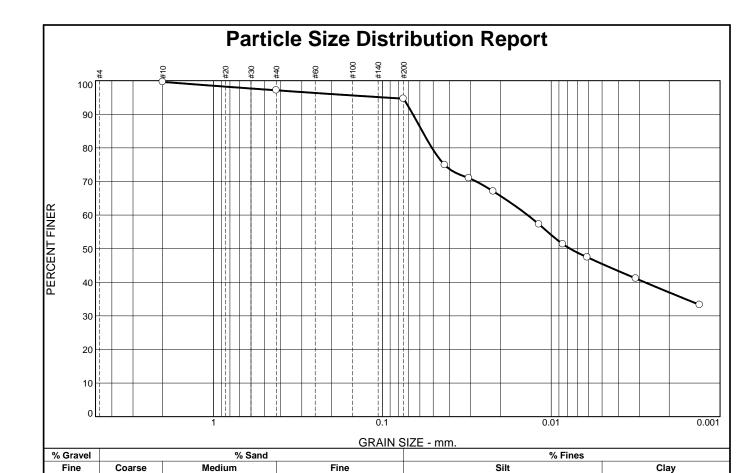
0.1

	Soil Description	
CLAY - trace silt, t - high plasticity	race sand	
PL= 29	Atterberg Limits LL= 78	PI= 49
D ₉₀ = 0.0046 D ₅₀ = D ₁₀ =	Coefficients D85= 0.0029 D30= Cu=	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHTO=	A-7-6(58)
	<u>Remarks</u>	

90.9

8.8

(no specification provided)


Location: 19-166 **Sample Number:** G439 **Date:** 2019-8-2 **Depth:** 4.3 m

Dyregrov Robinson Inc. Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: 143691.7 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.6		
#40	97.1		
#200	94.6		
0.0428 mm.	74.9		
0.0307 mm.	71.0		
0.0221 mm.	67.1		
0.0118 mm.	57.2		
0.0085 mm.	51.4		
0.0061 mm.	47.4		
0.0032 mm.	41.1		
0.0013 mm.	33.3		

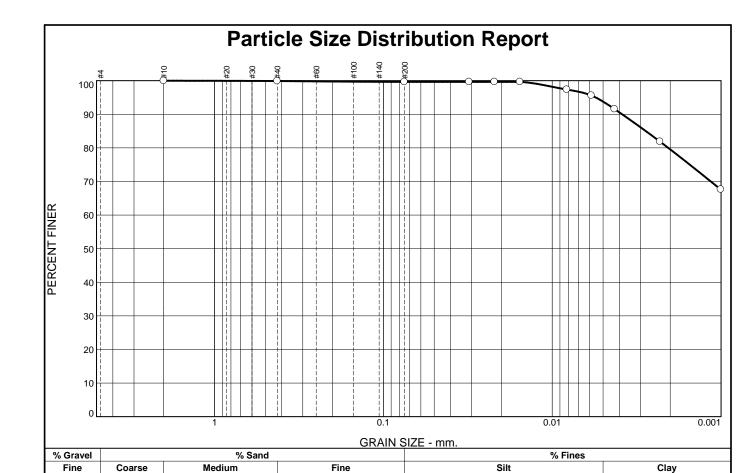
2.5

SILT and CLAY(T	Soil Description (FILL) - trace sand	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.0660 D ₅₀ = 0.0077 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0581 D ₃₀ = C _u =	D ₆₀ = 0.0138 D ₁₅ = C _c =
USCS= ML	Classification AASHT	O=
	<u>Remarks</u>	

45.5

49.1

* (no specification provided)


Location: 19-166 **Sample Number:** S443 **Date:** 2019-8-2 **Depth:** 9.1-9.6 m

Dyregrov Robinson Inc.

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

Winnipeg, Manitoba Project No: 143691.7 Figure 1 of 1

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	100.0		
#40	99.9		
#200	99.6		
0.0310 mm.	99.6		
0.0220 mm.	99.6		
0.0155 mm.	99.6		
0.0082 mm.	97.3		
0.0059 mm.	95.6		
0.0043 mm.	91.6		
0.0023 mm.	81.8		
0.0010 mm.	67.6		

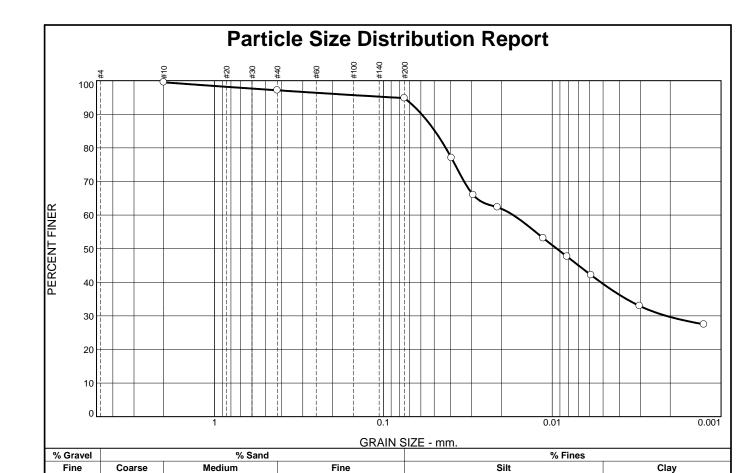
0.1

CLAY - trace silt, - high plasticity	Soil Description trace sand	
PL= 26	Atterberg Limits LL= 78	PI= 52
D ₉₀ = 0.0039 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0028 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= CH	Classification AASHTO=	= A-7-6(61)
	<u>Remarks</u>	

93.8

5.8

(no specification provided)


Location: 19-173 **Sample Number:** G492 **Date:** 2019-8-15 **Depth:** 2.3 m

Dyregrov Robinson Inc. Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 2 Project No: 143691.7 **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.5		
#40	97.1		
#200	94.8		
0.0395 mm.	77.0		
0.0294 mm.	66.0		
0.0211 mm.	62.3		
0.0113 mm.	53.1		
0.0082 mm.	47.6		
0.0059 mm.	42.1		
0.0030 mm.	33.0		
0.0013 mm.	27.5		

2.4

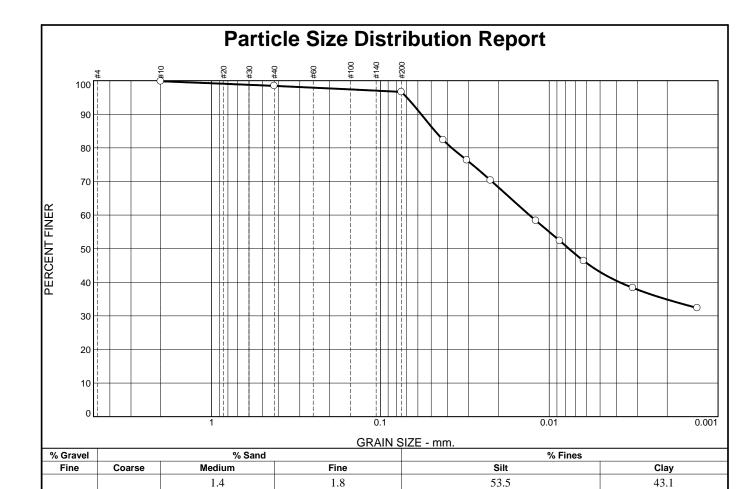
SILT and CLAY(1	Soil Description SILT and CLAY(TILL) - trace sand			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.0593 D ₅₀ = 0.0094 D ₁₀ =	Coefficients D ₈₅ = 0.0495 D ₃₀ = 0.0021 C _u =	D ₆₀ = 0.0171 D ₁₅ = C _c =		
USCS= MH	Classification AASHTO)=		
	<u>Remarks</u>			

39.5

55.3

* (no specification provided)

Location: 19-173 **Sample Number:** S496 **Date:** 2019-8-15 **Depth:** 6.1-6.5 m


Dyregrov Robinson Inc.

Winnipeg, Manitoba

Client: TETRA TECH

Project: Ferry Road & Riverbend CSR - Rutland Trunk Sewer (Contract 6)

1 of 1 Project No: 143691.7 Figure

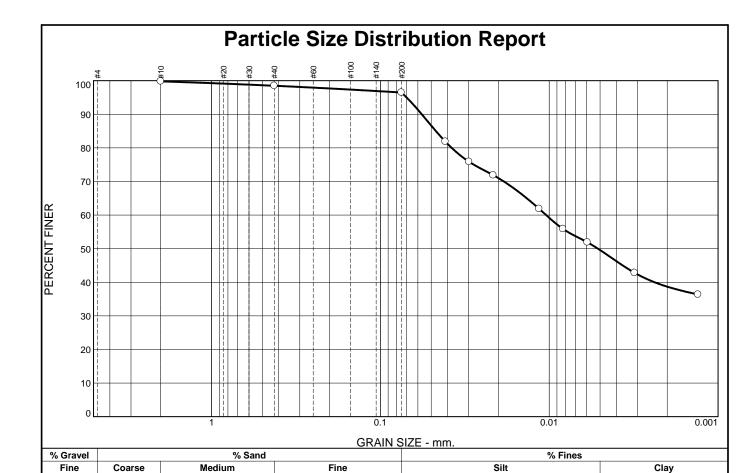
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.8		
#40	98.4		
#200	96.6		
0.0424 mm.	82.3		
0.0307 mm.	76.3		
0.0222 mm.	70.3		
0.0120 mm.	58.3		
0.0087 mm.	52.3		
0.0062 mm.	46.3		
0.0032 mm.	38.3		
0.0013 mm.	32.3		

SILT and CLAY (Soil Description Till), trace sand			
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.0573 D ₅₀ = 0.0076 D ₁₀ =	Coefficients D ₈₅ = 0.0475 D ₃₀ = C _u =	D ₆₀ = 0.0131 D ₁₅ = C _c =		
USCS=	Classification AASHT	O=		
	<u>Remarks</u>			

Location: TH20-244 **Sample Number:** G7

Depth: 6.1 M

Dyregrov Robinson Inc. Client: Tetra Tech Canada Inc.


Project: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer

Winnipeg, Manitoba

Project No:

Figure

Date: Jan 11, 2021

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.8		
#40	98.5		
#200	96.5		
0.0412 mm.	81.9		
0.0299 mm.	75.9		
0.0214 mm.	71.9		
0.0115 mm.	61.9		
0.0083 mm.	55.9		
0.0059 mm.	51.9		
0.0031 mm.	42.8		
0.0013 mm.	36.3		

1.3

CLAY and SILT(Soil Description CLAY and SILT(Till), trace sand						
PL=	Atterberg Limits LL=	PI=					
D ₉₀ = 0.0569 D ₅₀ = 0.0051 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.0469 D ₃₀ = C _u =	D ₆₀ = 0.0104 D ₁₅ = C _c =					
USCS=	Classification AASHTO)=					
	<u>Remarks</u>						

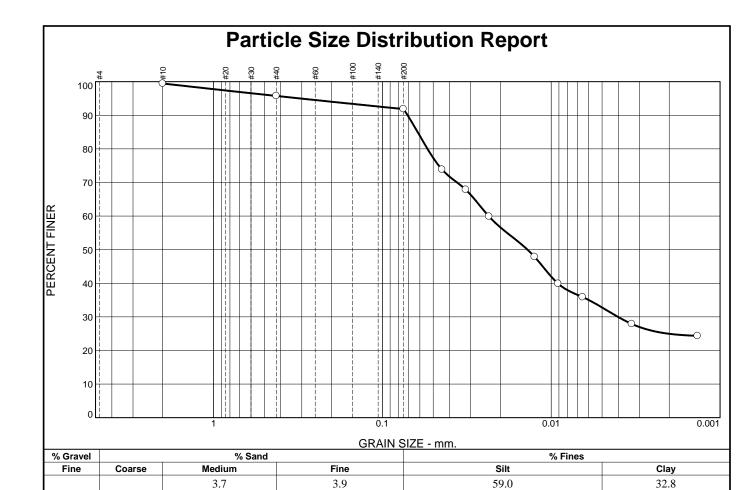
46.9

* (no specification provided)

Location: TH20-245 **Sample Number:** G20

Dyregrov Robinson Inc.

Client: Tetra Tech Canada Inc.


 $\textbf{Project:} \quad \text{Ferry Rd. \& Riverbend CSR - Rutland Trunk Sewer}$

Winnipeg, Manitoba

Project No: 143691

Figure

49.6

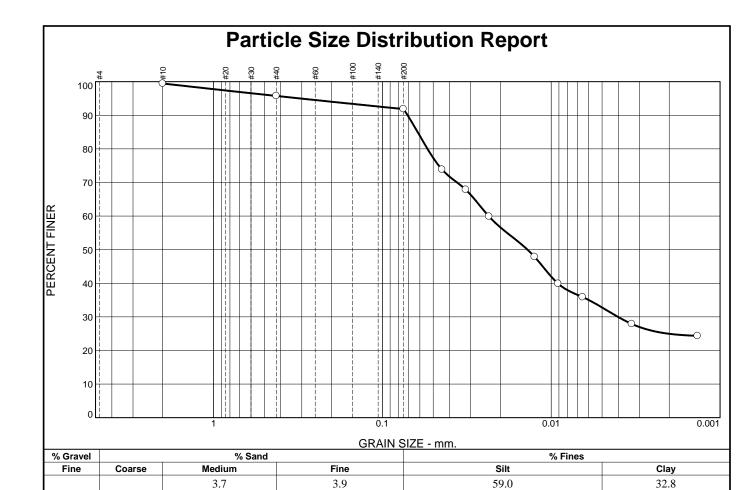
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.4		
#40	95.7		
#200	91.8		
0.0443 mm.	73.8		
0.0321 mm.	67.9		
0.0233 mm.	59.9		
0.0125 mm.	47.9		
0.0091 mm.	39.9		
0.0065 mm.	35.9		
0.0033 mm.	27.9		
0.0014 mm.	24.3		
* (no specific	ration provided)		

Soil Description SILT (Till) - clayey, trace sand					
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.0709 D ₅₀ = 0.0138 D ₁₀ =	D ₈₅ = 0.0618 D ₃₀ = 0.0040 C _u =	D ₆₀ = 0.0235 D ₁₅ = C _c =			
USCS=	Classification AASHT	O=			
	<u>Remarks</u>				

Location: TH20-246 **Sample Number:** S36

Date: 1/11/21**Depth:** 7.8 m

Dyregrov Robinson Inc.


Client: Tetra Tech Canada Inc.

Project: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer

Winnipeg, Manitoba

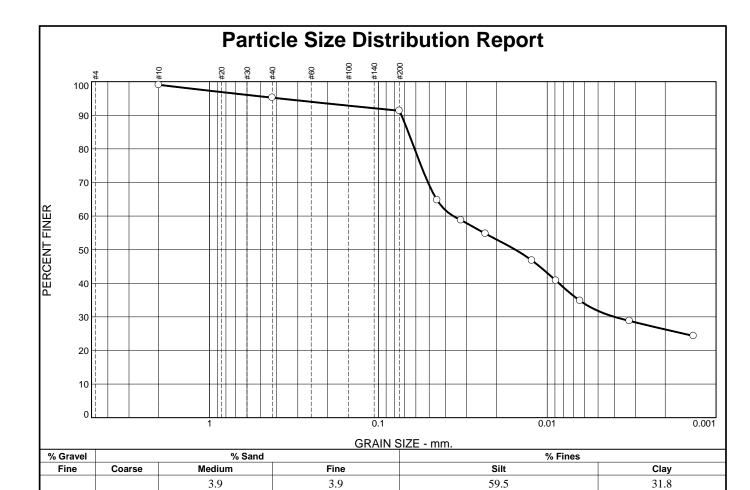
Project No:

Figure

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.4		
#40	95.7		
#200	91.8		
0.0443 mm.	73.8		
0.0321 mm.	67.9		
0.0233 mm.	59.9		
0.0125 mm.	47.9		
0.0091 mm.	39.9		
0.0065 mm.	35.9		
0.0033 mm.	27.9		
0.0014 mm.	24.3		
* (no specific	ration provided)		

Soil Description SILT - clayey, trace sand					
PL=	Atterberg Limits LL=	PI=			
D ₉₀ = 0.0709 D ₅₀ = 0.0138 D ₁₀ =	Coefficients D ₈₅ = 0.0618 D ₃₀ = 0.0040 C _u =	D ₆₀ = 0.0235 D ₁₅ = C _c =			
USCS=	Classification AASHTO)=			
	<u>Remarks</u>				

Location: TH20-246 **Sample Number:** S36


Date: 1/11/21**Depth:** 6.1-8 m

Dyregrov Robinson Inc.

Client: Tetra Tech Canada Inc.

Project: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer

Winnipeg, Manitoba Project No: **Figure**

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#10	99.1		
#40	95.2		
#200	91.3		
0.0449 mm.	64.8		
0.0324 mm.	58.8		
0.0232 mm.	54.8		
0.0123 mm.	46.8		
0.0089 mm.	40.8		
0.0064 mm.	34.8		
0.0033 mm.	28.8		
0.0014 mm.	24.3		
* (:6	cation provided)		

Soil Description SILT(Till) - clayey, trace sand				
PL=	Atterberg Limits LL=	PI=		
D ₉₀ = 0.0730 D ₅₀ = 0.0155 D ₁₀ =	Coefficients D ₈₅ = 0.0666 D ₃₀ = 0.0040 C _u =	D ₆₀ = 0.0360 D ₁₅ = C _c =		
USCS=	Classification AASHTO	O=		
	<u>Remarks</u>			

Location: TH20-248 **Sample Number:** S56 **Date:** 1/11/21**Depth:** 4.6-5 m

Dyregrov Robinson Inc.

Client: Tetra Tech Canada Inc.

Project: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer

Winnipeg, Manitoba Project No: **Figure**

Your Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Your C.O.C. #: N017656

Attention: GIL ROBINSON

DYREGROV ROBINSON INC

UNIT 1, 1692 DUBLIN AVENUE
WINNIPEG, MB

CANADA R3H 1A8

Report Date: 2020/03/03

Report #: R2852659 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C013407 Received: 2020/02/25, 09:00

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00020	SM 23-4500-CI-E m
Resistivity	6	N/A	2020/03/02		Auto Calc
Conductivity @25C (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
pH @25C (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP-00006	SM 23 4500 H+B m
Soluble Ions	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Ions Calculation	6	2020/02/26	2020/03/02		Auto Calc
Soluble Paste	6	2020/03/02	2020/03/02	AB SOP-00033	Carter 2nd ed 15.2 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Your C.O.C. #: N017656

Attention: GIL ROBINSON

DYREGROV ROBINSON INC

UNIT 1, 1692 DUBLIN AVENUE
WINNIPEG, MB

CANADA R3H 1A8

Report Date: 2020/03/03

Report #: R2852659 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C013407 Received: 2020/02/25, 09:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bvlabs.com
Phone# (403) 291-3077

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Labs Job #: C013407 DYREGROV ROBINSON INC client Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Sampler Initials: CR

RESULTS OF CHEMICAL ANALYSES OF SOIL

BV Labs ID		XL2647	XL2648		XL2649		
Sampling Date		2020/02/24	2020/02/24		2020/02/24		
COC Number		N017656	N017656		N017656		
	UNITS	19-149 (G286-2.7)	19-151 (G267-2.2)	RDL	19-153 (G248-4.1)	RDL	QC Batch
Calculated Parameters	_ -	•	•	•		•	
Resistivity @ 25 °C	ohm-m	8.7	35	0.050	1.6	0.050	9777999
Calculated Sulphate (SO4)	%	0.017	0.0010	0.00013	0.34	0.00013	9778002
Soluble Parameters	•						
Soluble Chloride (CI)	mg/L	30	18	5.0	490 (1)	10	9783378
Soluble Conductivity	dS/m	1.2	0.29	0.020	6.1	0.020	9782932
Soluble pH	рН	7.55	7.81	N/A	7.59	N/A	9781975
Saturation %	%	56	49	N/A	110	N/A	9781971
Soluble Sulphate (SO4)	mg/L	300	21	5.0	3200	5.0	9783029

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		XL2650	XL2651		XL2652		
Sampling Date		2020/02/24	2020/02/24		2020/02/24		
COC Number		N017656	N017656		N017656		
	UNITS	19-161 (G383-5.7)	19-167 (G456-5.7)	RDL	19- 172 (G486-6.6)	RDL	QC Batch
Calculated Parameters							
Resistivity @ 25 °C	ohm-m	2.6	3.8	0.050	1.9	0.050	9777999
Calculated Sulphate (SO4)	%	0.20	0.13	0.00013	0.064	0.00013	9778002
Soluble Parameters						•	
Soluble Chloride (CI)	mg/L	220	17	5.0	850 (1)	25	9783378
Soluble Conductivity	dS/m	3.9	2.6	0.020	5.3	0.020	9782932
Soluble pH	рН	7.68	7.81	N/A	7.83	N/A	9781975
Saturation %	%	95	86	N/A	41	N/A	9781971
Soluble Sulphate (SO4)	mg/L	2100	1500	5.0	1500	5.0	9783029

RDL = Reportable Detection Limit

N/A = Not Applicable

N/A = Not Applicable

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Sampler Initials: CR

GENERAL COMMENTS

Results relate only to the items tested.

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Sampler Initials: CR

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9781971	IK0	QC Standard	Saturation %	2020/03/02		101	%	75 - 125
9781971	IK0	RPD	Saturation %	2020/03/02	0.42		%	12
9781971	IK0	RPD [XL2648-01]	Saturation %	2020/03/02	9.8		%	12
9781975	JHC	QC Standard	Soluble pH	2020/03/02		99	%	98 - 102
9781975	JHC	Spiked Blank	Soluble pH	2020/03/02		99	%	97 - 103
9781975	JHC	RPD [XL2648-01]	Soluble pH	2020/03/02	0.26		%	N/A
9782932	LZ0	QC Standard	Soluble Conductivity	2020/03/02		96	%	75 - 125
9782932	LZ0	Spiked Blank	Soluble Conductivity	2020/03/02		99	%	90 - 110
9782932	LZ0	Method Blank	Soluble Conductivity	2020/03/02	ND,		dS/m	
					RDL=0.020			
9782932	LZ0	RPD	Soluble Conductivity	2020/03/02	0.57		%	20
9783029	LQ1	QC Standard	Soluble Sulphate (SO4)	2020/03/02		90	%	75 - 125
9783029	LQ1	Method Blank	Soluble Sulphate (SO4)	2020/03/02	ND,		mg/L	
					RDL=5.0			
9783029	LQ1	RPD	Soluble Sulphate (SO4)	2020/03/02	4.3		%	30
9783378	STI	Matrix Spike	Soluble Chloride (Cl)	2020/03/02		100	%	75 - 125
9783378	STI	QC Standard	Soluble Chloride (CI)	2020/03/02		90	%	75 - 125
9783378	STI	Spiked Blank	Soluble Chloride (CI)	2020/03/02		106	%	80 - 120
9783378	STI	Method Blank	Soluble Chloride (Cl)	2020/03/02	ND,		mg/L	
					RDL=5.0			
9783378	STI	RPD	Soluble Chloride (Cl)	2020/03/02	11		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND TRUNK SEWER

Sampler Initials: CR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

 $Ghayasuddin\,Khan,\,M.Sc.,\,P.Chem.,\,QP,\,Scientific\,Specialist,\,Inorganics$

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 143691.7 Your Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your C.O.C. #: N017649

Attention: GIL ROBINSON

DYREGROV ROBINSON INC

UNIT 1, 1692 DUBLIN AVENUE
WINNIPEG, MB

CANADA R3H 1A8

Report Date: 2021/02/02

Report #: R2982658 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C106368 Received: 2021/01/29, 13:00

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00020	SM 23-4500-CI-E m
Resistivity	2	N/A	2021/02/01		Auto Calc
Conductivity @25C (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
pH @25C (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP-00006	SM 23 4500 H+B m
Soluble Ions	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Ions Calculation	2	2021/01/30	2021/02/01		Auto Calc
Soluble Paste	2	2021/02/01	2021/02/01	AB SOP-00033	Carter 2nd ed 15.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: 143691.7 Your Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your C.O.C. #: N017649

Attention: GIL ROBINSON

DYREGROV ROBINSON INC

UNIT 1, 1692 DUBLIN AVENUE
WINNIPEG, MB

CANADA R3H 1A8

Report Date: 2021/02/02

Report #: R2982658 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C106368 Received: 2021/01/29, 13:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (403) 291-3077

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2021/02/02

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your P.O. #: 143691.7 Sampler Initials: CR

RESULTS OF CHEMICAL ANALYSES OF SOIL

BV Labs ID		ZF9026		ZF9027		
Sampling Date		2020/12/01		2020/12/01		
COC Number		N017649		N017649		
	UNITS	TH20-244 (T5)	RDL	TH20-248 (S57)	RDL	QC Batch
Calculated Parameters						
Resistivity @ 25 °C	ohm-m	2.7	0.050	8.5	0.050	A145428
Calculated Sulphate (SO4)	%	0.11	0.00013	0.0063	0.00013	A145429
Soluble Parameters						
Soluble Chloride (Cl)	mg/L	470 (1)	20	150	10	A146734
Soluble Conductivity	dS/m	3.7	0.020	1.2	0.020	A146752
Soluble pH	рН	7.89	N/A	8.29	N/A	A146596
Saturation %	%	73	N/A	23	N/A	A146264
Soluble Sulphate (SO4)	mg/L	1500	5.0	280	5.0	A146727

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your P.O. #: 143691.7 Sampler Initials: CR

GENERAL COMMENTS

Sample ZF9026 [TH20-244 (T5)]: Sample was analyzed past method specified hold time for pH @25C (Soluble). Sample was analyzed past method specified hold time for Conductivity @25C (Soluble). Sample was analyzed past method specified hold time for Chloride (Soluble).

Sample ZF9027 [TH20-248 (S57)]: Sample was analyzed past method specified hold time for pH @25C (Soluble). Sample was analyzed past method specified hold time for Conductivity @25C (Soluble). Sample was analyzed past method specified hold time for Chloride (Soluble).

Results relate only to the items tested.

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your P.O. #: 143691.7 Sampler Initials: CR

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A146264	EH2	QC Standard	Saturation %	2021/02/01		99	%	75 - 125
A146264	EH2	RPD	Saturation %	2021/02/01	8.9		%	12
A146264	EH2	RPD [ZF9026-01]	Saturation %	2021/02/01	2.2		%	12
A146596	JHC	QC Standard	Soluble pH	2021/02/01		99	%	98 - 102
A146596	JHC	Spiked Blank	Soluble pH	2021/02/01		100	%	97 - 103
A146596	JHC	RPD [ZF9026-01]	Soluble pH	2021/02/01	0.25		%	N/A
A146727	PL	QC Standard	Soluble Sulphate (SO4)	2021/02/01		104	%	75 - 125
A146727	PL	Method Blank	Soluble Sulphate (SO4)	2021/02/01	ND,		mg/L	
					RDL=5.0			
A146727	PL	RPD	Soluble Sulphate (SO4)	2021/02/01	3.5		%	30
A146734	STI	Matrix Spike	Soluble Chloride (Cl)	2021/02/01		116	%	75 - 125
A146734	STI	QC Standard	Soluble Chloride (Cl)	2021/02/01		98	%	75 - 125
A146734	STI	Spiked Blank	Soluble Chloride (Cl)	2021/02/01		108	%	80 - 120
A146734	STI	Method Blank	Soluble Chloride (Cl)	2021/02/01	ND,		mg/L	
					RDL=10			
A146734	STI	RPD	Soluble Chloride (Cl)	2021/02/01	NC		%	30
A146752	LZ0	QC Standard	Soluble Conductivity	2021/02/01		96	%	75 - 125
A146752	LZ0	Spiked Blank	Soluble Conductivity	2021/02/01		99	%	90 - 110
A146752	LZ0	Method Blank	Soluble Conductivity	2021/02/01	ND,		dS/m	
					RDL=0.020			
A146752	LZ0	RPD	Soluble Conductivity	2021/02/01	11		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DYREGROV ROBINSON INC Client Project #: 143691.7

Site Location: RUTLAND N. OF SILVER

Your P.O. #: 143691.7 Sampler Initials: CR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

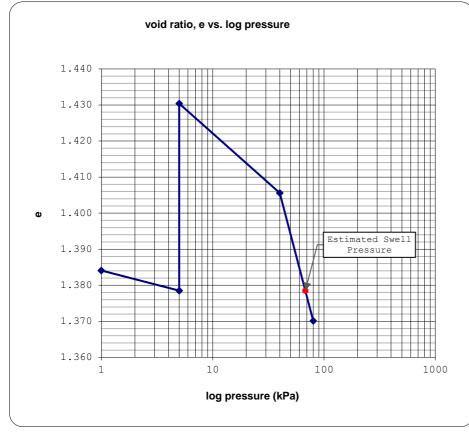
Sandy (Wei) Yuan, M.Sc., QP, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SWELL TEST REPORT

ASTM D4546-14 TEST METHOD A

Client	Dyregrov Robinson Inc.	Test Hole	TH156	Test Start: 1	5-Mar-20
Project	Project #14369	Sample	T326	Tested By:	NM
Project No	o. WX11735	Depth	20-22 ft	<u> </u>	


Before Test After Test Soil Properties

Consolidation ring no.	#12	Mass(samplewet+ring+tare)	301.20 <i>g</i>
Mass of ring	90.51 <i>g</i>	Mass of tare	71.55 <i>g</i>
Inside diameter of the ring	6.337 cm	Mass (wet soil + ring)	229.65 <i>g</i>
Height of the specimen, Ho	2.496 cm	Mass of wet sample	139.14 g
Area of the specimen	31.540 cm2	Mass (dry soil+ring+can)	251.06 <i>g</i>
Mass (specimen + ring)	228.73 g	Mass of dry specimen	89.00 g
Mass of wet sample	138.2 <i>g</i>	Final MC of specimen	56.3%
Initial Moisture Content	55.3%	Specific gravity of Solids	2.7
		Seating pressure	1 kPa
Manual Bassadadaa ad	0 - 11		

Height of Solids 1.0451 cm 1.5606 cm Height of water before test **1.5897** cm Height of water after test **0.0189** cm Change in height of specimen after test Height of specimen after test 2.4771 cm a Void ratio before test 1.388 **Visual Description of Soil** Void ratio after test 1.370 Clay (CH) - silty, trace sand, high plastic, moist, Degree of saturation before test 107.56% dark greyish brown Degree of saturation after test 111.02% 1.131 g/cm3 Dry Density before test

Mass of solids

Mass of water in specimen before test Mass of water in specimen after test

Load No.	Tressure	Ratio
Seating	1	1.384
1	5	1.379
2	5	1.430
3	40	1.406
4	80	1.370

TABLE 1: Test Summary

89 g **49.22** *g*

50.14 *g*

Final Results:	Swell (+) / Collpase (-) Strain	=	2.2%	Swell
	Estimated Swell Pressure	=	68	kPa

SWELL TEST REPORT

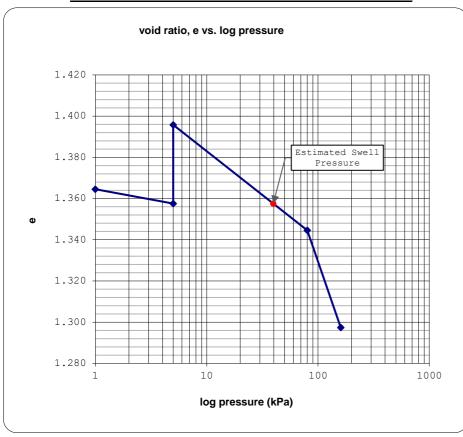
ASTM D4546-14 TEST METHOD A

Client	Dyregrov Robinson Inc.	Test Hole	TH162	Test Start:	15-Mar-20
Project	Project #14369	Sample	T394	Tested By:	NM
Project No	o. WX11735	Depth	25-27 ft		

Before Test After Test

Consolidation ring no.	#4	Mass(samplewet+ring+tare)	357.82 g
Mass of ring	109.99 <i>g</i>	Mass of tare	114.30 <i>g</i>
Inside diameter of the ring	6.346 cm	Mass (wet soil + ring)	243.52 g
Height of the specimen, H_{o}	2.455 cm	Mass of wet sample	133.53 <i>g</i>
Area of the specimen	31.629 cm2	Mass (dry soil+ring+can)	312.81 <i>g</i>
Mass (specimen + ring)	244.60 <i>g</i>	Mass of dry specimen	88.52 g
Mass of wet sample	134.6 <i>g</i>	Final MC of specimen	50.8%
Initial Moisture Content	52.1%	Specific gravity of Solids	2.7
		Seating pressure	1 kPa
	~		

Visual Description of Soil


Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

Mass of solids **88.52** *g* Mass of water in specimen before test

Soil Properties

46.09 *g* Mass of water in specimen after test **45.01** *g* Height of Solids 1.0365 cm 1.4572 cm Height of water before test **1.4230** cm Height of water after test **0.0737** cm Change in height of specimen after test 2.3813 cm Height of specimen after test a Void ratio before test 1.368 Void ratio after test 1.297 Degree of saturation before test 102.73% 105.82%

Degree of saturation after test 1.140 g/cm3 Dry Density before test

TABLE 1: Test Summary

Load No.	Pressure	Void Ratio
Seating	1	1.365
1	5	1.358
2	5	1.396
3	80	1.345
4	160	1.297

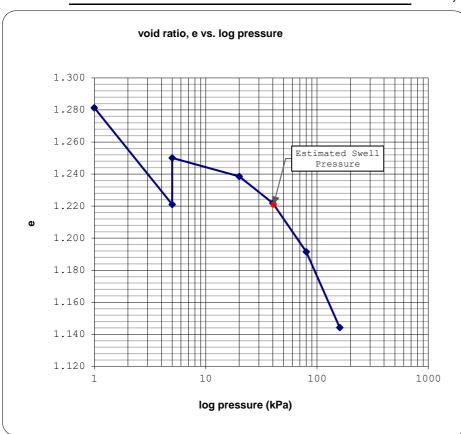
Final Results: Swell (+) / Collpase (-) Strain 1.6% Swell **Estimated Swell Pressure** kPa 40

SWELL TEST REPORT

ASTM D4546-14 TEST METHOD A

Client	Dyregrov Robinson Inc.	Test Hole	TH19-173	Test Start:	19-Mar-20
Project	Project 14369.7	Sample	T493	Tested By:	NM/IT
Project No	WX11735	Depth	10-12 ft		

Before Test After Test


Consolidation ring no.	#4	Mass(samplewet+ring+tare)	384.99 <i>g</i>
Mass of ring	109.99 <i>g</i>	Mass of tare	137.38 <i>g</i>
Inside diameter of the ring	6.346 cm	Mass (wet soil + ring)	247.61 g
Height of the specimen, Ho	2.487 cm	Mass of wet sample	137.62 <i>g</i>
Area of the specimen	31.629 cm2	Mass (dry soil+ring+can)	340.30 <i>g</i>
Mass (specimen + ring)	247.33 g	Mass of dry specimen	92.93 g
Mass of wet sample	137.3 <i>g</i>	Final MC of specimen	48.1%
Initial Moisture Content	47.8%	Specific gravity of Solids	2.7
·		Seating pressure	1 kPa
Manual Bassaladian at	0 - 11		

Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

Soil Properties

Mass of solids	92.93 g
Mass of water in specimen before test	44.41 g
Mass of water in specimen after test	44.69 g
Height of Solids	1.0882 cm
Height of water before test	1.4041 cm
Height of water after test	1.4129 cm
Change in height of specimen after test	0.1537 cm
Height of specimen after test	2.3333 cm
Void ratio before test	1.285
Void ratio after test	1.144
Degree of saturation before test	100.38%
Degree of saturation after test	113.48%
Dry Density before test	1.181 g/cm3

TABLE 1: Test Summary

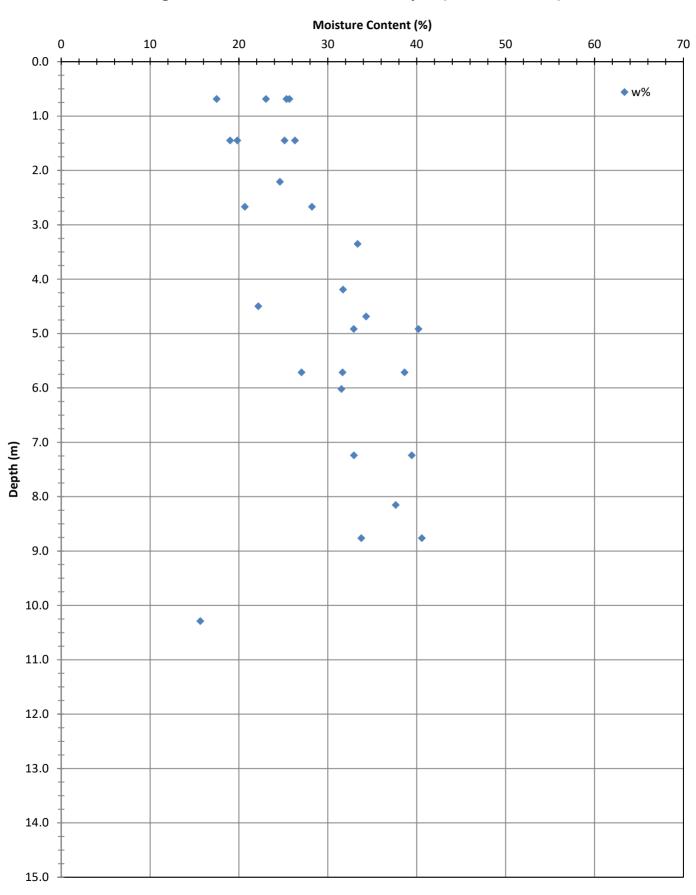
Load No.	Pressure	Void Ratio
Seating	1	1.281
1	5	1.221
2	5	1.250
3	20	1.239
4	40	1.222
5	80	1.192
6	160	1.144

Final Results:

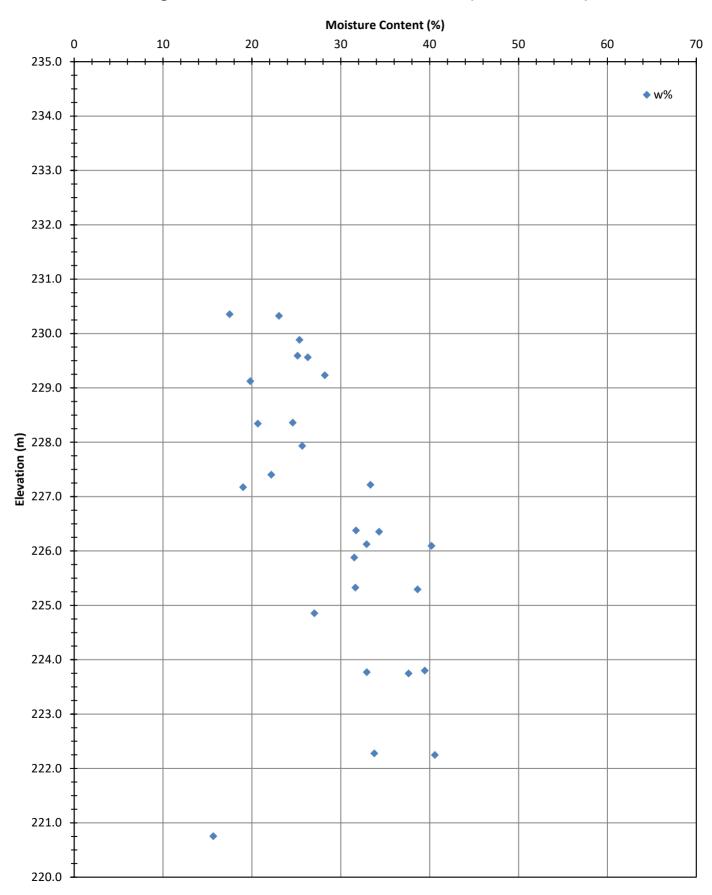
Swell (+) / Collpase (-) Strain = **Estimated Swell Pressure**

1.3% kPa 41

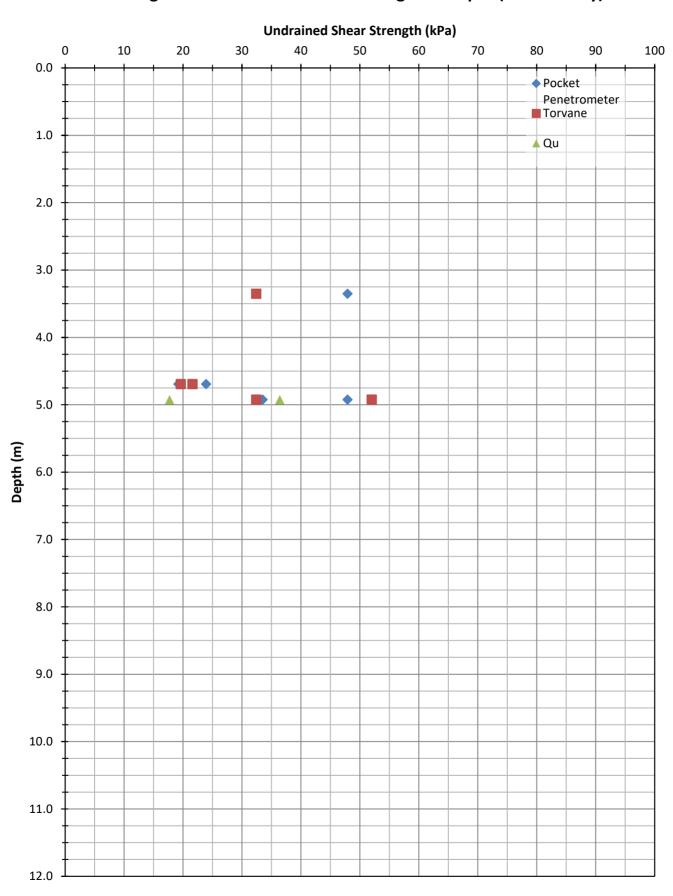
Swell

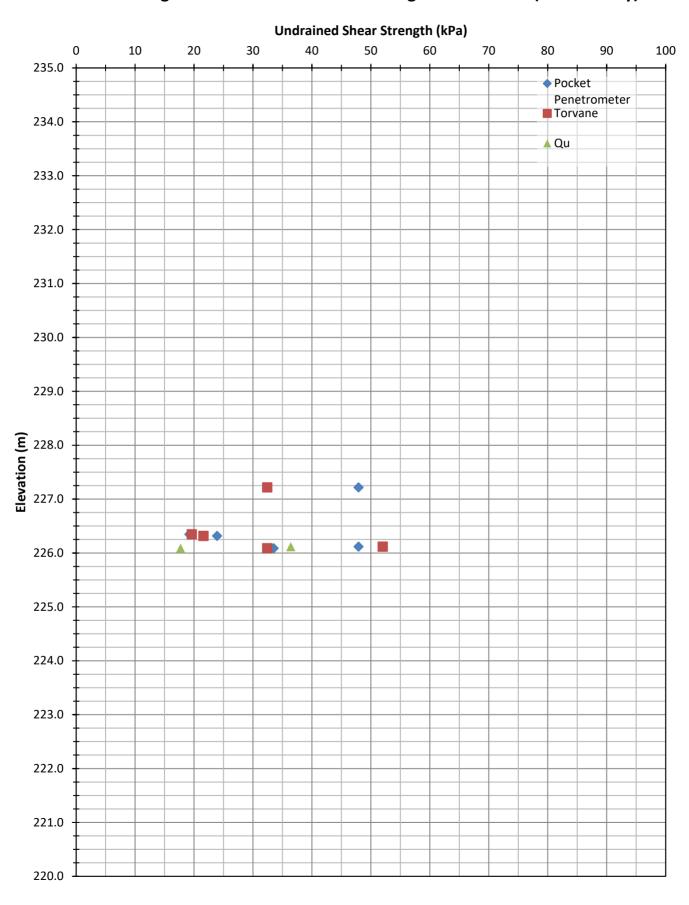


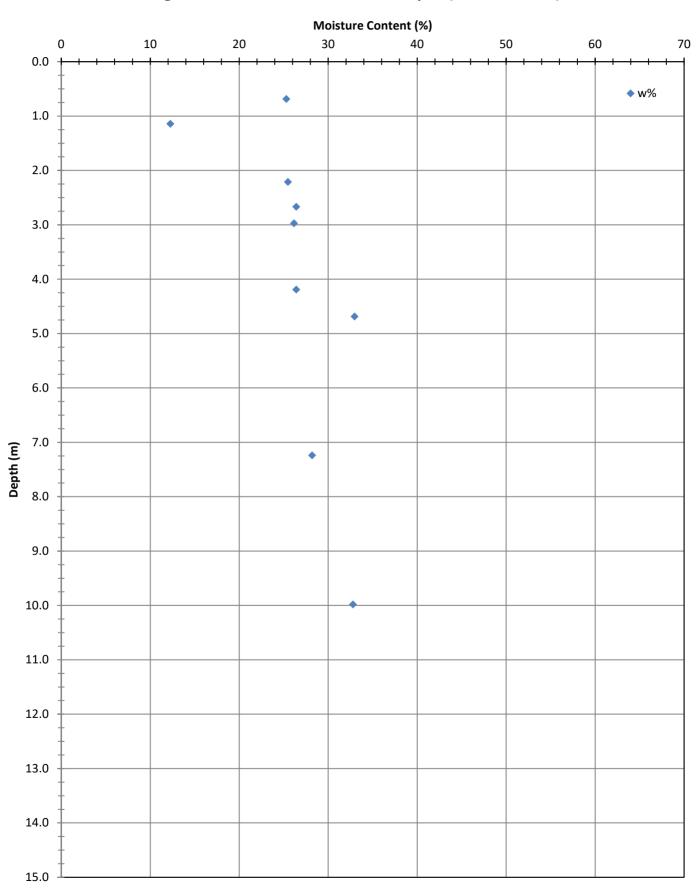
APPENDIX E

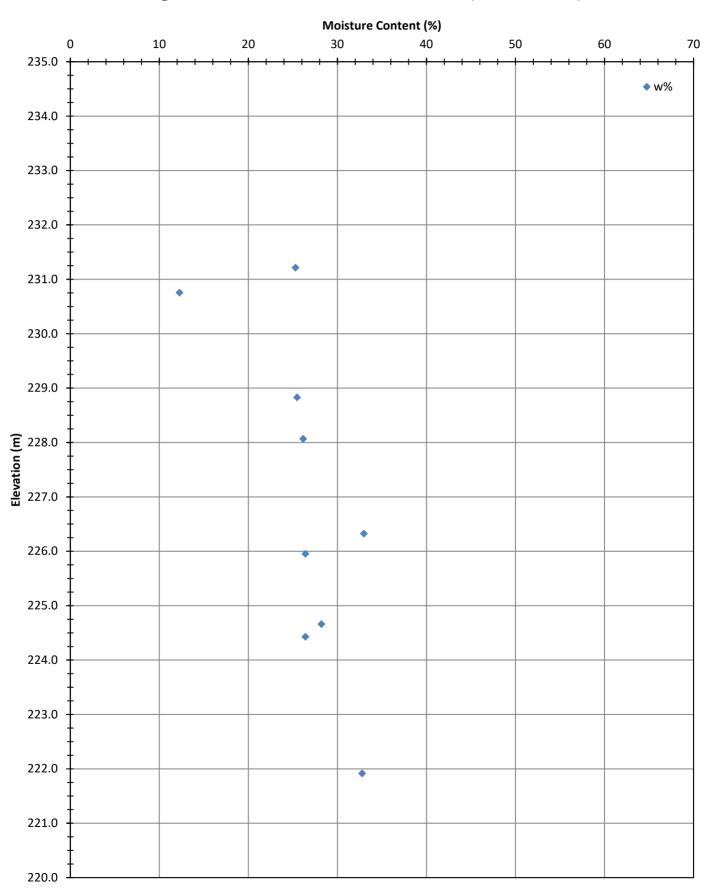

Laboratory Testing Plots

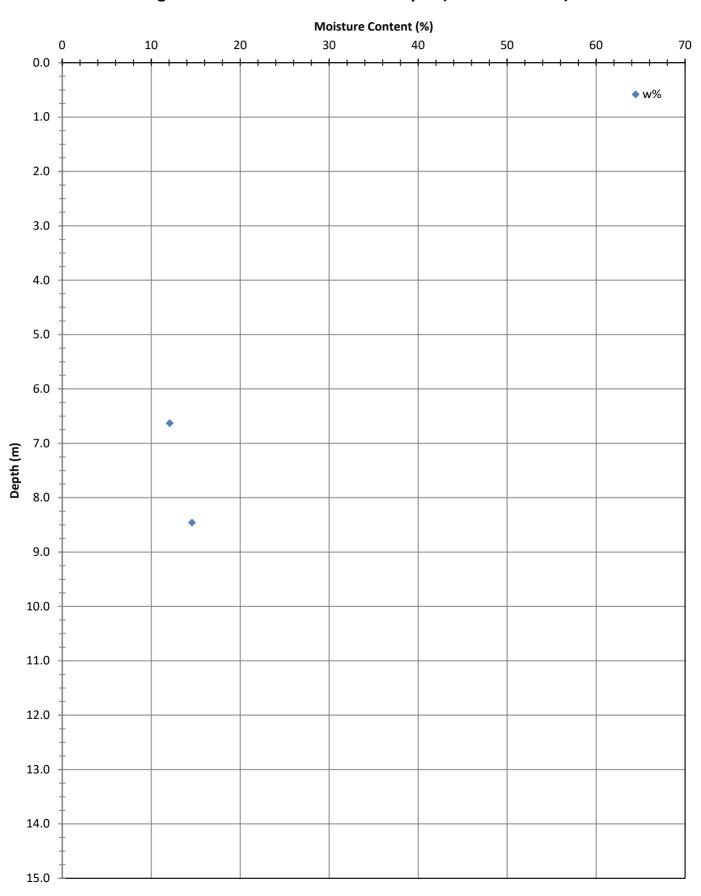
Figures E1 to E18

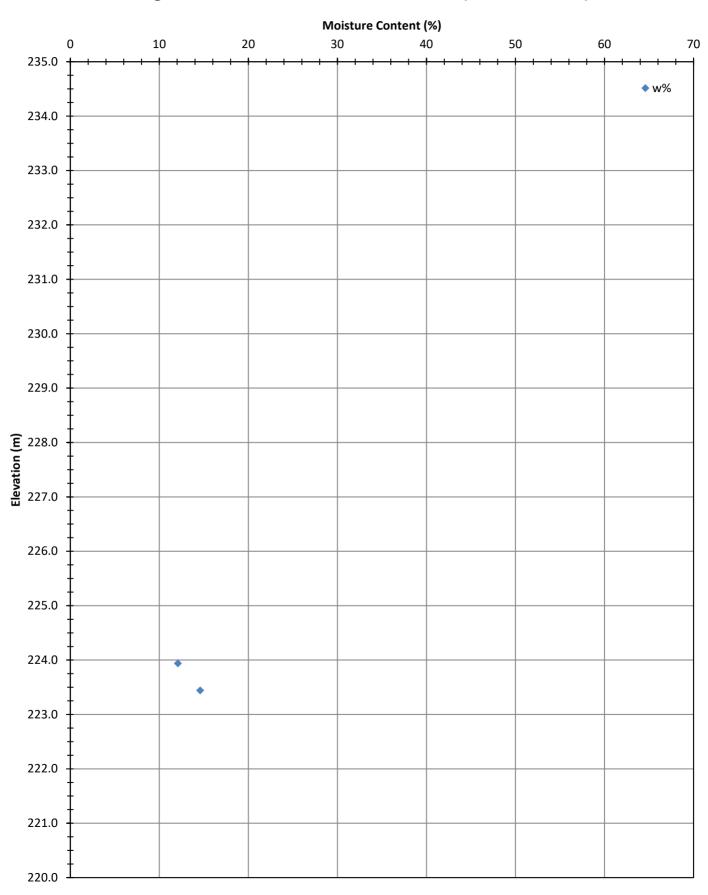

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E1: Moisture Content vs Depth (CLAY - Alluvial)

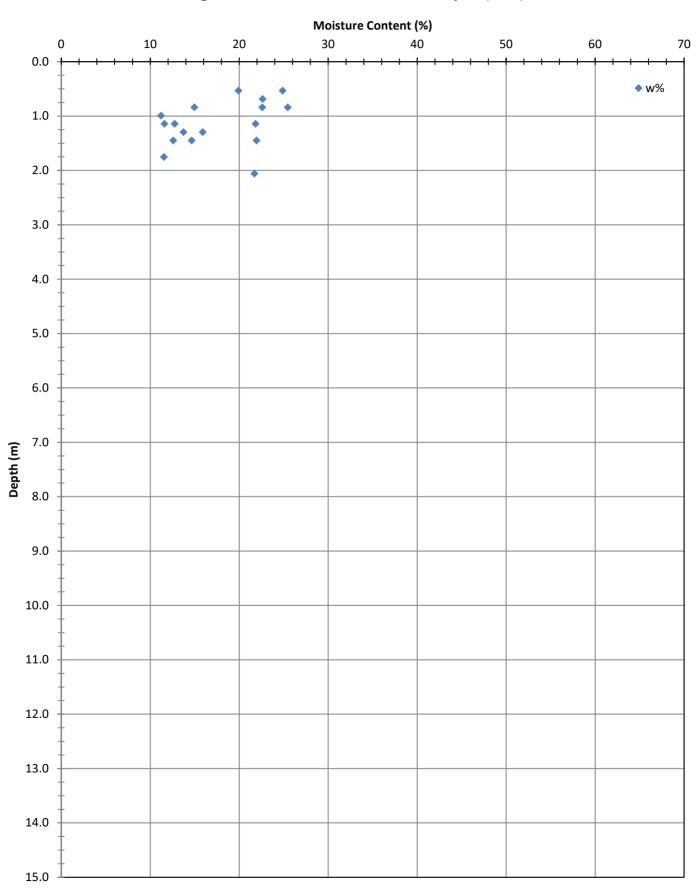

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E2: Moisture Content vs Elevation (CLAY - Alluvial)

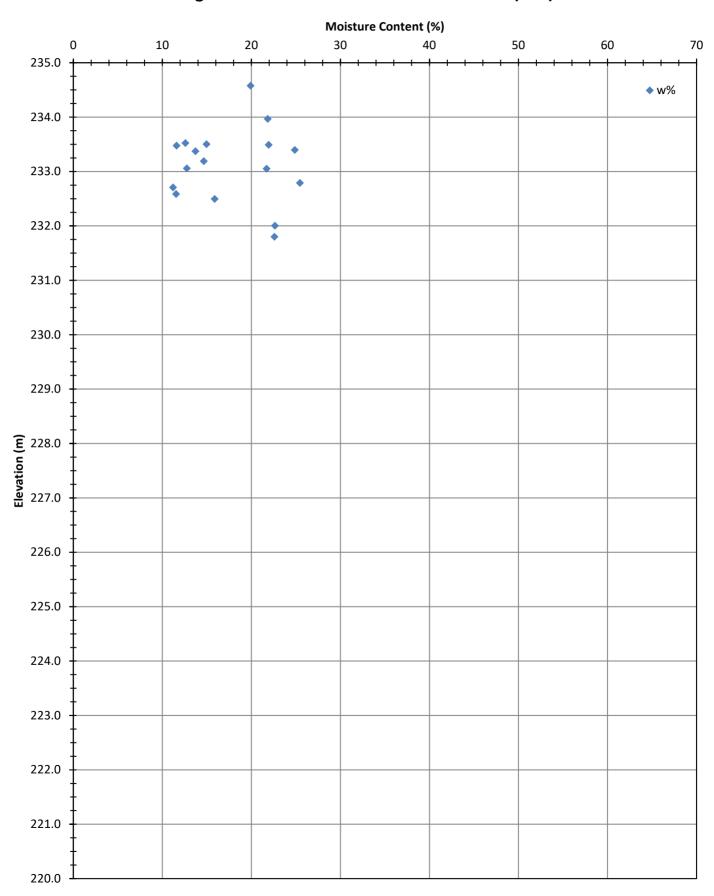

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E3: Undrained Shear Strength vs Depth (Alluvial Clay)

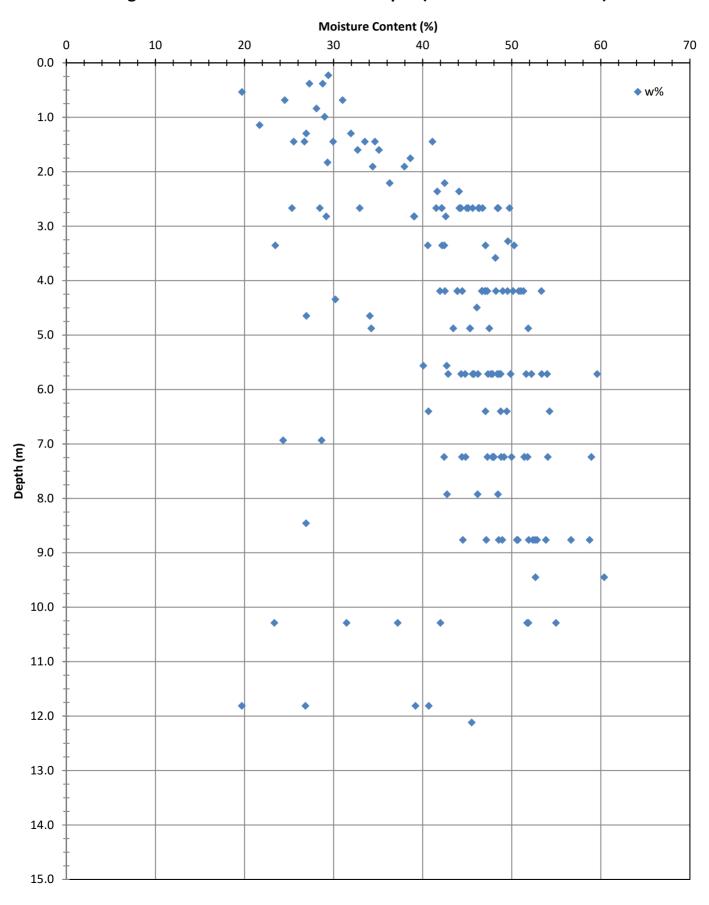

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E4: Undrained Shear Strength vs Elevation (Alluvial Clay)

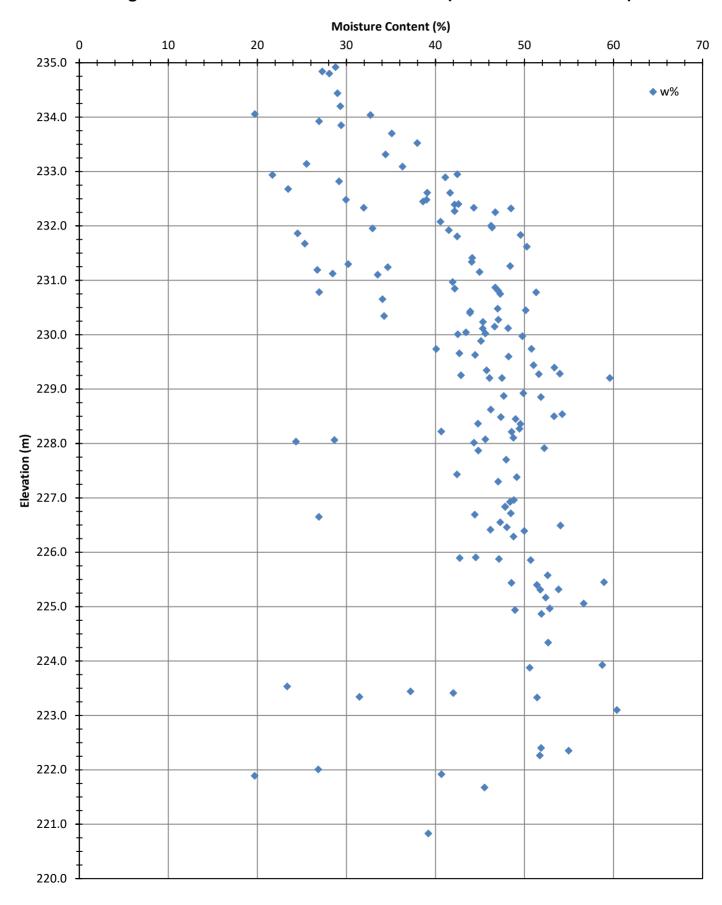

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E5: Moisture Content vs Depth (SILT - Alluvial)

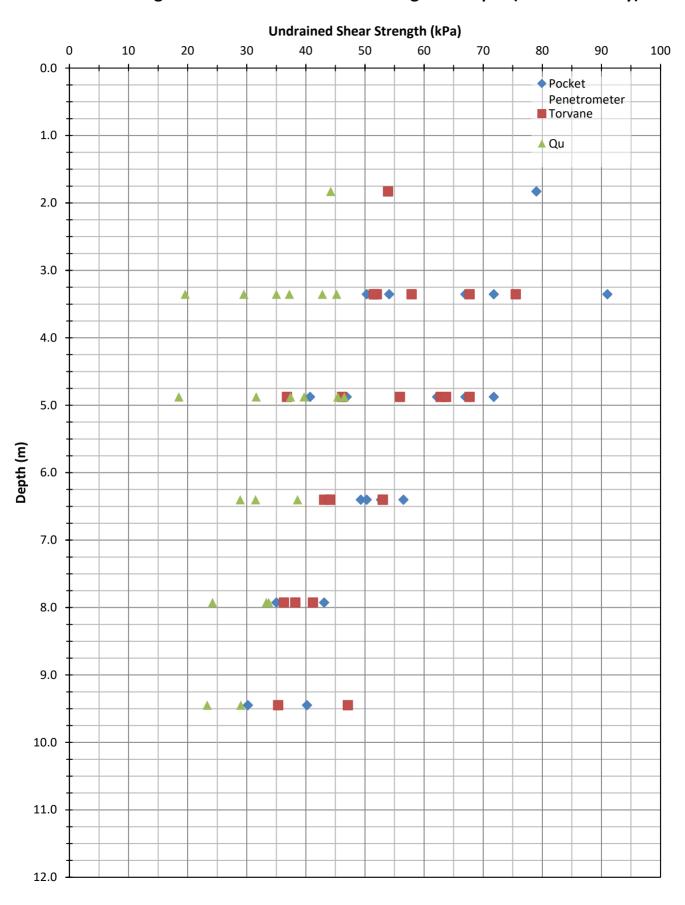

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E6: Moisture Content vs Elevation (SILT - Alluvial)


Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E7: Moisture Content vs Depth (SAND - Alluvial)

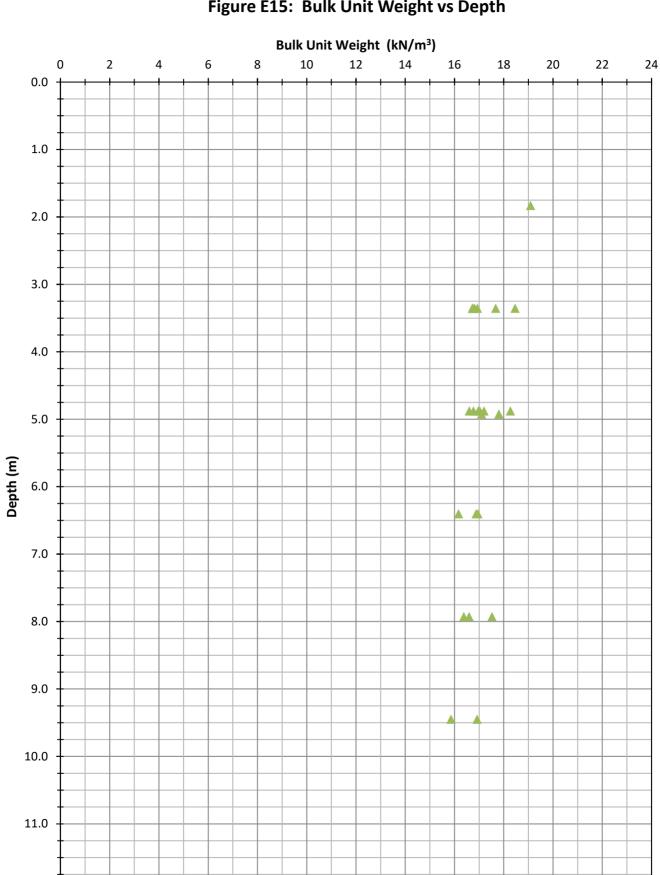

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E8: Moisture Content vs Elevation (SAND - Alluvial)


Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E9: Moisture Content vs Depth (SILT)

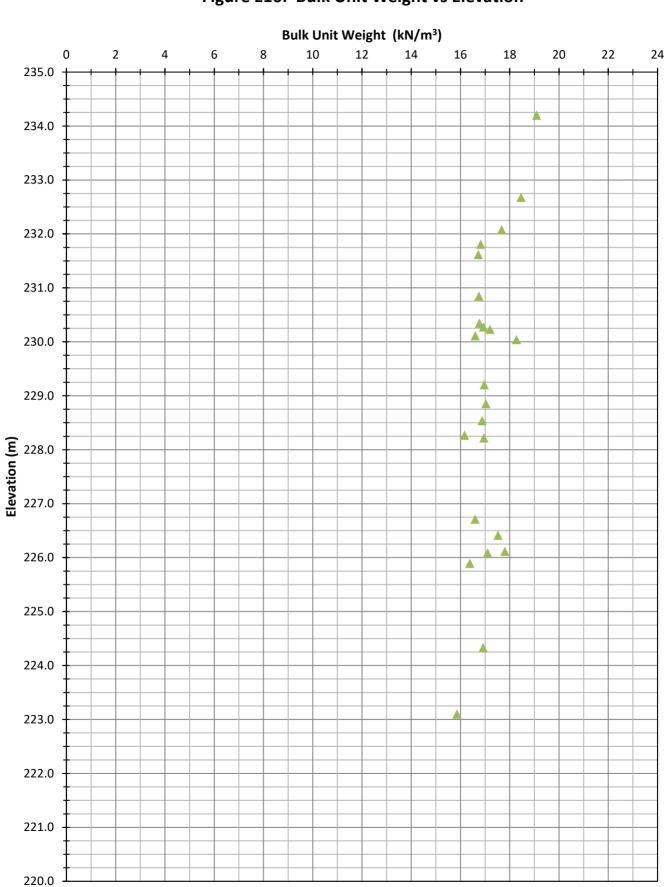

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E10: Moisture Content vs Elevation (SILT)


Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E11: Moisture Content vs Depth (SILTY CLAY - Lacustrine)

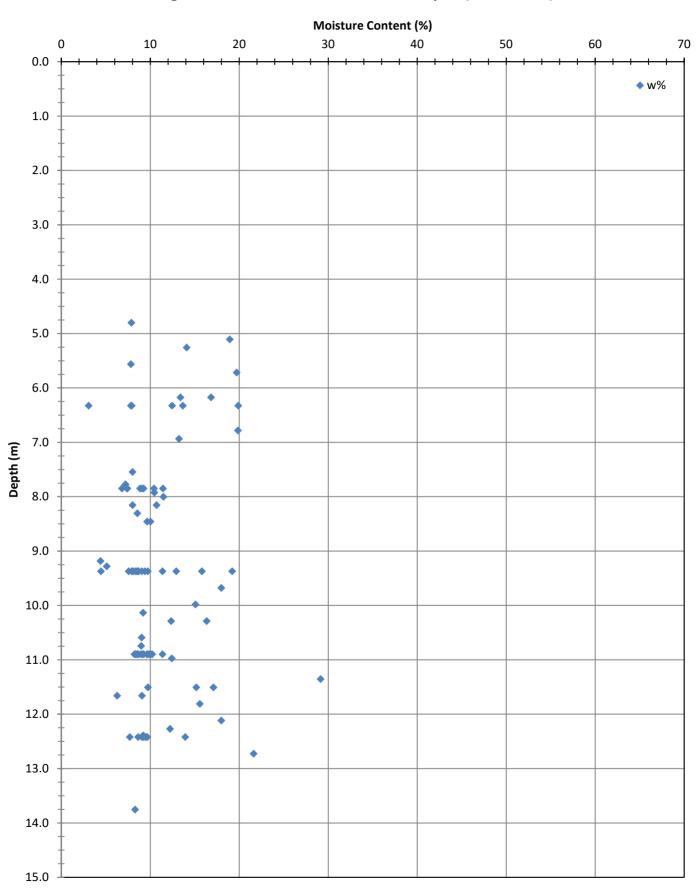
Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E12: Moisture Content vs Elevation (SILTY CLAY - Lacustrine)


Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E13: Undrained Shear Strength vs Depth (Lacustrine Clay)

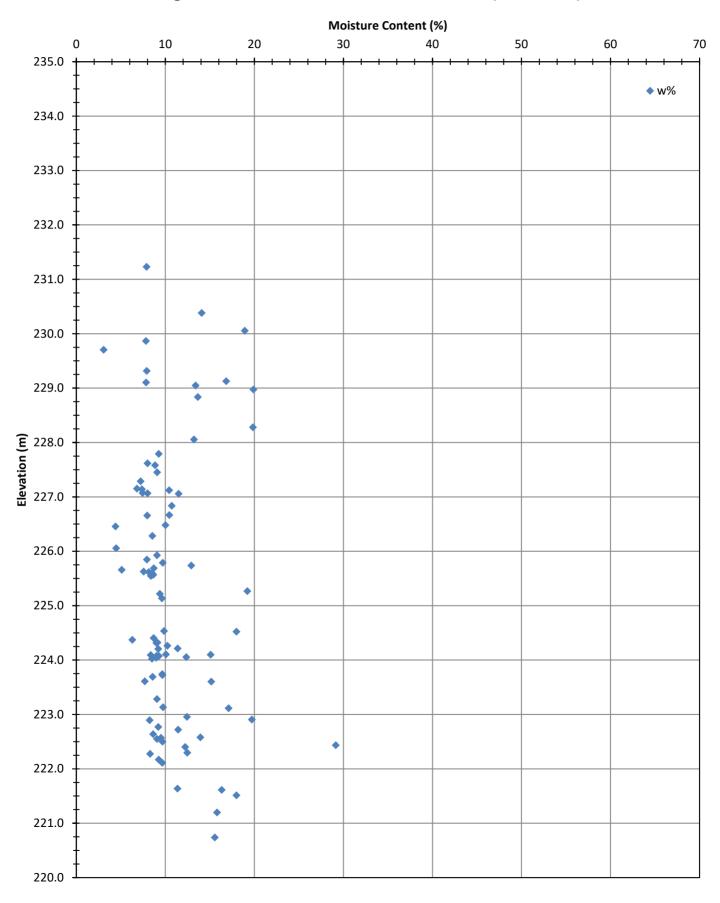
Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E14: Undrained Shear Strength vs Elevation (Lacustrine Clay)



Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E15: Bulk Unit Weight vs Depth



12.0

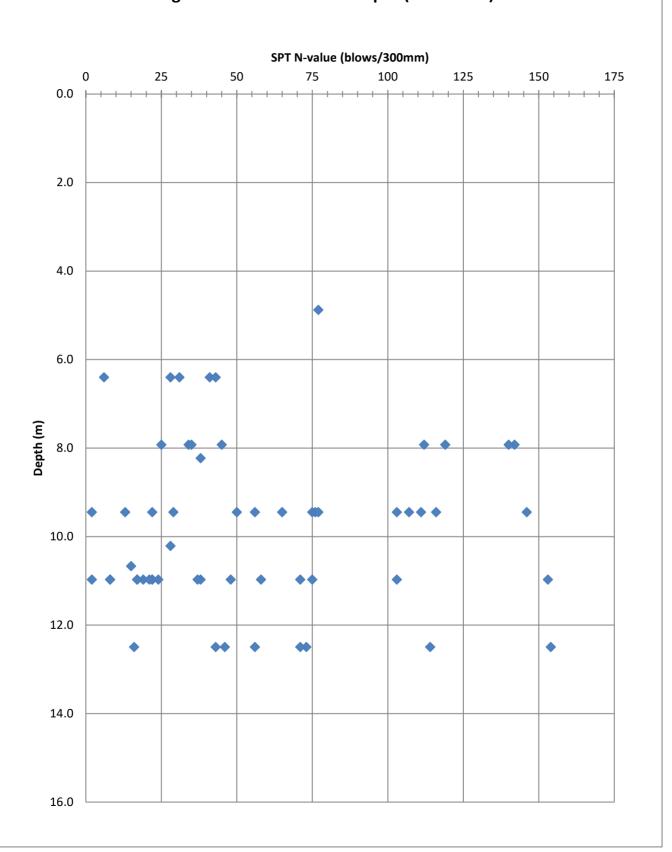

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E16: Bulk Unit Weight vs Elevation

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E17: Moisture Content vs Depth (Glacial Till)

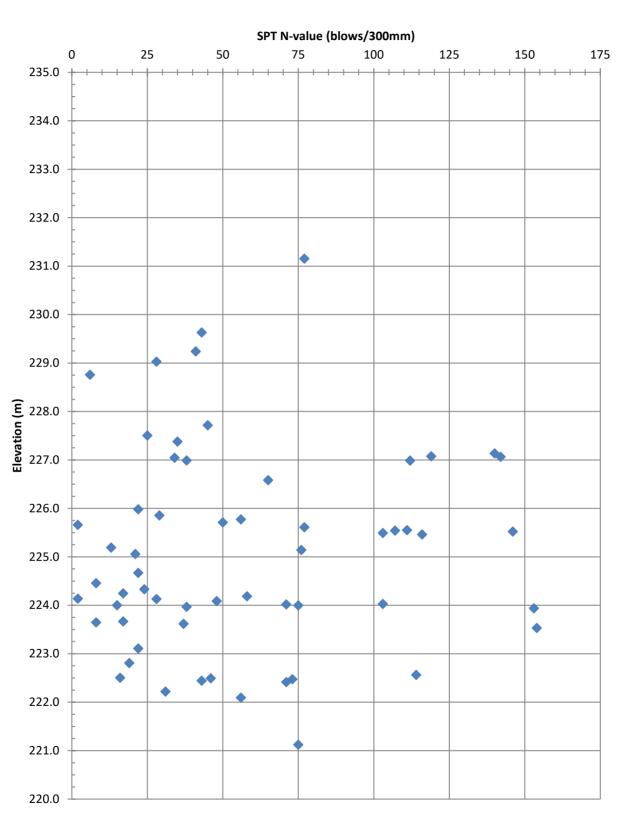
Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E18: Moisture Content vs Elevation (Glacial Till)

APPENDIX F

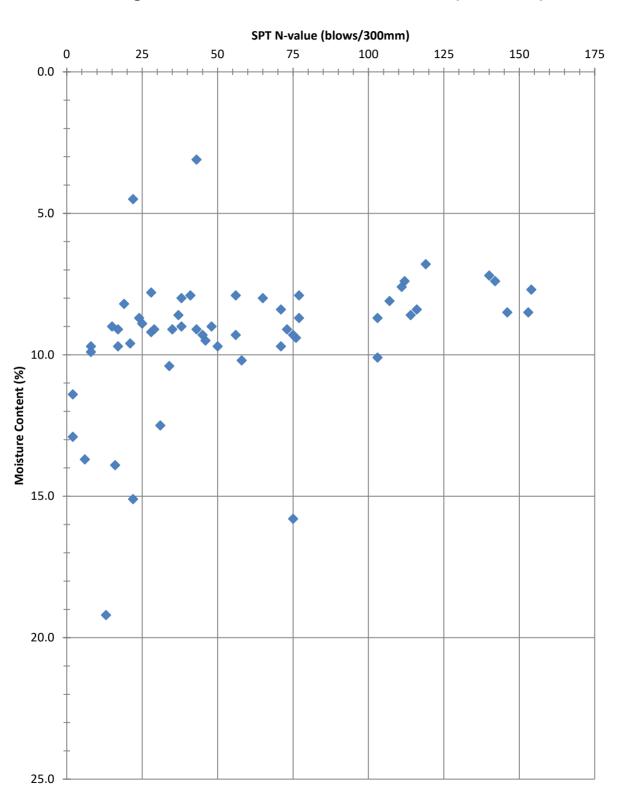
Standard Penetration Testing Results


Table F1 – Summary of SPT Figures F1 to F3

Ferry Road & Riverbend CSR - Rutland Trunk Sewer


Table F1) Summary Of Standard Penetration Testing Results

19-147 19-148	Ground Elevation (m)	ID#	Soil	Sample In		1			
19-147 19-148		ID#		D-0	nth	L Llov	Majatura	CDT N	Commonto
19-148		וט#	Con	(feet)	pth (m)	Elev. (m)	Moisture (%)	SPT-N (blows / 300mm)	Comments
19-148	228.62	S309	Silt Till	21.0	6.4	222.2	12.5	31	
	230.57	S303	Silt Till	31.0	9.4	221.1	15.8	75	
19-157	233.78	S338	Silt Till	36.0	11.0	222.8	8.2	19	
19-162	234.34	S396	Silt Till	33.5	10.2	224.1	9.2	28	
19-163	234.62	S405	Silt Till	36.0	11.0	223.6	9.7	8	
19-164	234.64	S414	Silt Till	31.0	9.4	225.2	19.2	13	
19-164	234.64	S415	Silt Till	36.0	11.0	223.7	9.7	17	
19-165	234.67	S424	Silt Till	35.0	10.7	224.0	9.0	15	
19-165	234.67	S425	Silt Till	40.0	12.2	222.5	12.2		sampler bouncing after 15 blows 150 mm
19-166	234.94	S443	Silt Till	31.0	9.4	225.5	8.7	103	-
19-166	234.94	S565	Silt Till	36.0	11.0	224.0	9.0	38	tested from base of casing advancer
19-166	234.94	S567	Silt Till	41.0	12.5	222.4	9.1	43	tested from base of casing advancer
19-167	234.59	S458	Silt Till	28.0	8.5	226.1	8.5		sampler bouncing after 81 blows / 180 mm
19-167	234.59	S557	Silt Till	31.0	9.4	225.1	9.4	76	
19-167	234.59	S559	Silt Till	36.0	11.0	223.6	8.6	37	
19-167	234.59	S561	Silt Till	41.0	12.5	222.1	9.3	56	
19-168	234.97	S451	Silt Till	26.0	7.9	227.0	10.4	34	
19-168	234.97	S551	Silt Till	31.0	9.4	225.5	8.5	146	
19-168	234.97	S553	Silt Till	36.0	11.0	224.0	9.3	75	
19-168	234.97	S555	Silt Till	41.0	12.5	222.5	9.1	73	
19-169	234.91	S464	Silt Till	26.0	7.9	227.0	7.4	112	
19-169	234.91	S545	Silt Till	31.0	9.4	225.5	8.4	116	
19-169	234.91	S547	Silt Till	36.0	11.0	223.9	8.5	153	
19-169 19-170	234.91 235.00	S549 S471	Silt Till Silt Till	41.0 26.0	12.5 7.9	222.4 227.1	9.7 6.8	71 119	
19-170	235.00	S539	Silt Till	26.0 31.0	7.9 9.4	227.1	7.6	111	
19-170	235.00	S541	Silt Till	36.0	11.0	224.0	10.1	103	
19-170	235.00	S543	Silt Till	41.0	12.5	222.5	13.9	16	
19-171	234.99	S478	Silt Till	26.0	7.9	227.1	7.4	142	
19-171	234.99	S533	Silt Till	31.0	9.4	225.5	8.1	107	
19-171	234.99	S535	Silt Till	36.0	11.0	224.0	8.4	71	
19-171	234.99	S537	Silt Till	41.0	12.5	222.5	9.5	46	
19-172	235.06	S487	Silt Till	26.0	7.9	227.1	7.2	140	
19-172	235.06	S527	Silt Till	31.0	9.4	225.6	8.7	77	
19-172	235.06	S529	Silt Till	36.0	11.0	224.1	9.0	48	
19-172	235.06	S531	Silt Till	41.0	12.5	222.6	8.6	114	
19-173	235.16	S496	Silt Till	21.0	6.4	228.8	13.7	6	
19-173	235.16	S497	Silt Till	24.0	7.3	227.8	8.0		sampler bouncing after 50 blows 150 mm
19-173	235.16	S519	Silt Till	31.0	9.4	225.7	9.7	50	
19-173	235.16	S521	Silt Till	36.0	11.0	224.2	10.2	58	
19-173	235.16	S523	Silt Till	41.0	12.5	222.7	9.2		sampler bouncing after 29 blows 200 mm
19-239	234.08	S377	Silt Till	36.0	11.0	223.1	15.1	22	
19-240	235.11	S434	Silt Till	31.0	9.4	225.7	12.9	2	
19-240	235.11	S435	Silt Till	36.0	11.0	224.1	11.4	2	
20-244	235.22	S9	Silt Till	27.0	8.2	227.0	8.0	38	
20-244	235.22	S11	Silt Till	31.0	9.4	225.8	7.9	56	
20-244	235.22	S13	Silt Till	36.0	11.0	224.2	9.1	17	
20-245	235.31 235.31	S23 S25	Silt Till	26.0	7.9	227.4	9.1 9.1	35 29	
20-245			Silt Till	31.0 36.0	9.4	225.9			
20-245 20-246	235.31 235.43	S27 S34	Silt Till Silt Till	36.0 21.0	11.0 6.4	224.3 229.0	8.7 7.8	24 28	
20-246	235.43	S34 S36	Silt Till	26.0	7.9	229.0	7.8 8.9	25	
20-246	235.43	S38	Silt Till	31.0	9.4	226.0	4.5	22	
20-246	235.43	S40	Silt Till	36.0	11.0	224.5	9.9	8	
20-240	235.43	S46	Silt Till	21.0	6.4	229.2	7.9	41	
20-247	235.64	S48	Silt Till	26.0	7.9	227.7	9.3	45	
20-247	235.64	S50	Silt Till	30.0	9.1	226.5	4.4		sampler bouncing after 32 blows 75 mm
20-247	235.64	S52	Silt Till	36.0	11.0	224.7		22	sampler blocked with stone
20-248	236.03	S56	Silt Till	16.0	4.9	231.2	7.9	77	,
20-248	236.03	S57	Silt Till	21.0	6.4	229.6	3.1	43	
20-248	236.03	S59	Silt Till	25.0	7.6	228.4			sampler bouncing, no penetration
20-248	236.03	S61	Silt Till	31.0	9.4	226.6	8.0	65	i i i i i i i i i i i i i i i i i i i
20-248	236.03	S63	Silt Till	36.0	11.0	225.1	9.6	21	
20-248	236.03	S65	Silt Till	41.0	12.5	223.5	7.7	154	
20-248	236.03	S67	Silt Till	45.0	13.7	222.3	8.3		sampler bouncing, no penetration


Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure F1: SPT-Profile vs Depth (Glacial Till)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure F2: SPT-Profile vs Elevation (Glacial Till)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure F3: SPT-Profile vs Moisture Content (Glacial Till)

APPENDIX G

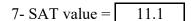
SINTEF Soil Abrasion Testing (SAT), Cerchar Abrasivity Index (CAI) testing, Uniaxial Compressive Strength (UCS) testing, Petrographic Analysis

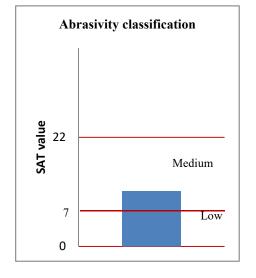
Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer

Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT)


EMI # 539


Sample ID: Sand-1

		4
1-	- Moisture	condition:

2-	Samp	le	nre	nara	ation:

- 3- Test piece hardness:
- 4- Flow rate (gr/min):
- 5- Test duration (min):
- 6- Weight piece 1:
 Weight piece 2:
 Average weight loss (gr):

Notes:

Test Performed By: JD, JWD
Data Reduced By: JD

Air dried	Oven dried
X	

Sieving	Crushing	As received
X	X	

Cutter steel	Other
55(HRC)	

80

1

Before test	After test	Weight loss
39.544	39.533	0.011
40.730	40.719	0.011
		0.0111

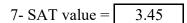
Picture of sample as tested

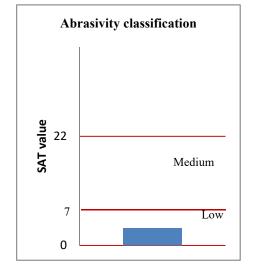
Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer

Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT)


EMI # 539


Sample ID: Clay-1

1- Moisture conditi	ion:
---------------------	------

2-	Samp	le	nre	nara	ation:

- 3- Test piece hardness:
- 4- Flow rate (gr/min):
- 5- Test duration (min):
- 6- Weight piece 1:
 Weight piece 2:
 Average weight loss (gr):

Notes:

Test Performed By: JD, JWD
Data Reduced By: JD

Air dried	Oven dried
X	

Sieving	Crushing	As received
X	X	

Cutter steel	Other
55(HRC)	

1

Before test	After test	Weight loss
42.423	42.418	0.005
37.971	37.969	0.002
		0.00345

Picture of sample as tested

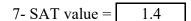
Client: Dyregrov Robinson Inc.

Project: Rutland Trunk Sewer

Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT)


EMI # 539

Sample ID: Clay-2

_		4
1-	Moisture	condition:

1	Moisture condition.

- 2- Sample preparation:
- 3- Test piece hardness:
- 4- Flow rate (gr/min):
- 5- Test duration (min):
- 6- Weight piece 1:
 Weight piece 2:
 Average weight loss (gr):

Abrasivity classification		
SAT value	Medium	
7	Low	
0		

Notes:

Test Performed By: JD, JWD
Data Reduced By: JD

Air dried	Oven dried
X	

Sieving	Crushing	As received
X	X	

Cutter steel	Other
55(HRC)	

	-
QΛ	
$\alpha \alpha$	

1

Before test	After test	Weight loss
43.868	43.867	0.002
40.135	40.134	0.001
		0.0014

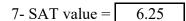
Picture of sample as tested

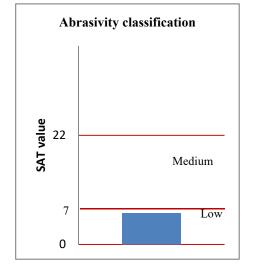
Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer

Project: Rutland 11
Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT)


EMI # 539


Sample ID: Till-1

1- Moisture conditi	ion:
---------------------	------

2_	Sam	പ	nre	nara	tion.
	Sam		$p_{1}c$	para	uon.

- 3- Test piece hardness:
- 4- Flow rate (gr/min):
- 5- Test duration (min):
- 6- Weight piece 1:
 Weight piece 2:
 Average weight loss (gr):

Notes:

Test Performed By: JD, JWD
Data Reduced By: JD

Air dried	Oven dried
X	

Sieving	Crushing	As received
X	X	

Cutter steel	Other
55(HRC)	

80	

1

Before test	After test	Weight loss
44.487	44.482	0.005
46.140	46.132	0.008
		0.00625

Picture of sample as tested

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer

Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT)

EMI# 539

Sample ID: Till-2

1- Moisture condition:

Air dried	Oven dried
X	

2- Sample preparation:

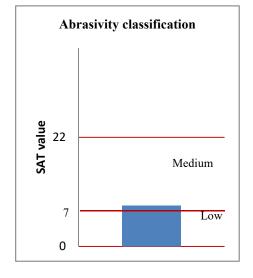
Sieving	Crushing	As received
X	X	

3- Test piece hardness:

Cutter steel Other **55(HRC)**

4- Flow rate (gr/min):

80


5- Test duration (min):

6- Weight piece 1: Weight piece 2:

Average weight loss (gr):

Before test	After test	Weight loss
42.707	42.698	0.009
40.049	40.042	0.008
		0.0082

7- SAT value = 8.2

Picture of sample as tested

Notes:

Test Performed By: JD, JWD Data Reduced By: JD

Client: Dyregrov Robinson Inc

Project: Rutland Trunk Sewer

Colorado School of Mines Mining Engineering Department

Date: 4/27/21 Cerchar Abrasivity Test ASTM D7625

Sample ID	Rock Type	Cerchar Abrasivity Index (CAIs)*		
TH-19-168, C550 @ 27'	Metamorphic	3.24		
TH 19-173, C518 @ 26'	Sedimentary	3.29		
TH 20-244, C8 @ 24'	Metamorphic	3.36		

^{*} CERCHAR tests have been run on saw cut surface. No correction factor has been added to the results.

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc
Project Name: Rutland Trunk Sewer

EMI# 539

A/23/2021

Sample ID: TH-19-168, C550 @ 27'

Before

After

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc
Project Name: Rutland Trunk Sewer

EMI# 539

A/23/2021

Sample ID: TH 19-173, C518 @ 26'

Before

After

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc
Project Name: Rutland Trunk Sewer

EMI# 539

A/23/2021

Sample ID: TH 20-244, C8 @ 24'

Before

After

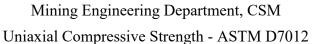
Client: Dyregrov Robinson Inc

Project: Rutland Trunk Sewer

Colorado School of Mines

Mining Engineering Department

Uniaxial Compressive Strength


ASTM D7012

Sample ID I	Rock Type Average Length (in)	Average			Failure	Uniaxial Compressive Strength				
		0	Diameter	Length to Density	Density	Load	Failure Stress	UCS	Notes (Failure type)	
		(in)	(in)		(lbs/ft ³)	(lbs)	σ _c (psi)	(psi)	(MPa)	
TH 19-173, C518 @ 26'	Sedimentary	5.417	2.487	2.2	165	68,873	14,172	14,433	99.5	Non - Structural
TH 20-244, C8 @ 24'	Metamorphic	5.545	2.469	2.2	167	139,797	29,199	29,830	205.7	Non - Structural

$$UCS_{2:1correction} = \frac{\sigma_c}{0.88 + 0.222(\frac{d}{l})}$$

EARTH MECHANICS INSTITUTE

Client: Dyregrob Robinson Inc.

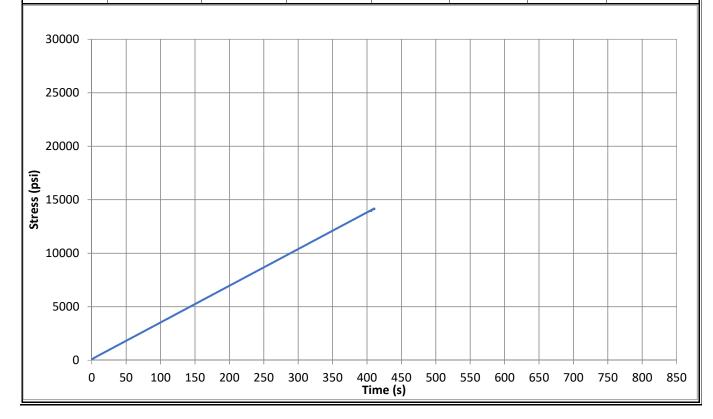
Project: Rutland Trunk Sewer

Location: N/A

Rock Type: Sedimentary

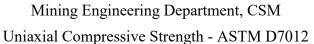
Rock Name: N/A Characteristics: N/A Test Performed By: JD, SS Date Tested: 4/20/2021 Data Reduced By: MP

Date Reduced: 4/30/2021


Core ID: TH 19-173, C518 @ 26'

File Name: TH 19-173, C518 @ 26'_UCS

EMI Project No.: 539



	Density		L/D Ratio	Core Diameter		Core Length	
	g/cm ³	lb/ft ³	L/D Katto	cm	in	cm	in
	2.65	165	2.2	6.32	2.487	13.76	5.417
Failure Mode	- Static v	Static E		UCS 2:1		Failure Stress	Failure Load
ranure Mode	Static v	GPa	ksi	MPa	psi	psi	lbf
Non - Structural	N/A	N/A	N/A	99.5	14,433	14,172	68,873
	Dymamiau	mic E		S - Wave		P - Wave	
	- Dynamic v	GPa	ksi	m/s	ft/s	m/s	ft/s
	N/A	N/A	N/A	N/A	N/A	N/A	N/A

EARTH MECHANICS INSTITUTE

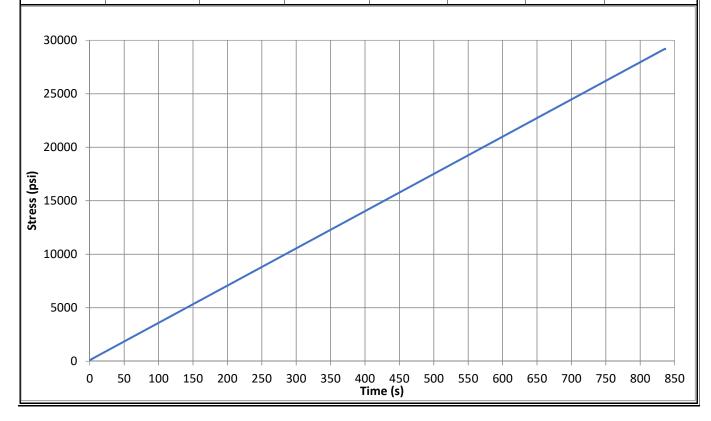
Client: Dyregrob Robinson Inc.

Project: Rutland Trunk Sewer

Location: N/A

Rock Type: Metamorphic

Rock Name: N/A Characteristics: N/A Test Performed By: JD, SS Date Tested: 4/20/2021 Data Reduced By: MP Date Reduced: 4/30/2021


Core ID: TH 20-244, C8 @ 24'

File Name: TH 20-244, C8 @ 24'_PP.dat

EMI Project No.: 539

	Density		L/D Ratio	Core Diameter		Core Length	
	g/cm ³	lb/ft ³	L/D Ratio	cm	in	cm	in
	2.68	167	2.2	6.27	2.469	14.08	5.545
Failure Mode	- Static v	Static E		UCS 2:1		Failure Stress	Failure Load
ranure Mode	Static v	GPa	ksi	MPa	psi	psi	lbf
Non - Structural	N/A	N/A	N/A	205.7	29,830	29,199	139,797
	Dymamiau	Dynamic E		S - Wave		P - Wave	
	- Dynamic v	GPa	ksi	m/s	ft/s	m/s	ft/s
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Petrographic Analysis of Selected Litharenitic Loose Sand Thin Section

Prepared for:

Brent Duncan

Earth Mechanic Institute, Department of Mining Engineering

Colorado School of Mines

Prepared by:

Ryan McLin McLin Petrographics

Table of Contents

PETROG	RAPHIC ANALYSIS	. 3
1.	Introduction	. 3
2.	Rock Types	. 3
	2. Litharenitic Loose Sand	
3.	Thin Section Images	. 5
ANALYTI	CAL PROCEDURES	15
Th	in Section Analysis	15
	RAPHY	

PETROGRAPHIC ANALYSIS

1. Introduction

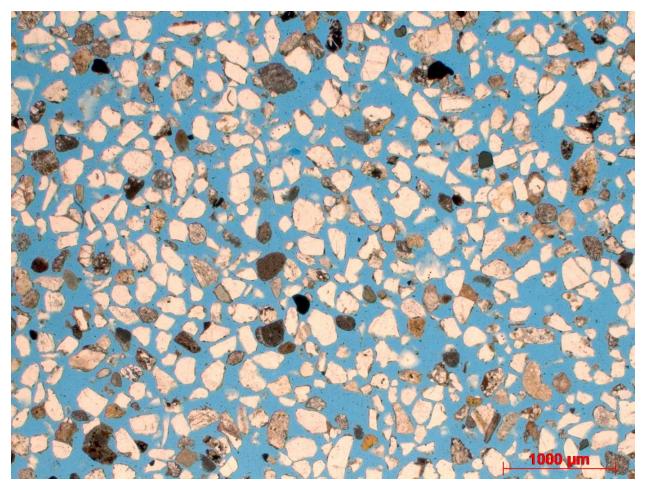
The following report includes an assessment of rock type, mineralogy, and notable textural features. Rock type descriptions are accompanied by thin section photomicrographs and include five images of each sample in both plane-polarized light and crossed-polarized light and range in magnification from 2.5x, 5x, 10x, 20x, and 50x. Larger scale textural features are captured at low magnification, whereas details of the mineral matrix are characterized at the medium and high magnifications. Table 1 lists sample number, rock type and type of analyses performed. Analytical procedures are described at the end of this report.

2. Rock Types

The sedimentary rock type designation is based upon the classification schemes defined by Folk (1974). All rock types are characterized by texture or mineralogy as observed in thin section and accompanying hand sample.

Table 1.Petrologic Testing Matrix

Sample ID	Rock Type	Thin Section
539_Sand 1	Litharenitic Loose Sand	Х
	TOTAL	3


2.2. Litharenitic Loose Sand

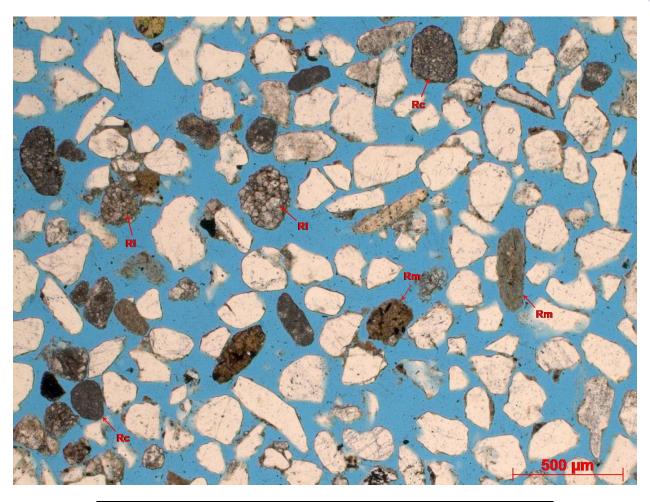
Megascopic Description: A bag of loose sand grains composed of quartz, feldspar, and rock fragments that are fine sand in size. The grains are dusty, brown in color, and likely coated with clay minerals.

Microscopic Description: The loose sand is further characterized as litharenitic (Folk, 1974) that is dominated by quartz, with subordinate amounts of rock fragments, and minor feldspar grains. Grain sizes were measured through image analysis of a sampling of grains taken from the lowest magnification image (TS_01). Results show an average grain size of fine sand according to the Wentworth (1922) grain size scale (average 223 microns; minimum 59 microns; maximum 485 microns). Grains are angular to subangular, moderately coated with clays, and moderately well sorted indicative of low textural maturity.

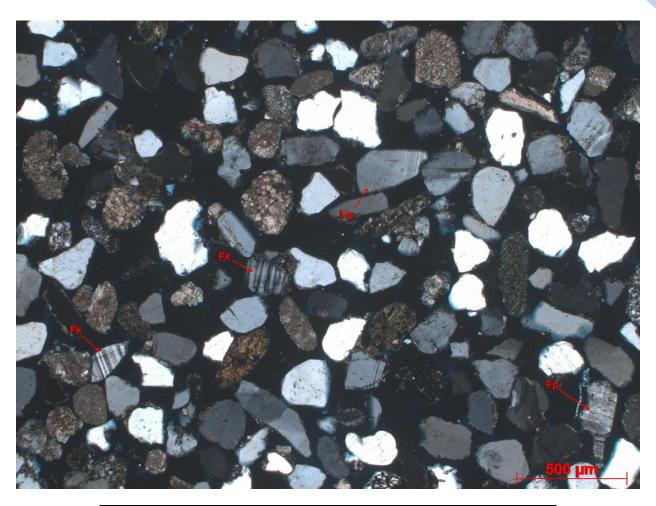
The mineralogy is dominated by monocrystalline quartz with minor polycrystalline quartz grains. Common sedimentary rock fragments consist of chert, limestone, and mudstone fragments. Rare glauconite pellets are also noted in thin section images TS_07 and TS_08. Uncommon igneous and metamorphic fragments are also observed. Minor feldspar grains include plagioclase and microcline variation of potassium feldspar. Clay minerals thinly coat most grains and comprise a mixture of illite, kaolinite, and chlorite imparting the dirty-brown color observed in the megascopic description. Accessories include opaque pyrite, magnetite and associated rare heavy minerals.

3. Thin Section Images

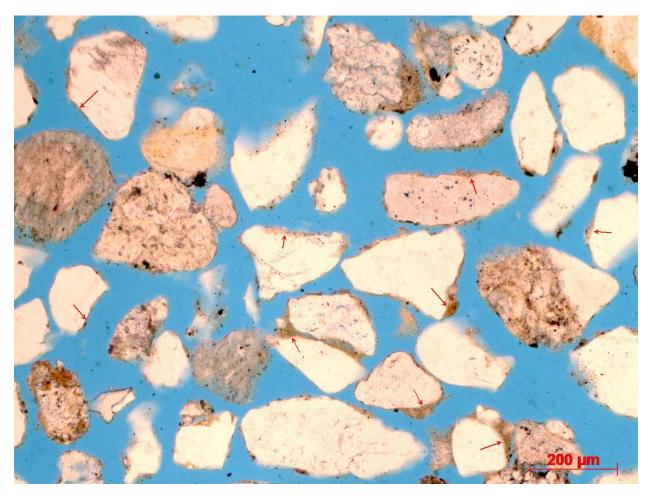
539_Sand_1_2_5x_ppl_001 Litharenitic Loose Sand


Thin Section Image 01. General overview of the loose sand shows a variety if angular to subangular sand grains that are fine sand-sized (average grain size 223 microns; minimum 59 microns; maximum 485 microns) according to the Wentworth grain size scale. Most of the grains are quartz and feldspar (white) with a subordinate amount of darker lithic fragments. Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

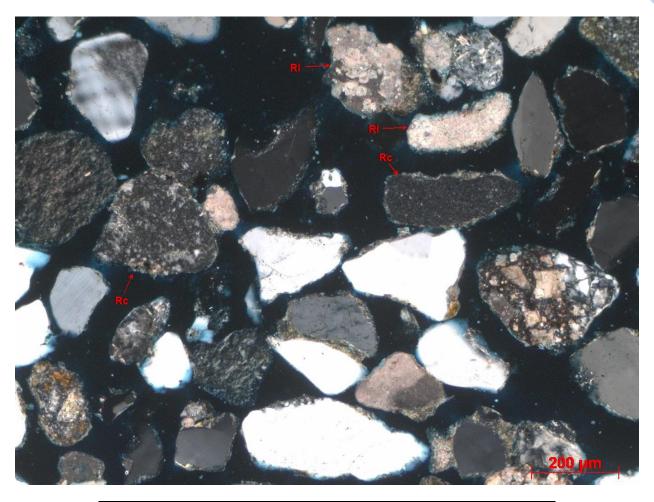
539_Sand_1_2_5x_xpl_002


Litharenitic Loose Sand

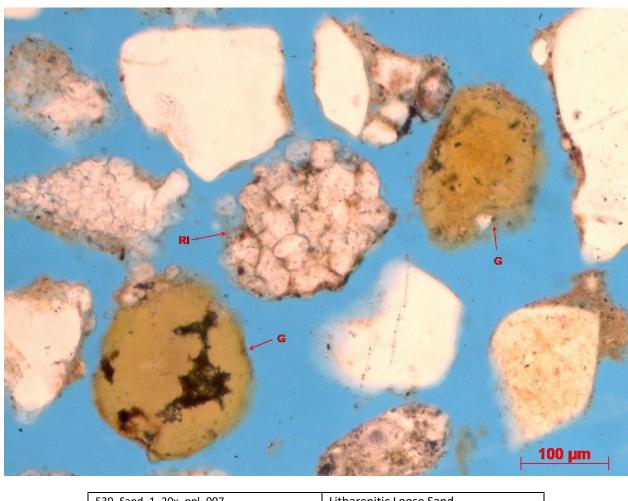
Thin Section Image 02. The same image as in TS_001 but under crossed-polarized light illustrates abundant quartz grains at various states of optical extinction from the white to gray first order interference colors. Various rock fragments include abundant chert grains from the salt-and-pepper speckled appearance of microcrystalline quartz. Other darker lithics include mudstone and carbonate fragments. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.


539_Sand_1_5x_ppl_003 Litharenitic Loose Sand

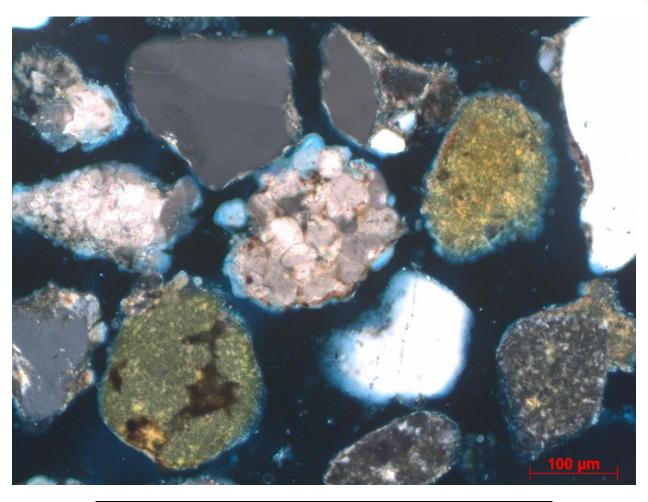
Thin Section Image 03. Greater magnification of the Litharenitic loose sand shows abundant angular grains of quartz and minor feldspar (white), with lesser amounts of darker brown to gray rock fragments. Most of the rock fragments are mudstone (Rm) or chert (Rc), but a small amount include limestone fragments (Rl) composed of sparry calcite. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


539_Sand_1_5x_xpl_004 Litharenitic Loose Sand

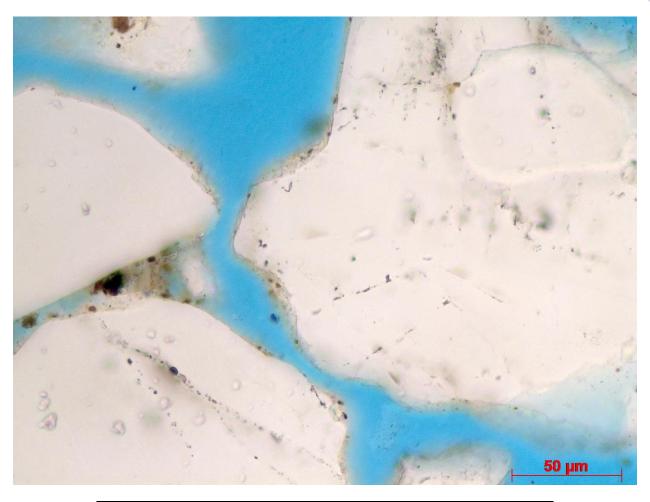
Thin Section Image 04. The same view as in TS_003 but under crossed polarized light reveals abundant angular and subangular grains dominated by quartz (white and gray). A smaller amount of feldspar grains are recognizable from their polysynthetic twinning of plagiolcase (Fp) and tartan twinning of microcline variant of potassium feldspar (Fk). The rock fragments noted in the previous image illustrate specked brown and gray colors. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


539_Sand_1_10x_ppl_005 Litharenitic Loose Sand

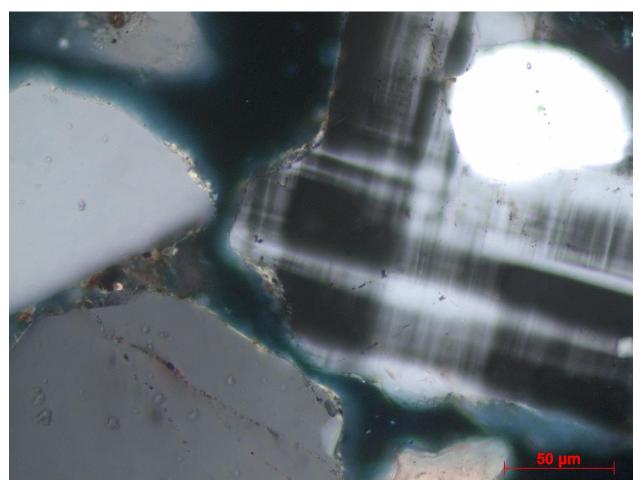
Thin Section Image 05. Closer inspection of the Litharenitic loose sand better illustrates the high angularity of the grains indication a low textural maturity of the sand. Also note the thin clay coatings on most grains (arrows) that are likely composed of illite, kaolinite, and chlorite. Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


539_Sand_1_10x_xpl_006 Litharenitic Loose Sand

Thin Section Image 06. The same view as TS_05 but under crossed-polarized light illustrating the variety of lithic fragments from salt-and-pepper chert (Rc) to limestone fragments (RI) that show both sparry and microcrystalline calcite. Other fragments include those of minor volcanic and metamorphic origin. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


539_Sand_1_20x_ppl_007 Litharenitic Loose Sand

Thin Section Image 07. More magnified view of the Litharenitic loose sand illustrates two rare rounded glauconite pellets (G) between and limestone fragment (RI) composed of sparry calcite crystals. Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.


539_Sand_1_20x_xpl_008 Litharenitic Loose Sand

Thin Section Image 08. The same view as in TS_07 but under crossed-polarized light better illustrates the glauconite pellets from the dull green-and-yellow speckled color. The prominent quartz grains illustrate first order white to gray interference colors at various states of optical extinction. A small chert fragment is noted at lower-right from its speckled salt-and-pepper pattern. Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

539_Sand_1_50x_ppl_009 Litharenitic Loose Sand

Thin Section Image 09. Highest magnification detail of the Litharenitic loose sand illustrates quartz and feldspar grains that are coated with a small amount of brown clays likely composed of illite, kaolinite, and chlorite. A small opaque mineral at left is likely pyrite or magnetite. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

539_Sand_1_50x_xpl_010 Litharenitic Loose Sand

Thin Section Image 10. The same view as TS_09 under crossed-polarized light illustrates the tartan twinning of microcline variation of potassium feldspar. Note that the clays that coat the grains show bright white to yellow interference colors that are characteristic of illite. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

ANALYTICAL PROCEDURES

Thin Section Analysis

The loose sand sample was put into an epoxy mold, cut, surfaced, mounted to a standard ($24 \text{ mm} \times 46 \text{ mm}$) thin section slide, and ground to a thickness of approximately 30 microns by National Petrographic. The samples were then shipped to Ryan McLin, sole proprietor of McLin Petrographics. The prepared thin section was examined and digitally imaged at various magnifications using a Carl Zeiss Imager.A2m polarizing binocular microscope equipped with an AxioCam MRc digital camera, UV light source, and various UV filters. Five images at increasing steps in magnification were collected in both plane-polarized light and in crossed-polarized light to observe mineral characteristics and identifying features.

BIBLIOGRAPHY

Folk, R.L., 1974, *Petrology of Sedimentary Rocks*: Hemphill Publishing Co., Austin, TX Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments: *J. Geol.*, **30**, 377-392.

Petrographic Analysis of Selected Igneous (Plutonic) and Sedimentary Rock Thin Sections

Prepared for:

Brent Duncan

Earth Mechanic Institute, Department of Mining Engineering

Colorado School of Mines

Prepared by:

Ryan McLin
McLin Petrographics

Table of Contents

PETROGR	RAPHIC ANALYSIS	3
1.	Introduction	3
2.	Rock Types	3
2.1.	Alkali-Feldspar Granite	4
2.2.	Limestone (Crystalline Carbonate/Sparstone)	5
2.2.	Tonalite	5
3.	Thin Section Images	7
ANALYTIC	CAL PROCEDURES	37
Thir	Section Analysis	37
BIBLIOGR	APHY	37

PETROGRAPHIC ANALYSIS

1. Introduction

The following report includes an assessment of rock type, mineralogy, and notable textural features. Rock type descriptions are accompanied by thin section photomicrographs and include five images of each sample in both plane-polarized light and crossed-polarized light and range in magnification from 2.5x, 5x, 10x, 20x, and 50x. Larger scale textural features are captured at low magnification, whereas details of the mineral matrix are characterized at the medium and high magnifications. Table 1 lists sample number, rock type and type of analyses performed. Analytical procedures are described at the end of this report.

2. Rock Types

Igneous rock type designations of samples that are shown in Table 1 are named according to the QAPF classification scheme (Streckeisen, 1974; La Maitre, 2002). The sedimentary rock type designation is based upon the classification schemes defined by Dunham (1962) and Write (1992). All rock types are characterized by texture or mineralogy as observed in thin section and accompanying hand sample.

Table 1. Petrologic Testing Matrix

Sample ID	Rock Type	Thin Section
TH19-168, C550@27'	Alkali-Feldspar Granite	Х
TH19-173, C518@26'	Limestone (Crystalline Carbonate/Sparstone)	Х
TH20-244, C8@24'	Tonalite	Х
	TOTAL	3

2.1. Alkali-Feldspar Granite

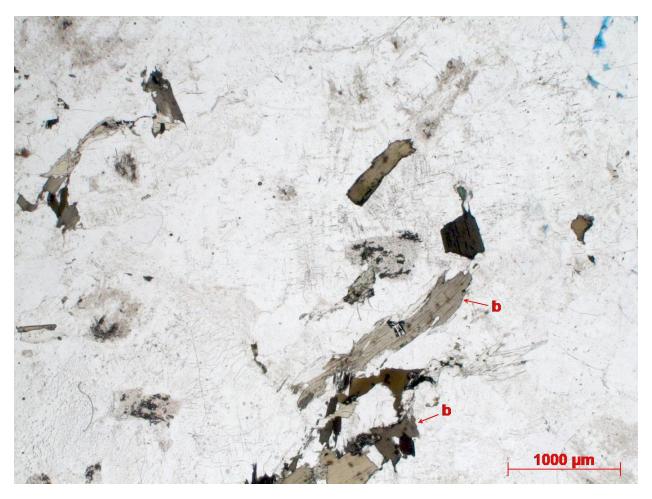
Megascopic Description: A dense, pink, black, and gray colored, phaneritic, medium-grained, plutonic igneous rock consisting of quartz, feldspar, biotite, and muscovite.

Microscopic Description: The texture in the alkali-feldspar granite is phaneritic with individual crystals coarse enough to be seen by the unaided eye. Crystals measure between 1-5 mm and subdivide the texture into the medium grained category. The rock classification is determined using the QAPF classification of igneous rocks (Streckeisen, 1974; La Maitre, 2002). The mineralogy is dominated by polycrystalline quartz (50% by visual estimate; 52.6% modal) and alkali feldspar (40% by visual estimate; 42.1% modal). Minor minerals include plagioclase feldspar (5% by visual estimate; 5.3% modal), biotite and hornblende (4%), with rare accessories (1%) comprising of sericite, chlorite, muscovite, epidote, zircon, apatite, and tourmaline. The polycrystalline quartz is colorless, shows low relief, has a frequent wavy or undulose extinction, and exhibits low, first-order white to gray interference colors under crossed-polarized light. The alkali feldspar that is most common is microcline. Microcline is colorless, of low relief, and displays first-order gray to white interference colors under cross-polarized light. The microcline also exhibits common spindle-shaped or Scotch-plaid twinning at some orientations. It frequently includes perthite or blob-like intergrowths of sodic-plagioclase indicative of unmixing. Plagiolcase is the subordinate feldspar present in the alkali-feldspar granite and is colorless, exhibits first-order white interference colors, and has a unique polysynthetic twinning giving a striped appearance under cross-polarized light. Portions of the plagiolcase feldspar are altered to sericite, which is chemically identical to muscovite mica. Some plagioclase crystals include worm-like quartz intergrowths called myrmekite. The myrmekite is suggested to form in slowly crystallizing melts that undergo tectonic strain (Simpson & Wintsch, 1989). It is possible that the undulatory extinction of the quartz could contribute to the evidence of strain on the rock. The biotite is of particular interest in that it includes zircons and apatite crystals entrained within the mineral. In-turn, they have black pleochroic radiation halos that indicate uranium and/or thorium within the crystal lattice of the zircon or apatite crystals. The rare, high-relief epidote that was observed (Thin Section Images 5-6) is partially altered to chlorite.

2.2. Limestone (Crystalline Carbonate/Sparstone)

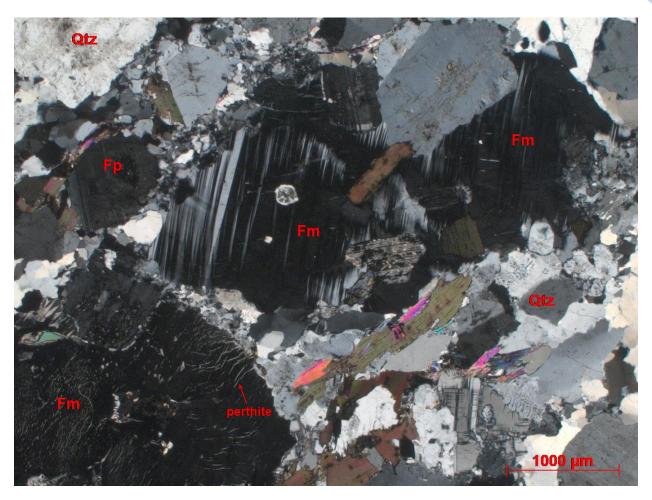
Megascopic Description: A dense, light gray to white in color, of low porosity, sedimentary rock consisting of calcite.

Microscopic Description: The limestone is composed primarily of finely crystalline (15-30 microns in size) sparry calcite and microcrystalline calcite or micrite thar appear interlocking in a tight matrix. The depositional texture in the limestone is unrecognizable and is therefore characterized as a crystalline carbonate according to Dunham (1962) or as a sparstone according to Write (1992), which is an obliterative category with the original fabric being overprinted by diagenesis. The minerology consists of calcite (96% by visual estimate), with minor accessories including calcareous fossil crinoid fragments (1%), fine silt-sized quartz and feldspar grains (1%), dolomite rhombs (1%), and scattered pyrite flecks and framboids (1%). There is evidence of thin organic stringers that are likely insoluble bitumen remnants and not stylolites as they do not appear to have a characteristic zig-zag form parallel to bedding indicative of pressure solution seams (since bedding cannot be recognized anyway).

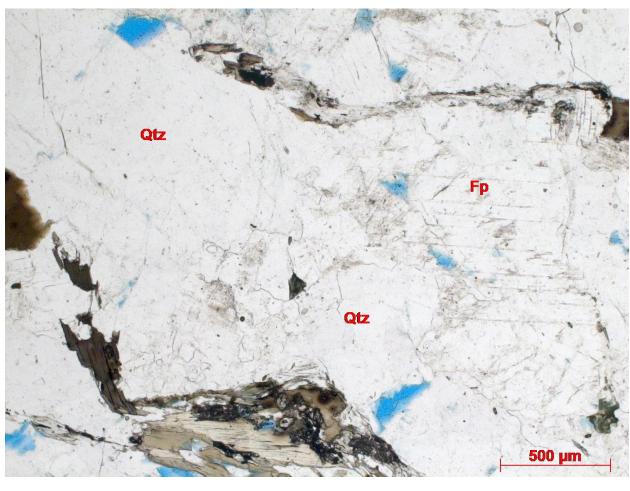

2.2. Tonalite

Megascopic Description: A dense, light to dark gray and black in a salt-and-pepper appearance, phaneritic, medium-grained, plutonic igneous rock consisting of quartz, feldspar, biotite, and muscovite.

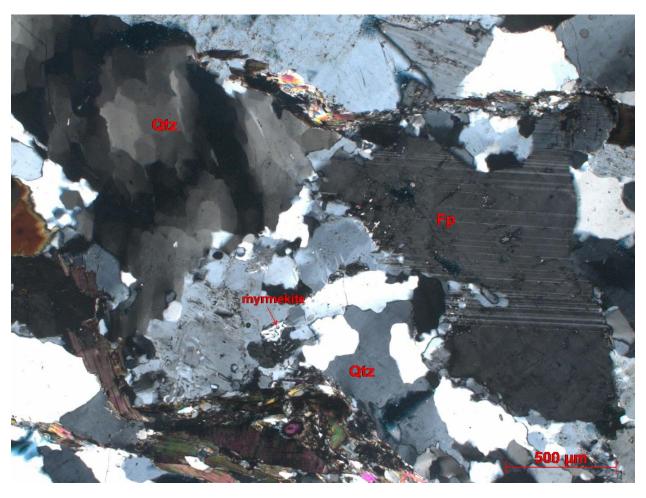
Microscopic Description: The texture in the tonalite is phaneritic with individual crystals coarse enough to be visible unaided by the human eye. Crystals measure between 1-5 mm and subdivide the texture into the medium grained category. The rock classification is determined using the QAPF classification of igneous rocks (Streckeisen, 1974; La Maitre, 2002). The mineralogy is dominated by polycrystalline quartz (45% by visual estimate; 55.6% modal), plagioclase feldspar (35% by visual estimate; 43.2% modal), biotite (12% by visual estimate), with rare microcline alkali feldspar (1% by visual estimate; 1.2% modal). Other accessories include hornblende (1%), muscovite (1%), sericite (1%), calcite (1%), olivine (1%), pyroxene (1%), and magnetite (1%). As in the alkali feldspar rock, polycrystalline quartz is the most common mineral. Quartz is colorless, shows low relief, has a frequent wavy or undulose extinction, and exhibits low, first-order white to gray interference colors under crossed-polarized light. Plagioclase feldspar is second in abundance, colorless, and exhibits first-order white interference colors, and has a unique polysynthetic twinning giving a striped appearance under cross-polarized light. Many of the


plagioclase feldspar crystals are partially altered to sericite or calcite. Biotite is the third-most common mineral in the tonalite and is light-to dark brown or green in color, pleochroic, of moderate-relief, has one excellent cleavage, and often shows mottled or bird's eye extinction under crossed-polarized light. The biotite also includes rare, low-relief apatite crystals that show small pleochroic radiation halos indicative of uranium and/or thorium in the crystal lattice. Strong interference colors range up to second-order red and pink. Olivine (Thin Section Images 25-26) is easily visible from its high-relief, and its high, second-order blue, pink, and orange interference colors.

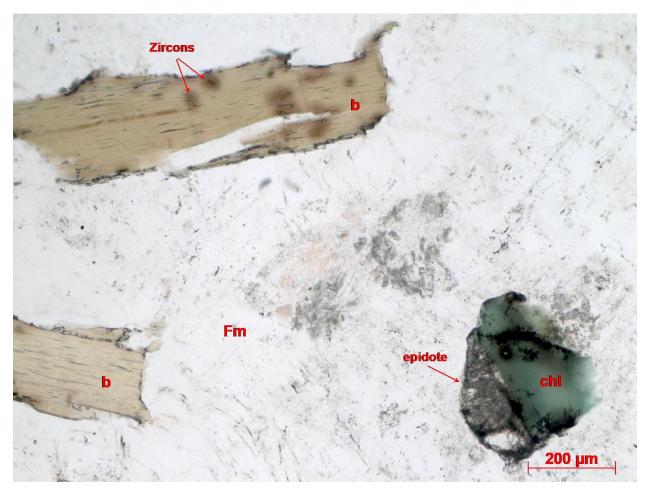
3. Thin Section Images


TH19-168_C550@27'_2_5x_ppl_001 Alkali-Feldspar Granite

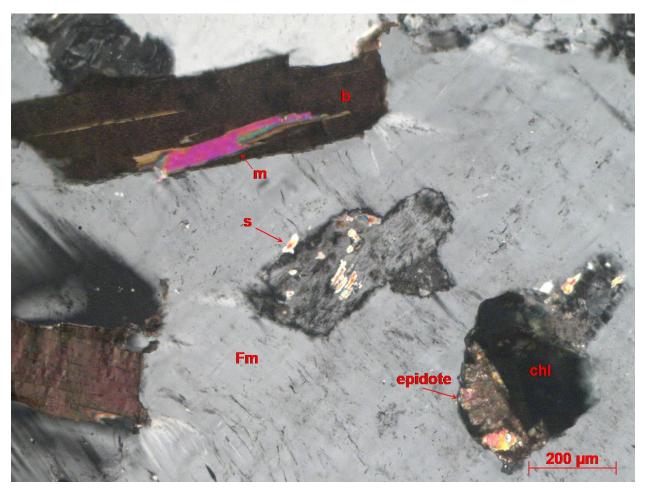
Thin Section Image 01. Alkali-Feldspar Granite taken under low magnification shows pleochroic biotite mica (b) widely scattered among coarse-grained feldspar and quartz crystals (white; low relief). Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.


TH19-168_C550@27'_2_5x_xpl_002 Alkali-Feldspar Granite

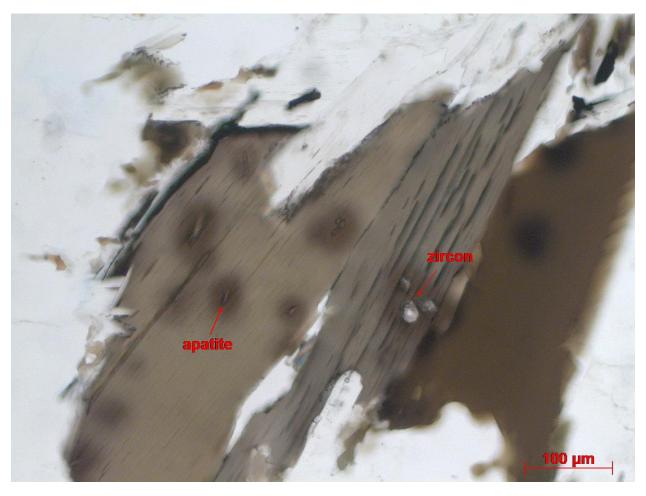
Thin Section Image 02. The same photo of the alkali-feldspar granite as TS_001 but taken under crossed polarized light illustrates crosshatch pattern of abundant K-feldspar – microcline (Fm) at various states of optical extinction. Note the worm-like perthite in the large microcline crystal at lower-left. The perthite indicates unmixing of the feldspar and exhibits sodic-plagiolcase within a potassic alkali-feldspar. Plagioclase feldspar is subordinate in abundance to alkali feldspar in the alkali-feldspar granite. Polycrystalline quartz (Qtz) is common and exhibits low first order gray to white interference colors. The biotite exhibits a wide variety of strong second-order interference colors up to pink and red. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.


TH19-168_C550@27'_5x_ppl_003 Alkali-Feldspar Granite

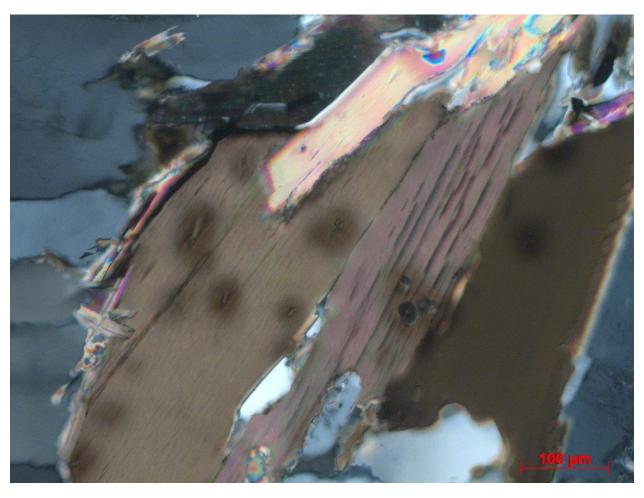
Thin Section Image 03. More magnified view of the alkali-feldspar granite illustrates coarse-grained quartz crystals (Qtz) adjacent to green and brown biotite mixed with hornblende (both are pleochroic). At right is a twinned plagiolcase feldspar (Fp). Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


TH19-168_C550@27'_5x_xpl_004 Alkali-Feldspar Granite

Thin Section Image 04. The same image as TS_003 but taken under crossed-polarized light better illustrates the prominence of the undulose extinction in the polycrystalline quartz (Qtz) and the polysynthetic twinning of the plagioclase feldspar (Fp). Note the small plagioclase crystal at lower-center exhibits worm-like myrmekite intergrowths of quartz. It is suggested that myrmekite occurrence is often associated with strain features in granitic rocks. The adjacent undulose extinction of the quartz crystals could also indicate tectonic strain in addition to the myrmekite formation during cooling of the magma body. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


TH19-168_C550@27'_10x_ppl_005 Alkali-Feldspar Granite

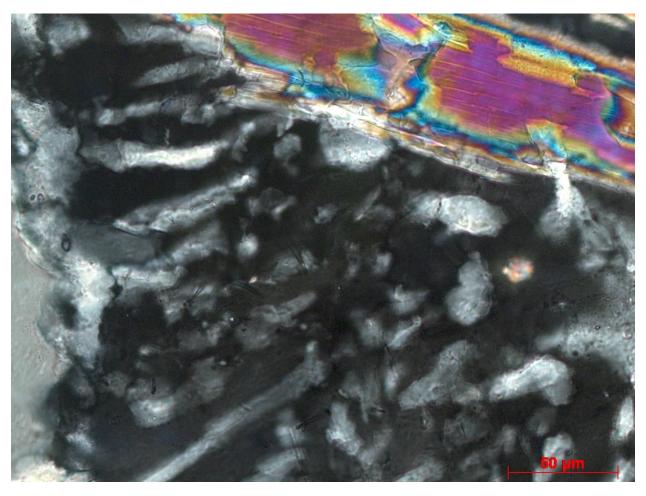
Thin Section Image 05. Greater magnification view of the alkali-feldspar granite exhibits smaller crystals of biotite (b) and a rare epidote (high-relief) hosted by a larger microcline variation of alkali-feldspar (Fm; white, low-relief). Note the small zircons hosted by the biotite. They, in turn, show pleochroic radiation halos likely from uranium or thorium in the crystal. Note the epidote is almost entirely altered to green chlorite (chl). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


TH19-168_C550@27'_10x_xpl_006 Alkali-Feldspar Granite

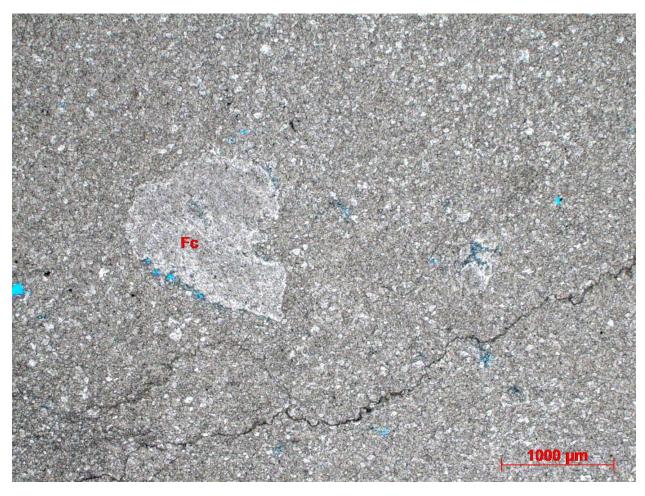
Thin Section Image 06. The same view as in TS_005 but taken under crossed-polarized light to emphasize the birds-eye extinction of the biotite and the upper third-order interference colors of the epidote that is partially altered to chlorite. A low-relief muscovite mica (m) overlaps the biotite at top. At center is a plagiolcase feldspar inclusion that is partially altered to bright sericite (s). All these smaller mineral crystals are enclosed in a larger microcline alkali-feldspar (Fm). Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH19-168_C550@27'_20x_ppl_007 Alkali-Feldspar Granite

Thin Section Image 07. Detailed view of the alkali-feldspar granite emphasizes a pleochroic biotite crystal that is medium-to-dark brown and hosts smaller crystals of zircons and apatite crystals. Note the zircons have high relief, whereas the apatite crystals are lower in relief. Both exhibit dark radiation halos indicative of uranium and/or thorium in the crystal lattice. Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.


TH19-168_C550@27'_20x_xpl_008 Alkali-Feldspar Granite

Thin Section Image 08. The same view of TS_007 but under crossed-polarized light illustrates the strong interference colors of the brown biotite that range up to second-order pink and red. Crossed-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.


TH19-168_C550@27'_50x_ppl_009 Alkali-Feldspar Granite

Thin Section Image 09. Highest magnification view of the alkali-feldspar granite exhibits prismatic green tourmaline crystals that are hosted by a plagiolcase feldspar crystal with associated myrmekite intergrowths of quartz. Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-168_C550@27'_50x_xpl_010 Alkali-Feldspar Granite

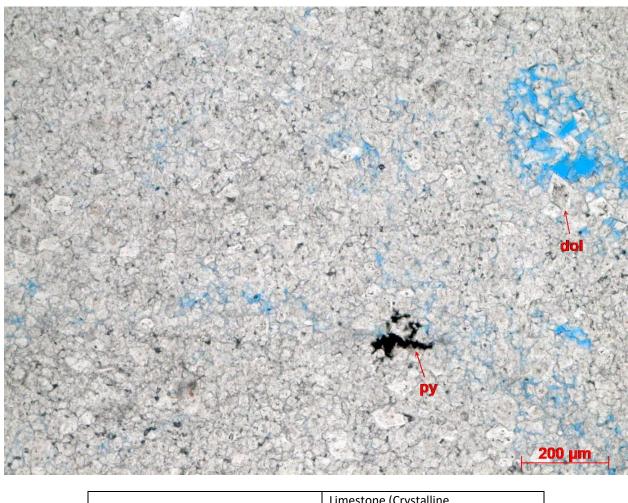
Thin Section Image 10. The same image as TS_009 but under crossed-polarized light exhibits the worm-like myrmekite of quartz intergrowths (white) against the host plagiolcase feldspar (currently optically extinct). Note the muscovite mica at top that exhibits bright second order interference colors of blue, green, yellow, and red. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-173_C518@26'_2_5x_ppl_011 Limestone (Crystalline Carbonate/Sparstone)

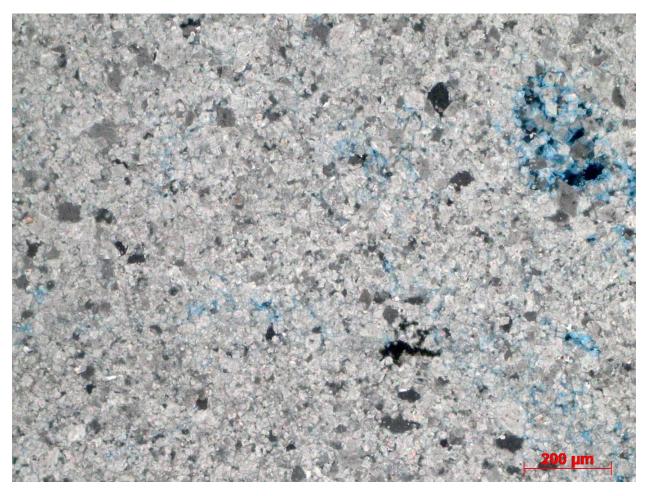
Thin Section Image 11. General overview of a limestone. Depending upon the classification scheme, this rock can be classified as a crystalline carbonate (Dunham, 1962) or as a sparstone (Write, 1992). The matrix is composed of interlocking calcite crystals that range in size from 15-30 microns (finely crystalline). A minor amount of calcareous shell fragments includes broken pieces of crinoid plates (Fc). At bottom are thin black stringers that are interpreted to be insoluble bitumen or some form or organic matter and not stylolites. Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH19-173_C518@26'_2_5x_xpl_012 Limestone (Crystalline Carbonate/Sparstone)

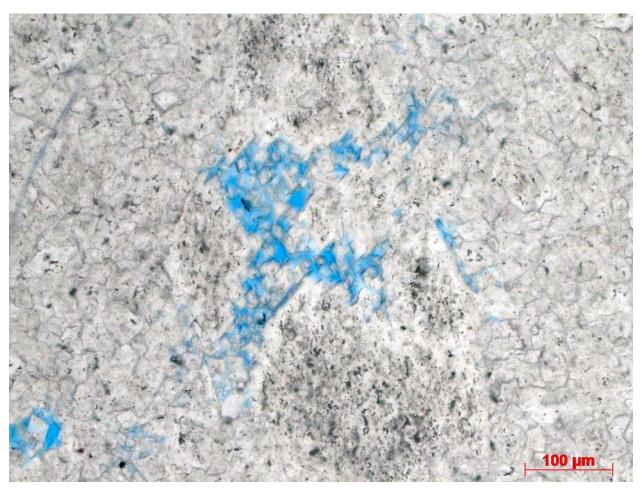
Thin Section Image 12. The same image as in TS_011 but under crossed-polarized light illustrates abundant interlocking calcite crystals, the crinoid plate fragment (Fc), and the organic stringers at the bottom of the image. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.


TH19-173_C518@26'_5x_ppl_013
Limestone (Crystalline Carbonate/Sparstone)

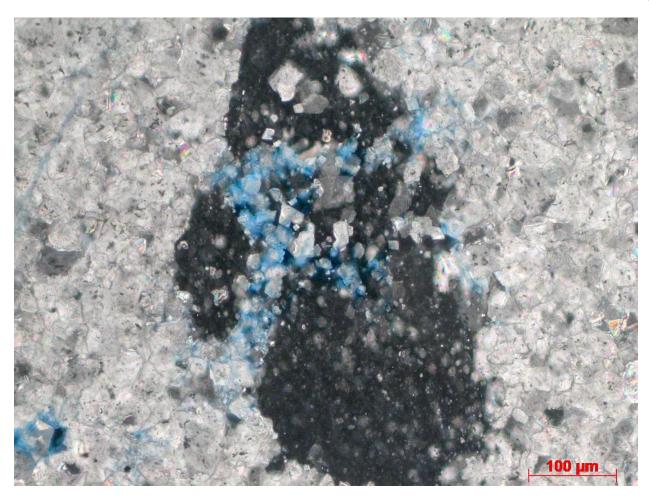
Thin Section Image 13. Greater magnification of the limestone shows sparry calcite cement crystals that are finely crystalline that are cemented together into an interlocking matrix. Note the porous vugs that show the blue dye added to the thin section epoxy. At center and lower right are more of the organic stringers mentioned previously. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


TH19-173_C518@26'_5x_xpl_014 Limestone (Crystalline Carbonate/Sparstone)

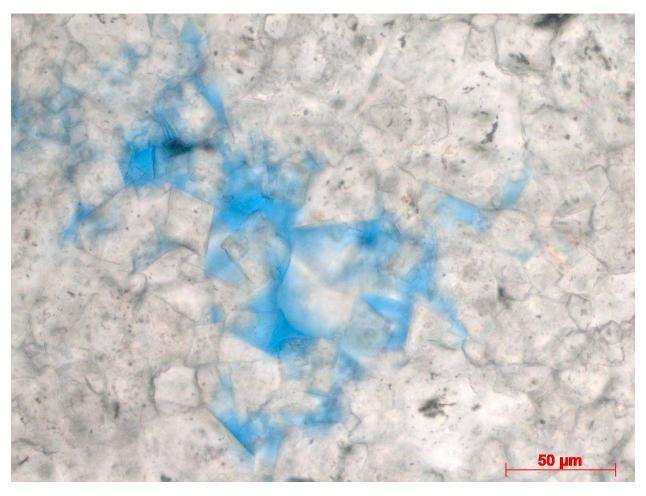
Thin Section Image 14. The same view as in TS_013 but under crossed-polarized light better illustrates the high order, white-edged interference colors of calcite. The vuggy areas will appear isotropic from the background glass slide. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


TH19-173_C518@26'_10x_ppl_015
Limestone (Crystalline Carbonate/Sparstone)

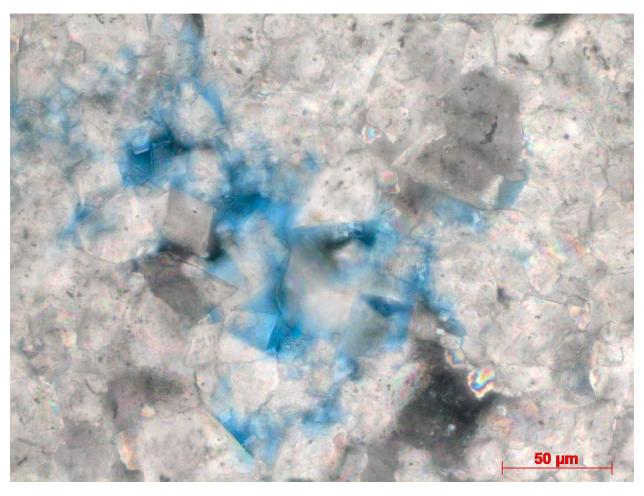
Thin Section Image 15. Higher magnification of the limestone shows the matrix of interlocking sparry calcite that hosts minor minerals such as opaque pyrite (py) and zoned dolomite rhombohedral crystals (dol). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


TH19-173_C518@26'_10x_xpl_016 Limestone (Crystalline Carbonate/Sparstone)

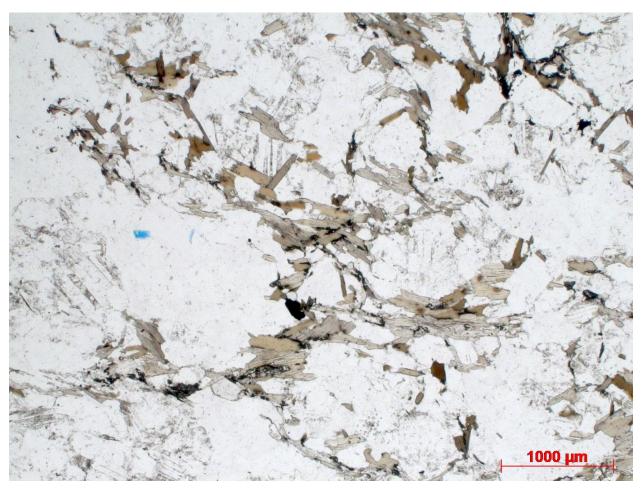
Thin Section Image 16. The same view as TS_015 but under crossed-polarized light better illustrates the high-order interference colors, the variable relief, and the rhombohedral cleavage of the calcite. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


TH19-173_C518@26'_20x_ppl_017 Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 17. Closer inspection of the limestone centers upon a partially dissolved fossil fragment or rip-up class that exhibits intraparticle porosity as shown from the partially dissolved rhombohedral crystal shapes and blue-dye background. Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.


TH19-173_C518@26'_20x_xpl_018 Limestone (Crystalline Carbonate/Sparstone)

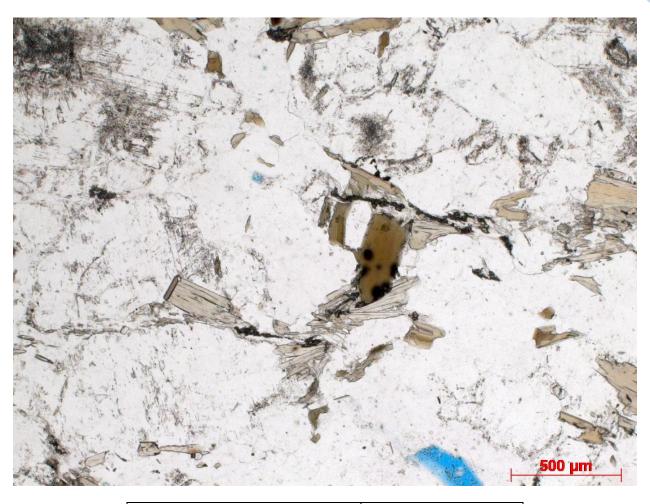
Thin Section Image 18. The same view as in TS_017 but under crossed-polarized light better illustrates the unit extinction of the unidentified fragment, possible a crinoid plate. Note the finely crystalline calcite crystals that appear in front of the crinoid plate in the third dimension and are smaller than the 30-micron thickness of the slide. Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.


TH19-173_C518@26'_50x_ppl_019 Limestone (Crystalline Carbonate/Sparstone)

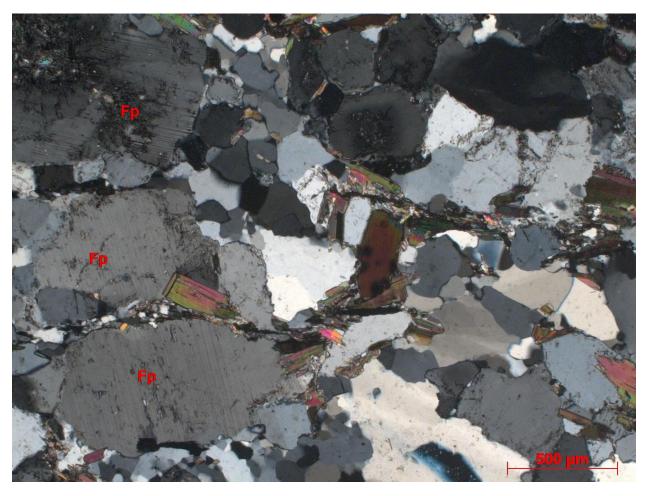
Thin Section Image 19. Highest magnification detail of the limestone focusses on a vuggy intercrystalline pore space between sharp, euhedral crystals of sparry calcite. Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-173_C518@26'_50x_xpl_020 Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 20. The same view as TS_019 under crossed-polarized light illustrates the extreme birefringence, rhombohedral cleavage, and high-order interference colors of the calcite crystals. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.



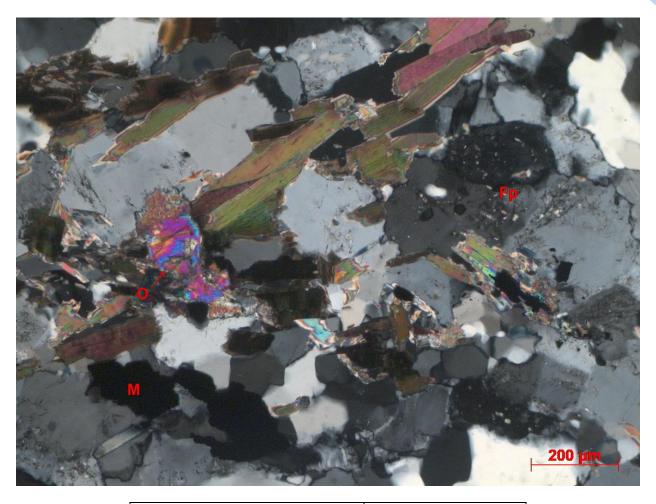
Thin Section Image 21. Low magnification overview of a tonalite shows an abundant amount of pleochroic biotite with subordinate hornblende (light to dark brown) among fine to medium-grained polycrystalline quartz and plagiolcase feldspar (white; low relief) Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.


Thin Section Image 22. The same view as in TS 21 but under crossed polarized light better illustrates the abundant polycrystalline quartz (45% by visual estimate) from the low-first order grey and white interference colors and undulose extinction. Plagioclase feldspar is also common, but in lesser amounts (35% by visual estimate). Biotite (15% by visual estimate) is widespread and exhibits strong birefringence with up to middle third-order interference colors of yellow, green, pink, and

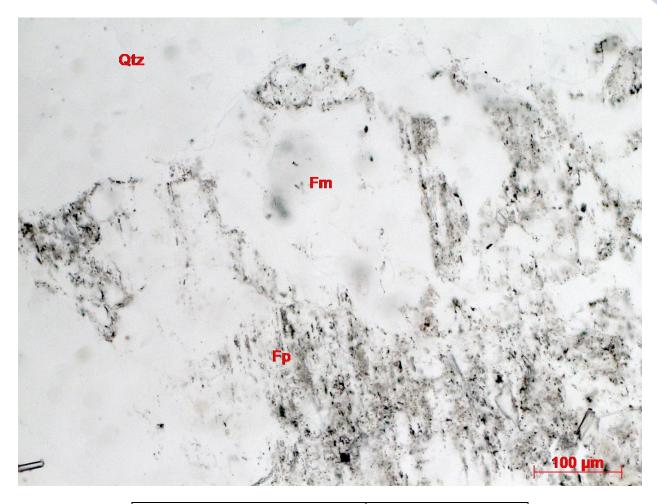
red. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

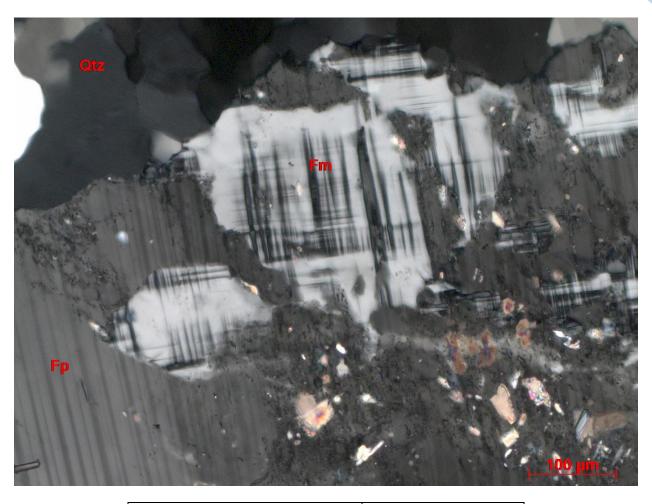
TH20-244_C8@24'_5x_ppl_023 Tonalite

Thin Section Image 23. More magnified view of the tonalite exhibits fine to medium-grained polycrystalline quartz and plagioclase feldspar (white; low relief), abundant biotite and lesser amounts of hornblende. Note the biotite crystal at center hosts radioactive apatite and zircon crystals from the black radiation halos. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

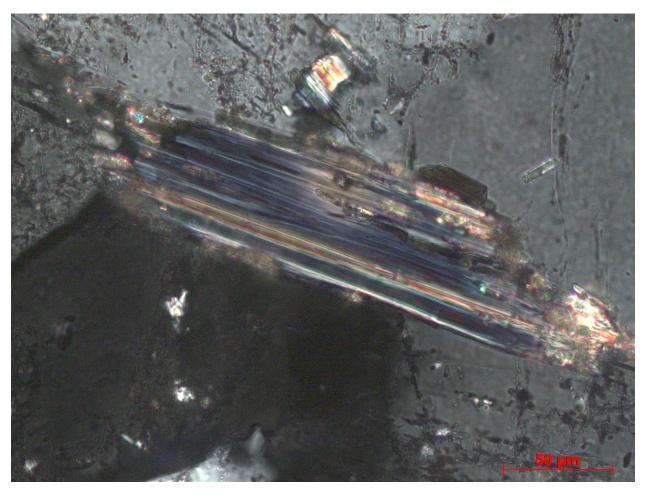


TH20-244_C8@24'_5x_xpl_024 Tonalite


Thin Section Image 24. The same view as the previous image but under crossed-polarized light shows abundant polycrystalline quartz crystals (white to gray interference colors; undulose extinction) among common biotite and subordinate hornblende (pink and green interference colors; birds eye extinction). At left are two plagioclase feldspar grains (Fp) identified from their characteristic polysynthetic twinning. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.


Thin Section Image 25. Medium magnification view of the tonalite shows abundant crystals of white polycrystalline quartz and plagiolcase feldspar that host subordinate amounts of light to dark-brown biotite and hornblende. Other accessory minerals include opaque magnetite (M), high-relief olivine (O), and rare apatite crystals enclosed in biotite (arrow). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


Thin Section Image 26. The same image as in TS25 but under crossed-polarized light illustrates the high second-order blue, pink, and orange interference colors of the olivine (O) and the abundant polycrystalline quartz (white to gray) and biotite (green to pink). A plagioclase feldspar at right (Fp) exhibits partial replacement by bright sericite. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.


Thin Section Image 27. Highly magnified view of the tonalite illustrates a microcline variation of alkali-feldspar (Fm) that is replaced by plagiolcase feldspar (Fp). The plagiolcase, in-turn, is partially replaced by sericite and calcite cement (dark gray flecks). At top is polycrystalline quartz (Qtz). Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

Thin Section Image 28. The same image as TS27 but under crossed-polarized light better illustrates the difference in the microcline (Fm) and the plagiolcase (Fp). Polycrystalline quartz (Qtz) is adjacent to the feldspar. Accessory calcite and sericite are rare and partially replaces the plagioclase (bright interference colors). Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

Thin Section Image 29. Highest magnification view of the tonalite emphasizes a light green pleochroic hornblende crystal adjacent to polycrystalline quartz crystals (white). Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH20-244_C8@24'_50x_xpl_030 Tonalite

Thin Section Image 30. The same view as TS29 but under crossed-polarized light illustrates the hornblende crystal from the deep blue interference colors (middle second-order). Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

ANALYTICAL PROCEDURES

Thin Section Analysis

Core samples were cut, surfaced, mounted to standard (24 mm \times 46 mm) thin section slides, and ground to a thickness of approximately 30 microns by National Petrographic. The samples were then shipped to Ryan McLin, sole proprietor of McLin Petrographics. The prepared thin sections were examined and digitally imaged at various magnifications using a Carl Zeiss Imager. A2m polarizing binocular microscope equipped with an AxioCam MRc digital camera, UV light source, and various UV filters. Five images at increasing steps in magnification were collected for each thin section in both plane-polarized light and in crossed-polarized light to observe mineral characteristics and identifying features.

BIBLIOGRAPHY

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. W.E. Ham), Am. Assoc. Pet. Geol. Mem., 1, 108–121.

Le Maitre, R. W. (ed.) 2002. Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Sub commission on the Systematics of Igneous Rocks, 2nd ed. xvi + 236 pp. Cambridge, New York, Melbourne

Simpson, C., and Wintsch, R.P., 1989. Evidence for deformation-induced K-feldspar replacement by myrmekite: Journal of Metamorphic Geology, v. 7, p. 261–275, https://doi.org/10.1111/j.1525-1314.1989.tb00588.x.

Streckeisen, A., 1974. Classification and Nomenclature of Plutonic Rocks. Geologische Rundschau, 63, 773-786.

Wright, V.P, 1992. A revised classification of limestones. In: Sedimentary Geology v.76, Issues 3–4, March 1992, 177-185

APPENDIX H

Ferry Road and Riverbend CSR – Rutland Trunk Sewer - Geophysical Survey (Tetra Tech July 26, 2021, Issued for Use)

July 26, 2021

ISSUED FOR USE FILE: ENG.GEOP03198-03

Via Email: Kirby.McRae@tetratech.com

Tetra Tech Inc. 400, 161 Portage Avenue Winnipeg, MB R3B 0Y4

Attention: Kirby McRae, P.Eng., Senior Design Lead

Subject: Ferry Road and Riverbend CSR – Rutland Trunk Sewer – Geophysical Survey

Winnipeg, MB

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by the City of Winnipeg to conduct geophysical profiling along Rutland Street for the proposed Ferry Road and Riverbend Combined Sewer Relief (CSR) tunnel in Winnipeg, MB. Previous geotechnical investigations and sewer projects in the area have identified the likelihood of hard glacial tills being encountered along an 800 m section of the alignment between Bruce Avenue and Silver Avenue.

Geophysical seismic data was collected along approximately 2 km of the alignment, including the noted 800 m section, in order to identify the location and elevation of harder subsurface material that could be problematic for tunnelling construction.

2.0 SEISMIC METHODOLOGY

2.1 Seismic Methodology

Two different seismic methods were utilized for this project: seismic refraction and multi-channel analysis of surface waves (MASW). Both data sets can be collected at the same time but use different properties of seismic wave train record.

Seismic refraction investigations rely on the generation of acoustic waves from a source and measurement of the ground response using acoustic receivers, called geophones, at a known geometry. The relative geometry of the source and receiver locations are known and can be related to the travel time of the acoustic wave travelling to each receiver. By identifying the first arrival of the compression (P-) wave, a modelled velocity cross-section can be generated.

Multichannel analysis of surface waves (MASW) is an alternate seismic technique based on the measurement of surface waves, specifically the dispersion characteristics of retrograde motion Rayleigh waves as these waves travel past the geophones. MASW data is analyzed by phase velocity-frequency based transformation. The dispersion curves are interpreted and solved through a least squares modelling process to obtain a one-dimensional vertical model of the average shear wave (S-wave) velocity across the seismic line at various depths, at each spread location. The MASW source can either be an active source (such as a sledgehammer striking a metal plate) or a passive source (such as ambient site noise caused by construction activities or traffic). MASW is often collected at

the same time as refraction data and provides additional information along the profile to assist with interpretation of the refraction data.

A detailed description of seismic refraction and MASW methodology, including limitations, is included in Appendix B.

3.0 DATA COLLECTION

Seismic data was collected by David McBean, P.Geo. (Alberta), and Jordan Augruso, P.Geo. (Alberta), between August 16 and August 18, 2020. The seismic system used for the survey was a Geometrics' 24-channel seismograph with 4.5 Hz geophones at a 1 m spacing. A sledgehammer striking a metal plate was used as the seismic source. Data was collected using an off-end shot location of 10 m.

The geophones were mounted on a landstreamer, with ground coupling achieved through a metal plate. This setup allows the geophones to be moved along the line efficiently, increasing the speed of data collection. The survey setup is shown below in Photo 1.

Photo 1 - Landstreamer setup

Data was collected along a profile approximately 2 km in length, extending from the Assiniboine River at the south end of the alignment to the Winnipeg James Armstrong Richardson International Airport at the north end. Seismic data was collected at 5 m increments along the profile. No data was collected on active roadways; therefore, the seismic profile contains four gaps in data coverage at Portage Avenue, Bruce Avenue, Ness Avenue, and Silver Avenue. Figure 1 provides a plan view site map of the survey area.

Data was collected adjacent to Rutland Street, which remained open to traffic at the time of the survey. The noted avenues along the survey alignment likewise remained open to traffic at the time of the survey. The field crew timed collection of individual seismic data files to occur when there was minimal adjacent traffic, or when traffic was paused at stop lights, but in busier areas such as at between Bruce Avenue and Silver Avenue, roadway traffic did contribute noise to the dataset.

Geophone locations were surveyed by Tetra Tech using an RTK GPS system to provide position and elevation information.

4.0 DATA PROCESSING

4.1 Refraction

The data was processed using Geometrics' SeisImager seismic processing software. The software was used to filter and gain the data, select the first arrivals, and assign layers to the travel times and perform a time-term inversion. The results from the time-term inversion were used as the initial model for tomographic inversions.

Due to traffic noise, the refraction seismic data had a low signal to noise ratio in some locations, making it challenging to pick the P-wave first arrivals. In these areas, MASW was used as the primary method for interpretation.

4.2 MASW

The data was also processed using MASW methods, which involves creating a plot of the phase velocity vs. frequency, called a dispersion image. By selecting the highest amplitude energy at the lowest phase velocities (the fundamental mode), a dispersion curve is determined. In general, the data was sell-suited to the MASW method and yielded a well-defined phase dispersion curve. The MASW data was processed and inverted in Kansas Geological Survey's SurfSeis software. The back calculation of shear wave (S-wave) velocity was performed using an iterative inversion least-squares approach. MASW is less sensitive to background noise, well-suited in urban environments and works well in unconsolidated soils.

5.0 RESULTS AND INTERPRETATION

Figures 2 and 3 provide an interpreted seismic profile along the surveyed alignment. In general, the seismic data agrees well with the available borehole information along the entire alignment. Primarily the modelled S-wave velocity was used to map the till interface, with P-wave velocities being used to help refine the interpretation in non-traffic areas.

The modelled S-wave contours have been shown on the figures along with an interpreted top of till interface, simplified borehole data, and proposed tunnel elevation. Locations along the alignment where either no data was collected (for example on roadways), or where the data quality and thus confidence in the data was poor have been shown as dashed lines (inferred).

The till interface fits well with a modelled S-wave velocity of between 190 m/s to 250 m/s and a modelled P-wave velocity of 1,000 m/s. The S-wave velocity used for the till interface changes as one moves north, away from the Assiniboine River. Since till is a geological deposition description, the actual composition of the material can, and does, change over the course of the alignment both in terms of material composition, density (N blow counts), and water content, which will affect seismic velocities.

From approximately 50 m north of the Assiniboine River (profile chainage 0 m) to the running track in Bourkevale Park (profile chainage 220 m), the till interface correlates better with a higher modelled S-wave velocity (220 m/s to 250 m/s) than the rest of the alignment. This could be due to the higher silt and less clay composition in the till relative to the rest of the alignment.

Over the running track (profile chainage 250 m) to Portage Avenue, the till is interpreted to be at its deepest point, over 12 m from surface, and is close to the modelling extent of the data. The engineered surface of the track does change the dispersion behavior of the surface waves and there is evidence of a velocity reversal (fast layer over a slow layer) in the refraction data that prevents accurate depth modelling from the refraction data set. The till interface correlates better with a modelled S-wave velocity of approximately 200 m/s.

From Portage Avenue to the end of the alignment past Silver Avenue, the till interface correlates well with a slower modelled S-wave velocity between 190 m/s and 200 m/s. The till interface elevation is shown as a gradual ascent, with several localized crests and troughs, to a high point around profile chainage 1,900 m past Silver Avenue. The till interface is at its shallowest point of only about 4 m from the surface at this furthest surveyed chainage.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of City of Winnipeg and their agents. Tetra Tech Canada Inc. (operating as Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than City of Winnipeg or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

7.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Tetra Tech Canada Inc.

FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03

Patrick.Finlay@tetratech.com

Prepared by:
Patrick Finlay, P.Geoph.
Manager, Senior Geophysicist
Engineering & Environmental Geophysics
Direct Line: 587.460.3506

/sd

Reviewed by:
Neil Parry, P.Geo., MBA
Director, Geospatial Imaging, Geophysicist
Engineering & Environmental Geophysics
Direct Line: 587.460.3598
Neil.Parry@tetratech.com

Certificate of Authorization
Tetra Tech Canada Inc.
No. 6499

FIGURES

Figure 1	Seismic Data Coverage Overview Map
Figure 2	Seismic Profile MASW Refraction Data Segment 1
Figure 3	Seismic Profile MASW Refraction Data Segment 2

SEISMIC READING LOCATION BOREHOLE **TUNNEL PATH CHAINAGE TUNNEL PATH**

TE TETRA TECH

Ferry Rd. & Riverbend CSR Rutland Trunk Sewer

Seismic Data Coverage **Overview Map**

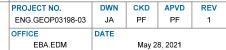
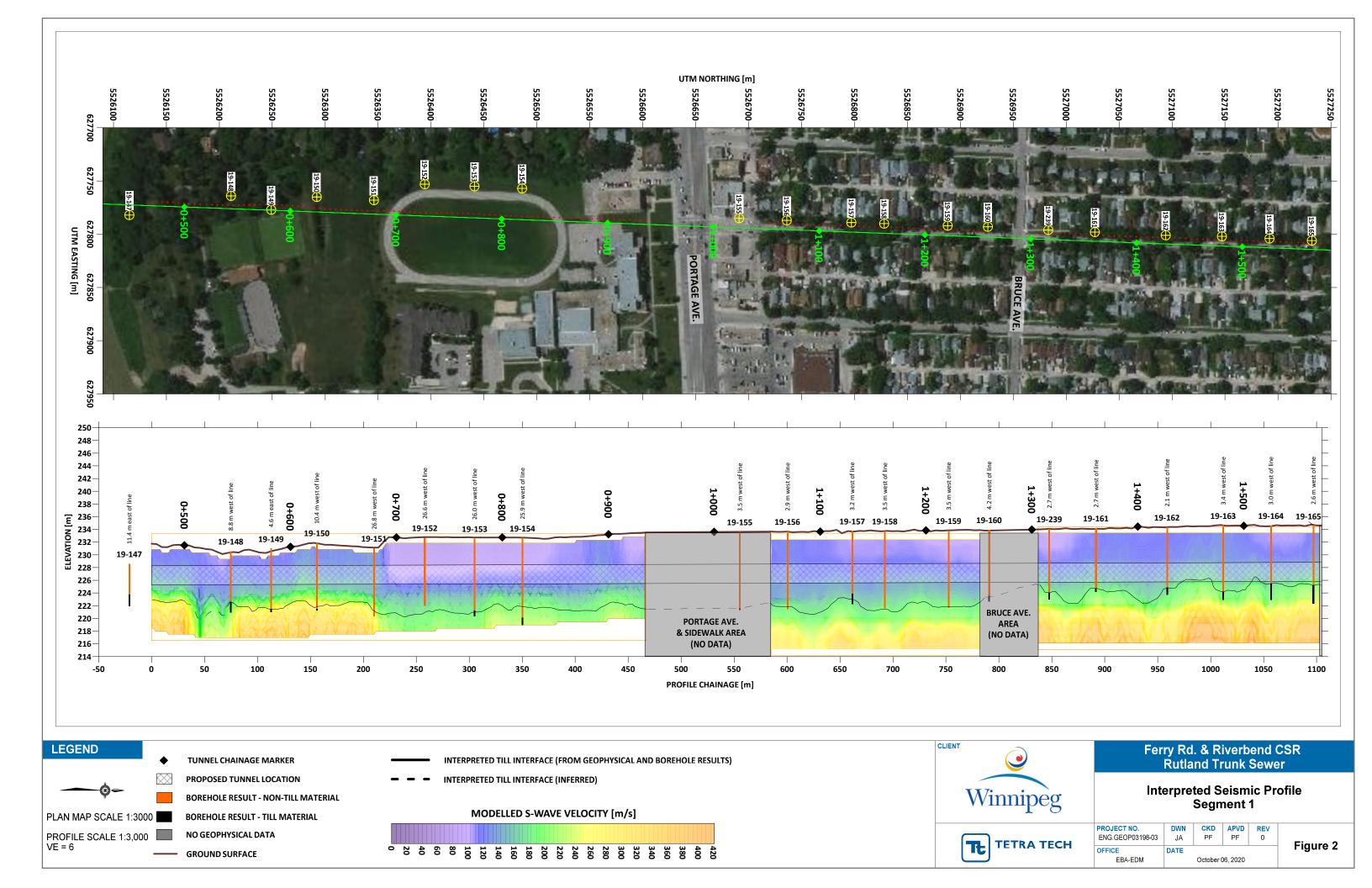
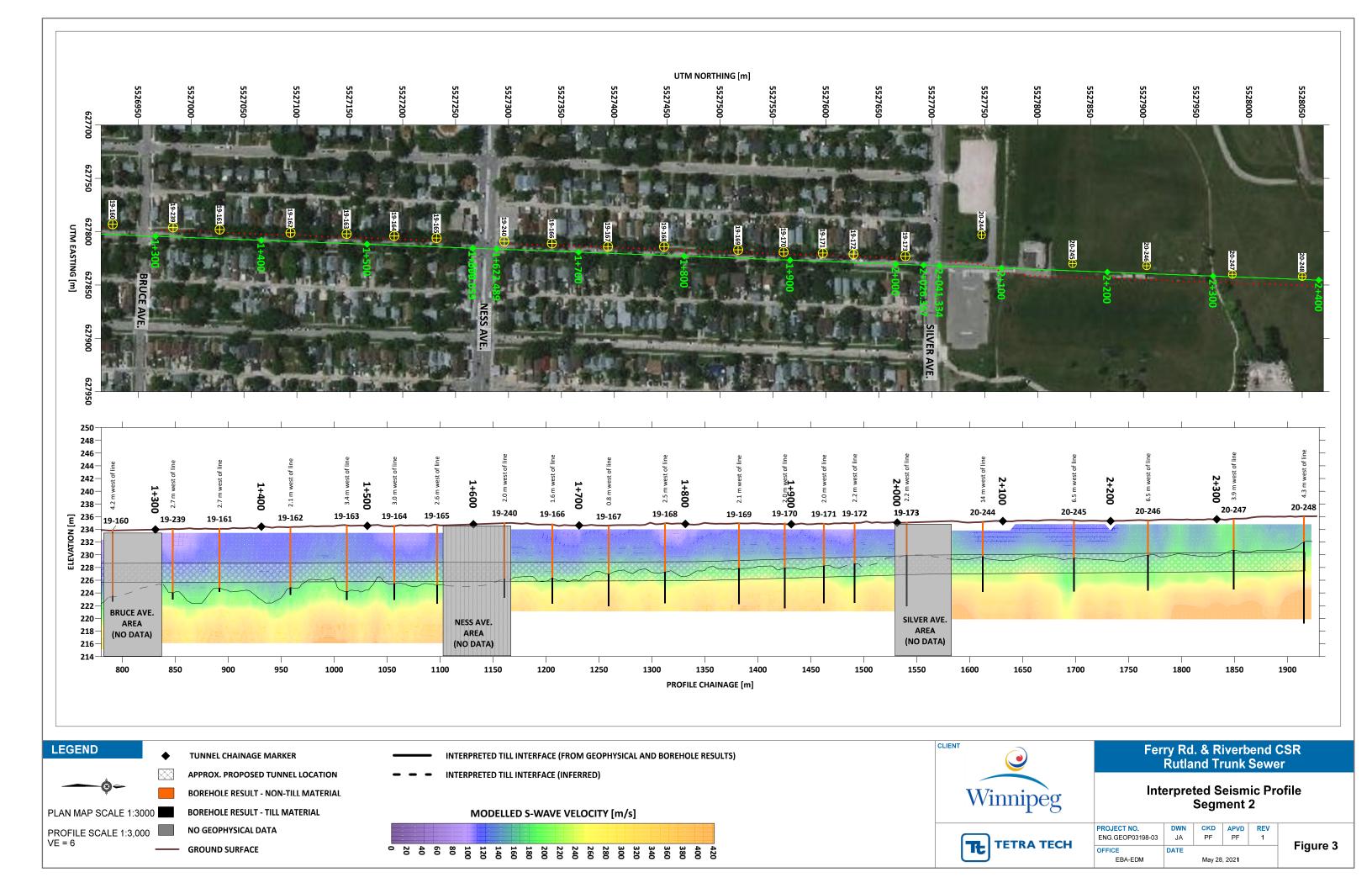




Figure 1

APPENDIX A

TETRA TECH'S LIMITATIONS ON USE OF THIS DOCUMENT

LIMITATIONS ON USE OF THIS DOCUMENT

GEOPHYSICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to investigate, address, or consider and has not investigated, addressed, or considered any environmental or regulatory issues associated with the development of the site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgemental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

1.11 SURFACE WATER AND GROUNDWATER CONDITIONS

Surface and groundwater conditions mentioned in this report are those observed at the times recorded in the report. These conditions vary with geological detail between observation sites; annual, seasonal and special meteorological conditions; and with development activity. Interpretation of water conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and development activity. Deviations from these observations may occur during the course of development activities.

APPENDIX B

SURVEY METHODOLOGIES AND LIMITATIONS

SURVEY METHODOLGIES AND LIMITATIONS

Seismic Refraction Methodology

Seismic investigations rely on the generation of acoustic waves from a source and measurement of the ground response using acoustic receivers, or geophones, at a known geometry. The relative geometry of the source and receivers are known and can be related to the time it takes for the acoustic wave to travel to each receiver. By identifying the first arrival times of the compression (P-) wave, a modelled velocity cross-section can be generated, thereby obtaining the modelled P-wave velocities along the cross-section.

The seismic refraction method is based on acoustic behavior controlled by Snell's Law and results in a cross-section model by analyzing the first arrival time of acoustic waves as received over an array of geophones. Where the apparent velocity of the first arrival wave changes (identified by a change in slope of the first arrival time versus geophone distance), a change in layer type and velocity can be identified.

Refractions can only occur at layer interfaces where velocities increase with depth. In situations where velocities decrease with depth, the lower velocity layer cannot be reliably modelled.

Seismic Refraction Limitations

Inverse Modelling – The inverse modelling process can produce many different valid, geologically realistic models that satisfy the initial conditions. The models used in this data analysis are considered the best models at the time of reporting based upon other available geophysical data and borehole data collected, as well as site observations.

Vertical Resolution – Layers with a vertical dimension that are small relative to the geophone spacing may not be detected due to insufficient horizontal sampling.

Hidden Layers – Governed by Snell's Law, the seismic refraction method can only resolve lithological layers if the velocities of the layers increase with depth. Sometimes this assumption is violated and results in 'hidden' or 'blind' layers that are low velocity layers between two higher velocity layers, or equally, layers that are too thin to be resolved given the velocity contrast present and the geophone geometry used.

Multichannel Analysis of Surface Waves (MASW) Methodology

When a stress is applied to an elastic body (such as a hammer hitting the ground), the corresponding strain propagates outwards as an elastic wave. There are two principal types of elastic waves: body and surface waves. Body waves consist of compressional or P- (primary) waves and S- (shear) waves. The velocities of P- and S-waves (Vp and Vs, respectively), are related to the bulk elastic properties and density of the material. Shear wave velocity is an important parameter that is directly proportional to the shear modulus of a material. It is a measure of stiffness (or rigidity) of that material and is a parameter often used in geotechnical engineering.

In addition to body waves that travel through an elastic medium, there are waves that travel only along the boundary of an elastic solid. There are two common types of surface waves in solids: Rayleigh waves (or ground roll) and Love waves. Rayleigh waves are of interest as their velocity behaviour is controlled by the shear strength of the material supporting the ground roll movement. Rayleigh waves are easily generated and constitute the majority of measurable seismic energy under normal ground conditions. Rayleigh waves have characteristic properties in that they travel in an elliptical retrograde motion in the vertical plane as they propagate along the surface of the elastic medium. The velocity of Rayleigh waves approximates 0.9Vs and can therefore be used to estimate the shear velocities of materials. Geophones are used to record the Rayleigh waves by measuring the vertical particle displacement at the ground surface.

In a layered medium, surface waves have dispersion properties that are not observed with body waves. Dispersion occurs as a result of surface waves being comprised of different wavelengths propagating at different velocities. The propagation velocity of each wavelength is called phase velocity. By analyzing the differing phase velocity characteristics at different frequencies, a dispersion curve can be generated. Short wavelengths have shallow penetration depths, while longer ones have deeper penetration. Therefore, analysis of the fundamental wave energy distribution of the dispersion curve maps a profile of near-surface shear wave velocities. The entire MASW technique thus consists of three fundamental steps: acquisition of ground roll data; imaging of the dispersion curves; and inversion (or back calculation) of shear wave velocities from the interpreted dispersion curves, thus obtaining stiffness parameters.

The end result of a MASW survey is a one-dimensional sounding, providing stiffness parameters at discrete locations, roughly analogous to a series of penetrometer measurements. Although the MASW technique makes use of the lateral dispersion of velocities along the surface (and thus is not a true point measurement), it is assumed to represent a point measurement that is representative of the soil conditions in the immediate vicinity of the array. In areas where a two-dimensional profile is required, a series of constant-offset one-dimensional soundings can be collected and processed together to build up a two-dimensional cross-section of shear wave velocities.

MASW Limitations

Due to the mathematical nature of inverse models, many possible models can satisfy the initial conditions and be considered equally correct in the absence of other data. In this case, the models chosen were deemed to be the optimal models given the available information. Therefore, modelling parameters were selected based on the expected lithology in the region of the survey. The models presented are considered reasonable, given the information available at this time, and represent the simplest interpretation that provides a good match to the measured field values. Other models with different layer thicknesses and seismic parameters may result in similar matches of the modelled data with the field data.

In geophysical modelling, the representation of the deepest layer of the model is referred to as a half-space. For this layer, only the top boundary is defined and the layer is treated mathematically as extending infinitely into the earth. The half-space is considered homogeneous and isotropic. In reality, there are subsequent seismic layers in the earth beyond the last model layer; however, due to geometric limitations of the survey and in situ contrasts between differing layers, they cannot be defined. As long as the seismic properties of the material beneath the final model layer do not differ substantially from those of the final model layer itself, the half-space approximation is considered to be mathematically sound, and the seismic model layers are considered to be a reasonable approximation of the seismic layers within the limits of the survey.

Topography – One of the assumptions of MASW theory is that the entirety of the array is in the same plane. This assumption has to do with the fact that one is measuring time differences with the use of geometry. As long as the changes in topography along the array's plane are less than 10 percent of the total line length, this holds true. Changes in topography did not exceed 10 percent of the total line length for the MASW profile at this site.

Fundamental Mode – An assumption used in the software is that the fundamental mode of the dispersion image is used for analysis. This mode can, at times, be difficult to pick out. It should be reviewed on a shot-by-shot basis to ensure correct interpretation as was done in this evaluation.

Layer Resolution/Aliasing – When spectra with poor low-frequency components are used in data collection over an area with stiff soils, a gradation of shear-wave velocities may be modelled where a sharp interface exists. This is due to the aliasing of these boundaries at depth as the lower frequency waves have too long of a wavelength to distinguish sudden boundaries.

Data Density – As with most surveys, data density should be considered when reviewing the results. Geophone spacing and survey methodology was recorded, reported on, and used in the interpretation process.

Data Coverage/Resolution – There are limitations on vertical resolution and maximum depth based on survey design and site conditions. The minimum vertical resolution (thus minimum depth of investigation) is directly proportional to the geophone interval and the highest frequencies generated by the source (and recorded by the receivers), while the theoretical maximum depth of investigation is proportional to the spread length between the first and last geophone, and the lowest frequencies generated by the source. Thus, maximum and minimum depths of investigation may vary between profiles collected with the same parameters and setups at the same site, because an impulsive, human-driven source, such as the one used in this project, does not guarantee a specific frequency content.

APPENDIX I

Ferry Road Piezometer Hydraulic Conductivity Testing (Tetra Tech Internal Memo June 11, 2021)

INTERNAL MEMO

ISSUED FOR USE

To: Kirby McRae Date: June 11, 2021

c: Memo No.:

From: Brent Horning **File:** 705-1000120300, Task 600.02

Subject: Ferry Road Piezometer Hydraulic Conductivity Testing

1.0 PROJECT BACKGROUND

In order to assess the potential for groundwater inflow into proposed future excavation works for a water and sewer line replacement, hydraulic conductivity analyses were performed at six (6) locations using the piezometers previously installed for geotechnical investigation of the proposed routing. These piezometers were installed along Rutland Street, running north from the Assiniboine River to Silver Avenue. A site plan showing the approximate piezometer locations is provided as Figure 1, attached.

The piezometers consist of 25 mm diameter PVC casings with 300 mm long perforated sections. Five of the piezometers were installed in the overburden, either a soft clay or silt till, at depths of 6.7 m below grade (mbg) to 11.2 mbg. The sixth piezometer was installed in the carbonate bedrock at a depth of 15.5 m below grade. Details relating to the screen section placement are provided in Table 1, attached. Borehole logs showing the stratigraphy encountered and the well construction as prepared by Dyregrov Robinson are included in Appendix A.

2.0 METHODOLOGY

On May 25 and 26, 2020, falling head slug tests were performed on each of the six piezometers, as described below.

- The static water level was measured using an electronic water level meter in relation to top of casing.
- A data logging pressure transducer set to record at two second intervals was placed approximately 0.5 m below the static water level.
- Approximately 4 L of clean tap water was poured into the well casing to create a sudden increase in the water level in the piezometer
- The rate of water drainage through the well screen to restore the water level to its original elevation was recorded by the pressure transducer and confirmed by periodic manual measurements.
- The transducer record was analysed using the AquiferTest Pro software to produce a hydraulic conductivity value for the materials adjacent to the well screen in each location.

3.0 FIELD OBSERVATIONS

Measurement of static water levels in the piezometers completed in the overburden found the water levels to be between 3.25 mbg and 3.53 mbg near the Assiniboine River shoreline, and between 6.45 mbg and 6.94 mbg further inland. Calculation of the associated groundwater elevations showed a variation of between 228.66 m above sea level (ASL) in the northern most piezometer (TH19-240) and 225.37 m ASL in the southern piezometer (TH19-147). The associated groundwater flow direction in the overburden unit is therefore anticipated to be southerly.

The groundwater in the bedrock piezometer (TH19-173) was measured as 7.65 mbg, with a calculated elevation of 227.51 m ASL. With only one measurement point, the potential groundwater flow direction in the carbonate bedrock cannot be determined. It is however noted that the water level in the bedrock is at a lower elevation that the water level in the closest overburden piezometer (TH19-240), suggesting a downward groundwater flow direction between these units.

Depth to groundwater measurements and calculated groundwater elevations are presented in Table 1, attached.

Upon introduction of the clean water into the piezometer casing it was noted that the water dissipated relatively quickly in each of the six piezometers, confirming that the water was being forced out into the surrounding water bearing unit adjacent to the screen section. Review of the piezometer construction details showed that for four of the six piezometers, the static water level was above any sand backfill installed around the screen section, ensuring it was saturated prior to the introduction of water into the piezometer. For the two piezometers located closest to the river (TH19-147 and TH19-148), the sand backfill extended above the static water level, suggesting the possibility that some of the water being introduced in to the casing would infill the sand fill, possibly influencing the initial results of the hydraulic conductivity assessment.

4.0 FALLING HEAD TEST ANALYSIS

Based on the well construction and stratigraphic conditions present, the Hvorselv method of hydraulic conductivity analysis was considered to be appropriate. This method involves the plotting the rate of variation in water level recovery over time in an effort to produce a straight-line semi-log plot. The water level recovery plots are provided in Appendix B. A summary of the resulting hydraulic conductivity values is included in Table 1.

Review of the groundwater level recovery curves found each of the five piezometers completed in the overburden to show a relative consistent pattern with at least two notable recovery stages. The initial straight line portion, extending over between 2 minutes and 10 minutes following water addition is considered to be representative of the hydraulic conductivity of the unit adjacent to the screen section. The secondary straight line portion of the slope is representative of the presence of a boundary condition, most commonly a hydraulic connection with adjacent stratigraphic units. For those two piezometers in which initial saturation of the sand pack adjacent to the piezometer was possibly anticipated (TH19-147 and TH19-148), some initial curve variation was noted, but was of limited duration so is not expected to have impacted the hydraulic conductivity value calculations.

In four of the five overburden piezometers, the initial hydraulic conductivity values were relatively consistent, ranging in value from 3.6×10^{-6} m/s to 8.9×10^{-6} m/s. In the fifth overburden piezometer (TH19-240, located furthest inland), the hydraulic conductivity was lower, with a value of 8.0×10^{-7} m/s. All of these values are consistent with a primarily silt with sand soil condition, as reported in the borehole logs.

In each of the five piezometers completed in the overburden, the secondary slope is representative of an increased hydraulic conductivity. Again the range of hydraulic conductivity is fairly consistent in four of the piezometers, being between 1.3×10^{-5} m/s to 3.6×10^{-5} m/s. The conductivity in the northern most piezometer (TH19-240) is again

notable lower at 2.5 x 10⁻⁶ m/s. These values are still consistent with a silt with sand, but would suggest an increasing sand content.

Review of the groundwater level recovery plot for the piezometer completed in the bedrock (TH19-173) shows a single straight line plot, terminating upon recovery to the original static water level. The calculated hydraulic conductivity of the carbonate bedrock in this location is 3.2 x 10⁻⁵ m/s, consistent with a fractured or karstic carbonate rock condition, as noted in the associated borehole log.

5.0 DISCUSSION/ CONCLUSIONS

Hydraulic conductivity testing of the piezometers installed in the overburden suggests that these soils show a variable hydraulic conductivity due to interconnectivity between layers or over lateral extension. The hydraulic conductivities in the saturated overburden extending from the Assiniboine River northward to at least Bruce Avenue, showed an initial average hydraulic conductivity of 6.0 x 10⁻⁶ m/s, increasing to an average of 2.5 x 10⁻⁵ m/s. In the vicinity of Ness avenue, the overburden showed a lower hydraulic conductivity of 8.0 x 10⁻⁷ m/s to 2.5 x 10⁻⁶ m/s.

The higher range of secondary hydraulic conductivity values for the overburden units is similar to that calculated for the carbonate bedrock unit (3.2 x 10⁻⁵ m/s), suggesting this may be the source of the boundary condition observed in each of the overburden falling head tests.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Winnipeg and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Winnipeg, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

7.0 CLOSURE

We trust this memo meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

> 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Prepared by: Brent Horning, P.Eng. Sr. Environmental Engineer Direct Line: 204.954.6860

Email: Brent.Horning@tetratech.com

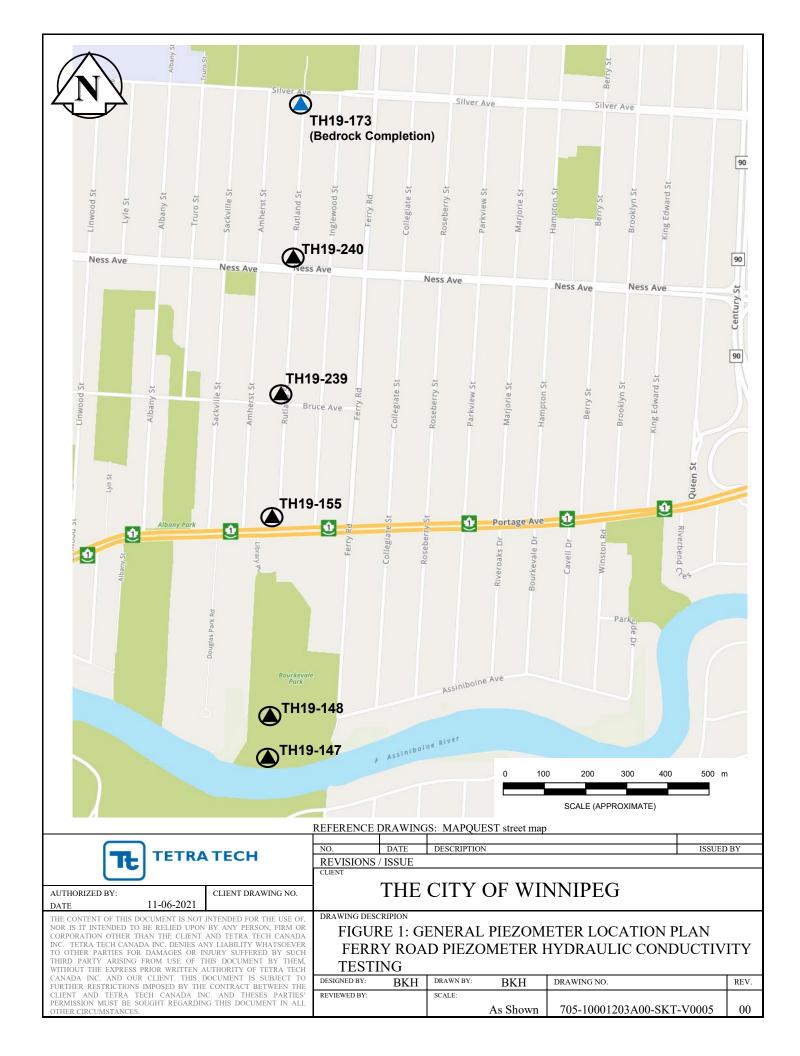
BH/ Attachments

705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Reviewed by: Ryan Wizbicki, P.Eng.

Manager – Environmental Services

Direct Line: 204.954.6930


Email: Ryan.Wizbicki@tetratech.com

Tetra Tech Canada Inc.
No. 6499

FIGURES

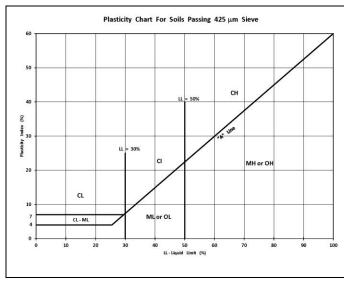
TABLES

Table 1 Summary of Hydraulic Conductivty Test Results Ferry Road Piezometer Hydraulic Conductivity Testing City of Winnipeg

	Ground Surface Elevation a Screen Section Depth			Static Water Level ^b		Initial Hydraulic Conductivity	Secondary Hydraulic Conductivity	
Piezometer No.	m Above Sea Level	m below grade	m Above Sea Level	Material Adjacent to Screen Section	m below grade	m Above Sea Level	m/ sec	m/ sec
TH19-147	228.619	6.1 - 6.4	222.2 - 222.5	Silt (Till)	3.25	225.37	7.0 x 10 ⁻⁶	3.0 x 10 ⁻⁵
TH19-148	230.566	6.1 - 6.4	224.2 - 224.5	Clay (Alluvial) underlain by Sand (alluvial)	3.53	227.04	3.6 x 10 ⁻⁶	3.6 x 10 ⁻⁵
TH19-155	233.629	12.0 - 12.3	221.3 - 221.6	Silt (Till)	6.59	227.04	4.5 x 10 ⁻⁶	1.3 x 10 ⁻⁵
TH19-173	235.159	15.2 - 15.5	219.7 - 220.0	Bedrock (Dolomite)	7.65	227.51	3.2 x 10 ⁻⁵	Not Present
TH19-239	234.083	10.7 - 11.0	223.1 - 223.4	Silt (Till)	6.94	227.14	8.9 x 10 ⁻⁶	2.2 x 10 ⁻⁵
TH19-240	235.111	9.1 - 9.4	225.7 - 226.0	Silt (Till)	6.45	228.66	8.0 x 10 ⁻⁷	2.5 x 10 ⁻⁶

Note: ^a Elevations based on Dyregrov Robinson Inc. well logs.

^b Water levels measured on May 25 and 26, 2020.


APPENDIX A

DYREGROV ROBINSON BOREHOLE LOGS

EXPLANATION OF TERMS & SYMBOLS

					TH Log	USCS		Laborator	y Classification Crite	eria
	Description				Symbols	Classification	Fines (%)	Grading	Plasticity	Notes
		CLEAN GRAVELS	Well graded sandy gravels or no f	s, with little	272	GW	0-5	C _U > 4 1 < C _C < 3		
	GRAVELS (More than 50% of coarse	(Little or no fines)	Poorly grade sandy gravel or no f	s, with little		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-
SOILS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and
AINED SO		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>
COARSE GRAINED		CLEAN SANDS	Well grade gravelly sand or no f	s, with little	:0:0 60:01	SW	0-5	C _U > 6 1 < C _C < 3		$C_U = \frac{D_{60}}{D_{10}}$
/00	SANDS (More than 50% of	(Little or no fines)	Poorly grad- gravelly sand or no f	s, with little	000	SP	0-5	Not satisfying SW requirements		$C_U = \frac{D_{60}}{D_{10}}$ $C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$
	coarse fraction of sand size)	tion of	Silty sa sand-silt n			SM	> 12		Atterberg limits below "A" line or W _P <4	
			Clayey s sand-clay			SC	> 12		Atterberg limits above "A" line or W _P <7	
	SILTS (Below 'A' line	W _L <50	Inorganic sil clayey fine s slight pla	ands, with		ML				
	negligible organic content)	W _L >50	Inorganic si plasti			МН				
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL				
FINE GRAINED SOILS	(Above 'A' line negligible organic	line 30~W.~50	Inorganic cla clays of n plasti	nedium		CI			Classification is Based upon Plasticity Chart	
FINE (content)	W _L >50	Inorganic cla plasticity,			СН				
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	lays of low		OL				
	(Below 'A' line)	(Below 'A'		ys of high city		ОН				
Н			Peat and ot organic			Pt		on Post fication Limit	Strong colour or odour, and often fibrous texture	
	Asphalt			Gl	lacial Till	^^^ / ^^^ /		edrock gneous)		
		Concrete		CI	ay Shale			edrock mestone)		
×		Fill						edrock ferentiated)		

FRACTION			CLE SIZE mm)	RELATIVE PROPORTIONS (by weight)		
		Min. Max.			,	
Bou	lders	>300		Percent	Descriptor	
Cob	Cobbles		300	>35%	main fraction	
Gravel	Coarse	19	75	35 - 50	"and"	
Graver	Fine	4.75	19	35 - 50	anu	
	Coarse	2.0	4.75		Adjective	
Sand	Medium	0.425	2.0	20 – 35	e.g. silty, clayey	
	Fine	0.075	0.425	10 – 20	"some"	
Silt (non-plastic) or Clay (plastic)		< 0.075 mm		10 – 20	Some	
				1 - 10	"trace"	

Soil Classification Example

Clay 50% (main fraction), Silt 25%, Sand 17%, Gravel 8%

Clay – silty, some sand, trace gravel

TERMS and SYMBOLS

Laboratory and field tests are identified as follows:

Unconfined Comp.: undrained shear strength (kPa or psf) derived from unconfined compression testing.

Torvane: undrained shear strength (kPa or psf) measured using a Torvane

Pocket Pen.: undrained shear strength (kPa or psf) measured using a pocket penetrometer.

Unit Weight bulk unit weight of soil or rock (kN/m³ or pcf).

SPT – N Standard Penetration Test: The number of blows (N) required to drive a 51 mm O.D. split barrel sampler 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

DCPT Dynamic Cone Penetration Test. The number of blows (N) required to drive a 50 mm diameter cone 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

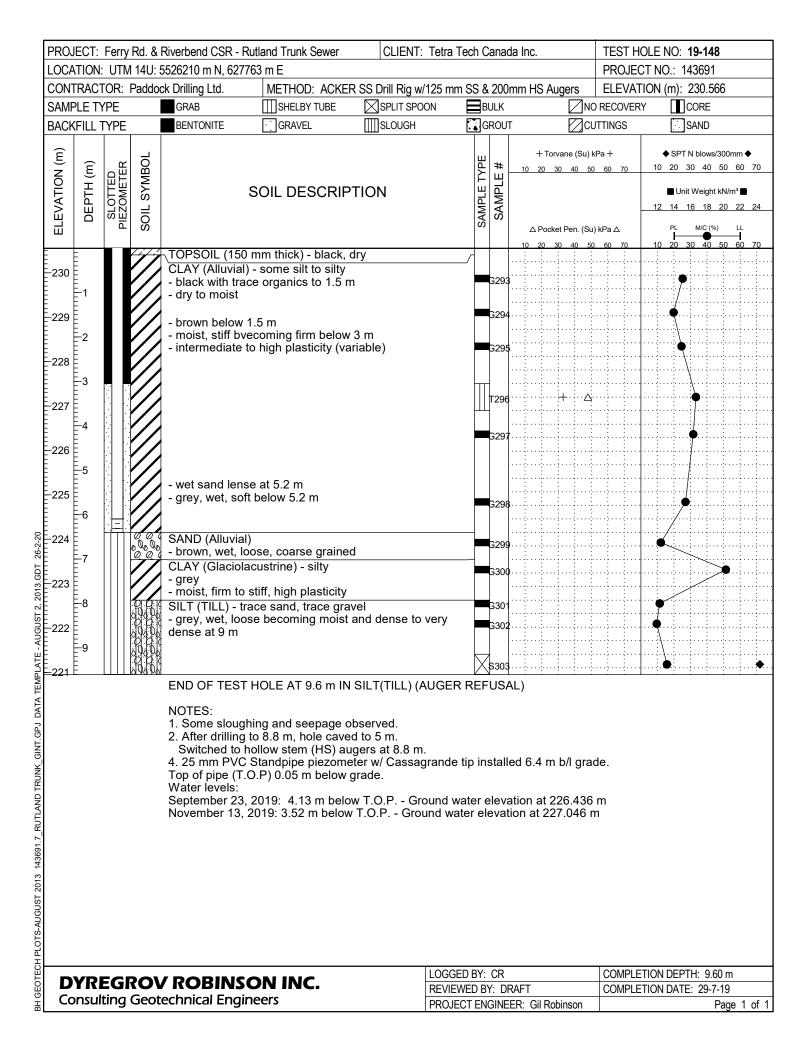
M/C insitu soil moisture content in percentPL Plastic limit, moisture content in percentLL Liquid limit, moisture content in percent

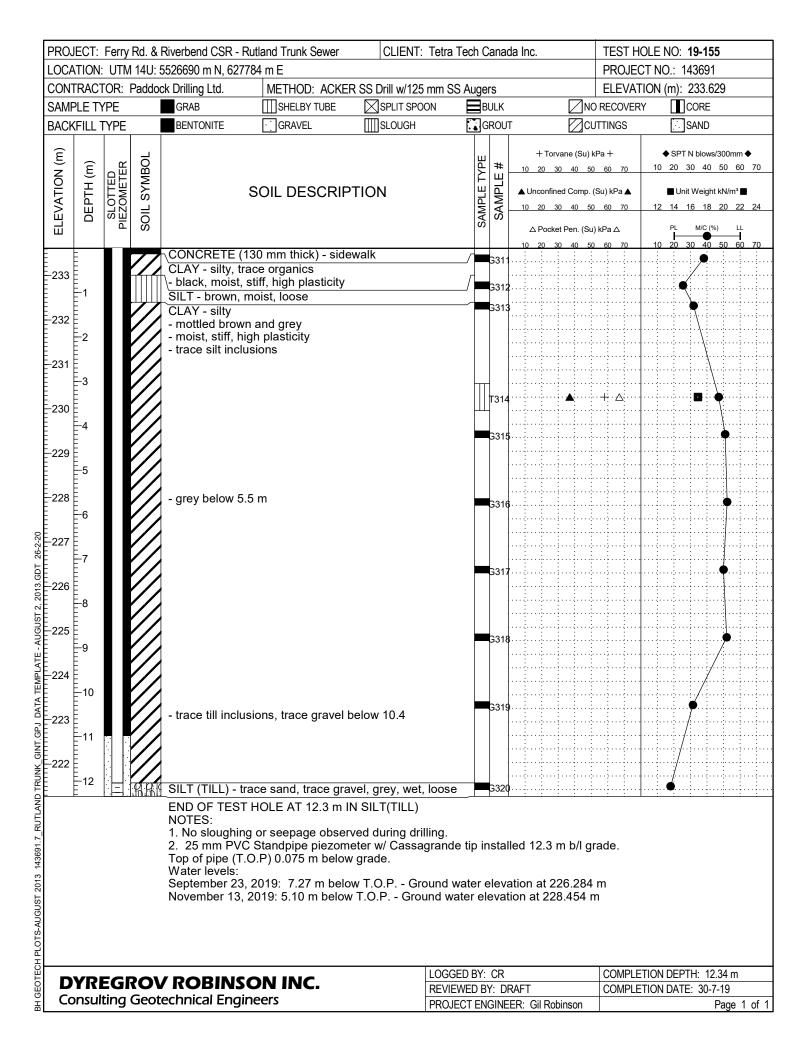
The undrained shear strength (Su) of cohesive soil is related to its consistency as follows:

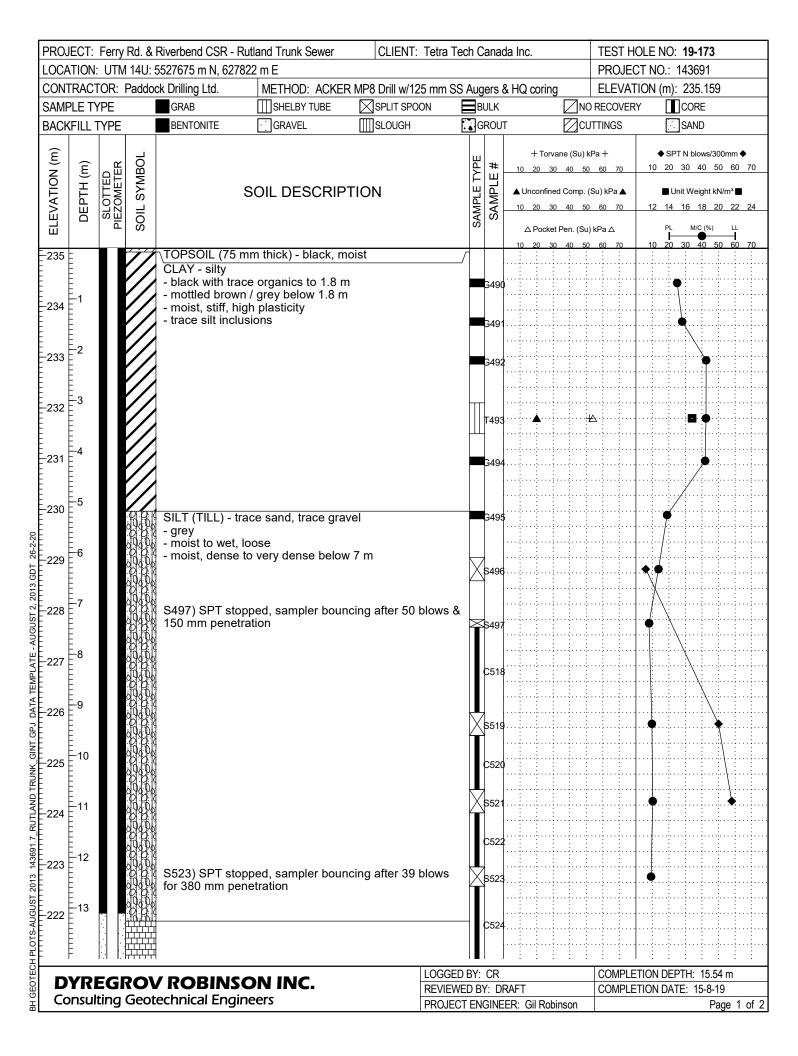
Su (kPa)	Su (psf)	CONSISTENCY
<12	250	very soft
12 – 25	250 – 525	soft
25 – 50	525 – 1050	firm
50 – 100	1050 – 2100	stiff
100 – 200	2100 – 4200	very stiff
200	4200	hard

The SPT - N of non-cohesive soil is related to compactness condition as follows:

N - Blows / 300 mm	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50 +	very dense


References:


ASTM D2487 - Classification of Soils For Engineering Purposes (Unified Soil Classification System)

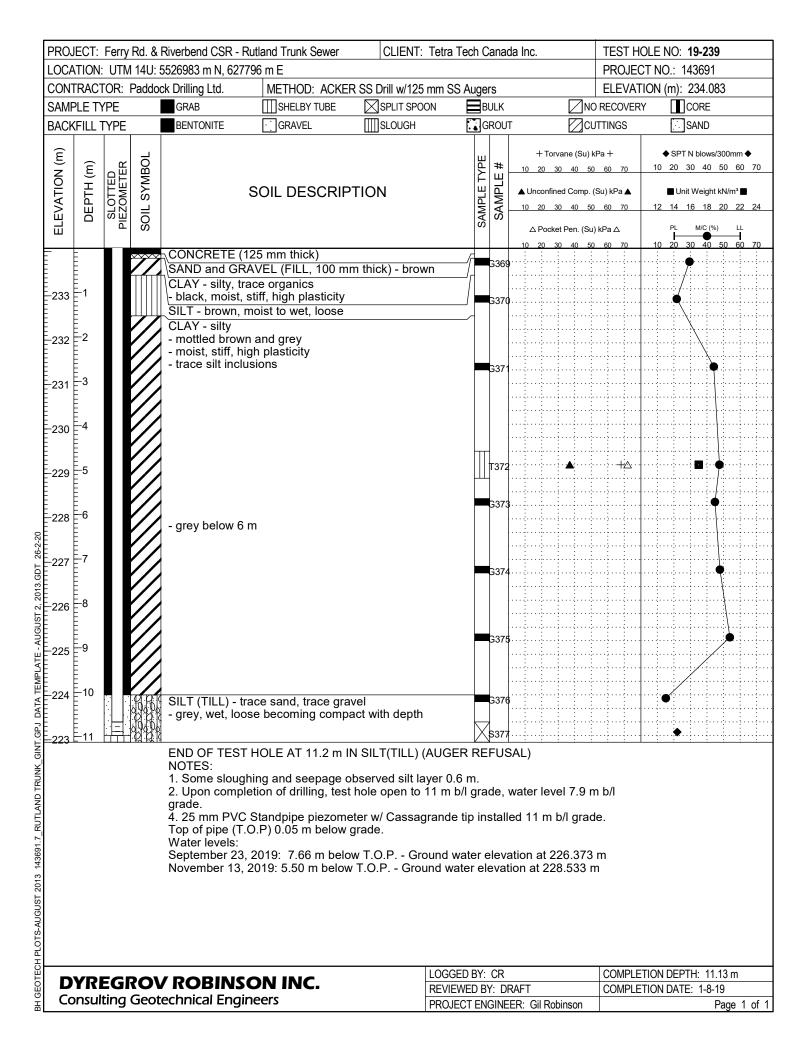

Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society, 2006

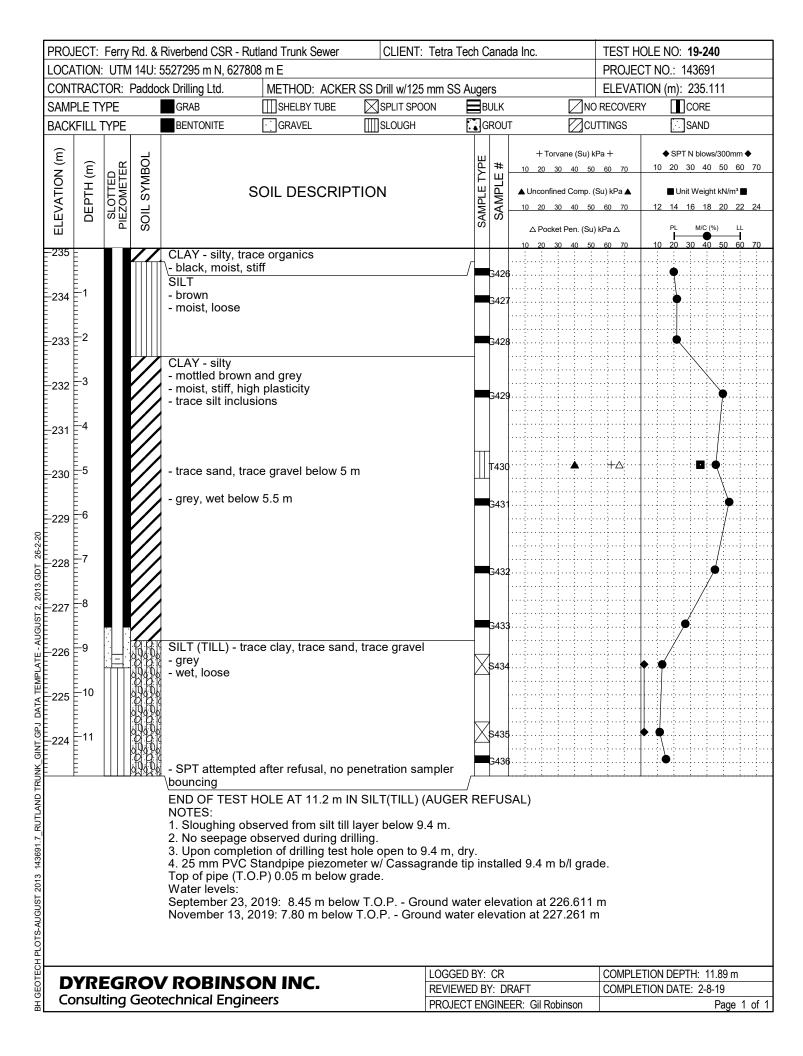
Consulting Geotechnical Engineers

LOGGED BY: CR	COMPLETION DEPTH: 6.71 m
REVIEWED BY: DRAFT	COMPLETION DATE: 30-7-19
PROJECT ENGINEER: Gil Robinson	Page 1 of 1

PROJ	PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc. TEST HOLE NO: 19-173											
LOCA	LOCATION: UTM 14U: 5527675 m N, 627822 m E PROJECT NO.: 143691											
CONT	CONTRACTOR: Paddock Drilling Ltd. METHOD: ACKER MP8 Drill w/125 mm SS Augers & HQ coring ELEVATION (m): 235.159											
SAMF	PLE TY	Έ		GRAB	SHELBY TUBE	SPLIT SPOON	В	ULK	✓NC	RECOVER	Y CORE	
BACK	FILL T	YPE		BENTONITE	GRAVEL	SLOUGH	C	ROU	T 🔲 CL	ITTINGS	SAND	
ELEVATION (m)	DЕРТН (m)	SLOTTED PIEZOMETER	SOIL SYMBOL		PTION	SAMPLE TYPE	SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 Δ Unconfined Comp. (10 20 30 40 50 Δ Pocket Pen. (Su) 10 20 30 40 50	60 70 Su) kPa ▲ 60 70	◆ SPT N blow 10 20 30 40 ■ Unit Weigh 12 14 16 18 PL M/C (10 20 30 40	50 60 70 nt kN/m³ 20 22 24 %) LL	
221	-15			BEDROCK - Red River Formation, Upper Fort Garry Member (dolomite) - poor to good quality, good below 14 m - whitish grey color, strong to very strong - horizontal and vertical fractures - close to moderately close discontinuity spacing - gapped to open joint apeture, evidence of water flow (Class 3) - 3 mm thick clay filling at 13.7 m and 13.9 m - trace small vugs (< 0.5mm) continued from previous page				C528				

END OF TEST HOLE AT 15.5 m IN BEDROCK


Notes:


- No sloughing or seepage observed during driling with augers.
 Upon completion of drilling with augers, test hole open to 7.5 m b/l grade, dry.
- 3. Auger refusal occured at 7.5 m, switched to HQ coring with casing advancer.
- 4. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 15.5 m b/l grade. Top of pipe (T.O.P) 0.05 m below grade.

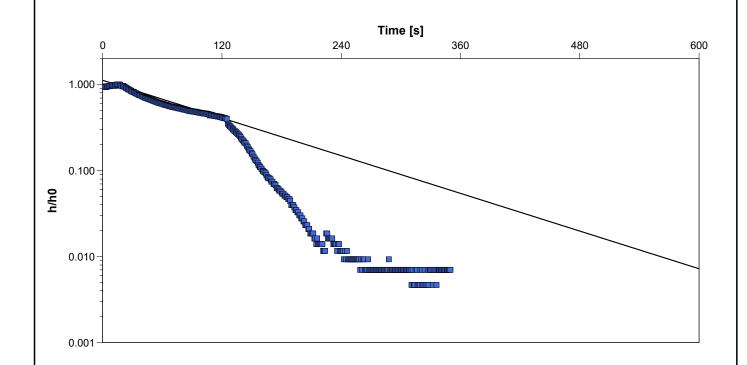
Water levels:

September 23, 2019: 8.43 m below T.O.P. - Ground water elevation at 226.679 m November 13, 2019: 6.44 m below T.O.P. - Ground water elevation at 228.669 m

BH GEOTECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ_DATA TEMPLATE - AUGUST 2, 2013.GDT_26-2-20

APPENDIX B

HYDRAULIC CONDUCTIVITY GRAPHS


Project: Ferry Road Sewer Line Upgrade

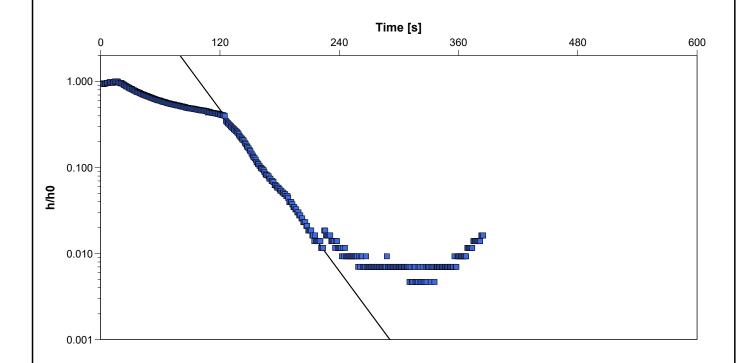
Number: 705-1000120300

Client: City of Winnipeg

Location: Ferry Road, Winnipeg	Slug Test: TH19-147 Falling Head	Test Well: TH19-147
Test Conducted by: M. Randell	Test Date: 2020-05-25	
Analysis Performed by:	TH19-147 Falling Head	Analysis Date: 2020-07-21

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-147	7.00 × 10 ⁻⁶	


Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300

Client: City of Winnipeg

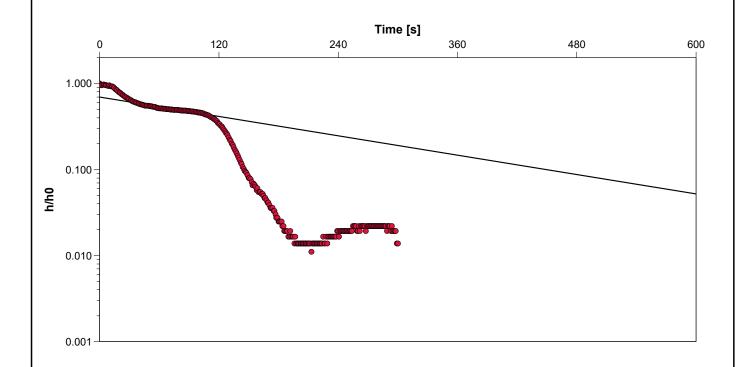
Location: Ferry Road, Winnipeg	Slug Test: TH19-147 Falling Head	Test Well: TH19-147
Test Conducted by: M. Randell		Test Date: 2020-05-25
Analysis Performed by:	TH19-147 Falling Head- Secondary	Analysis Date: 2020-06-11

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
TH19-147	3.00 × 10 ⁻⁵	

Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300


Client: City of Winnipeg

Location: Ferry Road, Winnipeg Slug Test: TH19-148 falling Head Test Well: TH19-148

Test Conducted by: Test Date: 2020-06-11

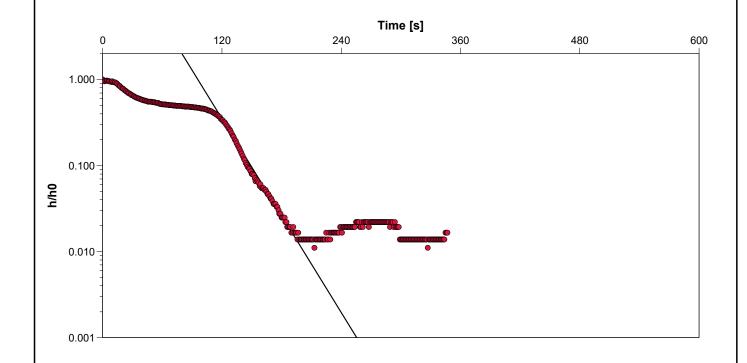
Analysis Performed by: TH19-148 Falling Head Analysis Date: 2020-07-21

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-148	3.60 × 10 ⁻⁶	

Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300


Client: City of Winnipeg

Location: Ferry Road, Winnipeg Slug Test: TH19-148 falling Head Test Well: TH19-148

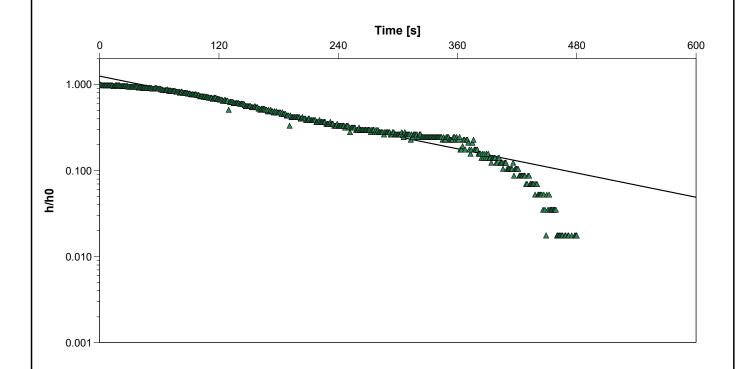
Test Conducted by: Test Date: 2020-06-11

Analysis Performed by: TH19-148 Falling Head - Secondary Analysis Date: 2020-06-11

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-148	3.60 × 10 ⁻⁵	

Slug Test Ar	alysis Report
--------------	---------------


Project: Ferry Road Sewer Line Upgrade

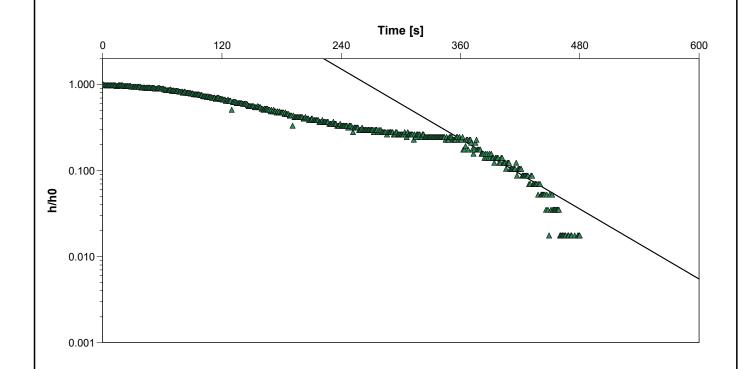
Number: 705-1000120300

Client: City of Winnipeg

Location: Ferry Road, Winnip	eg Sli	lug Test: TH19-155 All Data	Test Well: TH19-155
Test Conducted by: M. Randell			Test Date: 2020-05-25
Analysis Performed by:	TH	H18-155 Falling Head	Analysis Date: 2020-07-21

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-155	4.50 × 10 ⁻⁶	


Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300

Client: City of Winnipeg

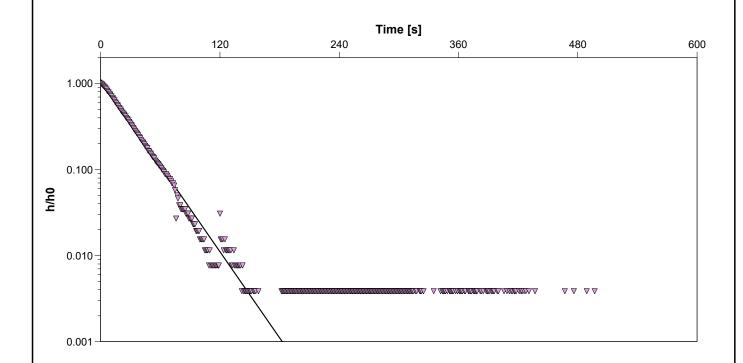
Location: Ferry Road, Winnipeg	Slug Test: TH19-155 All Data	Test Well: TH19-155
Test Conducted by: M. Randell		Test Date: 2020-05-25
Analysis Performed by:	TH19-155 Falling Head - Secondary	Analysis Date: 2020-07-21

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-155	1.30 × 10 ⁻⁵	

Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300


Client: City of Winnipeg

Location: Ferry Road, Winnipeg Slug Test: TH19-173 falling 1 Test Well: TH19-173

Test Conducted by: Test Date: 2020-06-11

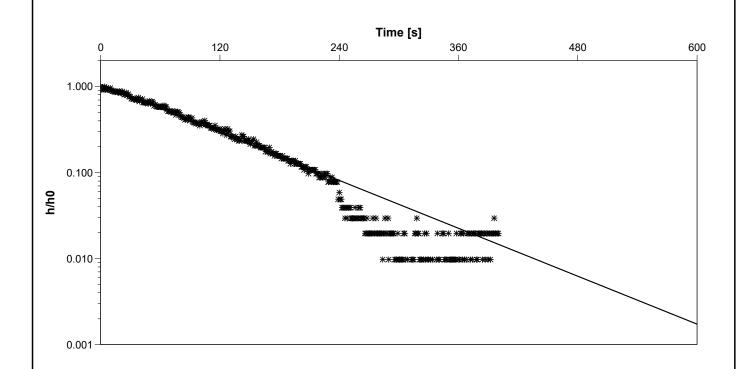
Analysis Performed by: TH19-173 Falling Head Analysis Date: 2020-06-11

Aquifer Thickness:

Observation Well	Hydraulic Conductivity [m/s]	
TH19-173	3.20 × 10 ⁻⁵	

Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300


Client: City of Winnipeg

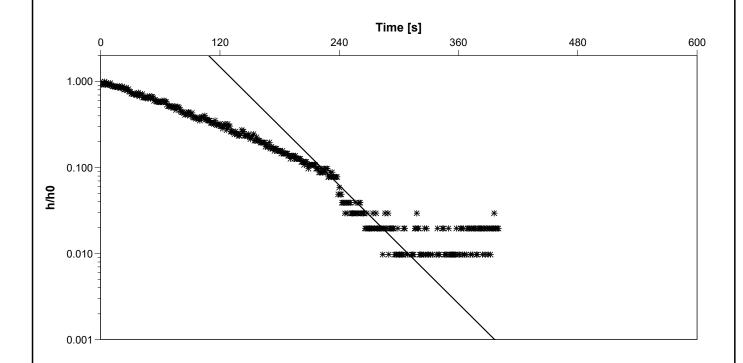
Location: Ferry Road, Winnipeg Slug Test: TH19-239 Falling Test Well: TH19-239

Test Conducted by: Test Date: 2020-06-11

Analysis Performed by: TH19-239 Falling Head Analysis Date: 2020-06-11

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity [m/s]	
TH19-239	8.90 × 10 ⁻⁶	


Project: Ferry Road Sewer Line Upgrade

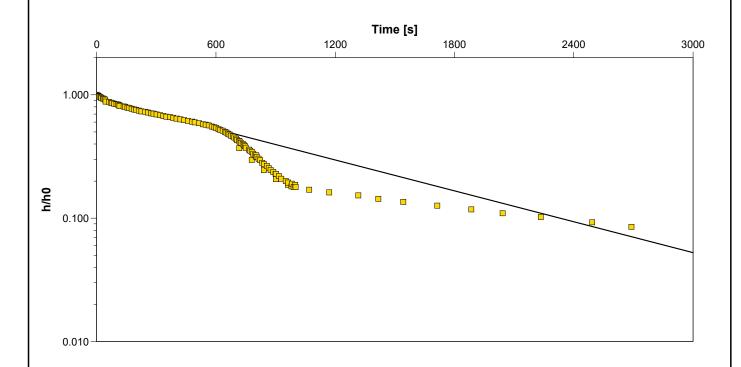
Number: 705-1000120300

Client: City of Winnipeg

Location: Ferry Road, WinnipegSlug Test: TH19-239 FallingTest Well: TH19-239Test Conducted by:Test Date: 2020-06-11Analysis Performed by:TH19-239 Falling - SecondaryAnalysis Date: 2020-07-22

Aquifer Thickness: 10.00 m

	Observation Well	Hydraulic Conductivity	
		[m/s]	
	TH19-239	2.20 × 10 ⁻⁵	


Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300

Client: City of Winnipeg

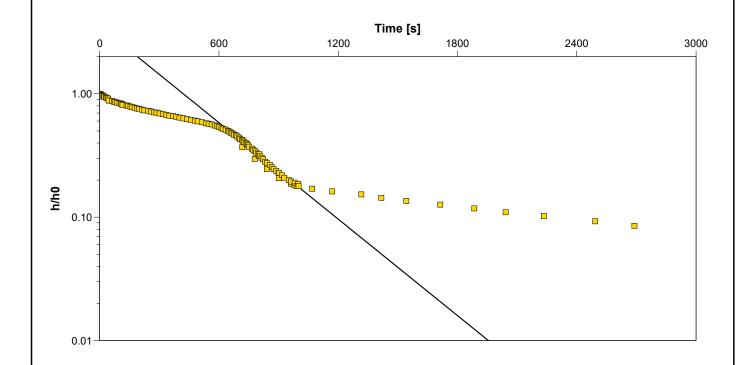
Location: Ferry Road, Winnipeg	Slug Test: TH19-240 Falling	Test Well: TH19-240
Test Conducted by:		Test Date: 2020-06-11
Analysis Performed by:	TH19-240 Falling Head	Analysis Date: 2020-06-11

Aquifer Thickness: 10.00 m

Observation Well	Hydraulic Conductivity	
	[m/s]	
TH19-240	8.00 × 10 ⁻⁷	

Project: Ferry Road Sewer Line Upgrade

Number: 705-1000120300


Client: City of Winnipeg

Location: Ferry Road, Winnipeg Slug Test: TH19-240 Falling Test Well: TH19-240

Test Conducted by: Test Date: 2020-06-11

Analysis Performed by: TH19-240 Falling Head - Secondary Analysis Date: 2020-07-21

Aquifer Thickness: 10.00 m

Ca	lcu	lation	using	H	lvors	lev
----	-----	--------	-------	---	-------	-----

Observation Well	Hydraulic Conductivity	
	[m/s]	
TH19-240	2.50 × 10 ⁻⁶	

DYREGROV ROBINSON INC. 1692 Dublin Ave #1, Winnipeg, MB, Canada R3H 1A8 204.632.7252 DRIGEOTECHNICAL.CA