

INTERNAL MEMO

ISSUED FOR USE

То:	Kirby McRae	Date:	June 11, 2021						
c:		Memo No.:							
From:	Brent Horning	File:	705-1000120300, Task 600.02						
Subject:	Ferry Road Piezometer Hydraulic Conductivity Testing								

1.0 PROJECT BACKGROUND

In order to assess the potential for groundwater inflow into proposed future excavation works for a water and sewer line replacement, hydraulic conductivity analyses were performed at six (6) locations using the piezometers previously installed for geotechnical investigation of the proposed routing. These piezometers were installed along Rutland Street, running north from the Assiniboine River to Silver Avenue. A site plan showing the approximate piezometer locations is provided as Figure 1, attached.

The piezometers consist of 25 mm diameter PVC casings with 300 mm long perforated sections. Five of the piezometers were installed in the overburden, either a soft clay or silt till, at depths of 6.7 m below grade (mbg) to 11.2 mbg. The sixth piezometer was installed in the carbonate bedrock at a depth of 15.5 m below grade. Details relating to the screen section placement are provided in Table 1, attached. Borehole logs showing the stratigraphy encountered and the well construction as prepared by Dyregrov Robinson are included in Appendix A.

2.0 METHODOLOGY

On May 25 and 26, 2020, falling head slug tests were performed on each of the six piezometers, as described below.

- The static water level was measured using an electronic water level meter in relation to top of casing.
- A data logging pressure transducer set to record at two second intervals was placed approximately 0.5 m below the static water level.
- Approximately 4 L of clean tap water was poured into the well casing to create a sudden increase in the water level in the piezometer
- The rate of water drainage through the well screen to restore the water level to its original elevation was recorded by the pressure transducer and confirmed by periodic manual measurements.
- The transducer record was analysed using the AquiferTest Pro software to produce a hydraulic conductivity value for the materials adjacent to the well screen in each location.

3.0 FIELD OBSERVATIONS

Measurement of static water levels in the piezometers completed in the overburden found the water levels to be between 3.25 mbg and 3.53 mbg near the Assiniboine River shoreline, and between 6.45 mbg and 6.94 mbg further inland. Calculation of the associated groundwater elevations showed a variation of between 228.66 m above sea level (ASL) in the northern most piezometer (TH19-240) and 225.37 m ASL in the southern piezometer (TH19-147). The associated groundwater flow direction in the overburden unit is therefore anticipated to be southerly.

The groundwater in the bedrock piezometer (TH19-173) was measured as 7.65 mbg, with a calculated elevation of 227.51 m ASL. With only one measurement point, the potential groundwater flow direction in the carbonate bedrock cannot be determined. It is however noted that the water level in the bedrock is at a lower elevation that the water level in the closest overburden piezometer (TH19-240), suggesting a downward groundwater flow direction between these units.

Depth to groundwater measurements and calculated groundwater elevations are presented in Table 1, attached.

Upon introduction of the clean water into the piezometer casing it was noted that the water dissipated relatively quickly in each of the six piezometers, confirming that the water was being forced out into the surrounding water bearing unit adjacent to the screen section. Review of the piezometer construction details showed that for four of the six piezometers, the static water level was above any sand backfill installed around the screen section, ensuring it was saturated prior to the introduction of water into the piezometer. For the two piezometers located closest to the river (TH19-147 and TH19-148), the sand backfill extended above the static water level, suggesting the possibility that some of the water being introduced in to the casing would infill the sand fill, possibly influencing the initial results of the hydraulic conductivity assessment.

4.0 FALLING HEAD TEST ANALYSIS

Based on the well construction and stratigraphic conditions present, the Hvorselv method of hydraulic conductivity analysis was considered to be appropriate. This method involves the plotting the rate of variation in water level recovery over time in an effort to produce a straight-line semi-log plot. The water level recovery plots are provided in Appendix B. A summary of the resulting hydraulic conductivity values is included in Table 1.

Review of the groundwater level recovery curves found each of the five piezometers completed in the overburden to show a relative consistent pattern with at least two notable recovery stages. The initial straight line portion, extending over between 2 minutes and 10 minutes following water addition is considered to be representative of the hydraulic conductivity of the unit adjacent to the screen section. The secondary straight line portion of the slope is representative of the presence of a boundary condition, most commonly a hydraulic connection with adjacent stratigraphic units. For those two piezometers in which initial saturation of the sand pack adjacent to the piezometer was possibly anticipated (TH19-147 and TH19-148), some initial curve variation was noted, but was of limited duration so is not expected to have impacted the hydraulic conductivity value calculations.

In four of the five overburden piezometers, the initial hydraulic conductivity values were relatively consistent, ranging in value from 3.6×10^{-6} m/s to 8.9×10^{-6} m/s. In the fifth overburden piezometer (TH19-240, located furthest inland), the hydraulic conductivity was lower, with a value of 8.0×10^{-7} m/s. All of these values are consistent with a primarily silt with sand soil condition, as reported in the borehole logs.

In each of the five piezometers completed in the overburden, the secondary slope is representative of an increased hydraulic conductivity. Again the range of hydraulic conductivity is fairly consistent in four of the piezometers, being between 1.3×10^{-5} m/s to 3.6×10^{-5} m/s. The conductivity in the northern most piezometer (TH19-240) is again

notable lower at 2.5 x 10⁻⁶ m/s. These values are still consistent with a silt with sand, but would suggest an increasing sand content.

Review of the groundwater level recovery plot for the piezometer completed in the bedrock (TH19-173) shows a single straight line plot, terminating upon recovery to the original static water level. The calculated hydraulic conductivity of the carbonate bedrock in this location is 3.2×10^{-5} m/s, consistent with a fractured or karstic carbonate rock condition, as noted in the associated borehole log.

5.0 DISCUSSION/ CONCLUSIONS

Hydraulic conductivity testing of the piezometers installed in the overburden suggests that these soils show a variable hydraulic conductivity due to interconnectivity between layers or over lateral extension. The hydraulic conductivities in the saturated overburden extending from the Assiniboine River northward to at least Bruce Avenue, showed an initial average hydraulic conductivity of 6.0×10^{-6} m/s, increasing to an average of 2.5×10^{-5} m/s. In the vicinity of Ness avenue, the overburden showed a lower hydraulic conductivity of 8.0×10^{-7} m/s to 2.5×10^{-6} m/s.

The higher range of secondary hydraulic conductivity values for the overburden units is similar to that calculated for the carbonate bedrock unit (3.2×10^{-5} m/s), suggesting this may be the source of the boundary condition observed in each of the overburden falling head tests.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Winnipeg and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Winnipeg, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

7.0 CLOSURE

We trust this memo meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

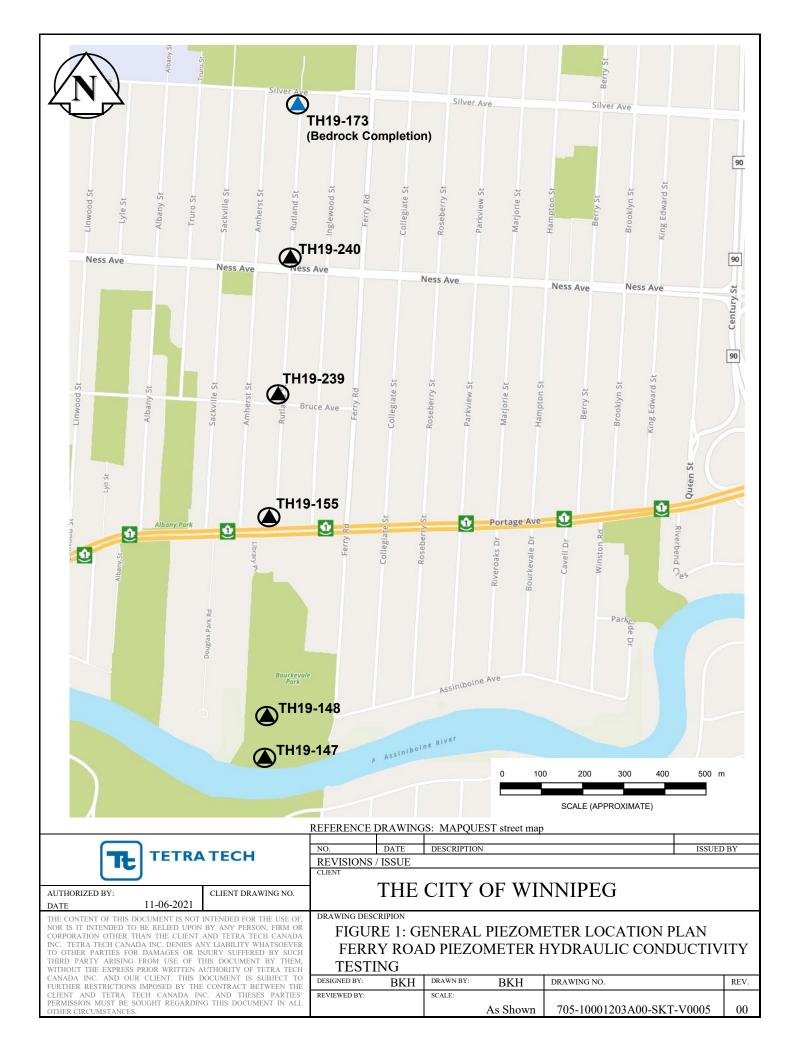
> 705-1000120300-MEM-V0001-01 705-1600120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Prepared by: Brent Horning, P.Eng. Sr. Environmental Engineer Direct Line: 204.954.6860 Email: Brent.Horning@tetratech.com

BH/ Attachments

705-1000120300-MEM-V0001-01 705-1000120300/MEM-V0001-01 705-1000120300/MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Reviewed by: Ryan Wizbicki, P.Eng. Manager – Environmental Services Direct Line: 204.954.6930 Email: Ryan.Wizbicki@tetratech.com


Certificate of Authorization Tetra Tech Canada Inc. No. 6499

Ferry Road Hydraulic Conductivity Assessment.docx

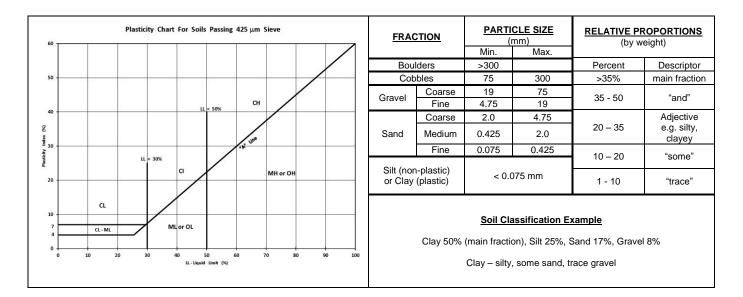
FIGURES

TABLES

Table 1Summary of Hydraulic Conductivity Test ResultsFerry Road Piezometer Hydraulic Conductivity TestingCity of Winnipeg

	Ferry Road Piezometer Hydraulic Conductivity Testing City of Winnipeg													
	Ground Surface Elevation ^a	Elevation ^a Screen Section Depth			Static W	/ater Level ^b	Initial Hydraulic Conductivity	Secondary Hydraulic Conductivity						
Piezometer No. m Above Sea Level		m below grade	m Above Sea Level	Material Adjacent to Screen Section	m below grade	m Above Sea Level	m/ sec	m/ sec						
TH19-147	228.619	6.1 - 6.4	222.2 - 222.5	Silt (Till)	3.25	225.37	7.0 x 10 ⁻⁶	3.0 x 10 ⁻⁵						
TH19-148	230.566	6.1 - 6.4	224.2 - 224.5	Clay (Alluvial) underlain by Sand (alluvial)	3.53	227.04	3.6 x 10 ⁻⁶	3.6 x 10 ⁻⁵						
TH19-155	233.629	12.0 - 12.3	221.3 - 221.6	Silt (Till)	6.59	227.04	4.5 x 10 ⁻⁶	1.3 x 10 ⁻⁵						
TH19-173	235.159	15.2 - 15.5	219.7 - 220.0	Bedrock (Dolomite)	7.65	227.51	3.2 x 10 ⁻⁵	Not Present						
TH19-239	234.083	10.7 - 11.0	223.1 - 223.4	Silt (Till)	6.94	227.14	8.9 x 10 ⁻⁶	2.2 x 10 ⁻⁵						
TH19-240	235.111	9.1 - 9.4	225.7 - 226.0	Silt (Till)	6.45	228.66	8.0 x 10 ⁻⁷	2.5 x 10 ⁻⁶						
	ns based on Dyregrov Ro vels measured on May 2	-												

TE TETRA TECH


APPENDIX A

DYREGROV ROBINSON BOREHOLE LOGS

EXPLANATION OF TERMS & SYMBOLS

		_			TH Log	USCS		Laborator	y Classification Crite	eria	
		Descript	on		Symbols	Classification	Fines (%)	Grading	Plasticity	Notes	
		CLEAN GRAVELS	Well graded sandy gravels or no f	s, with little	222	GW	0-5	C _U > 4 1 < C _C < 3			
	GRAVELS (More than 50% of coarse	(Little or no fines)	sandy gravel	Poorly graded gravels, sandy gravels, with little or no fines		GP	0-5 Not satisfying GW requirements			Dual symbols if 5-	
SOILS	fraction of gravel size)	DIRTY GRAVELS	Silty gravels, grave			GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and	
AINED SO		(With some fines)	Clayey grave sandy g			GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>	
COARSE GRAINED		CLEAN SANDS	Well grade gravelly sand or no f	s, with little	0:0 00	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = rac{D_{60}}{D_{10}}$	
C0/	SANDS (More than 50% of	(Little or no fines)	Poorly grad gravelly sand or no f	s, with little		SP	0-5	Not satisfying SW requirements		$C_{U} = \frac{D_{60}}{D_{10}}$ $C_{C} = \frac{(D_{30})^{2}}{D_{10}xD_{60}}$	
	coarse fraction of sand size)	DIRTY SANDS	Silty sa sand-silt n			SM	> 12		Atterberg limits below "A" line or W _P <4		
		(With some fines)	Clayey sands, sand-clay mixtures			SC	> 12		Atterberg limits above "A" line or W _P <7		
	SILTS (Below 'A' line	W _L <50	Inorganic silts, silty or clayey fine sands, with slight plasticity			ML					
	negligible organic content)	W _L >50	Inorganic silts of high plasticity			МН					
SOILS	CLAYS	W _L <30	Inorganic c clays, sand low plasticity,	y clays of		CL					
FINE GRAINED SOILS	(Above 'A' line negligible organic	30 <w<sub>L<50</w<sub>	Inorganic clay clays of n plasti	nedium		CI			Classification is Based upon Plasticity Chart		
FINE 0	content)	W _L >50	Inorganic cla plasticity, t			СН					
	ORGANIC SILTS & CLAYS	W _L <50	Organic s organic silty o plasti	clays of low		OL					
	(Below 'A' line)	W _L >50	Organic cla plasti			ОН					
F	IIGHLY ORGA	NIC SOILS	Peat and ot organic			Pt		on Post fication Limit		r odour, and often s texture	
		Asphalt		GI	acial Till			edrock gneous)			
		Concrete		Cl	ay Shale			edrock nestone)			
X	Fill							edrock ferentiated)			

TERMS and SYMBOLS

Laboratory and field tests are identified as follows:

Unconfined Comp.: undrained shear strength (kPa or psf) derived from unconfined compression testing.

Torvane: undrained shear strength (kPa or psf) measured using a Torvane

Pocket Pen.: undrained shear strength (kPa or psf) measured using a pocket penetrometer.

Unit Weight bulk unit weight of soil or rock (kN/m³ or pcf).

SPT – N Standard Penetration Test: The number of blows (N) required to drive a 51 mm O.D. split barrel sampler 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

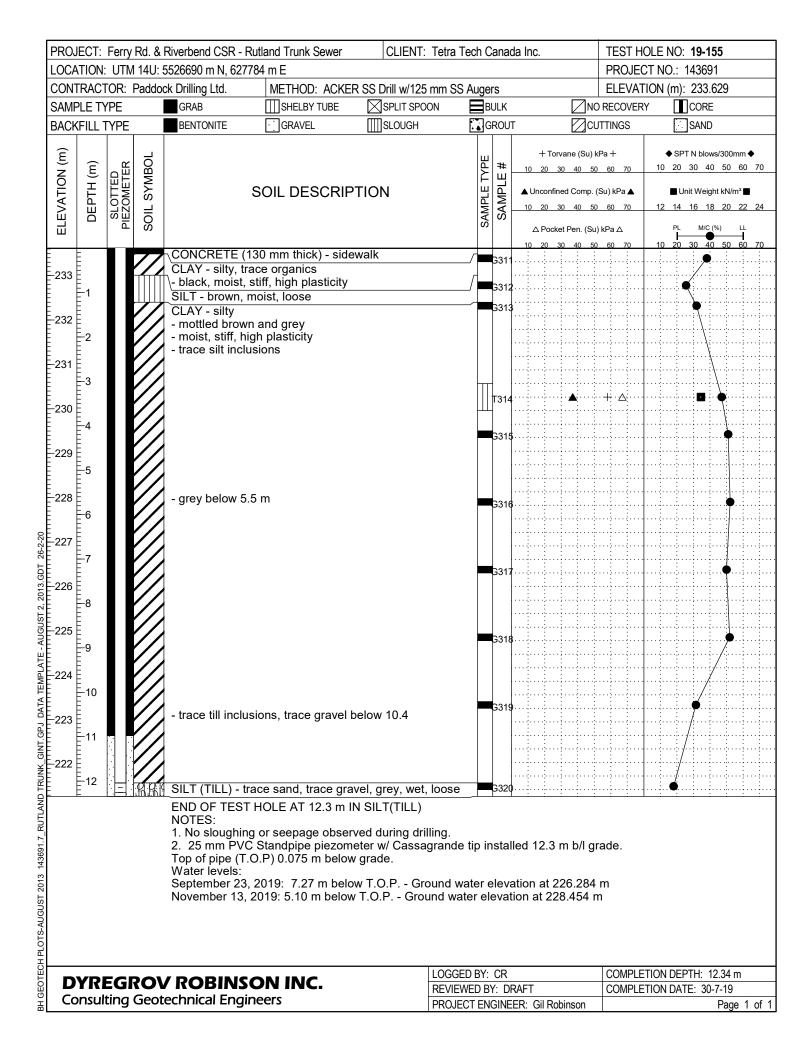
- **DCPT** Dynamic Cone Penetration Test. The number of blows (N) required to drive a 50 mm diameter cone 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.
- M/C insitu soil moisture content in percent
- PL Plastic limit, moisture content in percent
- LL Liquid limit, moisture content in percent

The undrained shear strength (Su) of cohesive soil is related to its consistency as follows:

Su (kPa)	Su (psf)	CONSISTENCY
<12	250	very soft
12 – 25	250 – 525	soft
25 – 50	525 – 1050	firm
50 – 100	1050 – 2100	stiff
100 – 200	2100 – 4200	very stiff
200	4200	hard

The SPT - N of non-cohesive soil is related to compactness condition as follows:

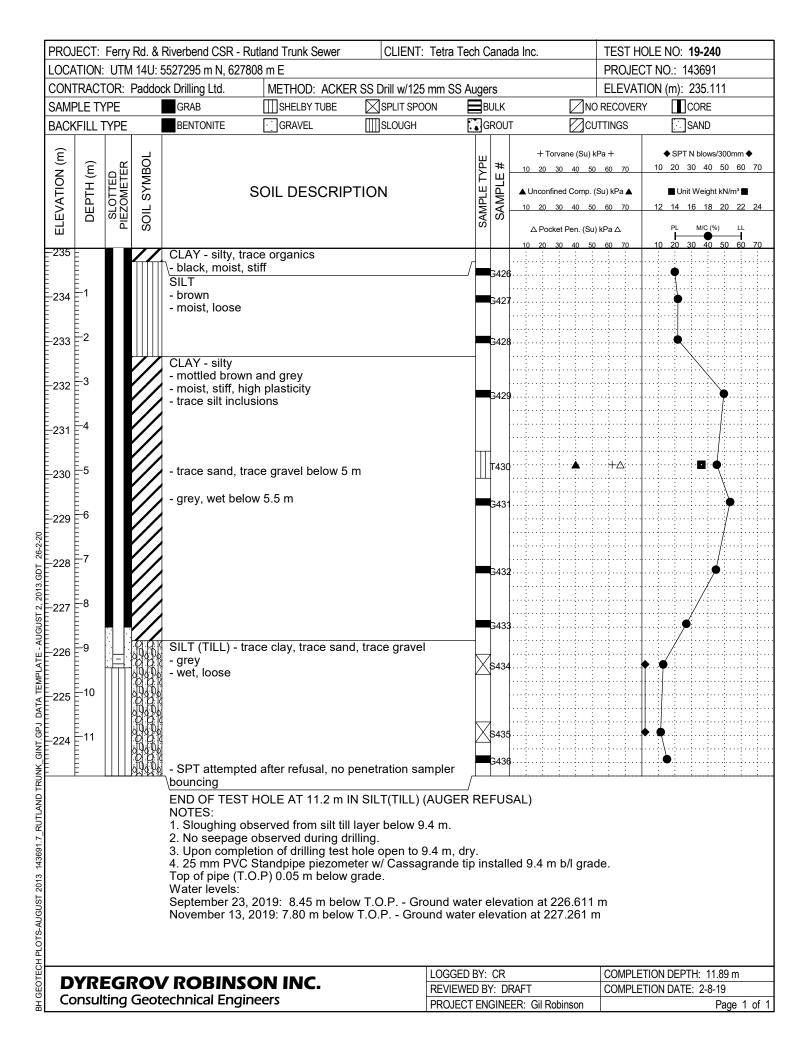
N – Blows / 300 mm	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50 +	very dense


References:

ASTM D2487 - Classification of Soils For Engineering Purposes (Unified Soil Classification System)

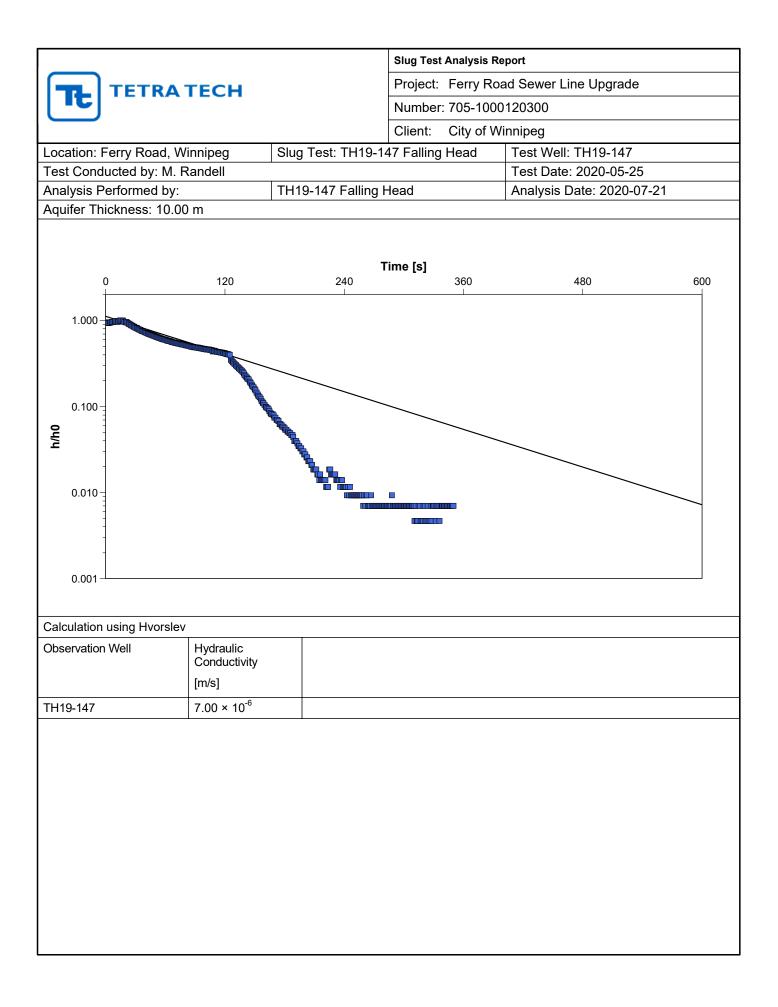
Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society, 2006

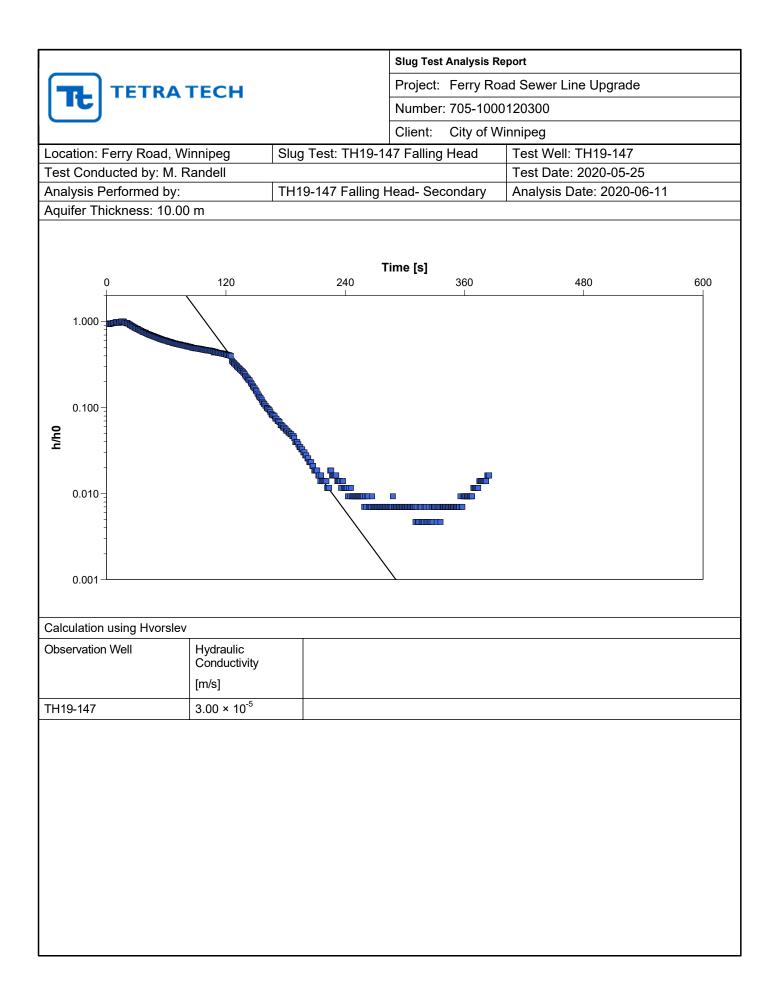
			526115 m N, 6277	utland Trunk Sewer 81 m E	CLIENT: Te		TEST HOLE NO: 19-147 PROJECT NO.: 143691						
CONTRAC	CTOR:	Paddoo	k Drilling Ltd.	METHOD: ACK	ER SS Drill Rig w/125		S Augers E	LEVA	TION (m): 228.619				
SAMPLE 1	TYPE		GRAB		SPLIT SPOON								
BACKFILL	TYPE		BENTONITE	GRAVEL	SLOUGH		JTTINGS SAND						
ELEVATION (m) DEPTH (m)	SLOTTED PIEZOMETER		Hereit Constraints of the second secon										
-228 -1 -227 -2 -226			- brown - dry to moist - intermediate p - some silt belo	AL) - silty, trace s lasticity w 1 m L) - some clay, so				G30 G30	5				
-225			G30 G30										
-223			- grey, wet, loos - compact and i - dense at 6 m	moist below 5.5 n				G30 Xs30					
			NOTES: 1. Some slough 2. After drilling Switched to h 3. 25 mm PVC Top of pipe (Water levels: September 23,	ing and seepage to 5.8 m, hole cav ollow stem (HS) a Standpipe piezon T.O.P) 0.91 m ab 2019: 3.93 m be	observed at 4 m. /ed to 4 m. augers at 5.8 m. neter w/ Cassagrar	nde tip installed 6. d water elevation	- 225.60 m						
			ROBINS		RE	GGED BY: CR VIEWED BY: DRAFT OJECT ENGINEER: G	C		ETION DEPTH: 6.71 m ETION DATE: 30-7-19 Page 1 d				

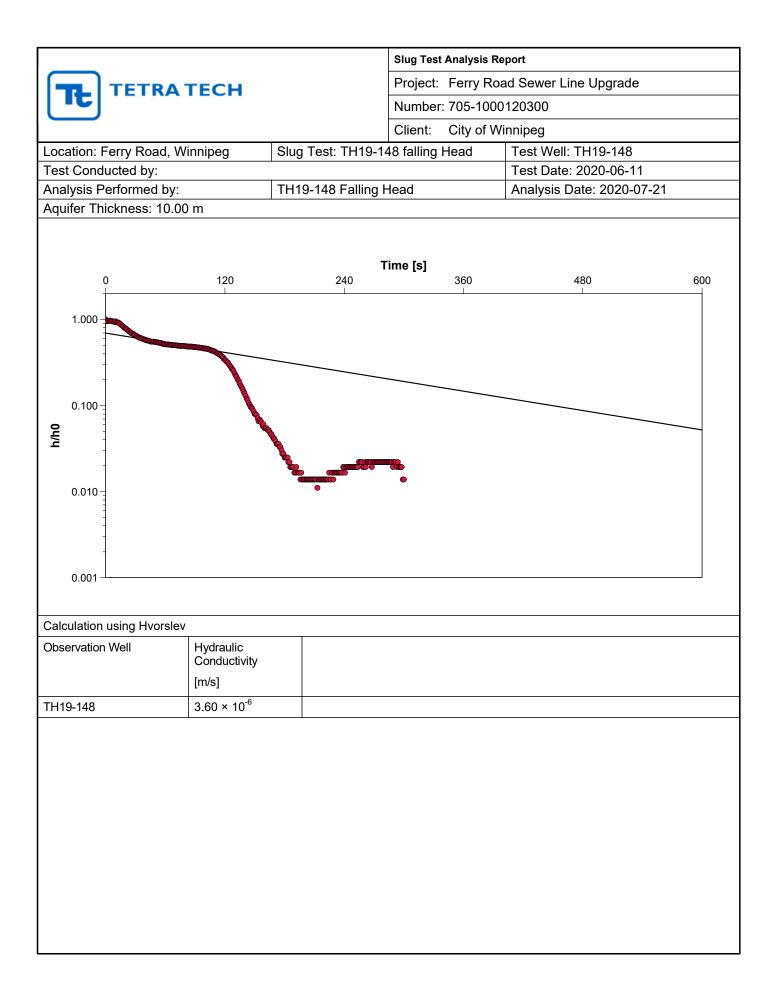

PRO.	IECT:	Ferry	Rd. & F	Riverbend CSR - Ru	utland Trunk Sewer	Tetra Tec	h Cai	nad	la Inc.	TEST HOLE NO: 19-148				
				526210 m N, 62776							PROJECT NO.: 143691			
	רRAC PLE T		Paddoc	k Drilling Ltd.	METHOD: ACKE	R SS Drill Rig w/		S & 2 ∃BUL				TION (m): 230.566 ™ ∎CORE		
				GRAB BENTONITE	GRAVEL			GR			TTINGS			
ELEVATION (m)	DEPTH (m)	SLOTTED PIEZOMETER	SOIL SYMBOL	_	TION	<u></u>	ΓΥΡΕ 	SAMPLE #	+ Torvane (Su) kl 10 20 30 40 50 △ Pocket Pen. (Su)	Pa + 60 70	 ◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 			
					mm thick) - black	m thick) - black dry			_	10 20 30 40 50	60 70	10 20 30 40 50 60 70		
-229 -228 -227 -226 -227 -226 -225 -225 -2224 -223	1 2 3 4 5 6 7 8			CLAY (Alluvial) - black with trac - dry to moist - brown below 1 - moist, stiff bve - intermediate to - grey, wet, soft SAND (Alluvial) - brown, wet, loo CLAY (Glaciolae - grey - moist, firm to s SILT (TILL) - tra	coming firm below b high plasticity (va e at 5.2 m below 5.2 m ose, coarse graine	n 3 m iriable) d	very		293 294 295 296 297 298 299 300 300 300					
- TATE - AL	9							Xs:	303			•		
				NOTES: 1. Some slough 2. After drilling t Switched to he 4. 25 mm PVC S Top of pipe (T.C Water levels: September 23, 2	HOLE AT 9.6 m IN ing and seepage o o 8.8 m, hole cave ollow stem (HS) au Standpipe piezome 0.P) 0.05 m below 2019: 4.13 m belo 019: 3.52 m below	bserved. d to 5 m. gers at 8.8 m eter w/ Cassag grade. w T.O.P Gro	grande tip ound water	inst er ele elev	alle eva vati	ed 6.4 m b/l grac ation at 226.436	m ı			
D C C		_	-	ROBINSC echnical Engin						RAFT ER: Gil Robinson	COMPLETION DEPTH: 9.60 m COMPLETION DATE: 29-7-19 Page 1 of 1			

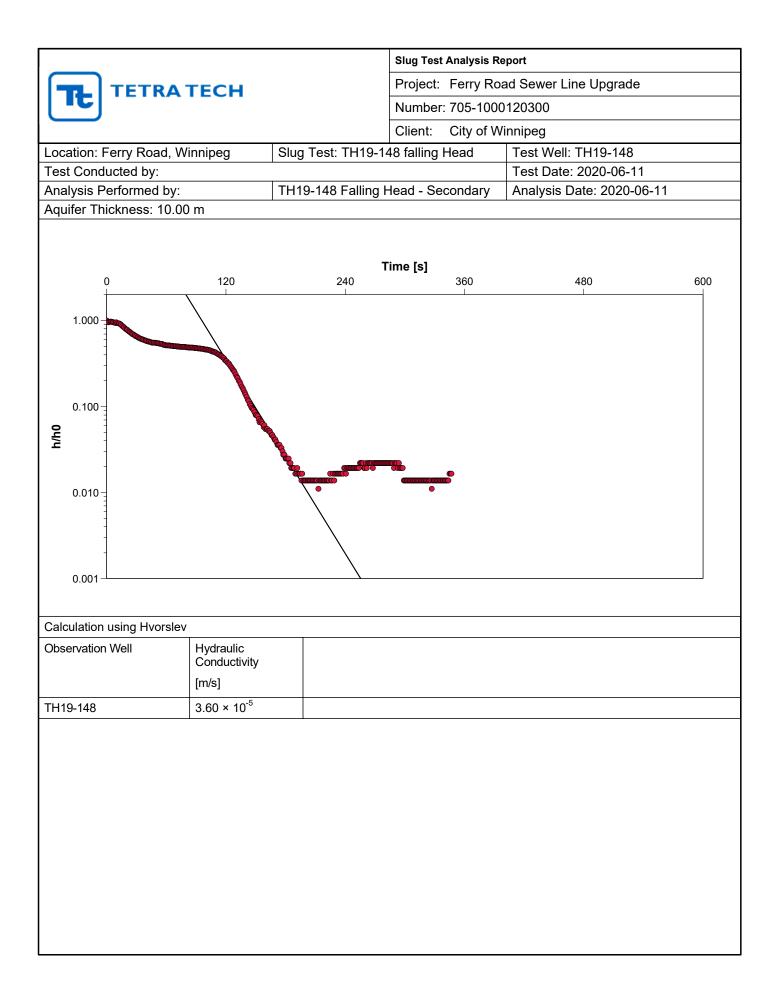
			& Riverbend CSR - R		Tetra Tech	Cana	da Inc.									
			l: 5527675 m N, 6278 lock Drilling Ltd.	METHOD: ACKE	R MP8 Drill w/12	5 mm SS Au	iners	& HO corin	a		CT NO.: 143 TION (m): 23					
			GRAB				BULK			RECOVER	. ,					
	(FILL ⁻		BENTONITE	GRAVEL	SLOUGH		GROUT				SAND					
						$\overline{}$		+ Ton 10 20 3	vane (Su) k 60 40 50	Pa + 60 70	◆ SPT N I 10 20 30	blows/300r 40 50	60 70			
ELEVATION (m)	DEPTH (m)	SOIL SYMBOI		SOIL DESCRIF	TION	SAMDI E TVDE	SAMPLE	▲ Unconfin <u>10 20 3</u> △ Pocke		60 70	■ Unit W 12 14 16 PL M	/eight kN/r <u>1,8 2,0</u> ^{M/C} (%)				
				and thick) block a					<u>10 40 50</u>		10 20 30	40 50	60 70			
235	1		CLAY - silty - black with trac	nm thick) - black, n ce organics to 1.8 r n / grey below 1.8 n gh plasticity sions	m		G490 G491				•					
-233	2					-	G492					•				
-232	3						T493			≙ ·····		.				
-231	-4					G494	· · · · · · · · · · · · · · · · · · ·									
230 07-7-5-5-0 1 229	6		♀ - grey ↓ - moist to wet, I	ace sand, trace gra oose to very dense belov	-											
16UST 2, 2013.GD	7		S497) SPT stop 150 mm penetr	oped, sampler bou ation	ncing after 50 l		<5496 ≤\$497									
A TEMPLATE - AI	8						C518									
TRUNK GINT.GPJ DATA	9 10						S519				•					
	-11						5521 (5521				•		•			
2013 143691.7	-12		6 8523) SPT stop 6 for 380 mm per	oped, sampler bou netration	ncing after 39 l	blows	C522 (5523				•					
	-13						C524									
	VP	FGPO	V ROBINS			LOGGED BY					ETION DEPTH		m			
			otechnical Engir			REVIEWED I			ainaar	COMPLETION DATE: 15-8-19						
±						PROJECT EI	NGINE	EK: GII RO	JINSON			Page 1 of 2				

PROJECT: Ferry Rd. 8	Riverbend CSR - Rutl	and Trunk Sewer	Tech Ca	anac	OLE NO: 19-173							
LOCATION: UTM 14U	5527675 m N, 627822	2 m E					PROJECT NO.: 143691					
CONTRACTOR: Padde	ock Drilling Ltd.	METHOD: ACKER	MP8 Drill w/125 mm	SS Aug	ers &	& HQ coring	ELEVAT	ION (m): 235.159				
SAMPLE TYPE	GRAB	SHELBY TUBE	SPLIT SPOON	BL	JLK	∠ NO	RECOVERY	Y CORE				
BACKFILL TYPE	BENTONITE	GRAVEL	SLOUGH	G	ROUT	r 🛛 🖾 cu	TTINGS	SAND				
ELEVATION (m) DEPTH (m) sLOTTED PIEZOMETER SOIL SYMBOL	S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	+ Torvane (Su) kf <u>10 20 30 40 50</u> ▲ Unconfined Comp. (\$ <u>10 20 30 40 50</u> △ Pocket Pen. (Su) <u>10 20 30 40 50</u>	60 70 Su) kPa ▲ 60 70 kPa ∆	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70				
	 Red River Form (dolomite) poor to good qu whitish grey cold horizontal and v close to modera gapped to open (Class 3) 3 mm thick clay trace small vugs page END OF TEST He Notes: No sloughing c Auger refusal c 25 mm PVC St Top of pipe (T.O.) Water levels: September 23, 20 	ation, Upper Fort C ality, good below 1 for, strong to very si rertical fractures itely close discontin joint apeture, evide filling at 13.7 m and s (< 0.5mm) continue OLE AT 15.5 m IN or seepage observed on of drilling with a occured at 7.5 m, s tandpipe piezomete P) 0.05 m below gr 019: 8.43 m below 19: 6.44 m below T	4 m trong nuity spacing ence of water flow ad 13.9 m ued from previous BEDROCK ed during driling wi ugers, test hole op switched to HQ co er w/ Cassagrande rade. 7 T.O.P Ground wa	th aug ben to ring wi tip ins	7.5 th ca stalle	m b/l grade, dry. asing advancer. ed 15.5 m b/l gra ation at 226.679	nde. m	10. 20 30 40 50 60 70				
	V ROBINSO technical Engine	-	REVIE	WED BY	1: DF	RAFT FR [.] Gil Robinson		TION DATE: 15-8-19 Page 2 of 2				


				Riverbend CSR - Ru		CLIENT:	Tetra Tech	n Ca	anac	da Inc.			TEST HOLE NO: 19-239 PROJECT NO.: 143691						
				526983 m N, 62779 k Drilling Ltd.	METHOD: ACKE	R SS Drill w/125	mm SS Au	ner	s			ELEVAT							
	PLE TY			GRAB				_	JLK			RECOVER	,						
BACK	(FILL 1	YPE		BENTONITE	GRAVEL	SLOUGH	•	GI	ROUT	Г	CU								
ELEVATION (m)	DEPTH (m)	SLOTTED	SOIL SYMBOL	ç	SOIL DESCRIF	PTION		SAMPLE TYPE		+ Torvane (Su) k <u>10 20 30 40 50</u> ▲ Unconfined Comp. (<u>10 20 30 40 50</u> △ Pocket Pen. (Su)		60 70 Su) kPa ▲ 60 70 kPa ∆	10 12	20 30 ■ Unit Wo 14 16 PL M	lows/300n 40 50 eight kN/n 18 20	60 70 n³∎ 22 24 LL	4		
	-		~~~~~						G369	10 20	<u>0 30 40 50</u> : : : 	<u>60 70</u>	10	<u>20 30</u>	40 50	<u>60 70</u>	<u>)</u> 		
-233	-1			CLAY - silty, trac - black, moist, s	VEL (FILL, 100 m ce organics tiff, high plasticity oist to wet, loose	im thick) - brov	vn /		G370					•					
-232	-2			CLAY - silty - mottled brown - moist, stiff, hig - trace silt inclus	and grey h plasticity										X		 		
231	-3				6110118				G371						•				
230	-4						-												
-229	5						-		T372		· · · · · · · · · · · · · · · · · · ·	····+ <u>A</u> ··	· · · · · · · · · · · · · · · · · · ·				 		
228	6			- grey below 6 n	1				G373								· · · · ·		
227	-7						•		G374						•				
226	-8								G375			•••••							
225	-9																 		
-224	-10			SILT (TILL) - tra - grey, wet, loos	ce sand, trace gra e becoming comp	avel bact with depth	5	$\overline{}$	G376 6377				•	•					
				NOTES: 1. Some sloughi 2. Upon comple grade. 4. 25 mm PVC S Top of pipe (T.C Water levels: September 23, 2	HOLE AT 11.2 m ing and seepage of tion of drilling, tes Standpipe piezom 0.P) 0.05 m below 2019: 7.66 m below 019: 5.50 m below	observed silt la t hole open to eter w/ Cassa grade. ow T.O.P Gr	ayer 0.6 m. 11 m b/l g grande tip ound wate und water	ins r e ele	de, v stall eleva	water l ed 11 ation a	m b/l grad t 226.373	e. m 1			11 12				
				ROBINSC			LOGGED B			RAFT		COMPLE COMPLE				n			
<u>C</u>	onsul	ting	Geot	echnical Engin	eers		PROJECT E	ENC	GINE	ER: Gil	Robinson					e 1 of	1		




APPENDIX B


HYDRAULIC CONDUCTIVITY GRAPHS

