

WASTEWATER FLOW ESTIMATION (BASED ON CITY OF WINNIPEG GUIDELINES)

NON-RESIDENTIAL WASTEWATER GENERATION - OCCUPANCY LOAD

NUMBER OF PEOPLE IN DAY CAMP = 250 (PROVIDED BY ARCH.) DAILY WASTEWATER GENERATION: 42 L/capita/day (METCALF AND EDDY, INC., 2014)

NUMBER OF PEOPLE IN OFFICE = 50 (PROVIDED BY ARCH.)

DAILY WASTEWATER GENERATION: 38 L/capita/day (METCALF AND EDDY, INC., 2014)

AVERAGE DRY WEATHER FLOW (ADWF) = 12400 L/day = 0.14 L/s

HARMON'S PEAKING FACTOR = 4.08

PEAK DRY WEATHER FLOW (PDWF) = 50573 L/day = 0.59 L/s

EXTRANEOUS FLOWS

GROUNDWATER INFILTRATION = 2200 L/ha/day * 1.328 ha = 2922 L/day = 0.03 L/s

MANHOLE INFILTRATION = 12 L/min/MH * 2 MH = 24 L/min = 0.40 L/s

WEEPING TILE FLOW = 4.55 L/min/service connection * 0 = 0 L/min = 0 L/s

PEAK WET WEATHER FLOW (PWWF) = 1.02 L/s

POST-DEVELOPMENT:

NUMBER OF PEOPLE IN DAY CAMP = 250 (PROVIDED BY ARCH.)

DAILY WASTEWATER GENERATION: 42 L/capita/day (METCALF AND EDDY, INC., 2014)

NUMBER OF PEOPLE IN OFFICE & WAREHOUSE = 110 (PROVIDED BY ARCH.) DAILY WASTEWATER GENERATION: 38 L/capita/day (METCALF AND EDDY, INC., 2014)

AVERAGE DRY WEATHER FLOW (ADWF) = 14680 L/day = 0.17 L/s

HARMON'S PEAKING FACTOR = 4.04

PEAK DRY WEATHER FLOW (PDWF) = 59358 L/day = 0.69 L/s

EXTRANEOUS FLOWS

GROUNDWATER INFILTRATION = 2200 L/ha/day * 1.328 ha = 2922 L/day = 0.03 L/s

MANHOLE INFILTRATION = 12 L/min/MH * 3 MH = 36 L/min = 0.60 L/s

WEEPING TILE FLOW = 4.55 L/min/service connection * 0 = 0 L/min = 0 L/s

PEAK WET WEATHER FLOW (PWWF) = 1.32 L/s

STORMWATER MANAGEMENT CRITERIA

PRE-DEVELOPMENT:

SITE AREA = 1.328 ha $C_{ALLOWABLE} = 0.20$ (ASSIGNED BY CITY OF WINNIPEG)

 $i_{5Y} = 109.5$ mm/hr, $i_{25Y} = 154.3$ mm/hr, $T_C = 10$ min. $Q_{5Y \text{ ALLOWABLE}} = 0.0808 \text{ m}^3/\text{s}$ (BASED ON RATIONAL METHOD)

POST-DEVELOPMENT

SITE AREA = 1.328 ha $C_{POST-DEV} = 0.68$ (WEIGHTED RUNOFF COEFFICIENT)

C_{ALLOWABLE} = 0.20 (ASSIGNED BY CITY OF WINNIPEG) $i_{5Y} = 109.5$ mm/hr, $i_{25Y} = 154.3$ mm/hr, $T_C = 10$ min.

 $Q_{5Y \text{ ALLOWABLE}} = 0.0808 \text{ m}^3/\text{s} \text{ (BASED ON RATIONAL METHOD)}$

SUB-CATCHMENT 01 - COMBINED SURFACE AND ROOF RUNOFF TO INTERNAL LDS AREA = 1.317 ha $(3760 \text{ m}^2 \text{ PERVIOUS} / 9407 \text{ m}^2 \text{ IMPERVIOUS})$

C_{WEIGHTED} = 0.68

 $Q_{25Y} = 0.3841 \text{ m}^3\text{/s}$ (BASED ON RATIONAL METHOD) $Q_{RESTRICTED} = 0.0721 \text{ m}^3/\text{s} (135 \text{ mm DIA. ICD AT CBMH01})$

SUB-CATCHMENT 01A - BUILDING ADDITION ROOF RUNOFF TO INTERNAL LDS AREA = 0.089 ha (0 m² PERVIOUS / 886 m² IMPERVIOUS)

 $C_{WEIGHTED} = 0.90$ $Q_{25Y} = 0.0342 \text{ m}^3/\text{s}$ (BASED ON RATIONAL METHOD)

Q_{RESTRICTED} = 0.0039 m³/s (ROOF CONTROL, PROVIDED BY MECH.)

SUB-CATCHMENT 02 - SURFACE RUNOFF TO SITE AREA = 0.011 ha (18 m² PERVIOUS / 92 m² IMPERVIOUS)

 $C_{WEIGHTED} = 0.78$ $Q_{25Y} = 0.0037 \text{ m}^3/\text{s}$ (BASED ON RATIONAL METHOD)

 $Q_{UN-RESTRICTED} = 0.0037 \text{ m}^3/\text{s}$

TOTAL RUNOFF FOR ENTIRE SITE

 $\overline{Q_{25Y \text{ TOTAL}}} = 0.0721 \text{ m}^3\text{/s} + 0.0037 \text{ m}^3\text{/s} = 0.0758 \text{ m}^3\text{/s} \le Q_{5Y \text{ ALLOWABLE}} = 0.0808 \text{ m}^3\text{/s}$

PONDING	STORAGE	SUMM	IARY	TABL

LOCATION	PONDING AREA (m²)	PONDING DEPTH (m)	REQUIRED VOLUME (m³)	AVAILABLE VOLUME (m³)
ROOF				
ADDITION ROOF	580 ^[1]	0.10 [1]	32 ^[2]	32 ^{[1][3]}
SUB-TOTAL			32	32
SURFACE				
CBMH01	131	0.15	—	8 ^[6]
CBMH02	86	0.10		3 _[6]
CBMH03	75	0.10		2 ^[6]
CBMH04	1500	0.50		250 ^[6]
CB01	127	0.15	394 ^[5]	8 ^[6]
CB02	797	0.30		100 ^[6]
CB03	583	0.30		73 ^[6]
CB04	623	0.30	★	62 ^[6]
SUB-TOTAL			394	506
COMBINED TOTAL			426 ^[4]	538

COMBINED TOTAL [1] PROVIDED BY MECHANICAL

 $^{[2]}$ BASED ON ISOCHRONE USING $Q_{ROOF} = 0.0039 \text{ m}^3\text{/s}$ AND $A_{ROOF} = 0.089 \text{ ha}$

[3] SPILL-OUT AT OVERFLOW SCUPPERS INTO SUB-CATCHMENT 01 (COMMON

DOWNSTREAM RESTRICTOR AT CBMH01) $^{[4]}$ BASED ON ISOCHRONE USING $Q_{CBMH01} = 0.0721 \text{ m}^3/\text{s}$ AND $A_{COMBINED RESTRICTED} = 1.317 \text{ ha}$

^[5] REQUIRED COMBINED TOTAL STORAGE - AVAILABLE ROOF STORAGE

[6] SPILL-OUT ELEV. = 232,20m AT WEST WORK LIMITS, MAX, DEPTH OF PONDING IN PAVED AREAS = 0.30m

COMBINED SEWER FLOWS

 $\overline{Q_{WWS} + Q_{LDS}} = 1.32 \text{ L/s} + 75.8 \text{ L/s} = 77.1 \text{ L/s} \le Q_{PRE-DEVELOPMENT} = 81.8 \text{ L/s}$

 $Q_{WWS} + Q_{LDS} = 1.02 \text{ L/s} + 80.8 \text{ L/s} = 81.8 \text{ L/s}$

THE CONTRACTOR SHALL VISIT THE SITE AND SATISFY ONESELF ALL DIMENSIONS, DATUM, AND DETAILED INFORMATION SHOWN ARE CORRECT.

NOTES:

THESE DRAWINGS SHALL NOT BE SCALED.

		POFESS 10NA		
JLT DRAWN	RC CHECKED	RC/JLT DESIGNED	- APPROVED	
DATE 2025.01.06	USER _ APPROVAL			

Member

36757

JLT 25.01.06

JLT 24.12.10

JLT 24.10.30

BY DATE

ASSETS and PROJECT MANAGEMENT Winnipeg DEPARTMENT MUNICIPAL ACCOMMODATIONS

DIVISION PROJECT 3-65 GARRY STREET, R3C 4K4

REDEVELOPMENT OF THE **OLD EXHIBITION ARENA** ISSUED FOR CONSTRUCTION

80 SINCLAIR STREET SHEET TITLE

> STORMWATER MANAGEMENT PLAN

PROJECT No: SHEET No: 2020-136 AS SHOWN

DRAWING SHEET SIZE: A1 (841mm x 594mm) PLOT 1:1