Part 1 General

1.1 SUMMARY

- .1 This Section includes furnishing all labor, tools, materials, equipment and services necessary to properly install embedded galvanic anodes.
- .2 Embedded galvanic anodes are designed to provide localized corrosion protection. When placed at the appropriate spacing along the perimeter of concrete patches or along the interface between new/existing concrete, the anodes mitigate active corrosion and the formation of new corrosion sites in the existing concrete in adjacent areas.

1.2 RELATED SECTIONS

- .1 Section 03 20 00 Concrete Reinforcing.
- .2 Section 03 91 10 Surface Preparation for Concrete Delamination Repair.
- .3 Section 03 92 10 Top Surface Repairs
- .4 Section 03 93 30 Form and Pour.

1.3 REFERENCES

- .1 American Concrete Institute (ACI)
 - .1 ACI 546R-14, Concrete Repair Guide.
 - .2 ACI 562-19, Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings
 - .3 ACI RAP-8, Installation of Embedded Galvanic Anodes.
- .2 Canadian Standards Association (CSA)
 - .1 CSA- S448.1-10(R2020), Repair of Reinforced Concrete in Buildings.
- .3 International Concrete Repair Institute (ICRI)
 - .1 ICRI concrete Repair Terminology (2010 Edition).
 - .2 ICRI Guideline No. 120.1–2009, Guidelines and Recommendations for Safety in the Concrete Repair Industry.
 - .3 ICRI Guideline No. 130.1R–2009, Guide for Methods of Measurement and Contract Types for Concrete Repair Work (formerly No. 03735).
 - .4 ICRI Guideline No. 310.1R–2008, Guide for Surface Preparation for the Repair of Deteriorated Concrete Resulting from Reinforcing Steel Corrosion (formerly No. 03730).
 - .5 ICRI Guideline No. 310.2–1997, Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays (formerly No. 03732).

1.4 MEASUREMENT PROCEDURES

- .1 Patches to receive galvanic anodes, and frequency of installation, will be identified by the Contract Administrator.
- .2 The unit price submitted will apply to supply and installation of one (1) galvanic anode.

1.5 QUALITY ASSURANCE

.1 Field Mock-up:

- .1 Install field mock-up at Project site or pre-selected area of building or location approved by Contract Administrator. Install material in accordance with this Section.
- .2 Field mock-up will be standard for judging workmanship on remainder of Project.
- .3 Manufacturer's representative or designated representative will review technical aspects; surface preparation, repair, and workmanship.

1.6 DELIVERY, STORAGE, AND HANDLING

- .1 Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.
- .2 Store tightly sealed materials off ground and away from moisture, direct sunlight, extreme heat, and freezing temperatures.
- .3 Keep materials in manufacturer's original, unopened containers and packaging until installation.
- .4 Protect materials during storage, handling, and application to prevent contamination or damage.

Part 2 Products

2.1 MATERIALS

- .1 Embedded galvanic anodes shall meet the following requirements:
 - .1 A highly alkaline cementitious shell.
 - .2 Contain no added constituents corrosive to reinforcing steel or detrimental to concrete, e.g. chloride, bromide, sulfates, etc.
 - .3 Anode units shall be alkali-activated and supplied with solid zinc core cast around integral unspliced, uncoated, non-galvanized double loop steel tie wires.
 - .4 Anode units shall be supplied with integral non-galvanised, unspliced tie wires such that the zinc anode is connected to the reinforcement with a continuous, unspliced wire
 - .1 Acceptable Product: Galvashield XP4 by Vector Corrosion Technologies.

.2 Repair materials:

- .1 Concrete and bonding agents shall be Portland cement-based materials. Non-conductive repair materials such as epoxy, urethane, or magnesium phosphate shall not be permitted. Insulating materials such as epoxy bonding agents shall not be used unless otherwise noted.
- .2 Anodes used with repair materials having saturated bulk resistivity of 50,000 ohm-cm or greater, shall be embedded in manufacturer approved mortar to create a conductive bridge to the substrate prior to repair material installation.

Part 3 Execution

3.1 PREPARATION

.1 Complete concrete delamination repairs and surface preparation to Section 03 91 10.

3.2 INSTALLATION

.1 Install anode units and repair material immediately following preparation and cleaning of the steel reinforcement.

- .2 Install galvanic anodes in patch repair locations identified by the Contract Administrator. Install along the perimeter of the repair or interface as follows:
 - .1 Along the perimeter of full depth and through-slab repairs.
 - .2 At a maximum spacing of 18" on centre along beam and slab top surface repairs.
 - .3 Anode spacing will vary with changes in the reinforcing steel density, the level of chloride in the structure and the corrosively of the local environment, etc.
- .3 Provide sufficient clearance between anodes and substrate to allow repair material to encase anode.
- .4 Secure the galvanic anodes as close as possible to the patch edge using the anode tie wires.
- .5 The tie wires shall be wrapped around the cleaned reinforcing steel and twisted tight to allow little or no free movement.
 - .1 If less than 1 inch (25 mm) of concrete cover is expected, place anode beside or beneath the bar and secure to clean reinforcing steel.
 - .2 If sufficient concrete cover exists, the anode may be placed along a single bar or at the intersection between two bars and secured to each clean bar.
- .6 If repair materials with resistivity greater than 50,000 ohm-cm are to be used or the resistivity is unknown, create a conductive grout bridge between the anode and the substrate. Pack manufacturer approved mortar to cover minimum area of 4 in (100mm) in diameter between the anode and the substrate concrete ensuring no voids exist.
- .7 Electrical Continuity
 - .1 Confirm electrical connection between anode tie wire and reinforcing steel by measuring DC resistance (ohm,Ω) or potential (mV) with a multi-meter.
 - .2 Electrical connection is acceptable if the DC resistance measured with multimeter is less than 1 Ω or the DC potential is less than 1 mV.
 - .3 Confirm electrical continuity of the exposed reinforcing steel within the repair area. If necessary, electrical continuity shall be established with steel tie wire.
 - .4 Electrical continuity between test areas is acceptable if the DC resistance measured with multi-meter is less than 1 Ω or the potential is less than 1 mV.

3.3 CONCRETE OR MORTAR PLACEMENT

- .1 Pre-wet the concrete surface and the anode units to achieve a saturated surface dry condition, and then complete the repair according to the appropriate Section.
- .2 Do not soak the anode units for greater than 20 minutes.
- .3 Repair materials with significant polymer modification and/or silica fume content may have high resistivity. Similarly, if bonding agents are used, they shall have suitable conductivity. Do not use insulating materials such as epoxy bonding agents.
- .4 Following normal concrete repair procedures complete the repair with the repair material, taking care not to create any air voids around the anode.

END OF SECTION