APPENDIX 'D' GEOTECHNICAL REPORTS

Morrison Hershfield

City of Winnipeg Branch I Aqueduct Underdrain Outfalls (RFP No. 512-2023) – Rue Plinguet Outfall Geotechnical Report

Prepared for:

Mr. Adam Braun, P.Eng. Senior Municipal Engineer Morrison Hershfield 9 Scurfield Blvd #1 Winnipeg, MB R3Y 1G4

Project Number: 0035-129-00

Date: March 14, 2024

Quality Engineering | Valued Relationships

March 14, 2024

Our File No. 0035-129-00

Mr. Adam Braun, P.Eng. Senior Municipal Engineer Morrison Hershfield 9 Scurfield Blvd #1 Winnipeg, MB R3Y 1G4

RE: City of Winnipeg Branch 1 Aqueduct Underdrain Outfalls (RFP No. 512-2023) – Rue Plinguet Outfall Geotechnical Report

TREK Geotechnical Inc. is pleased to submit our final geotechnical investigation report for the above noted project. Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Mulle

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	MVH	Feb 28, 2024	Draft Final Report
1	MVH	March 14, 2024	Final Report

Authorization Signatures

Prepared By:

Michael Van Helden Ph.D., P.Eng Senior Geotechnical Engineer

Reviewed By:

Ken Skaftfeld M.Sc., P.Eng. Senior Geotechnical Engineer

Our File No. 0035-129-00 March 14, 2024

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introd	ntroduction1					
2.0	Site Conditions						
	2.1	Site Survey	1				
3.0	Sub-si	urface Information	2				
	3.1	Soil stratigraphy	2				
4.0	Slope	Stability Analysis	3				
	4.1	Analysis Results	4				
5.0	Excav	ations and Shoring	5				
	5.1	Temporary Excavations and Shoring	5				
6.0	Closu	re	7				

Figures

Test Hole Logs Appendices

List of Tables

Table 1. Measured Piezometric (Groundwater) Elevations	3
Table 2. Soil Properties used in Slope Stability Analysis	4
Table 3. Slope Stability Analysis Results for Existing Conditions	4
Table 4. Slope Stability Analysis Results for Riprap Blanket	5
Table 5. Engineering Properties for Soil	6

List of Appendices

Appendix A	Photos of Site Reconnaissance
Appendix B	Laboratory Testing and Monitoring Results
Appendix C	Slope Stability Analysis Outputs for Existing Conditions
Appendix D	Slope Stability Analysis Outputs for Channel Upgrades

I.0 Introduction

The City of Winnipeg (COW) has identified structural issues with three Branch 1 Aqueduct underdrain outfalls and is planning to rehabilitate/replace the outfall drains. TREK Geotechnical Inc. (TREK) was retained by Morrison Hershfield (MHL) to provide geotechnical support for assessment and repairs to underdrain outfalls located at:

- Rue Notre Dame at Rue Maisonneuve on the Seine River;
- Rue Plinguet, west of McTavish Street on the Seine River; and
- Avenue Tache at Rue Messager on the Red River.

This report summarizes the results of the geotechnical assessment completed by TREK for the rehabilitation or replacement of the Branch 1 Aqueduct underdrain outfall at Rue Plinguet. The geotechnical assessment includes a review of existing information, sub-surface investigation, riverbank stability analysis, the development of preliminary design options for riverbank stability improvements, and provision of general recommendations for the design and construction of temporary excavations and shoring.

2.0 Site Conditions

TREK personnel (Michael Van Helden, P.Eng. and Reza Jamshidi Chenari, EIT) completed a site reconnaissance on November 29, 2023. The underdrain outfall pipe runs along the north side of Rue Plinguet before discharging into the Seine River just upstream of a 90-degree bend in the channel (Figure 01). The riverbank is generally grass-covered with sparse young and mature trees with a uniform gradient of about 5H:1V and a height of about 7 m. An over-steepened face along the river edge upstream and downstream of the outfall location related to shoreline erosion is visible (Photo 1). Although no active riverbank movements were noted within the outfall right-of-way, historical instabilities are evident upstream and downstream in particular coincident with the outside bend in the channel.

Discharge from a land drainage sewer (LDS) outfall south of the underdrain outfall pipe has created an erosion gully extending from the upper to lower bank areas (Photos 2 and 3). Beyond the slope crest, Plinguet Street terminates in a widened roadway area, and an access road to the adjacent cemetery to the north is located immediately adjacent to the bank crest (Photo 4). Photo 5 shows an overview of the site from an aerial drone perspective.

2.I Site Survey

Three riverbank cross-sections were surveyed by Morrison Hershfield on January 8, 2024 at the locations shown on Figure 01. The cross sections showing the existing round surface from the MHL survey and LIDAR survey data are included on Figure 02 (cross section A and B) and Figure 03 (cross section C).

3.0 Sub-surface Information

A sub-surface investigation was completed under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test Holes (TH) 24-01 and 24-02 were drilled at the locations shown on Figure 01 by Paddock Drilling Ltd. on January 8 and 9, 2024 using an Acker SS3 track-mounted drill rig equipped with 125 mm diameter solid stem and 200 mm hollow stem augers. TH 24-01 and 24-02 were drilled to power auger refusal at depths of 11.7 m and 17.6 m, respectively. Test hole locations were established using a hand-held GPS device and the ground surface elevation surveyed relative to a temporary benchmark (TBM) as shown on Figure 01.

A slope inclinometer (SI) casing was installed in TH24-01 to approximately 17.6 m below ground surface (bgs) and fully grouted to surface. A vibrating wire (VW) piezometer was installed at 9.2 m bgs in TH24-02. A standpipe piezometer (SP) was also installed in TH24-02 at 18.0 m bgs. TH24-02 was backfilled with sand around the standpipe tip, bentonite chips followed by cement/bentonite grout to surface (and surrounding the VW). Above-ground protective casings were installed for all instrumentation.

Sub-surface soils were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting) samples were taken at regular intervals and relatively undisturbed (Shelby Tube) samples were collected at select depths. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content determination on all disturbed samples, bulk unit weight and unconfined compressive strength on Shelby tube samples, and Atterberg Limits on select samples. Laboratory testing results are included in Appendix B. The test hole logs include a description of the soil units encountered and other pertinent information such as groundwater and a summary of the laboratory testing results.

3.1 Soil stratigraphy

A brief description of the soil units encountered (in descending order from ground surface) in the two test holes is provided as follows. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the test hole logs.

TH 24-01 (lower bank)

The general soil stratigraphy in TH 24-01 consists of 0.6 m of topsoil, 2.8 m of firm to stiff clay fill, 1.5 m of loose and wet silt, 3.0 m of compact sand, and 3.7 m of compact and wet sand and gravel (possibly an ablation till). Dense silt till was encountered at 11.6 m bgs and power auger refusal was encountered at 11.7 m bgs.

TH 24-02 (top of bank)

The general soil stratigraphy in TH 24-02 consists of 0.6 m of topsoil, 2.5 m of firm to stiff clay fill, 7.9 m of silty clay that is firm to stiff becoming very soft below a depth of 7.9 m, 4.3 m of loose to compact (wet) sand, and 2.3 m of compact sand and gravel to the depth of exploration. Power auger refusal was encountered at 17.6 m bgs.

3.1.1 Groundwater and Sloughing Conditions

Seepage and sloughing was observed below 7.9 m in TH24-01 from sand and gravel, before switching to hollow stem augers. Seepage and sloughing could not be observed due to the drilling method used (hollow stem augers) for the remainder of TH24-01 and the entirety of TH24-02. Piezometric (groundwater) levels monitored after installation are summarized in Table 1.

Test	Instrument	Piezometric Elevation (m)					
Hole	Instrument	Feb 05, 2024	Feb 24, 2024				
TU04 00	Vibrating Wire Piezometer (VW23-02)	224.66	224.83				
1 1724-02	Standpipe Piezometer (SP23-02)	220.79	220.75				

 Table 1. Measured Piezometric (Groundwater) Elevations

Measured groundwater elevations are short-term and should not be considered reflective of (static) elevations at the site which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

3.1.1 Slope Inclinometer Monitoring

A baseline reading of the SI was taken on February 05, 2024 to establish the initial profile of the SI pipe and a follow-up reading was completed on February 27, 2024. Monitoring results are included in Appendix B. No movement was measured over the brief monitoring period. Additional monitoring events are recommended after the spring 2024 flood, in the fall of 2024 (pre-drawdown) and the early winter of 2024 (post-drawdown).

4.0 Slope Stability Analysis

Slope stability analyses were conducted to assess the existing riverbank slope stability and provide recommendations for improvements to stability (if warranted) in conjunction with the outfall repairs. The analysis was conducted using a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2020 software package (Geo-Slope International Ltd.). The slope stability model used the Morgenstern-Price method of slices with the half-sine interslice force function to calculate factors of safety. Slip surfaces were identified using grid and radius methods. A static piezometric line was used to represent groundwater levels. The soil stratigraphy was based on information in THs 24-01 and 24-02 and the ground surface geometry was based on the MHL survey.

Assumed soil properties in Table 2 are based on measured values or in the absence of this information, using representative values based on TREK's experience. The clay strengths are assumed to be at a "fully softened" condition which we consider representative for a potential first time failure in Winnipeg riverbanks. Based on observed site conditions, we have assumed that there are no historical instabilities within the ROW that would warrant the use of lower (residual) strength properties.

Soil Description	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (degrees)				
Clay Fill and Silty Clay	17	5	17				
Riprap	21 0		45				
Sand, Sand and Gravel, Silt Till	Impenetrable						

Table 2. Soil Properties used in Slope Stability Analysis

Analysis was conducted on cross-section B for short-term (extreme) and long-term (typical) groundwater conditions. The output of the slope stability analysis is presented as a factor of safety (FS) related to the stability of the slope along a particular slip surface. A factor of safety approaching unity (FS = 1.0) indicates that the slope is becoming unstable and differential shear movements are expected. As the factors of safety greater than 1.3 under short-term (extreme) conditions and greater than 1.5 under long-term (normal) conditions are considered stable, although some minor creep may occur. In some cases, an increased factor of safety may be targeted for sensitive and critical infrastructure. Target factors of safety of 1.3 and 1.5 were selected for design under short and long-term conditions, and have been commonly used on other City of Winnipeg infrastructure projects. Short-term conditions were modelled with a nearly empty channel and a riverbank groundwater levels gently sloping up to Elev. 229.80 m (about 2.5 m below ground surface). Long-term conditions were modelled with a nearly empty channel and a riverbank groundwater level gently sloping up to Elev. 229.00 m (about 3.2 m below ground surface).

4.1 Analysis Results

4.1.1 Existing Stability

Table 3 summarizes the calculated factors of safety for the existing slope geometry, while the results are shown in the figures included in Appendix C (as referenced in the table). The estimated factors of safety for short and long-term conditions (1.27 and 1.48 respectfully) are within 2% of the respective targets (Figure C1 and C2) and are therefore considered acceptable.

Stability Case / Cross Section	Modelling Case	Groundwater Elevation (m) ¹	Channel Water Elevation (m)	Critical FS	Model Number (Appendix C)		
Existing Condition /	Extreme Case	229.8	222.70	1.27	C1		
Cross Section B	Normal Case	229.0	223.70	1.48	C2		

 Table 3. Slope Stability Analysis Results for Existing Conditions

4.1.2 Future Stability

Ongoing shoreline erosion can be expected to reduce the riverbank stability over time. Analysis was therefore carried out to evaluate the stability of the bank with the addition of riprap erosion protection at the toe. Thes results summarized in Table 4 show a marginal improvement to existing slope stability with a 0.6 m thick riprap blanket sub-cut below existing grades up to Elev. 226.0 m (Figures D1 and D2 respectively).

Stability Case / Cross Section	Modelling Case	Groundwater Elevation (m) ¹	Channel Water Elevation (m)	Critical FS	Model Number (Appendix D)
Regrading and	Extreme Case 229.8		222.70	1.31	D1
Section B	Normal Case	229.0	223.70	1.51	D2

Table 4.	Slope Stability	y Analysis	Results f	for Riprap	Blanket
		<i>,</i> ,			

4.1.3 <u>Recommendations</u>

To prevent future shoreline erosion and the associated reduction in riverbank stability, TREK recommends the provision of erosion protection measures (riprap) during the outfall repair works. The riprap blanket should extend to the limits of the outfall right-of-way and ideally, 10 m upstream and downstream of the right-of-way limits. TREK's hydraulics engineers will complete a desktop assessment to determine riprap gradation and assess any adverse impact on channel geometry (a requirement of the necessary Waterways Permit).

5.0 Excavations and Shoring

We understand that a 9 m deep excavation will be required at the outfall manhole (within Plinguet Street) to facilitate the repairs. The outfall pipe will be installed using a combination of open-cut and directional drilling methods. As such, shoring will be required at the manhole location and open-cut excavations and/or shoring will be required near the outfall outlet to the river.

5.1 Temporary Excavations and Shoring

Based on the anticipated excavation depth and the sensitivity of surrounding structures to settlement (e.g. roadway, underground utilities), conventional shoring should be braced. Shoring will likely need to extend through the clay layer and into the sand / sand and gravel / silt till layers. Undrained soil conditions may govern design of the shoring in the short term and effective stress conditions should be considered for the long-term stability. Both undrained and drained soil conditions should be checked, and the more conservative condition used to design the shoring.

It is anticipated that the design of excavation slopes and temporary shoring will be the responsibility of the Contractor. Shoring designs or excavations will need to be designed and sealed by a professional engineer, and shop drawings should be reviewed by TREK prior to construction for review and comment.

The earth pressure distribution provided in Figure 03 can be used for braced shoring design, however the shoring designer should refer to the Canadian Foundation Engineering Manual (CFEM, 5th Edition, 2023) and the information provided on the test hole logs for consideration of the layered soil profile in design. The apparent earth pressure distribution shown on Figure 03 can be used for temporary braced shoring design in soft to firm clay and is not applicable for unsupported (cantilevered) shoring. The effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads. Suggested soil parameters for use in shoring design are provided in Table 5, however it is the Contractor's responsibility to review the test hole logs and confirm the selection of soil parameters for design.

Material	Depth Below Site Grade in Upper Bank	Undrained Shear Strength	Effective Cohesion	Effective Friction Angle	Saturated Unit Weight	Effective Unit Weight	Earth Pressure Coefficients (Rankine ¹)				
	(m)	(kPa)	(kPa)	(degrees)	(kN/m³)	(kN/m³)	Ko	Ka	Кр		
Clay Fill	0 - 3.0	50	5	25	17.5	7.7	0.60	0.40	2.5		
0	3.0 – 7.9	45	5	25	17.0	7.2	0.60	0.40	2.5		
Clay	7.9 – 11.0	15	5	20	16.0	6.2	0.66	0.49	2.0		
Sand	11.0 – 15.4	n/a	0	33	20.0	10.2	0.46	0.30	3.4		
Sand and Gravel	15.4 – 16.8	n/a	0	35	20.0	10.2	0.43	0.27	3.7		
Silt Till	Below 16.8	n/a	0	30	20.0	10.2	0.50	0.33	3.0		

Table 5. Engineering Properties for Soil

Note 1: The effective stress earth pressure coefficients assume the magnitude of wall rotation is sufficient to develop the full earth pressure. The values should be reduced to suit the allowable wall rotation. Refer to Section 20.2.5 of the Canadian Foundation Engineering Manual (5th Edition 2023).

Ground movements behind the shoring and associated settlement are largely unavoidable. The amount of movement cannot be predicted with a high degree of accuracy as it is as much a function of the excavation procedures and workmanship as it is of theoretical considerations. In this regard, good contact between the retaining wall or timber lagging and retained soil should be maintained throughout the construction process. Free-draining sand fill should be used to fill in any voids behind the wall.

The proposed excavation base at 9 m depth is expected to terminate just above the clay-sand interface $(\pm 11 \text{ m} \text{ depth below ground surface})$ within very soft clay. A groundwater level in the clay at ground surface should be assumed for shoring design. Measured groundwater levels in the sand were at or near the clay-sand interface $(\pm 11 \text{ m} \text{ depth below ground surface})$ during the winter monitoring period and therefore, seepage into the excavation can likely be managed using conventional sump pits and pumping. However, groundwater levels can be expected to fluctuate with the level of the Seine River and may be higher during the summer months and during flood periods. Construction of the proposed works in the winter months (November to February) will reduce the risk of higher groundwater levels and the need for more extensive dewatering measures such as well point systems to address base heave.

Excavation base stability should be assessed based on equation 20.15 of the CFEM (5th Edition) as follows:

$$FS_b = \frac{N_b s_u}{\gamma H + q}$$

Where:

FS_b	is the factor of safety against base stability;
N _b	is the stability factor dependent upon the geometry of the excavation; a value of 9
	should be used for excavations extending to between 8 to 10 m;
<i>s</i> _u	is the undrained shear strength of soil below the base of the excavation; a value of
	15 kPa should be used for this site;
γ	is the unit weight of soil above the base of the excavation – refer to Table 5
Н	is the depth of excavation (m)
q	is the surface surcharge load (kPa)

In the case of soft clays underlying the base of an excavation where FS_b is smaller than 2, substantial deformations of the excavation support, base and surrounding ground may occur. Where FS_b is less than 1.5, the depth of penetration of the support system should extend below the base of the excavation. Shoring that needs to extend below the depth of excavation should be designed in accordance with Chapter 20 of the CFEM (5th Edition).

A monitoring program should be established to record the performance of the shoring system from the onset of installation to removal. The monitoring program should include top of pile surveys as a minimum to measure and track lateral movement of the shoring with time. The vertical profile of soldier piles could be monitored using slope inclinometer casing and measurement of earth pressures acting on the shoring and groundwater pressure measurements could also be considered if deemed important by the shoring designer.

6.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be

highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

Test Hole Logs

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ma	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Classification Criter		Criteria		s				
	action	gravel no fines)	GW	.	Well-graded gravels, gravel-sand mixtures, little or no fines	ell-graded gravels, gravel-sand xtures, little or no fines		an 4; $C_{C} = \frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and			eve size	1	to #4 io #10	to #40	200
sieve size)	vels of coarse fr n 4.75 mm	Clean (Little or	GP		Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all gradation require		nents for GW	a a	STM Si		#10 #40 t	#200	*
No. 200 s	s No. 200 Gra than half (larger tha vith fines eciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size of than No g dual sym	Atterberg limits below "A" g line or P.I. less than 4 between 4 and 7 are here		Above "A" line with P.I. between 4 and 7 are border-	icle Size	4					
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: M, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater than	"A" n 7	line cases requiring use of dual symbols	Part		.	0 Q	25	
Coarse-Gr	action n)	sands no fines)	SW	••••••	Well-graded sands, gravelly sands, little or no fines	nd and gra ines (fracti sified as fol W, GP, SV GM, GC, S GM, GC, S	$C_{U} = \frac{D_{60}}{D_{10}}$ greater that	an 6; C _c =	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		шш		2.UU to 4.7 1,425 to 2.0	075 to 0.4	< 0.075
) half the n	C half the m ds coarse fra coarse fra coarse fra Clean s (Little or n	SP		Poorly-graded sands, gravelly sands, little or no fines	ages of sar entage of f s are class centG rcent	Not meeting all gradat	ion requiren	nents for SW				• 0	o		
(More than	(More than Sart Sart (More than half o is smaller the Sands with fines (Appreciable amount of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4	"A"	Above "A" line with P.I. between 4 and 7 are border-	ria I di					Clay	
		SC		Clayey sands, sand-clay mixtures	Determin dependir coarse-gi Less t More 6 to 1.	Ine cases requiring u Ine cases requiring u		line cases requiring use of dual symbols	Mate	ואומיר	Sand	Coarse Mediur	Fine	Silt or	
size)	ş		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plasticity Chart				e Sizes		⊆	.5	Ŀ.
200 sieve	ts and Clay	ss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 70 - 60 -				e	M Sieve	> 12 in	3 IN. 10 12	3/4 in. to 3	#4 to 3/4
soils ir than No.	Sil	<u> </u>	OL	E	Organic silts and organic silty clays of low plasticity	50 - NDEX NDEX	50 -			ticle Siz	AST		+		
-Grained s al is smalle	s	20)	МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Par	E	300	0.05.0	0 75	to 19
Fine the materia	Fine-C than half the material Silts and Clays (Liquid limit greater than SO	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		5	^ H	5 C/	191	4.75	
than half		ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUID	60 70 D LIMIT (%)	0 80 90 100 110		ā	ers	se			
Peat and other highly organic soils Von Post		Von Post Clas	Strong colour or odour, and often fibrous texture		blour or odour, n fibrous texture	Mate	ועומוכ	Bould	Grave	Coarse	Fine				

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

Asphalt	Bedrock (undifferentiated)	62	Cobbles
Concrete	Limestone Bedrock		Boulders and Cobbles
Fill	Cemented Shale		Silt Till
	Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

LEGEND OF ABBREVIATIONS AND SYMBOLS

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ☑ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

Sub-Surface Log

1 of 1

ut				ILHL																		
Clie	nt:	Morris	son	Hershfield					Project N	umber:	_0)035-1	129-0	0								
Proj	ect Name	e: Brand	ch 1	Aqueduct L	Jnderdrain	- Rue Plingu	et Outfall		Location: <u>UTM_N-5528387, E-636055</u>													
Con	tractor:	Padde	ock	Drilling Ltd.					Ground E	levation	on: 225.69 m (geodetic)											
Meth	nod:	_125 mi	m S	SA and 200 m	m HSA				Date Drill	led:	January 8, 2024 - January 9, 2024											
	Sample	Туре:			Grab (G)		Shelby	Tube (T)	Split :	Spoon (S	SS)	/ SPT			Split E	Barre	(SB)) / LP	г [Core	e (C)
	Particle	Size Leg	geno	d: It	Fines	Cla	у [[🔲 Silt		Sand			Grav	vel	5	2	Cobb	es	: `	Во	ulder	S
	Backfill	Legend:			Bentonite		Cement		Drill Cutting	s 🔯	Fi Sa	ilter Pa and	ck		· · (Grout		N PH	\$\$	Slou	igh	
												ษ			B	ulk Un	it Wt			Undra	ained S	Shear
u			eter								ype	qur	,	16	17 1	8 1	9 2	0 21		<u>Te</u>	est Typ	<u>)e</u>
(m)	(u) ebt	Syn	nor			MATERIAL		PTION				E Z	T (I		Partio	cle Siz	2e (%) 30 8	0 100			orvane	e∆ en of
Ш		Soil	nclir								am	du	SF		PL	MC						
			-							0	מ	Sa		0 :	20 4	40 6	50 B	0 100	05	0 10	00 15	0 2002
				TOPSOIL,	silty, trace t	to some san	d, trace c l a	iy														
225.				- dark) - silty so	me sand					4 (G01			•							
	<u></u> <u></u>			- brow	n							G02		F	-)			4			
	₽ -¥			- mois	t, stiff, high	plasticity																
				- Delow 1.5	m, light bro	wn, nrm						тоз			⊢				¢			
										Ē												
	ŧ, ŧ										4	GU4				•			"Qı'			
222.3																						
				SILT - trace	e clay, trace	e sand, trace	oxidation			-		005										
	4			- mois	t, loose, no	to low plast	city					<u>G05</u>			-							
	E -																					
220.	3 - 5 -				o eilt																	
				- light	gray							G06			•							
				- mois	t, compact,	poorly grad	ed, fine sa	nd														
	6									k		2007	22									
										Ľ	1,0	5307	32									
	-7-			 trace grav 	el below 6.	7 m						G08			•							
217.	₫_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	مرمانه									X s	SS09	15	•	H I							
				SAND AND - liaht	brown, wet	- trace silt , compact				ŕ												
				<u> </u>		·																
	E 9 1			well great	d fina cara	to fino are:	al balavi A	1 m		k			40	- -								
				- wen grade	a nne sano	a to nine grav	ei DeiOW 9.			ľ	∕Įs	5510	42		,							
	<u></u> +10-																					
															_							
				- trace coar	se gravel b	e l ow 10.7 m				5	X s	SS11	28									
		. (). .								K												
214.	╠╴╶╬		[• •	SILT (TILL)	- trace gra	vel, trace sa	nd, trace o	ay, browr	n, moist, dens	e 占	≤	SS12	50 /	•								
				END OF TE	EST HOLE	AT 11.67 m	IN SILT (1	TLL)			_	_	76mm	1								
				1) Seepage	and sloug	ning observe	d below 7.	9 m in SA	ND AND GRA	AVEL.												
				Test hole of	pen to 7.9 r	n after drillir	ng to 9.1 m	with solid	stem augers.	•												
				2) Seepage	and slough	ning could n	ot be obsei	ved durin	g drilling with	hollow												
				3) Power au	s. uger refusa	at 11.67 m	depth.															
				4) Water le	vel hollow s	stem augers	at 2.5 m b	e l ow grou	nd surface 5													
				minutes after	er arilling.																	
	nod Pro	Michael	11/-			Davia	wod Pro						roia	+ E	aine		Mich		n Ha	Iden		
lrođě	Jea By:	wiichae	va	neiden			weu By:					Р	rojec	ιcn	iginee	er: _	IVIICN			auen		

Sub-Surface Log

Clier	it:	Morris	on Hers	hfie l d						Project	Number:	:	0035-	129-0	0								
Proje	ect Name:	Branc	h 1 Aqu	educt l	Underdrain -	Rue Plir	<u>iguet C</u>	Jutfall		Locatio	n:		UTM	N-552	28408	8, E - 6	3608	9					
Cont	ractor:	Paddo	ck Drilli	ng Ltd.						Ground	Elevatio	on:	232.4	5 m (g	geode	etic)							
Meth	od:	<u>170 mn</u>	n Hollow S	Stem Au	uger, Mobile B	59 Track M	lount			Date Dr	illed:		Janua	ary 9, 2	2024	- Jan	uary 1	10, 20	024				
	Sample T	Гуре:			Grab (G)			Shelby 7	Tube (T)	Spl	it Spoon	(SS	6) / SP	т 🕨	\ 3	Split B	arrel	(SB)	/ LPT] Co	ore (C))
	Particle S	Size Leg	end:		Fines		Clay		∐ Silt	••••••	Sand			Gra	vel	67	길이	obble	es l		Bould	ers	
	Backfill L	.egend:			Bentonite	\mathbb{X}	🛛 Cen	nent		Drill Cuttir	ngs 🔯		Filter Pa Sand	ack		. C	Grout		X	S s	lough		
												a	ēr			Bu 🗌	(Ik Unit (N/m ³)	t Wt		Un	draine	d Shea	.r
io	ے	nbol ine										Typ.	nmp	î	16 1	7 18	3 19	$\frac{2}{2}$	0 21		Test T	iype	
evat (m)	(m)	Syr Syr	Nei Viez			MAT	ERIAL	DESCF	RIPTION			ble	e N	ЪТ (0 2	0 40	0 60	; (70)) 8(0 100	•	∆ Torva Pocket	ne ∆ Pen. ∎	>
Ē		Soil Soil	5 -									Sam	amp	S		PL	мс			0	⊠ Qu Field \	ı⊠ /ane C	>
													ů		02	0 40	0 60	0 80	0 100 0	50	100	150 2	20025
231.8		<u>//</u>		TOP	'SOIL, silty, - dark brow	trace to s n. moist	ome sa	and, tra	ce clay														
201.0	1. 🕅			CLA	Y (FILL) - si	ty, trace	gravel	(<15 m	m dia.), t	race sand, t	race												
	F 1 🕂			root	ets - dark grev.	moist. fii	rm. hia	ih plasti	citv				T13							4			
				- bel	ow 1.5 m, g	rey, firm t	to stiff						T14			-				190			+
	2-												114						-				-
000 4				- bel sulpl	ow 2.3 m, bi hate seams	own, firn (1 mm th	n, trace iicknes	∋ silt inc ₅s)	lusions (•	<10 mm dia	.), trace		T15							۵			
229.4	3-3			CLA	Y - silty, trac	e silt inc	lusions	s (<5 mr	n dia.)				T16										-
					- brown	to stiff	hiah n	Deticity	,				116							4			-
	4					r to sun,	nığı pi	asticity													_		
	5			!= • .									T17			-		-					
	6-6-																			-			-
]									118							<u>.</u>			
	7 -																					_	
																						_	
5	8			- trad	ce silt inclus	ions (<10) mm d	lia.) belo	ow 7.6 m				T19										
	- 9 -			l-bel	ow 9.1m . tr	ace grave	el (<10	mm dia	a.). arev. 1	verv soft to	soft												
1					, ,	J				· · · , · · · · ·			120	15.6 L	J				2	L			-
	10-																						
																					_		
221.5	↓ 11 ↓												T21										_
				SAN	 light brown 	้า																	
					- wet, loose	to comp	act, po	orly gra	ded fine s	and													
	E 12											\vdash	0000	24									
												А	3322	34								-	-
	<u></u> +13-																					_	
	₽ <u>₹</u>																					_	
	-14-) – poc	or l y graded f	ine to me	dium s	and be	low 13.7 i	n		\square	SS23	46	•								
												M											
Logg	ed By:	Michael	Van He	den		Re	viewec	d By:						Projec	t Eng	ginee	r: _N	/licha	el Var	Helde	en		

	Sub-Surface L	.og			Test	Hole TH24-02 2 of 2
Elevation (m) Depth (m) (m) Soil Symbol Standpipe VW Piezo	MATERIAL DESCRIPTION	Sample Type Sample Number	SPT (N)	□ Bu (k 16 17 18 Particl 0 20 40 PL 0 20 40	Ik Unit Wt N/m³) 3 19 20 21 le Size (%) 0 60 80 100 MC LL 0 60 80 100	Undrained Shear Strength (kPa) <u>Test Type</u> △ Torvane △ ♥ Pocket Pen. ♥ ☑ Qu ☑ ○ Field Vane ○
	SAND AND GRAVEL - trace silt - light brown - wet, compact	× ssz	24 32 25 88 / 216mm			
	 Incorrest noce AT 17.6 m IN SILT (TILL) Notes: Power auger refusal at 17.6 m depth. Seepage and sloughing could not be observed due to the driling method used (hollow stem augers). Water level in hollow stem augers at 17.6 m depth before installing piezometers. SP24-02 installed in test hole with 0.75 m stickup. No water in SP24-02 5 m after installation. 					

Appendix A

Photos of Site Reconnaissance

Photo 1 – Shoreline looking downstream from outfall location

Photo 2 – LDS Outfall in upper bank and erosion gully extending down slope

Photo 3 – Erosion gully extending in mid and lower bank areas

Photo 4 – Cemetery entrance in upper bank area

Photo 5 – Aerial drone view of site looking north

Appendix B Laboratory Testing Results

CHNICAL Quality Engineering | Valued Relationships

Date	February 28, 2024
То	Reza Jamshidi Chenari, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0035-129-00
Project	Branch 1 Aqueduct Underdrain Outfalls
Subject	Laboratory Testing Results – Lab Req. R24-017 - Reissue 2
Distribution	Michael Van Helden

Attached are the reissued laboratory testing results for the above noted project. The testing included moisture content determinations, Atterberg Limits, and unconfined compressive strength and related testing on Shelby tube samples.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

	Prepared By: KF	Reviewed By: AFK	Checked By: NJF
--	-----------------	------------------	-----------------

.....

LABORATORY REQUISITION

JC

1

PROJECT	NAME	Branch 1 Aqu	ieduct Un	derdra	in Ou	Ifalls			i F	IELD	TEGHNICIAN:	Michael Van Helden
											3	
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE (f)	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS	s.t. V. (ve	Soil Description/Comments
TH24-01	G01	1.0 - 2.0		Ń	-					-		
TH24-01	G02	3.0 - 4.0		Ŕ								
TH24-01	T03	5.0 - 7.0		\bigtriangledown	X	X				1		UNNER TO DO QU
TH24-01	G04	8.0 - 9.0		ً								MIKE IS AWARE
TH24-01	G05	12.0 - 13.0	-	Ŕ	1			-		-		
TH24-01	G06	17.0 - 18.0	1 4	ŔŻ		0						
TH24-01	SS07	20.0 - 21.5		ĸ								
TH24-01	G08	22.0 - 23.0		K								
TH24-01	SS09	25.0 - 26.5		K								
TH24-01 /	SS10	30.0 - 31.5		\bowtie								
TH24-01	SS11	35.0 - 36.5		$\overline{\mathbf{X}}$	<u>}</u>				t			
TH24-01	SS12	38.0 - 38.3		Ŕ			-	-	\square			
TH24-02	T13	2.5 - 4.5		\bigtriangledown								UNABLE TO PO
TH24-02	T14	5.0 - 7.0		\mathbf{k}	$\overline{\mathbf{X}}$	$\mathbf{\mathbf{x}}$		1				
TH24-02	T15	7.5 - 9.5	1 P	>					1	Sele		
TH24-02	T16	10.0 - 12.0	-	ĸ					<u> </u>	100		
TH24-02	T17	15.0 - 17.0		\bowtie	\mathbf{X}	1			1	X		
TH24-02	T18	20.0 - 22.0		\mathbf{k}		1		<u> </u>	1.			
TH24-02	T19	25.0 - 27.0	· · · · ·	\bigtriangledown	1			1.0	<u> </u>	\mathbf{X}		
TH24-02	T20	30,0 - 32,0		\bigotimes								
TH24-02	T21	35.0 - 37.0		\bowtie	$\mathbf{\mathbf{x}}$			10				UN OC OT HARLE TO DO GU
TH24-02	SS22	40.0 - 41.5		\mathbf{x}			\square		1			
TH24-02	SS23	45.0 - 46.5	·	K					\vdash	\vdash		
TH24-02	SS24	50,0 - 51,5		K	1	<u> </u>		1		\vdash		14 A A A A A A A A A A A A A A A A A A A
TH24-02	SS25	55.0 - 56.2	3	×								
REQUEST	ED BY:	Richael Ve	n Helder		REPO	DRT T	°O: 🧕	nvi	<u>m</u>)	R	TC	REQUISITION NO.
COMMEN	ION DATI TS:	E: <u>Jan. 31</u>	202	·7_	DATE	EREC	UIRE	D:	_		<i>V</i> .	- K24-011
											10-14	PAGE 1 OF 1

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls

Sample Date 08-Jan-24 **Test Date** 01-Feb-24 Technician СК

Test Hole	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01
Depth (m)	0.3 - 0.6	0.9 - 1.2	2.4 - 2.7	3.7 - 4.0	5.2 - 5.5	6.1 - 6.6
Sample #	G01	G02	G04	G05	G06	SS07
Tare ID	B6	B10	B11	B13	B14	B15
Mass of tare	6.7	6.7	6.7	6.8	6.8	6.7
Mass wet + tare	268.7	281.8	251.2	260.3	272.0	275.4
Mass dry + tare	214.4	210.6	175.6	208.4	225.4	231.2
Mass water	54.3	71.2	75.6	51.9	46.6	44.2
Mass dry soil	207.7	203.9	168.9	201.6	218.6	224.5
Moisture %	26.1%	34.9%	44.8%	25.7%	21.3%	19.7%

Test Hole	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01	TH24-02
Depth (m)	6.7 - 7.0	7.6 - 8.1	9.1 - 9.6	10.7 - 11.1	11.6 - 11.7	13.7 - 14.2
Sample #	G08	SS09	SS10	SS11	SS12	SS23
Tare ID	B20	B26	B25	B24	B18	B23
Mass of tare	6.6	6.7	6.7	6.7	6.7	6.7
Mass wet + tare	259.2	278.2	255.0	259.7	252.3	258.6
Mass dry + tare	217.6	246.2	220.2	222.8	213.0	222.8
Mass water	41.6	32.0	34.8	36.9	39.3	35.8
Mass dry soil	211.0	239.5	213.5	216.1	206.3	216.1
Moisture %	19.7%	13.4%	16.3%	17.1%	19.0%	16.6%

Test Hole	TH24-02	TH24-02		
Depth (m)	15.2 - 15.7	16.8 - 17.1		
Sample #	SS24	SS25		
Tare ID	B16	B22		
Mass of tare	6.7	6.8		
Mass wet + tare	276.6	269.1		
Mass dry + tare	246.0	232.8		
Mass water	30.6	36.3		
Mass dry soil	239.3	226.0		
Moisture %	12.8%	16.1%		

Atterberg Limits ASTM D4318-10e1

	0005 400 00				CERTIFIED BY-	
roject No.	0035-129-00	- 1-1	-			
lient	Morrison Hershi					
roject	Branch 1 Aquedu	ict Underdrain Out	falls		Canadian Council of	Independent Laboratories
est Hole	TH24-01		_		For specific cests an	nisted on www.ccit.com
ample #	T03		_			
epth (m)	2.0 - 2.1		_			
ample Date	08-Jan-24		_		Liquid Limit	88
est Date	05-Feb-24		_		Plastic Limit	25
echnician	DS		_		Plasticity Index	63
iquid Limit						
rial #		1	2	3		
umber of Blov	ws (N)	18	26	35		
lass Tare (g)		14.032	13.711	14.053		
lass Wet Soil	+ Tare (g)	21.121	21.820	23.529		
lass Dry Soil +	+ Tare (g)	17.756	18.038	19.170		
lass Water (g)		3.365	3.782	4.359		
lass Dry Soil ((g)	3.724	4.327	5.117		
loisture Conte	ent (%)	90.360	87.405	85.187		
 - 07 - 06 - 05 - 05 - 06 - 07 - 07<th>Plasticity Chart f smaller than 0.4</th><th>for solid fraction v 25 mm</th><th>with particles</th><th>CH MH or C</th><th>"Line "A" Line DH</th><th></th>	Plasticity Chart f smaller than 0.4	for solid fraction v 25 mm	with particles	CH MH or C	"Line "A" Line DH	
			-			
0	10 2	0 30	40 50	60 70	80 90	100 1

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.184	14.179			
Mass Wet Soil + Tare (g)	22.789	22.432			
Mass Dry Soil + Tare (g)	21.068	20.759			
Mass Water (g)	1.721	1.673			
Mass Dry Soil (g)	6.884	6.580			
Moisture Content (%)	25.000	25.426			

Atterberg Limits ASTM D4318-10e1

					CERTIFIED BY	
Project No.	0035-129-00					
Client	Morrison Hershfie					
roject	Branch 1 Aquedu	ict Underdrain Outf	alls		Canadian Council of	Independent Laboratories
est Hole	TH24-01				Por specific cests a	i isted on www.cen.com
ample #	T03					
epth (m)	1.9 - 2.0					
ample Date	08-Jan-24				Liquid Limit	33
est Date	05-Feb-24				Plastic Limit	14
echnician	KM		-		Plasticity Index	19
iquid Limit.						
rial #		1	2	3		
umber of Blo	ows (N)	16	21	32		
lass Tare (<u>g</u>)		14.261	13.987	14.201		
lass Wet Soil	+ Tare (g)	27.621	27.057	27.840		
lass Dry Soil	+ Tare (g)	24.203	23.763	24.497		
lass Water (g)	3.418	3.294	3.343		
lass Dry Soil	(g)	9.942	9.776	10.296		
loisture Cont	ent (%)	34.379	33.695	32.469		
- 07 - 00 - 05 - 05 - 00 - 00 - 00 - 01 - 00	Plasticity Chart f smaller than 0.42 CL-ML	or solid fraction v 25 mm	vith particles	CH MH or O	"A" Line	
() 10 20) 30 4	Liquid Lin	60 70 nit (%)	80 90	100 1

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.836	13.956			
Mass Wet Soil + Tare (g)	24.226	23.705			
Mass Dry Soil + Tare (g)	22.903	22.485			
Mass Water (g)	1.323	1.220			
Mass Dry Soil (g)	9.067	8.529			
Moisture Content (%)	14.591	14.304			

Atterberg Limits ASTM D4318-10e1

FIOJECT NO.	0035 120 00				C CERTIFIED BY	
Client	Morrison Herebfic	ald	-			- :
Project	Branch 1 Aquedu	ct Underdrain Out	falls			
Toject	Dialion 17 queda		_		Canadian Council of I For specific tests as	ndependent Laboratories listed on www.ccil.com
est Hole	TH24-02		_			
Sample #	T14		_			
Depth (m)	1.5 - 2.1		_			
Sample Date	08-Jan-24		_		Liquid Limit	93
est Date	05-Feb-24		_		Plastic Limit	29
echnician	KM		-		Plasticity Index	65
_iquid Limit						
rial #		1	2	3		
lumber of Blov	ws (N)	17	23	34		
Mass Tare (g)		14.271	13.980	14.205		
Mass Wet Soil	+ Tare (g)	27.701	26.380	26.927		
Mass Dry Soil +	- Tare (g)	21.058	20.360	20.905		
Mass Water (g)		6.643	6.020	6.022		
Mass Dry Soil (g)	6.787	6.380	6.700		
Noisture Conte	ent (%)	97.878	94.357	89.881		
Plasticity Index (%)	Plasticity Chart f smaller than 0.42	or solid fraction v 25 mm	vith particles	CH MH or (Line •	
- 20 - 10 -	CL-ML	ML	or OL			
			or OL	60 70	80 90	100 1

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	14.193	14.112			
Mass Wet Soil + Tare (g)	23.801	23.546			
Mass Dry Soil + Tare (g)	21.654	21.429			
Mass Water (g)	2.147	2.117			
Mass Dry Soil (g)	7.461	7.317			
Moisture Content (%)	28.776	28.933			

Atterberg Limits ASTM D4318-10e1

Project No	0035-129-00				C CERTIFIED BY-	
Client	Morrison Hershfie	ld				
Project	Branch 1 Aquedu	ct Underdrain Outfa	alls		Canadian Council of Ir	dependent Laboratories
Cost Holo	TH2/_02				For specific tests as	isted on www.ccil.com
Sample #	T17					
Donth (m)	16-52					
Samplo Dato	4.0 - 3.2 09- Jan-24				Liquid Limit	71
oet Dato	03-5an-24				Diastic Limit	10
ochnician					Plasticity Indox	51
echnician	03				Flasticity index	51
iquid Limit						
rial #		1	2	3		
umper of Blo	ws (N)	16	24	34		
viass rare (g)	· T ()	14.085	14.170	13.704		
Mass Wet Soll	+ Tare (g)	23.861	23.584	22.318		
Mass Dry Soll	+ Tare (g)	19.715	19.688	18.808		
viass water (g)	()	4.140	3.890	3.510		
lass Dry Soll	(g)	5.630	5.518	5.104		
Plasticity Index (%)			0	CH MH or C	"LI" - "A" Line "A" Line	
10 - 0 +		ML 30	or OL	60 70	80 90	100 1

Plastic Limit

Trial #	1	2	3	4	5
Mass Tare (g)	13.986	13.895			
Mass Wet Soil + Tare (g)	21.828	22.150			
Mass Dry Soil + Tare (g)	20.564	20.828			
Mass Water (g)	1.264	1.322			
Mass Dry Soil (g)	6.578	6.933			
Moisture Content (%)	19.216	19.068			

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-01
Sample #	Т03
Depth (m)	1.5 - 2.1
Sample Date	08-Jan-24
Test Date	01-Feb-24
Technician	AD

Tube Extraction

Recovery (mm)	380					
Bottom	1.8	4 m	1.	71 m 1.6	2 m	Тор
1.90 m	1.0				1	1.52 m
Moisture Co PP/T∖ Visual/A	ontent / TT	Bulk Keep	MC/ATT Silt Pocket	Toss	Silt Pocket Toss	
60 mm		130 mm		90 mm	100 mm	
Visual Classif	fication			Moisture Content	Clay	Silt
Material	CLAY			Tare ID	M43	AB69
Composition	silty			Mass tare (g)	7.0	6.8
				Mass wet + tare (g)	375.2	386.4
				Mass dry + tare (g)	258.0	311.8
				Moisture %	46.7%	24.5%
				Unit Weight		
				Bulk Weight (g)	1019.3	-
Color	light brown					
Moisture	moist			Length (mm) 1	121.48	-
Consistency	firm			2	121.14	-
Plasticity	high plasticit	У		3	121.93	-
Structure	-			4	121.64	-
Gradation	-			Average Length (m)	0.122	-
Torvane				Diam. (mm) 1	70.56	-
Reading		0.35	5	2	71.22	-
Vane Size (s,m,	I)	m		3	71.91	-
Undrained Shea	ar Strength (k	Pa) 34.3	5	4	72.42	-
				Average Diameter (m)	0.072	-
Pocket Penet	rometer					
Reading	1	0.60		Volume (m ³)	4.88E-04	-
	2	0.70)	Bulk Unit Weight (kN/	m³) 20.5	-
	3	0.60)	Bulk Unit Weight (pcf) 130.3	-
	Average	0.63	<u>}</u>	Dry Unit Weight (kN/n	n ^s) 14.0	-
Undrained Shea	ar Strength (k	Pa) 31.1		Dry Unit Weight (pcf)	88.8	-

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T13
Depth (m)	0.8 - 1.4
Sample Date	09-Jan-24
Test Date	05-Feb-24

Tube Extraction

AD

Technician

Recovery (mm)240			
Bottom		0.86 m		Тор
1.00 m		0.00 III		0.76 m
	Moisture Content PP/TV		Кеер	
	140 mm		100 mm	
Visual Class	ification		Moisture Content	
Material	CLAY		Tare ID	M02
Composition	silty		Mass tare (g)	6.8
trace gravel (<1	5mm diam.)		Mass wet + tare (g)	350.4
trace sand			Mass dry + tare (g)	269.8
trace organics (rootlets)			Moisture %	30.6%
			Unit Weight	
<u></u>			Bulk Weight (g)	
Color	dark grey		Longeth (man)	
Moisture	firm		Length (mm)	-
Dissiency	high plasticity		2	
Structure			3	
Gradation			Average Length (m)	
Oradation			Average Length (III)	
Torvane			Diam. (mm) 1	-
Reading		0.35	2	-
Vane Size (s,m	ı,l)	m	3	-
Undrained She	ear Strength (kPa)	34.3	4	
De alast De a	4		Average Diameter (m)	-
Pocket Pene		0.90	Ma Iana (m. 3)	
Reduing	ו ס	0.00	Volume (m ⁻) Bulk limit Weight (khl/m ³)	-
	<u> </u>	0.00	Bulk Unit Weight (KN/M ⁻) Bulk Unit Weight (pcf)	<u>-</u>
		0.70	Dry Unit Weight (PCI)	-
Undrained She	ar Strength (kDa)	37.6	Dry Unit Weight (KN/III) Dry Unit Weight (pcf)	
Shurameu She		01.0	Bry Onic Weight (por)	

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T14
Depth (m)	1.5 - 2.1
Sample Date	09-Jan-24
Test Date	01-Feb-24
Technician	AD

Bottom 1.82 m 1.75 m 1.58 m Top 1.52 m Moisture Content PP/TV Visual PUIK Qu Slough (Toss) Slough (Toss) 70 mm 70 mm 60 mm Moisture Content Material CLAY Moisture Content Moisture Content Material CLAY Moisture Content Moisture Content Material CLAY Moisture Content Mass atre (g) 6.88 Mass wet + tare (g) 435.4 Mass dry + tare (g) 305.2 Moisture moist 1104.2 149.50 Consistency fm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky A 4 149.39 Gradation - Average Length (m) 1 72.44 Undrained Shear Strength (kPa) 58.8 4 72.26 72.46 Vare Size (s,m,i) m 3 72.44 72.46 Vare Size (s,m,i) m 3 72.44 72.266	Recovery (mm)	300	1				
Moisture Content PP/TV Visual Bulk Qu Slough (Toss) 70 mm 60 mm 70 mm 170 mm 70 mm 60 mm Moisture Content Material CLAY Composition silty moist Mass tare (g) Mass dary + tare (g) 335.4 Mass wet + tare (g) 335.4 Mass wet + tare (g) 335.4 Mass dary + tare (g) 336.4 Moisture moist Color grey Moisture 110 mm Color grey Moisture 1104.2 Color grey Moisture 1104.2 Structure blocky J 149.50 Consistency firm to stiff Fracting 0.60 Z 149.73 Gradation 2 Torvane Diam. (mm) 1 Reading 0.60 3 122 Norder Penetrometer <th>Bottom</th> <th>17</th> <th>5 m</th> <th></th> <th>1.5</th> <th>8 m</th> <th>Тор</th>	Bottom	17	5 m		1.5	8 m	Тор
Moisture Content PP/TV Visual Bulk Qu Slough (Toss) 70 mm 170 mm 60 mm Visual Classification Moisture Content Moisture Content Material CLAY Moisture Content Composition silty Moisture Content Material CLAY Mass tare (g) 6.8 Composition silty Mass tare (g) 6.8 Mass tare (g) 0.60 3.05.2 Moisture Moisture % 43.6% Unit Weight (g) 1104.2 Structure moist Length (mm) 1 Color grey 4149.39 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.46 Yane Size (s,m,i) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Average 1.30 3 72.46 Yane Size (s,m,i) m 3 <th>1.82 m</th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th>1.52 m</th>	1.82 m				-	-	1.52 m
70 mm 170 mm 60 mm Visual Classification Moisture Content Tare ID M93 Composition silty Mass tare (g) 6.8 Mass wet + tare (g) 435.4 Mass dry + tare (g) 435.4 Moisture Moisture % 43.6% 43.6% Unit Weight Bulk Weight (g) 1104.2 Color grey Length (mm) 1 149.50 Structure blocky 4 149.39 449.39 Gradation - Average Length (m) 0.150 2 72.46 Vane Size (s,m,l) m 3 72.44 4 72.66 Average Diameter (m) 0.072 72.46 4 72.66 4 72.66 Vane Size (s,m,l) m 3 72.44 4 72.66 4 72.46 149.39 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 176.6 1	Moistu F \	ire Content PP/TV /isual		Bulk Qu		Slough (Toss)	
Visual ClassificationMoisture ContentMaterialCLAYTare IDM93CompositionsiltyMass tare (g)6.8Mass wet + tare (g)435.4Mass dry + tare (g)305.2Moisture %43.6%Unit WeightUnit Weight (g)ColorgreyMoisturemoistColorgreyMoisturemoistConsistencyfirm to stiffPlasticityhigh plasticityStructureblockyGradation-Average Length (m)1Torvane2Reading0.60Yane Size (s,m,l)mPocket Penetrometer0.60Packet Penetrometer0.60Reading1Average1.37Undrained Shear Strength (kPa)67.0Diaw. (mw)1.76Bulk Unit Weight (kN/m³)Ory Unit Weight (pcf)TorvaneReading1.40PorvanePorvane (m)1.76Bulk Unit Weight (kN/m³)1.60Diaw. (mw)1.76Diaw. (mw)1.76Bulk Unit Weight (kN/m³)1.76Dry Unit Weight (pcf)TorvaneReading1.37Dry Unit Weight (pcf)TorvaneReading1.37Dry Unit Weight (pcf)TorvaneReading1.37Dry Unit Weight (pcf)TorvaneReading1.37Dry Unit Weight (pcf) </td <td>70</td> <td>mm</td> <td></td> <td>170 mm</td> <td>1</td> <td>60 mm</td> <td></td>	70	mm		170 mm	1	60 mm	
Material Composition CLAY Tare ID M93 Composition silty 6.8 Mass wet + tare (g) 435.4 Mass dry + tare (g) 305.2 Moisture 43.6% Unit Weight 8 Color grey Moisture moist Consistency firm to stiff Plasticity high plasticity Structure blocky Gradation - Torvane 2 Pocket Penetrometer 6.8 Reading 1 1 1.40 Average 1.37 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 111.8 Dry Unit Weight (pcf) 111.8 Dry Unit Weight (pcf) 77.8	Visual Classi	fication			Moisture Content		
Composition silty Mass tare (g) 6.8 Mass wet + tare (g) 305.2 Mass dry + tare (g) 305.2 Moisture % 43.6% Color grey Moisture % Moisture moist Length (mm) 1 Consistency firm to stiff 2 Plasticity high plasticity 3 Structure blocky 4 Gradation - Torvane 0.60 Reading 0.60 Yane Size (s,m,l) m Mass dry + tare (g) 3 Average Diameter (m) 0.072 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 4 72.46 3 1.40 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (kN/m³) 17.6 Dry Unit Weight (kr/m³) 1	Material	CLAY		_	Tare ID		M93
Mass wet + tare (g) 435.4 Mass dry + tare (g) 435.4 Mass dry + tare (g) 305.2 Moisture % 43.6% Unit Weight 305.2 Moisture % 43.6% Unit Weight 100.2 Color grey 100.2 Moisture moist Length (m) 1 149.50 Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Average 1.37 Volume (m³) 6.17E-04 Bulk Unit Weight (pcf) 111.8 72.44 Average 1.37 Dry Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 111.8 Dry Unit Weight (pcf) 77.8 12.2	Composition	silty			Mass tare (g)		6.8
Mass dry + tare (g) 305.2 Moisture % 43.6% Unit Weight 43.6% Unit Weight 1104.2 Color grey 1104.2 Moisture moist Length (mm) 1 149.50 Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (nm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer Bulk Unit Weight (kN/m³) 61.17E-04 Bulk Unit Weight (kN/m³) 11.8 Average 1.37 Dry Unit Weight (kN/m³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8					Mass wet + tare (g)		435.4
Moisture % 43.6% Unit Weight (g) 1104.2 Color grey Bulk Weight (g) 1104.2 Moisture moist 1104.2 1104.2 Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Average Diameter (m) 0.072 72.46 72.46 2 1.30 3 72.44 72.66 Average Diameter (m) 0.072 72.66 72.66 72.66 Drocket Penetrometer 1.40 Volume (m³) 6.17E-04 8ulk Unit Weight (kN/m³) 11.6 Average 1.37 Dry Unit Weight (kN/m³) 12.2					Mass dry + tare (g)		305.2
Unit Weight Bulk Weight (g) 1104.2 Bulk Weight (g) 1104.2 Bulk Weight (g) 1104.2 Bulk Weight (g) 1104.2 Color grey Moisture Moisture Moisture moist Length (mm) 1 149.50 Consistency firm to stiff 2 149.73 3 149.42 Structure blocky 4 149.39 4 149.39 3 149.42 4 149.39 3 149.42 4 149.39 3 149.42 4 149.39 3 150 3 3 149.42 4 149.39 3 160 3 3 149.42 4 149.39 3				_	Moisture %		43.6%
Bulk Weight (g) 1104.2 Color grey 1104.2 Moisture moist Length (mm) 1 149.50 Consistency firm to stiff 2 149.73 3 149.42 Plasticity high plasticity 3 149.42 4 149.39 Gradation - Average Length (m) 0.150 1 72.33 Torvane Diam. (mm) 1 72.33 72.44 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Average Diameter (m) 0.072 72.44 Pocket Penetrometer Average Diameter (m) 0.072 Reading 1 11.8 72.66 Average 1.30 Bulk Unit Weight (kN/m³) 17.6 Bulk Unit Weight (kN/m³) 17.6 111.8 Average 1.37 Dry Unit Weight (pcf) 111.8 Dry Unit Weight (pcf) 77.8 77.8				_	Unit Weight		
Color grey Moisture moist Length (mm) 1 149.50 Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Name 2 72.46 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.46 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 0.072 0.072 0.072 Quadrating 1.40 Volume (m³) 6.17E-04 Average 1.37 Dry Unit Weight (kN/m³) 111.8 Average 1.37 Dry Unit Weight (pcf) 77.8					Bulk Weight (g)		1104.2
Moisture moist Length (mm) 1 149.50 Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 1.40 Volume (m³) 6.17E-04 Average 1.37 Dry Unit Weight (kN/m³) 17.6 Jundrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Color	grey					
Consistency firm to stiff 2 149.73 Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer Bulk Unit Weight (kN/m³) 17.6 3 1.40 Volume (m³) 6.17E-04 Average 1.37 Dry Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 17.6 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Moisture	moist			Length (mm) 1		149.50
Plasticity high plasticity 3 149.42 Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 111.8 Average 1.37 Dry Unit Weight (pcf) 111.8 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Consistency	firm to stiff			2		149.73
Structure blocky 4 149.39 Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 4 72.66 Reading 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 17.8 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Plasticity	high plastici	ty		3		149.42
Gradation - Average Length (m) 0.150 Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer - - - 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 77.8 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Structure	blocky			4		149.39
Torvane Diam. (mm) 1 72.33 Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 0.11 0.072 Reading 1 1.40 Volume (m ³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m ³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 112.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Gradation	-		_	Average Length (m)		0.150
Reading 0.60 2 72.46 Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Pocket Penetrometer 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (kN/m³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Torvane			_	Diam. (mm) 1		72.33
Vane Size (s,m,l) m 3 72.44 Undrained Shear Strength (kPa) 58.8 4 72.66 Average Diameter (m) 0.072 Pocket Penetrometer 4 72.66 Reading 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (kN/m³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Reading		0.60		2		72.46
Undrained Shear Strength (kPa) 58.8 4 72.66 Pocket Penetrometer Average Diameter (m) 0.072 Reading 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (kN/m³) 17.6 4 72.66 1.37 Dry Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (pcf) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Vane Size (s,m,	l)	m		3		72.44
Pocket Penetrometer Average Diameter (m) 0.072 Reading 1 1.40 Volume (m ³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m ³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (kN/m ³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Undrained Shea	ar Strength (k	(Pa) 58.8		4		72.66
Reading 1 1.40 Volume (m³) 6.17E-04 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (kN/m³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Docket Dened	romotor			Average Diameter (m)	0.072
1.40 Volume (m) 0.11204 2 1.30 Bulk Unit Weight (kN/m³) 17.6 3 1.40 Bulk Unit Weight (pcf) 111.8 Average 1.37 Dry Unit Weight (kN/m³) 12.2 Undrained Shear Strength (kPa) 67.0 Dry Unit Weight (pcf) 77.8	Reading	1	1 40	_	Volumo (m ³)		6 17 F- 04
31.40Bulk Unit Weight (kN/m²)11.8Average1.37Dry Unit Weight (kN/m³)12.2Undrained Shear Strength (kPa)67.0Dry Unit Weight (pcf)77.8		2	1.40		Bulk Unit Weight /kN	/m ³)	17 6
Average1.37Dry Unit Weight (kN/m³)12.2Undrained Shear Strength (kPa)67.0Dry Unit Weight (pcf)77.8		-	1.00		Bulk Unit Weight (nd	f)	111.8
Undrained Shear Strength (kPa)67.0Dry Unit Weight (pcf)77.8		Average	1.37	_	Dry Unit Weight (kN/r	n ³)	12.2
	Undrained Shea	ar Strength (k	(Pa) 67.0		Dry Unit Weight (pcf)		77.8

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls			
Test Hole	TH24-02			
Sample #	T14			
Depth (m)	1.5 - 2.1	Unconfi	ned Strength	
Sample Date	09-Jan-24		kPa	ksf
Test Date	01-Feb-24	Max q _u	67.9	1.4
Technician	AD	Max S _u	33.9	0.7

Specimen Data

Description CLAY - silty, grey, moist, firm to stiff, high plasticity, blocky

Length	149.5	(mm)	Moisture %	44%	
Diameter	72.5	(mm)	Bulk Unit Wt.	17.6	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	12.2	(kN/m^3)
Initial Area	0.00413	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Poo	Pocket Penetrometer			
Reading	Undrained SI	near Strength	Rea	ding	Undrained S	hear Strength	
tsf	kPa	ksf	tsf		kPa	ksf	
0.60	58.8	1.23		1.40	68.7	1.43	
Vane Size				1.30	63.8	1.33	
m	67.0	1.40		1.40	68.7	1.43	
			Average	1.37	67.0	1.40	

Failure Geometry

Sketch:

Photo:

Unconfined Compressive Strength ASTM D2166

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.82	0.0000	0.00	0.004125	0.0	0.00	0.00
10	1.29	0.2540	0.17	0.004132	23.7	5.73	2.87
20	1.71	0.5080	0.34	0.004139	44.9	10.84	5.42
30	2.12	0.7620	0.51	0.004146	65.5	15.80	7.90
40	2.61	1.0160	0.68	0.004153	90.2	21.72	10.86
50	3.00	1.2700	0.85	0.004160	109.9	26.41	13.21
60	3.35	1.5240	1.02	0.004168	127.5	30.60	15.30
70	3.69	1.7780	1.19	0.004175	144.7	34.65	17.33
80	3.93	2.0320	1.36	0.004182	156.8	37.48	18.74
90	4.17	2.2860	1.53	0.004189	168.9	40.31	20.15
100	4.39	2.5400	1.70	0.004196	179.9	42.88	21.44
110	4.56	2.7940	1.87	0.004204	188.5	44.84	22.42
120	4.71	3.0480	2.04	0.004211	196.1	46.56	23.28
130	4.86	3.3020	2.21	0.004218	203.6	48.27	24.14
140	4.99	3.5560	2.38	0.004226	210.2	49.74	24.87
150	5.07	3.8100	2.55	0.004233	214.2	50.61	25.30
160	5.22	4.0640	2.72	0.004240	221.8	52.30	26.15
170	5.33	4.3180	2.89	0.004248	227.3	53.51	26.76
180	5.45	4.5720	3.06	0.004255	233.4	54.84	27.42
190	5.57	4.8260	3.23	0.004263	239.4	56.16	28.08
200	5.66	5.0800	3.40	0.004270	244.0	57.13	28.56
210	5.74	5.3340	3.57	0.004278	248.0	57.97	28.99
220	5.84	5.5880	3.74	0.004285	253.0	59.04	29.52
230	5.92	5.8420	3.91	0.004293	257.1	59.88	29.94

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	6.01	6.0960	4.08	0.004300	261.6	60.83	30.41
250	6.08	6.3500	4.25	0.004308	265.1	61.54	30.77
260	6.16	6.6040	4.42	0.004316	269.2	62.37	31.18
270	6.24	6.8580	4.59	0.004323	273.2	63.19	31.59
280	6.31	7.1120	4.76	0.004331	276.7	63.89	31.94
290	6.37	7.3660	4.93	0.004339	279.7	64.47	32.24
300	6.43	7.6200	5.10	0.004347	282.8	65.05	32.53
310	6.50	7.8740	5.27	0.004354	286.3	65.75	32.87
320	6.55	8.1280	5.44	0.004362	288.8	66.21	33.10
330	6.60	8.3820	5.61	0.004370	291.3	66.66	33.33
340	6.65	8.6360	5.78	0.004378	293.8	67.12	33.56
350	6.69	8.8900	5.95	0.004386	295.9	67.46	33.73
360	6.72	9.1440	6.12	0.004394	297.4	67.68	33.84
370	6.73	9.3980	6.29	0.004402	297.9	67.67	33.84
380	6.74	9.6520	6.46	0.004410	298.4	67.66	33.83
390	6.76	9.9060	6.63	0.004418	299.4	67.77	33.88
400	6.78	10.1600	6.80	0.004426	300.4	67.87	33.94
410	6.78	10.4140	6.97	0.004434	300.4	67.75	33.88
420	6.78	10.6680	7.14	0.004442	300.4	67.63	33.81
430	6.78	10.9220	7.31	0.004450	300.4	67.50	33.75
440	6.78	11.1760	7.48	0.004458	300.4	67.38	33.69
450	6.75	11.4300	7.64	0.004467	298.9	66.92	33.46
460	6.74	11.6840	7.81	0.004475	298.4	66.68	33.34
470	6.67	11.9380	7.98	0.004483	294.9	65.77	32.89

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T15
Depth (m)	2.3 - 2.9
Sample Date	09-Jan-24
Test Date	06-Feb-24
Technician	AD

Recovery (mm)	5	30				
Bottom	2 7/ m		2.57 m	2	240 m	Тор
2.82 m	2.7 4 111			-		2.29 m
Moisture Content PP/TV		Bulk		Кеер		Toss
80 mm		170 mm	1	170 mm		110 mm
Visual Classif	ication			Moisture Content		
Material	CLAY			Tare ID		K16
Composition	silty			Mass tare (g)		6.8
trace silt inclusion	ns (<10mm	diam.)		Mass wet + tare (g)		316.0
trace precipitates	s (sulphate	seams, 1mm thick)		Mass dry + tare (g)		216.6
				Moisture %		47.4%
				Unit Weight		
				Bulk Weight (g)		1055.2
Color	brown					
Moisture	moist			Length (mm) 1		150.40
Consistency	firm			2		150.31
Plasticity	high plast	icity		3		149.89
Structure	blocky			4		149.93
Gradation	-			Average Length (m)		0.150
Torvane				Diam. (mm) 1		72.61
Reading		0.4	5	2		72.62
Vane Size (s,m,	l)	m		3		72.63
Undrained Shea	r Strength	(kPa) 44.	1	4		71.17
Docket Donet	romotor			Average Diameter (m	ı) <u> </u>	0.072
Reading	1	0.0	0	Volumo (m ³)		6 16E-04
Reduing	2	1 0	<u>0</u>	Rulk Unit Woight ///	/m ³)	16.8
	-	0.0	<u> </u>	Bulk Unit Weight (ki	f)	107.0
	Average	0.9	<u>-</u> 3	Dry Unit Weight (kN/	m ³)	11.4
Undrained Shea	r Strenath	(kPa) 45.	8	Dry Unit Weight (bcf)	72.6
				,		

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T16
Depth (m)	3.0 - 3.7
Sample Date	09-Jan-24
Test Date	06-Feb-24
Technician	AD

Recovery (mm)	500			
Bottom	3.4	5 m	2.08 m	3 11 m 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3.55 m			3.26 11	3.05 m
Moistur Conter PP/T∖ Visua	Moisture Content Bulk PP/TV Visual		Кеер	Toss
100 mm		170 mm	170 mm	60 mm
Visual Classifi	cation		Moisture Content	
Material	CLAY		Tare ID	M54
Composition	silty		Mass tare (g)	6.8
trace silt inclusion	ns (<5mm dia	m.)	Mass wet + tare (g)	281.4
			Mass dry + tare (g)	192.6
			Moisture %	47.8%
			Unit Weight	
			Bulk Weight (g)	1024.4
Color	brown			
Moisture	moist		Length (mm) 1	147.26
Consistency	firm to stiff		2	147.40
Plasticity	high plasticit	у	3	147.41
Structure	laminated (b	rown and grey clay, 4mm thick)	4	147.02
Gradation	-		Average Length (m)	0.147
Torvane			Diam. (mm) 1	71.50
Reading		0.50	2	72.09
Vane Size (s,m,I)	m	3	72.48
Undrained Shea	r Strength (k	Pa) 49.0	4	72.05
			Average Diameter (m)	0.072
Pocket Penet	ometer		_	
Reading	1	1.10	Volume (m ³)	6.00E-04
	2	1.20	Bulk Unit Weight (kN/m ³)	16.7
	3	1.10	Bulk Unit Weight (pcf)	106.6
	Average	1.13	Dry Unit Weight (kN/m ³)	11.3
Undrained Shea	r Strength (k	Fa) <u>55.6</u>	Dry Unit Weight (pct)	/2.1

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T17
Depth (m)	4.6 - 5.2
Sample Date	09-Jan-24
Test Date	02-Feb-24
Technician	AD

Recovery (mm)		590			_
Bottom	5.06	m	4.89 m	4	.72 m 4 57 m
Moisture Content PP/TV Visual/ATT		Bulk/Qu		Кеер	Toss
100 mm	I	170 mm	I	170 mm	150 mm
Visual Classif	fication			Moisture Content	
Material	CLAY			Tare ID	E27
Composition	silty			Mass tare (g)	8.6
trace silt inclusio	ns (<10n	nm diam.)		Mass wet + tare (g)	423.6
trace gravel (<15	5mm diar	n.)		Mass dry + tare (g)	311.6
trace sand				Moisture %	37.0%
				Unit Weight	
				Bulk Weight (g)	1147.2
Color	brown			2	
Moisture	moist			Length (mm) 1	149.85
Consistency	firm to	stiff		2	149.57
Plasticity	high pl	asticity		3	149.80
Structure	blocky			4	149.82
Gradation	-			Average Length (m)	0.150
Torvane				Diam. (mm) 1	73.36
Reading			0.50	2	72.14
Vane Size (s,m,	I)		m	3	72.85
Undrained Shea	ar Streng	gth (kPa)	49.0	4	71.60
Pocket Penet	romoto	r		Average Diameter (m	n) 0.072
Reading	1	il	1 10	Volume (m ³)	6 18F-04
	2		1.10	Bulk Unit Weight (kN	$1/m^3$ 18.2
	3		1.00	Bulk Unit Weight (ki	f) 115.9
	Averag	e	1.07	Dry Unit Weight (kN/	m^{3}) 13.3
Undrained Shea	ar Streng	gth (kPa)	52.3	Dry Unit Weight (pcf)	84.6

Project No. Client Project	0035-129-00 Morrison Her	shfield	Jutfalla				
Project	Dialicii i Aqu		Julians				
Test Hole Sample #	TH24-02 T17						
Depth (m)	4.6 - 5.2				Unconfine	ed Strenath	
Sample Date	09-Jan-24					kPa	ksf
Test Date	06-Feb-24				Max q.,	54.6	1.1
Technician	AD				Max S _u	27.3	0.6
Specimen D	Data						
Description	CLAY - silty, stiff, high plas	trace silt inclusions sticity, blocky	(<10mm diar	n.), trace gravel (·	<15mm diam.), trace sand, brown	, moist, firm to
Length	149.8	(mm)		Moisture %	37%		
Diameter	72.5	(mm)		Bulk Unit Wt	18.2	(kN/m^3)	
L/D Ratio	2.1	()		Dry Unit Wt.	13.3	(kN/m^3)	
Initial Area	0.00413	(m^2)		Liquid Limit	71		
Load Rate	1.00	(%/min)		Plastic Limit	19		
		· · · ·		Plasticity Index	51		
Undrained S	Shear Streng	gth Tests					
Torvane				Pocket Penet	rometer		
Reading	Undrained S	Shear Strength		Reading	Undraine	d Shear Strength	
tsf	kPa	ksf		tsf	kPa	ksf	
0.50	49.0	1.02		1.10	54.0	1.13	
Vane Size				1.10	54.0	1.13	
m	52.3	1.09		1.00	49.1	1.02	
			Average	1.07	52.3	1.09	
Failure Geo	metry						
Sketch:	•			Photo:			
	slick	enside					

Unconfined Compressive Strength ASTM D2166

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.88	0.0000	0.00	0.004127	0.0	0.00	0.00
10	1.59	0.2540	0.17	0.004134	35.8	8.66	4.33
20	2.10	0.5080	0.34	0.004141	61.5	14.85	7.42
30	2.52	0.7620	0.51	0.004148	82.7	19.93	9.96
40	2.88	1.0160	0.68	0.004155	100.8	24.26	12.13
50	3.22	1.2700	0.85	0.004162	117.9	28.34	14.17
60	3.49	1.5240	1.02	0.004169	131.6	31.55	15.78
70	3.75	1.7780	1.19	0.004176	144.7	34.64	17.32
80	3.97	2.0320	1.36	0.004184	155.7	37.23	18.61
90	4.17	2.2860	1.53	0.004191	165.8	39.57	19.78
100	4.32	2.5400	1.70	0.004198	173.4	41.30	20.65
110	4.48	2.7940	1.87	0.004205	181.5	43.15	21.57
120	4.61	3.0480	2.04	0.004213	188.0	44.63	22.31
130	4.74	3.3020	2.20	0.004220	194.6	46.10	23.05
140	4.84	3.5560	2.37	0.004227	199.6	47.22	23.61
150	4.93	3.8100	2.54	0.004235	204.1	48.21	24.10
160	5.01	4.0640	2.71	0.004242	208.2	49.07	24.54
170	5.10	4.3180	2.88	0.004249	212.7	50.05	25.03
180	5.18	4.5720	3.05	0.004257	216.7	50.91	25.46
190	5.26	4.8260	3.22	0.004264	220.8	51.77	25.89
200	5.33	5.0800	3.39	0.004272	224.3	52.51	26.25
210	5.39	5.3340	3.56	0.004279	227.3	53.12	26.56
220	5.45	5.5880	3.73	0.004287	230.3	53.73	26.87
230	5.50	5.8420	3.90	0.004294	232.9	54.23	27.11

Project No.0035-129-00ClientMorrison HershfieldProjectBranch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Data (cont'd)

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	5.53	6.0960	4.07	0.004302	234.4	54.48	27.24
250	5.55	6.3500	4.24	0.004310	235.4	54.62	27.31
260	5.53	6.6040	4.41	0.004317	234.4	54.29	27.14
270	5.50	6.8580	4.58	0.004325	232.9	53.84	26.92

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T18
Depth (m)	6.1 - 6.7
Sample Date	09-Jan-24
Test Date	02-Feb-24
Technician	AD

Recovery (mm)	610			_
Bottom	6 61 m	e	14 m 6 2	^{77 m}
6.71 m	0.01 111	0.4	44 [[] 0.2	<u>6.10 m</u>
Moisture Content PP/TV Visual/ATT		Bulk	Кеер	Toss
100 mm	1	170 mm	170 mm	170 mm
Visual Classif	ication		Moisture Content	
Material	CLAY		Tare ID	AB69
Composition	silty		Mass tare (g)	6.8
trace silt inclusio	ns (<5mm diam.)		Mass wet + tare (g)	300.2
trace gravel (<15	imm diam.)		Mass dry + tare (g)	202.2
			Moisture %	50.2%
			Unit Weight	
			Bulk Weight (g)	1008.6
Color	brown			
Moisture	moist		Length (mm) 1	146.99
Consistency	firm		2	147.32
Plasticity	high plasticity		3	146.97
Structure	-		4	146.78
Gradation	-		Average Length (m)	0.147
Torvane			Diam. (mm) 1	71.04
Reading		0.40	2	71.42
Vane Size (s,m,	I)	m	3	71.33
Undrained Shea	r Strength (kPa)	39.2	4	71.52
			Average Diameter (m)	0.071
Pocket Penet	rometer			
Reading	1	0.80	Volume (m³)	<u>5.87E-04</u>
	2	0.90	Bulk Unit Weight (kN/r	n") <u>16.8</u>
	3	0.80	Bulk Unit Weight (pcf)	3. 107.2
	Average	0.83	Dry Unit Weight (kN/m) <u>11.2</u>
Undrained Shea	ir Strength (KPa)	40.9	Dry Unit weight (pcf)	/1.4_

Project No. Client Project	0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T19
Depth (m)	7.6 - 8.2
Sample Date	09-Jan-24
Test Date	02-Feb-24
Technician	AD

Recovery (mm)	610			
Bottom	19 m	8 02 m	7.92 m	7 75 m –
8.23 m ^{0.}		0.02 m		7.62 m
Toss	Кеер	Moisture Content PP/TV Visual	Bulk/Qu	Toss
40 mm	170 mm	100 mm	170 mm	130 mm
Visual Classif	ication		Moisture Content	
Material	CLAY		Tare ID	M57
Composition	silty		Mass tare (g)	6.8
trace silt inclusion	ns (<10mm diam.)		Mass wet + tare (g)	304.0
			Mass dry + tare (g)	196.8
			Moisture %	56.4%
			Unit Weight	
			Bulk Weight (g)	1017.9
Color	brown			
Moisture	moist		Length (mm) 1	150.18
Consistency	soft		2	150.70
Plasticity	high plasticity		3	150.60
Structure	-		4	150.29
Gradation	-		Average Length (m)	0.150
Torvane			Diam. (mm) 1	70.90
Reading		0.25	2	71.79
Vane Size (s,m,l)	m	3	71.79
Undrained Shea	r Strength (kPa)	24.5	4	72.15
			Average Diameter (m)	0.072
POCKET PENEL	rometer 1	0.50	Volume (m^3)	6 07E 04
Reduing	2	0.50	Volume (m) Bulk Unit Wajaht (kN/m ³)	16.5
	3	0.50	Bulk Unit Weight (NV/III)	10.5
	Average	0.50	Dry Unit Weight (kN/m ³)	10 5
Undrained Shea	r Strength (kPa)	24.5	Dry Unit Weight (pcf)	67.0

Project No.	0035-129-00			
Client	Morrison Hershfield			
Project	Branch 1 Aqueduct Underdrain Outfalls			
Test Hole	TH24-02			
Sample #	T19			
Depth (m)	7.6 - 8.2	Unconfined	Strength	
Sample Date	09-Jan-24		kPa	ksf
Test Date	06-Feb-24	Max q _u	37.2	0.8
Technician	AD	Max S _u	18.6	0.4

Specimen Data

Description CLAY - silty, trace silt inclusions (<10mm diam.), brown, moist, soft, high plasticity

Length	150.4	(mm)	Moisture %	56%	
Diameter	71.7	(mm)	Bulk Unit Wt.	16.5	(kN/m ³)
L/D Ratio	2.1		Dry Unit Wt.	10.5	(kN/m^3)
Initial Area	0.00403	(m ²)	Liquid Limit	-	. ,
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Po	cket Pene	etrometer		
Reading	Undrained SI	near Strength	Rea	ading	Undrained S	Shear Strength	
tsf	kPa	ksf	tsf	-	kPa	ksf	
0.25	24.5	0.51		0.50	24.5	0.51	
Vane Size				0.50	24.5	0.51	
m	24.5	0.51		0.50	24.5	0.51	
			Average	0.50	24.5	0.51	

Failure Geometry

Sketch:

Photo:

Unconfined Compressive Strength ASTM D2166

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.71	0.0000	0.00	0.004033	0.0	0.00	0.00
10	1.01	0.2540	0.17	0.004040	15.1	3.74	1.87
20	1.26	0.5080	0.34	0.004047	27.7	6.85	3.43
30	1.48	0.7620	0.51	0.004053	38.8	9.57	4.79
40	1.65	1.0160	0.68	0.004060	47.4	11.67	5.83
50	1.79	1.2700	0.84	0.004067	54.4	13.38	6.69
60	1.93	1.5240	1.01	0.004074	61.5	15.09	7.55
70	2.04	1.7780	1.18	0.004081	67.0	16.43	8.21
80	2.14	2.0320	1.35	0.004088	72.1	17.63	8.82
90	2.23	2.2860	1.52	0.004095	76.6	18.71	9.35
100	2.34	2.5400	1.69	0.004102	82.2	20.03	10.01
110	2.42	2.7940	1.86	0.004109	86.2	20.97	10.49
120	2.50	3.0480	2.03	0.004116	90.2	21.92	10.96
130	2.58	3.3020	2.19	0.004123	94.3	22.86	11.43
140	2.66	3.5560	2.36	0.004130	98.3	23.80	11.90
150	2.72	3.8100	2.53	0.004138	101.3	24.48	12.24
160	2.78	4.0640	2.70	0.004145	104.3	25.17	12.59
170	2.83	4.3180	2.87	0.004152	106.9	25.74	12.87
180	2.89	4.5720	3.04	0.004159	109.9	26.42	13.21
190	2.93	4.8260	3.21	0.004167	111.9	26.86	13.43
200	2.99	5.0800	3.38	0.004174	114.9	27.53	13.77
210	3.04	5.3340	3.55	0.004181	117.4	28.09	14.04
220	3.09	5.5880	3.71	0.004188	120.0	28.64	14.32
230	3.15	5.8420	3.88	0.004196	123.0	29.31	14.66

Project No.0035-129-00ClientMorrison HershfieldProjectBranch 1 Aqueduct Underdrain Outfalls

Unconfined Compression Test Data (cont'd)

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear Stress, S _u
Dial Reading	Dial Reauling	(1111)	(70)	(m)	(N)	$Siless, q_u (kra)$	(kPa)
240	3.18	6.0960	4.05	0.004203	124.5	29.62	14.81
250	3.23	6.3500	4.22	0.004211	127.0	30.17	15.08
260	3.27	6.6040	4.39	0.004218	129.0	30.59	15.30
270	3.31	6.8580	4.56	0.004225	131.0	31.01	15.51
280	3.35	7.1120	4.73	0.004233	133.1	31.44	15.72
290	3.39	7.3660	4.90	0.004240	135.1	31.85	15.93
300	3.42	7.6200	5.07	0.004248	136.6	32.15	16.08
310	3.46	7.8740	5.23	0.004256	138.6	32.57	16.29
320	3.49	8.1280	5.40	0.004263	140.1	32.87	16.43
330	3.53	8.3820	5.57	0.004271	142.1	33.28	16.64
340	3.57	8.6360	5.74	0.004278	144.2	33.69	16.85
350	3.60	8.8900	5.91	0.004286	145.7	33.99	16.99
360	3.62	9.1440	6.08	0.004294	146.7	34.16	17.08
370	3.67	9.3980	6.25	0.004302	149.2	34.68	17.34
380	3.70	9.6520	6.42	0.004309	150.7	34.97	17.49
390	3.74	9.9060	6.58	0.004317	152.7	35.38	17.69
400	3.76	10.1600	6.75	0.004325	153.7	35.54	17.77
410	3.78	10.4140	6.92	0.004333	154.7	35.71	17.86
420	3.82	10.6680	7.09	0.004341	156.8	36.11	18.06
430	3.83	10.9220	7.26	0.004349	157.3	36.16	18.08
440	3.86	11.1760	7.43	0.004356	158.8	36.44	18.22
450	3.87	11.4300	7.60	0.004364	159.3	36.49	18.25
460	3.90	11.6840	7.77	0.004372	160.8	36.77	18.39
470	3.91	11.9380	7.94	0.004380	161.3	36.82	18.41
480	3.93	12.1920	8.10	0.004389	162.3	36.98	18.49
490	3.94	12.4460	8.27	0.004397	162.8	37.03	18.51
500	3.95	12.7000	8.44	0.004405	163.3	37.08	18.54
510	3.96	12.9540	8.61	0.004413	163.8	37.12	18.56
520	3.97	13.2080	8.78	0.004421	164.3	37.17	18.58
530	3.97	13.4620	8.95	0.004429	164.3	37.10	18.55
540	3.98	13.7160	9.12	0.004437	164.8	37.14	18.57
550	3.98	13.9700	9.29	0.004446	164.8	37.07	18.54
560	3.98	14.2240	9.45	0.004454	164.8	37.00	18.50
570	3.98	14.4780	9.62	0.004462	164.8	36.94	18.47
580	3.98	14.7320	9.79	0.004471	164.8	36.87	18.43
590	3.97	14.9860	9.96	0.004479	164.3	36.69	18.34
600	3.97	15.2400	10.13	0.004487	164.3	36.62	18.31
620	3.96	15.7480	10.47	0.004504	163.8	36.37	18.18

0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls
TH24-02
T20
9.1 - 9.8
09-Jan-24
05-Feb-24
AD

Recovery (mm)	600	_				
Bottom	4 m	9 54 m	0.3	7 m	9 20 m	Тор
9.74 m ^{0.0}		0.04 m	5.5		5.20 m	9.14 m
Toss	Moisture Content PP/TV Visual		Bulk	Кеер		Toss
100 mm	100 mm		170 mm	170 mm		60 mm
Visual Classif	cation		N	loisture Content		
Material	CLAY		— Т	are ID		AC33
Composition	silty		N	lass tare (g)		6.6
trace silt inclusion	ns (<5mm diam.)		N	lass wet + tare (g)		319.2
trace gravel (<10	mm diam.)		N	lass dry + tare (g)		202.8
			N	loisture %		59.3%
			L	Jnit Weight		
			B	ulk Weight (g)		987.6
Color	grey					
Moisture	moist		L	ength (mm) 1		148.56
Consistency	v.soft to soft			2		148.81
Plasticity	high plasticity			3		149.19
Structure	blocky			4		149.05
Gradation	-		A	verage Length (m)		0.149
Torvane			D	iam. (mm) 1		72.75
Reading		0.65	_	2		73.19
Vane Size (s,m,I)	I		3		72.77
Undrained Shea	r Strength (kPa)	12.7		4		72.40
			A	verage Diameter (m)		0.073
Pocket Peneti	ometer	base size	_	_		
Reading	1	<u> </u>	_ V	olume (m ³)		6.19E-04
	2	l 2.70	B	ulk Unit Weight (kN/m ³))	15.6
	3	l 2.70	_ В	ulk Unit Weight (pcf)		99.5
	Average	2.70	_ D	ry Unit Weight (kN/m [°])		9.8
Undrained Shea	r Strength (KPa)	8.3	D	ry Unit Weight (pcf)		62.5

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Branch 1 Aqueduct Underdrain Outfalls
Test Hole	TH24-02
Sample #	T21
Depth (m)	10.7 - 11.3
Sample Date	09-Jan-24
Test Date	05-Feb-24
Technician	AD

Recovery (mn	n) 170			
Bottom				Тор
10.84 m			10.74 m	10.67 m
			Мо	isture
	Bulk		Со	ntent
			P	P/TV
			VI	suai
	100 mm		70	mm
			10	
Visual Class	sification		Moisture Content	
Material	CLAY		Tare ID	M90
Composition	silty		Mass tare (g)	6.8
trace sand sea	ams (3mm thick)		Mass wet + tare (g)	363.2
			Mass dry + tare (g)	267.6
			Moisture %	36.7%
			Linit Weight	
			Bulk Weight (g)	682.2
Color	arev		2411 110.9.11 (9)	
Moisture	moist		Length (mm) 1	80.69
Consistency	v. soft to soft		2	80.85
Plasticity	high plasticity		3	80.56
Structure	-		4	79.99
Gradation	-		Average Length (m)	0.081
Torvane			Diam. (mm) 1	71.45
Reading		0.75	2	71.08
Vane Size (s,r	n,l)		3	71.53
Undrained Sh	ear Strength (kPa)	14.7	4	70.45
			Average Diameter (m)	0.071
Pocket Pen	etrometer	base size		
Reading	1	<u> </u>	Volume (m ³)	3.20E-04
(large)	2	I 3.50	Bulk Unit Weight (kN/m ³)	20.9
	3	I 3.50	Bulk Unit Weight (pcf)	133.1
	Average	3.50	Dry Unit Weight (kN/m ³)	15.3
Undrained Sh	ear Strength (kPa)	10.7	Dry Unit Weight (pcf)	97.4

Appendix C Slope Stability Analysis Outputs for Existing Conditions

(mmS&4 x mm872) bioldsT

(mmSE4 x mm972) 885:1 :31AD2

SCALE: 1:285 (279mm x 432mm)

Appendix D

Slope Stability Analysis Outputs for Regrading and Riprap

(mmS&4 x mmeTS) bioldsT

MA 71:75:00 20-4-02:02 :03:17 AM

SCALE: 1:300 (279mm x 432mm)

SCALE: 1:301 (279mm x 432mm)

Morrison Hershfield

City of Winnipeg Branch I Aqueduct Underdrain Outfalls (RFP No. 512-2023) – Avenue Tache Outfall Geotechnical Report

Prepared for:

Mr. Adam Braun, P.Eng. Senior Municipal Engineer Morrison Hershfield 9 Scurfield Blvd #1 Winnipeg, MB R3Y 1G4

Project Number: 0035-129-00

Date: August 29, 2024

Quality Engineering | Valued Relationships

August 29, 2024

Our File No. 0035-129-00

Mr. Adam Braun, P.Eng. Senior Municipal Engineer Morrison Hershfield 9 Scurfield Blvd #1 Winnipeg, MB R3Y 1G4

RE: City of Winnipeg Branch 1 Aqueduct Underdrain Outfalls (RFP No. 512-2023) – Avenue Tache Outfall Geotechnical Report

TREK Geotechnical Inc. is pleased to submit our final geotechnical investigation report for the above noted project. Please contact the undersigned should you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Mulle

Michael Van Helden, Ph.D., P.Eng. Senior Geotechnical Engineer

Encl.

Revision History

Revision No.	Author	Issue Date	Description
0	RJC	July 22, 2024	Draft Report
1	MVH	August 29, 2024	Final Report

Authorization Signatures

Prepared By:

Michael Van Helden Ph.D., P.Eng Senior Geotechnical Engineer

Reviewed By:

Ken Skaftfeld M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

Letter of Transmittal

Revision History and Authorization Signatures

1.0	Introd	uction	1			
2.0	Site Conditions					
	2.1	Site Survey	1			
3.0	Sub-su	urface Information	1			
	3.1	Soil stratigraphy	2			
4.0	Slope	Stability Analysis	3			
	4.1	Analysis Results	4			
5.0	Excav	ations and Shoring	4			
	5.1	Temporary Excavations and Shoring	4			
6.0	Closu	re	6			

Figures Test Hole Logs

Appendices

List of Tables

Table 1.	Measured Piezometric (Groundwater) Elevations	3
Table 2.	Soil Properties used in Slope Stability Analysis	3
Table 3.	Slope Stability Analysis Results for Existing Conditions	4
Table 4.	Engineering Properties for Soil	5

List of Appendices

Appendix A Photos of Site ReconnaissanceAppendix B Laboratory Testing and Monitoring ResultsAppendix C Slope Stability Analysis Results

I.0 Introduction

The City of Winnipeg (COW) has identified structural issues with three Branch 1 Aqueduct underdrain outfalls and is planning to rehabilitate/replace the outfall drains. The repairs are expected to include a combination of trenchless pipe installation, open-cut excavations and pipe installation, and a manhole replacement. TREK Geotechnical Inc. (TREK) was retained by Morrison Hershfield (MHL) to provide geotechnical support for assessment and repairs to underdrain outfalls located at:

- Rue Notre Dame at Rue Maisonneuve on the Seine River;
- Rue Plinguet, west of McTavish Street on the Seine River; and
- Avenue Tache at Rue Messager on the Red River.

This report summarizes the results of the geotechnical assessment completed by TREK for the rehabilitation or replacement of the Branch 1 Aqueduct underdrain outfall at Avenue Tache. The geotechnical assessment includes a review of existing information, sub-surface investigation, riverbank stability analysis, the development of preliminary design options for riverbank stability improvements, and provision of general recommendations for the design and construction of temporary excavations and shoring.

2.0 Site Conditions

TREK personnel (Michael Van Helden, P.Eng. and Reza Jamshidi Chenari, P.Eng.) completed a site reconnaissance on November 29, 2023. Photos from the site reconnaissance are attached in Appendix A.

The underdrain outfall pipe runs north along Avenue Tache crossing the intersection with Rue Messager before crossing an upland area green space to the outlet at a tight inside bend of the Red River (Figure 01). The uplands between the top of bank and Rue Messager is flat, and grass covered with young and mature trees along the riverbank crest (Photo 1). The riverbank is about 7 m high and sloped at about 2.5H:1V. No active riverbank movements were noted within the outfall right-of-way, although some evidence of shoreline erosion was noted. We understand from MHL that the outfall outlet is buried under a thick layer of river sediment, suggesting the lower bank may be subject to aggradation, at least under normal flow conditions, and may experience net erosion only during large flood events.

2.1 Site Survey

Riverbank cross-sections were surveyed by Morrison Hershfield on January 8, 2024 at the locations shown on Figure 01. The cross sections showing the existing ground surface from the MHL survey and available LIDAR survey data are included on Figure 02 (cross section A and B).

3.0 Sub-surface Information

A sub-surface investigation was completed under the supervision of TREK personnel to determine the soil stratigraphy and groundwater conditions at the site. Test Holes (TH) 24-01 and 24-01A were drilled

at the locations shown on Figure 01 by Paddock Drilling Ltd. on April 19, 2024, and April 22, 2024, using a B57 track-mounted drill rig equipped with 125 mm diameter solid stem and 170 mm hollow stem augers. TH 24-01 was drilled to the depth of 9.1 m and abandoned due to machine breakdown. On April 22, 2024, TH 24-01A was drilled to power auger refusal at a depth of 15.2 m immediately adjacent to the original test hole. Test hole locations were established using a hand-held GPS device and the ground surface elevation surveyed relative to a temporary benchmark (TBM) as shown on Figure 01. The geodetic elevation for the TBM was provided by MHL.

A vibrating wire (VW) and standpipe (SP) piezometer were installed in TH24-01A at 7.6 m and 15.0 m below ground surface (bgs) respectively. TH24-01 was backfilled with auger cuttings and bentonite chips. TH24-01A was backfilled with sand around the standpipe tip followed by a bentonite chip seal and cement/bentonite grout to surface (and surrounding the VW piezometer). An above-ground protective casing was installed on TH 24-01A.

Sub-surface soils were visually classified based on the Unified Soil Classification System (USCS). Disturbed (auger cutting) samples were taken at regular intervals and relatively undisturbed (Shelby Tube) samples were collected at select depths. All samples retrieved during drilling were transported to TREK's testing laboratory in Winnipeg, Manitoba. Laboratory testing consisted of moisture content determination on all disturbed samples, bulk unit weight and unconfined compressive strength on Shelby tube samples, and Atterberg Limits on select samples. Laboratory testing results are included in Appendix B. The test hole logs include a description of the soil units encountered and other pertinent information such as groundwater and a summary of the laboratory testing results.

3.1 Soil stratigraphy

A brief description of the soil units encountered (in descending order from ground surface) in the two test holes is provided as follows. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed information provided on the test hole logs.

The general soil stratigraphy consists of 0.1 m of topsoil, 1.5 m of firm clay fill, and alternating layers of clay, silt and sand alluvium to 12.5 m bgs. The alluvium ranges from loose sand containing trace silt, to high plastic silty clay containing trace sand. Loose to compact silt till, becoming dense below 15.2 m bgs, was encountered below the alluvium and power auger refusal was encountered at 15.3 m bgs.

3.1.1 Groundwater and Sloughing Conditions

A water level 6.1 m bgs was measured in TH 24-01 immediately after drilling, however, the source and depth could not be determined. Seepage from sand below 9.1 m was observed in TH24-01A before switching from solid to hollow stem augers, however, seepage and sloughing conditions could not be observed beyond this depth due to the drilling method used (hollow stem augers). Sand blowup was observed below 12.2 m and 13.7 m bgs during drilling. Measured groundwater elevations are short-term and should not be considered reflective of (static) elevations at the site which would require monitoring over an extended period of time to determine. It is important to recognize that groundwater conditions may vary seasonally, annually, or as a result of construction activities.

Piezometric (groundwater) levels monitored after installation are summarized in Table 1.

		Piezometric Elevation (m)				
Test Hole	Instrument	Immediately after installation	April 25, 2024	May 24, 2024		
	Vibrating Wire Piezometer (VW24-01)	224.91	224.77	224.87		
TH24-01A	Standpipe Piezometer (SP24-01)	217.59	218.05	220.96		
	Water Level Logger (SP24-01)	-	218.15	221.12		

 Table 1. Measured Piezometric (Groundwater) Elevations

4.0 Slope Stability Analysis

Slope stability analyses were conducted to assess the existing riverbank slope stability and provide recommendations for improvements to stability (if warranted) in conjunction with the outfall repairs. The analysis was conducted using a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2020 software package (Geo-Slope International Ltd.). The slope stability model used the Morgenstern-Price method of slices with the half-sine interslice force function to calculate factors of safety. Slip surfaces were identified using grid and radius methods. A static piezometric line was used to represent groundwater levels based on the measured levels. The soil stratigraphy was based on TREK's test holes and the ground surface geometry was based on the MHL survey.

Assumed soil properties in Table 2 are based on measured values or in the absence of this information, using representative values based on TREK's experience. The silty clay (alluvium) strengths are considered a composite of the various constituent layers of high plastic clay and loose silty sand. Based on observed site conditions, we have assumed that there are no historical instabilities within the ROW that would warrant the use of lower (residual) strength properties.

Soil Description	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (degrees)	
Clay Fill and Silty Clay / Sand (Alluvium)	17	4	27	
Silt Till	22	5	30	

Table 2. Soil Properties used in Slope Stability Analysis

Analysis was conducted on cross-section A. The output of the slope stability analysis is presented as a factor of safety (FS) related to the stability of the slope along a particular slip surface. A factor of safety approaching unity (FS = 1.0) indicates that the slope is becoming unstable and differential shear movements are expected. As the factors of safety increase above unity, the likelihood of movements decreases. Target factors of safety of 1.3 and 1.5 were selected for design under short-term (extreme) and long-term (typical) conditions and have been commonly used on other City of Winnipeg infrastructure projects. Short-term conditions were modelled with the Regulated Summer River Level (RSRL) of 223.75 m and a riverbank groundwater level steeply rising up to Elev. 224.87 m (about 5.0 m below ground surface). Long-term conditions were modelled with a minimum river water level (223.75 m) and a riverbank groundwater level gently rising up to Elev. 224.87 m (about 5.0 m below ground surface).

4.1 Analysis Results

Figures C1 and C2 show the analysis results for the short-term and long-term cases, respectively, which are summarized in Table 3. The offset distance from the riverbank crest where all potential slip surfaces meet or exceed the target factors of safety is 9 m and 5 m for long-term and short-term cases, respectively. The proposed underdrain manhole should therefore be located 9 m or greater from the riverbank crest as shown on Figure 01.

Stability Case / Cross Section	Condition	Critical (Minimum) FS	Development Setback Distance (m)	Development Target FS	Model Number (Appendix C)
Existing Condition / Cross	Long-term	1.29	9 m	1.5	C1
Section A	Short-term	1.24	5 m	1.3	C2

Table 3.	Slope	Stability	Analysis	Results	for	Existing	Conditions
----------	-------	-----------	----------	---------	-----	----------	------------

5.0 Excavations and Shoring

We understand that a deep excavation will be required at the outfall manhole to facilitate the repairs. The outfall pipe will be installed using a combination of open-cut and directional drilling methods. Shoring will be required at the manhole location and open-cut excavations and/or shoring will be required between the manhole and outlet at the river.

5.1 Temporary Excavations and Shoring

Based on the anticipated excavation depth and the sensitivity of surrounding structures to settlement (e.g. roadway, underground utilities), conventional shoring should be braced. Shoring will likely need to extend through the alluvium layer and into the silt till layer. Undrained soil conditions may govern design of the shoring in the short term and effective stress conditions should be considered for the long-term stability. Both undrained and drained soil conditions should be checked, and the more conservative condition used to design the shoring.

It is anticipated that the design of excavation slopes and temporary shoring will be the responsibility of the Contractor. Shoring designs or excavations will need to be designed and sealed by a professional engineer, and shop drawings should be reviewed by TREK prior to construction for review and comment.

The earth pressure distribution provided in Figure 03 can be used for braced shoring design, however the shoring designer should refer to the Canadian Foundation Engineering Manual (CFEM, 5th Edition, 2023) and the information provided on the test hole logs for consideration of the layered soil profile in design. The apparent earth pressure distribution shown on Figure 03 can be used for temporary braced shoring design in soft to firm clay and is not applicable for unsupported (cantilevered) shoring. The

effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads. Suggested soil parameters for use in shoring design are provided in Table 4, however it is the Contractor's responsibility to review the test hole logs and confirm the selection of soil parameters for design.

Material	Depth Below Site Grade in Upper Bank	Undrained Shear Strength	Effective Cohesion	Effective Friction Angle	Saturated Unit Weight	Effective Unit Weight	Earth Pre	essure Coe (Rankine¹)	efficients
	(m)	(kPa)	(kPa)	(degrees)	(kN/m³)	(kN/m³)	K ₀	Ka	Kp
Clay Fill	0 – 1.5	50	5	25	17.5	7.7	0.58	0.70	1.73
Clay and Sand Alluvium	1.5 – 12.5	30	3	27	18.0	8.2	0.55	0.38	2.66
Silt Till	Below 12.5	n/a	0	30	20.0	10.2	0.50	0.67	2.00

Table 4. Engineering Properties for Soil

Note 1: The effective stress earth pressure coefficients assume the magnitude of wall rotation is sufficient to develop the full earth pressure. The values should be reduced to suit the allowable wall rotation. Refer to Section 20.2.5 of the Canadian Foundation Engineering Manual (5th Edition 2023).

Ground movements behind the shoring and associated settlement are largely unavoidable. The amount of movement cannot be predicted with a high degree of accuracy as it is as much a function of the excavation procedures and workmanship as it is of theoretical considerations. In this regard, good contact between the retaining wall or timber lagging and retained soil should be maintained throughout the construction process. Free-draining sand fill should be used to fill in any voids behind the wall.

The proposed excavation base at approximately 9 m depth is expected to terminate approximately 3.5 m above silt till. A groundwater level i at ground surface in the alluvium should be assumed for shoring design due to the potential for perched groundwater levels. Measured groundwater levels in the alluvium were approximately 1.5 m higher than the anticipated excavation base, therefore seepage into the excavation should be expected but likely can be managed using conventional sump pits and pumping. However, groundwater levels can be expected to fluctuate with the level of the Red River and may be higher during the summer months and during flood periods. Construction of the proposed works in the winter months (November to February) will reduce the risk of higher groundwater levels and the need for more extensive dewatering measures such as well point systems. Groundwater levels in the till are below the base of the excavation (during non-flood periods) and therefore base heave is not anticipated to be an issue.

Excavation base stability can be assessed based on equation 20.15 of the CFEM (5th Edition) as follows:

$$FS_b = \frac{N_b s_u}{\gamma H + q}$$

Where:

FS_b	is the factor of safety against base stability;
N_b	is the stability factor dependent upon the geometry of the excavation; a value of 5.2
	should be used for excavations extending to between 8 to 10 m with no penetration of
	the excavation supports below the base of the excavation;
<i>s</i> _u	is the undrained shear strength of soil below the base of the excavation; a value of
	30 kPa should be used for this site;
γ	is the unit weight of soil above the base of the excavation – refer to Table 4
Н	is the depth of excavation (m)
q	is the surface surcharge load (kPa)

In the case of soft clays underlying the base of an excavation where FS_b is smaller than 2, substantial deformations of the excavation support, base and surrounding ground may occur. Where FS_b is less than 1.5, the depth of penetration of the support system should extend below the base of the excavation. Shoring that needs to extend below the depth of excavation should be designed in accordance with Chapter 20 of the CFEM (5th Edition).

A monitoring program should be established to record the performance of the shoring system from the onset of installation to removal. The monitoring program should include top of pile surveys as a minimum to measure and track lateral movement of the shoring with time. The vertical profile of soldier piles could be monitored using slope inclinometer casings or shape arrays and measurement of earth pressures acting on the shoring and groundwater pressure measurements could also be considered if deemed important by the shoring designer.

6.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation and laboratory testing). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work or standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Morrison Hershfield (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

Figures

0

0035 129 00 Morrison Hershfield

Branch 1 Aqueduct Underdrain Outfalls Tache Site

Site Plan

0035 129 00

Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls Tache Site

Cross Sections A & B

0035 129 00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls Tache Site

Figure 03 Apparent Temporary Lateral Earth Pressure Distribution Braced Excavation in Soft to Firm Clay

Test Hole Logs

EXPLANATION OF FIELD AND LABORATORY TESTING

GENERAL NOTES

GEOTECHN

- 1. Classifications are based on the Unified Soil Classification System and include consistency, moisture, and color. Field descriptions have been modified to reflect results of laboratory tests where deemed appropriate.
- 2. Descriptions on these test hole logs apply only at the specific test hole locations and at the time the test holes were drilled. Variability of soil and groundwater conditions may exist between test hole locations.
- 3. When the following classification terms are used in this report or test hole logs, the primary and secondary soil fractions may be visually estimated.

Ма	jor Div	isions	USCS Classi- fication	Symbols	Typical Names		Laboratory Clas	sification (Criteria		s				
	action	gravel no fines)	GW	8	Well-graded gravels, gravel-sand mixtures, little or no fines		$C_U = \frac{D_{60}}{D_{10}}$ greater th	an 4; C _C = [_]	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		eve size	1	to #4 o #10	to #40	200
sieve size)	vels of coarse fr n 4.75 mm	Clean (Little or I	GP	600	Poorly-graded gravels, gravel-sand mixtures, little or no fines	200 sieve) bols*	Not meeting all grada	ition require	ments for GW		STM Si	1	#10 #40 t	#200	# V
No. 200 s	Grav than half o larger tha	ith fines ciable of fines)	GM		Silty gravels, gravel-sand-silt mixtures	ain size of than No.	Atterberg limits below line or P.I. less than 4	v "A" 1	Above "A" line with P.I. between 4 and 7 are border-	icle Size	٩				_
ained soils arger than	(More is	Gravel w (Appre amount	GC		Clayey gravels, gravel-sand-silt mixtures	vel from gr on smaller lows: N, SP SM, SC is requirinç	Atterberg limits above line or P.I. greater tha	e "A" an 7	line cases requiring use of dual symbols	Part		.	0 Q	25	
Coarse-Grand	action n)	sands ro fines)	SW	•••••	Well-graded sands, gravelly sands, little or no fines	nd and gra- ified as fol W, GP, SV GM, GC, S GM, GC, S	$C_U = \frac{D_{60}}{D_{10}}$ greater th	an 6; C _C =−	$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3		mm		2.00 to 4.7	075 to 0.4	< 0.075
) half the n	nds f coarse fr an 4.75 mn	Clean : (Little or r	SP		Poorly-graded sands, gravelly sands, little or no fines	iges of sar intage of fa s are class centG rcent	Not meeting all grada	ition require	ments for SW				• 0	0	
(More thar	Sar than half o smaller the	ith fines ciable of fines)	SM		Silty sands, sand-silt mixtures	e percenta g on perce ained soil: han 5 perc than 12 pe	Atterberg limits below line or P.I. less than 4	v "A" 1	Above "A" line with P.I. between 4 and 7 are border-						Clay
	(More) Is s (Appre (Appre		SC		Clayey sands, sand-clay mixtures	Determin dependin coarse-gr Less t More 6 to 13	Atterberg limits above line or P.I. greater that	e "A" an 7	line cases requiring use of dual symbols	Mate	ואומום	Sand	Mediun	Fine	Silt or
size)	ş		ML		Inorganic silts and very fine sands, rock floor, silty or clayey fine sands or clayey silts with slight plasticity	80 Plasticity	Plastici	ity Chai	t		Sizes	1	<u> </u>	. <u></u>	Ŀ.
200 sieve	s and Clay	ss than 50	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	70 - smaller ti 60 -	nan 0.425 mm		IT LINE	e	M Sieve	> 12 in.	3 ID. 10 12	3/4 in. to 3	#4 to 3/4
oils r than No.	1. Tion	<u> </u>	OL	==	Organic silts and organic silty clays of low plasticity	(%) 50 -		/ CH		ticle Siz	AST		_		
e-Grained s al is smalle	-Grained so al is smaller ys 50)		МН		Inorganic silts, micaceous or distomaceous fine sandy or silty soils, organic silts					Par	E	300	0.000	to 75	to 19
Fine-(the material ts and Clays Liquid limit		Liquid limi	СН		Inorganic clays of high plasticity, fat clays	20-			MH OR OH		μ	^ #	n C/	191	4.75
than half	N	- ang	ОН		Organic clays of medium to high plasticity, organic silts	7 4 00 10	ML OR OL 16 20 30 40 50 LIQUI	0 60 7 D LIMIT (%)	0 80 90 100 110	<u>.</u>		ers	- es		_
(More	Highly	Organic Soils	Pt	<u>6 77 94</u> <u>56 76 5</u>	Peat and other highly organic soils	Von Post Clas	ssification Limit Strong colour or odour, and often fibrous texture			Noto	ואומוב	Bould	Grave	Coarse	Fine

Borderline classifications used for soils possessing characteristics of two groups are designated by combinations of groups symbols. For example; GW-GC, well-graded gravel-sand mixture with clay binder.

Other Symbol Types

	Asphalt	Bedrock (undifferentiated)	67	Cobbles
A CA	Concrete	Limestone Bedrock		Boulders and Cobbles
	Fill	Cemented Shale		Silt Till
		Non-Cemented Shale		Clay Till

EXPLANATION OF FIELD AND LABORATORY TESTING

- LL Liquid Limit (%)
- PL Plastic Limit (%)
- PI Plasticity Index (%)
- MC Moisture Content (%)
- SPT Standard Penetration Test
- RQD- Rock Quality Designation
- Qu Unconfined Compression
- Su Undrained Shear Strength

- VW Vibrating Wire Piezometer
 - SI Slope Inclinometer
 - $\ensuremath{\boxtimes}$ Water Level at Time of Drilling
 - ▼ Water Level at End of Drilling
 - ✓ Water Level After Drilling as Indicated on Test Hole Logs

FRACTION OF SECONDARY SOIL CONSTITUENTS ARE BASED ON THE FOLLOWING TERMINOLOGY

TERM	EXAMPLES	PERCENTAGE
and	and CLAY	35 to 50 percent
"y" or "ey"	clayey, silty	20 to 35 percent
some	some silt	10 to 20 percent
trace	trace gravel	1 to 10 percent
with *	with silt, with sand	> 35 percent

* Used when the material is classified based on behaviour as a cohesive material

TERMS DESCRIBING CONSISTENCY OR COMPACTION CONDITION

The Standard Penetration Test blow count (N) of a non-cohesive soil can be related to compactness condition as follows:

Descriptive Terms	<u>SPT (N) (Blows/300 mm)</u>
Very loose	< 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very dense	> 50

The Standard Penetration Test blow count (N) of a cohesive soil can be related to its consistency as follows:

Descriptive TermsSPT (N) (Blows/300 mm)Very soft< 2</td>Soft2 to 4Firm4 to 8Stiff8 to 15Very stiff15 to 30Hard> 30

The undrained shear strength (Su) of a cohesive soil can be related to its consistency as follows:

Descriptive Terms	Undrained Shear <u>Strength (kPa)</u>
Very soft	< 12
Soft	12 to 25
Firm	25 to 50
Stiff	50 to 100
Very stiff	100 to 200
Hard	> 200

	\sum
	REK
GEOTECH	nical

Sub-Surface Log

1 of 1

Client:		Mo	rrison Hei	shfield				Projec	Numbe	r: _	0035	-129-0	00						
Project	Name	: Bra	anch 1 Aq	ueduct -	Tache			Locati	on:		UTM-	14U,	5529	019 m N	V, 6343	46 m E			
Contrac	tor:	Pa	ddock Dril	ling Ltd.				Ground	und Elevation: _98.97 m										
Method:	:	125	mm Solid S	Stem Aug	er, B57 Trac	ck Mounted Rig		rilled:	April 19, 2024										
Sa	ample	Type:			Grab (G))	Shelby Tube (T	-) 🔀 Sr	lit Spoon	י ו (SS	6) / SP	т 🚺		Split Bar	rel (SE	3) / LPT		Co	re (C)
Pa	article	Size L	.egend:		Fines	Clay	Silt	Sand			Gra	vel					_ Boulde	ers	
			0					<u> </u>	8		5			Bulk	u Unit Wt		Un	drained	l Shear
c		8								/pe	mbe	(16 ⁻	(KN) 17 18	/m°) 19	20 21	S	rength	(kPa)
atio		l m			N		SCRIPTION			e T	NUI	N)		Particle	Size (%)	Ζ	Torva	<u>ype</u> ne ∆
	52	oil S								du	ple	SP1	0 2	20 40	60	80 100	•	Pocket ⊠Qu	Pen. 🗖
-		Ň								Sa	San		0			- 80 100 0	0	Field V	′ane () 150 2002
98.9	X		ORGANI	CS - trac	ce sand, b	lack, loose, gra	ss, trace rootlets				C01		•						100 2002
Ē	-¥		CLAY (FI	LL) - silt	y, trace sa	and, trace grave	el (<20 mm dia.)												
F	1	X	- bro - mo	wn ist, firm							GUZ							_	
97.4	÷.	X	- hig	h plastic	ity						G03								
Ē	, <u> </u>		SAND AN	ID SILT	- trace cla	ay, trace rootlets	3												
Ē	-	: : :	- mo	ist, loos	e						G04								
Ē	- T		- Iow - poo	r to no pl orly grad	lasticity led, fine sa	and													
95.6	3 -		- sut	pangular	to subrou	Inded					G05		-•						
05.2	1		CLAY - si	lty, dark	brown, m	oist, stiff, high	plasticity				G06			•			• 4	_	
- 30.2	4		SAND - tr	ace silt							G07				•.•.•.•	•.•.•.•		_	
Ē			- bro - mo	wn ist loos	ē														
Ē	_		- poc	orly grad	ed, fine sa	and					S08	7	•						
Ē	5		- sub	bangular	to subrou	Inded				F									
Ē	-																	_	
92.9	6 –										G09	7/	-•	•				_	
92.6	4		CLAY - si	lty, trace	e sand, bro	own, moist, soft	t, medium to high	plasticity		×	S10A	// ≬52mm		i		P	7		
	7 -			cc ciay,	Some mile	, sand, brown, r					G11			• • • • •	·····	•••••			
91.0	′≱		SILT AND	CLAY	- trace gra	avel (<10 mm di	a.), brown, mois	, soft, intern	ediate										
91.4			plasticity	14 . 4	-	45	-				G12								
Ē	8		CLAY - si - bro	ity, trace wn, moi	e gravel (< st, soft, hi	gh plasticity					113								
Ē	ł		- trad	ce silt in	clusions (·	<10 mm dia.)												_	
89.8	9 –		- grey bel	ow 8.7 n	n						G14					0	Δ		
			END OF	TEST H	OLE AT 9	.1 m CLAY													
			1. End of	test hole	e at 9.1 m	depth due to m	achine breakdov	'n.											
			2. Seepag	ge and s	loughing o	observed at 7.6	m depth.												
			4. Water	level at 6	6.1 m dept	th immediately	after drilling.												
			5. Test ho	ole backf	filled with	auger cuttings a	and bentonite.												

Sub-Surface Log

1 of 2

GE	DT	ECH	<u>inic</u>		í.																		
Client	t:	Morr	ison Hers	hfield					Pro	oject Nu	umber	:	0035	-129-0	00								
Proje	ct Nam	e: Bran	ch 1 Aqu	educt -	Tache				Lo	cation:			UTM-	·14U, :	55290	020 m N	l, 634	346 m	Е				
Contr	actor:	Pado	lock Drilli	ng Ltd.					Gro	ound E	levatio	on:	n: _98.97 m										
Metho	od:	125 n	nm SSA / 1	70 mm H	ISA, B57 Trac	k Mounted Rig			Dat	te Drill	ed:		April	22, 20	24								
	Sample	e Type:			Grab (G)		Shelby 1	Tube (T)	\boxtimes	Split S	Spoon	(SS	6) / SP	т 🕨		Split Bar	rel (Sl	3) / LP	т Г		Core	(C)	
	Particle	size Le	gend:		Fines	Clay		Silt			Sand			Gra	vel	67	Cob	bles		Во	ulders		
	Backfill	Legend	:		Bentonite		ement		Drill	Cuttings	s 🔯		Filter P	ack		Gro	but		359	Slou	gh		
										0	1.7.1.		5anu To			Bulk	Unit W	t		Undra	ined Sł	near	
Elevation (m)	Depth (m)	Soil Symbol	Standpipe VW Piezo			MATERIA	L DESCF	RIPTION				Sample Type	Sample Numbe	SPT (N)	16 1 0 2 0 2	7 18 Particle 0 40 PL M 0 40	19 Size (% 60 C L 60	20 21 5) 80 100 L 80 100	0 5	Strer <u>Te</u> △ To ● Poc ⊠ ○ Fie 0 10	I <u>gth (k⊦</u> st Type prvane ket Per Qu ⊠ Id Vane 0 150	2a) △ ∩. ● e ○ 0 200250	
98.9				ORG	ANICS - tra	ace sand, blac	k, loose, g	grass, tra	ce roo	tlets													
97.4					- moist, firm - high plasti	ny, trace sand n icity	i, irace gr			ла. <i>)</i>													
				SAN	D AND SILT - brown	Γ - trace clay,	trace root	lets				\mathbb{X}	S15A S15B	6 / 152mm	•								
05.6					 moist, loos low to no p poorly gra subangula 	se plasticity ded, fine sand ar to subround	l ed							6 / 0mm									
95.0				CLA	Y - silty, dar	k brown, mois	t, stiff, hig	gh plastic	ity			Þ	\$16			•			-				
	4 4 5 0			SANI) - trace silf brown moist, loos poorly grader subangula 	t ded, fine sand ar to subround	l ed																
92.6				CLA	Y - silty, trac	e sand, brow	n, moist, s	soft, med	ium to	high													
				SILT	- trace clay	, some fine sa	and, brown	n, moist,	loose														
91.8				SILT	AND CLAY	- trace grave	l (<10 mm	n dia.), br	rown, r	noist, s	oft,												
91.4				CI A	<u>nediate plas</u> Y - silty trac	sticity ce sand																	
					- brown, mo	bist, soft, high	plasticity																
89.8	-9-			SAN	D							\mathbb{L}	T17										
	10				 brown moist, loos poorly gra subangula 	se ded, fine sand ar to subround	l ed						117										
88.1	L 11_			- WOO	$\frac{1}{2}$ d chips (50	mm thick) be	low 10.7	m					S18A	3/				124					
	-11-			CLA	 - sitty, trac - dark grey - moist, firm - high plasti 	to soft city							<u>S18B</u> S18C	<u>+52mm</u>									
86.5				SILT	(TILL) - tra	ce sand, trace	gravel (<	:15 mm c	lia.)			0	T19										
	13				- grey - moist, loo	se to compact						0	S20				_						
			1.72		,	,															-+		
	-14											Д	S21	44	•		_						
	L T																				-+		
	t t ed By:	JANG Jason	<u>D</u> 24			Roview	ed By:	Ken Skof	itfeld				I	Projec	t En/	nineer:	Mic	hael \/	an He	lden			
1-299	cu by.	043011	wong				са су !		auu				- '	iojec		J.11661.	1110			aur			

			R	E	Sub-Surface Lo	סַכ	J				Test H	Hole TH24-01A 2 of 2
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	VW Piezo	MATERIAL DESCRIPTION	Sample Type	Sample Number	SPT (N)	[16 17 F 0 20 P 0 20	□ Bulk U (kN/m 18 Particle Si 40 1 L MC 40 40	nit Wt 19 20 21 2e (%) 60 80 100 LL 60 80 100	Undrained Shear Strength (kPa) <u>Test Type</u> △ Torvane △ Φ Pocket Pen. Φ ⊠ Qu ⊠ ○ Field Vane ○ 0 50 100 150 200250
00.4							600	50 /				
83.4					- dense below 15.2 m END OF TEST HOLE AT 15.3 m IN SILT (TILL) Notes: 1. Power auger refusal at 15.3 m depth. 2. Seepage observed below 9.1 m depth during drilling. 3. Sloughing not observed below 12.2 m and 13.7 m depth. 5. Standpipe SP24-01 installed in test hole. 6. WV24-01 (VW130062) installed at 7.6 m below ground surface. 7. Test hole backfilled with sand, bentonite, and grout. 8. Soil stratigraphy above 9.1 m was copied from TH24-01. 9. Water level - 13.2 m below top of pipe on April 22, 2024 at 16:30. Water level - 12.7 m below top of pipe on April 25, 2024 at 10:15.		<u><u><u>S</u>22</u></u>	507 128mm				

Appendix A

Photos of Site Reconnaissance

Photo 1 – Upper bank area along outfall alignment

Photo 2 – Riverbank crest at outfall

Appendix B Laboratory Testing Results

CHNICAL Quality Engineering | Valued Relationships

Date	April 29, 2024
То	Jason Wong, TREK Geotechnical
From	Angela Fidler-Kliewer, TREK Geotechnical
Project No.	0035-129-00
Project	Tache-Branch 1 Aqueduct
Subject	Laboratory Testing Results – Lab Req. R24-134
Distribution	Michael Van Helden

Attached are the laboratory testing results for the above noted project. The testing included moisture content determinations, particle size distribution (Hydrometer method), and unconfined compressive strength and related testing on a Shelby tube sample.

Regards,

Angela Fidler-Kliewer, C.Tech.

Attach.

Review Control:

|--|

Lab Requisition

TREK GEOTECHNICAL 1712 St. James Street Winnipeg, Manitoba R3H 0L3 T 204.975.9433 F 204.975.9435

	PROJECT:		Tach	e - Branc	Branch 1 Aqueduct PROJECT NO:									0035-129-00				
	CLIENT:		Mo	rrison He	rshfie	ld			FIE	_D T	ECH	NICI	AN:		Jason Wong			
TEST HOLE NUMBER	SAMPLE NUMBER	Sample Start Depth (ft)	Sample End Depth (ft)		MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS	SULPHATE			Soil Description/ Comments			
TH24-01	G1	0.5	1.0		\mathbf{X}										Clay (Fill)			
TH24-01	G2	2.0	2.5		K		· · ·								Clay (Fill)			
TH24-01	G4	7.5	8.0		\bigotimes										Sand and Silt			
TH24-01	G5	9.5	10.0		\bigotimes										Sand and Silt			
TH24-01	G6	11.5	12.0		\bowtie							• •			Clay			
TH24-01	G7	13.0	13.5		\bigotimes			\times			 				Sand			
TH24-01	60	15.0	16.5		K						 				Sand			
TH24-01	S10A	20.0	20.0		\diamond										Clay			
TH24-01	S10B	21.0	21.5		\bigotimes	-									Sand and Silt			
TH24-01	G11	22.5	23.0		\bigotimes			$\mathbf{\times}$			1				Silt			
TH24-01	G12	24.5	25.0		\mathbf{X}										Silt and Clay			
TH24-01	T13	25.0	27.0				ĺ.				\bowtie				Clay			
TH24-01	G14	29.0	29.5		${ \times }$						-				Clay			
TH24-02	S15A	5.0	60															
TH24-02	S15R	6.0	6.5		Ø					-					Sand			
TH24-02	S16	10.0	11.5		$\mathbf{>}$			-			+				Clav			
TH24-02	T17	30.0	32.0											-t	No Recovery			
TH24-02	S18A	35.0	35.3		\times										Sand			
TH24-02	S18B	35.3	35.5		\ge								· -		Wood Chips?			
TH24-02	S18C	35.5	36.5		\succ						<u> </u>				Clay			
TH24-02	911	40.0	42.0										╞╴┤	-+				
TH24-02	S21	45.0	46.5												Silt (Till)			
TH24-02	S22	50.0	50.9		>										Silt (Till)			
	n							-										
-					-		-							-+				
														+				
											1							
											·							
														_				
REOU			.1\\\/		REP	ART	TO		1\A	/ M	νн				REQUISITION NO.			
DEOUIOT			10 A /	24	···· ·		- 1 U.		0.04		VII		-		R24-134			
	ION DATE:		23-Apr-2	24	UA II	ERE	:QUI	KED:					-					
CC	OMMENTS:										32							
														- 1	SHEET OF			

Project No.	0035-129-00
Client	Morrison Hershfield
Project	Tache-Branch 1 Aqueduct

Sample Date	22-Apr-24
Test Date	23-Apr-24
Technician	BC

Test Hole	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01
Depth (m)	0.2 - 0.3	0.6 - 0.8	1.4 - 1.5	2.3 - 2.4	2.9 - 3.0	3.5 - 3.7
Sample #	G1	G2	G3	G4	G5	G6
Tare ID	F18	E15	B10	B5	M36	M16
Mass of tare	6.8	6.8	6.6	6.6	7.0	6.8
Mass wet + tare	226.6	223.6	235.8	222.8	231.2	232.6
Mass dry + tare	204.2	204.9	204.9	196.6	206.1	189.7
Mass water	22.4	18.7	30.9	26.2	25.1	42.9
Mass dry soil	197.4	198.1	198.3	190.0	199.1	182.9
Moisture %	11.3%	9.4%	15.6%	13.8%	12.6%	23.5%

Test Hole	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01	TH24-01
Depth (m)	4.0 - 4.1	4.6 - 5.0	5.9 - 6.1	6.1 - 6.4	6.4 - 6.6	6.9 - 7.0
Sample #	G7	S8	G9	S10A	S10B	G11
Tare ID	B15	M91	E63	J74	J59	D35
Mass of tare	6.6	7.0	7.0	7.0	7.2	6.8
Mass wet + tare	438.8	199.0	222.4	202.2	123.0	427.2
Mass dry + tare	402.4	180.2	197.6	160.7	99.0	353.1
Mass water	36.4	18.8	24.8	41.5	24.0	74.1
Mass dry soil	395.8	173.2	190.6	153.7	91.8	346.3
Moisture %	9.2%	10.9%	13.0%	27.0%	26.1%	21.4%

	TU24.04	TU24.04	TU24 02	TU24 02	THOM OD	
Test Hole	1 1 24-01	1 1 24-01	1024-02	1 1 24-02	1 1124-02	1 1124-02
Depth (m)	7.5 - 7.6	8.8 - 9.0	1.5 - 1.8	1.8 - 2.0	3.0 - 3.5	10.7 - 10.8
Sample #	G12	G14	S15A	S15B	S16	S18A
Tare ID	E86	P05	M32	E76	M20	M09
Mass of tare	7.2	7.0	6.8	6.8	7.0	7.0
Mass wet + tare	227.2	238.6	199.8	188.0	236.6	241.8
Mass dry + tare	177.8	161.7	167.3	174.7	192.0	190.8
Mass water	49.4	76.9	32.5	13.3	44.6	51.0
Mass dry soil	170.6	154.7	160.5	167.9	185.0	183.8
Moisture %	29.0%	49.7%	20.2%	7.9%	24.1%	27.7%

Project No.	0035-129-00	
Client	Morrison Hershfield	
Project	Tache-Branch 1 Aqueduct	
Sample Date	22-Apr-24	
Test Date	23-Apr-24	

BC Technician

Test Hole	TH24-02	TH24-02	TH24-02	TH24-02	
Depth (m)	10.8 - 10.8	10.8 - 11.1	13.7 - 14.2	15.2 - 15.5	
Sample #	S18B	S18C	S21	S22	
Tare ID	Q13	E56	Q6	Q20	
Mass of tare	6.6	6.8	6.8	7.0	
Mass wet + tare	67.2	236.2	214.2	254.0	
Mass dry + tare	33.6	169.9	191.8	232.1	
Mass water	33.6	66.3	22.4	21.9	
Mass dry soil	27.0	163.1	185.0	225.1	
Moisture %	124.4%	40.6%	12.1%	9.7%	

Project No. Client Project	0035-129-00 Morrison Hershfield Tache-Branch 1 Aqueduct		CERTIFIED BY
Test Hole	TH24-01		
Sample #	G7		
Depth (m)	4.0 - 4.1	Gravel	0.0%
Sample Date	22-Apr-24	Sand	85.2%
Test Date	25-Apr-24	Silt	7.1%
Technician	DS	Clay	7.7%

Project No. Client Project	0035-129-00 Morrison Hershfield Tache-Branch 1 Aqueduct		CERTIFIED BY
Test Hole	TH24-01		
Sample #	G11		
Depth (m)	6.9 - 7.0	Gravel	0.0%
Sample Date	22-Apr-24	Sand	69.6%
Test Date	25-Apr-24	Silt	17.0%
Technician	DS	Clay	13.4%

15.13

13.46

13.37

0.0032

0.0023

0.0013

Project No. Client Project	0035-119-00 Morrison Hershfield Tache-Branch 1 Aueduct
Test Hole	TH24-01
Sample #	T13
Depth (m)	7.6 - 8.2
Sample Date	19-Apr-24

23-Apr-24

KΜ

Tube Extraction

Test Date

Technician

Recovery (mm) 610			
Bottom				Тор
8.23 m	8.14 m		7.98 m	7.81 m 7.62 m
Moisture Content PP/TV	Ke	ер	Qu Bulk	Toss
VISUAI				
90 mm	160	mm	170 mm	190 mm
Visual Class	ification		Moisture Content	t
Material	CLAy		Tare ID	w10
Composition	silty		Mass tare (g)	8.4
trace silt inclusi	ons (<10mm, diam.)		Mass wet + tare (g)	268.8
trace gravel (<1	5mm, diam.)		Mass dry + tare (g)	197.6
			Moisture %	37.6%
			Unit Weight	
			Bulk Weight (g)	1140.9
Color	grey			
Moisture	moist		Length (mm) 1	146.48
Consistency	soft		2	146.52
Plasticity	high plasitcity		_ 3	146.58
Structure	-		4	146.74
Gradation	-		Average Length (m)	0.147
Torvane			Diam. (mm) 1	72.26
Reading		0.25	2	73.52
Vane Size (s,m	n,l)	m	3	72.83
Undrained She	ear Strength (kPa)	24.5	4	73.00
	1		Average Diameter (I	m) 0.073
POCKET PENE		0.50	-	6 12E-04
Reading	2	0.50	Volume (m.) Bulk Unit Woight (k)	$\frac{0.12E-04}{18.3}$
	3	0.00	Buik Unit Weight (K	cf) 116.4
	Average	0.53	Dry Unit Weight (b)	//m ³) 13.3
Undrained She	ar Strength (kPa)	26.2	Dry Unit Weight (N	f) 84.6
		20.2		.,04.0

www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No. Client Project	0035-119-00 Morrison Hershfield Tache-Branch 1 Aueduct				
Test Hole	TH24-01				
Sample #	T13				
Depth (m)	7.6 - 8.2	L	Jnconfined S	Strength	
Sample Date	19-Apr-24	—		kPa	ksf
Test Date	23-Apr-24	N	lax q _u	66.2	1.4
Technician	KM	N	Max S _u	33.1	0.7

Specimen Data

Description CLAy - silty, trace silt inclusions (<10mm, diam.), trace gravel (<15mm, diam.), grey, moist, soft, high plasitcity

Length	146.6	(mm)	Moisture %	38%	
Diameter	72.9	(mm)	Bulk Unit Wt.	18.3	(kN/m ³)
L/D Ratio	2.0		Dry Unit Wt.	13.3	(kN/m^3)
Initial Area	0.00417	(m ²)	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

Undrained Shear Strength Tests

Torvane			Po	Pocket Penetrometer							
Reading	Undrained SI	hear Strength	Re	eading	Undrained S	hear Strength					
tsf	kPa	ksf	tst	F	kPa	ksf					
0.25	24.5	0.51		0.50	24.5	0.51					
Vane Size				0.60	29.4	0.61					
m				0.50	24.5	0.51					
			Average	0.53	26.2	0.55					

Failure Geometry

Sketch:

Unconfined Compressive Strength ASTM D2166

Project No.	0035-119-00
Client	Morrison Hershfield
Project	Tache-Branch 1 Aueduct

Unconfined Compression Test Graph

Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ²)	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0.82	0.0000	0.00	0.004174	0.0	0.00	0.00
10	1.21	0.2540	0.17	0.004181	19.7	4.70	2.35
20	1.55	0.5080	0.35	0.004189	36.8	8.78	4.39
30	1.87	0.7620	0.52	0.004196	52.9	12.61	6.31
40	2.10	1.0160	0.69	0.004203	64.5	15.35	7.67
50	2.30	1.2700	0.87	0.004211	74.6	17.72	8.86
60	2.49	1.5240	1.04	0.004218	84.2	19.96	9.98
70	2.66	1.7780	1.21	0.004225	92.7	21.95	10.97
80	2.80	2.0320	1.39	0.004233	99.8	23.58	11.79
90	2.96	2.2860	1.56	0.004240	107.9	25.44	12.72
100	3.12	2.5400	1.73	0.004248	115.9	27.29	13.65
110	3.25	2.7940	1.91	0.004255	122.5	28.78	14.39
120	3.39	3.0480	2.08	0.004263	129.5	30.39	15.19
130	3.53	3.3020	2.25	0.004270	136.6	31.99	15.99
140	3.68	3.5560	2.43	0.004278	144.2	33.70	16.85
150	3.83	3.8100	2.60	0.004286	151.7	35.40	17.70
160	3.97	4.0640	2.77	0.004293	158.8	36.98	18.49
170	4.12	4.3180	2.95	0.004301	166.3	38.67	19.34
180	4.28	4.5720	3.12	0.004309	174.4	40.48	20.24
190	4.44	4.8260	3.29	0.004316	182.5	42.27	21.14
200	4.59	5.0800	3.47	0.004324	190.0	43.94	21.97
210	4.74	5.3340	3.64	0.004332	197.6	45.61	22.81
220	4.88	5.5880	3.81	0.004340	204.6	47.15	23.58
230	5.04	5.8420	3.99	0.004347	212.7	48.92	24.46

Project No.0035-119-00ClientMorrison HershfieldProjectTache-Branch 1 Aueduct

Unconfined Compression Test Data (cont'd)

Deformation	Load Ring	Deflection	Axial Strain	Corrected Area	Axial Load	Compressive	Shear Stress, S _u
Dial Reading	Dial Reading	(mm)	(%)	(m⁻)	(N)	Stress, q _u (kPa)	(kPa)
240	5.17	6.0960	4.16	0.004355	219.3	50.34	25.17
250	5.34	6.3500	4.33	0.004363	227.8	52.21	26.11
260	5.46	6.6040	4.51	0.004371	233.9	53.50	26.75
270	5.60	6.8580	4.68	0.004379	240.9	55.02	27.51
280	5.72	7.1120	4.85	0.004387	247.0	56.30	28.15
290	5.85	7.3660	5.03	0.004395	253.5	57.68	28.84
300	5.96	7.6200	5.20	0.004403	259.1	58.84	29.42
310	6.06	7.8740	5.37	0.004411	264.1	59.87	29.94
320	6.16	8.1280	5.55	0.004419	269.2	60.90	30.45
330	6.25	8.3820	5.72	0.004427	273.7	61.82	30.91
340	6.35	8.6360	5.89	0.004436	278.7	62.84	31.42
350	6.42	8.8900	6.06	0.004444	282.3	63.52	31.76
360	6.47	9.1440	6.24	0.004452	284.8	63.97	31.98
370	6.53	9.3980	6.41	0.004460	287.8	64.53	32.26
380	6.60	9.6520	6.58	0.004468	291.3	65.20	32.60
390	6.63	9.9060	6.76	0.004477	292.8	65.41	32.71
400	6.67	10.1600	6.93	0.004485	294.9	65.74	32.87
410	6.69	10.4140	7.10	0.004493	295.9	65.84	32.92
420	6.71	10.6680	7.28	0.004502	296.9	65.94	32.97
430	6.74	10.9220	7.45	0.004510	298.4	66.16	33.08
440	6.75	11.1760	7.62	0.004519	298.9	66.14	33.07
450	6.76	11.4300	7.80	0.004527	299.4	66.13	33.07
460	6.78	11.6840	7.97	0.004536	300.4	66.23	33.11
470	6.78	11.9380	8.14	0.004544	300.4	66.10	33.05
480	6.79	12.1920	8.32	0.004553	300.9	66.09	33.05
490	6.79	12.4460	8.49	0.004562	300.9	65.97	32.98
500	6.78	12.7000	8.66	0.004570	300.4	65.73	32.87
510	6.75	12.9540	8.84	0.004579	298.9	65.28	32.64

Appendix C Slope Stability Analysis Results

0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls: TACHE

Figure C1 Normal Condition

0035-129-00 Morrison Hershfield Branch 1 Aqueduct Underdrain Outfalls: TACHE

Figure C2 Critical Condition

Technical Memo

Project/File: 133600064

Date: September 20, 2024

Reference: Branch 1 Aqueduct Underdrain Outfall Repairs – Rue Notre Dame Underdrain Outfall – Existing Geotechnical Bore Hole Logs

Attached are all bore hole logs and cross sections showing soil stratigraphy for the Rue Notre Dame Underdrain Outfall site made available to Stantec.

The bore hole logs are as follows:

- SI-17-02
- SI-17-03
- SI-17-04
- SI-17-05

The cross section shows the stratigraphy for the following bore holes:

- SI-97-04
- SI-97-05
- SI-97-06
- SI-98-07
- SI-08-19
- SI-09-22

K GR	GS ROUP		REFERENCE NO.		нс SI	DLE NO. [17-02		SHEET 1 of 1	
CLII PRO SITI LOC DRII MET	CLIENT CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT JOB NO. PROJECT Seine River Aqueduct GROUND ELEV. SITE Seine River Aqueduct WATER ELEV. LOCATION Mid Bank in Bush DATE DRILLED DRILLING Track Mounted Rig B54X UTM (m)								
ELEVATION (m)	DEPTH (m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) 20 40 60 80 PL MC LL $\%$ 20 40 60 80	
- 227 - 226 - 225 - 224	1 1 1 2 2 3 1 1 1 1 5 2 1 1 1 1 1 1 1 1 1 5 2 1 1 1 1		Silty Clay - Black, dry to damp, stiff, high plasticity. - Trace coarse grained sand, trace fine grained gravel at 0.3 m. - Brown, firm below 2.3 m.		3.0 3.1	₽ ^{\$01} ₽ ^{\$02} ₽ ^{\$03} ₽ ^{\$04}			
- 222.2 - - 222 - - 222 - - 221 - 220 - 220 - 220 - 220	15 5 6 7 7 7 1 25 8 7 25		Clayey Silt - Tan, moist, loose to compact, intermediate to low plasticity. Silty Clay - Brown, moist, firm, high plasticity.		6.0 6.2	전 ⁸⁰⁶ 전 ⁸⁰⁷			
EDUCT - SEPTEMBER 18-19, 201 1	9		- Mottled grey & brown below 9.1 m. - Grey, trace fine-grained gravel below 10.7 m.		9.1 9.2	관 ⁵¹⁰ 관 ⁵¹¹			
214.4 - 215 214.4 - 21	12		- Soft below 12.5 m. <u>Silt Till</u> - Tan to grey, wet, compact to very dense, with fine to coarse grained sand, some fine to coarse grained gravel, trace cobbles, possible boulders.		13.6 13.8 15.4	₹ ⁵¹² ₹ ⁵¹³ ⁵¹⁴ 44 ₹ ⁵¹⁵ ⁵¹⁶			
110241-2010/-0008/ 1112 - 2112 - 210 012 - 211 - 210 012 - 2112 - 210 012 - 2112 - 210 012 - 212 - 212 012	16		REFUSAL AT 15.37 m BELOW GRADE Notes: 1. Installed Slope Inclinometer casing at 14.33 m below grade with a 0.91 m stick up. 2. Installed four (4) Vibrating Wire (VW) Piezometers - 1702393 @ 3.05 m below grade in the upper Silty Clay - 1702724 @ 6.10 m below grade in the middle Silty Clay - 1501803 @ 9.14 m below grade in the lower Silty Clay - 1501804 @ 13.72 m below grade in Silt Till				SPT P	ninated with 25 mm left in 2	
CON CON CON	TRACTOR	للكا af Dr	INSPECTOR illing Ltd. D. FLYNN		A D	PPROVE EA	D	DATE 10/5/17	

K GR	GS OUP		REFERENCE NO.		нс S]	DLE N [17- [0.)3		SHEET 1 of 1
CLIE PRO SITE LOC DRII MET	ENT (JECT (E (ATION M LLING T HOD	CITY C Seine I Seine R Mid Ban Track M	DF WINNIPEG - WATER AND WASTE DEPARTME River Aqueduct iver Aqueduct ik Grassy Slope lounted Rig B54X	NT				JOB NO. GROUND ELEV. TOP OF CASING WATER ELEV. DATE DRILLED UTM (m)	17-0107-008 227.55 m ELEV. 228.50 m 9/19/2017 N 635,600 E 5,528,873
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) \blacklozenge 20 40 60 80 PL MC LL \clubsuit 20 40 60 80 0 40 60 80
- 227 - 226 - 2 25	1 1 2 2		<u>Silty Clay</u> - Brown, damp, stiff, high plasticity. - Trace coarse grained gravel, trace cobbles at 0.9 m.			₽ ^{\$01} ₽ ^{\$02} ₽ ^{\$03}			
224:8 _ 224.5 _ - 224 - 223	3 <u>10</u> 4 <u>11</u> 5 <u>11</u> 5 <u>11</u>		Clayey Silt - Tan to grey, damp to moist, loose to compact, intermediate to low plasticity. Silty Clay - Brown, moist, firm, high plasticity.	ſ	4.9 5.0	곱 ⁵⁰⁴ 곱 ⁵⁰⁵	i i		
- 222 - 221 - 220	6 <u>1</u> 20 7 <u>1</u> 20 7 <u>1</u> 25		- Grey below 7.6 m.			₽ ⁵⁰⁷	,		
- 219	8 10 10 10				9.1 9.3	¥‱ ¥‱	9		
- 216 - 215 214.6 _	11		- Trace coarse-grained sand and cobbles below 11.3 m.			관 ^{s10} 관 ^{s11}			
- 2 23 98 _ - 213 - 212	14		some fine to coarse grained gravel, trace cobbles, possible boulders. REFUSAL AT 13.73 m BELOW GRADE Notes: 1. Installed Slope Inclinometer casing at 13.72 m below grade with a 0.89 m stick up. 2. Installed two (2) Vibrating Wire (VW) Piezometers		13.7	<u>\$1</u> 813			
- 211	16 1 1 55 17 1 55 18 1 1		 1702394 @ 4.98 m below grade in the upper Silty Clay 1702395 @ 9.25 m below grade in the lower Silty Clay 						
- 209 SAM CON M	PLE TYPE TRACTOR		Auger Grab Split Spoon INSPECTOR rilling Ltd. D. FLYNN	<u> </u>	A	PPRO EA	VE	D	DATE 10/5/17

K GR	GS OUP		REFERENCE NO.		но Sl	DLE NC [17-0). 4		SH	EET 1 of 1
CLIE PRO SITE LOC DRII	ENT (JECT (E (ATION L LLING T HOD	CITY C Seine I Seine R Seine R Seine R Seine R	Job No. Ground Elev. Top of Casing Water Elev. Date Drilled UTM (m)	ELEV. N E	17-0107-008 225.86 m 226.81 m 9/19/2017 635,586 5,528,862					
ELEVATION (m)	(tt) (tt) (tt)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POC Cu TOF 20 PL 20 20	40 + 60 + 80 $MC + LL$ $%$ $40 + 60 + 80$ $40 + 60 + 80$ $MC + LL$ $%$ $40 + 60 + 80$
- 225 - 224 - 223 - <u>222.0</u> -	1 1 2 2 3 4 4 4		<u>Silty Clay</u> - Brown, damp, stiff, high plasticity. <u>Clayey Silt</u> - Tan to grey, damp to moist, loose to compact,		3.0 3.1	丑 ⁵⁰¹ 丑 ⁵⁰² 丑 ⁵⁰³				
221.3 _ - 221 - 220 - 219 - 219 - 218 - 217 - 217 - 217 - 217 - 217 - 218 - 217 - 218 - 217 - 218 - 217 - 218 - 216 - 216	¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		intermediate to low plasticity. <u>Silty Clay</u> - Brown, damp, firm, high plasticity.		6.0 6.2 9.1 9.2	관 ⁵⁰⁴ 관 ⁵⁰⁵ 관 ⁵⁰⁶				
П ГОС 0:/FM8/17-010/-008/17-008/1008/17-008/17-008/17-008/17-008/17-008/18-008/10-008/17-008/10-008/17-008/	11 12 140 12 14 140 13 14 144 14 14 145 14 155 16 17 16 155 18 16 00		Silt Till - Tan to grey, damp, compact to dense, with fine to coarse grained sand, some fine to coarse grained gravel, trace cobbles, possible boulders. REFUSAL AT 15.70 m BELOW GRADE Notes: 1. Installed Slope Inclinometer casing at 15.70 m below grade with a 0.91 m stick up. 2. Installed four (4) Vibrating Wire (VW) Piezometers - 1702404 @ 3.05 m below grade in the upper Silty Clay - 17024725 @ 9.14 m below grade in the lower Silty Clay		14.6 14.7 15.4	₽ ^{\$09} ₽ ^{\$10} ₽ ^{\$11} ₽ ^{\$13} ₽ ^{\$14}				
	PLE TYPE TRACTOR	af Di	- 1308589 @ 14.63 m below grade in Silt Till Auger Grab Split Spoon INSPECTOR cilling Ltd. K. HAMILTON		A D	PPROV EA	/EI)	DATE 10/5/17	

K GR	GS ROUP		REFERENCE NO.		HO S	DLE N [17-	NO. - 05		SHEET 1	of 1
CLII PRO SITE LOC DRII	ENT C DJECT S E S ATION L LLING T	CITY O Seine F Seine Ri Seine Ri Seine Ri Seine Ri	DF WINNIPEG - WATER AND WASTE DEPARTME River Aqueduct iver Aqueduct Bank in Bush ounted Geoprobe 7822DT	NT				JOB NO. GROUND ELEV. TOP OF CASING WATER ELEV. DATE DRILLED UTM (m)	17-0107 225.221 ELEV. 226.201 9/18/20 N 635,571 E 5,528,85	7-008 m n 17 52
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN Cu TORVANE (kP 20 40 60 PL MC % 20 40 60	(kPa) ★ Pa) ♦ 80 LL 80
- 225 - 224 - 223 - 222 - 223 - 224 - 224 - 223 - 224 - 224 - 223 - 224 - 224 - 221 - 226 - 219 - 216 - 217 - 216 - 216 - 216 - 217 - 216 - 216 - 217 - 216 - 216 - 216 - 216 - 216 - 216 - 217 - 216 - 210 -	$\begin{array}{c} (1) \\$		Silty Clay - Brown, damp, firm, high plasticity. - Soft below 8.2 m. - Trace coarse grained sand, trace fine grained to coarse grained gravel below 9.1 m. - Grey, moist below 10.4 m. Silt Till - Tran to grey, damp, compact to dense, with fine to coarse grained sand, some fine to coarse grained gravel, trace cobbles, possible boulders. END OF TEST HOLE AT 14.93 m BELOW GRADE Notes:		2.4 2.5 5.4 5.6 8.5 8.6 13.3 13.5 14.3 14.9		z <u>w</u> 101 102 103 104 10 10			
- 209 - 208 - 208 - 207 - 207 - 207 - 207 - 207 - 207	17	िस्ति	 Installed Slope Inclinometer casing at 14.33 m below grade with a 0.91 m stick up. Installed four (4) Vibrating Wire (VW) Piezometers 1702390 @ 2.44 m below grade in the upper Silty Clay 1702391 @ 5.49 m below grade in the middle Silty Clay 1702392 @ 8.53 m below grade in the lower Silty Clay 1503587 @ 13.41 m below grade in Silt Till Auger Grab 							
	TRACTOR	af Dr	INSPECTOR cilling Ltd. K. HAMILTON		A D	PPR EA	OVEI)	DATE 10/5/17	

City of Winnipeg Riverbank Stabilization at Branch I Aqueduct Seine River **Location Plan**

 \odot

(+)

 \odot

(-)

15-0025

(-)

0

