APPENDIX 'A' GEOTECHNICAL REPORT

420 Turenne Street, Winnipeg, Manitoba R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579 E-mail: engtech@mts.net

www.eng-tech.ca

"Engineering and Testing Solutions That Work for You"

Date: July 15, 2024 File No.: 24-035-01

Client: WSP Canada Inc. Address: 1600 Buffalo Place

Winnipeg, Manitoba

R3T 6B8

Attention: Scott Suderman, P.Eng.

Project: CW749 – 2023 Pavement Renewals on Dugald Road and Plessis Road, Winnipeg,

Manitoba Canada

Introduction

ENG-TECH Consulting Limited (ENG-TECH) was retained by WSP Canada Inc. (WSP) to complete a geotechnical investigation inclusive of test holes and pavement cores for a future rehabilitation project along a section of Dugald Road and Plessis Road in Winnipeg, Manitoba, Canada. This report contains the Dugald Road portion of the project.

Scope of Work

The scope of work for the project entailed drilling a total of 22 test holes inclusive of recovering cores from the existing pavement structure, documenting findings in accordance with Appendix B – Site Investigation Requirements for Public Works Street Projects and providing a report outlining the work conducted, including photographs and pavement core summary tables showing the pavement core thicknesses and locations using UTM coordinates.

The section of road covered in the investigation was Eastbound and Westbound Dugald Road between Plessis Road and 300m East of Ravenhurst Street.

Field Program

ENG-TECH conducted the coring and drilling program between April 1st, 10th, and 15th to 19th 2024 across 22 site locations in the road section previously stated. The cores were obtained by ENG-TECH at locations determined by WSP using a 150mm diameter diamond end core barrel. The test holes were drilled using a Lone Star T1A+ drill rig equipped with 100 mm diameter solid stem continuous flight augers owned and operated by ENG-TECH. The test holes were advanced to 2.5 m to 3.0m below the pavement structure in the Eastbound and Westbound lanes at the locations as shown on Core and Test Hole Location Plan Figures 1 to 3. Soil samples were collected off the auger flights, as measured from the bottom of the pavement structure, at depth intervals of 0.6, 0.9, 1.2, 1.6, 2.0, and 2.5m as specified in the Site Investigation Requirements for Public Works Street Projects. After sample collection the test holes were backfilled with soil auger cuttings and granular fill. ENG-TECH repaired the core apertures where required with a City of Winnipeg approved material (cold mix asphalt) that has been accepted on previous street renewal projects.

Laboratory Program

The soil samples collected were retained for testing in ENG-TECH'S laboratory. The moisture content of each sample depth collected was determined and select samples were tested for particle

size and Atterberg Limits. The moisture content, particle size and Atterberg Limit test results are summarized in Table 1 and in the attached test hole logs. The Particle Size Analysis and Liquid Limit, Plastic Limit and Plasticity Index of Soils results with ASTM D2487 and D3282 classifications are shown in Table 1 and in the separate reports enclosed.

Three composite samples for standard proctor (Moisture-Density Relationships) and California Bearing Ratio (CBR) testing were recovered from Test Holes (TH) 27 and 28, Test Holes (TH) 32, 33 and 34 and Test Holes (TH) 45, 46 and 47 as directed by WSP. Results of the standard proctor test and CBR are enclosed. The TH 27 and 28 CBR results will be provided separately upon completion.

The pavement core thicknesses were measured and photographed. Photographs of each core are shown in the attached Photographs 1 to 16.

Soil Stratigraphy Summary

The existing shoulder pavement structure ranged from 0.083m to 0.19m where asphalt pavement was present and generally consisted of a granular fill layer underlain by a mostly high plastic clay. Test holes 25, 29, 35, did not contain an asphalt layer but generally consisted of granular material layer ranging between 0.15 to 0.575m underlain by a clay fill layer followed by a high plastic clay to depth explored. Test holes 40, 44 and 46 also did not contain an asphalt layer but consisted of granular material underlain by high plastic clay to depth explored.

The existing pavement structure ranged from 0.205 to 0.305m. Test Holes 28, 32 to 34, 36, 38, 39, 41 to 43 contained no granular materials at the surface and the underlying layer was comprised of predominately high plastic clay with minor irregular sections of slight siltier and sandier clay to depth explored. As measured from the bottom of the pavement structure, there was typically 2.695m to 2.795m of clay. Test Holes 30, 31 and 37 generally consisted of clay fill layer ranging between 0.595 to 0.721m underlain by a high plastic clay to depth explored.

Closure

ENG-TECH trusts this is all the information required. If you have any questions, please contact the undersigned.

Sincerely,

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Operations Manager - Laboratory

Email: WSP Canada Inc. Contact Group

Enclosures: Table 1 - Summary of Pavement Structure - Dugald Road between Plessis Road and 300m East of Ravenhurst Street

Figures 1 to 3 - Core and Test Hole Location Plan

Specimen Photographs (16 pages) Test Hole Logs (23 pages)

Atterberg Limits, Plastic Index and Plasticity Index of Soil Reports Ref. No.'s 24-35-1-35, 37 and 33

Particle Size Analysis Reports Ref. No.'s 24-35-1-34, 36 and 32 Moisture-Density Relationship Report Ref. No. 24-35-1-16, 17 and 18

California Bearing Ratio (CBR) of Laboratory Compacted Soils Reports Ref. No.'s 24-35-1-20 and 22

				D			ssis Road an	d 300m Ea	st of Ravenhu	rst Street						
Test	GPS Co	oordinates	Paveme	ent Surface		it Structure terial	Subgrade	Sample	Moisture	Нус	dromete	r Analys	sis	Atterberg Limits		
Hole	UTM (N)	14U (E)	Туре	Depth (mm)	Туре	Depth (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
					T		Ol- Fill	0.6	21.5	-	-	-\	-	-	_	-
							Clay Fill	0.9	23.3	_	-	_	-	-	-	-
TH25	5527820	641924	None	0	Gravel	575		1.2	31.5	÷	-	-	-	1=	-	-
1025	3327620	041924	None	0	Fill	575	Clay	1.6	27.8	-	-	-	-	a - .	-	-
								2.0	28.2	-	-	-	-	:-	-	-
								2.5	24.5	_	-	-	_	_	_	-
								0.6	-	-	-	-	-	Œ	-	T E
						0.9	F 88	-	-	-	-	-	-	-		
TH26	5527824	641987	_	_				1.2	E:	-	-	-	-	-	-	-
11120	3327624	041907	=	-	-	2	-	1.6	-	_	-	-	-	-	2-	-
								2.0		_	-	-	_	-	3 –	-
								2.5	-	-	-	-	-	+	-	=
								0.6	18.7	-	-	-	-	171	e=	-
								0.9	32.1	-	-	-	-	-		-
TH27	5527825	642076	Asphalt	190	Clay Fill	610	Clay	1.2	33.9	-	_	-	-	_	_	-
1627	5527625	042070	Aspirati	190	Clay I III	010	Clay	1.6	28.5	-	-	-	-	(2)	-	_
								2.0	29.5	-	-	-	-	-	-	-
								2.5	30.7	-	-	-	-	-	-	-
								0.6	38.0	_	-	-	-	-	-	-
								0.9	36.6	72	-	-	-	-	1-	-
TH28	5527830	642198	Asphalt	205	Clay	2705	Clay	1.2	34.2	-	-	-	-	-	-	•
11120	5527650	042190	Aspirati	200	Clay	2795	l	1.6	33.8	-	-	-	-	=	-	-
								2.0	31.5	-	-	-	-	-	-	S=
								2.5	31.9	-	-	-	-	-	-	_

Test	GPS Cod	ordinates	Pavemer	it Surface		t Structure erial	Subgrade	Sample	Moisture	Нус	dromete	r Analys	is	Atterberg Limits		
Hole	UTM (N)	14U (E)	Туре	Depth (mm)	Туре	Depth (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
							Class Fill	0.6	15.8	-	-	-	-	-	-	-
							Clay Fill	0.9	17.2	-	-	-	-	-	-	
TH29	5527827	642196	None	0	Gravel Fill	300		1.2	32.2	-	_	-	20	=	=	-
11129	5527627	042190	None	U		300	Clay	1.6	32.8	-	-	-	-	-	=	12
								2.0	40.9	-	-	-	-	-	-	-
								2.5	43.7	-	-	-	-	-	-	8=
							Gravel/	0.6	7.2	_	-	-	-	-	-	-
							Clay Fill	0.9	11.3	_	_	_	_	-	-	-
TUOO	5527837	642481	Aonhalt	265	Gravel	595	Clay -	1.2	33.2	±	-	-	-	62	-	
TH30 5527	5527657	042401	Asphalt	200	Fill	393		1.6	32.4	=	-	-	-	-	-	-
								2.0	41.4	-	-	-	-	-	-	-
								2.5	41.8	2	_	-	_	(<u>4</u>)	-	-
							Sandy Lean Clay Fill	0.6	13.3	1.8	38.6	29.9	29.8	48	20	28
								0.9	30.8	-	#B	-	-	-	-	=
TH31	5527845	642612	Asphalt	279	Clay Fill	721		1.2	38.4	-	-	-	-	-	-	-
11101	0027010	0.2012	, toprion		,		Clay	1.6	33.4	_	-	-	-	-	×-	-
								2.0	31.7	<u> </u>	-	-	_		-	-
								2.5	31.5	-	-	-	-	-	-	-
								0.6	25.7	-	-	-		-	-	-
								0.9	36.7	2	-	-	-	-	-	-
	======	0.40050	A . L . W	005	Olavi	0745	Clau	1.2	31.0	72	-	-1	-	-	==	-
TH32	5527851	642958	Asphalt	285	Clay	2715	Clay	1.6	26.1	-	-	-	-	-	-	-
								2.0	25.3		-	-	-	-	-	-
								2.5	40.8	_	-	-	-	:=:	-	-

Test	GPS Cod	ordinates	Pavemer	nt Surface		t Structure erial	Subgrade	Sample Depth	Moisture	Нус	dromete	Analys	is	At	terberg L	
Hole	UTM	14U	Туре	Depth (mm)	Туре	Depth (mm)	Description	(m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
								0.6	26.0	Æ	-	-	-	-	-	-
								0.9	27.6	-	-	U.T.	-	-	-	-
TUOO	FF070FF	040040	A = = = 4	205	Clay	2695	Class	1.2	27.3	-	-	-	-	-	-	-
TH33	5527855	643042	Asphalt	305	Clay	2095	Clay	1.6	25.2	14	_	-	-	-	-	-
								2.0	27.5	-	-	-	-	-	E	-
								2.5	23.8	-	-	-	-	-	-	-
								0.6	30.8	-	-	-	-	-	-	-
							Clay	0.9	33.0	-	-	-	-	(=)	-	-
T110.4	5507000	0.40.470	A 1 11	075	01	0705		1.2	27.0	-	-	-	12	-	-	-
TH34	5527863	643470	Asphalt	275	Clay	2725		1.6	25.5	Э	-	-	-	-	-	÷
								2.0	26.9	-	-	-	-	-	-	-
								2.5	26.4	-	-	-	-	-	-	-
							Clay Fill	0.6	17.8	-	-	-	-	41	-	_
								0.9	19.4	-	-	-	12	29	-	2
THOS	5507000	040470	Ness	0	Gravel	150		1.2	31.9	-	-	-	-	-	-	
TH35	5527860	643478	None	0	Fill	150	Clau	1.6	32.0	.=:	-	-	-	-	-	-
							Clay	2.0	40.0	-	-	-	-	-	-	-
								2.5	40.4	-	-	-	(4)	-	_	-
								0.6	35.9	-	-	-	-	-	-	프
								0.9	38.2	-	-	-	-	-	-	=
T. 100	5507000	0.40070	A I I4	290	Clav	2710	Clay	1.2	38.3	-	-	-	-	-	-	-
TH36	5527868	643672	Asphalt	290	Clay	2710	Clay	1.6	28.7	-	-	-	-	-	-	-
								2.0	26.5	-	-	-	-	-	-	2
								2.5	25.8	-	-	-	-	<u>-</u>	-	-

Test	GPS Cod	ordinates	Pavemen	t Surface	Pavement Structure Material		Subgrade	Sample	Moisture	Нус	dromete	r Analys	is	Atterberg Limits			
Hole	UTM	14U	Туре	Depth (mm)	Туре	Depth (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index	
							Clay Fill	0.6	11.7	15	-	-	-		.5	-	
								0.9	29.9	-	-	-	-	-			
TI 107	5507000	044040	A a sa la a la	270	Clay Fill	704		1.2	22.8	-	-	-	-	(B)	-	-	
TH37	5527880	644046	Asphalt	279	Clay Fill	721	Clay	1.6	32.4	-	_	-	-	-	-	_	
								2.0	26.8	-	-	-	-	-	-	-	
								2.5	25.7	-	-	-	-	-		-	
								0.6	42.7	3.8	29.7	28.3	38.2	67	27	40	
								0.9	33.8	-	-	1	-	-	-	-	
THOO	5507000	044405	Λ la - l4	207	Clav	2713	Sandy	1.2	46.8	-	-	-	-	-	-	_	
TH38 5	5527880	644185	Asphalt	287	Clay	2/13	Fat Clay	1.6	22.1	4 5	-	.=	-	-	-	=)	
								2.0	28.3	-	-	-	-		-	-	
								2.5	29.3	1	-	-	-	-	-	-	
								0.6	27.7	_	-	- 2	-	(=)	-	_	
								0.9	39.0	-	-	-	-	-	-	FI	
T1100	5507000	044000	^ l l4	264	Clav	2736	Clay	1.2	30.5	-	-	-	-	i n ti	-	-	
TH39	5527890	644602	Asphalt	204	Clay	2/30	Clay	1.6	31.8	-	-	-	(4)	=:	-	-	
								2.0	32.6	_	-	-	-		-	-	
								2.5	36.9	-	-	-			-	-	
								0.6	32.0	8.5	27.1	30.3	34.1	56	20	36	
								0.9	29.3	-	-	-	-	-	-	-	
T1140	EE07000	644609	None	0	Gravel	150	Sandy	1.2	28.8	-	-	-	-	-	-	-	
TH40	5527888	044009	None	U	Fill	150	Fat Clay	1.6	25.9	-	-	=	-	2	-	<u> </u>	
								2.0	26.7	-	-	-	-	-	-	-	
								2.5	27.5	-	17	-	-	-	-	-	

Test	GPS Cod	ordinates	Pavemer	it Surface	Pavement Mat	Structure erial	Subgrade	Sample	Moisture	Нус	dromete	Analys	is	At	terberg L	
Hole	UTM	14U	Туре	Depth (mm)	Туре	Depth (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
								0.6	32.0	-	-	-	-	-	-	-
								0.9	29.3	-	-	-	-	-	-	-
TUAA	5507000	044000	A la l4	290		0710	Clay	1.2	28.8	-	-	-	-	-	-	-
TH41	5527902	644920	Asphalt	290	Clay	2710		1.6	25.9	-	-	_		-	-	_
								2.0	26.7	-	-	-	-	-	-	-
								2.5	27.5	-	-	-	-	-	-	H a
								0.6	32.3	-	-	-	-	-	-	-
								0.9	36.9	-	-	-	-	_	-	-
T1140	5527909	645156	Aanhalt	296	Clay	2704	Clay	1.2	29.8	_	-	-	-	_	-	-
TH42	5527909	045150	Asphalt	290	Clay	2104	Ciay	1.6	28.3	-	-	-	-	-	-	-
								2.0	28.6	-	-	-	-	-	-	-
								2.5	29.7	-	-	-	-	-	-	-
		4		C-11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				0.6	31.7	-	-	-	-		-	-
								0.9	35.3	-	-	-	-	-	-	-
TH43	5527908	645275	Asphalt	289	Clay	2711	Clay	1.2	32.9	-	-	-	-	-	-	-
11143	3327906	043273	Aspiran	209	Clay	2/11	Clay	1.6	28.2	-	-	-	-	-	-	-
								2.0	25.5	-	-	-	-	-	-	-
								2.5	25.9	-	-	-	-	-	-	_
								0.6	18.3	-	-		-	-	-	-
								0.9	17.9	-	i.e.	-	-	-	-	-
TH44	5527905	645270	None	0	Gravel	150	Clay	1.2	33.5	-	-	-	-	-	-	-
1 1144	3327803	043270	None	U	Fill	100	l	1.6	39.0	-	-	- 2	-		-	_
								2.0	28.2	-	-	-	-	-	-	-
								2.5	26.4	-	1-1	-	177	-	-	-

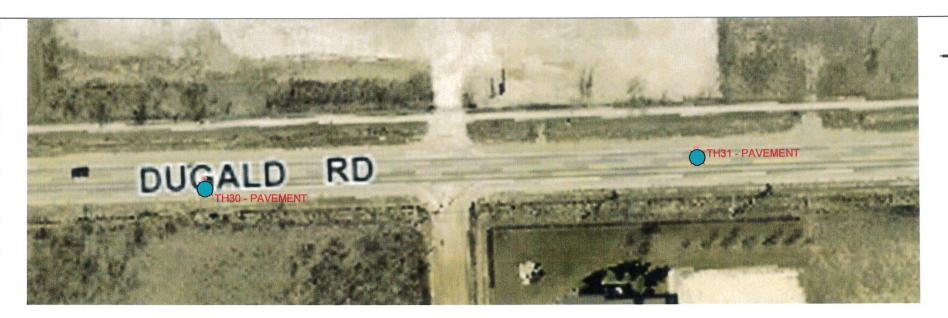
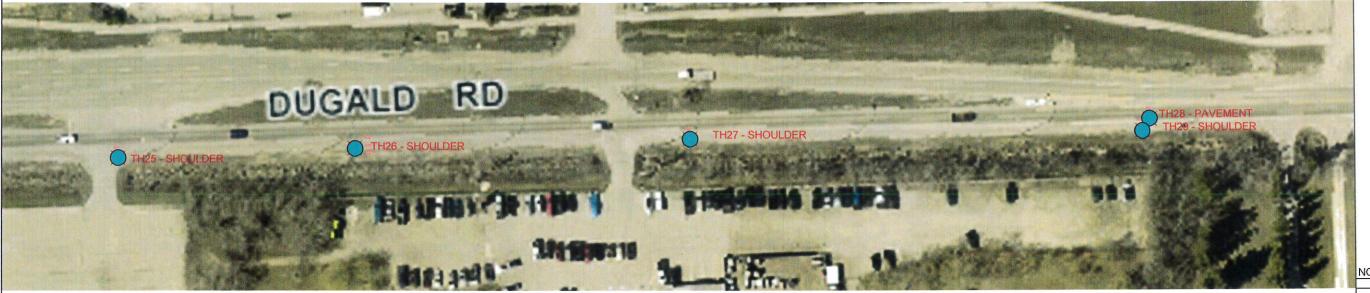


Table 1

Test	GPS Cod	ordinates	Pavemen	it Surface	Pavement Mate		Subgrade	Sample	Moisture	Нус	drometer	Analys	sis	Atterberg Limits		
Hole	UTM	14U	Туре	Depth (mm)	Туре	Depth (mm)	Description	Depth (m)	Content (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Liquid Limit	Plastic Limit	Plasticity Index
								0.6	15.7	-	-	-	-	(#)	-	-
							Clay -	0.9	31.4	-	-	-	-	-	-	-
TUAL	5507000	0.40070	A a sa la a la	83	Granular	267		1.2	32.5	-	-	-	-	-	-	-
TH45	5527928	646076	Asphalt	83	Fill	207		1.6	34.3	-	-	-	-	-	-	_
								2.0	28.3	-	-	-	-	-	-	-
								2.5	27.0	-	-	-	-	-	-	-
		646155						0.6	36.0	-	-	-	-	-	-	-
					Granular Fill	240	Clay	0.9	33.0	-	-	-	-	-	-	-
TH46	EE0720		None	0				1.2	33.8	_	-	-	-	-	-	-
1 1140	552729		None	0				1.6	34.6	-	-	12	-	-	-	-
								2.0	27.8	-	-	-	-	-	-	-
								2.5	28.6	-	-	(=)	-	-	-	-
								0.6	27.5	-	-	-	-	-	-	-
								0.9	26.8	-	_	_	_	-	-	-
T1147	EE07020	646232	Aanhalt	124	Granular	120	Clay	1.2	29.9	-	-	-	-	-	-	-
TH47	5527930	040232	Asphalt	124	Fill	120	Clay	1.6	30.7	-	-	-	-	-	-	-
	,							2.0	30.3	-	-	-	-	-	-	-
								2.5	29.3	-	_	-	-	-	-	-

FIGURES 1 TO 3 – CORE AND TEST HOLE LOCATION PLAN


	TEST HOLE LOCATI	ON TABLE
HOLE#		S OF TEST HOLES 7 & 19, 2024
	UTM	14U
TH25	5527820	641924
TH26	5527824	641987
TH27	5527825	642076
TH28	5527830	642198
TH29	5527827	642196
TH30	5527837	642481
TH31	5527845	642612
TH32	5527851	642958
TH33	5527855	643042

TEST HOLE

ISSUE / REVISION

0 July 2024 Report

420 Turenne Street Winnipeg, MB R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579

MANITOBA
Certificate of Authorization
ENG-TECH Consulting Limite
No.2475

WSP CANADA INC.

CW749 - 2023 PAVEMENT RENEWALS ON DUGALD RD AND PLESSIS RD

DWG DESCRIPTION:
CORE AND TEST HOLE LOCATION PLAN

1:1000

1 of 3

EAL

JULY 2024 CLIENT DWG/FIG. No.

24-035-01

ENG-TECH DWG/FIG

P:\2024\035(WSP)\01(Dugald & Plessis Pavement Renewals)\Drawing\24-035-01 (July 16, 2024).dwg

	TEST HOLE LOCATI	ON TABLE
HOLE#		S OF TEST HOLES 6 & 17, 2024
	UTM	14U
TH34	5527863	643470
TH35	5527860	643478
TH36	5527868	643672
TH37	5527880	644046
TH38	5527880	644185
TH39	5527890	644602
TH40	5527888	644609
TH41	5527902	644920

LEGEND

TEST HOLE

ISSUE / REVISION NO. DATE

Report

420 Turenne Street Winnipeg, MB R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579

ENGINEERS
GEOSCIENTISTS
MANITOBA
Cortificate of Authorization
ENG-TECH Consulting Limits
No.2475

TH41 - PAVEMENT

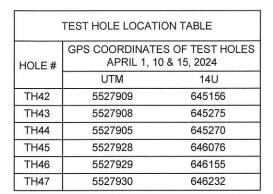
WSP CANADA INC.

CW749 - 2023 PAVEMENT RENEWALS ON DUGALD RD AND PLESSIS RD

DWG DESCRIPTION:
CORE AND TEST HOLE LOCATION
PLAN

EAL

2 of 3

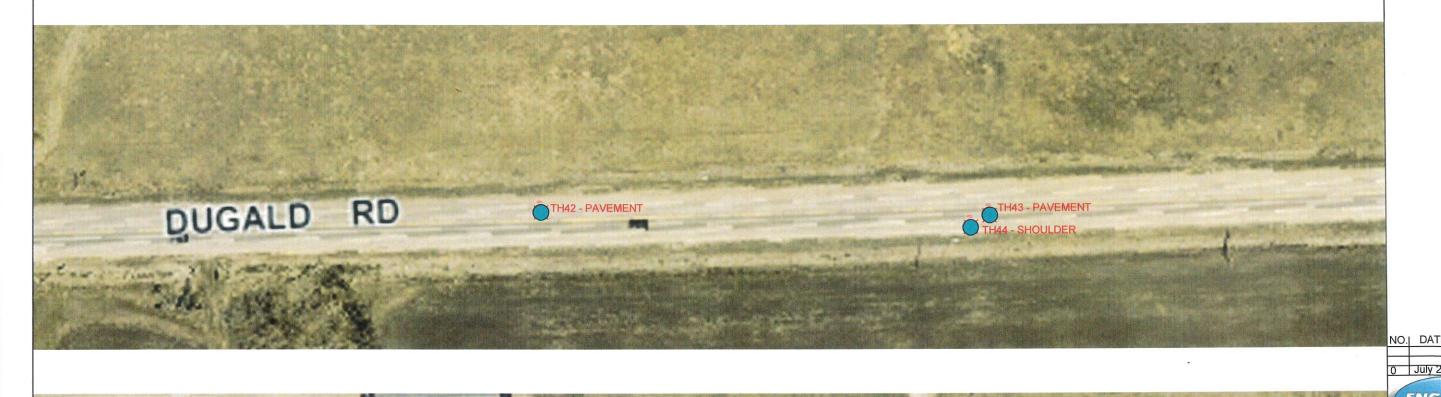

1:1000 DRAWN BY:

JULY 2024 CLIENT DWG/FIG. No.

24-035-01

ENG-TECH DWG/FIG

P:\2024\035(WSP)\01(Dugald & Plessis Pavement Renewals)\Drawing\24-035-01 (July 16, 2024).dwg



LEGEN

TEST HOLE

DUGALD RD

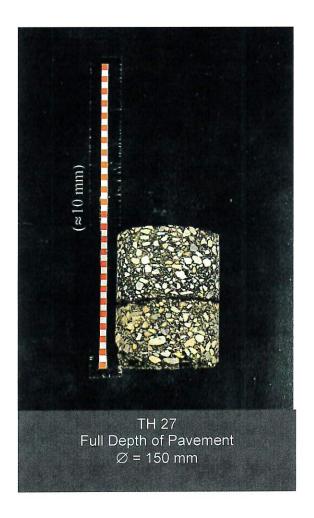
CLIENT:
WSP CANADA INC.

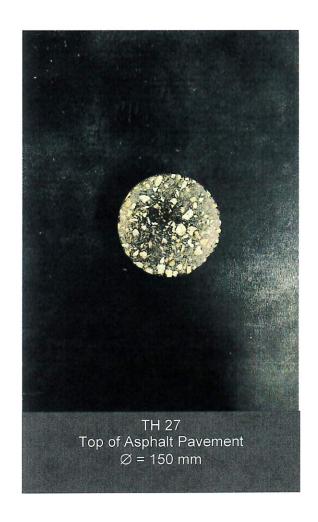
PROJECT:

CW749 - 2023 PAVEMENT RENEWALS
ON DUGALD RD AND PLESSIS RD

DWG DESCRIPTION:
CORE AND TEST HOLE LOCATION
PLAN

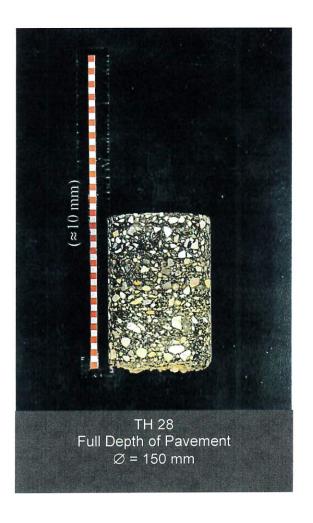
SCALE:
1:1000
DRAWN BY:
EAL
JULY 2024
FILE No.:
24-035-01
ENG-TECH DWG/FIG. No.:
3 of 3

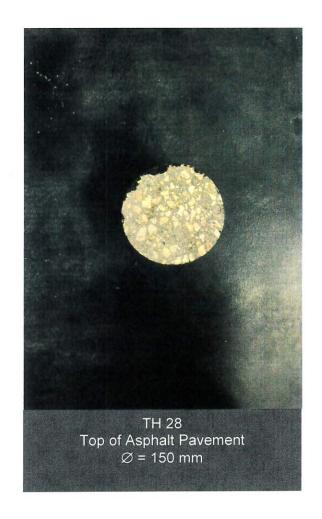

ISSUE / REVISION

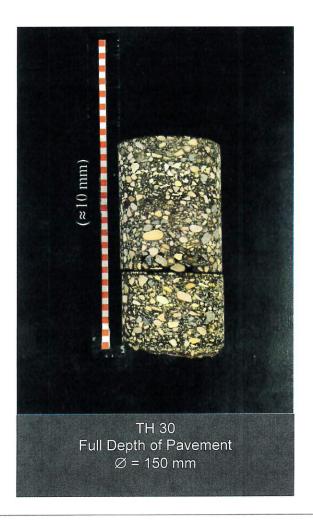

420 Turenne Street Winnipeg, MB R2J 3W8 Phone: (204) 233-1694 Fax: (204) 235-1579

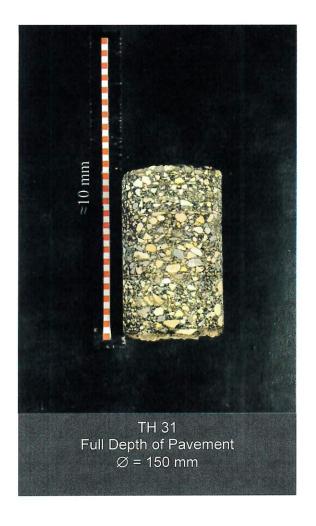
P:\2024\035(WSP)\01(Dugald & Plessis Pavement Renewals)\Drawing\24-035-01 (July 16, 2024).dwg

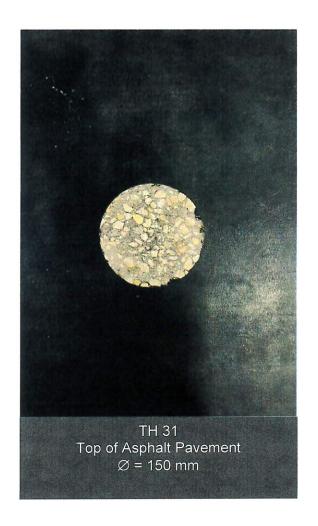
SPECIMEN PHOTOGRAPHS (16 PAGES)

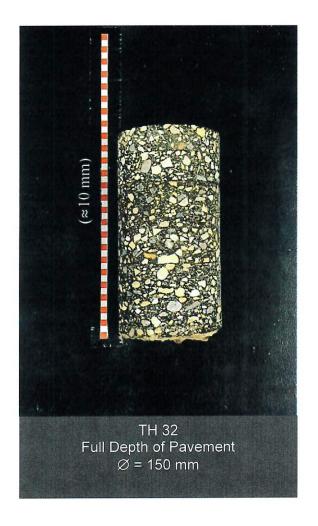

Photograph 1: Specimen from Dugald Road, Eastbound Shoulder

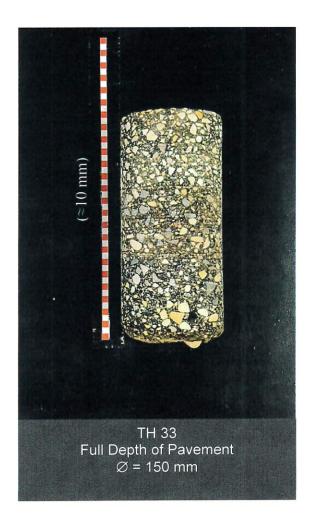



Photograph 2: Specimen from Dugald Road, Eastbound Lane

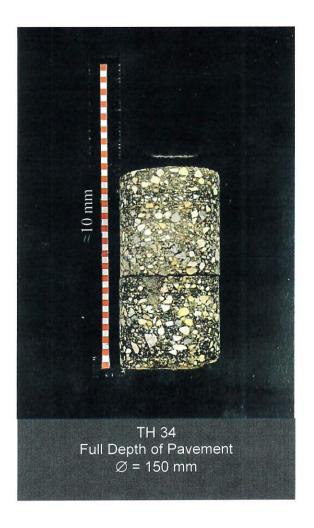

Photograph 3: Specimen from Dugald Road, Eastbound Lane



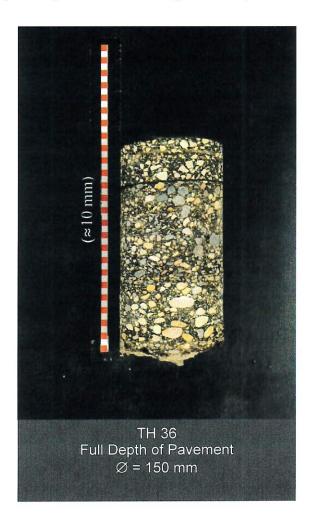

Photograph 4: Specimen from Dugald Road, Westbound Lane


Photograph 5: Specimen from Dugald Road, Eastbound Lane

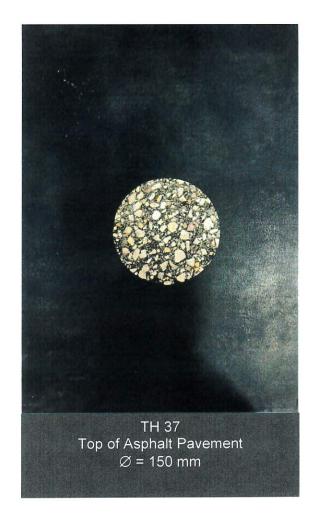
Photograph 6: Specimen from Dugald Road, Westbound Lane

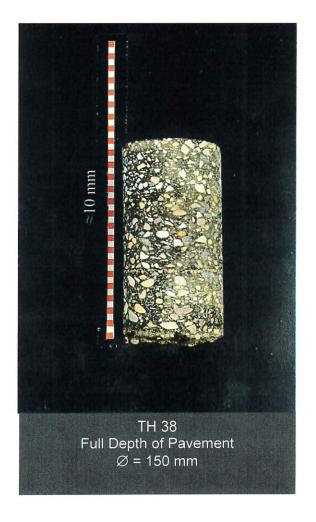


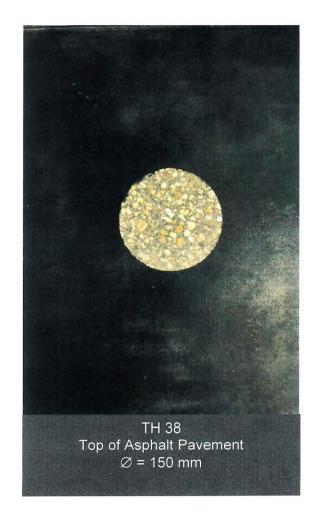
WSP Canada Inc. File No.: 24-035-01 Page 7


Photograph 7: Specimen from Dugald Road, Eastbound Lane

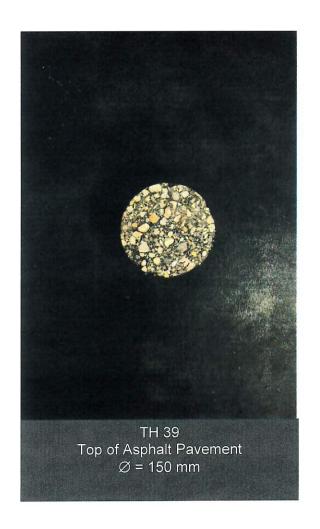
Photograph 8: Specimen from Dugald Road, Eastbound Lane



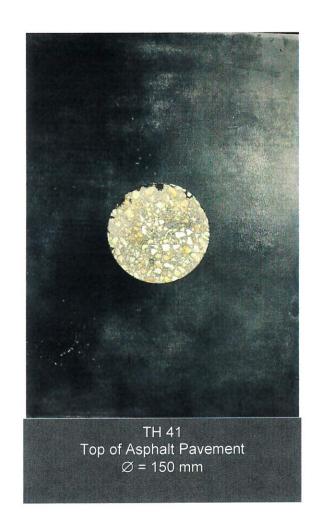

Photograph 9: Specimen from Dugald Road, Westbound Lane



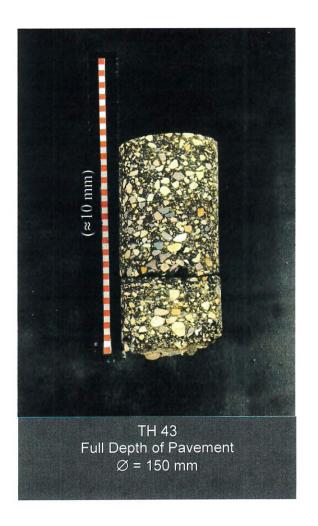
Photograph 10: Specimen from Dugald Road, Eastbound Lane

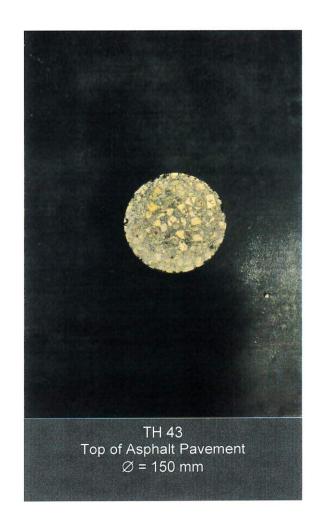


Photograph 11: Specimen from Dugald Road, Eastbound Lane




Photograph 12: Specimen from Dugald Road, Westbound Lane


Photograph 13: Specimen from Dugald Road, Westbound Lane



Photograph 14: Specimen from Dugald Road, Eastbound Lane

Photograph 15: Specimen from Dugald Road, Eastbound Shoulder

Photograph 16: Specimen from Dugald Road, Eastbound Shoulder

TEST HOLE LOGS (23 PAGES)

Engineering And Testing

Test Hole #: TH25

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB

Location: See Figure 1 Water Elevation: --

File No.: 24-035-01

Date Drilled: April 1, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: CW749 - 2023 Pavement Renewals on Dugald Rd and Plessis Rd SUBSURFACE PROFILE SAMPLE DATA SHEAR STRENGTH (kPa) Sample Depth from Pavement Bottom (m) Moisture Content (%) Blows/300 mm Moisture Content (%) Sample Type Description Soil Symbol Sample No. Depth (m) Torvane Pen PLI -111 2 20 40 60 80 ۵. **Gravel Fill** - light brown, moist. 21.5 Clav Fill - brown, moist, low plastic. S2 23.3 1.0 -1.0-31.5 Clay **S3** - dark brown, moist, highly plastic, trace silt, some sand, trace gravel. 27.8 **S4** -2.0 -28.2 **S5** 24.5 **S6 End of Test Hole** - end of test hole at 2.5 m below grade. - sloughing observed at 0.9 m. - no seepage observed during drilling. - test hole backfilled with auger cuttings upon completion of drilling. 3.0 -3.0

ENG- TECH Consulting Limited

Logged by: SZ

4.0

Reviewed by:

Drilled By: ENG-TECH Consulting Limited.

Drill Rig: Lone Star T1A+

-4.0

Auger Size: 100 mm Solid Stem

Completion Depth: 2.5 m Completion Elevation: 97.5 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

Test Hole #: TH26

Client: WSP Canada Inc.

Date Drilled: -

Site: Dugald Road, Winnipeg, Manitoba

Grade Elevation: --

File No.: 24-035-01

Location: See Figure 1 **Engineering And Testing**

Water Elevation: --

Solutions That Work For You Project: CW749-2023-Pavement Renewals, Dugald and Plessis road, Winnipeg, MB

	SUBSURFACE PROFILE		SA	AMPL	E DAT	Ά			SHEAR	
Depth (m)	Description	Sample Depth from Pavement Bottom (m)	Sample No.	Sample Type	Moisture Content (%)	Blows/300 mm	Moisture Content (%) PL IXI LL 20 40 60 80	P. Pen	Torvane	(kPa)
1.0-	Test Hole not drilled due to safety concerns. No samples recovered.	-1.0 — -2.0 —								
3.0 -		-3.0 — -3.0 — -4.0 —								
5.0		-5.0 — -6.0 —			1-					
7.0		-7.0								
9.0		-8.0 - -9.0 -								
11.0		-10.0 —								

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Ltd.

Drill Rig: Lone Star

Auger Size: 100 mm Solid Stem

Completion Depth: --Completion Elevation: --

Sheet: 1 of 1

SAMPLE TYPE

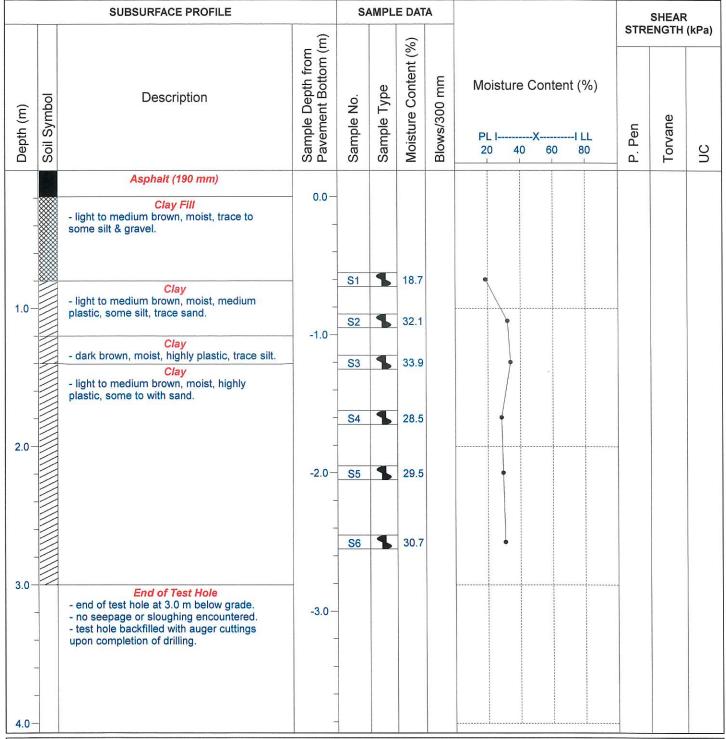
SPLIT BARREL

AUGER CUTTINGS

SPLIT SPOON

Test Hole #: TH27

Client: WSP Canada Inc.


File No.: 24-035-01

Date Drilled: April 17, 2024

Site: Shoulder Dugald Road, Winnipeg, ManitobaGrade Elevation: 100.0 m

Location: See Figure 1 Water Elevation: --

Engineering And Testing Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

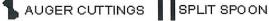
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

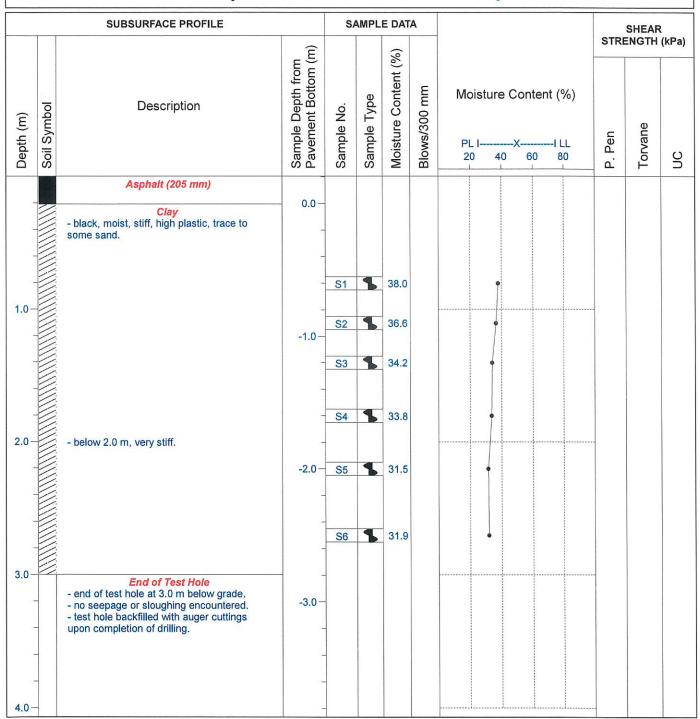
SAMPLE TYPE

Test Hole #: TH28

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 1


Water Elevation: --

File No.: 24-035-01

Date Drilled: April 17, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

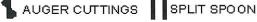
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

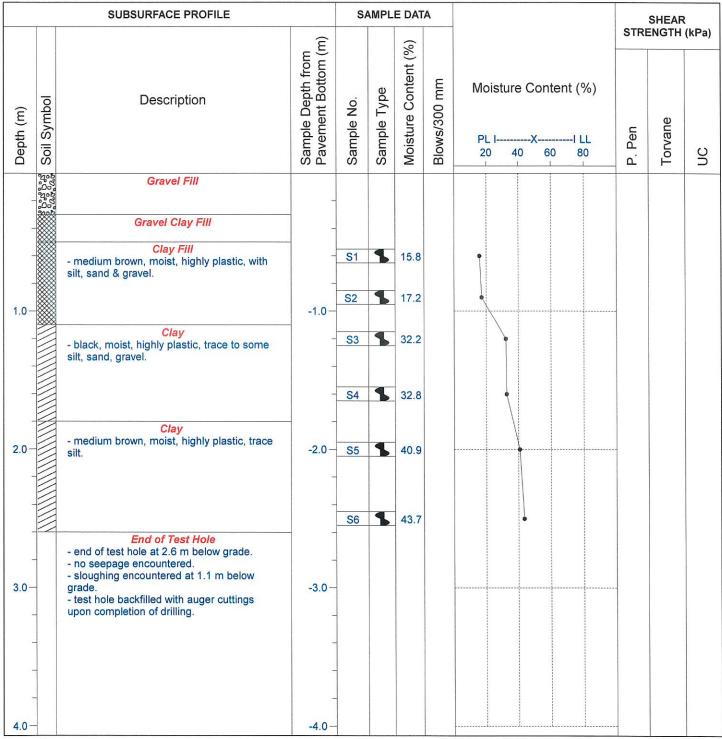
Engineering And Testing

Test Hole #: TH29

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB

Location: See Figure 1


File No.: 24-035-01

Date Drilled: April 1, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Solutions That Work For You Project: Dugald Road and Plessis Road Pavement Renewals

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by: 10

SAMPLE TYPE

Drilled By: ENG-TECH Consulting Limited.

Drill Rig: Lone Star T1A+

Auger Size: 100 mm Solid Stem

Completion Depth: 2.6 m Completion Elevation: 97.4 m

Sheet: 1 of 1

SPUT BARREL

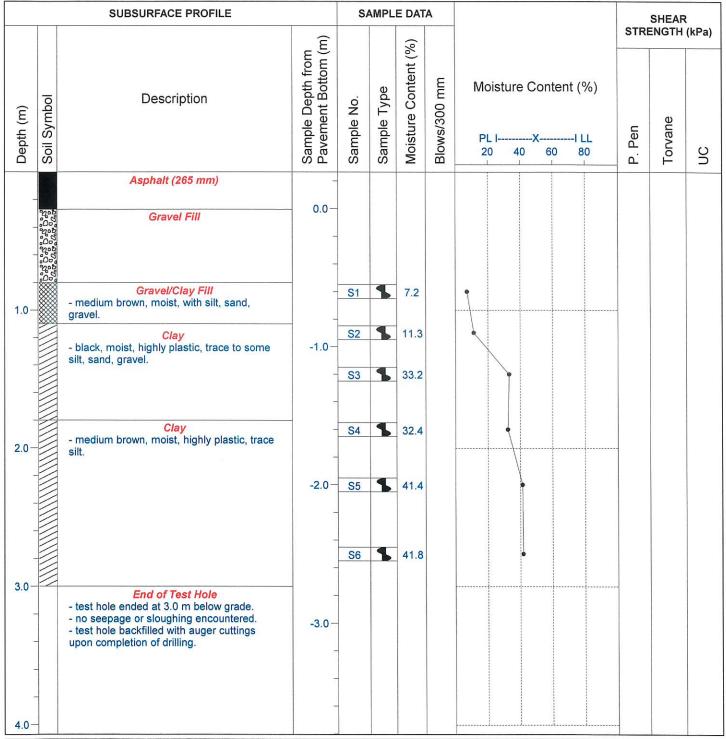
Engineering And Testing

Test Hole #: TH30

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 1


File No.: 24-035-01

Date Drilled: April 19, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

AUGER CUTTINGS

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 1

File No.: 24-035-01

Date Drilled: April 17, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing Solutions That Work For You

Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG- TECH Consulting Limited

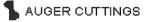
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

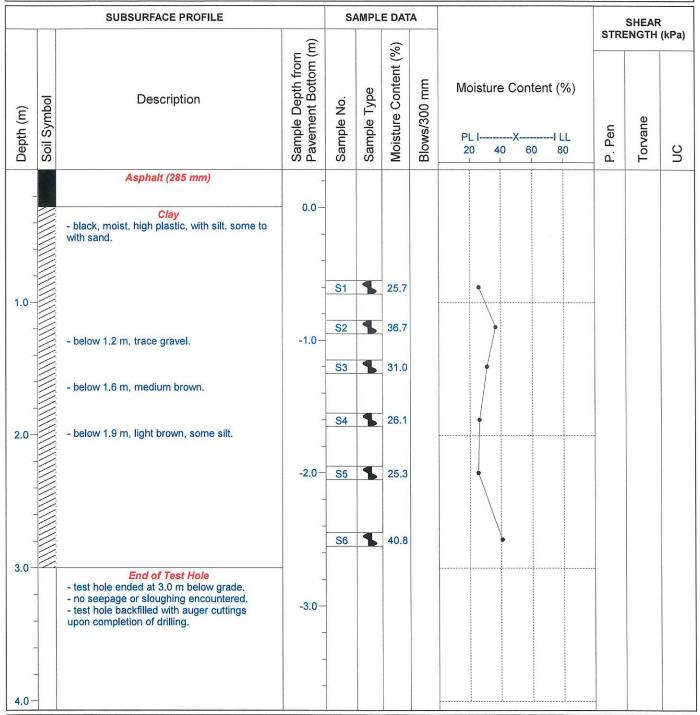
SPLIT BARREL

Engineering And Testing Solutions That Work For You Test Hole #: TH32

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 1


File No.: 24-035-01

Date Drilled: April 16, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

SAMPLE TYPE

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

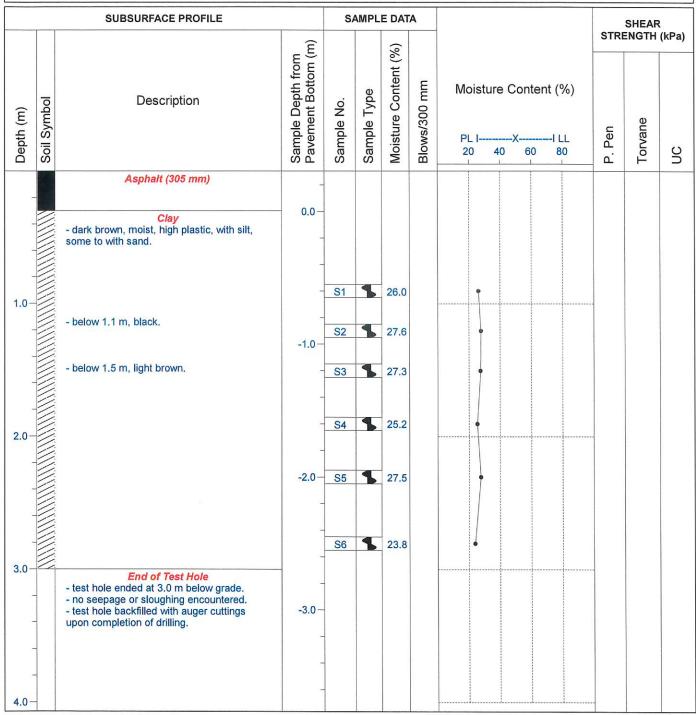
SPLIT BARREL

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 1

File No.: 24-035-01


Date Drilled: April 17, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

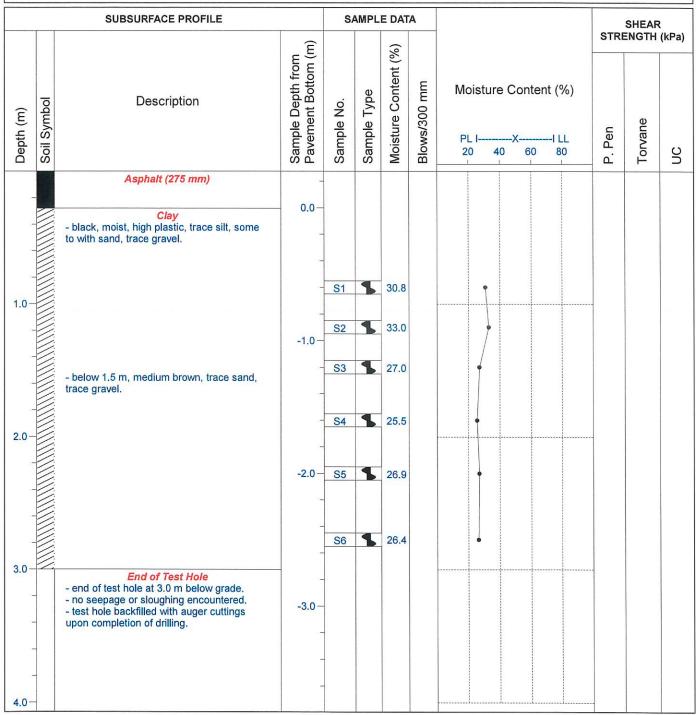
SAMPLE TYPE

SPUT BARREL

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2


File No.: 24-035-01

Date Drilled: April 16, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

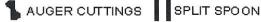
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

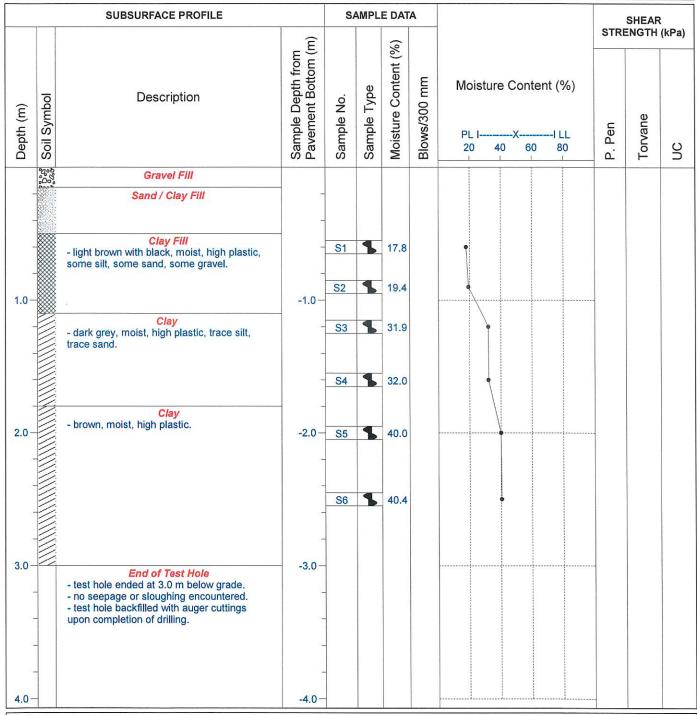
SPLIT BARREL

Engineering And Testing

Test Hole #: TH35

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB


Location: See Figure 2 Water Elevation: --

File No.: 24-035-01

Date Drilled: April 1, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: Dugald Road and Plessis Road Pavement Renewals

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited.

Drill Rig: Lone Star T1A+

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

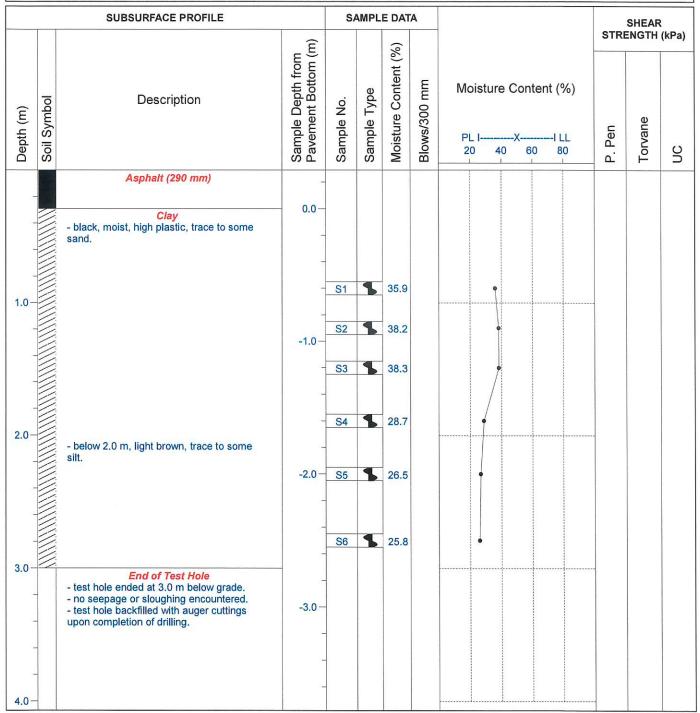
Sheet: 1 of 1

SAMPLE TYPE

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2


Water Elevation: --

File No.: 24-035-01

Date Drilled: April 16, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by: \

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE SPLIT BARREL SHELBY TUBE

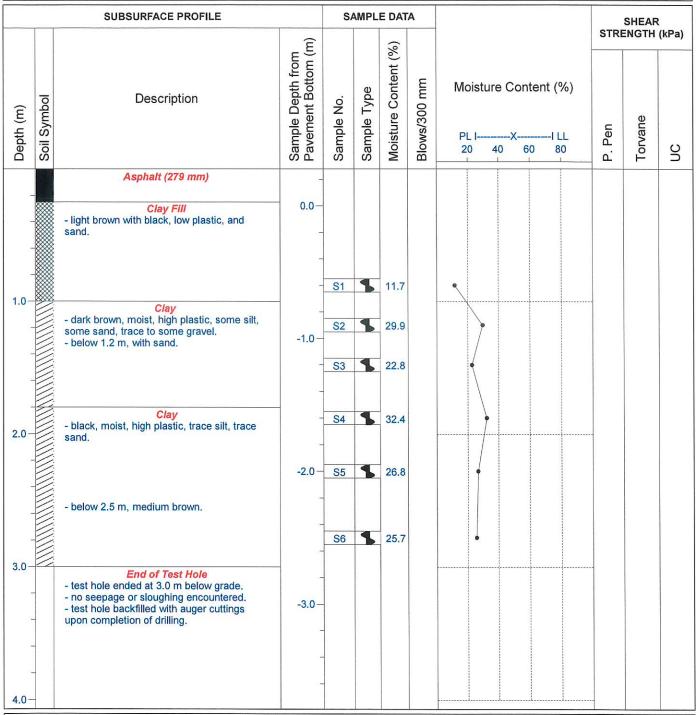
Engineering And Testing

Test Hole #: TH37

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2


Date Drilled: April 16, 2024

File No.: 24-035-01

Grade Elevation: 100.0 m

Water Elevation: --

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

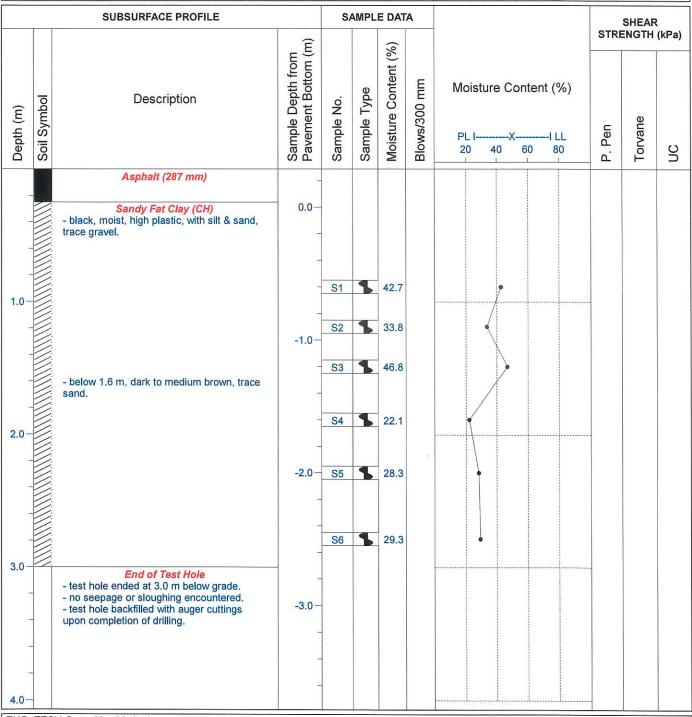
Engineering And Testing Solutions That Work For You

Test Hole #: TH38

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2


Water Elevation: --

Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

File No.: 24-035-01

Date Drilled: April 16, 2024

Grade Elevation: 100.0 m

ENG- TECH Consulting Limited

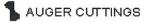
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

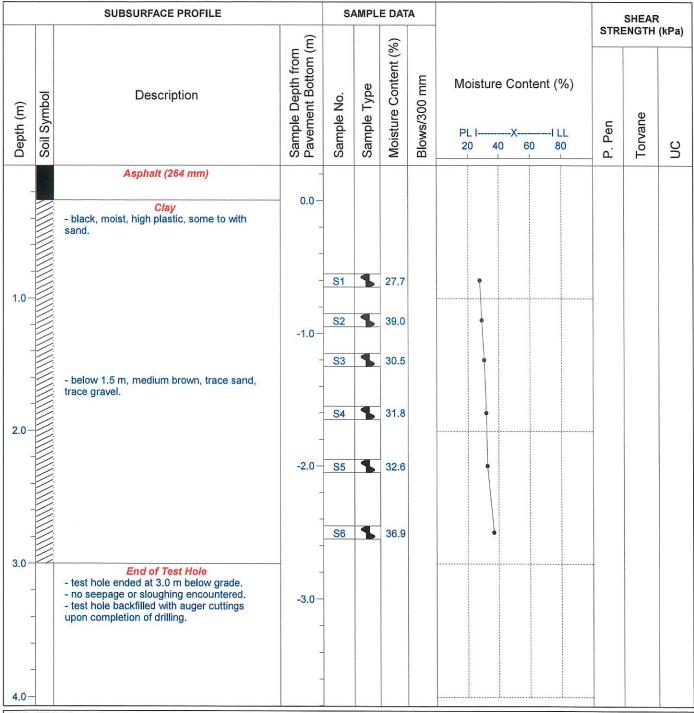
SPLIT BARREL

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2

File No.: 24-035-01


Date Drilled: April 15, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

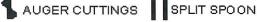
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

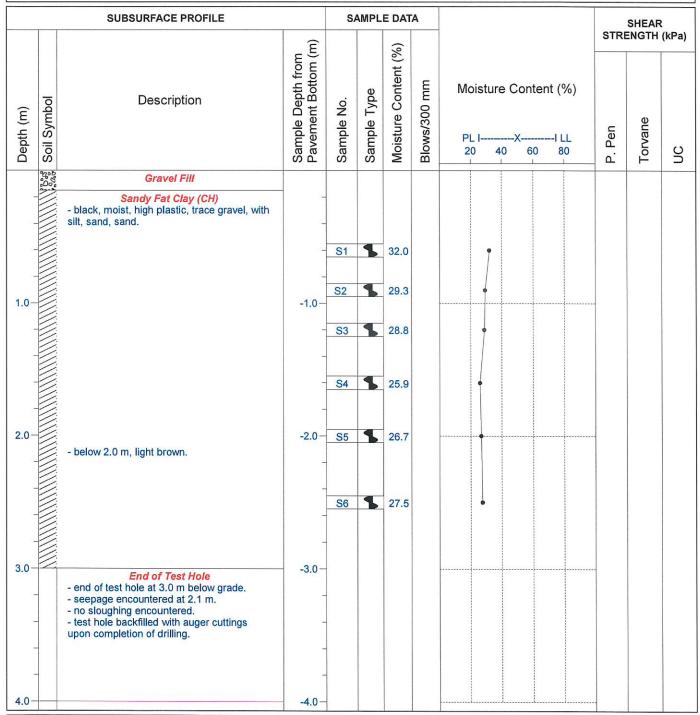
Sheet: 1 of 1

SAMPLE TYPE

SPUT BARREL

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB


Location: See Figure 2 Water Elevation: --

File No.: 24-035-01

Date Drilled: April 1, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: Dugald Road and Plessis Road Pavement Renewals

ENG-TECH Consulting Limited

Logged by: SZ

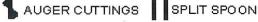
Reviewed by:

Drilled By: ENG-TECH Consulting Limited.

Drill Rig: Lone Star T1A+

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m


Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

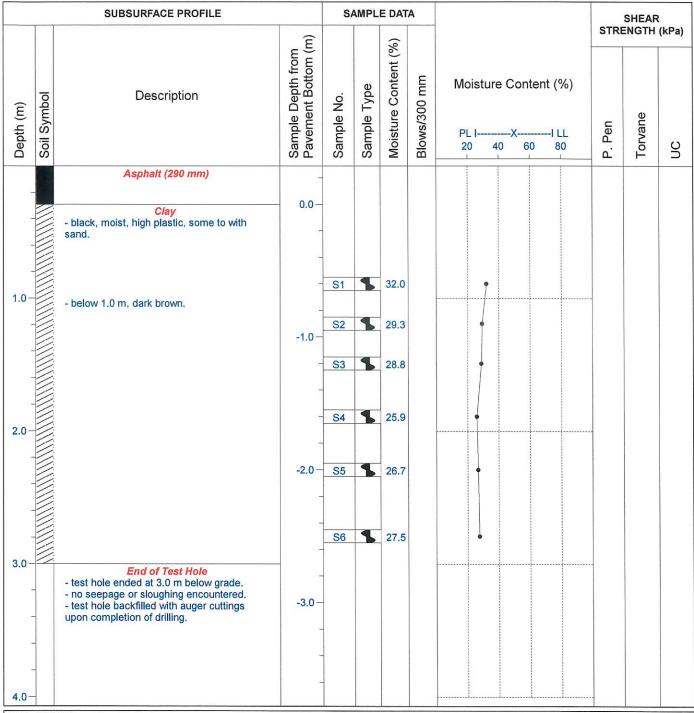
SPLIT BARREL

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 2

File No.: 24-035-01


Date Drilled: April 15, 2024

Grade Elevation: 100.0 m

Water Elevation: --

Engineering And Testing Solutions That Work For You

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

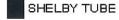
ENG-TECH Consulting Limited

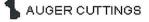
Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star


Auger Size: 100 mm Solid Stem


Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

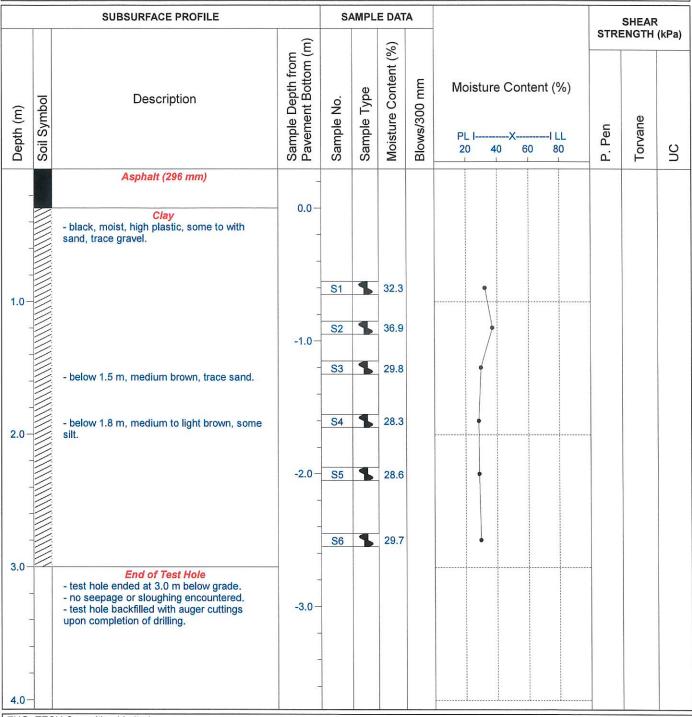
Engineering And Testing Solutions That Work For You

Test Hole #: TH42

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 3


Water Elevation: --

Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

File No.: 24-035-01

Date Drilled: April 15, 2024

Grade Elevation: 100.0 m

ENG- TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

🎉 SPLIT BARREL

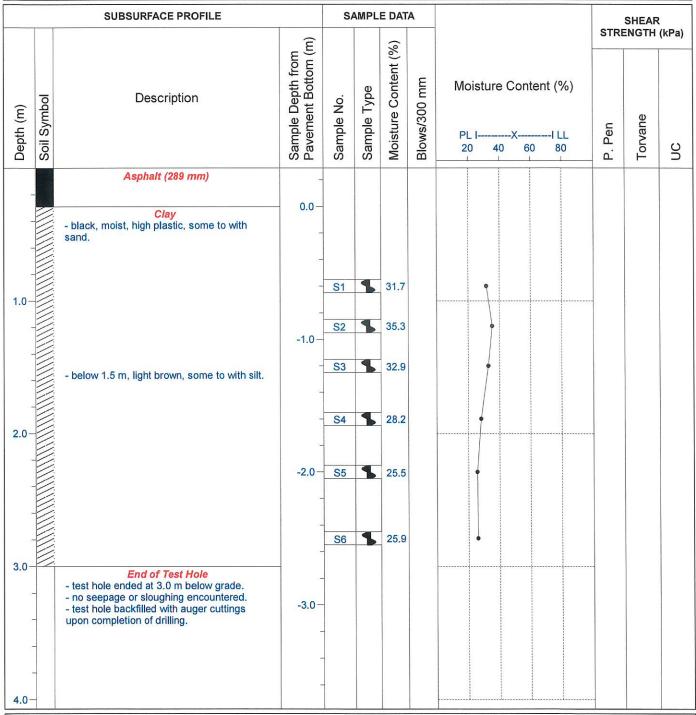
Engineering And Testing Solutions That Work For You

Test Hole #: TH43

Client: WSP Canada Inc.

Site: Dugald Road, Winnipeg, Manitoba

Location: See Figure 3


Water Elevation: --

Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

File No.: 24-035-01

Date Drilled: April 15, 2024

Grade Elevation: 100.0 m

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

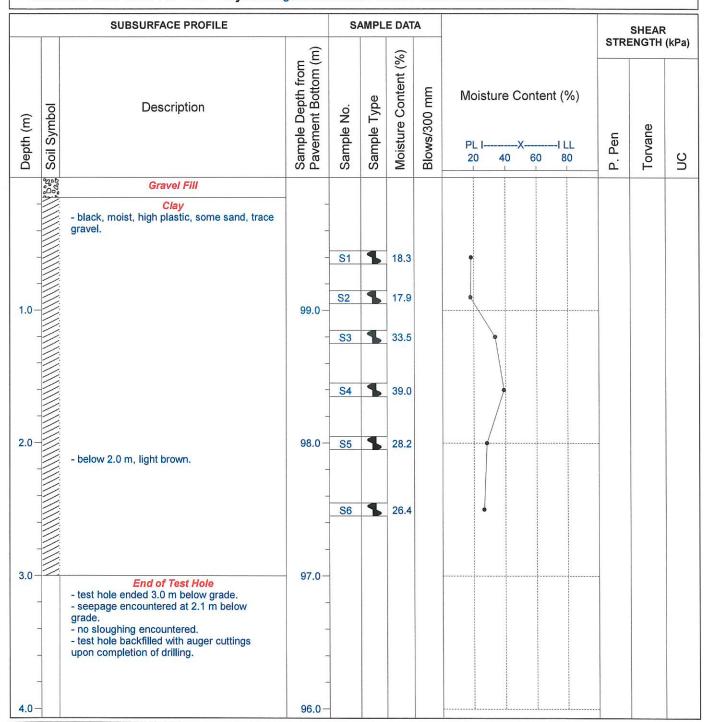
SAMPLE TYPE

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB

Grade Elevation: 100.0 m

Date Drilled: April 1, 2024


Location: See Figure 3

Water Elevation: --

File No.: 24-035-01

Engineering And Testing Solutions That Work For You

Project: Dugald Road and Plessis Road Pavement Renewals

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited.

Drill Rig: Lone Star T1A+

Auger Size: 100 mm Solid Stem

Completion Depth: 3.0 m


Completion Elevation: 97.0 m

Sheet: 1 of 1

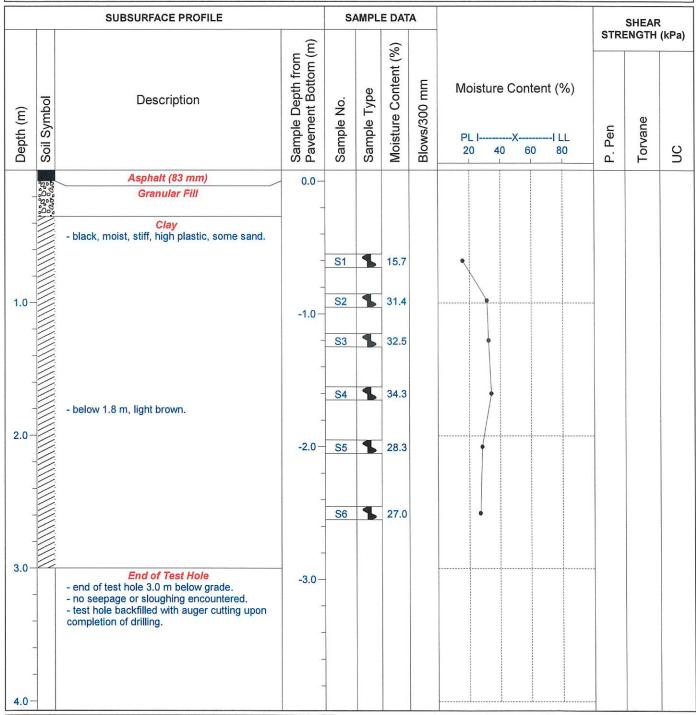
SAMPLE TYPE

SPLIT BARREL

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB

Location: See Figure 3


Water Elevation: --

File No.: 24-035-01

Date Drilled: April 10, 2024

Grade Elevation: 100.0 m

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

AUGER CUTTINGS | SPLIT SPOON

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB

Location: See Figure 3

Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

File No.: 24-035-01

Water Elevation: --

Date Drilled: April 10, 2024

Grade Elevation: 100.0 m

SUBSURFACE PROFILE SAMPLE DATA SHEAR STRENGTH (kPa) Sample Depth from Pavement Bottom (m) Moisture Content (%) Blows/300 mm Moisture Content (%) Sample Type Description Soil Symbol Sample No. Depth (m) Torvane Pen PL I 40 S 20 60 σ. Granular Fill Clay - black, moist, high plastic, trace sand. 34.0 33.0 S2 -1.0 33.8 34.6 -2.0 - S5 27.8 - below 2.0 m, light brown. 28.6 -3.0 **End of Test Hole** - end of test hole at 3.0 m below grade. - no seepage or sloughing encountered during drilling. - test hole backfilled with auger cuttings upon completion of drilling. 4.0 -4.0

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

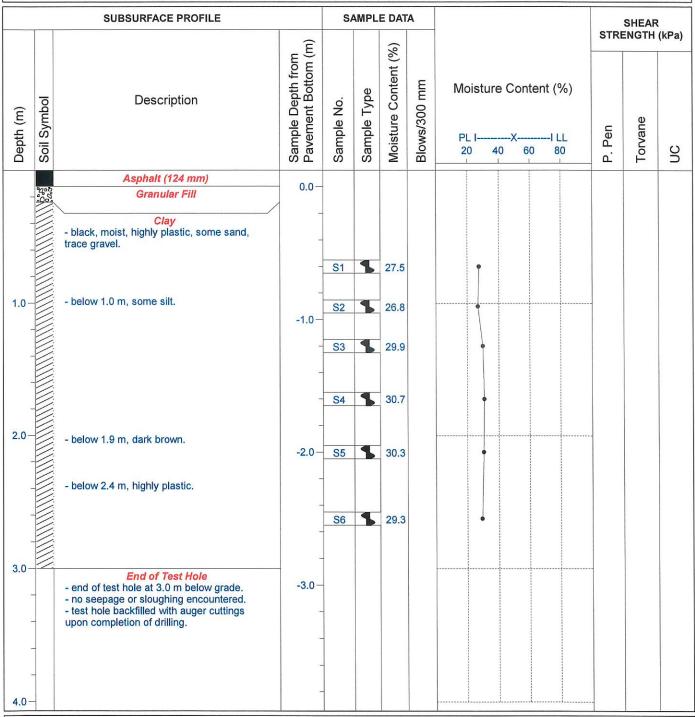
AUGER CUTTINGS

Engineering And Testing Solutions That Work For You Project: CW749-2023 Pavement Renewals on Dugald Road and Plessis Road

Test Hole #: TH47

Client: WSP Canada Inc.

Site: Shoulder Dugald Road, Winnipeg, MB


Location: See Figure 3

Water Elevation: --

File No.: 24-035-01

Date Drilled: April 10, 2024

Grade Elevation: 100.0 m

ENG-TECH Consulting Limited

Logged by: SZ

Reviewed by:

Drilled By: ENG-TECH Consulting Limited

Drill Rig: Lone star

Auger Size: 125 mm Solid Stem

Completion Depth: 3.0 m Completion Elevation: 97.0 m

Sheet: 1 of 1

SAMPLE TYPE

SPLIT BARREL

ATTERBERG LIMTS, PLASTIC INDEX AND PLASTICITY INDEX OF SOILS REPORTS

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS

File No.: 24-035-01

Ref. No.: 24-35-1-35

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention:

Scott Suderman, C.E.T., P. Eng.

Project:

CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source:

Dugald Road

Material Type: -

Test Hole No.: 31

Date Sampled:

Apr 1/24

Material Description: Date Received: Sandy clay Apr 1/24

Sample No.:

Sampled By:

ENG-TECH (Shah Zeb)

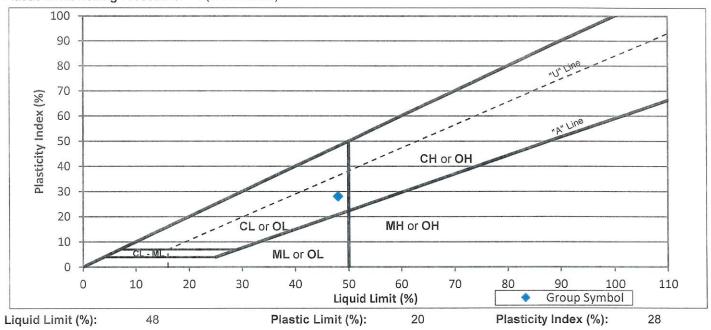
Date Tested:

Jul 15/24

Depth:

0.6 m

Tested By:


ENG-TECH (Jessica Bauer)

Test Method: ASTM D4318 - A (Multipoint) Specimen Preparation Procedure: 2 (Dry)

Liquid Limit Device: Manual

Plastic Limit Rolling Procedure: 1 (Hand Rolled)

Sampling Method: Auger Drying Method: Air Grooving Tool: Metal

40.1

Classification:

ASTM D2487: Sandy lean clay (CL)

ASTM D3282: A-7-6 (14)

Percentage of sand particles retained on 0.425mm sieve:

As Received Moisture Content (%):

13.3

Comments:

Email: WSP Canada Inc. Contact Group

Per

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

ENG-TECH Consulting Limited

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS

File No.: 24-035-01

Ref. No.: 24-35-1-37

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention: Scott Suderman, C.E.T., P. Eng.

CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD Project:

Date Sampled:

Sampled By:

Source: **Dugald Road**

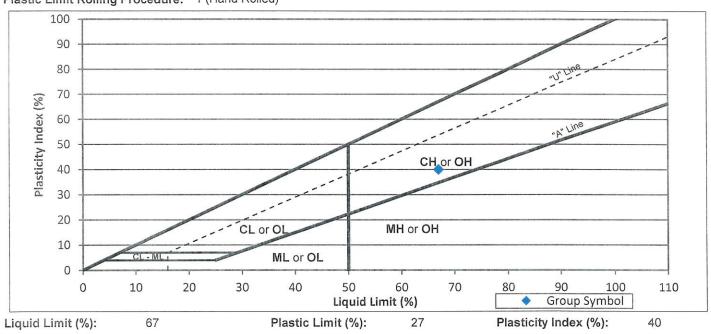
Material Type: -

Test Hole No.: 38

Sample No.: 1

Depth: 0.6 m Test Method: ASTM D4318 - A (Multipoint)

Specimen Preparation Procedure: 2 (Dry) Liquid Limit Device: Manual


Plastic Limit Rolling Procedure: 1 (Hand Rolled)

Material Description: Sandy clay

Date Received: Apr 1/24 Date Tested: Jul 15/24

Tested By: ENG-TECH (Jessica Bauer)

Sampling Method: Auger Drying Method: Grooving Tool: Metal

Apr 1/24

ENG-TECH (Shah Zeb)

Percentage of sand particles retained on 0.425mm sieve: 29.6

Classification: ASTM D2487: Sandy fat clay (CH)

ASTM D3282: A-7-6 (26)

As Received Moisture Content (%):

Comments:

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Per

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS

File No.: 24-035-01

Ref. No.: 24-35-1-33

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention:

Scott Suderman, C.E.T., P. Eng.

Project:

CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source:

Shoulder, Dugald Road

Material Type: -

Test Hole No.: 40

Date Sampled:

Apr 1/24

Material Description: Date Received:

Sandy clay Apr 1/24

Sample No.: 1

Sampled By:

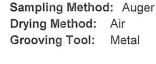
ENG-TECH (Shah Zeb)

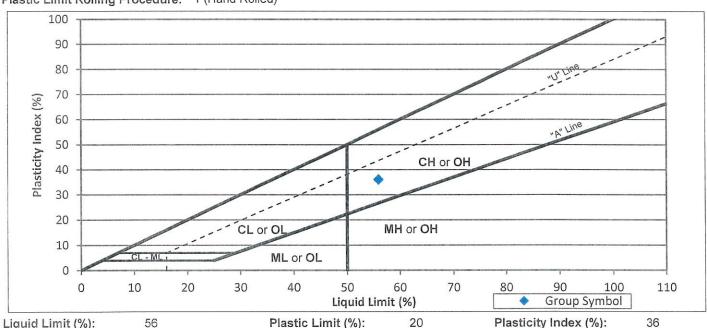
Date Tested:

Jul 15/24

Depth:

0.6 m


Tested By:


ENG-TECH (Jessica Bauer)

Test Method: ASTM D4318 - A (Multipoint) Specimen Preparation Procedure: 2 (Dry)

Liquid Limit Device: Manual

Plastic Limit Rolling Procedure: 1 (Hand Rolled)

Liquid Limit (%):

Classification:

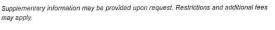
ASTM D2487: Sandy fat clay (CH)

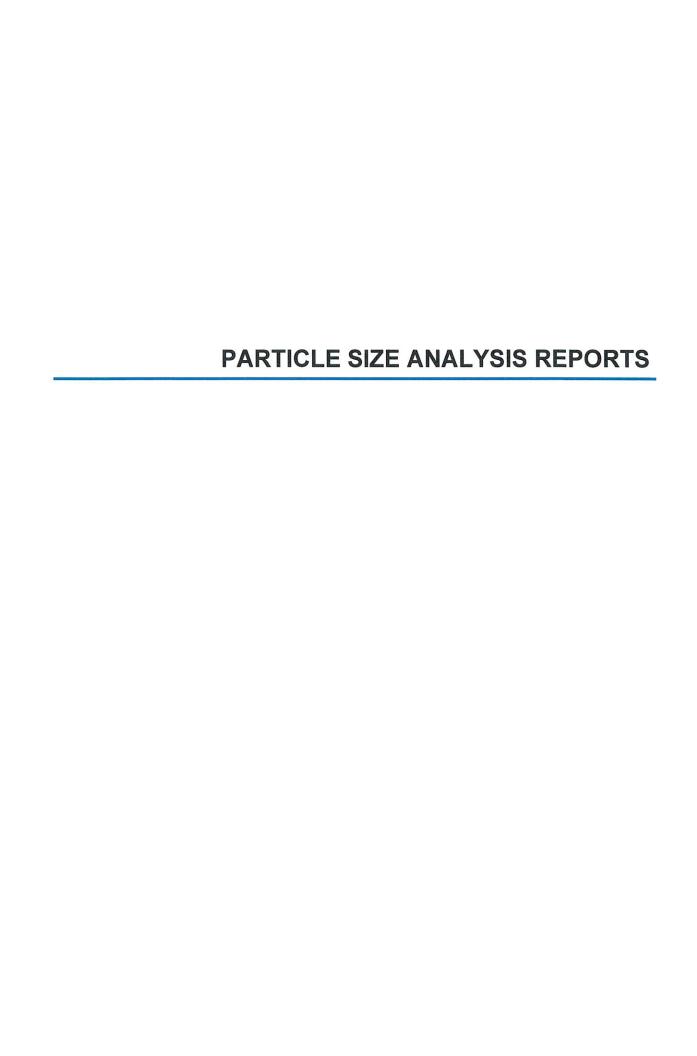
ASTM D3282: A-7-6 (21)

Percentage of sand particles retained on 0.425mm sieve:

As Received Moisture Content (%):

Comments:


Email: WSP Canada Inc. Contact Group


ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Operations Manager - Laboratory

Ph: (204) 233-1694 Fx: (204) 235-1579

PARTICLE SIZE ANALYSIS

File No.: 24-035-01

Ref. No.: 24-35-1-34

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention: Scott Suderman, C.E.T., P. Eng.

Project: CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source:

Dugald Road

Test Hole No.: 31

Material Description: Sandy clay

Apr 1/24

Sampled By: ENG-TECH (Shah Zeb)

Sample No.:

Date Sampled: Date Received: Apr 1/24

Sample Type: Auger cutting

Depth: Test Method: 0.6 m

Date Tested:

Jul 15/24

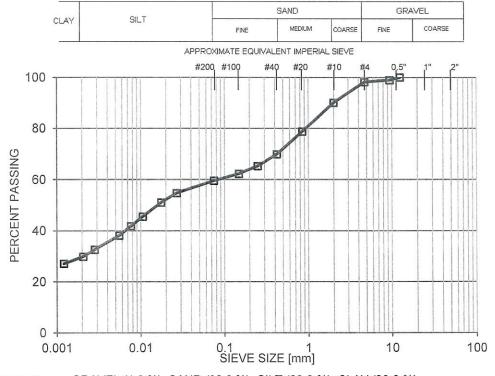
ENG-TECH (Jessica Bauer) Tested By:

ASTM D7928

Drving Method: Air

Separating Sieve Size (mm): 2.0

Specific Gravity: Estimated 2.7


Method Used:

Dispersion Device:

Dispersion Process: Stirrer / Tipping

Dispersion Time (min.): 1

Apparatus A: Humboldt Mechanical Analysis Stirrer

PASSING 100 99
99
98
90.1
79
70
65
62
59.6
55
51
46
42
38
33
30
27

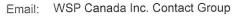
Percent of:

GRAVEL (1.8 %), SAND (38.6 %), SILT (29.9 %), CLAY (29.8 %)

Classification: ASTM D2487: Sandy lean clay (CL)

ASTM D3282: A-7-6 (14)

As Received Moisture Content (%): 13.3


Comments:

ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

PARTICLE SIZE ANALYSIS

File No.: 24-035-01

Ref. No.: 24-35-1-36

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Depth:

Test Method:

Method Used:

Dispersion Device:

Attention: Scott Suderman, C.E.T., P. Eng.

Project: CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source: Dugald Road Material Description: Sandy clay

Test Hole No.: 38 Sample No.:

0.6 m

ASTM D7928

Date Tested: Drying Method: Air

Date Sampled:

Date Received:

Dispersion Process: Stirrer / Tipping

Apr 1/24

Apr 1/24

Jul 15/24

Apparatus A: Humboldt Mechanical Analysis Stirrer

Sampled By: ENG-TECH (Shah Zeb)

Sample Type: Auger cutting

Tested By: ENG-TECH (Jessica Bauer)

Specific Gravity: Estimated 2.75 Separating Sieve Size (mm): 2.0

Dispersion Time (min.): 1

	272		OIL T			S	AND		GR	AVEL	
	(CLAY	SILT		FINE		MEDIUM	COARSE	FINE	COAR	:SE
			AP	PROX	IMATE E	QUIVALE	NT IMPERIA	L SIEVE			
1	00 -			#200	#100	#40	#20	#10	#4 0.5"	1"	2"
(2)	80 -									And the second state of th	
PERCENT PASSING	60 -			-6							
PERCEN	40 -				The second secon	TO THE REAL PROPERTY AND ADDRESS OF THE PARTY					
	20 -										
	0 - 0.0	001	0.01		0.1 SIEV	E SIZE	1 [mm]	and the second	10		100

PERCENT
PASSING
100
99
96
80.1
73
70
69
67
66.5
61
58
53
50
46
41
38
34
†

Percent of:

GRAVEL (3.8 %), SAND (29.7 %), SILT (28.3 %), CLAY (38.2 %)

Classification: ASTM D2487: Sandy fat clay (CH)

ASTM D3282: A-7-6 (26)

As Received Moisture Content (%): 42.7

Comments:

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

PARTICLE SIZE ANALYSIS

File No.: 24-035-01

Ref. No.: 24-35-1-32

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention: Scott Suderman, C.E.T., P. Eng.

Project: CW 749 - 2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source:

Shoulder Dugald Road

Test Hole No.: 40

Material Description: Sandy clay

Date Sampled:

Apr 1/24

Sampled By: ENG-TECH (Shah Zeb)

Sample No .:

1

Date Received: Date Tested:

Apr 1/24

Sample Type: Auger cutting

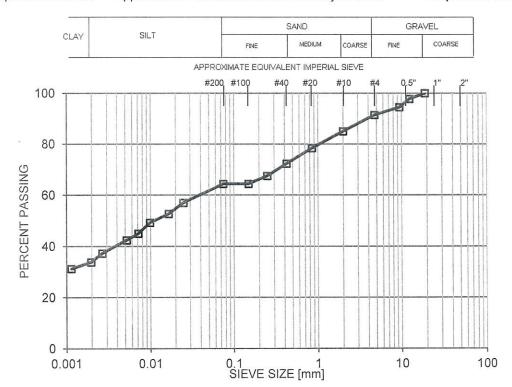
Depth: Test Method: 0.6 m

Jul 15/24

Tested By: ENG-TECH (Jessica Bauer)

Method Used: A

ASTM D6913 &D7928 Drying Method: Air


Dispersion Process: Stirrer / Tipping

Specific Gravity: Estimated 2.75 Separating Sieve Size (mm): 2.0

Dispersion Device:

Apparatus A: Humboldt Mechanical Analysis Stirrer

Dispersion Time (min.): 1

SIEVE	PERCENT
SIZE (mm)	PASSING
19.0	100
12.5	98
9.5	95
4.75	91
2.0	85.0
0.850	78
0.425	72
0.250	68
0.150	64
0.075	64.4
0.025	57
0.017	53
0.010	49
0.0072	45
0.0052	42
0.0026	37
0.0020	34
0.0011	31

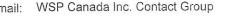
Percent of:

GRAVEL (8.5 %), SAND (27.1 %), SILT (30.3 %), CLAY (34.1 %)

Classification: ASTM D2487: Sandy fat clay (CH)

ASTM D3282: A-7-6 (21)

As Received Moisture Content (%): 32.0


Comments:

Per

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

ENG-TECH Consulting Limited

"Engineering and Testing Solutions That Work for You"

420 Turenne Street Winnipeg, Manitoba **R2J 3W8** engtech@mymts.net www.eng-tech.ca

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Sampled By:

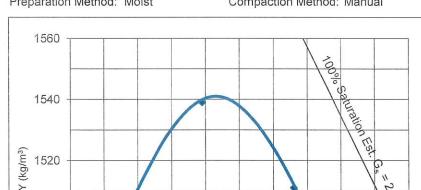
Correction Standard Method:

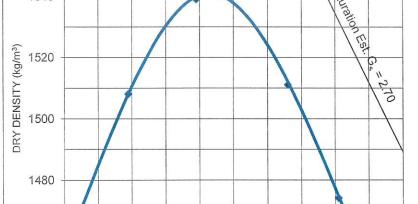
Attention: Scott Suderman, C.E.T., P. Eng.

ENG-TECH (Shah Zeb)

CW 749-2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD Project:

Source: Dugald Road, composite of TH27 and TH28, 0.6 - 1.2 m


Material Type: Sub-grade Description: Clay, medium brown with black, med to high plastic, trace to some silt, sand & gravel


Date Sampled: Apr 17/24 Date Received: Apr 18/24 Date Tested: Jul 13/24

ASTM D4718

ASTM D1557 Compaction Standard Method: ASTM D698

Preparation Method: Moist Compaction Method: Manual

24

MOISTURE CONTENT (PERCENT)

26

Comments:

1460

20

Test Compaction Method:

Material Oversize:

4.75 mm: % 1.5 19.0 mm: %

Moisture Content (%)
21.9
23.9
26.6
28.1

Tested By: ENG-TECH (Kristian Pajda)

Maximum Dry Density (MDD): kg/m³ 1541 Optimum Moisture (OM): 24.3 %

> MDD Corrected: kg/m³ OM Corrected: %

MOISTURE-DENSITY

RELATIONSHIP

For specific tests as listed on www.ccil.cor

File No.: 24-035-01

Ref. No.: 24-35-1-16

Received Moisture Content: % 30.5

Email: WSP Canada Inc. Contact Group

22

ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

28

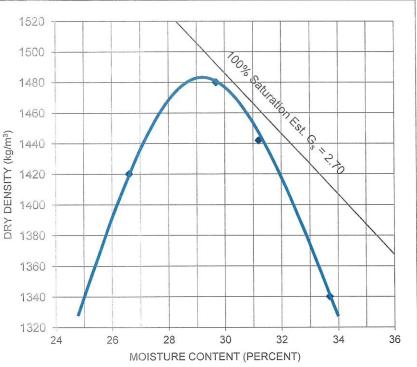
30

MOISTURE-DENSITY RELATIONSHIP

File No.: 24-035-01

Ref. No.: 24-035-1-17

"Engineering and Testing Solutions That Work for You"


WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba **R3T 6B8**

Attention: Scott Suderman, C.E.T., P. Eng.

CW 749-2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD Project:

Source: Dugald Road, composite of TH32, TH33 and TH34, 0.6 - 1.2 m Description: Clay, black, moist, high plastic, some silt, some to with sand, trace gravel Material Type: Sub-grade Date Sampled: Apr 16/24 - Apr 17/24 Date Received: Apr 18/24 ENG-TECH (Shah Zeb) Sampled By: Compaction Standard Method: ASTM D698 ASTM D4718 Correction Standard Method: Compaction Method: Manual Preparation Method: Moist

ASTM D1557 1520 1500

Test Compaction Method:

Material Oversize:

Date Tested: Jun 3/24

% 4.75 mm: 1.0 19.0 mm: %

Tested By: ENG-TECH (James McCauley)

Dry Density (kg/m³)	Moisture Content (%)
1420	26.6
1480	29.7
1442	31.2
1340	33.7

Maximum Dry Density (MDD): kg/m³ Optimum Moisture (OM): 29.2 %

> MDD Corrected: kg/m³ OM Corrected: %

Received Moisture Content: 20.9 %

Comments:

DENSITY (kg/m3)

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Per

Operations Manager - Laboratory

Ph: (204) 233-1694 Fx: (204) 235-1579

MOISTURE-DENSITY RELATIONSHIP

File No.: 24-035-01 Ref. No.: 24-35-1-18

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

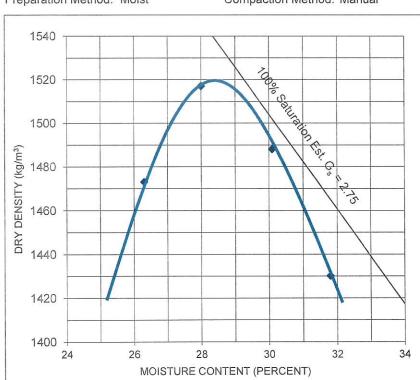
R3T 6B8

Attention: Scott Suderman, C.E.T., P. Eng.

CW 749-2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD Project:

Source: Dugald Road, composite of TH45, TH46 and 47, 0.6 - 1.2 m

Material Type: Sub-grade Description: Clay, black, moist, high plastic, trace to some sand, trace gravel


Date Sampled: Apr 8/24 to Apr 10/24 Date Received: Apr 8/24 to Apr 10/24 Date Tested: Jun 3/24

Tested By: ENG-TECH (Jasraj Nanda) Sampled By: ENG-TECH (Shah Zeb)

ASTM D698 **ASTM D1557** Compaction Standard Method:

ASTM D4718 Correction Standard Method:

Preparation Method: Moist Compaction Method: Manual

Test Compaction Method:

Material Oversize:

4.75 mm: % 2.2 19.0 mm: %

1473 1517 1488 1430	Moisture Content (%)
1473	26.3
1517	28.0
1488	30.1
1430	31.8

Maximum Dry Density (MDD): 1520 kg/m³ Optimum Moisture (OM): 28.3 %

> MDD Corrected: kg/m³ OM Corrected: %

Received Moisture Content: 26.4 %

Comments:

Email: WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Per

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

CALIFORNIA BEARING RATIO

File No .:

Ref. No.:

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba R3T 6B8

Attention:

Scott Suderman, C.E.T., P. Eng.

Project:

CW 749-2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source:

Dugald Road, composite sample of TH32, TH33 and TH34, 0.6 - 1.2 meters

Material Type:

Sub-grade

Date Sampled:

Apr 16/24 to Apr 17/24

24-035-01

24-35-1-20

Material Description:

Clay, black, moist, high plastic, some silt,

Date Received:

Apr 18/24

Sampled By:

some to with sand, trace gravel ENG-TECH (Shah Zeb)

95%

Date Tested: Tested By:

Jun 24/24

Immersion Period:

95.5 hours

Test Methods:

ENG-TECH (Rey Batac) ASTM D698, D1883

Compactive Effort (Density): Required:

Actual: 96%

California Bearing Ratio 0.40 0.35 0.30 0.25 Stress (MPa) 0.20 0.15 0.10 0.05 0.00 5.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 1.0 2.0 3.0 4.0 6.0 0.0 Penetration (mm)

			Test Data	1						
			Soaked			Ur	soaked	•		
Dry Density: As Compacted;		1419	kg/m³		12		kg/m³			
Moisture Content: As Compacted;		28.9	%			-	%			
Moisture Content: Top 25 mm;		32.4	%			-	%			
CBR Values: 2.54mm (0.1in);		3.3	%				%			
CBR Values: 5.08mm (0.2in);		2.5	%			100	%			
Swell:	0.9	% of Initial Height	Oversize Correct	ion:	1.0	%	Surchar	ge Mass:	4.54	kg
Maximum Load:	584.8	N	Penetration Depth:		12.70	mm				

Comments:

Email:

WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Enclosure: Moisture-Density Relationship Test Ref. No. 24-35-1-17

CALIFORNIA BEARING RATIO

File No .:

Ref. No.:

"Engineering and Testing Solutions That Work for You"

WSP Canada Inc. 1600 Buffalo Place Winnipeg, Manitoba

R3T 6B8

Attention:

Scott Suderman, C.E.T., P. Eng.

Project:

CW 749-2023 - PAVEMENT RENEWALS ON DUGALD ROAD AND PLESSIS ROAD

Source: Material Type:

Dugald Road, composite sample of TH45, TH46 and TH47, 0.6 - 1.2 meters Date Sampled:

Apr 8/24 to Apr 10/24

24-035-01

24-35-1-22

Sub-grade

Date Received:

Material Description:

Clay, black, moist, high plastic, trace to some sand, trace gravel

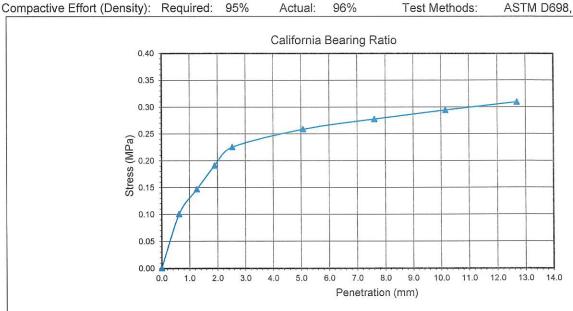
Date Tested:

Apr 8/24 to Apr 10/24

Sampled By:

ENG-TECH (Shah Zeb)

Tested By:


Jun 11/24 ENG-TECH (Rey Batac)

Immersion Period:

92.0 hours

Actual:

96% Test Methods: ASTM D698, D1883

			Test Data	ì						
			Soaked			Ur	soaked			
Dry Density: As C	ompacte	ed;	1451	kg/	′m³		-0	kg/m³		
Moisture Content	: As Com	npacted;	28.5	%			_	%		
Moisture Content	: Top 25	mm;	31.9	%			-	%		
CBR Values: 2.54	1mm (0.1	in) (Corrected);	2.6	%			_	%		
CBR Values: 5.08	3mm (0.2	in) (Corrected);	2.4	%			-	%		
Swell:	1.3	% of Initial Height	Oversize Correct	ion:	2.2	%	Surchar	ge Mass:	4.54	kg
Maximum Load:	594.5	N	Penetration Dept	h:	12.70	mm				

Comments:

Email:

WSP Canada Inc. Contact Group

ENG-TECH Consulting Limited

Darci Babisky, C.E.T.

Operations Manager - Laboratory Ph: (204) 233-1694 Fx: (204) 235-1579

Enclosure: Moisture-Density Relationship Test Ref. No. 24-35-1-18