

NEWPCC Upgrade: Biosolids Facilities Early Works

Geotechnical Report Land Drainage System – FINAL

WSTP

60705950

August 2025

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

Lana Obach, P.Eng., M.A.Sc., PMP Project Manager City of Winnipeg Unit 110, 1199 Pacific Avenue Winnipeg, MB R3E 3S8 August 7, 2025

Project # 60705950

Subject:

NEWPCC Upgrade: Biosolids Facilities Early Works - Geotechnical Report

Dear Ms. Obach:

AECOM Canada ULC Is pleased to submit our Final Geotechnical Report for the Biosolids Early Works Land Drainage System. Note that this submittal is focused on the work related to the overall biosolids LDS system, including the pond and sewer trunk to John Black outfall.

Please contact German Leal at (431) 335-9734 should you have any questions.

Sincerely,

AECOM Canada ULC

German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead German.leal@aecom.com

GL:ag Encl.

Statement of Qualifications and Limitations

The attached Report (the "Report") has been prepared by AECOM Canada ULC ("AECOM") for the benefit of the Client ("Client") in accordance with the agreement between AECOM and Client, including the scope of work detailed therein (the "Agreement").

The information, data, recommendations and conclusions contained in the Report (collectively, the "Information"):

- is subject to the scope, schedule, and other constraints and limitations in the Agreement and the qualifications contained in the Report (the "Limitations");
- represents AECOM's professional judgement in light of the Limitations and industry standards for the preparation of similar reports;
- may be based on information provided to AECOM which has not been independently verified;
- has not been updated since the date of issuance of the Report and its accuracy is limited to the time period and circumstances in which it was collected, processed, made or issued;
- must be read as a whole and sections thereof should not be read out of such context;
- was prepared for the specific purposes described in the Report and the Agreement; and
- in the case of subsurface, environmental or geotechnical conditions, may be based on limited testing and on the assumption that such conditions are uniform and not variable either geographically or over time.

AECOM shall be entitled to rely upon the accuracy and completeness of information that was provided to it and has no obligation to update such information. AECOM accepts no responsibility for any events or circumstances that may have occurred since the date on which the Report was prepared and, in the case of subsurface, environmental or geotechnical conditions, is not responsible for any variability in such conditions, geographically or over time.

AECOM agrees that the Report represents its professional judgement as described above and that the Information has been prepared for the specific purpose and use described in the Report and the Agreement, but AECOM makes no other representations, or any guarantees or warranties whatsoever, whether express or implied, with respect to the Report, the Information or any part thereof.

Without in any way limiting the generality of the foregoing, any estimates or opinions regarding probable construction costs or construction schedule provided by AECOM represent AECOM's professional judgement in light of its experience and the knowledge and information available to it at the time of preparation. Since AECOM has no control over market or economic conditions, prices for construction labour, equipment or materials or bidding procedures, AECOM, its directors, officers and employees are not able to, nor do they, make any representations, warranties or guarantees whatsoever, whether express or implied, with respect to such estimates or opinions, or their variance from actual construction costs or schedules, and accept no responsibility for any loss or damage arising therefrom or in any way related thereto. Persons relying on such estimates or opinions do so at their own risk.

Except (1) as agreed to in writing by AECOM and Client; (2) as required by-law; or (3) to the extent used by governmental reviewing agencies for the purpose of obtaining permits or approvals, the Report and the Information may be used and relied upon only by Client.

AECOM accepts no responsibility, and denies any liability whatsoever, to parties other than Client who may obtain access to the Report or the Information for any injury, loss or damage suffered by such parties arising from their use of, reliance upon, or decisions or actions based on the Report or any of the Information ("improper use of the Report"), except to the extent those parties have obtained the prior written consent of AECOM to use and rely upon the Report and the Information. Any injury, loss or damages arising from improper use of the Report shall be borne by the party making such use.

This Statement of Qualifications and Limitations is attached to and forms part of the Report and any use of the Report is subject to the terms hereof.

AECOM: 2015-04-13 © 2009-2015 AECOM Canada ULC All Rights Reserved.

Ref: 60705950 AECOM

WSTP

NEWPCC Upgrade: Biosolids Facilities Early Works

Geotechnical Report Land Drainage System – FINAL

Quality Information

Prepared by

Gene Acurin, E.I.T., B.Eng.

Geotechnical

Verified by

Sonny Chang, M.Sc., P. Eng.

Geotechnical

Checked by

Mike Gaudreau, P.Eng. Municipal Engineer

Approved by

German Leal, M.Eng., P.Eng.

Discipline Lead

Member 32421

Revision History

		v.	
Rev#	Revision Date	Revised By:	Revision Description
0	June 25, 2025	G. Leal	DRAFT
1	July 25, 2025	G. Leal	DRAFT – REV. 1
2	August 7, 2025	G. Leal	FINAL

Distribution List

# Hard Copies	PDF Required	Association / Company Name
	✓	WSTP
	✓	AECOM Canada ULC

WSTP

NEWPCC Upgrade: Biosolids Facilities Early Works Geotechnical Report Land Drainage System – FINAL

Prepared for:

WSTP Lana Obach, P.Eng., M.A.Sc., PMP Project Manager City of Winnipeg Unit 110, 1199 Pacific Avenue Winnipeg, MB R3E 3S8

Prepared by:

Gene Acurin, E.I.T., B.Eng. Geotechnical M: 204-471-0136 E: gene.acurin@aecom.com

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204-477-5381 M: 431-335-9734

E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

Ref: 60705950 AECOM

Executive Summary

AECOM Canada ULC (AECOM) was retained as part of the NEWPCC Upgrade to provide geotechnical services to support the design and construction of the Biosolids Early Works Land Drainage Sewer (LDS) System proposed along the future extension of the Chief Peguis Trail (CPT) near the North End Water Pollution Control Centre (NEWPCC). The proposed Biosolids Early Works LDS includes the installation of the following infrastructure to provide service to the proposed Biosolids and Nutrient Removal Facilities (NRF) at NEWPCC:

- 1. A new LDS and stormwater pond connecting to Parcel B and the existing John Black Outfall.
 - Twin (2) 1350 mm LDS pipe (connecting Parcel B to the stormwater pond).
 - Stormwater Pond.
 - 900 mm LDS along proposed CPT (future alignment).
 - i. **Note:** part of the 900 mm LDS crosses a CPKC rail line and has a separate geotechnical report (AECOM, 2025).
 - 1800 mm LDS along and parallel to Main St.
 - 900 mm LDS connecting to John Black Outfall.

As part of the NEWPCC Upgrade: Biosolids Facilities Early Works, AECOM was tasked with completing a geotechnical field investigation, which includes a laboratory testing program, and a summary of the findings of geotechnical investigation.

The geotechnical investigation program consisted of a subsurface exploration program (drilling, soil sampling and insitu tests). A total of sixteen testholes were drilled along the alignment of the Biosolids Early Works LDS system.

The soils encountered during the investigation consisted of topsoil, fill (clay fill), silt, fat clay and silt till. Selected representative soil samples were tested to determine physical characteristics, evaluate the engineering properties, and aid with further characterization of the subsurface. Sloughing and groundwater was observed in most testholes.

AECOM anticipates that the Biosolids Early Works LDS and stormwater pond can be constructed successfully, provided that sloughing and groundwater control measures are implemented.

Ref: 60705950 AECOM

Table of Contents

1.	Intro	oduction	1
2.	Proj	ject Site	2
3.	Pro	posed Construction	3
4.	Geo	technical Investigation	4
	4.1 4.2 4.3	Drilling and Sampling ProgramLaboratory Testing	4 4
5.	Sub	surface Conditions	5
	5.1	Stratigraphy 5.1.1 Topsoil 5.1.2 Fill – Clay (CH) 5.1.3 Silt (ML) 5.1.4 Lean Clay (CL) 5.1.5 Fat Clay (CH) 5.1.6 Sandy Lean Clay (CL) TILL	5 5 5
6.	Gro 6.1	undwater and Sloughing Conditions Standpipe Piezometer Monitoring Results	
7.	Lab	oratory Testing Results	9
	7.1 7.2	General Overburden Soils	9
8.	Geo	technical Concerns	12
9.	Rec	ommendations	13
	9.1	Anticipated Shallow Trench Soil Conditions	13 13 13
	9.2	Excavation Base Stability	14
	9.3	Frost	16 16
	9.4 9.5	Temporary Shoring Stormwater Pond	17

Geotechnical Report Land Drainage System – FINAL

		9.5.2 Groundwater Conditions within Stormwater Pond	18
		9.5.3 2025 Soil Design Parameters	18
		9.5.4 Stormwater Pond Design	18
		9.5.5 Waste Disposal Cell Liner	
		9.5.6 Slope Stability Analyses	
		9.5.7 Stormwater Pond Construction Comments	
	9.6	Seismic Considerations	
	9.7	Quality Assurance and Quality Control	20
10.	Ref	erences	21
Figu	ıres		
Figure	6-1: Gr	raph of Groundwater Elevations Versus Time	8
Tab	les		
Table	3-1: Tes	estholes Drilled	3
Table	4-1: Sta	andpipe Piezometer Installed for GWL Reading	4
		oserved Groundwater Seepage and Sloughing Conditions	
		oundwater Measurements	
		ain Size Distribution (Hydrometer Analysis) Results	
		terberg Limits Test Data	
		nconfined Compressive Strength Test (Soil)	
	-	rdraulic Conductivity Test (Soil)	
Table		nticipated Stratigraphy along the LDS Pipe Path that Connects Parcel B and the Stormwater	
T . I. I .		Pond	
		nticipated Stratigraphy along the LDS Alignment of the Future CPT	
		nticipated Stratigraphy along the LDS Alignment along Main St	14
rabie		Biosolids Early Works LDSBiosolids Early Works LDS	14
Table		ost Penetration Depth	
		ost Susceptibility	
		teral Earth Pressure Design Parameters	
		oundwater Observations during Investigations	
		oil Parameters used in the Slope Stability Analyses	
		Slope Stability Analyses Results for Cross-Section A (West to East)	
		Slope Stability Analyses Results for Cross-Section A (East to West)	
	•	rope stability / mary see research for erest seed of recording to the seed many for the seed of the se	

Appendices

Appendix A Testhole Location Plan

Appendix B Testhole Logs

Appendix C Lab Test Results

Appendix D Drawings

Appendix E Slope Stability Analysis

Appendix F Seismic Hazard Values

1. Introduction

AECOM Canada ULC ("AECOM") was retained to undertake a geotechnical investigation to evaluate the existing soil conditions and provide recommendations for proposed construction of the Biosolids Early Works LDS, as part of the NEWPCC Upgrade. The project site is located at 2230 Main Street at the North End Sewage Treatment Plant (NEWPCC) in Winnipeg, Manitoba.

Authorization to proceed with the geotechnical investigation was provided on December 21, 2023. The work that was performed as part of this geotechnical study included the following:

- Private utility locator to locate existing utilities.
- A geotechnical drilling and soil sampling program at the proposed site to identify the existing soil and groundwater conditions.
- Laboratory testing program to determine the engineering properties relevant to the foundation design. The
 testing program included moisture contents on all collected samples, Atterberg limits, particle size analysis,
 unconfined compressions test of intact soil and hydraulic conductivity test.
- The preparation of this geotechnical report outlines the existing condition, frost implications and explores foundation design recommendations.

Use of this report is subject to the Statement of Qualifications and Limitations provided at the beginning of this report.

Ref: 60705950

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

2. Project Site

The project site is located at 2230 Main Street in Winnipeg, MB, at the North End Sewage Treatment Plant (NEWPCC), with an average elevation of 231.1 m above sea level (ASL), see **Appendix A** for the overall testhole plan. The terrain consists of grass and sparse trees throughout the site.

Testholes drilled on the east side of the CPKC Rail include TH23-01 to TH23-07 that follow the future Chief Peguis Trail (CPT) alignment, with TH23-06 and TH23-07 situated near Main St. On the west side of the CPKC Rail, testholes include TH23-08 to TH24-16, which are located in an open field with uneven surfaces. TH24-10 and TH24-11 are located on both sides of Ferrier St.

North of the future CPT is a residential neighbourhood, while on the south is the NEWPCC.

3. Proposed Construction

The project involves the design and construction of the Biosolids Early Works LDS found along the future alignment of the Chief Peguis Trail (CPT, Parcel B) and in Parcel C. The Biosolids Early Works LDS will consist of the following:

- 1. A new LDS and stormwater pond connecting to Parcel B and the existing John Black Outfall, which will consist of the following:
 - a. Twin (2) 1350 mm LDS pipe: Connects Parcel B to the stormwater pond.
 - b. **Stormwater pond:** The stormwater pond is a dry pond that temporarily holds and controls excess runoff water. The pond will have a 7H:1V side slopes. The bottom elevation of 226.50 mASL. Additionally, the pond will have a bottom area of approximately 0.85 hectares. The operating elevations include a 25 Year Storm Level of 227.96 mASL and a 100 Year Storm Level of 228.26 mASL.
 - c. **900 mm LDS**: Runs along proposed CPT (future alignment).
 - i. **Note**: part of the 900 mm LDS crosses a CPKC rail line, and details are found in a separate report (AECOM, 2025).
 - d. 1800 mm LDS: Proposed along and parallel to Main St.
 - e. 900 mm LDS: Proposed perpendicular to Main St. and connects to John Black Outfall.

Sixteen (16) testholes were drilled on the project site from October 30, 2023, to January 10, 2024. These testholes served various purposes as can be seen in the **Table 3-1**.

Testholes	Remarks
TH23-02	Drilled to a depth 10.7 m to support the design of the CPKC Crossing structure.
TH23-08	Drilled to refusal to support the design of the CPKC Crossing structure.
TH24-13	Drilled to a depth of 10.7 m to support the stormwater pond design.
TH24-14	
TH24-15	
TH25-16	
TH23-01	Drilled to refusal to support the LDS design.
TH23-07	
TH24-10	
TH24-11	
TH23-03	Drilled to a depth of 10.7 m to support the LDS design.
TH23-04	
TH23-05	
TH23-06	
TH24-09	
TH24-12	

Table 3-1: Testholes Drilled

See Appendix A for the testhole location plan and Appendix D for the preliminary drawings.

4. Geotechnical Investigation

4.1 Drilling and Sampling Program

AECOM obtained underground service clearances from public utility companies (Click Before You Dig Manitoba). A utility locator identified and marked the private utilities. The subsurface drilling and sampling program was conducted from October 30, 2023, to January 10, 2024. Drilling services were provided by Paddock Drilling and Maple Leaf Drilling under the supervision of AECOM geotechnical field personnel. The proposed testholes are shown on the attached location plan provided in **Appendix A**. Sixteen (16) testholes were drilled on the project sites using a track mounted drill rig which was equipped with 125 mm solid stem augers. Testholes TH23-01 to TH24-16, except TH23-01, TH23-07, TH23-08, TH24-11, and TH24-13, were terminated at depths of 9.1 m to 11.3 m within the clay layer. Testholes TH23-01, TH23-07, TH23-08, TH24-11, and TH24-13 were drilled to auger refusal in dense till or suspected bedrock within the site area, at depths of 17.1 m to 21.3 m. Sloughing was observed in testholes TH23-01, TH23-04, TH23-05, TH23-07, TH23-08, TH24-10, TH24-11, TH24-13, and TH24-15, at a depth between of 2.1 m and 18.9 m.

Soil samples were obtained directly from the auger flights at depth intervals ranging from 0.3 to 1.5 m. SPT was conducted in testhole TH24-13 to assess the relative density of cohesionless soils. The soil samples were visually classified in the field and returned to our soil laboratory for additional examination and testing. Cohesive soil samples were tested using a pocket torvane to estimate the undrained shear strength.

Upon completion of drilling, the testholes were examined for evidence of sloughing and groundwater seepage, sealed with bentonite at the bottom, backfilled with auger cutting and bentonite to the surface. The excess auger cuttings were left on site. The detailed testhole records are provided in **Appendix B**, which include a summary sheet outlining the symbols and terms of the testhole record.

4.2 Laboratory Testing

A laboratory testing program was performed on soil samples obtained during the drilling program to determine the relevant engineering properties of the subsurface materials. The laboratory testing included soil index and advanced testing. The tests were conducted in general accordance with American Society for Testing Material (ASTM). The laboratory testing and referenced standards includes moisture contents (ASTM D2216), particle size analysis (ASTM D422), Atterberg limits tests (ASTM D4318), unconfined compressive strength for soil (ASTM D2166) and Hydraulic conductivity (ASTM D5084). In addition, pocket torvane readings were taken on auger grab samples. The results of the laboratory testing are shown on the testhole logs in **Appendix B** and in the laboratory test report in **Appendix C**.

4.3 Groundwater Levels Monitoring

During the geotechnical field investigation, four (5) standpipe piezometers (SP) consisting of 25 mm and 5 mm in diameter and 305 mm in length screening Casagrande tip were installed. The installation details of the standpipe piezometers are shown on the testhole logs in **Appendix B** and summarize in **Table 4-1**.

Table 4-1: Standpipe Piezometer Installed for GWL Reading

Testhole No.	SP depth (m)	Tip Elevation (m ASL)	USCS Soil Type
TH23-07 (SP07)	9.6	221.04	Clay (CH)
TH23-08 (SP08)	17.0	213.29	Till (ML)
TH24-10 (SP10)	1.8	229.17	Silt (ML)
TH24-11 (SP11)	21.3	208.99	Till (ML)
TH24-13 (SP13)	20.1	210.56	Till (ML)

5. **Subsurface Conditions**

Subsurface conditions observed during testhole drilling and field classification were documented by AECOM geotechnical personnel in accordance with the Unified Soil Classification System (USCS).

5.1 **Stratigraphy**

The conditions of the site have been based on the investigation results obtained during the field and laboratory investigation programs. The pertinent results from these investigations are outlined below.

Soils encountered during the investigation consisted of Fill (Clay fill), Silt, Fat clay, and Silt till. The description of the subsurface soil units encountered along the Biosolids Early Works LDS is provided in the following subsections. The detailed testhole records are provided in Appendix B, which include a summary sheet outlining the symbols and terms of the testhole record.

5.1.1 **Topsoil**

Topsoil was encountered at the ground surface in testholes TH23-02, TH23-07 and TH23-08. The thickness of the topsoil ranged from approximately 0.15 m to 0.3 m. The moisture content of the topsoil ranged from 29.2% to 55.5%.

5.1.2 Fill - Clay (CH)

Black fat clay (CH) fill material was encountered from TH23-01 to TH24-16, except TH23-02, with a thickness ranging from approximately 0.15 m to 2.75 m. The clay (CH) fill layer was generally observed to be moist, high plasticity, black in color, firm to stiff and have traces of sand, gravel, and silt. The moisture content of the clay fill (CH) fill ranged from 17.8% to 52.2%.

5.1.3 Silt (ML)

Silt (ML) was encountered directly below the clay fill or fat clay in testholes TH23-03, TH24-04, TH24-05, and TH24-09 to TH24-16. The silt (ML) ranged in thickness from 0.15 m to 1.68 m. The silt was observed to be tan, moist, of low plasticity, and soft. The moisture content of the silt (ML) ranged from 15.3% to 26.7%.

5.1.4 Lean Clay (CL)

Lean clay (CL) was encountered directly below the clay fill or fat clay in testholes TH23-01, TH23-02, TH23-06, TH23-07, and TH23-08. The lean clay (CL) ranged in thickness from approximately 0.31 m to 1.54 m. The lean clay was tan in colour, moist and had high contents of approximately 80% of silt. The moisture content of the lean clay (CL) ranged from 22.8% to 25.2%.

5.1.5 Fat Clay (CH)

Fat clay (CH) was encountered either directly below or on top of the silt (ML) layer in TH23-01 to TH24-16. The thickness of the fat clay (CH) above the lean clay (CL) and silt (ML) ranged from 0.61 m to 1.3 m, and are found in testholes TH23-01, TH23-02, TH23-03, TH23-07, TH23-08, TH24-13, TH24-14, and TH24-15. The fat clay (CH) below the lean clay (CL) and silt (ML) layer ranged from 12.9 m to 15.7 m and are found in all the testholes. The fat clay (CH) was grey, moist, of high plasticity. The fat clay (CH) layer began as stiff to firm and transitioned to soft with depth. The moisture content of the fat clay (CH) ranged from 26.6% to 73.8%.

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

WSTP

NEWPCC Upgrade: Biosolids Facilities Early Works Geotechnical Report Land Drainage System - FINAL

Sandy Lean Clay (CL) TILL 5.1.6

Sandy lean clay (CL) till was encountered below the fat clay (CH) in TH23-01, TH23-07, TH23-08, TH24-10, TH24-11, and TH24-13. The sandy lean clay (CL) till ranged in thickness from approximately 0.92 m to 3.09 m and auger refusal was met in the sandy lean clay (CL) till at this range. The sandy lean clay (CL) till was tan in color. SPTs completed in TH24-13 within the sandy lean clay (CL) till showed uncorrected "N" values ranging from 20 to >50 per 300 mm of penetration, classifying the materials as very loose to very dense in relative density. The moisture content ranged from 10.2% to 54%. In the sandy lean clay (CL) till layer, it was common to find cobbles and boulders.

Ref: 60705950 RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

6. Groundwater and Sloughing Conditions

Groundwater seepage or soil conditions were observed in most testholes upon completion of drilling. Details of the depth and nature of the sloughing, seepage, and groundwater encountered are provided in the testhole records in **Appendix B** and presented in **Table 6-1**.

Table 6-1: Observed Groundwater Seepage and Sloughing Conditions

Testhole No.	Depth of Groundwater Seepage (m BGS)	Groundwater Depth Upon Completion of Drilling (m BGS)	Groundwater Elevation (m ASL)	Depth of Soil Sloughing (m BGS)
TH23-01	18.6	None ¹	227.5	15.2
TH23-02	1.5	7.5	222.93	1.5
TH23-03	3.1	7.0	224.15	3.1
TH23-04	3.1	5.5	224.96	8.2
TH23-05	6.4	None ¹	229.0	6.4
TH23-06	1.5	11.5	229.2	1.6
TH23-07	18.9	None ¹	228.0	15.2
TH23-08	2.0	None ¹	None ¹	13.7
TH24-09	None ¹	None ¹	229.0	0.8
TH24-10	2.1	None ¹	229.8	1.8 & 12.2
TH24-11	2.1	9.8	220.49	2.1
TH24-12	None ¹	None ¹	229.0	1.5
TH24-13	2.1	17.1	213.56	3.0
TH24-14	2.1	7.6	222.96	2.1
TH24-15	2.3	6.1	224.15	2.3
TH24-16	3.1	6.1	225.44	3.1

Note: 1Was not observed.

6.1 Standpipe Piezometer Monitoring Results

Groundwater measurements were taken upon completion of the testhole drilling and utilizing the standpipes installed in testholes TH23-07 (SP23-07), TH23-08 (SP23-08), TH24-10 (SP24-10), TH24-11 (SP24-10) and TH24-13 (SP24-13) by AECOM. The readings recorded are summarized in **Table 6-2.**

Table 6-2: Groundwater Measurements

Standpipe	Groundwater Elevation (m ASL)							
	Stratum/Tip (m ASL)	10-Oct-24	23-Oct-24	28-Oct-24	17-Apr-25			
SP23-07	Clay/221.04	_2	_2	_2	228.530			
SP23-08	Till/213.29	_1	228.680	228.677	_1			
SP24-10	Silt/230.17	229.549	229.459	229.450	229.774			
SP24-11	Till/208.99	225.594	225.573	225.575	226.134			
SP24-13	Till/210.56	224.429	224.719	224.709	225.354			

¹Reading was not taken due to water/snow covering the area making it inaccessible.

A graphical summary of these readings is provided in Figure 6-1 that shows the groundwater elevation over time.

²Reading was not taken since the crossing design was not requested at the time.

Geotechnical Report

Land Drainage System - FINAL

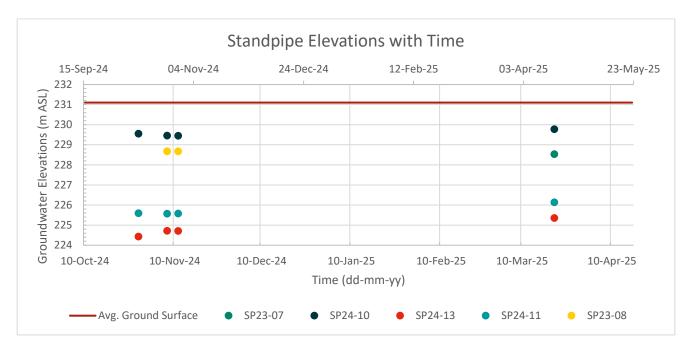


Figure 6-1: Graph of Groundwater Elevations Versus Time

Only short-term seepage and sloughing conditions were observed in the testholes. Groundwater levels will normally fluctuate during the year and will be dependent on precipitation, surface drainage, and regional groundwater regimes. Groundwater seepage and soil sloughing should be expected from the silt and are expected in trench excavations during construction.

7. Laboratory Testing Results

7.1 General

A variety of laboratory testing was performed on select samples collected from the field drilling program. Moisture content tests were conducted on soil samples recovered from the testholes with the moisture content (ASTM D2216) test results shown on the testhole records are provided in **Appendix C**. Select representative soil samples were also tested for particle size analysis (ASTM D422), Atterberg limits (ASTM D4318), unconfined compressive strength soil (ASTM D2166) and hydraulic conductivity (ASTM D5084).

7.2 Overburden Soils

Table 7-1: Grain Size Distribution (Hydrometer Analysis) Results

Testhole	Sample Depth	USCS							
No.	(m)		Gravel	Sand	Silt	Clay			
			75 to 4.75 mm	<4.75 to 0.075 mm	<0.075 to 0.002 mm				
TH23-01	1.52 - 1.98	CH	0	0.20	44.3	55.5			
TH23-01	2.13 - 2.29	CL	0	2.90	82.9	14.2			
TH23-01	10.67 - 11.13	CH	0.70	8.00	39.9	51.4			
TH23-01	19.66 - 19.81	CL	11.2	33.2	45.3	10.4			
TH23-02	0.61 - 0.76	CH	0	0.30	21.9	77.8			
TH23-02	2.13 - 2.29	CL	0	7.60	79.8	12.6			
TH23-02	5.94 - 6.1	СН	0	0.40	25.0	74.6			
TH23-03	2.13 - 2.29	CH	0	1.50	52.5	46.0			
TH23-05	1.52 - 2.13	CH	0.20	4.00	64.4	61.4			
TH23-05	4.57 - 5.18	CH	0.20	4.50	51.1	44.2			
TH23-06	2.13 - 2.29	CL	0	5.10	75.9	19.0			
TH23-06	6.1 - 6.71	CH	0	0.60	31.2	68.2			
TH23-07	0.61 - 0.76	CH	0	3.50	36.2	60.3			
TH23-07	2.13 - 2.29	CH	0	0.40	31.4	68.2			
TH23-07	2.9 - 3.05	CL	0.30	2.60	76.6	20.5			
TH23-07	9.14 - 9.6	CH	0.40	6.8	31.6	61.2			
TH23-07	19.66 - 19.81	CL	4.90	42.6	41.4	11.1			
TH23-08	1.52 - 1.98	СН	0	5.30	45.6	49.1			
TH23-08	2.13 - 2.29	CL	0	7.60	84.5	7.90			
TH23-08	7.62 - 8.08	CH	0	1.50	38.4	60.2			
TH23-08	8.99 - 9.14	CH	1.50	10.8	39.9	47.7			
TH24-10	1.37 - 1.52	ML	0	6.50	74.5	19.0			
TH24-10	6.10 - 6.55	ML	0.10	2.20	26.6	71.2			
TH24-13	2.74 - 2.90	ML	0	1.20	90.9	7.90			
TH24-13	9.14 - 9.60	CH	0	0.90	23.0	76.1			
TH24-14	2.90 - 3.05	ML	0	3.10	87.4	9.50			
TH24-14	4.57 - 5.03	CH	0	0.30	25.2	74.6			
TH24-15	6.10 - 6.55	CH	0	0.20	18.8	80.9			

Table 7-2: Atterberg Limits Test Data

Testhole	Sample Depth	uscs	Liquid Limit	Plastic Limit	Plasticity Index	Activity
No.	(m)				, , , , , , , , , , , , , , , , , , , ,	,
TH23-01	1.52 - 1.98	СН	72	23	49	0.88
TH23-01	2.13 - 2.29	CL	33	12	21	1.48
TH23-01	10.67 - 11.13	СН	75	23	52	1.01
TH23-01	19.66 - 19.81	CL	30	13	17	1.63
TH23-02	0.61 - 0.76	СН	93	27	66	0.85
TH23-02	2.13 - 2.29	CL	25	15	10	0.79
TH23-02	5.94 - 6.1	СН	91	25	66	0.88
TH23-03	2.13 - 2.29	CH	73	23	50	1.09
TH23-05	1.52 - 2.13	CH	85	25	60	0.98
TH23-05	4.57 - 5.18	СН	75	22	53	1.2
TH23-06	2.13 - 2.29	CL	38	13	24	1.26
TH23-06	6.1 - 6.71	CH	86	25	61	0.89
TH23-07	0.61 - 0.76	СН	84	26	59	0.98
TH23-07	2.13 - 2.29	CH	88	26	63	0.92
TH23-07	2.9 - 3.05	CL	35	12	23	1.12
TH23-07	9.14 - 9.6	CH	85	25	60	0.98
TH23-07	19.66 - 19.81	CL	28	13	15	1.35
TH23-08	1.52 - 1.98	CH	69	19	51	1.04
TH23-08	2.13 - 2.29	CL	23	12	11	1.39
TH23-08	7.62 - 8.08	CH	80	21	59	0.98
TH23-08	8.99 - 9.14	CH	73	17	56	1.17
TH24-10	1.37 - 1.52	ML	17	15	2	0.11
TH24-10	6.10 - 6.55	ML	90	23	66	0.93
TH24-13	2.74 - 2.90	ML	16	13	3	0.38
TH24-13	9.14 - 9.60	CH	93	24	69	0.91
TH24-14	2.90 - 3.05	ML	19	16	3	0.32
TH24-14	4.57 - 5.03	CH	95	26	69	0.92
TH24-15	6.10 - 6.55	CH	98	24	74	0.91

Geotechnical Report Land Drainage System – FINAL

Table 7-3: Unconfined Compressive Strength Test (Soil)

Testhole No.	Sample Depth (m)	USCS	Moisture Content (%)	Bulk Unit Weight (kN/m³)	Undrained Shear Strength (kPa)	Unconfined Compressive Strength (kPa)
TH23-01	1.52 - 1.98	CH	45	16.5	86.04	43.02
TH23-01	4.57 - 5.03	CH	36.6	18.2	99.19	49.59
TH23-01	7.62 - 8.08	CH	55.9	16.7	108.64	54.32
TH23-01	10.67 - 11.13	CH	47.3	18.2	63.34	31.67
TH23-01	13.72 - 14.17	CH	59.4	16.2	52.61	26.3
TH23-01	16.76 - 17.22	CH	64	17.6	45.26	22.63
TH23-05	1.52 - 2.13	CH	33.2	17.9	155.83	77.92
TH23-05	4.57 - 5.18	CH	29.5	36.4	154.45	77.22
TH23-05	7.62 - 8.23	CH	51.2	17.2	131.17	65.59
TH23-06	3.05 - 3.66	CH	40.5	16.8	74.76	37.38
TH23-06	6.1 - 6.71	CH	52.9	16.6	60.08	30.04
TH23-06	10.67 - 11.28	CH	51.4	17.1	89.73	44.86
TH23-07	6.1 - 6.55	CH	53.7	16.2	112.18	56.09
TH23-07	9.14 - 9.6	CH	50	17.8	63.27	31.63
TH23-07	12.19 - 12.65	CH	45	17.6	82.56	41.28
TH23-07	15.24 - 15.7	CH	48.1	16.9	78.73	39.36
TH23-07	18.29 - 18.75	CH	45.2	16.1	22.76	11.38
TH23-08	1.52 - 1.98	CH	35.6	19.4	46.46	23.23
TH23-08	4.57 - 5.03	CH	53.4	17	32.55	16.28
TH23-08	7.62 - 8.08	CH	46.2	17.2	66.46	33.23
TH24-10	6.1 - 6.55	CH	57.2	16.4	105.96	52.98
TH24-10	9.14 - 9.6	CH	47.5	16.8	21.72	10.86
TH24-13	3.05 - 3.51	CH	46.2	17.4	93.14	46.57
TH24-13	6.1 - 6.55	CH	52.5	16.6	23.2	11.6
TH24-13	9.14 - 9.6	CH	50.8	16.2	45.42	22.71
TH24-13	12.19 - 12.65	CH	49.7	18	44.36	22.18
TH24-13	15.24 - 15.7	CH	61	15.9	55.22	27.61
TH24-14	3.05 - 3.51	CH	43.3	17.6	68.93	34.46
TH24-14	6.1 - 6.55	CH	55.2	16.8	54.52	27.26
TH24-15	7.62 - 8.08	CH	44.4	16.7	35.72	17.86

Table 7-4: Hydraulic Conductivity Test (Soil)

Testhole No.	Sample Depth (m)	USCS	Hydraulic Conductivity, k ₂₀ (m/s)
TH23-01	4.57 - 5.18	CH	8.12293E-11
TH24-15	6.10 - 6.71	СН	7.12429E-11

8. **Geotechnical Concerns**

Based on our current understanding of the pipe layout and dry pond details, the results of our geotechnical investigation and the primary geotechnical concerns at the project site are:

- Potential soil sloughing and groundwater seepage from the shallow silt layers while performing open excavations (see Sections 9.1.1 and 9.5.7).
- Potential high porewater pressures creating lateral and uplift forces to shoring structures while performing excavations (see Section 9.2.1).
- The Factor of Safety (FS) due to artesian pressure at depth for the deepest part of the LDS pipe, located at an elevation of 222.953 mASL along Main Street (see Section 9.2.1).

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

9. Recommendations

The information included in this report is to be interpreted as information for the design team and contractor. No design determinations or decisions are made in this geotechnical section. The contractor is fully responsible for the interpretations, determination, calculations, and decisions made during the design and construction phases. This section shall only be considered as general information for the Biosolids Early Works LDS.

9.1 Anticipated Shallow Trench Soil Conditions

Since the proposed Biosolids Early Works LDS has pipes at various sizes and depths, the following section shows the anticipated trench at each section. Details of each section, including pipe elevations, are shown in the drawings as provided in the **Appendix D**.

All construction activities during trenching and installation of the Biosolids Early Works LDS shall adhere to the following City of Winnipeg Standard Construction Specifications and Standard Construction Details:

- CW 2030 Excavation Bedding and Backfill
- CW 2130 Gravity Sewers
- CW 2160 Concrete Underground Structures and Works
- SD-001: Standard Pipe Bedding Classes
- SD-002: Standard Trench and Excavation Backfill Classes

9.1.1 Twin 1350 mm LDS Pipe (Connecting Parcel B and Stormwater Pond)

The proposed twin 1350 mm LDS is located between Parcel C and Parcel B, which connects Parcel B to the stormwater pond. At this section, testholes TH24-12, TH24-13 and TH24-14 are located within the alignment of the pipe. The invert elevation at which the pipe is located at 266.594 mASL to 226.521 mASL. **Table 9-1** provides the anticipated soil stratigraphy along the proposed twin 1350 mm LDS.

Table 9-1: Anticipated Stratigraphy along the LDS Pipe Path that Connects Parcel B and the Stormwater Pond

Proposed LDS Path	Approximate Elevation of LDS	Anticipated Soil Unit	Elevation of Soil Unit (m)
Top of Pipe	227.9 mASL	Fat Clay (CH) & Silt (ML)	TH24-12 Fat Clay below 228.6 mASL
Bottom of Pipe	226.6 mASL	Fat Clay (CH)	TH24-13 Fat Clay below 227.5 mASL TH24-14 Fat Clay below 227.5 mASL

As shown in **Table 9-1**, the proposed LDS pipe is expected to be within the silt and fat clay layer. The soil layer above the pipe transitions from fat clay to silt between TH24-12 and TH24-14. Sloughing may occur during the excavation on the silt layer. Contractor shall consider a mitigation plan for the sloughing within the silt layer.

9.1.2 900 mm LDS Pipe (along the Future CPT)

The proposed 900 mm LDS pipe is located along the future CPT, which extends from the Stormwater Pond to Main Street. Along this section, testholes TH24-02 to TH24-08 (except TH24-07) are located within the alignment of the

f: 60705950 AECOM

NEWPCC Upgrade: Biosolids Facilities Early Works

Geotechnical Report

Land Drainage System - FINAL

pipe. The invert elevation at which the pipe is located is from 266.408 mASL to 223.853 mASL. **Table 9-2** provides the anticipated soil stratigraphy along the proposed 900 mm LDS pipe.

Table 9-2: Anticipated Stratigraphy along the LDS Alignment of the Future CPT

Proposed LDS Path	Average Elevation of LDS	Anticipated Soil Unit	Elevation of Soil Unit (m)
Top of Pipe	226.66 mASL	Fat Clay (CH)	On Average, from TH24-02 to TH24-08,
Bottom of Pipe	225.76 mASL	Fat Clay (CH)	Fat Clay is found below 227.4 mASL

As shown in **Table 9-2**, it is anticipated that the proposed LDS pipe will be within fat clay layer.

9.1.3 1800 mm LDS Pipe (along Main St.)

The proposed 1800 mm LDS pipe is located along Main Street, which connects the 900 mm LDS pipe along the future CPT to another 900 mm LDS pipe which connects to the John Black outfall. Along this section, testholes TH24-07 and TH24-06 are located within the alignment of the pipe. The invert elevation at which the pipe is found is from 222.953 mASL to 222.922 mASL. **Table 9-3** provides the anticipated soil stratigraphy along the proposed 1800 mm LDS pipe.

Table 9-3: Anticipated Stratigraphy along the LDS Alignment along Main St.

Proposed LDS Path	Average Elevation of LDS	Anticipated Soil Unit	Elevation of Soil Unit (m)
Top of Pipe	224.75 mASL	, ,	TH23-06 Fat Clay below 227.7 mASL
Bottom of Pipe	222.95 mASL		TH23-07 Fat Clay below 227.3 mASL

As shown in **Table 9-3**, it is anticipated that the proposed LDS pipe will be within fat clay layer.

9.1.4 900 mm LDS (Connecting 1800 mm LDS with John Black Outfall)

The 900 mm LDS pipe is found along Main Street, which connects the 1800 mm LDS pipe with the John Black Outfall. At this section, testholes TH24-07 are found within the alignment of the pipe. The invert elevation at which the pipe is found at 222.922 mASL. **Table 9-4** provides the anticipated soil stratigraphy along the proposed 900 mm LDS pipe.

Table 9-4: Anticipated Stratigraphy along the LDS Alignment that Connect John Black Outfall to the Biosolids Early Works LDS

Proposed LDS Path	Average Elevation of LDS	Anticipated Soil Unit	Elevation of Soil Unit (m)
Top of Pipe	223.82 mASL	Fat Clay (CH)	TH23-07 Fat Clay
Bottom of Pipe	222.92 mASL	Fat Clay (CH)	below 227.3 mASL

As shown in **Table 9-4**, it is anticipated that the proposed LDS pipe will be within fat clay layer.

9.2 Excavation Base Stability

The analysis in this section is based on a braced excavation. Braced excavations are expected for the open-cut pipe installations. There are various bottom depths of the proposed LDS pipe along the alignment. The maximum elevation is at 222.42 mASL, which is along Main Street (TH23-06 and TH23-07). The soil above the base acts as a surcharge

Ref: 60705950 AECOM

WSTP

NEWPCC Upgrade: Biosolids Facilities Early Works Geotechnical Report Land Drainage System – FINAL

on the soil below it. This surcharge load outside the trench may exceed the bearing capacity of the soil, resulting in bottom heaving. Factor of Safety (FS) against bottom heave has been calculated using the equation developed by Bjerrum and Eide. The equation was developed by calibrating their failure mechanisms using observation of bottom heave in clays. The equation used was:

$$(FS)_{heave} = N_c(\frac{(Su)_b}{\gamma H_o + q_S})$$

Where:

- N_c is a bearing capacity coefficient using Figure 15.26a of Muni Budhu Soil Mechanics and Foundations. N_c depends on H_o/B and L/B (H_o is the bottom of the excavation, B is the width of the excavation and L is the length of the excavation).
- γ is the unit weight of fat clay. In this calculation, 17 kN/m³ was used.
- $(Su)_b$ is the average undrained shear strength over the depth below the toe of the sheeting. In this calculation, 30 kPa was used.
- q_s is the surcharge on the surface. It has been assumed that no surcharge will be on the surface. Thus, $q_s = 0$ kPa.

Basal heave is deemed satisfactory if (FS)_{heave} is greater than 1.5. Using an average surface elevation of 231.10 mASL and a maximum excavation elevation of 222.42 mASL (accounting for the pipe wall thickness of 0.197 m and over excavation of 0.3 m for the pipe installation), and with a maximum trench width of 3 m, we estimate the FS of 1.51 to be satisfactory. The Contractor is responsible to confirm the trench details suited for their means and methods of installation, and to engage a professional engineer specialized in shoring design for the design of the temporary shoring system.

9.2.1 Buoyancy Uplift from Excess Groundwater Pressure Beneath an Impermeable Stratum

According to the Canadian Foundation Engineering Manual (CFEM 5e), when an excavation is dug into a clay deposit underlain by a pervious stratum under artesian pressure, pressure and seepage may result, leading to instability of the excavation. Basal heave analysis has been prepared for the design of the temporary excavation, excavation depth and piezometric condition within the underlying fat clay. The maximum elevation is 222.42 mASL, which is along Main Street (TH23-06 and TH23-07).

The basal heave analysis is based on the ratio of total stresses and uplift pore water pressure.

For this approach, the FS of the basal heave is expressed using the equation:

$$FS = \frac{H_C \gamma_C}{H_w \gamma_w}$$

Where:

 γ_c = unit weight of fat clay = 17 kN/m³

 H_c = thickness of the fat clay between the bottom of the excavation to the top of the glacial till = 10.625 m γ_w = unit weight of water = 9.81 kN/m³

 H_w = the total head in the glacial till layer = 16.73 m

According to the CFEM, heave due to artesian pressure at depth is deemed satisfactory if FS is greater than 1.1 (Fran, 2025). Using an average surface elevation of 231.10 mASL and a maximum excavation elevation of 222.42 mASL (accounting for the pipe wall thickness of 0.197 m and over excavation of 0.3 m for the pipe installation, we estimate the FS of 1.1 to be satisfactory. The Contractor may need to consider the development of a dewatering plan to manage artesian pressures. The Contractor is responsible for confirming their excavations details to suit their

Ref: 60705950

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Doc:

NEWPCC Upgrade: Biosolids Facilities Early Works Geotechnical Report

Land Drainage System - FINAL

means and methods and engage a professional engineer who specializes in braced excavation design prior to beginning construction.

9.3 **Frost**

9.3.1 **Frost Penetration**

The depths of frost penetration have been estimated for a range of annual air freezing identified in **Table 9-5**. The annual freezing index was inferred from Figure K-4 of the National Building Code of Canada (2020) Commentary document. The ten-year return annual freezing index was calculated using the mean annual freezing index and recommendations outlined in the Canadian Foundation Engineering Manual (CFEM 5e). The fifty-year return annual freezing index was taken from Figure K-5 of the National Building Code of Canada (2020) Commentary document.

Factors such as snow cover, vegetation at surface, soil type and groundwater conditions can all significantly impact the depth of frost penetration. The predominant soil type of the project site is fat clay.

Parameter		Period		
	Mean	10-Year Return	50-Year Return	
Annual Air Freezing Index (°C-days)	1825	1875	2375	
Estimated Frost Penetration (Fat Clay Subgrade) – gravel surface, no snow cover (m)	1.9	2.0	2.5	
Estimated Frost Penetration (Fat Clay Subgrade) – grass with snow cover (m)	1.7	1.9	2.2	

Table 9-5: Frost Penetration Depth

9.3.2 **Frost Susceptivity**

The qualitative frost susceptibility of a soil is typically assessed using guidelines developed by Casagrande (1932) based on the percentage by weight of the soil finer than 0.02 mm, and the Plasticity Index. The classification system has been adapted by the U.S. Army Corps of Engineers and the Canadian Foundation Engineering Manual (2023). Soils are classed as F1 through F4 in order of increasing frost susceptibility.

The soils (clay and silt) encountered during the geotechnical investigation fall mostly within the frost groups F3 and F4. The F3 group has high to very high susceptibility to frost and F4 has very high susceptibility. Frost susceptibility has been assigned to the encountered soil type and is summarized in Table 9-6.

Soil Unit	USCS Soil Type	Frost Group	Percentage finer than 0.02 mm, by weight	PI	Frost Susceptibility
Clay/Clay fill	CL, CH	F3	-	>12	High to very high susceptibility
Silt	ML	F4	-	-	Very high susceptibility

Table 9-6: Frost Susceptibility

Source: Canadian Foundation Engineering Manual (CFEM, 5e), Chapter 14 Frost Action.

Temporary Shoring 9.4

It is anticipated that temporary shoring will be used to facilitate excavation for the lower levels of the proposed Biosolids Early Works LDS. Comments regarding the design and temporary shoring system are therefore provided as follows. The design of the temporary shoring system should be carried out by a professional engineer specialized in shoring design.

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

NEWPCC Upgrade: Biosolids Facilities Early Works

Geotechnical Report Land Drainage System – FINAL

It is anticipated that the maximum excavation depth for the lower level of the Biosolids Early Works LDS will be approximately 7.7 m BGS (222.922 m ASL). The depth of excavation is relatively deep; thus, shoring such as sheet pile walls and additional bracing may be required. The installation of the sheet pile walls will cause vibrations on adjacent structures, the contractor should document any pre-existing cracks or settlement of adjacent infrastructures to ensure no additional damage is incurred.

In consideration of the conditions encountered in the testholes, it is recommended that the design of a shoring system consider the parameters provided in **Table 9-7**. **Table 9-7** provides the recommended earth pressure coefficients, and angle of internal friction and bulk unit weight of the fill, clay, and silt for use in the calculation of lateral earth pressures. The friction angles provided in **Table 9-7** have been assumed based on the soil conditions encountered in the testholes and consideration of literature references for similar soils.

USCS Soil Type	Soil Unit Weight (kN/m³)	Angle of Internal Friction (°)	At Rest Lateral Earth Pressure Coefficient (K_o)
Fill (CH)	18	17	0.71
Clay (CH)	17	20	0.66
Silt (SP)	18	24	0.59

Table 9-7: Lateral Earth Pressure Design Parameters

For the purpose of designing the shoring system, it is recommended that the groundwater elevation be taken as 229.9 m ASL as being the highest elevation of the groundwater level recorded in the SP installed in testhole TH24-10. It should be noted that groundwater levels observed may not be representative of stable groundwater conditions. Seasonal fluctuations due to precipitation, snow melting, drainage conditions on site and other factors may influence the groundwater levels recorded over time. Therefore, groundwater conditions at the time of construction may vary from the recorded groundwater depths above. Construction dewatering should be expected to isolate the work zone and facilitate construction in dry conditions; therefore, provisions for dewatering and groundwater control should be accounted for in the project schedule and cost.

Additionally, as previously mentioned in Section 9.2.1, the FS due to artesian pressure at depth for the deepest part of the LDS pipe, located at an elevation of 222.953 mASL along Main Street, is reported to be 1.1. While this meets the minimum satisfactory threshold as per CFEM guidelines (FS > 1.1), it is crucial to acknowledge that this value is at the lower limit of acceptability.

A perimeter ditch and associated pumping and an appropriate dewatering system should be provided to intercept surface runoff and groundwater from entering the excavation. The excavation shall abide by *The Manitoba Workplace Safety and Health Act and Regulations*.

The Instrumentation and Monitoring (I&M) plan must be carried out during the construction process and following construction to confirm that movements of the temporary shoring system are within a pre-determined acceptable range.

9.5 Stormwater Pond

9.5.1 2023-2024 Geotechnical Investigation

As discussed in Section 4, AECOM performed a geotechnical investigation in October 2023, December 2023 and January 2024. As part of the investigation, sixteen testholes were drilled, four (4) testholes were within vicinity of the Stormwater Pond, which included the testholes TH24-13, TH24-14, TH24-15 and TH24-16. The general soil stratigraphy encountered within the Stormwater Pond consisted of topsoil, silt, overlying low to high plasticity clay, and silt till. The detailed descriptions of the various soil units encountered were provided in Section 4.

Ref: 60705950 AECOM

Land Drainage System - FINAL

9.5.2 Groundwater Conditions within Stormwater Pond

Groundwater conditions encountered within the footprint of the Stormwater Pond during the investigation are summarized in **Table 9-8**.

Testhole ID	Groundwater Depth (mBGS)	Groundwater Elevation (mASL)	Date Measured
SP24-13	6.231	224.429	October 10, 2024
	5.941	224.719	October 23, 2024
	5.951	224.709	October 28, 2024
	5.306	225.354	April 17, 2025

Table 9-8: Groundwater Observations during Investigations

The groundwater observations show that the groundwater elevation within the footprint of the stormwater pond could vary between 224.429 m and 225.353 m. The slope stability analyses will utilize a groundwater elevation of 225.4 m based on the highest water conditions recorded on April 17, 2025. It is also important to note that groundwater seepage from the silt layer was observed. The contractor should be prepared to manage this issue.

9.5.3 2025 Soil Design Parameters

The soil properties used in the slope stability analyses for the Stormwater Pond are summarized in **Table 9-9**, respectively. These parameters were estimated from strength parameters from laboratory test results, published literature, local and AECOM's previous experience in slope stability issues with highly plasticity clay.

Table 9-9: Soil Parameters used in the Slope Stability Analyses

Soil Unit	γ (kN/m³)	c' (kPa)	φ' (°)
Clay Fill	18	3	17
Fat Clay (CH)	18	3	20
Silt (ML)	18	0	24
Clay Liner	18	7	19

Note: γ = soil unit weight c' = soil cohesion

 ϕ' = effective soil friction angle

9.5.4 Stormwater Pond Design

As previously mentioned, the stormwater pond is a dry pond that temporarily holds and controls excess runoff water. The stormwater pond will be constructed within the native fat clay. A silt layer along the slope of the pond will be excavated and backfilled with native fat clay. The pond design details are as follows:

- Stormwater Pond Details:
 - o Pond base elevation = 226.5 m
 - Bottom Elevation of Compacted Clay Liner = 225.5 m
 - 25-Year Storm Level = 227.96 m
 - 100-Year Storm Level = 228.26 m; and
 - Groundwater Level = 225.4 m

To analyze the stability and design side slope configurations of the stormwater pond, one cross-section was utilized. The location of the cross-sections taken are shown in drawings within **Appendix D** (Consultant No.: C201), and summarized below:

Cross-Section A: approximately 120 m in length with a slope of 7H:1V

9.5.5 Waste Disposal Cell Liner

According to the 2016 Standards for Landfills in Manitoba, all clay-lined cells or leachate ponds must be designed to achieve a maximum hydraulic conductivity of 1 x 10-9 m/s. Additionally, the clay must have a minimum thickness of 1 m, measured perpendicular to the slope, unless otherwise approved by the Director. This requirement is detailed on page 24 of the standards, which outlines the criteria for compliance.

As shown in **Table 7-4** in Section 4.2, two hydraulic conductivity tests were conducted. The hydraulic conductivity was 8.45×10^{-11} and 7.41×10^{-11} m/sec at depths of approximately 4.57 m (elev. 226.33) and 6.71 (elev. 226.33), confirming compliance with the Standards for Landfills in Manitoba by remaining below the maximum hydraulic conductivity of 1×10^{-9} m/s. For detailed lab test results, refer to **Appendix C**.

9.5.6 Slope Stability Analyses

The slope stability analyses were conducted using the Slope/W module of GeoStudio software, employing the Morgenstern-Price method with circular slip surfaces and a minimum slip surface depth of 0.1 m. The analyses considered a 100-Year Storm Level of 228.26 m and a 25-Year Storm Level of 227.96 m.

Additionally, rapid drawdown (RDD) conditions were examined to demonstrate the loss of stabilizing effect of water on the upstream face, while hydraulic pressures within the embankment remain elevated. Consequently, the stability of the upstream face of the stormwater pond is significantly reduced. Various RDD conditions are shown in the following tables.

A factor of safety (FOS) is generally used in slope stability assessments. The FOS for earthworks against shearing failure will generally vary from 1.3 to 1.5; however, the selection of the FOS for an earthen structure depends on many factors such as the importance of the structure, potential failure consequences, uncertainties involved in the design loads and soil parameters, the additional cost associated with a higher FOS and the risk the owner is willing to accept in case of failure.

For this project, an FOS of 1.3 was utilized for short-term rapid drawdown, 25-Year Storm Level, and 100-Year Storm Level conditions. An FOS of 1.5 was used for normal long-term conditions, such as an empty stormwater pond.

We have selected FOS values based on our experience, review of published literature including US Army Corp of Engineers (EM1110-2-1902) and generally accepted geotechnical engineering practices.

The results of the slope stability analyses are provided in **Table 9-10** and **Table 9-11**, respectively. The figures and results are presented separately in **Appendix E**.

Table 9-10: Slope Stability Analyses Results for Cross-Section A (West to East)

Figure	Description	Factor of Safety
1	Empty Stormwater Pond	2.90
2	Stormwater Pond Operating at 25-Year Storm Level	2.52
3	Rapid Drawdown from 25-Year Storm Level to base	2.11
4	Stormwater Pond Operating at 100-Year Storm Level	2.58
5	Rapid Drawdown from 100-Year Storm Level to 25-Year Storm Level	2.43

Geotechnical Report

Land Drainage System - FINAL

Table 9-11: Slope Stability Analyses Results for Cross-Section A (East to West)

Figure	Description	Factor of Safety
6	Empty Stormwater Pond	2.95
7	Stormwater Pond Operating at 25-Year Storm Level	2.58
8	Rapid Drawdown from 25-Year Storm Level to base	2.12
9	Stormwater Pond Operating at 100-Year Storm Level	2.65
10	Rapid Drawdown from 100-Year Storm Level to 25-Year Storm Level	2.47

Based on the slope stability analyses, the proposed Stormwater Pond configuration satisfies all FOS against slope stability failures.

9.5.7 **Stormwater Pond Construction Comments**

Based on the Stormwater Pond base elevation of 226.5 m and a groundwater elevation of 225.4 m in SP24-13, approximately 2.8 m of clay will be excavated below the groundwater surface. The construction team must consider the following:

- The safety of the excavation will be affected by groundwater infiltration from the silt layer. The construction team must have a dewatering plan to be able to complete the excavation.
- Sloughing may occur during the excavation on the silt layer. Contractor shall consider a mitigation plan for the sloughing within the silt layer.
- The dewatering plan may include a perimeter ditch and a sump pump to collect and remove the groundwater.
- A thin silt layer is expected along the slopes of the Stormwater Pond. It is recommended to excavate a thickness of 1-m of this thin silt layer and use the excavated clay as a clay liner, compacted to 95% SPMDD and maximum lift thickness of 6 inches.

9.6 Seismic Considerations

As per the CFEM, the site classification for seismic site response is dependent on the average properties in the top 30 m of the soil profile. Based on a soil profile having more than 3 m of high plasticity clay and Article 4.1.8.4 of the National Building Code of Canada (NBCC) 2020, a Seismic Site Class E can be assigned to the site.

The 2020 NBCC Seismic Hazard Calculation for the site is provided in Appendix F. It includes values of spectral acceleration (for time periods of 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 5.0 and 10.0 seconds), peak ground acceleration, and peak ground velocity for 2%, 5%, 10% and 40% probability of exceedance in 50 years.

Quality Assurance and Quality Control 9.7

During construction, it is recommended that the contractor provides an approved quality assurance and quality control program (QA/QC). This program should include but is not limited to periodic testing of granular gradation, L.A. abrasion loss, material proctors, field density test, bedding sand and compaction.

RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

10. References

Bezys, R. K., Bamburak, J. D., & Conley, G. G. (2002). *Bedrock Mineral Resources of Manitoba's Capital Region. Winnipeg: Manitoba Geological Survey.*

Canadian Commission on Building and Fire Codes, (2020). *National Building Code of Canada (NBCC) 2020.* National Research Council of Canada 2022.

The Canadian Geological Society. (2023). Canadian Foundation Engineering Manual 5th Edition.

Muni Budhu, (2010). Soil Mechanics and Foundations 3rd Edition.

American Society for Testing and Materials, (2017). D2487 - Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classificiation System).

James A. Farny (2001). Concrete Floors on Ground. Portland Cement Association.

City of Winnipeg, (2022). CW 3110 - Sub-Grade, Sub-Base, and Base Course Construction.

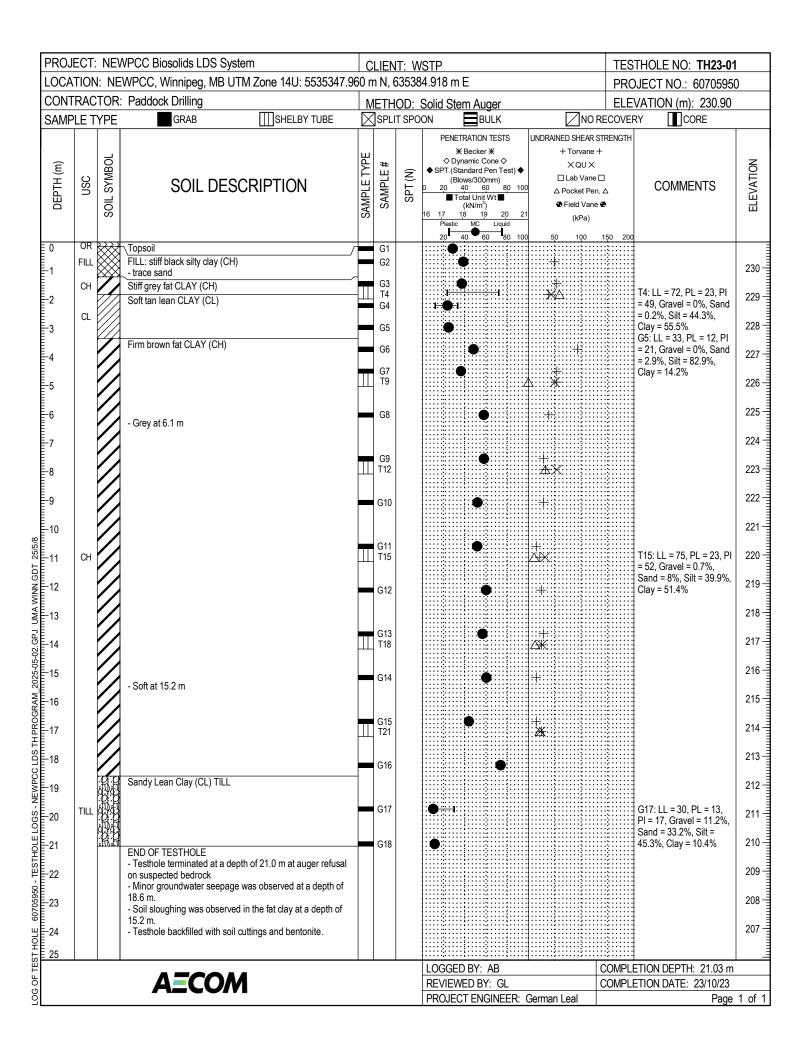
City of Winnipeg, (2018). THE CITY OF WINNIPEG SEWER BY-LAW NO. 106/2018.

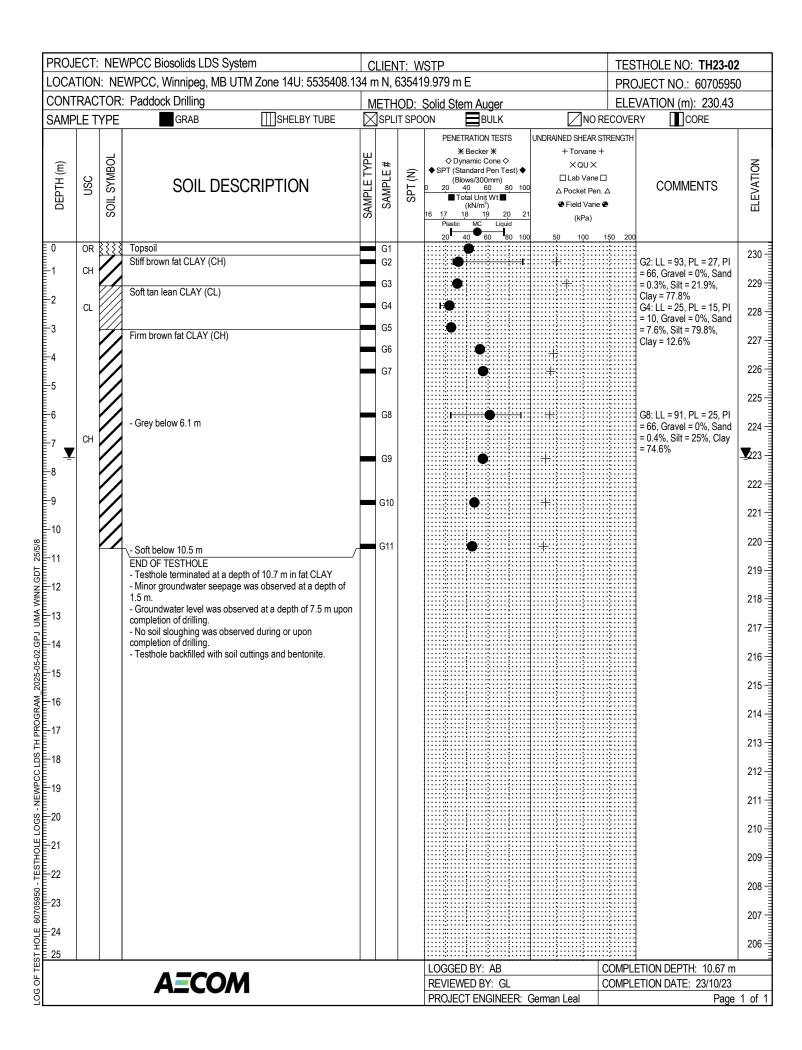
City of Winnipeg, (2005). CW 2030 – Excavation, Bedding and Backfill.

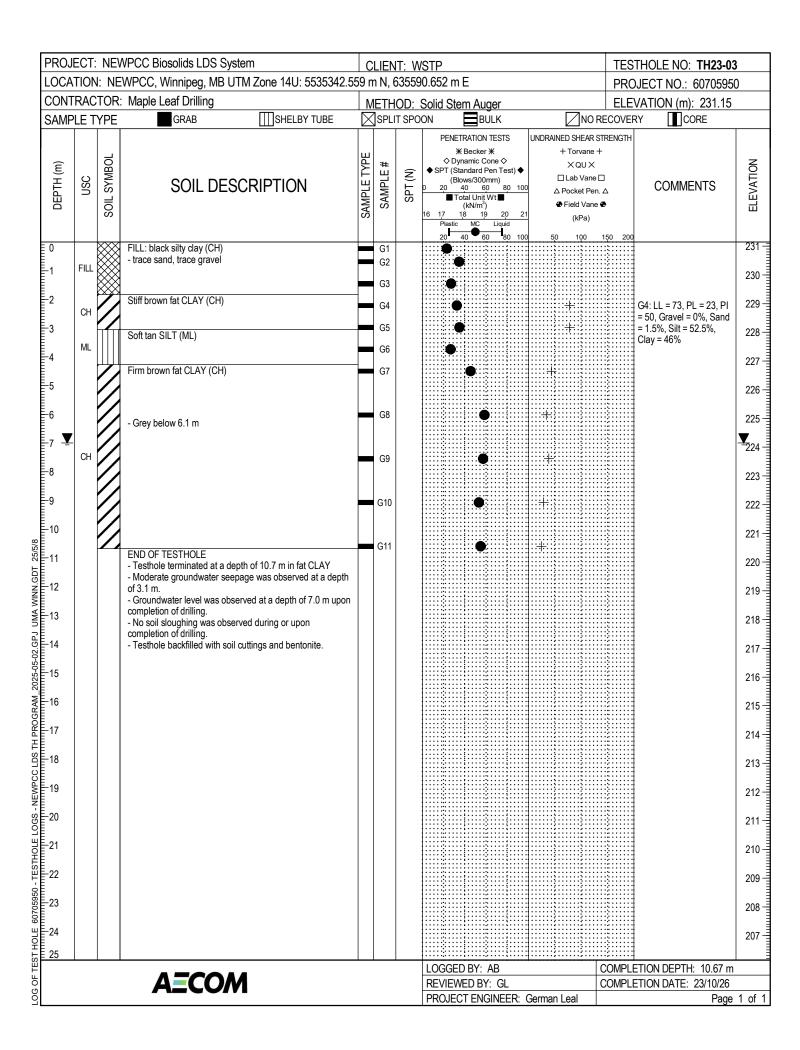
Ref: 60705950

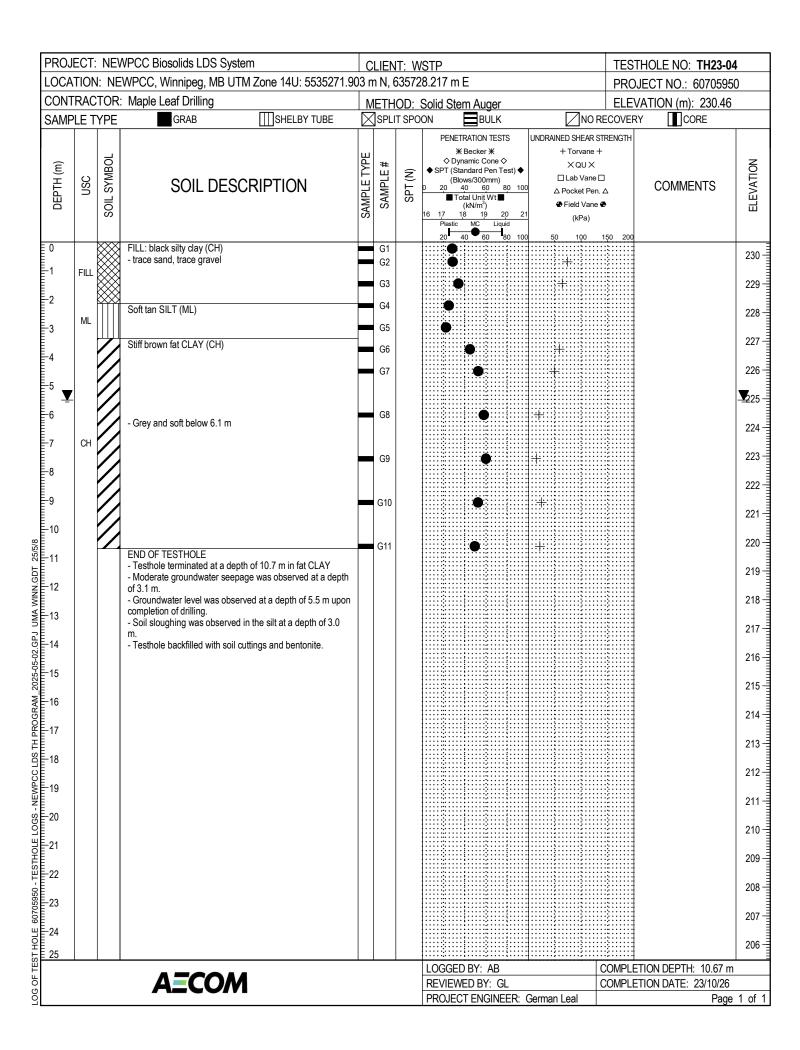
RPT-Biosolids Early Works LDS-Geotechnical Report-FINAL-60705950-20250807.Docx

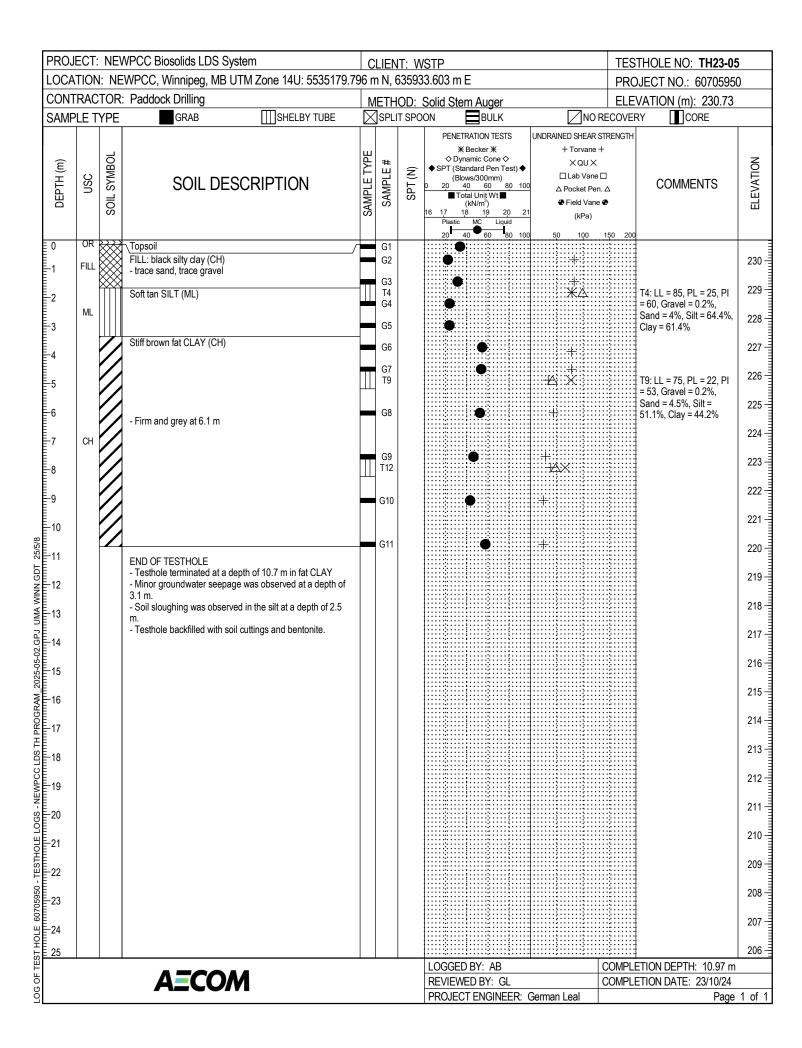
Appendix A

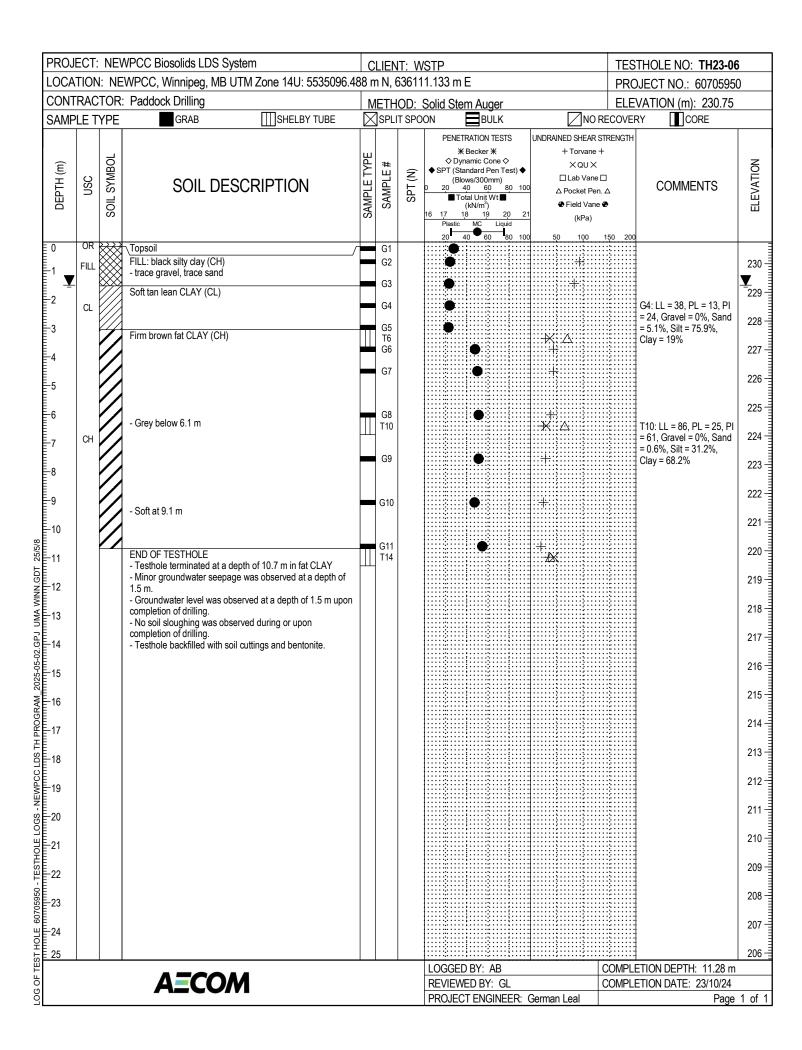

Testhole Location Plan

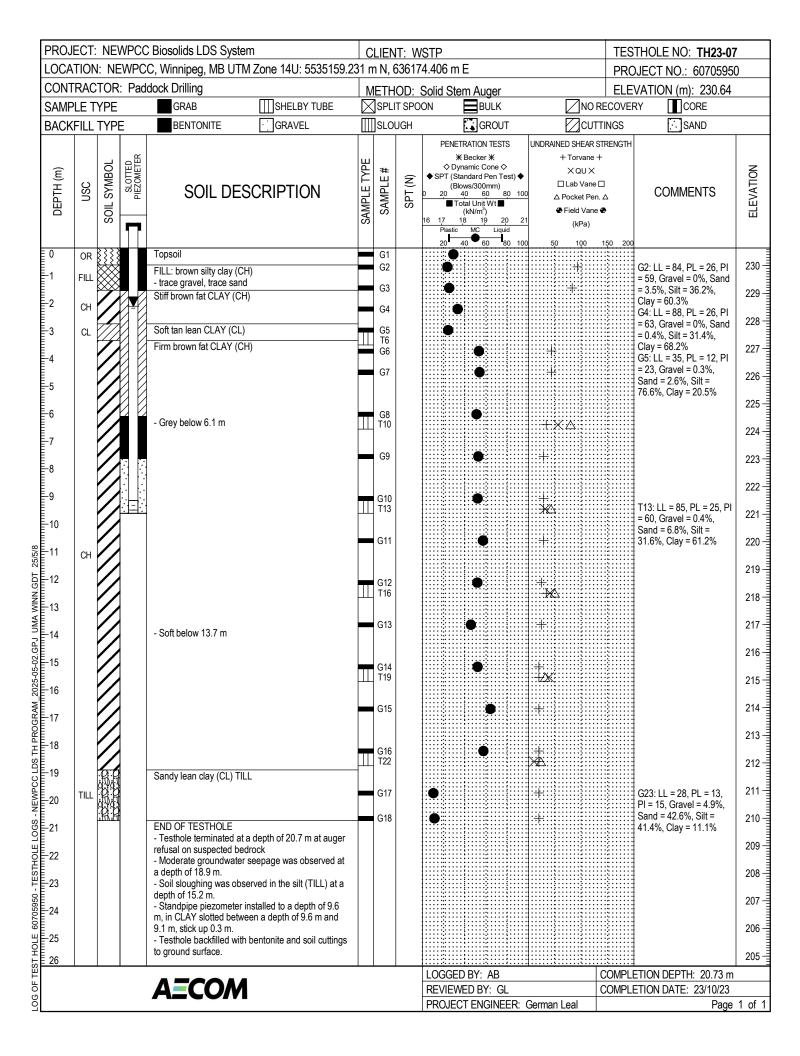


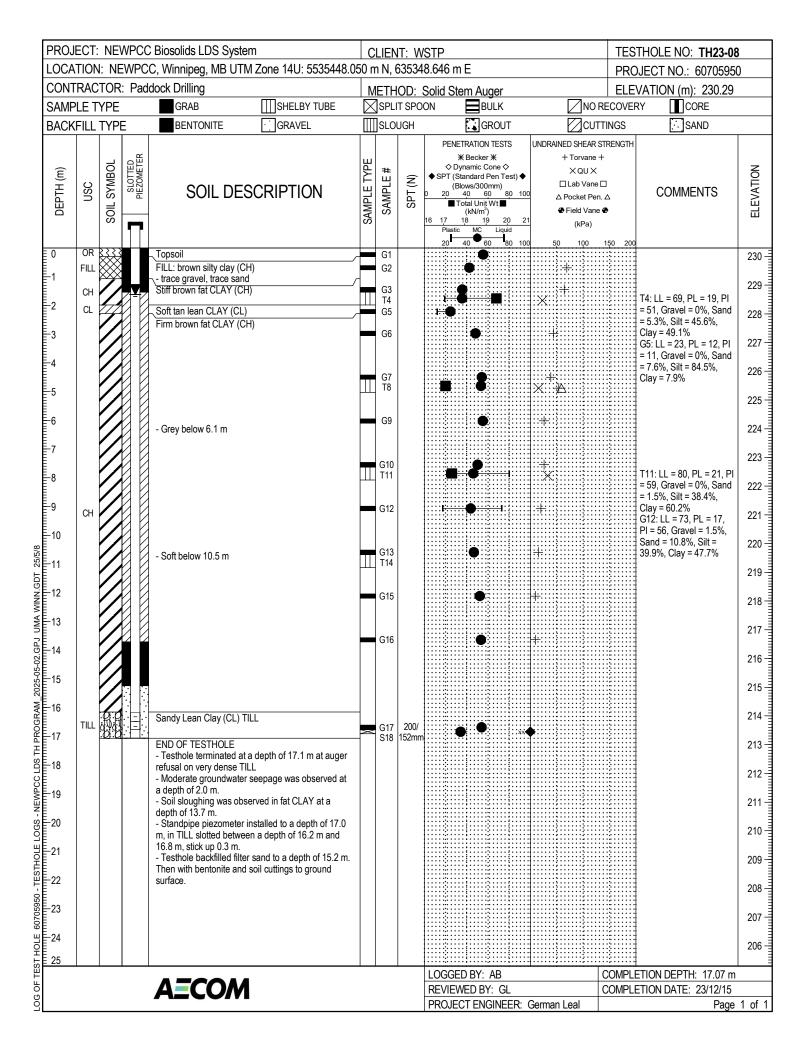

AECOM

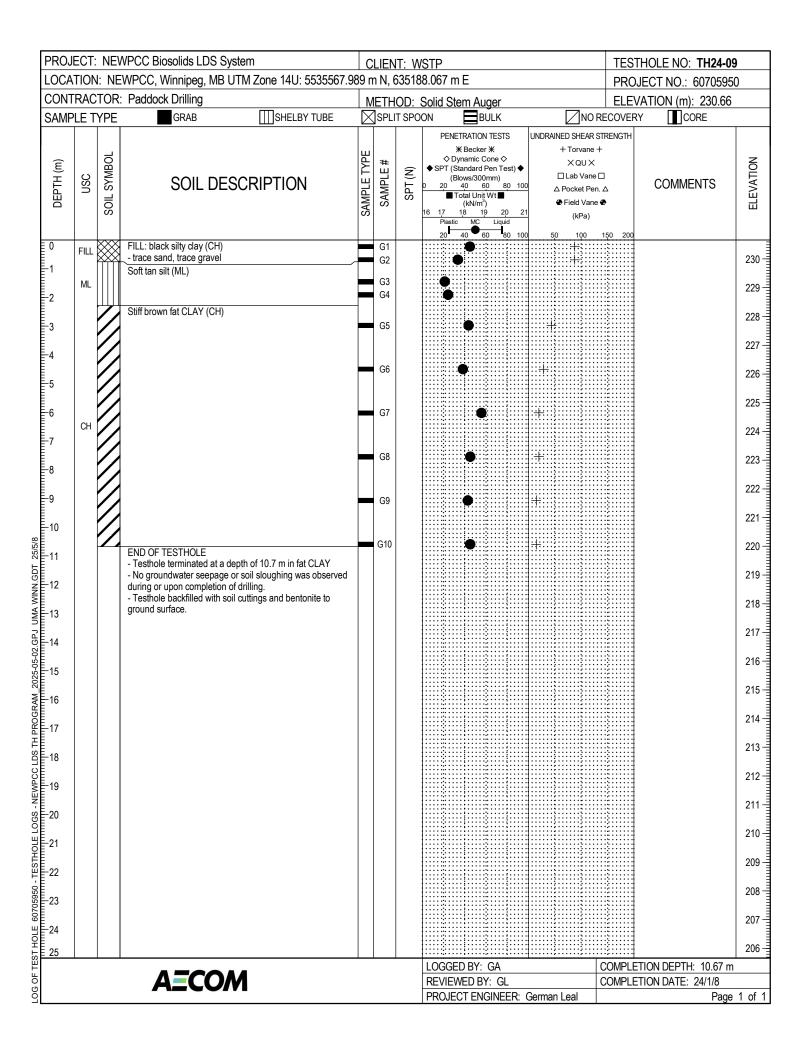

Appendix **B**

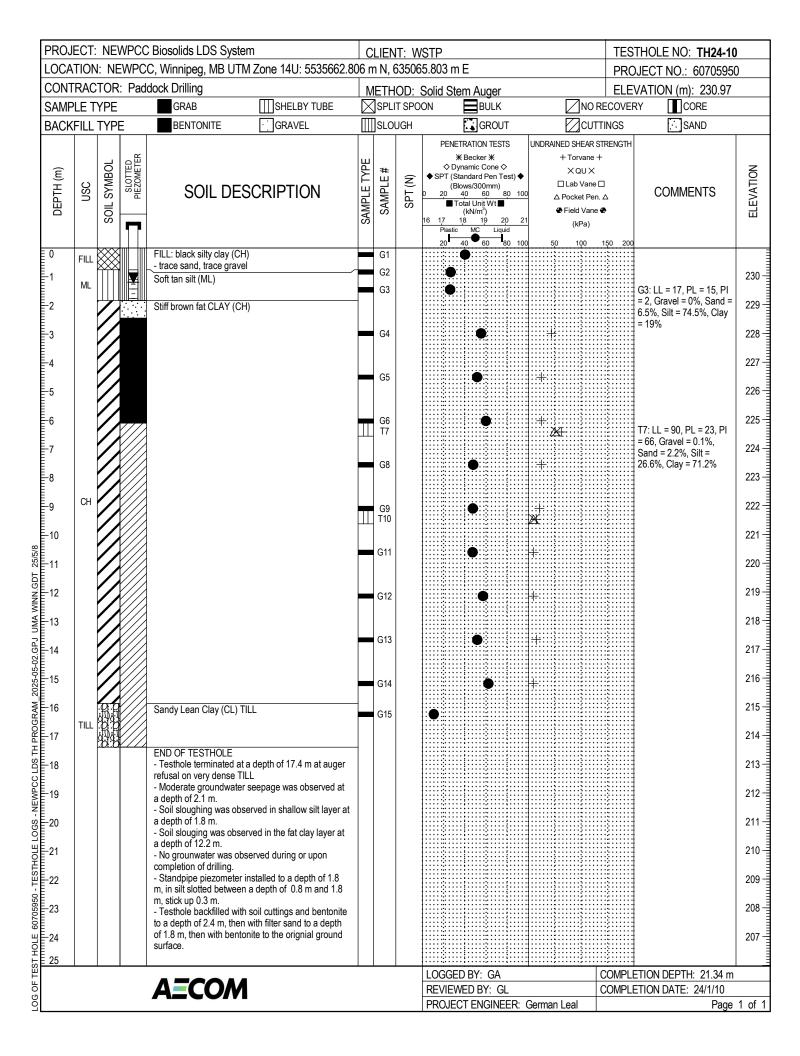

Testhole Logs

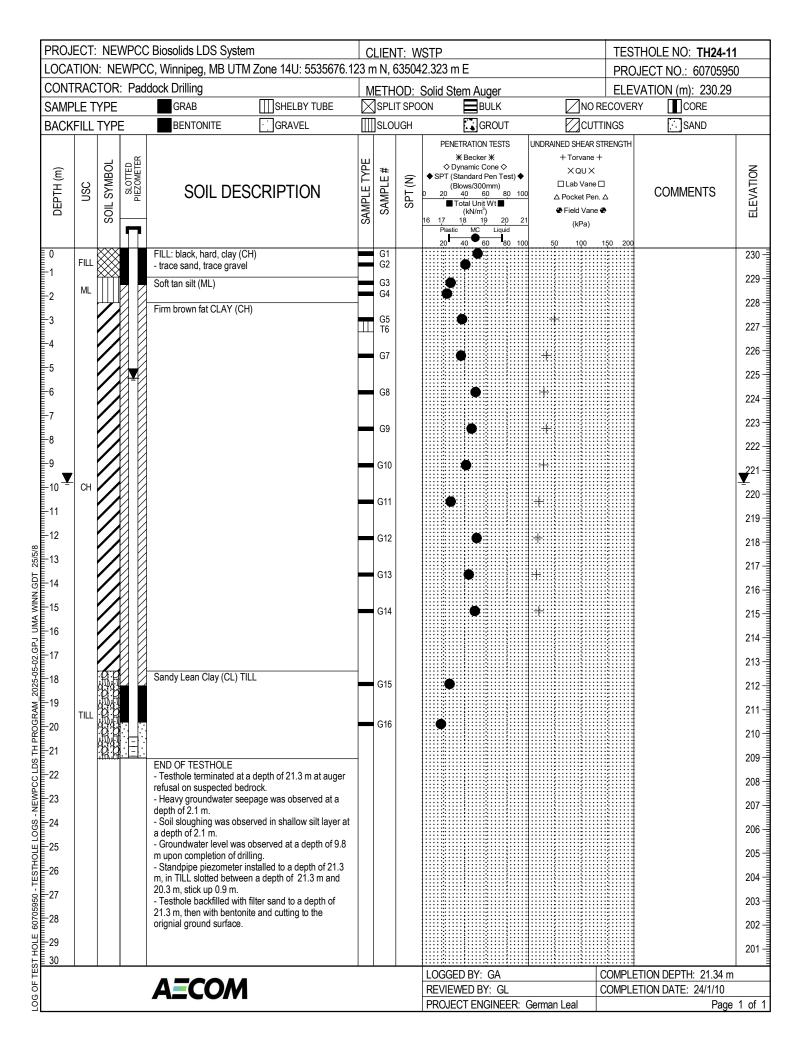


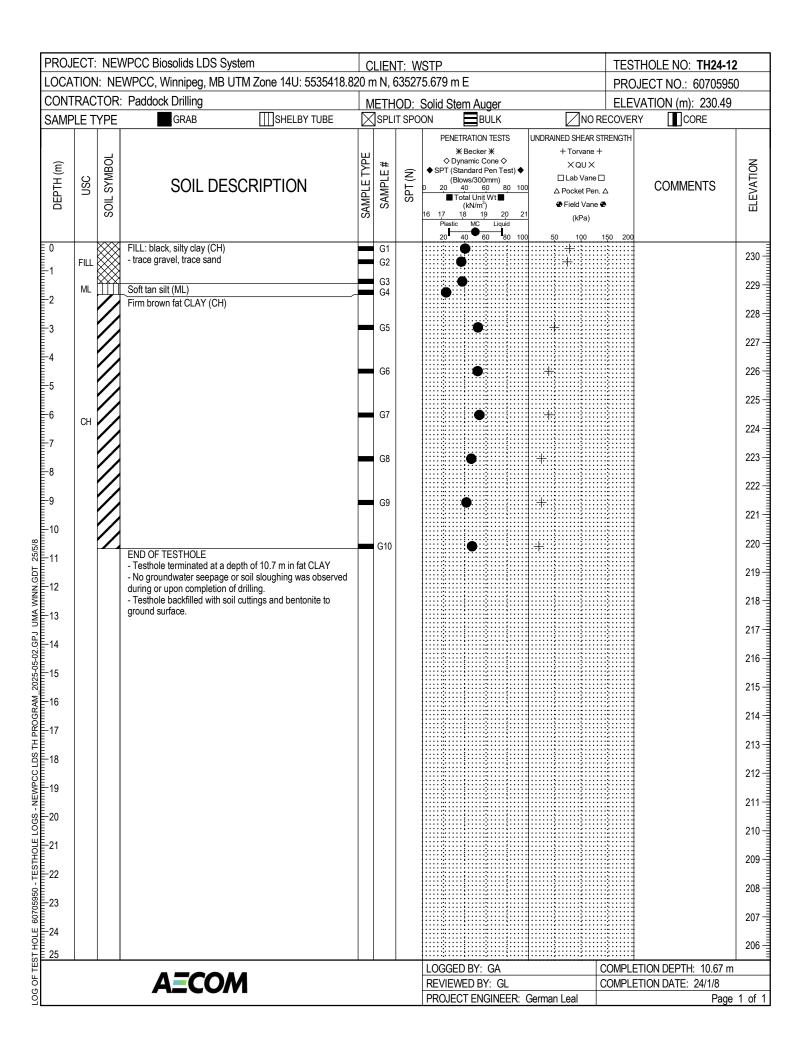


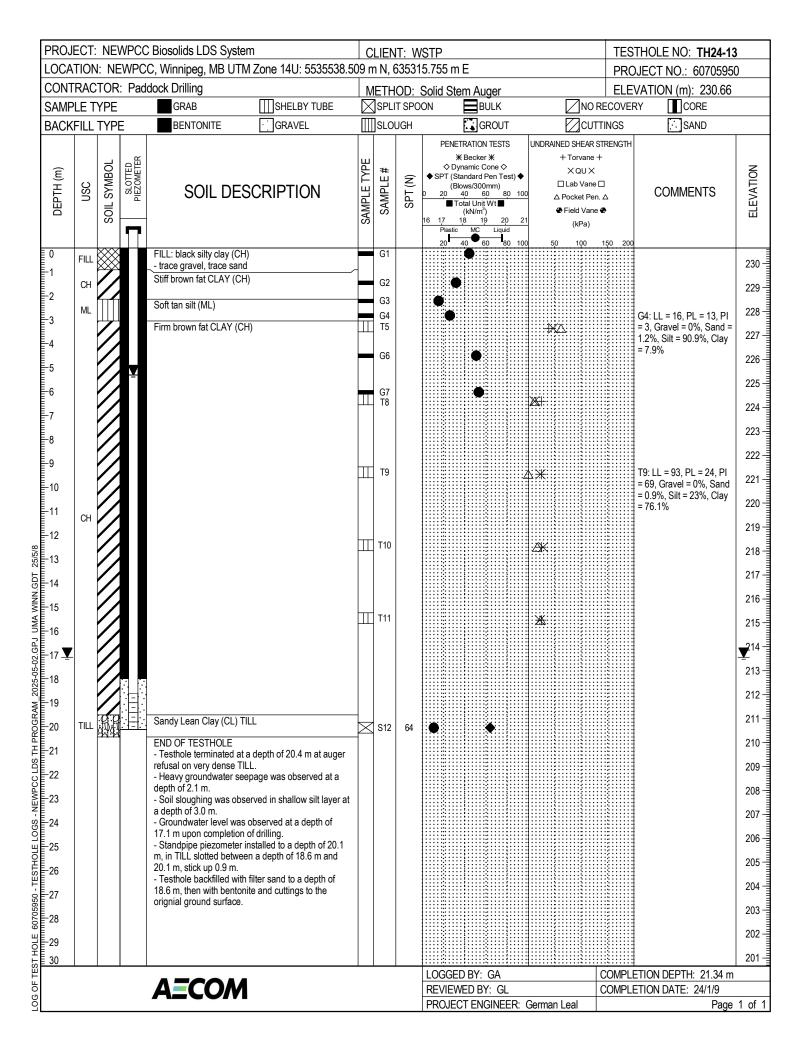


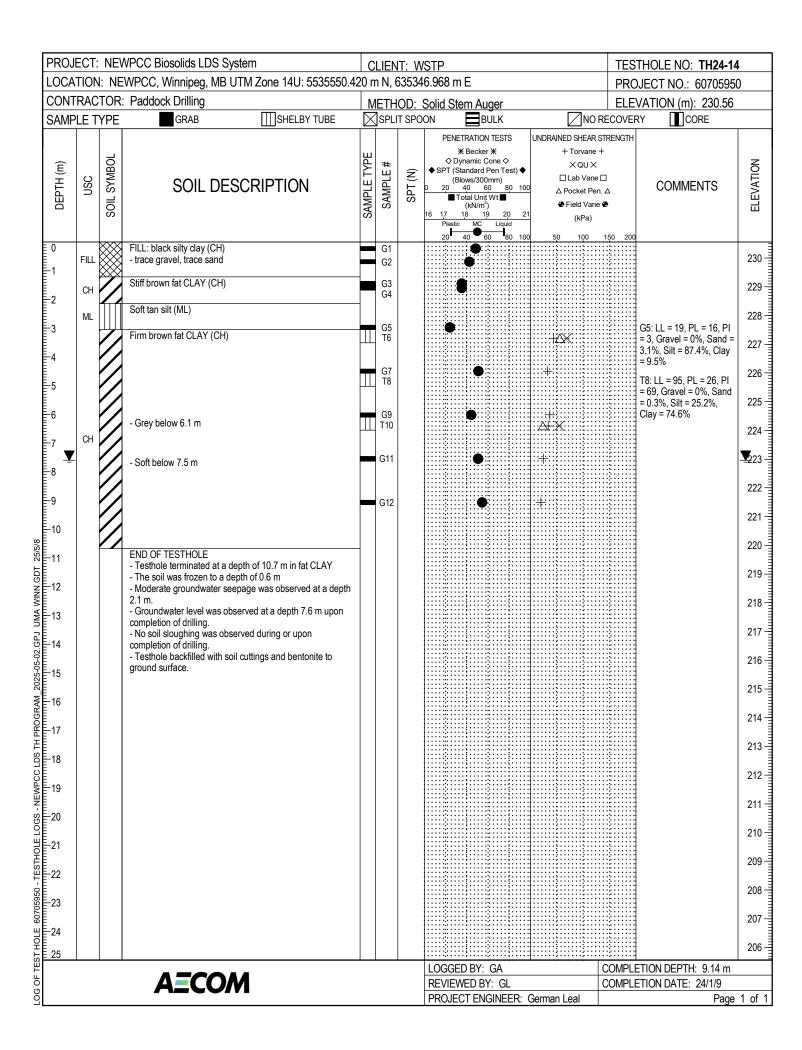


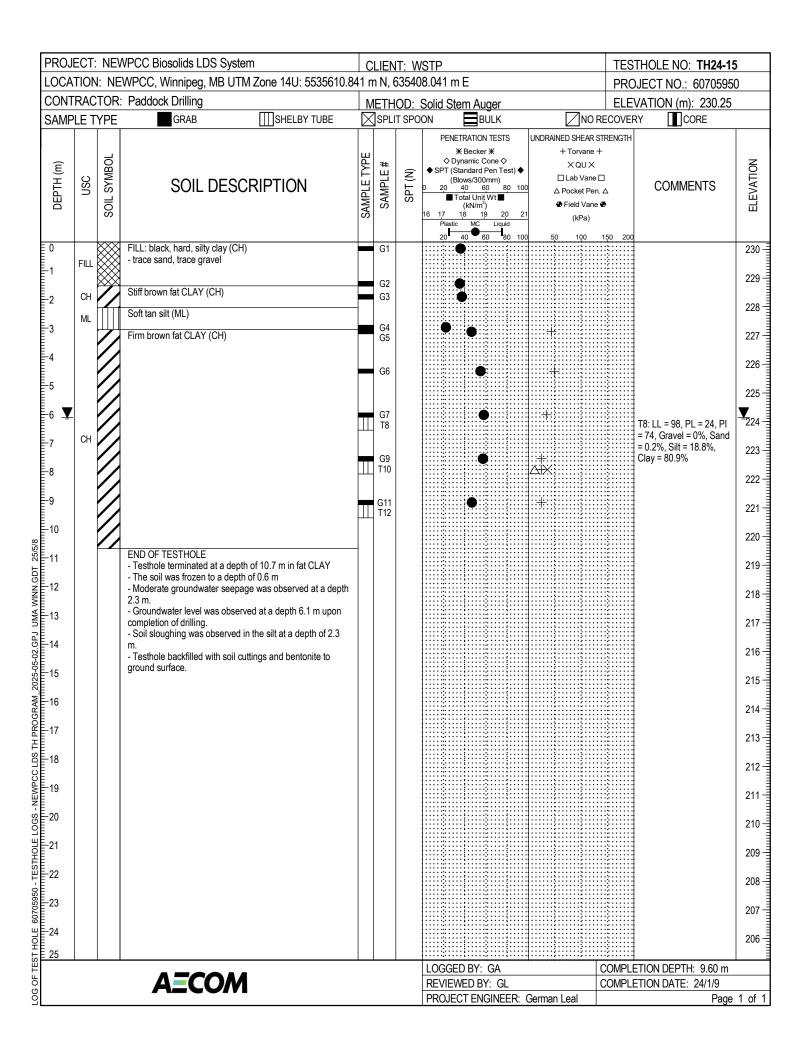


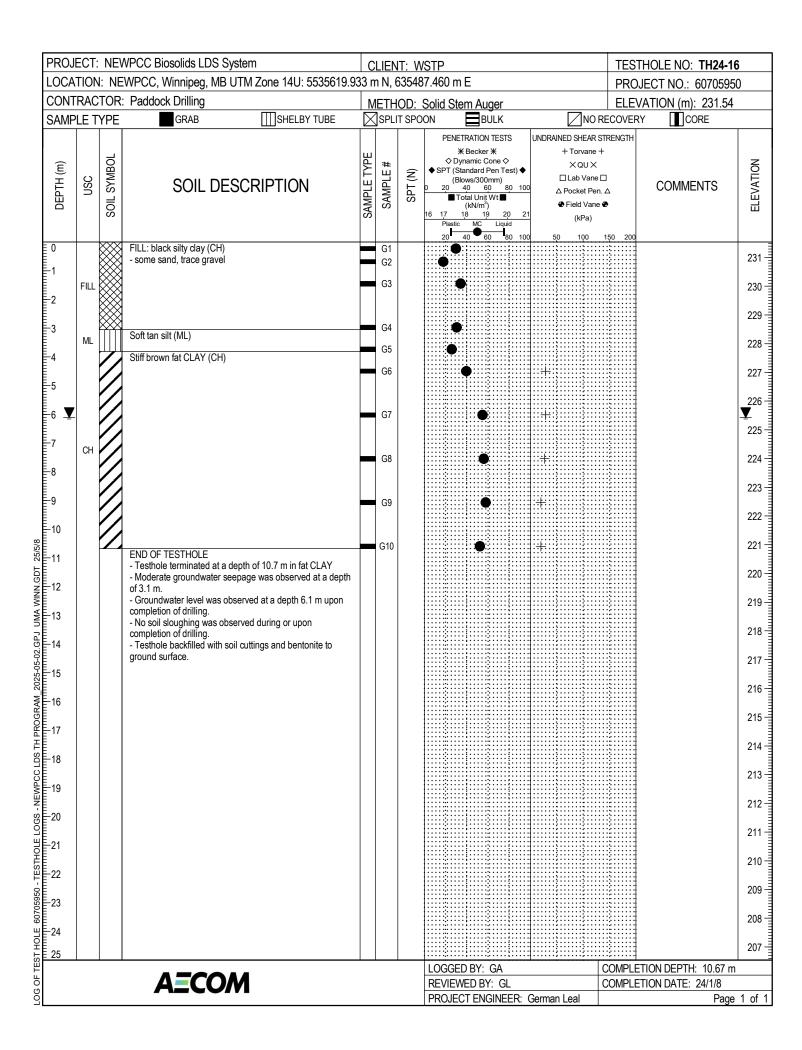












AECOM

Appendix C

Lab Test Results

AECOM 99 Commerce Drive Winnipeg, MB, Canada R3P 0Y7 www.aecom.com

204 477 5381 tel 204 284 2040 fax

Memorandum

То	Gene Acurin			Page 1
CC				
Subject	NEWPCC - Biosolids Early Works			
From	German Leal			
Date	October 29, 2024	Project Number	60705950	

Please find attached the following material test result(s) on sample(s) submitted to the Winnipeg Geotechnical Laboratory:

- One Hundred eighty-eight (188) Moisture Content Determination Test.
- Twenty-eight (28) Atterberg Limits (3 Points) Test.
- Twenty-eight (28) Grain Size Distribution (Hydrometer method) Test.
- Thirty-three (33) Unconfined Compressive Strength Tests.
- Two (2) Hydraulic Conductivity Tests.

If you have any questions, please contact the undersigned.

Prepared by: Reviewed by:

Boughton, Digitally signed by Boughton, Lee DN: cn=Boughton, Lee, ou=CAWPG1, emill=Lee Boughton@aecom.com Date: 2024.10.29 11:04:00 -05'00'

Digitally signed by Leal, German DN: cn=Leal, German, ou=CAWPG1, email=German.Leal@aecom.com Date: 2024.12.12 12:31:05 -06'00' German

Lee Boughton Laboratory Manager German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical

Leal,

Att.

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	Winnipeg, Manitoba
Sample Depth:	Varies
Sample Number:	Varies

Supplier:	AECOM
Specification:	N/A
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	LBoughton
Date Tested:	November 1, 2023

Moisture Content (ASTM D2216-10)

Location	Sample	Depth (m)	Moisture
			Content (%)
TH23-01	G1	0.15 - 0.30 m	28.6%
	G2	0.61 - 0.76 m	38.6%
	G3	1.37 - 1.52 m	37.2%
	G4	2.13 - 2.29 m	23.7%
	G5	2.90 - 3.05 m	24.7%
	G6	3.66 - 3.81 m	48.3%
	G7	4.42 - 4.57 m	36.4%
	G8	5.94 - 6.10 m	58.0%
	G9	7.47 - 7.62 m	58.1%
	G10	8.99 - 9.14 m	52.0%
	G11	10.52 - 10.67 m	51.7%
	G12	12.04 - 12.19 m	60.2%
	G13	13.56 - 13.72 m	56.7%
	G14	15.09 - 15.24 m	60.4%
	G15	16.61 - 16.76 m	44.0%
	G16	18.14 - 18.29 m	73.8%
	G17	19.66 - 19.81 m	10.2%
	G18	20.88 - 21.03 m	11.6%
TH23-02	G1	0.15 - 0.30 m	41.9%
	G2	0.61 - 0.76 m	32.1%
	G3	1.37 - 1.52 m	31.1%
	G4	2.13 - 2.29 m	23.6%
	G5	2.90 - 3.05 m	25.2%
	G6	3.66 - 3.81 m	52.5%
	G7	4.42 - 4.57 m	55.4%
	G8	5.94 - 6.10 m	61.7%
	G9	7.47 - 7.62 m	55.2%
	G10	8.99 - 9.14 m	47.2%
	G11	10.52 - 10.67 m	45.1%
TH23-03	G1	0.15 - 0.30 m	23.0%
	G2	0.61 - 0.76 m	34.7%
	G3	1.37 - 1.52 m	27.1%
	G4	2.13 - 2.29 m	32.5%
	G5	2.90 - 3.05 m	34.9%
	G6	3.66 - 3.81 m	26.6%
	G7	4.42 - 4.57 m	45.5%
	G8	5.94 - 6.10 m	58.6%
	G9	7.47 - 7.62 m	57.3%

Landen	0	Don'th (m)	Moisture
Location	Sample	Depth (m)	Content (%)
	G10	8.99 - 9.14 m	53.3%
	G11	10.52 - 10.67 m	55.0%
TH23-04	G1	0.15 - 0.30 m	28.1%
	G2	0.61 - 0.76 m	28.5%
	G3	1.37 - 1.52 m	34.0%
	G4	2.13 - 2.29 m	24.9%
	G5	2.90 - 3.05 m	22.3%
	G6	3.66 - 3.81 m	44.9%
	G7	4.42 - 4.57 m	52.7%
	G8	5.94 - 6.10 m	58.0%
	G9	7.47 - 7.62 m	60.0%
	G10	8.99 - 9.14 m	52.5%
	G11	10.52 - 10.67 m	49.4%
TH23-05	G1	0.15 - 0.30 m	33.7%
	G2	0.61 - 0.76 m	22.2%
	G3	1.37 - 1.52 m	31.4%
	G4	2.13 - 2.29 m	23.8%
	G5	2.90 - 3.05 m	23.6%
	G6	3.66 - 3.81 m	54.6%
	G7	4.42 - 4.57 m	53.6%
	G8	5.94 - 6.10 m	52.4%
	G9	7.47 - 7.62 m	46.3%
	G10	8.99 - 9.14 m	43.2%
	G11	10.52 - 10.67 m	57.5%
TH23-06	G1	0.15 - 0.30 m	27.6%
	G2	0.61 - 0.76 m	24.2%
	G3	1.37 - 1.52 m	23.3%
	G4	2.13 - 2.29 m	23.8%
	G5	2.90 - 3.05 m	22.8%
	G6	3.66 - 3.81 m	47.8%
	G7	4.42 - 4.57 m	50.0%
	G8	5.94 - 6.10 m	51.2%
	G9	7.47 - 7.62 m	51.2%
	G10	8.99 - 9.14 m	47.4%
	G11	10.52 - 10.67 m	54.7%
TH23-07	G1	0.15 - 0.30 m	29.2%
	G2	0.61 - 0.76 m	23.6%
_	G3	1.37 - 1.52 m	25.3%

Phone: 204 477 5381 Fax: 204 284 2040

Project Name: NEWPCC Biosolids Early Works
Project Number: 60705950

Client: WSTP

Sample Location: Winnipeg, Manitoba

Sample Depth: Varies

Sample Number: Varies

Supplier:	AECOM
Specification:	N/A
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	LBoughton

Moisture Content (ASTM D2216-10)

	1	1	
Location	Sample	Depth (m)	Moisture
Location	Cample	Doput (III)	Content (%)
	G4	2.13 - 2.29 m	33.3%
	G5	2.90 - 3.05 m	24.3%
	G6	3.66 - 3.81 m	53.3%
	G7	4.42 - 4.57 m	53.9%
	G8	5.94 - 6.10 m	51.1%
	G9	7.47 - 7.62 m	52.8%
	G10	8.99 - 9.14 m	52.2%
	G11	10.52 - 10.67 m	57.2%
	G12	12.04 - 12.19 m	51.9%
	G13	13.56 - 13.72 m	45.8%
	G14	15.09 - 15.24 m	52.1%
	G15	16.61 - 16.76 m	64.2%
	G16	18.14 - 18.29 m	57.6%
	G17	19.66 - 19.81 m	10.3%
	G18	20.57 - 20.73 m	11.4%

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	Winnipeg, Manitoba
Sample Depth:	Varies
Sample Number:	Varies

Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	December 15, 2023
Lab Technician:	LBoughton
Date Tested:	December 17, 2023

Moisture Content (ASTM D2216-10)

Location	Sample	Depth (m)	Moisture Content (%)
TH23-08	G1	0.00 - 0.00 m	55.5%
	G2	0.00 - 0.00 m	42.4%
	G3	0.00 - 0.00 m	35.7%
	T4	0.00 - 0.00 m	-
	G5	0.00 - 0.00 m	24.6%
	G6	0.00 - 0.00 m	48.3%
	G7	0.00 - 0.00 m	54.2%
	T8	0.00 - 0.00 m	-
	G9	0.00 - 0.00 m	55.2%
	G10	0.00 - 0.00 m	50.2%
	T11	0.00 - 0.00 m	-
	G12	0.00 - 0.00 m	43.8%
	G13	0.00 - 0.00 m	46.7%
	T14	0.00 - 0.00 m	-
	G15	0.00 - 0.00 m	52.3%
	G16	0.00 - 0.00 m	53.4%
	G17	0.00 - 0.00 m	54.0%
	G18	0.00 - 0.00 m	34.2%

Phone: 204 477 5381 Fax: 204 284 2040

Project Name: NEWPCC Biosolids Early Works

Varies

Sample Number:

Project Number: 60705950

Client: WSTP

Sample Location: Winnipeg, Manitoba

Sample Depth: Varies

Supplier: AECOM
Field Technician: ABonifacio
Sample Date: January 12, 2024
Lab Technician: LBoughton
Date Tested: January 15, 2024

Moisture Content (ASTM D2216-10)

			Moisture
Location	Sample	Depth (m)	Content (%)
TH24-09	G1	0.30 m	44.9%
	G2	0.76 m	33.5%
	G3	1.52 m	21.1%
	G4	1.98 m	24.2%
	G5	3.05 m	43.6%
	G6	4.57 m	38.2%
	G7	6.10 m	55.8%
	G8	7.62 m	45.2%
	G9	9.14 m	42.9%
	G10	10.67 m	45.1%
TH24-10	G1	0.30 m	40.3%
	G2	0.76 m	26.7%
	G3	1.52 m	26.2%
	G4	3.05 m	55.4%
	G5	4.57 m	51.7%
	G6	6.10 m	60.0%
	G8	7.62 m	48.0%
	G9	9.14 m	47.7%
	G11	10.67 m	47.4%
	G12	12.19 m	57.2%
	G13	13.72 m	51.8%
	G14	15.24 m	62.3%
	G15	16.31 m	10.7%
TH24-11	G1	0.30 m	52.2%
	G2	0.76 m	40.6%
	G3	1.52 m	26.6%
	G4	1.98 m	23.2%
	G5	3.05 m	37.4%
	G7	4.57 m	36.4%
	G8	6.10 m	50.2%
	G9	7.62 m	46.5%
	G10	9.14 m	41.2%
	G11	10.67 m	26.7%
	G12	12.19 m	51.2%
	G13	13.72 m	43.8%
	G14	15.24 m	49.5%
	G15	18.29 m	25.6%
	G16	19.96 m	17.5%

	1		Moisture
Location	Sample	Depth (m)	Content (%)
TH24-12	G1	0.30 m	40.4%
1112112	G2	0.76 m	36.7%
	G3	1.52 m	37.6%
	G4	1.98 m	22.4%
	G5	3.05 m	52.5%
	G6	4.57 m	52.2%
	G7	6.10 m	53.8%
	G8	7.62 m	46.2%
	G9	9.14 m	41.6%
	G10	10.67 m	46.9%
TH24-13	G1	0.30 m	44.3%
	G2	0.76 m	31.7%
	G3	1.52 m	15.3%
	G4	2.90 m	25.9%
	G6	4.57 m	50.8%
	G7	6.10 m	53.2%
	G12	20.27 m	10.7%
TH24-14	G1	0.30 m	48.4%
	G2	0.76 m	42.4%
	G3	1.52 m	35.2%
	G4	1.68 m	35.3%
	G5	3.05 m	24.1%
	G7	4.57 m	51.0%
	G9	6.10 m	44.3%
	G11	7.62 m	50.7%
	G12	9.14 m	54.5%
TH24-15	G1	0.30 m	36.0%
	G2	0.76 m	35.3%
	G3	1.98 m	37.3%
	G4	3.05 m	22.2%
	G5	3.20 m	46.4%
	G6	4.57 m	54.9%
	G7	6.10 m	58.0%
	G9	7.62 m	57.2%
	G11	9.14 m	46.7%
Th24-16	G1	0.30 m	29.7%
	G2	0.76 m	17.8%
	G3	1.52 m	34.2%

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	Winnipeg, Manitoba
Sample Depth:	Varies
Sample Number:	Varies

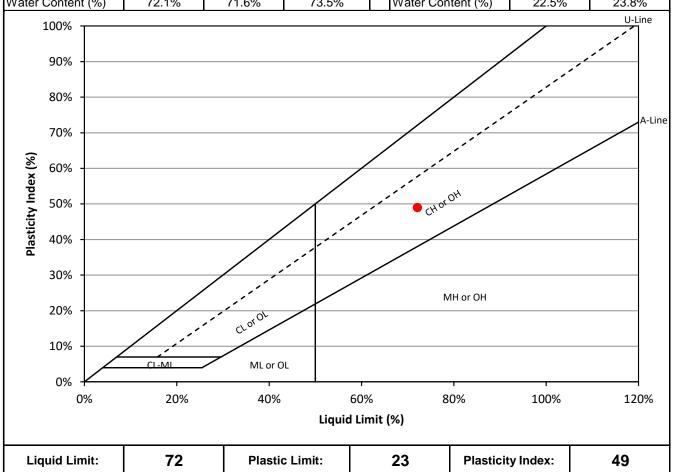
Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	January 15, 2024

Moisture Content (ASTM D2216-10)

Location	Sample	Depth (m)	Moisture Content (%)
TH24-16	G4	3.05 m	30.5%
	G5	3.81 m	25.8%
	G6	4.57 m	39.6%
	G7	6.10 m	54.9%
	G8	7.62 m	56.1%
	G9	9.14 m	57.9%
	G10	10.67 m	52.4%

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Depth:	1.52 - 1.98 m
Sample Number	TΔ

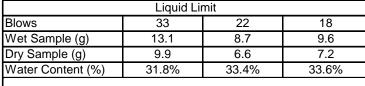

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

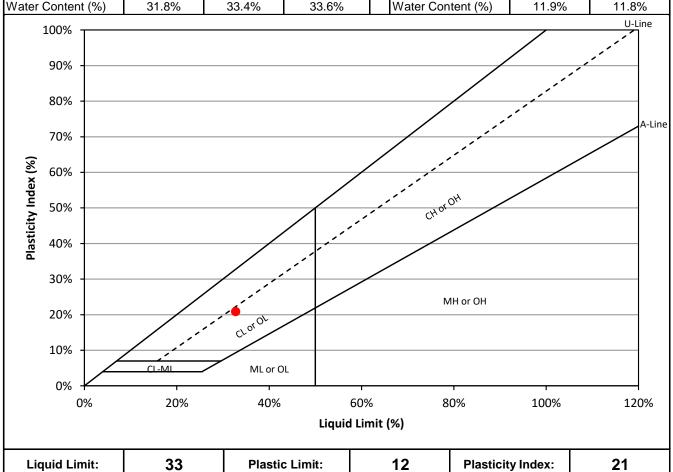
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.8	4.8	
Water Content (%)	22.5%	23.8%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Location: Sample Depth:	TH23-01 2.13 - 2.29 m


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

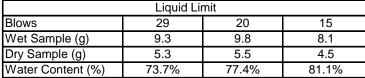
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	5.2	5.3	
Water Content (%)	11.9%	11.8%	

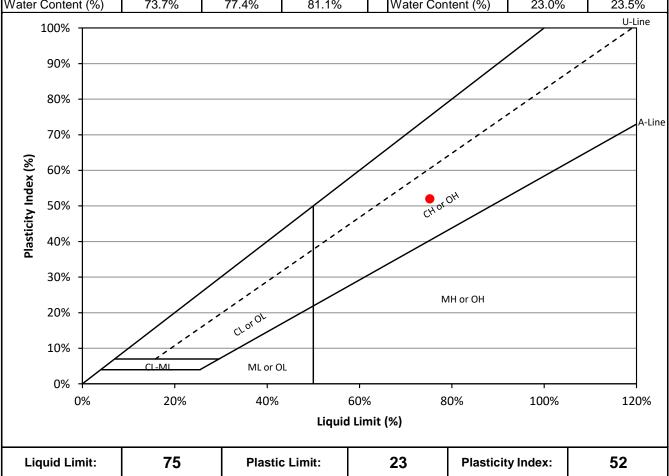
Reviewed by: Lee Boughton

Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Depth:	10.67 - 11.13 m
Sample Number:	T15


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

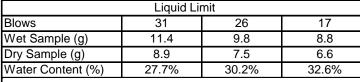
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit		
Trial	1	2
Wet Sample (g)	5.9	5.9
Dry Sample (g)	4.8	4.8
Water Content (%)	23.0%	23.5%

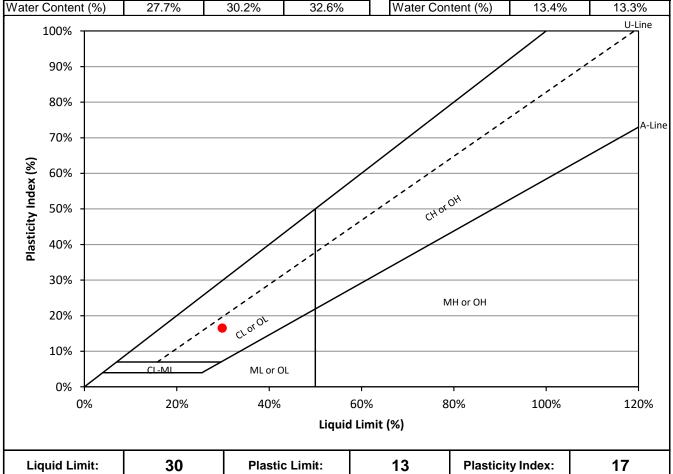
Reviewed by: Laboratory Manager

Lee Boughton

Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Depth:	19.66 - 19.81 m
Sample Number:	G23

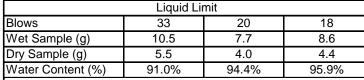

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

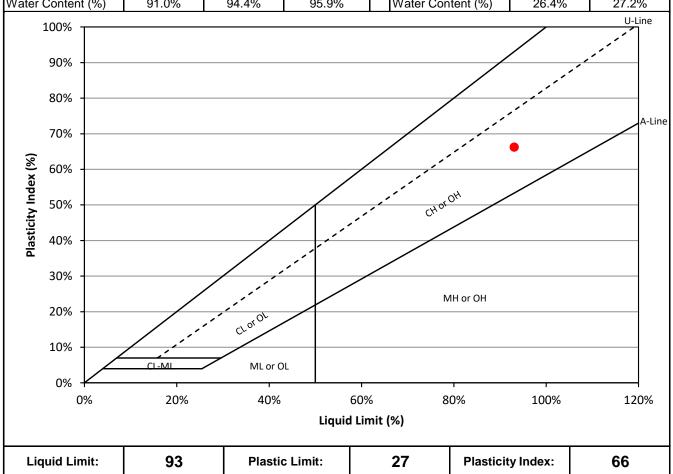
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	5.2	5.2	
Water Content (%)	13.4%	13.3%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-02
Sample Depth:	0.61 - 0.76 m
Sample Number:	G2

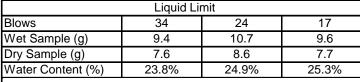

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

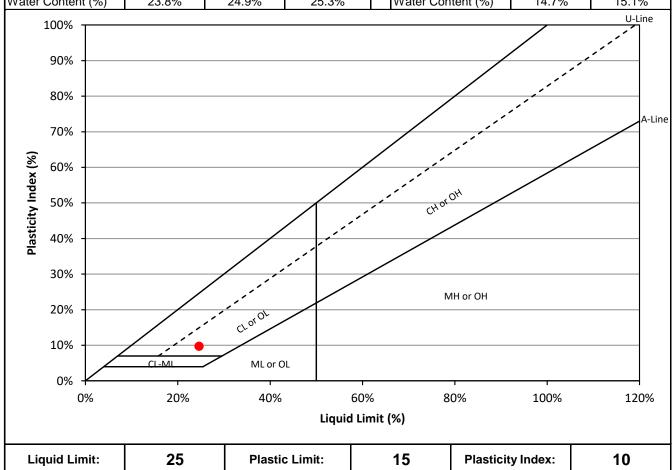
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	6.0	4.7	
Dry Sample (g)	4.8	3.7	
Water Content (%)	26.4%	27.2%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-02
Sample Location: Sample Depth:	1H23-02 2.13 - 2.29 m

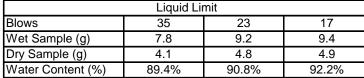

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

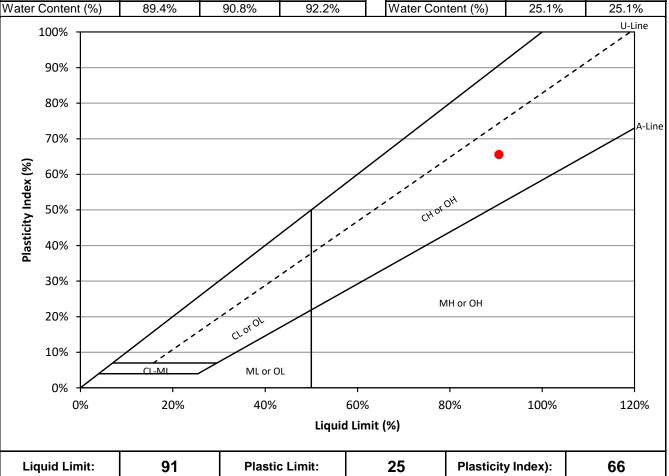
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	6.2	9.0	
Dry Sample (g)	5.4	7.9	
Water Content (%)	14.7%	15.1%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-02
Sample Depth:	5.94 - 6.10 m
Sample Number:	G8

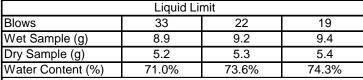

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

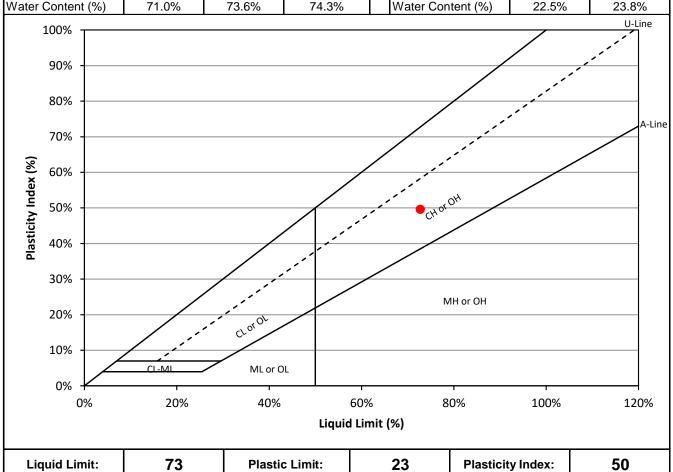
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.7	4.7	
Water Content (%)	25.1%	25.1%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-03
Sample Depth:	2.13 - 2.29 m
Sample Number:	G4

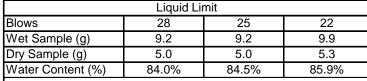

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

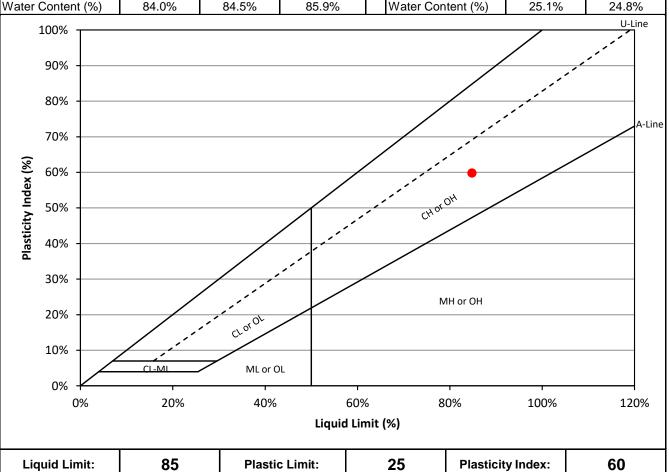
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.8	4.8	
Water Content (%)	22.5%	23.8%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-05
Sample Depth:	1.52 - 2.13 m
Sample Number	TΔ


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

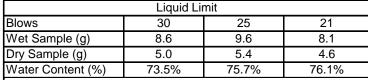
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

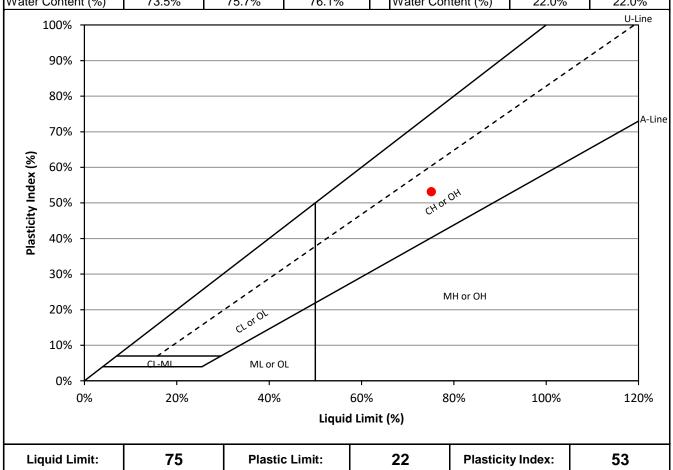
Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.7	4.7	
Water Content (%)	25.1%	24.8%	

Reviewed by: Lee Boughton Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-05
Sample Depth:	4.57 - 5.18 m
Sample Number:	T9


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

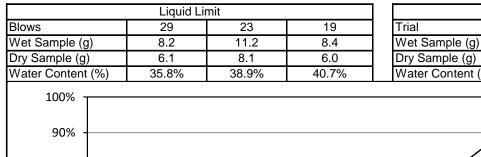
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

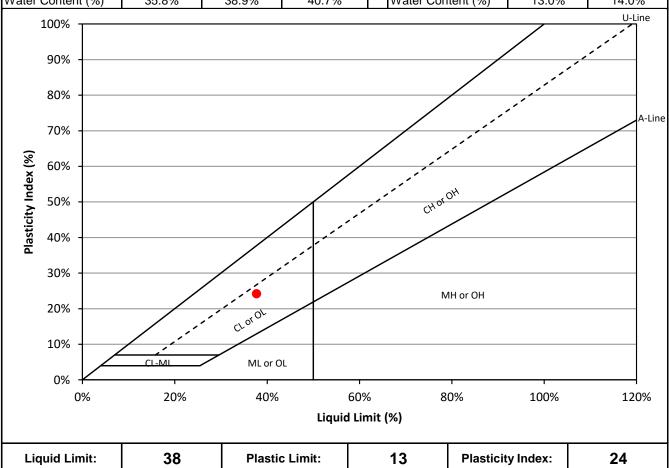
Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.8	4.8	
Water Content (%)	22.0%	22.0%	

Reviewed by: Lee Boughton
Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works	
Project Number:	60705950	
Client:	WSTP	
Sample Location:	TH23-06	
Sample Depth:	2.13 - 2.29 m	
Sample Number:	G4	

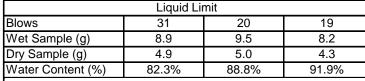

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

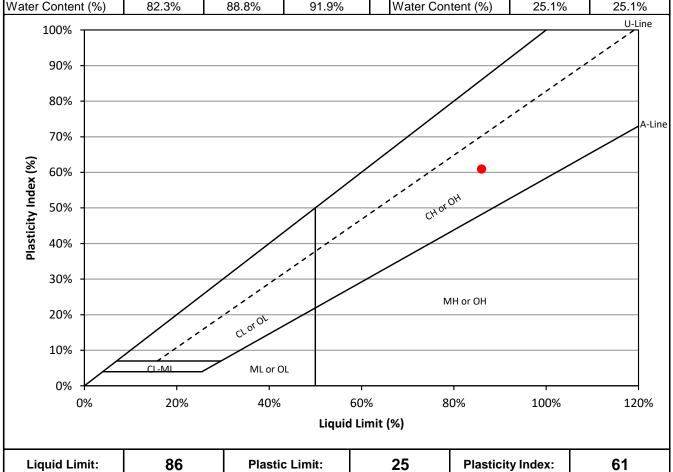
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	5.2	5.2	
Water Content (%)	13.0%	14.0%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-06
Sample Depth:	6.10 - 6.71 m
Sample Number:	T10


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

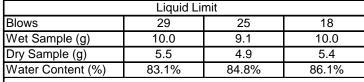
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.7	4.7	
Water Content (%)	25.1%	25.1%	

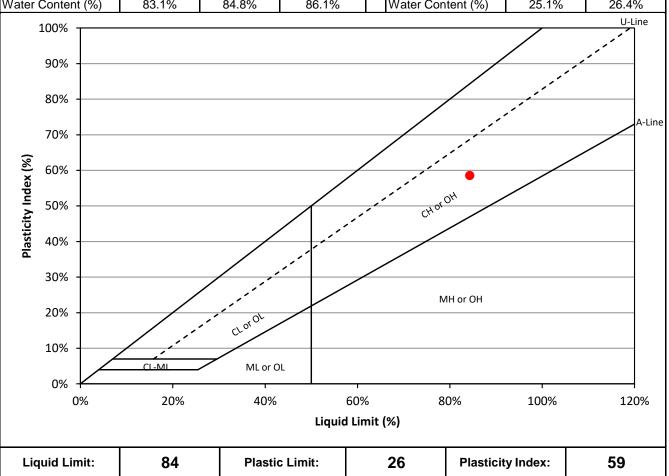
Reviewed by: Lee Boughton

Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-07
Sample Depth:	0.61 - 0.76 m
Sample Number:	G2


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

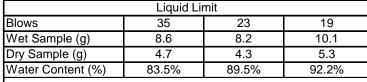
Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.7	4.7	
Water Content (%)	25.1%	26.4%	

Reviewed by:

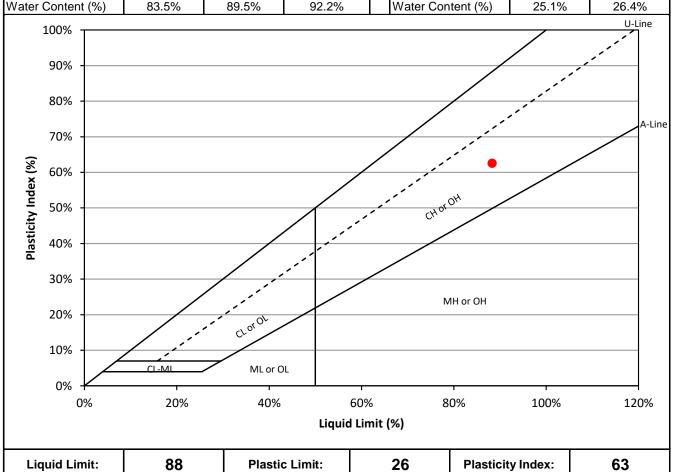
Lee Boughton

Laboratory Manager

Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-07
Sample Depth:	2.13 - 2.29 m
Sample Number:	G4

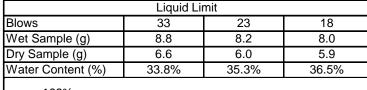

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

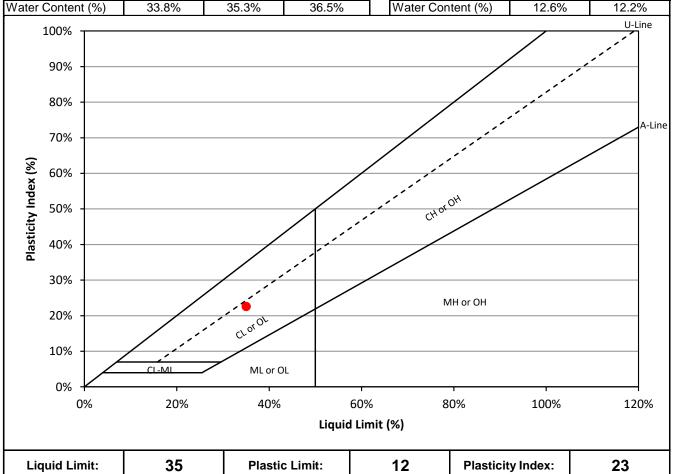
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	4.7	4.7	
Water Content (%)	25.1%	26.4%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-07
Sample Location: Sample Depth:	TH23-07 2.90 - 3.05 m

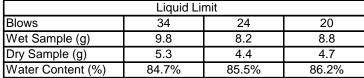

Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

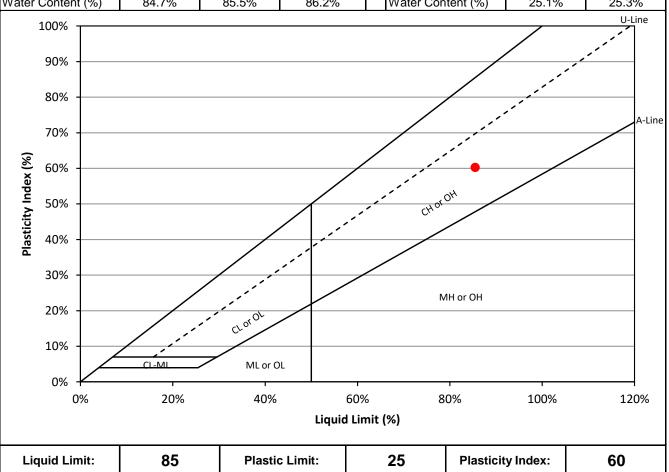
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.9	5.9	
Dry Sample (g)	5.2	5.3	
Water Content (%)	12.6%	12.2%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-07
Sample Depth:	9.14 - 9.60 m
Sample Number	T13


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

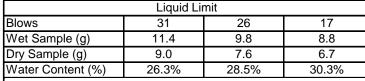
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

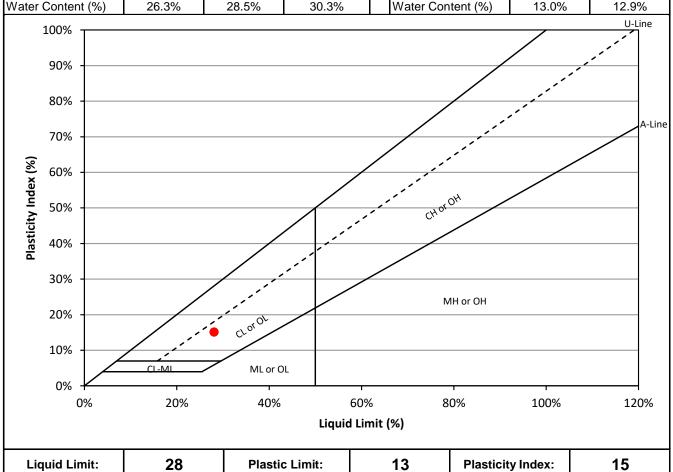
Plastic Limit					
Trial	1	2			
Wet Sample (g)	5.9	5.9			
Dry Sample (g)	4.7	4.7			
Water Content (%)	25.1%	25.3%			

Reviewed by:

Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-07
Sample Depth:	19.66 - 19.81 m
Sample Number	G23


Supplier/Location:	Winnipeg, MB
Field Technician:	LBoughton
Sample Date:	October 27, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit				
Trial	1	2		
Wet Sample (g)	5.9	5.9		
Dry Sample (g)	5.2	5.2		
Water Content (%)	13.0%	12.9%		

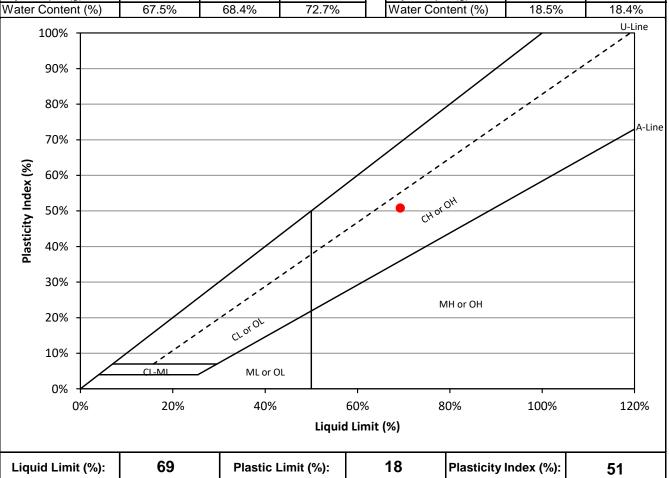
Reviewed by: Lee Boughton

Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-08
Sample Depth:	1.52 - 1.98 m
Sample Number	TΛ


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	December 15, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Liquid Limit			
Blows	32	25	18
Wet Sample (g)	8.1	10.6	9.3
Dry Sample (g)	4.8	6.3	5.4
Water Content (%)	67.5%	68.4%	72.7%

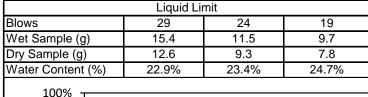
Plastic Limit		
Trial	1	2
Wet Sample (g)	6.2	6.2
Dry Sample (g)	5.2	5.3
Water Content (%)	18.5%	18.4%

Reviewed by:

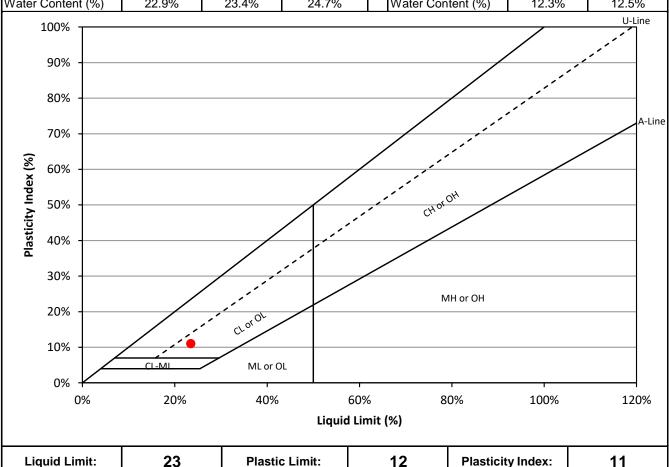
Lee Boughton

Laboratory Manager

Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-08
Sample Depth:	2.13 - 2.29 m
Sample Number:	G5


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	December 15, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit		
Trial	1	2
Wet Sample (g)	6.1	6.2
Dry Sample (g)	5.4	5.5
Water Content (%)	12.3%	12.5%

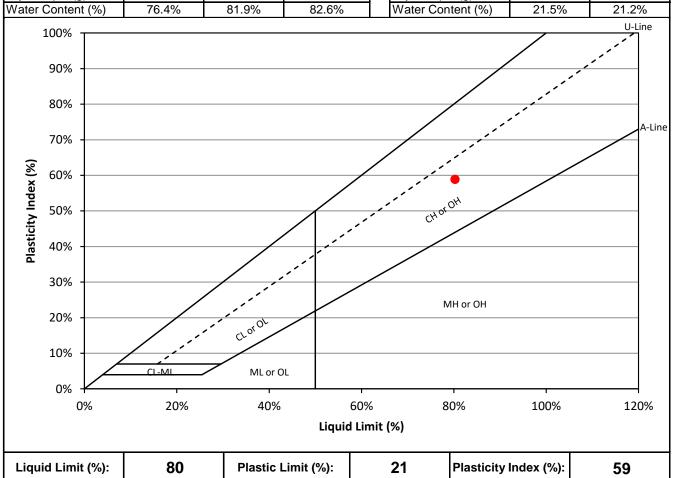
Reviewed by: Lee Boughton Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.

Geotechnical Discipline Lead

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-08
Sample Depth:	7.62 - 8.08 m
Sample Number:	T11


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	December 15, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

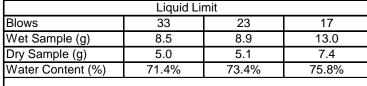
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

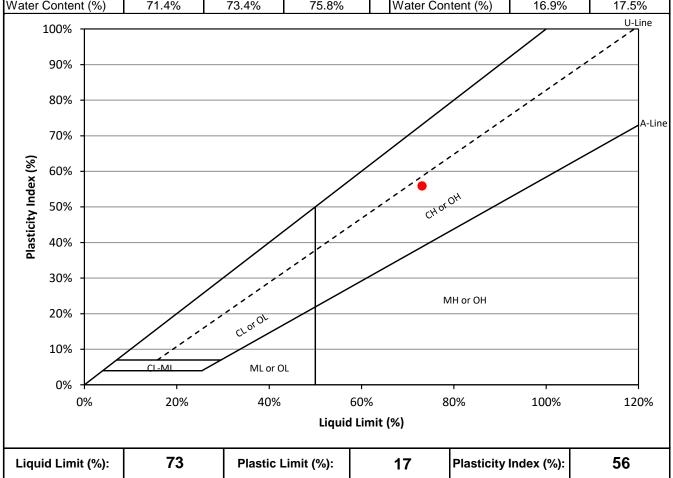
Liquid Limit			
Blows	31	25	20
Wet Sample (g)	11.0	12.0	9.7
Dry Sample (g)	6.2	6.6	5.3
Water Content (%)	76.4%	81.9%	82.6%

Plastic Limit		
Trial	1	2
Wet Sample (g)	6.1	6.2
Dry Sample (g)	5.1	5.1
Water Content (%)	21.5%	21.2%

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-08
Sample Depth:	8.99 - 9.14 m
Sample Number:	G12

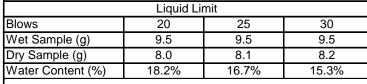

Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	December 15, 2023
Lab Technician:	JWiens
Date Tested:	January 16, 2024

Atterberg Limits (ASTM D4318)

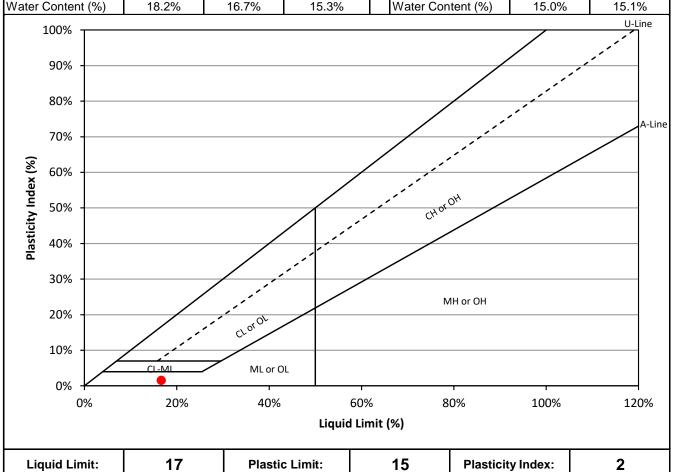
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial 1 2			
Wet Sample (g)	6.0	6.1	
Dry Sample (g)	5.2	5.2	
Water Content (%)	16.9%	17.5%	

Reviewed by: Lee Boughton Laboratory Manager


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works	
Project Number:	60705950	
Client:	WSTP	
Sample Location:	TH24-10	
Sample Depth:	1.37 - 1.52 m	
Sample Number	G3	


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit				
Trial 1 2				
Wet Sample (g)	6.4	6.1		
Dry Sample (g)	5.5	5.3		
Water Content (%)	15.0%	15.1%		

Reviewed by: Lee Boughton

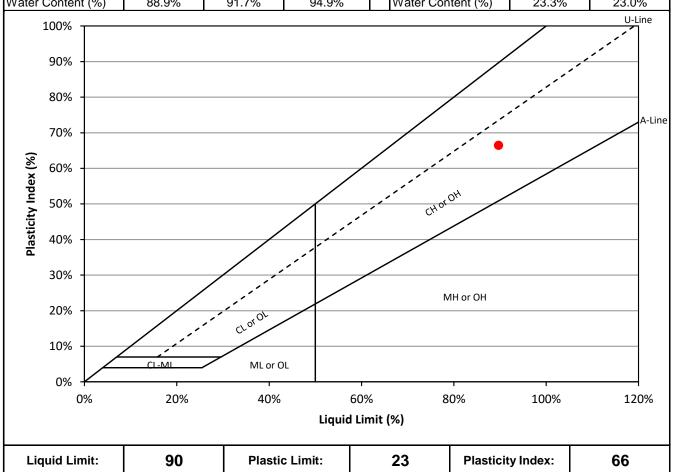
Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.

Geotechnical Discipline Lead

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-10
Sample Depth:	6.10 - 6.71 m
Sample Number:	


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

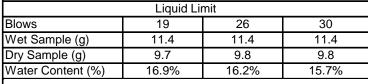
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Liquid Limit			
Blows	27	20	18
Wet Sample (g)	11.7	12.3	11.7
Dry Sample (g)	6.2	6.4	6.0
Water Content (%)	88.9%	91.7%	94.9%

Plastic Limit			
Trial 1 2			
Wet Sample (g)	4.8	4.9	
Dry Sample (g)	4.0		
Water Content (%)	23.3%	23.0%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works	
Project Number:	60705950	
Client:	WSTP	
Sample Location:	TH24-13	
Sample Depth:	2.74 - 2.90 m	
Sample Number	G4	

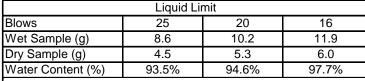
Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

Atterberg Limits (ASTM D4318)

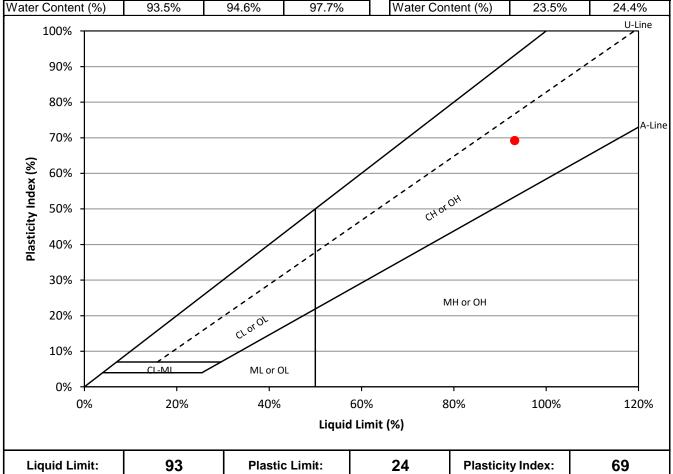
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial 1 2			
Wet Sample (g)	5.8	5.9	
Dry Sample (g) 5.1 5.3			
Water Content (%)	13.3%	12.8%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-13
Sample Depth:	9.14 - 9.75 m
Sample Number:	T9

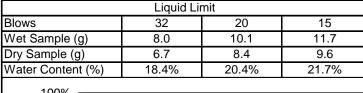

Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

Atterberg Limits (ASTM D4318)

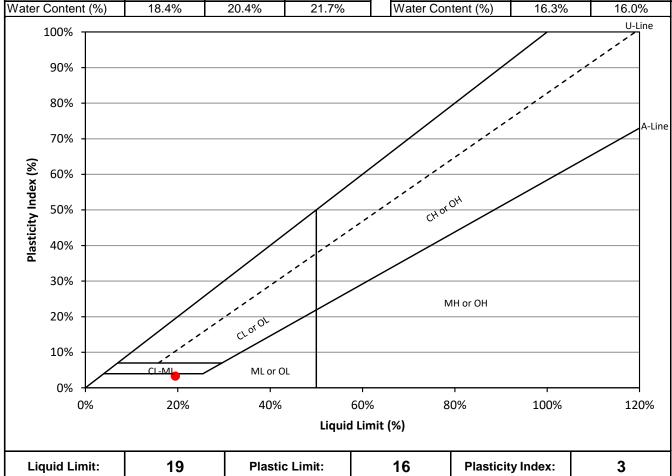
Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Plastic Limit			
Trial	1	2	
Wet Sample (g)	4.8	4.9	
Dry Sample (g)	3.8	4.0	
Water Content (%)	23.5%	24.4%	

Reviewed by: Lee Boughton Laboratory Manager Approved by:


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-14
Sample Depth:	2.90 - 3.05 m
Sample Number:	G5


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

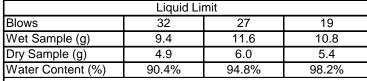
Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

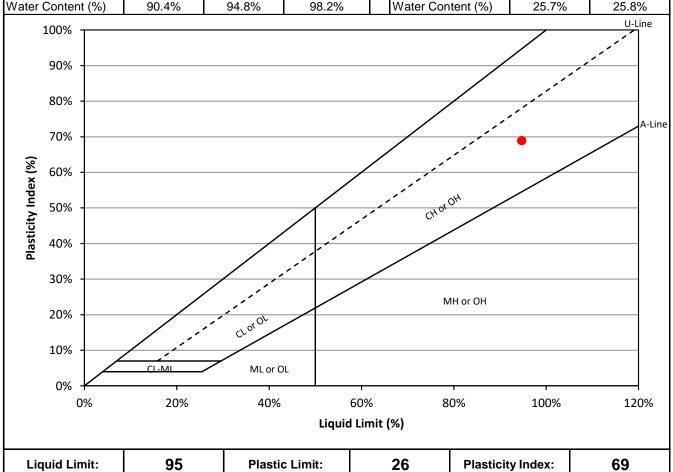
Plastic Limit			
Trial	1	2	
Wet Sample (g)	5.8	5.8	
Dry Sample (g)	5.0	5.0	
Water Content (%)	16.3%	16.0%	

Reviewed by: Lee Boughton Laboratory Manager Approved by: German Leal, M.Eng., P.Eng.

Geotechnical Discipline Lead


Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-14
Sample Depth:	4.57 - 5.18 m
Sample Number:	T8


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

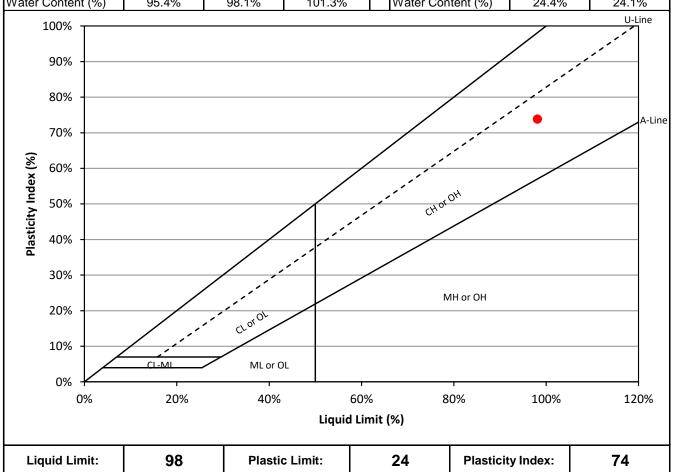
Plastic Limit			
Trial	1	2	
Wet Sample (g)	4.2	4.6	
Dry Sample (g)	3.4	3.7	
Water Content (%)	25.7%	25.8%	

Reviewed by: Lee Boughton Laboratory Manager Approved by: German Leal, M.Eng., P.Eng.

Geotechnical Discipline Lead

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-15
Sample Depth:	6.10 - 6.71 m
Sample Number:	T8


Supplier/Location:	Winnipeg, MB
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	February 21, 2024

Atterberg Limits (ASTM D4318)

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

Liquid Limit			
Blows	30	25	20
Wet Sample (g)	11.8	10.4	11.6
Dry Sample (g)	6.1	5.2	5.8
Water Content (%)	95.4%	98.1%	101.3%

Plastic Limit								
Trial	1	2						
Wet Sample (g)	4.6	5.0						
Dry Sample (g)	3.7	4.0						
Water Content (%)	24.4%	24.1%						

Reviewed by: Lee Boughton Laboratory Manager

AECOM

WINNIPEG GEOTECHNICAL LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

60705950 Job No.: Hole No.: TH23-01 WSTP Client: Sample No.: G5 2.90 - 3.05 m NEWPCC Biosolids Early Works Depth: Project: Date Tested: Date Sampled: 27-Oct-23 21-Nov-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SANI	D SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	97.1
38.0	100.0	2.00	100.0	0.0571	80.9
25.0	100.0	0.825	99.8	0.0412	76.2
19.0	100.0	0.425	99.2	0.0301	68.2
12.5	100.0	0.18	98.6	0.0219	60.3
9.5	100.0	0.15	98.2	0.0162	47.6
4.75	100.0	0.075	97.1	0.0122	38.1
				0.0089	30.1
				0.0064	23.8
				0.0046	20.6
				0.0032	17.4
				0.0020	14.2
				0.0013	11.1
_		_		_	_

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 82.9% 14.2% 2.9% Sand Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

10.4%

60705950 Job No.: Hole No.: TH23-01 WSTP Client: Sample No.: G23 NEWPCC Biosolids Early Works Depth: Project: 19.66 - 19.81 m Date Tested: Date Sampled: 27-Oct-23 21-Nov-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	88.8	0.0750	55.6
38.0	100.0	2.00	82.1	0.0634	44.3
25.0	100.0	0.825	76.2	0.0451	43.0
19.0	100.0	0.425	70.4	0.0322	40.4
12.5	94.5	0.18	66.0	0.0232	36.5
9.5	93.5	0.15	61.3	0.0166	33.9
4.75	88.8	0.075	55.6	0.0123	28.6
				0.0089	23.4
				0.0064	19.5
				0.0046	15.6
				0.0033	13.0
				0.0020	10.4
				0.0013	9.1

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt 11.2% **Gravel** 45.3%

Clay

Reviewed by: Lee Boughton Approved by: German Leal, M.Eng., P.Eng.
Laboratory Manager Geotechnical Discipline Lead

33.2%

Sand

AECOM

WINNIPEG GEOTECHNICAL LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

60705950 TH23-01 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 1.52 - 1.98 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SANI	D SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.8
38.0	100.0	2.00	100.0	0.0512	103.2
25.0	100.0	0.825	100.0	0.0365	101.6
19.0	100.0	0.425	100.0	0.0260	100.0
12.5	100.0	0.18	99.9	0.0186	98.4
9.5	100.0	0.15	99.9	0.0134	93.6
4.75	100.0	0.075	99.8	0.0101	87.3
				0.0074	79.3
				0.0054	73.0
				0.0039	65.0
				0.0028	58.7
				0.0020	55.5
				0.0012	52.3

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 44.3% 0.2% Sand 55.5% Clay

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

60705950 Job No.: Hole No.: TH23-01 WSTP Client: Sample No.: T15 NEWPCC Biosolids Early Works Depth: Project: 10.67 - 11.13 m Date Tested: Date Sampled: 27-Oct-23 21-Nov-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.4	0.0750	91.4
38.0	100.0	2.00	98.3	0.0559	84.2
25.0	100.0	0.825	96.9	0.0398	82.7
19.0	100.0	0.425	95.8	0.0281	82.7
12.5	100.0	0.18	94.8	0.0205	76.4
9.5	100.0	0.15	93.6	0.0147	73.3
4.75	99.4	0.075	91.4	0.0108	71.7
				0.0078	67.1
				0.0056	62.4
				0.0040	59.3
				0.0029	54.6
				0.0020	51.4
				0.0012	45.2

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.7% 39.9% 8.0% Sand 51.4% Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY

39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada (el (204) 477-5381 fax (431) 800-1210

60705950 TH23-02 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: Project: 0.61 - 0.76 m Date Sampled: 27-Oct-23 Date Tested: 21-Nov-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SANI	SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.7
38.0	100.0	2.00	100.0	0.0525	98.4
25.0	100.0	0.825	100.0	0.0371	98.4
19.0	100.0	0.425	99.9	0.0263	98.4
12.5	100.0	0.18	99.9	0.0186	98.4
9.5	100.0	0.15	99.8	0.0131	98.4
4.75	100.0	0.075	99.7	0.0096	98.4
				0.0069	93.6
				0.0050	90.5
				0.0036	88.9
				0.0026	82.5
				0.0020	77.8
				0.0011	68.2

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 21.9% 0.3% Sand 77.8% Clay

GRAIN SIZE DISTRIBUTION

(AASHTO T88)

WINNIPEG GEOTECHNICAL LABORATORY
99 Commerce Dr. Winnipeg MB R3P 0Y7 Canada

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

Job No.: 60705950 TH23-02 Hole No.: WSTP Client: Sample No.: G4 NEWPCC Biosolids Early Works Depth: 2.13 - 2.29 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		ES SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	92.4
38.0	100.0	2.00	100.0	0.0582	76.2
25.0	100.0	0.825	100.0	0.0425	68.2
19.0	100.0	0.425	99.9	0.0315	55.5
12.5	100.0	0.18	99.8	0.0232	44.4
9.5	100.0	0.15	99.7	0.0170	33.3
4.75	100.0	0.075	92.4	0.0126	26.9
				0.0091	22.2
				0.0065	17.4
				0.0046	14.2
				0.0033	12.6
				0.0020	12.6
				0.0013	11.1

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 79.8% 12.6% 7.6% Sand Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

60705950 Job No.: Hole No.: TH23-02 WSTP Client: Sample No.: G8 NEWPCC Biosolids Early Works Depth: 5.94 - 6.10 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SANI	D SIZES	FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.6
38.0	100.0	2.00	100.0	0.0534	95.2
25.0	100.0	0.825	99.9	0.0380	93.6
19.0	100.0	0.425	99.9	0.0271	92.0
12.5	100.0	0.18	99.9	0.0193	90.4
9.5	100.0	0.15	99.8	0.0137	90.4
4.75	100.0	0.075	99.6	0.0100	88.9
				0.0072	87.3
				0.0051	85.7
				0.0036	84.1
				0.0026	80.9
				0.0020	74.6
				0.0011	68.2
			1		

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 25.0% 74.6% 0.4% Sand Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (431) 800-1210

60705950 TH23-03 Job No.: Hole No.: WSTP Client: Sample No.: G4 2.13 - 2.29 m NEWPCC Biosolids Early Works Depth: Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SANI	SAND SIZES		IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.5
38.0	100.0	2.00	100.0	0.0542	92.0
25.0	100.0	0.825	99.8	0.0392	87.3
19.0	100.0	0.425	99.4	0.0279	85.7
12.5	100.0	0.18	99.2	0.0199	84.1
9.5	100.0	0.15	99.0	0.0145	77.7
4.75	100.0	0.075	98.5	0.0108	71.4
				0.0079	65.0
				0.0057	58.7
				0.0041	55.5
				0.0029	49.2
				0.0020	46.0
				0.0012	42.8
		•		_	

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 52.5% 1.5% Sand 46.0% Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (431) 800-1210

60705950 TH23-05 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 1.52 - 2.13 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAV	EL SIZES	SAND SIZES		FINES		SAND SIZES FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing		
50.0	100.0	4.75	99.8	0.0750	95.8		
38.0	100.0	2.00	99.3	0.0538	92.9		
25.0	100.0	0.825	98.7	0.0383	91.4		
19.0	100.0	0.425	97.9	0.0271	91.4		
12.5	100.0	0.18	97.3	0.0193	89.8		
9.5	100.0	0.15	96.7	0.0140	85.1		
4.75	99.8	0.075	95.8	0.0104	80.3		
				0.0075	77.2		
				0.0054	74.0		
				0.0039	69.3		
				0.0028	66.1		
				0.0020	61.4		
				0.0012	55.1		

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.2% 34.4% 4.0% Sand 61.4% Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

60705950 TH23-05 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 4.57 - 5.18 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.8	0.0750	95.3
38.0	100.0	2.00	99.5	0.0546	90.0
25.0	100.0	0.825	98.9	0.0395	85.3
19.0	100.0	0.425	98.5	0.0287	78.9
12.5	100.0	0.18	98.2	0.0207	74.2
9.5	100.0	0.15	97.8	0.0152	64.7
4.75	99.8	0.075	95.3	0.0113	61.6
				0.0081	56.8
				0.0058	52.1
				0.0042	48.9
				0.0030	45.8
				0.0030	44.2
				0.0012	42.6

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.2% 51.1% 4.5% 44.2% Sand Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

60705950 TH23-06 Job No.: Hole No.: WSTP Client: Sample No.: G4 2.13 - 2.29 m NEWPCC Biosolids Early Works Depth: Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVI	EL SIZES	SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	94.9
38.0	100.0	2.00	99.9	0.0567	82.5
25.0	100.0	0.825	99.8	0.0415	74.5
19.0	100.0	0.425	99.5	0.0303	66.6
12.5	100.0	0.18	99.2	0.0220	58.7
9.5	100.0	0.15	98.8	0.0161	49.1
4.75	100.0	0.075	94.9	0.0120	42.8
				0.0087	34.9
				0.0063	30.1
				0.0045	23.7
				0.0032	20.6
				0.0020	19.0
				0.0013	17.4

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 75.9% 19.0% Sand 5.1% Clay

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (431) 800-1210

Job No.: 60705950 Hole No.: TH23-06 WSTP Client: Sample No.: T10 NEWPCC Biosolids Early Works Depth: 6.10 - 6.71 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.4
38.0	100.0	2.00	100.0	0.0521	100.0
25.0	100.0	0.825	99.9	0.0371	98.4
19.0	100.0	0.425	99.9	0.0265	96.8
12.5	100.0	0.18	99.8	0.0190	93.6
9.5	100.0	0.15	99.6	0.0136	92.0
4.75	100.0	0.075	99.4	0.0102	85.7
				0.0073	84.1
				0.0052	82.5
				0.0037	77.7
				0.0027	73.0
				0.0020	68.2
				0.0012	58.7
		_			

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 31.2% 0.6% 68.2% Sand Clay

WINNIPEG GEOTECHNICAL LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

60705950 TH23-07 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: Project: 0.61 - 0.76 m Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	96.5
38.0	100.0	2.00	100.0	0.0542	92.0
25.0	100.0	0.825	99.8	0.0386	90.4
19.0	100.0	0.425	99.6	0.0273	90.4
12.5	100.0	0.18	99.4	0.0195	88.8
9.5	100.0	0.15	99.2	0.0140	85.7
4.75	100.0	0.075	96.5	0.0103	84.1
				0.0075	77.7
				0.0054	74.6
				0.0039	69.8
				0.0028	65.0
				0.0020	60.3
				0.0012	55.5

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 36.2% 3.5% 60.3% Sand Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

60705950 TH23-07 Job No.: Hole No.: WSTP Client: Sample No.: G4 NEWPCC Biosolids Early Works Depth: 2.13 - 2.29 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.6
38.0	100.0	2.00	100.0	0.0534	95.2
25.0	100.0	0.825	100.0	0.0380	93.6
19.0	100.0	0.425	99.9	0.0269	93.6
12.5	100.0	0.18	99.8	0.0190	93.6
9.5	100.0	0.15	99.7	0.0137	90.4
4.75	100.0	0.075	99.6	0.0101	87.3
				0.0073	84.1
				0.0052	82.5
				0.0037	77.7
				0.0027	73.0
				0.0020	68.2
				0.0011	61.9

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 31.4% 0.4% 68.2% Sand Clay

AECOM

 ${\it N}$ INNIPEG GEOTECHNICAL LABORATORY

39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada (el (204) 477-5381 fax (431) 800-1210

60705950 TH23-07 Job No.: Hole No.: WSTP Client: Sample No.: G5 NEWPCC Biosolids Early Works Depth: 2.90 - 3.05 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.7	0.0750	97.1
38.0	100.0	2.00	99.6	0.0550	88.5
25.0	100.0	0.825	99.4	0.0403	80.6
19.0	100.0	0.425	99.1	0.0293	74.3
12.5	100.0	0.18	98.8	0.0213	68.0
9.5	100.0	0.15	98.6	0.0158	55.3
4.75	99.7	0.075	97.1	0.0119	45.8
				0.0087	36.3
				0.0062	33.2
				0.0045	26.8
				0.0032	23.7
				0.0020	20.5
				0.0013	18.9
		_			

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.3% 76.6% 20.5% 2.6% Sand Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

AECOM

WINNIPEG GEOTECHNICAL LABORATORY
99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
tel (204) 477-5381 fax (431) 800-1210

60705950 Job No.: Hole No.: TH23-07 WSTP Client: Sample No.: T13 NEWPCC Biosolids Early Works Depth: Project: 9.14 - 9.60 m Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.6	0.0750	92.8
38.0	100.0	2.00	98.9	0.0546	89.4
25.0	100.0	0.825	97.9	0.0389	87.9
19.0	100.0	0.425	96.9	0.0277	86.3
12.5	100.0	0.18	95.8	0.0197	84.7
9.5	100.0	0.15	94.5	0.0142	81.6
4.75	99.6	0.075	92.8	0.0104	80.0
				0.0075	75.3
				0.0054	72.2
				0.0039	69.0
				0.0028	65.9
				0.0020	61.2
				0.0012	54.9
-		·			•

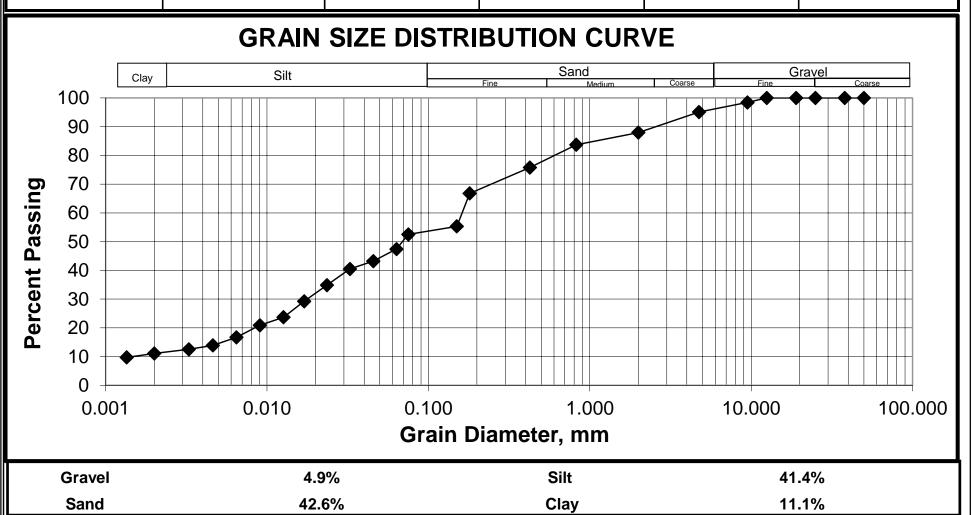
GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.4% 31.6% 61.2% 6.8% Sand Clay

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (431) 800-1210

60705950 Job No.: WSTP Client: Project:

NEWPCC Biosolids Early Works


Date Tested: 21-Nov-23 Tested By: LBoughton Hole No.: TH23-07

Sample No.: G23

Depth: 19.66 - 19.81 m

Date Sampled: 27-Oct-23 Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	95.1	0.0750	52.5
38.0	100.0	2.00	87.9	0.0634	47.4
25.0	100.0	0.825	83.7	0.0456	43.2
19.0	100.0	0.425	75.7	0.0326	40.4
12.5	100.0	0.18	66.8	0.0235	34.9
9.5	98.4	0.15	55.3	0.0170	29.3
4.75	95.1	0.075	52.5	0.0126	23.7
				0.0090	20.9
				0.0065	16.7
				0.0046	13.9
				0.0033	12.5
				0.0020	11.1
				0.0013	9.7

Reviewed by:

Lee Boughton Laboratory Manager

Approved by:

AECOM

WINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

60705950 TH23-08 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 1.52 - 1.98 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	94.7
38.0	100.0	2.00	99.8	0.0555	87.1
25.0	100.0	0.825	99.1	0.0398	84.0
19.0	100.0	0.425	97.7	0.0285	80.8
12.5	100.0	0.18	96.6	0.0203	79.2
9.5	100.0	0.15	95.8	0.0145	77.6
4.75	100.0	0.075	94.7	0.0107	74.5
				0.0077	69.7
				0.0056	64.9
				0.0040	58.6
				0.0029	53.8
				0.0020	49.1
				0.0012	41.2

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 45.6% 5.3% Sand 49.1% Clay

GRAIN SIZE DISTRIBUTION

(AASHTO T88)

WINNIPEG GEOTECHNICAL LABORATORY

99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada **tel** (204) 477-5381 **fax** (431) 800-1210

Job No.: 60705950 Hole No.: TH23-08 WSTP Client: Sample No.: G5 NEWPCC Biosolids Early Works Depth: 2.13 - 2.29 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

tal Percent Passing
00.4
92.4
77.8
71.4
58.7
46.0
33.3
25.3
20.6
14.2
11.1
11.1
7.9

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 84.5% 7.9% 7.6% Sand Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

tel (204) 477-5381 fax (431) 800-1210

Job No.: 60705950 Hole No.: TH23-08 WSTP Client: Sample No.: T11 NEWPCC Biosolids Early Works Depth: 7.62 - 8.08 m Project: Date Tested: 21-Nov-23 Date Sampled: 27-Oct-23 Tested By: LBoughton Sampled By: LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.5
38.0	100.0	2.00	99.8	0.0538	93.5
25.0	100.0	0.825	99.6	0.0383	91.9
19.0	100.0	0.425	99.4	0.0273	90.3
12.5	100.0	0.18	99.2	0.0193	90.3
9.5	100.0	0.15	98.9	0.0138	88.7
4.75	100.0	0.075	98.5	0.0101	87.1
				0.0073	83.9
				0.0053	77.6
				0.0038	71.3
				0.0028	66.5
				0.0020	60.2
				0.0012	50.7

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Clay Silt 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 38.4% 1.5% 60.2% Sand Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

Date Tested:

Tested By:

AECOM

WINNIPEG GEOTECHNICAL LABORATORY 99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada tel (204) 477-5381 fax (431) 800-1210

60705950 Job No.: WSTP Client: NEWPCC Biosolids Early Works Project:

21-Nov-23

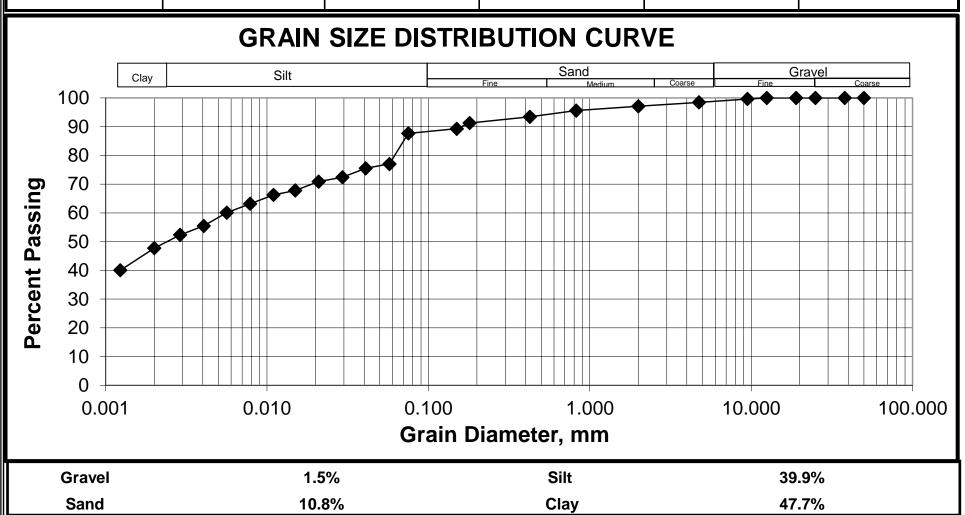
LBoughton

Sample No.:

TH23-08 G12

Depth:

Hole No.:


8.99 - 9.14 m

Date Sampled: 27-Oct-23

Sampled By:

LBoughton

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	98.5	0.0750	87.7
38.0	100.0	2.00	97.1	0.0575	77.0
25.0	100.0	0.825	95.6	0.0409	75.5
19.0	100.0	0.425	93.4	0.0293	72.4
12.5	100.0	0.18	91.3	0.0209	70.9
9.5	99.6	0.15	89.3	0.0149	67.8
4.75	98.5	0.075	87.7	0.0110	66.2
				0.0079	63.1
				0.0056	60.1
				0.0040	55.4
				0.0029	52.4
				0.0020	47.7
				0.0012	40.0

Reviewed by:

Lee Boughton Laboratory Manager Approved by:

VINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

60705950 TH24-10 Job No.: Hole No.: WSTP Client: Sample No.: G3 NEWPCC Biosolids Early Works Depth: 1.37 - 1.52 m Project: Date Tested: 29-Jan-24 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	93.5
38.0	100.0	2.00	100.0	0.0571	80.9
25.0	100.0	0.825	100.0	0.0420	71.4
19.0	100.0	0.425	99.8	0.0312	58.7
12.5	100.0	0.18	99.4	0.0226	52.3
9.5	100.0	0.15	97.7	0.0165	42.8
4.75	100.0	0.075	93.5	0.0123	36.5
				0.0089	30.1
				0.0064	23.8
				0.0045	22.2
				0.0032	20.6
				0.0020	19.0
				0.0013	17.4

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 74.5% 19.0% 6.5% Sand Clay

AECOM

WINNIPEG GEOTECHNICAL LABORATORY
99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

el (204) 477-5381 fax (431) 800-1210

60705950 TH24-10 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 6.10 - 6.71 m Project: Date Tested: 29-Jan-24 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	99.9	0.0750	97.7
38.0	100.0	2.00	99.6	0.0550	88.6
25.0	100.0	0.825	99.4	0.0392	87.0
19.0	100.0	0.425	99.0	0.0277	87.0
12.5	100.0	0.18	98.7	0.0197	85.4
9.5	100.0	0.15	98.4	0.0140	85.4
4.75	99.9	0.075	97.7	0.0102	85.5
				0.0073	83.8
				0.0052	82.2
				0.0037	80.7
				0.0026	77.5
				0.0020	71.2
				0.0011	63.2

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.1% 26.6% 71.2% 2.2% Sand Clay

VINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

60705950 TH24-13 Job No.: Hole No.: WSTP Client: Sample No.: G4 2.74 - 2.90 m NEWPCC Biosolids Early Works Depth: Project: Date Tested: 29-Jan-24 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	98.8
38.0	100.0	2.00	100.0	0.0578	77.7
25.0	100.0	0.825	99.9	0.0431	65.0
19.0	100.0	0.425	99.9	0.0319	52.3
12.5	100.0	0.18	99.9	0.0230	46.0
9.5	100.0	0.15	99.6	0.0171	30.1
4.75	100.0	0.075	98.8	0.0128	23.7
				0.0092	17.4
				0.0066	14.2
				0.0047	12.6
				0.0033	9.5
				0.0020	7.9
				0.0014	6.3

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 90.9% 1.2% 7.9% Sand Clay

AECOM

VINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

60705950 Hole No.: TH24-13 Job No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: Project: 9.14 - 9.75 m Date Tested: 29-Jan-24 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAVEL SIZES		SAND SIZES		FINES	
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.1
38.0	100.0	2.00	99.9	0.0542	91.9
25.0	100.0	0.825	99.8	0.0386	90.4
19.0	100.0	0.425	99.7	0.0273	90.4
12.5	100.0	0.18	99.6	0.0193	90.4
9.5	100.0	0.15	99.5	0.0138	88.8
4.75	100.0	0.075	99.1	0.0100	88.8
				0.0072	85.6
				0.0051	84.0
				0.0036	84.0
				0.0026	80.8
				0.0020	76.1
				0.0011	71.3

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 23.0% 0.9% Sand 76.1% Clay

GRAIN SIZE DISTRIBUTION (AASHTO T88)

AECOM

VINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

Job No.: 60705950 TH24-14 Hole No.: WSTP Client: Sample No.: G5 NEWPCC Biosolids Early Works Depth: 2.90 - 3.05 m Project: Date Tested: 29-Jan-24 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAV	EL SIZES	SANI	O SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	96.9
38.0	100.0	2.00	100.0	0.0578	77.7
25.0	100.0	0.825	100.0	0.0425	68.2
19.0	100.0	0.425	100.0	0.0312	58.7
12.5	100.0	0.18	99.9	0.0230	46.0
9.5	100.0	0.15	99.9	0.0168	36.5
4.75	100.0	0.075	96.9	0.0125	31.7
				0.0091	20.6
				0.0065	19.0
				0.0046	14.2
				0.0033	11.1
				0.0020	9.5
				0.0014	7.9
1			1		

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 87.4% 9.5% Sand 3.1% Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead

GRAIN SIZE DISTRIBUTION (AASHTO T88)

VINNIPEG GEOTECHNICAL LABORATORY
39 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada
1el (204) 477-5381 fax (431) 800-1210

Job No.: 60705950 Hole No.: TH24-14 WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 4.57 - 5.18 m Project: Date Sampled: 12-Jan-24 Date Tested: 29-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAV	EL SIZES	SANI	O SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.7
38.0	100.0	2.00	100.0	0.0546	90.5
25.0	100.0	0.825	100.0	0.0389	88.9
19.0	100.0	0.425	99.9	0.0275	88.9
12.5	100.0	0.18	99.9	0.0195	88.9
9.5	100.0	0.15	99.9	0.0139	87.3
4.75	100.0	0.075	99.7	0.0101	87.3
				0.0072	85.7
				0.0051	84.1
				0.0036	84.1
				0.0026	80.9
				0.0020	74.6
				0.0011	68.2
			1		

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 Percent Passing 60 50 40 30 20 10 0.100 100.000 0.001 0.010 1.000 10.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 25.2% 0.3% Sand 74.6% Clay

Reviewed by:

Lee Boughton
Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead

GRAIN SIZE DISTRIBUTION (AASHTO T88)

AECOM

WINNIPEG GEOTECHNICAL LABORATORY
99 Commerce Dr., Winnipeg, MB R3P 0Y7 Canada

el (204) 477-5381 fax (431) 800-1210

CETIFIED BY

60705950 TH24-15 Job No.: Hole No.: WSTP Client: Sample No.: NEWPCC Biosolids Early Works Depth: 6.10 - 6.71 m Project: Date Tested: 21-Nov-23 Date Sampled: 12-Jan-24 Tested By: LBoughton Sampled By: **ABonifacio**

GRAV	EL SIZES	SANI	D SIZES	FIN	IES
Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing	Grain Size (mm.)	Total Percent Passing
50.0	100.0	4.75	100.0	0.0750	99.8
38.0	100.0	2.00	100.0	0.0538	93.6
25.0	100.0	0.825	100.0	0.0383	92.0
19.0	100.0	0.425	100.0	0.0271	92.0
12.5	100.0	0.18	99.9	0.0192	92.0
9.5	100.0	0.15	99.9	0.0136	92.0
4.75	100.0	0.075	99.8	0.0099	92.0
				0.0071	90.5
				0.0050	90.5
				0.0036	88.9
				0.0025	85.7
				0.0020	80.9
				0.0011	74.6

GRAIN SIZE DISTRIBUTION CURVE Sand Gravel Silt Clay 100 90 80 70 **Percent Passing** 60 50 40 30 20 10 0.100 100.000 10.000 0.001 0.010 1.000 **Grain Diameter, mm** Silt **Gravel** 0.0% 18.8% 80.9% 0.2% Sand Clay

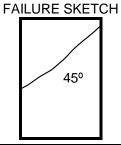
Reviewed by: Lee Boughton Approved by: German Leal, M.Eng., P.Eng.
Laboratory Manager Geotechnical Discipline Lead

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	1.52 - 1.98 m
Sample Location:	TH23-01
Sample Number:	T4

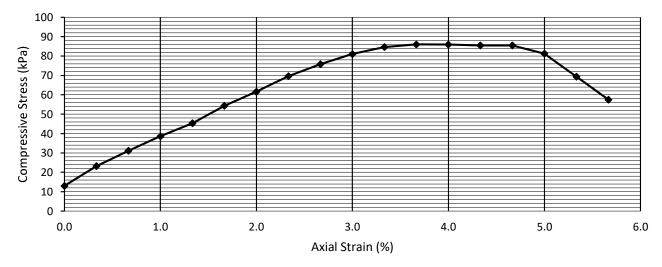

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.26
Average Length (cm):	15.00
Length/Diameter Ratio:	2.07
Moisture content (%):	45.0
Bulk Density (g/cm³):	1.681
Bulk Unit Weight (kN/m³):	16.5
Bulk Unit Weight (pcf):	105.0
Dry Unit Weight (kN/m³):	11.38



Torvane	Undrained Shear Strength (kPa)	39.2
Pocket Pen.	Undrained Shear Strength (kPa)	59.1

	Unconfined compressive strength (kPa)	86.04	Undrained Shear Strength (kPa)	43.02
UCS	Unconfined compressive strength (ksf)	1.797	Undrained Shear Strength (ksf)	0.898
	Avg. Rate of Strain to Failure (%/min):	2.00	Strain at Failure (%):	3.67

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

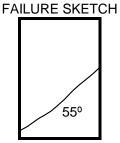
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	4.57 - 5.03 m
Sample Location:	TH23-01
Sample Number:	T9

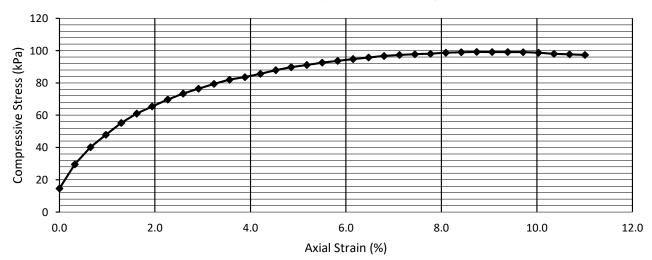

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, stiff, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.25
Average Length (cm):	15.45
Length/Diameter Ratio:	2.13
Moisture content (%):	36.6
Bulk Density (g/cm³):	1.854
Bulk Unit Weight (kN/m³):	18.2
Bulk Unit Weight (pcf):	115.7
Dry Unit Weight (kN/m³):	13.31



Torvane	Undrained Shear Strength (kPa)	53.9
Pocket Pen.	Undrained Shear Strength (kPa)	0.0

	Unconfined compressive strength (kPa)	99.19	Undrained Shear Strength (kPa)	49.59
UCS	Unconfined compressive strength (ksf)	2.072	Undrained Shear Strength (ksf)	1.036
	Avg. Rate of Strain to Failure (%/min):	1.94	Strain at Failure (%):	8.74

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

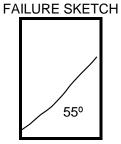
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	7.62 - 8.08 m
Sample Location:	TH23-01
Sample Number:	T12

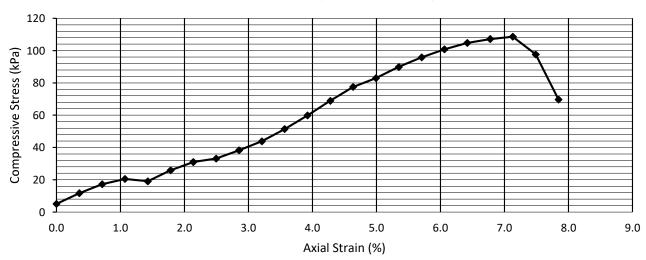

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.25
Average Length (cm):	14.02
Length/Diameter Ratio:	1.93
Moisture content (%):	55.9
Bulk Density (g/cm³):	1.702
Bulk Unit Weight (kN/m³):	16.7
Bulk Unit Weight (pcf):	106.2
Dry Unit Weight (kN/m³):	10.70



Torvane	Undrained Shear Strength (kPa)	33.3
Pocket Pen.	Undrained Shear Strength (kPa)	31.9

	Unconfined compressive strength (kPa)	108.64	Undrained Shear Strength (kPa)	54.32
UCS	Unconfined compressive strength (ksf)	2.269	Undrained Shear Strength (ksf)	1.135
	Avg. Rate of Strain to Failure (%/min):	2.14	Strain at Failure (%):	7.13

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

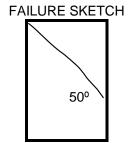
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	10.67 - 11.13 m
Sample Location:	TH23-01
Sample Number	T15

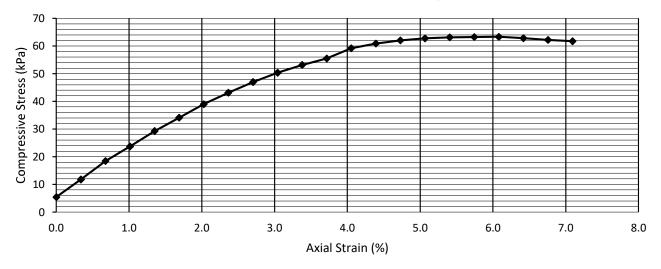

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.21
Average Length (cm):	14.80
Length/Diameter Ratio:	2.05
Moisture content (%):	47.3
Bulk Density (g/cm³):	1.857
Bulk Unit Weight (kN/m³):	18.2
Bulk Unit Weight (pcf):	116.0
Dry Unit Weight (kN/m³):	12.37



Torvane	Undrained Shear Strength (kPa)	21.6
Pocket Pen.	Undrained Shear Strength (kPa)	11.2

	Unconfined compressive strength (kPa)	63.34	Undrained Shear Strength (kPa)	31.67
UCS	Unconfined compressive strength (ksf)	1.323	Undrained Shear Strength (ksf)	0.661
	Avg. Rate of Strain to Failure (%/min):	2.03	Strain at Failure (%):	5.74

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

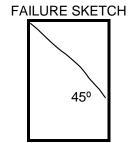
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	13.72 - 14.17 m
Sample Location:	TH23-01
Sample Number:	T18

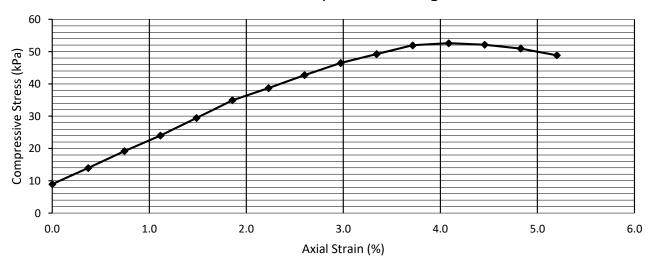

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.26
Average Length (cm):	13.46
Length/Diameter Ratio:	1.85
Moisture content (%):	59.4
Bulk Density (g/cm³):	1.649
Bulk Unit Weight (kN/m³):	16.2
Bulk Unit Weight (pcf):	102.9
Dry Unit Weight (kN/m³):	10.14



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	19.2

	Unconfined compressive strength (kPa)	52.61	Undrained Shear Strength (kPa)	26.30
UCS	Unconfined compressive strength (ksf)	1.099	Undrained Shear Strength (ksf)	0.549
	Avg. Rate of Strain to Failure (%/min):	2.23	Strain at Failure (%):	4.09

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

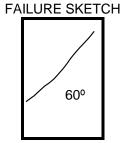
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	16.76 - 17.22 m
Sample Location:	TH23-01
Sample Number:	T21

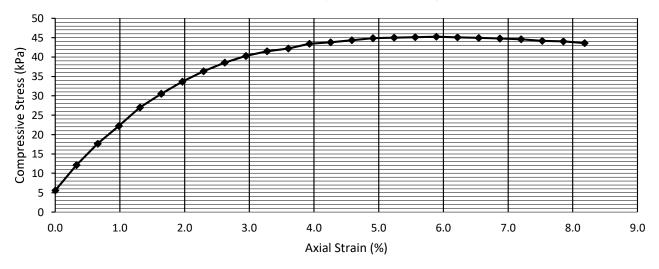

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.29
Average Length (cm):	15.28
Length/Diameter Ratio:	2.09
Moisture content (%):	64.0
Bulk Density (g/cm³):	1.799
Bulk Unit Weight (kN/m³):	17.6
Bulk Unit Weight (pcf):	112.3
Dry Unit Weight (kN/m³):	10.76



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	22.3

	Unconfined compressive strength (kPa)	45.26	Undrained Shear Strength (kPa)	22.63
UCS	Unconfined compressive strength (ksf)	0.945	Undrained Shear Strength (ksf)	0.473
	Avg. Rate of Strain to Failure (%/min):	1.96	Strain at Failure (%):	5.89

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

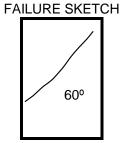
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	1.52 - 2.13 m
Sample Location:	TH23-05
Sample Number:	T4

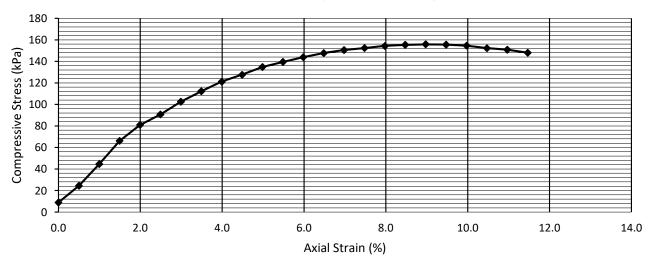

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - black/brown, stiff, moist, silty, trace organics, trace gravel, trace sand, high plastic

Average Diameter (cm):	7.17
Average Length (cm):	10.03
Length/Diameter Ratio:	1.40
Moisture content (%):	33.2
Bulk Density (g/cm³):	1.824
Bulk Unit Weight (kN/m³):	17.9
Bulk Unit Weight (pcf):	113.9
Dry Unit Weight (kN/m³):	13.44



Torvane	Undrained Shear Strength (kPa)	78.5
Pocket Pen.	Undrained Shear Strength (kPa)	99.0

Ī		Unconfined compressive strength (kPa)	155.83	Undrained Shear Strength (kPa)	77.92
	UCS	Unconfined compressive strength (ksf)	3.255	Undrained Shear Strength (ksf)	1.627
		Avg. Rate of Strain to Failure (%/min):	2.99	Strain at Failure (%):	8.97

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

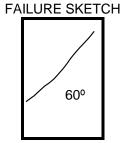
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	4.57 - 5.18 m
Sample Location:	TH23-05
Sample Number:	Т9

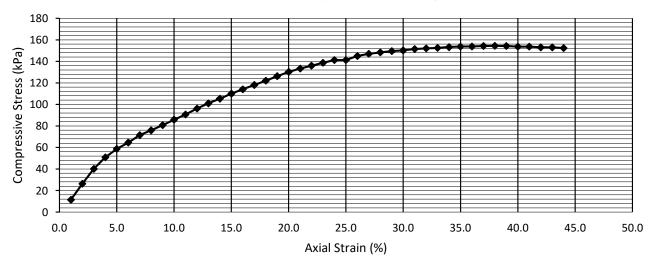

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, stiff, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	5.09
Average Length (cm):	14.37
Length/Diameter Ratio:	2.82
Moisture content (%):	29.5
Bulk Density (g/cm³):	3.709
Bulk Unit Weight (kN/m³):	36.4
Bulk Unit Weight (pcf):	231.5
Dry Unit Weight (kN/m³):	28.09



Torvane	Undrained Shear Strength (kPa)	34.3
Pocket Pen.	Undrained Shear Strength (kPa)	41.5

	Unconfined compressive strength (kPa)	154.45	Undrained Shear Strength (kPa)	77.22
UCS	Unconfined compressive strength (ksf)	3.226	Undrained Shear Strength (ksf)	1.613
	Avg. Rate of Strain to Failure (%/min):	2.09	Strain at Failure (%):	12.87

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

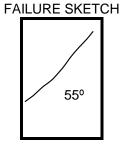
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	7.62 - 8.23 m
Sample Location:	TH23-05
Sample Number:	T12

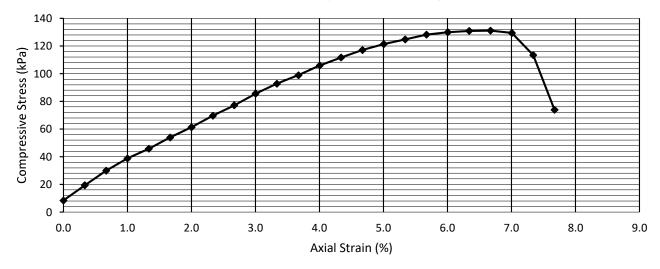

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.24
Average Length (cm):	14.99
Length/Diameter Ratio:	2.07
Moisture content (%):	51.2
Bulk Density (g/cm³):	1.756
Bulk Unit Weight (kN/m³):	17.2
Bulk Unit Weight (pcf):	109.6
Dry Unit Weight (kN/m³):	11.39



Torvane	Undrained Shear Strength (kPa)	39.2
Pocket Pen.	Undrained Shear Strength (kPa)	47.9

	Unconfined compressive strength (kPa)	131.17	Undrained Shear Strength (kPa)	65.59
UCS	Unconfined compressive strength (ksf)	2.740	Undrained Shear Strength (ksf)	1.370
	Avg. Rate of Strain to Failure (%/min):	2.00	Strain at Failure (%):	6.67

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

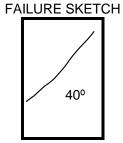
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	3.05 - 3.66 m
Sample Location:	TH23-06
Sample Number:	T6

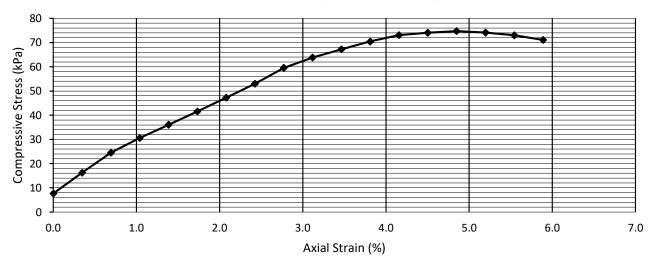

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.26
Average Length (cm):	14.43
Length/Diameter Ratio:	1.99
Moisture content (%):	40.5
Bulk Density (g/cm³):	1.718
Bulk Unit Weight (kN/m³):	16.8
Bulk Unit Weight (pcf):	107.2
Dry Unit Weight (kN/m³):	11.99



Torvane	Undrained Shear Strength (kPa)	29.4
Pocket Pen.	Undrained Shear Strength (kPa)	70.2

	Unconfined compressive strength (kPa)	74.76	Undrained Shear Strength (kPa)	37.38
UCS	Unconfined compressive strength (ksf)	1.561	Undrained Shear Strength (ksf)	0.781
	Avg. Rate of Strain to Failure (%/min):	2.08	Strain at Failure (%):	4.85

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

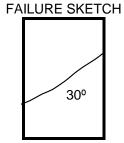
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	6.10 - 6.71 m
Sample Location:	TH23-06
Sample Number:	T10

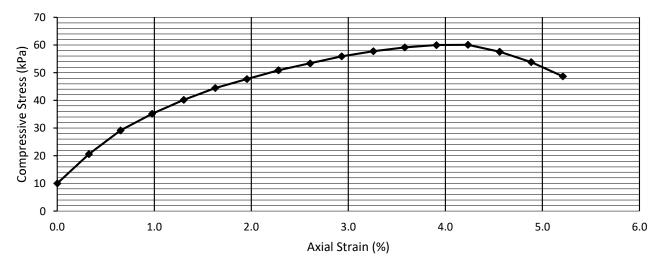

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.13
Average Length (cm):	15.35
Length/Diameter Ratio:	2.15
Moisture content (%):	52.9
Bulk Density (g/cm³):	1.696
Bulk Unit Weight (kN/m³):	16.6
Bulk Unit Weight (pcf):	105.9
Dry Unit Weight (kN/m³):	10.88



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	64.6

	Unconfined compressive strength (kPa)	60.08	Undrained Shear Strength (kPa)	30.04
UCS	Unconfined compressive strength (ksf)	1.255	Undrained Shear Strength (ksf)	0.627
	Avg. Rate of Strain to Failure (%/min):	1 95	Strain at Failure (%):	4 23

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

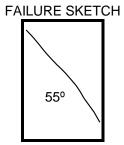
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	10.67 - 11.28 m
Sample Location:	TH23-06
Sample Number:	T14

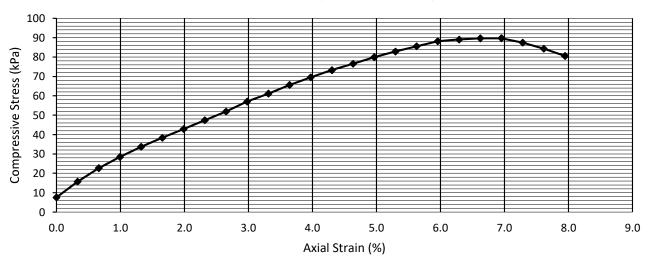

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.16
Average Length (cm):	15.10
Length/Diameter Ratio:	2.11
Moisture content (%):	51.4
Bulk Density (g/cm³):	1.746
Bulk Unit Weight (kN/m³):	17.1
Bulk Unit Weight (pcf):	109.0
Dry Unit Weight (kN/m³):	11.31



Torvane	Undrained Shear Strength (kPa)	34.3
Pocket Pen.	Undrained Shear Strength (kPa)	38.3

	Unconfined compressive strength (kPa)	89.73	Undrained Shear Strength (kPa)	44.86
UCS	Unconfined compressive strength (ksf)	1.874	Undrained Shear Strength (ksf)	0.937
	Avg. Rate of Strain to Failure (%/min):	1.99	Strain at Failure (%):	6.29

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

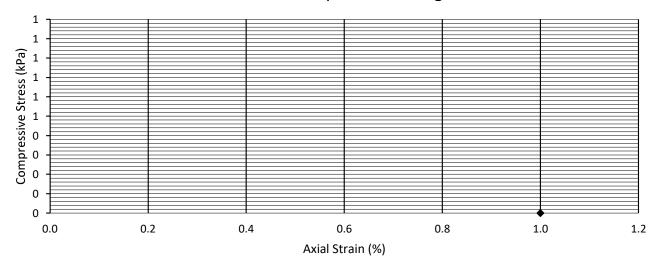
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	3.05 - 3.51 m
Sample Location:	TH23-07
Sample Number:	T6


Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: SILT - tan, very loose, moist, trace sand, low plasticity, **FAILURE SKETCH** Average Diameter (cm): Average Length (cm): Length/Diameter Ratio: 22.4 Moisture content (%): Bulk Density (g/cm³): Bulk Unit Weight (kN/m³): Bulk Unit Weight (pcf): Dry Unit Weight (kN/m³): Undrained Shear Strength (kPa) Torvane Pocket Pen. Undrained Shear Strength (kPa) Undrained Shear Strength (kPa) Unconfined compressive strength (kPa) UCS Unconfined compressive strength (ksf) Undrained Shear Strength (ksf) Avg. Rate of Strain to Failure (%/min): Strain at Failure (%):

Unconfined Compressive Strength

Comments:

No recovery of native soil. Filled with silt from sloughing.

Reviewed by: Lee Boughton Approved by: German Leal, M.Eng., P.Eng.

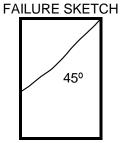
Laboratory Manager Geotechnical Discipline Lead

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	6.10 - 6.55 m
Sample Location:	TH23-07
Sample Number:	T10

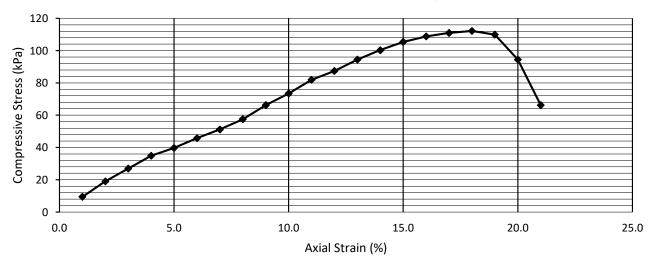

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.23
Average Length (cm):	14.81
Length/Diameter Ratio:	2.05
Moisture content (%):	53.7
Bulk Density (g/cm³):	1.654
Bulk Unit Weight (kN/m³):	16.2
Bulk Unit Weight (pcf):	103.3
Dry Unit Weight (kN/m³):	10.56



Torvane	Undrained Shear Strength (kPa)	34.3
Pocket Pen.	Undrained Shear Strength (kPa)	79.8

	Unconfined compressive strength (kPa)	112.18	Undrained Shear Strength (kPa)	56.09
UCS	Unconfined compressive strength (ksf)	2.343	Undrained Shear Strength (ksf)	1.171
	Avg. Rate of Strain to Failure (%/min):	2.03	Strain at Failure (%):	5.74

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

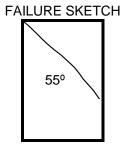
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	9.14 - 9.60 m
Sample Location:	TH23-07
Sample Number:	T13

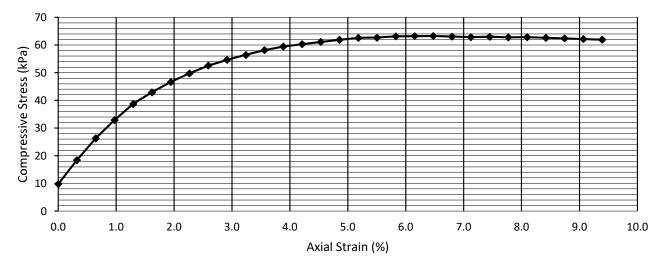

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.23
Average Length (cm):	15.44
Length/Diameter Ratio:	2.13
Moisture content (%):	50.0
Bulk Density (g/cm³):	1.814
Bulk Unit Weight (kN/m³):	17.8
Bulk Unit Weight (pcf):	113.2
Dry Unit Weight (kN/m³):	11.86



Torvane	Undrained Shear Strength (kPa)	29.4
Pocket Pen.	Undrained Shear Strength (kPa)	43.1

	Unconfined compressive strength (kPa)	63.27	Undrained Shear Strength (kPa)	31.63
UCS	Unconfined compressive strength (ksf)	1.321	Undrained Shear Strength (ksf)	0.661
	Avg. Rate of Strain to Failure (%/min):	1.94	Strain at Failure (%):	6.48

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

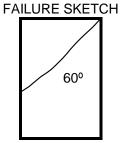
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	12.19 - 12.65 m
Sample Location:	TH23-07
Sample Number:	T16

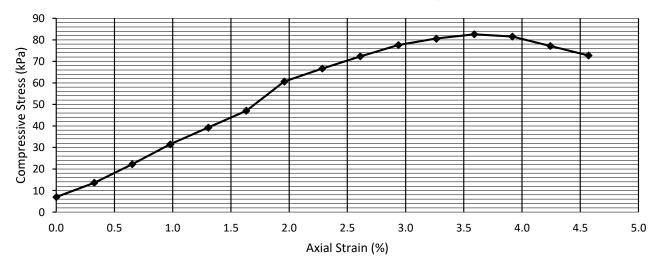

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.24
Average Length (cm):	15.32
Length/Diameter Ratio:	2.12
Moisture content (%):	45.0
Bulk Density (g/cm³):	1.799
Bulk Unit Weight (kN/m³):	17.6
Bulk Unit Weight (pcf):	112.3
Dry Unit Weight (kN/m³):	12.17



Torvane	Undrained Shear Strength (kPa)	34.3
Pocket Pen.	Undrained Shear Strength (kPa)	49.5

	Unconfined compressive strength (kPa)	82.56	Undrained Shear Strength (kPa)	41.28
UCS	Unconfined compressive strength (ksf)	1.724	Undrained Shear Strength (ksf)	0.862
	Avg. Rate of Strain to Failure (%/min):	1.96	Strain at Failure (%):	3.59

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

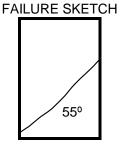
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	15.24 - 15.70 m
Sample Location:	TH23-07
Sample Number:	T19

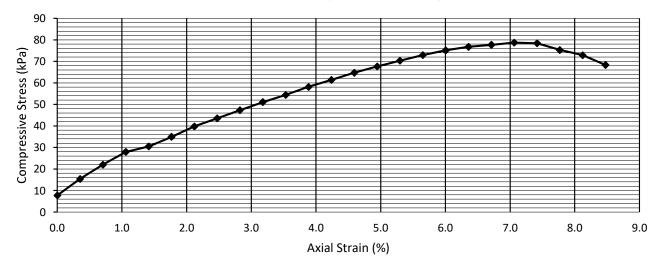

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.22
Average Length (cm):	14.16
Length/Diameter Ratio:	1.96
Moisture content (%):	48.1
Bulk Density (g/cm³):	1.719
Bulk Unit Weight (kN/m³):	16.9
Bulk Unit Weight (pcf):	107.3
Dry Unit Weight (kN/m³):	11.39



Torvane	Undrained Shear Strength (kPa)	19.6
Pocket Pen.	Undrained Shear Strength (kPa)	31.9

	Unconfined compressive strength (kPa)	78.73	Undrained Shear Strength (kPa)	39.36
UCS	Unconfined compressive strength (ksf)	1.644	Undrained Shear Strength (ksf)	0.822
	Avg. Rate of Strain to Failure (%/min):	2.12	Strain at Failure (%):	7.06

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

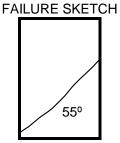
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	18.29 - 18.75 m
Sample Location:	TH23-07
Sample Number:	T22

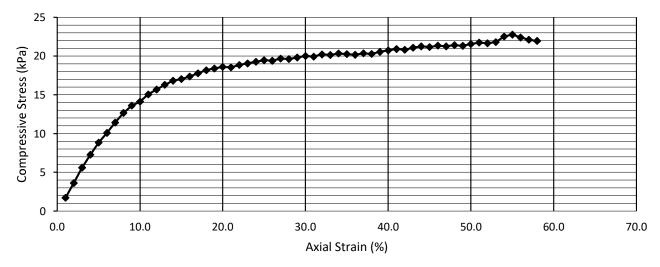

Date Sampled:	October 27, 2023
Sampled By:	LBoughton
Date Received:	November 7, 2023
Submitted By:	LBoughton
Date Tested:	November 9, 2023
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, high plasticity, homogeneous

Average Diameter (cm):	7.26
Average Length (cm):	14.50
Length/Diameter Ratio:	2.00
Moisture content (%):	45.2
Bulk Density (g/cm³):	1.644
Bulk Unit Weight (kN/m³):	16.1
Bulk Unit Weight (pcf):	102.7
Dry Unit Weight (kN/m³):	11.11



Torvane	Undrained Shear Strength (kPa)	19.6
Pocket Pen.	Undrained Shear Strength (kPa)	23.9

	Unconfined compressive strength (kPa)	22.76	Undrained Shear Strength (kPa)	11.38
UCS	Unconfined compressive strength (ksf)	0.475	Undrained Shear Strength (ksf)	0.238
	Avg. Rate of Strain to Failure (%/min):	2.07	Strain at Failure (%):	20.34

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	1.52 - 1.98 m
Sample Location:	TH23-08
Sample Number:	T4

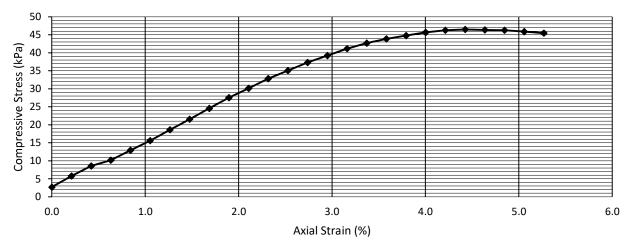

Date Sampled:	December 15, 2023
Sampled By:	LBoughton
Date Received:	December 8, 2023
Submitted By:	LBoughton
Date Tested:	January 8, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY/SILT - brown, firm, moist, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.16
Average Length (cm):	11.86
Length/Diameter Ratio:	1.66
Moisture content (%):	35.6
Bulk Density (g/cm³):	1.980
Bulk Unit Weight (kN/m³):	19.4
Bulk Unit Weight (pcf):	123.6
Dry Unit Weight (kN/m³):	14.32



	·	-
Torvane	Undrained Shear Strength (kPa)	
Pocket Pen.	Undrained Shear Strength (kPa)	

	Unconfined compressive strength (kPa)	46.46	Undrained Shear Strength (kPa)	23.23
UCS	Unconfined compressive strength (ksf)	0.970	Undrained Shear Strength (ksf)	0.485
	Avg. Rate of Strain to Failure (%/min):	1.26	Strain at Failure (%):	4.43

Unconfined Compressive Strength

Comments

sample collected appears to be from sloughing and not represenative of native soil to perform Torvane or Pocket Pen

Reviewed by: Lee Boughton

Laboratory Manager

Approved by: German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	4.57 - 5.03 m
Sample Location:	TH23-08
Sample Number:	T8

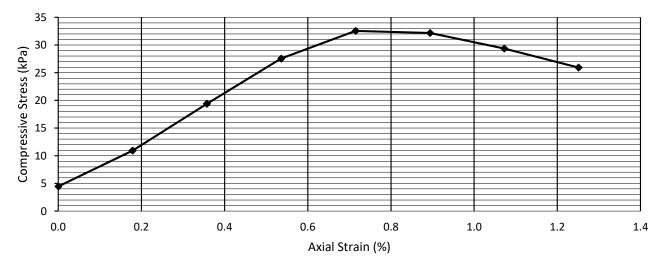

Date Sampled:	December 15, 2023
Sampled By:	LBoughton
Date Received:	December 8, 2023
Submitted By:	LBoughton
Date Tested:	January 8, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, stiff, moist, sitly, high plasticity, homogeneous

Average Diameter (cm):	7.16
Average Length (cm):	13.99
Length/Diameter Ratio:	1.95
Moisture content (%):	53.4
Bulk Density (g/cm³):	1.732
Bulk Unit Weight (kN/m³):	17.0
Bulk Unit Weight (pcf):	108.1
Dry Unit Weight (kN/m³):	11.07



Torvane	Undrained Shear Strength (kPa)	53.9
Pocket Pen.	Undrained Shear Strength (kPa)	59.1

	Unconfined compressive strength (kPa)	32.55	Undrained Shear Strength (kPa)	16.28
UCS	Unconfined compressive strength (ksf)	0.680	Undrained Shear Strength (ksf)	0.340
	Avg. Rate of Strain to Failure (%/min):	1.07	Strain at Failure (%):	0.72

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

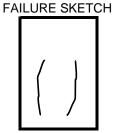
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	7.62 - 8.08 m
Sample Location:	TH23-08
Sample Number:	T11

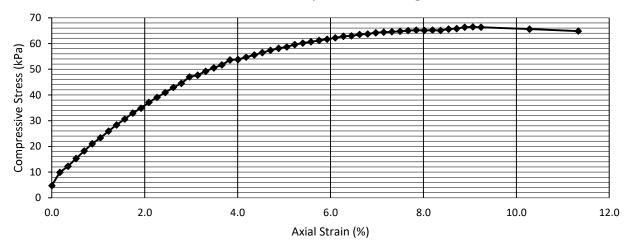

Date Sampled:	December 15, 2023
Sampled By:	LBoughton
Date Received:	December 8, 2023
Submitted By:	LBoughton
Date Tested:	January 8, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, stiff, moist, sitly, high plasticity, homogeneous

Average Diameter (cm):	7.17
Average Length (cm):	14.34
Length/Diameter Ratio:	2.00
Moisture content (%):	46.2
Bulk Density (g/cm³):	1.759
Bulk Unit Weight (kN/m³):	17.3
Bulk Unit Weight (pcf):	109.8
Dry Unit Weight (kN/m³):	11.80



Torvane	Undrained Shear Strength (kPa)	
Pocket Pen.	Undrained Shear Strength (kPa)	

	Unconfined compressive strength (kPa)	66.46	Undrained Shear Strength (kPa)	33.23
UCS	Unconfined compressive strength (ksf)	1.388	Undrained Shear Strength (ksf)	0.694
	Avg. Rate of Strain to Failure (%/min):	1.05	Strain at Failure (%):	9.06

Unconfined Compressive Strength

Comments:

Not enough sample to perform torvane or pocket pen

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

NEWPCC Biosolids Early Works		
60705950	Date Sampled:	December 15, 2023
WSTP	Sampled By:	LBoughton
Winnipeg, MB	Date Received:	December 8, 2023
10.67 - 11.13 m	Submitted By:	LBoughton
TH23-08	Date Tested:	January 8, 2024
T14	Tested By:	LBoughton
	60705950 WSTP Winnipeg, MB 10.67 - 11.13 m TH23-08	60705950 Date Sampled: WSTP Sampled By: Winnipeg, MB Date Received: 10.67 - 11.13 m Submitted By: TH23-08 Date Tested:

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist to wet, sitly, high plasticity, homogeneous

Average Diameter (cm):

Average Length (cm):

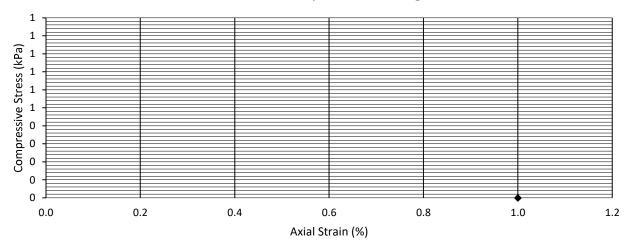
Length/Diameter Ratio:

Moisture content (%): 38.2

Bulk Density (g/cm³):

Bulk Unit Weight (kN/m³):

Bulk Unit Weight (pcf):


Dry Unit Weight (kN/m³):

Torvane Undrained Shear Strength (kPa)

Pocket Pen. Undrained Shear Strength (kPa)

	Unconfined compressive strength (kPa)	Undrained Shear Strength (kPa)	
UCS	Unconfined compressive strength (ksf)	Undrained Shear Strength (ksf)	
	Avg. Rate of Strain to Failure (%/min):	Strain at Failure (%):	

Unconfined Compressive Strength

Comments:

Not enough sample collected to perform testing

Reviewed by: Lee Boughton Approved by: German Leal, M.Eng., P.Eng.

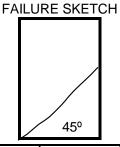
Laboratory Manager Geotechnical Discipline Lead

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	6.10 - 6.71 m
Sample Location:	TH24-10
Sample Number:	T7

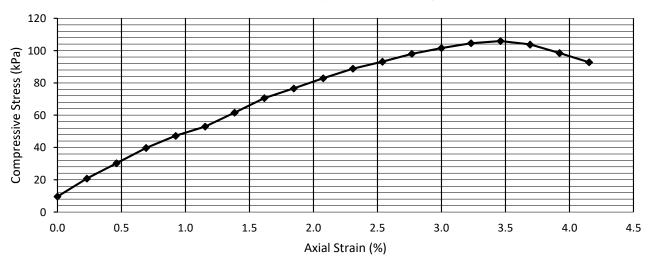

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, stiff, moist, sitly, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.28
Average Length (cm):	14.45
Length/Diameter Ratio:	1.98
Moisture content (%):	57.2
Bulk Density (g/cm³):	1.672
Bulk Unit Weight (kN/m³):	16.4
Bulk Unit Weight (pcf):	104.4
Dry Unit Weight (kN/m³):	10.43



Torvane	Undrained Shear Strength (kPa)	62.8
Pocket Pen.	Undrained Shear Strength (kPa)	49.5

	Unconfined compressive strength (kPa)	105.96	Undrained Shear Strength (kPa)	52.98
UCS	Unconfined compressive strength (ksf)	2.213	Undrained Shear Strength (ksf)	1.106
	Avg. Rate of Strain to Failure (%/min):	1.38	Strain at Failure (%):	3.46

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

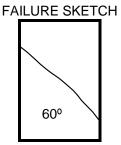
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	9.14 - 9.75 m
Sample Location:	TH24-10
Sample Number:	T10

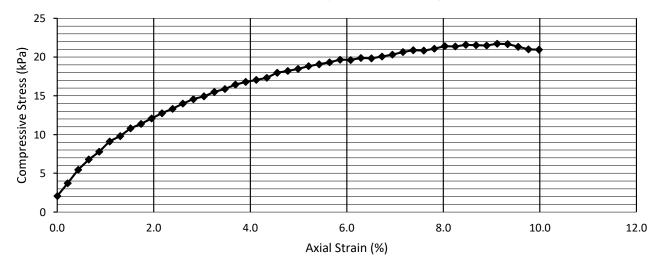

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, very soft, moist, silty, trace gravel, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.16
Average Length (cm):	15.36
Length/Diameter Ratio:	2.14
Moisture content (%):	47.5
Bulk Density (g/cm³):	1.711
Bulk Unit Weight (kN/m³):	16.8
Bulk Unit Weight (pcf):	106.8
Dry Unit Weight (kN/m³):	11.38



Torvane	Undrained Shear Strength (kPa)	14.7
Pocket Pen.	Undrained Shear Strength (kPa)	9.6

	Unconfined compressive strength (kPa)	21.72	Undrained Shear Strength (kPa)	10.86
UCS	Unconfined compressive strength (ksf)	0.454	Undrained Shear Strength (ksf)	0.227
	Avg. Rate of Strain to Failure (%/min):	1.30	Strain at Failure (%):	9.11

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

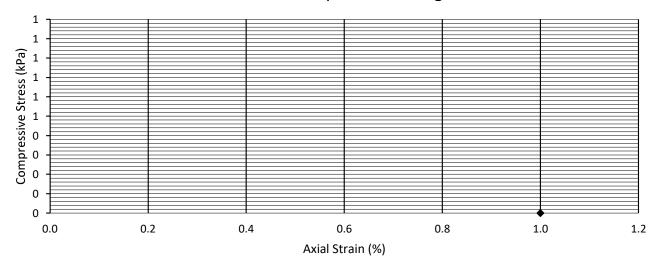
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	3.05 - 3.66 m
Sample Location:	TH24-11
Sample Number:	T6


Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY/SILT - brown/tan, very soft, moist, trace sand, high plasticity, homogeneous **FAILURE SKETCH** Average Diameter (cm): Average Length (cm): Length/Diameter Ratio: 28.2 Moisture content (%): Bulk Density (g/cm³): Bulk Unit Weight (kN/m³): Bulk Unit Weight (pcf): Dry Unit Weight (kN/m³): Undrained Shear Strength (kPa) Torvane Pocket Pen. Undrained Shear Strength (kPa) Undrained Shear Strength (kPa) Unconfined compressive strength (kPa) UCS Unconfined compressive strength (ksf) Undrained Shear Strength (ksf) Avg. Rate of Strain to Failure (%/min): Strain at Failure (%):

Unconfined Compressive Strength

Comments:

sample collected appears to be from sloughing and not representaive of native soil

Reviewed by: Lee Boughton Approved by: German Leal, M.Eng., P.Eng.

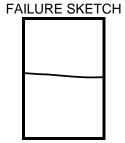
Laboratory Manager Geotechnical Discipline Lead

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	3.05 - 3.66 m
Sample Location:	TH24-13
Sample Number:	T5

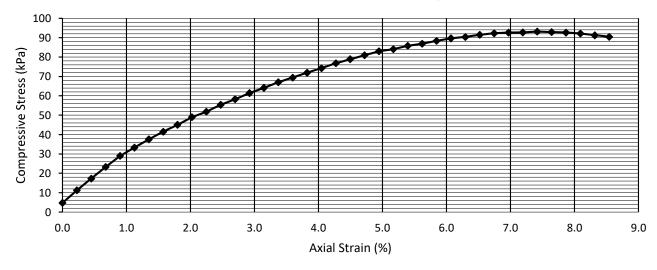

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.18
Average Length (cm):	14.83
Length/Diameter Ratio:	2.06
Moisture content (%):	46.2
Bulk Density (g/cm³):	1.775
Bulk Unit Weight (kN/m³):	17.4
Bulk Unit Weight (pcf):	110.8
Dry Unit Weight (kN/m³):	11.91



Torvane	Undrained Shear Strength (kPa)	39.2
Pocket Pen.	Undrained Shear Strength (kPa)	62.2

	Unconfined compressive strength (kPa)	93.14	Undrained Shear Strength (kPa)	46.57
UCS	Unconfined compressive strength (ksf)	1.945	Undrained Shear Strength (ksf)	0.973
	Avg. Rate of Strain to Failure (%/min):	1.35	Strain at Failure (%):	7.42

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

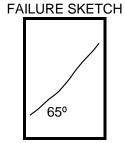
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	6.10 - 6.71 m
Sample Location:	TH24-13
Sample Number:	T8

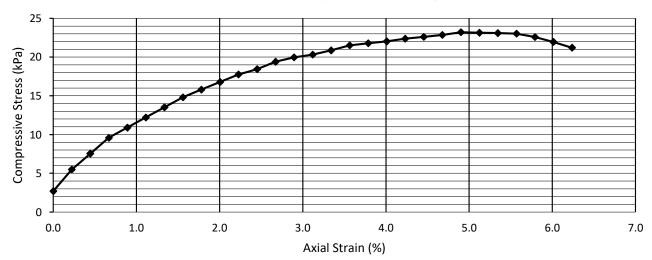

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, very soft, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.15
Average Length (cm):	14.96
Length/Diameter Ratio:	2.09
Moisture content (%):	52.5
Bulk Density (g/cm³):	1.694
Bulk Unit Weight (kN/m³):	16.6
Bulk Unit Weight (pcf):	105.7
Dry Unit Weight (kN/m³):	10.89



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	12.0

	Unconfined compressive strength (kPa)	23.20	Undrained Shear Strength (kPa)	11.60
UCS	Unconfined compressive strength (ksf)	0.485	Undrained Shear Strength (ksf)	0.242
	Avg. Rate of Strain to Failure (%/min):	1.34	Strain at Failure (%):	4.90

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	9.14 - 9.75 m
Sample Location:	TH24-13
Sample Number:	T9

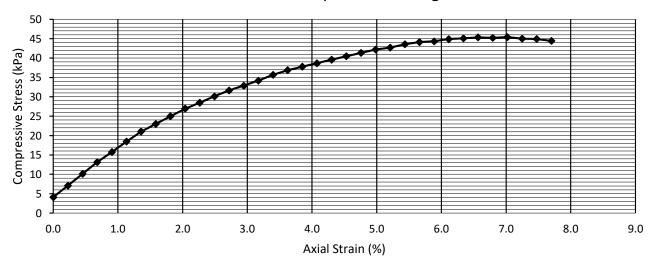
Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, sitly, trace gravel, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.19
Average Length (cm):	14.72
Length/Diameter Ratio:	2.05
Moisture content (%):	50.8
Bulk Density (g/cm³):	1.655
Bulk Unit Weight (kN/m³):	16.2
Bulk Unit Weight (pcf):	103.3
Dry Unit Weight (kN/m³):	10.76



Torvane	Undrained Shear Strength (kPa)	24.5	
Pocket Pen.	Undrained Shear Strength (kPa)		

	Unconfined compressive strength (kPa)	45.42	Undrained Shear Strength (kPa)	22.71
UCS	Unconfined compressive strength (ksf)	0.949	Undrained Shear Strength (ksf)	0.474
	Avg. Rate of Strain to Failure (%/min):	1.36	Strain at Failure (%):	7.02

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

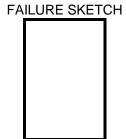
German Leal, M.Eng., P.Eng. Geotechnical Discipline Lead

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works		
Project Number:	60705950		
Client:	WSTP		
Supplier/Location:	Winnipeg, MB		
Sample Depth (m):	12.19 - 12.80 m		
Sample Location:	TH24-13		
Sample Number:	T10		

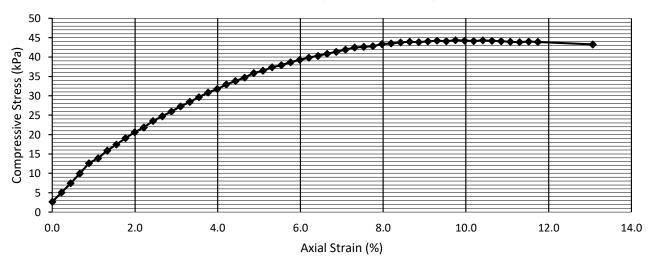

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.24
Average Length (cm):	15.05
Length/Diameter Ratio:	2.08
Moisture content (%):	49.7
Bulk Density (g/cm³):	1.830
Bulk Unit Weight (kN/m³):	17.9
Bulk Unit Weight (pcf):	114.3
Dry Unit Weight (kN/m³):	11.99



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	23.9

		Unconfined compressive strength (kPa)	44.36	Undrained Shear Strength (kPa)	22.18
UCS	3	Unconfined compressive strength (ksf)	0.926	Undrained Shear Strength (ksf)	0.463
		Avg. Rate of Strain to Failure (%/min):	1.33	Strain at Failure (%):	9.74

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works		
Project Number:	60705950		
Client:	WSTP		
Supplier/Location:	Winnipeg, MB		
Sample Depth (m):	9.14 - 9.75 m		
Sample Location:	TH24-13		
Sample Number:	T11		

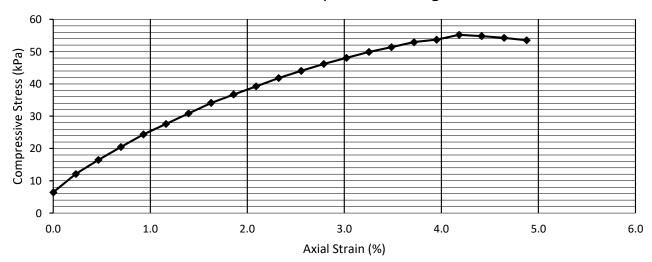
Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, soft, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.21
Average Length (cm):	14.35
Length/Diameter Ratio:	1.99
Moisture content (%):	61.0
Bulk Density (g/cm³):	1.625
Bulk Unit Weight (kN/m³):	15.9
Bulk Unit Weight (pcf):	101.5
Dry Unit Weight (kN/m³):	9.90



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	17.6

	Unconfined compressive strength (kPa)	55.22	Undrained Shear Strength (kPa)	27.61
UCS	Unconfined compressive strength (ksf)	1.153	Undrained Shear Strength (ksf)	0.577
	Avg. Rate of Strain to Failure (%/min):	1.39	Strain at Failure (%):	4.18

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

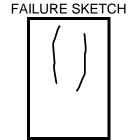
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	3.05 - 3.66 m
Sample Location:	TH24-14
Sample Number:	T6

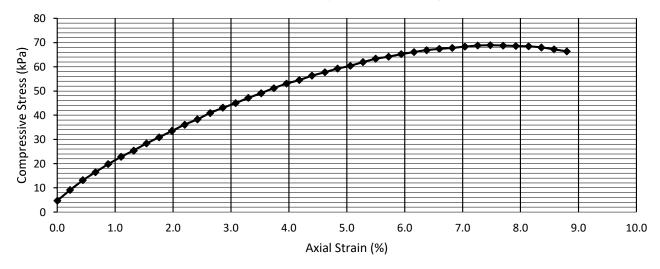

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY/SILT - brown, firm, moist, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.20
Average Length (cm):	15.15
Length/Diameter Ratio:	2.11
Moisture content (%):	43.3
Bulk Density (g/cm³):	1.792
Bulk Unit Weight (kN/m³):	17.6
Bulk Unit Weight (pcf):	111.8
Dry Unit Weight (kN/m³):	12.26



Torvane	Undrained Shear Strength (kPa)	44.1
Pocket Pen.	Undrained Shear Strength (kPa)	55.9

	Unconfined compressive strength (kPa)	68.93	Undrained Shear Strength (kPa)	34.46
UCS	Unconfined compressive strength (ksf)	1.440	Undrained Shear Strength (ksf)	0.720
	Avg. Rate of Strain to Failure (%/min):	1.32	Strain at Failure (%):	7.48

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	6.10 - 6.71 m
Sample Location:	TH24-14
Sample Number:	T10

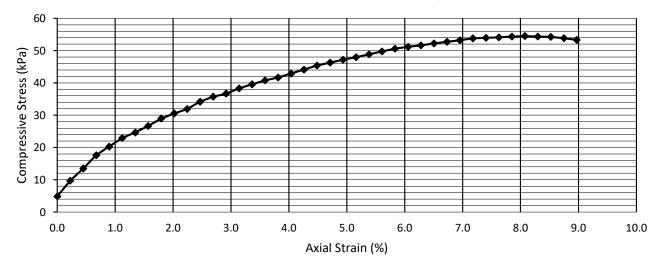
Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - grey, firm, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.11
Average Length (cm):	14.86
Length/Diameter Ratio:	2.09
Moisture content (%):	55.2
Bulk Density (g/cm³):	1.715
Bulk Unit Weight (kN/m³):	16.8
Bulk Unit Weight (pcf):	107.1
Dry Unit Weight (kN/m³):	10.84



Torvane	Undrained Shear Strength (kPa)	34.3
Pocket Pen.	Undrained Shear Strength (kPa)	23.9

	Unconfined compressive strength (kPa)	54.52	Undrained Shear Strength (kPa)	27.26
UCS	Unconfined compressive strength (ksf)	1.139	Undrained Shear Strength (ksf)	0.569
	Avg. Rate of Strain to Failure (%/min):	1.35	Strain at Failure (%):	8.07

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

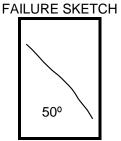
German Leal, M.Eng., P.Eng.

Winnipeg Geotechnical Laboratory

99 Commerce Drive, Winnipeg, MB R3P 0Y7

Phone: 204 477 5381

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Supplier/Location:	Winnipeg, MB
Sample Depth (m):	7.62 - 8.23 m
Sample Location:	TH24-15
Sample Number:	T10

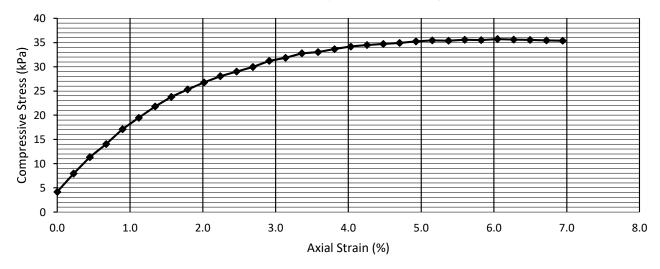

Date Sampled:	January 12, 2024
Sampled By:	ABonifacio
Date Received:	January 12, 2024
Submitted By:	ABonifacio
Date Tested:	January 28, 2024
Tested By:	LBoughton

Unconfined Compressive Strength (ASTM D2166)

Standard Test Method for Unconfined Compressive Strenght of Cohesive Soil, using strain-controlled application of the axial load.

Soil Description: CLAY - brown, soft, moist, silty, trace sand, high plasticity, homogeneous

Average Diameter (cm):	7.12
Average Length (cm):	14.88
Length/Diameter Ratio:	2.09
Moisture content (%):	44.1
Bulk Density (g/cm³):	1.698
Bulk Unit Weight (kN/m³):	16.6
Bulk Unit Weight (pcf):	106.0
Dry Unit Weight (kN/m³):	11.55



Torvane	Undrained Shear Strength (kPa)	24.5
Pocket Pen.	Undrained Shear Strength (kPa)	12.0

	Unconfined compressive strength (kPa)	35.72	Undrained Shear Strength (kPa)	17.86
UCS	Unconfined compressive strength (ksf)	0.746	Undrained Shear Strength (ksf)	0.373
	Avg. Rate of Strain to Failure (%/min):	1.34	Strain at Failure (%):	6.05

Unconfined Compressive Strength

Comments:

Reviewed by: Lee Boughton

Laboratory Manager

Approved by:

German Leal, M.Eng., P.Eng.

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Depth:	4.57 - 5.18 m
Sample Number:	T8

Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	January 23, 2024

Flexible Wall Permeameter (ASTM D5084-10)

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Material and Test Description Material Description: CLAY - silty, grey, moist, firm, high plasticity Test Type: Constant Head Remoulding Details Mould Size: Flexible Wall Max Dry Density (kg/m³): N/A Sample Source: Shelby Tube Sample Proctor ID: N/A Fluid Used: Deaired Water Percent Max (%): N/A Fluid Reservoir: Burrettes N/A Target Dry Density (kg/m³):

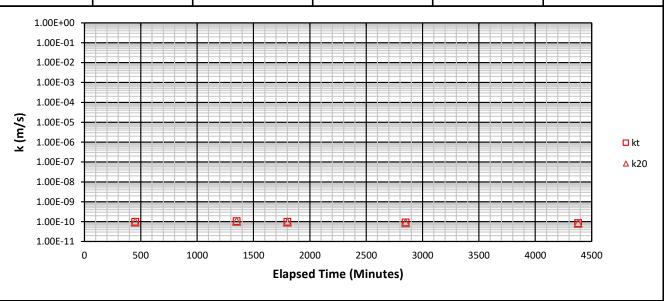
Initial Sample Characteristics									
Water Cor	ntent			(Sample Size	е			
Wet + Tare (g):	779.6	Trial		1	2	3	4	Average	
Dry + Tare (g):	516.9	Diameter (mm)):	72.01	72.18	71.85	71.54	71.9	
Tare (g):	8.3	Length (mm):		56.52	56.38	56.32	56.48	56.4	
Water Content (%):	51.7%	Weight (g)		381.3					
Area (cm²):		40.6	Sp	Specific Gravity (Note 2):			3.84		
Volume (cm ³):		229.1		Void Ratio:			2.50		
Wet Density (kg/m ³):		1,664.6		Saturation:			79.4%		
Dry Density (kg/m ³):		1,097.6	Po	Porosity:			71.4%		

Final Sample Characteristics											
Water Content				Sample Size							
Wet + Tare (g):	3	396.1	Trial		1	2	3	4	Average		
Dry + Tare (g):	2	215.8	Diameter (mm):	72.1	72.2	72.3	72.1	72.2		
Tare (g):		8.1	Length (mm):	Length (mm):		57.2	57.3	57.3	57.3		
Water Content (%):	8	6.8% Weight (g)			388.2						
Area (cm ²):			40.9	Sp	Specific Gravity (Note 1):			3.84			
Volume (cm ³):		234.4		Vo	Void Ratio:			3.33			
Wet Density (kg/m ³):		1,655.9		Sa	Saturation:			100.0%			
Dry Density (kg/m ³):			886.4		Porosity:			76.9%			

Note 1: Specific gravity for final sample characteristics calculation adjusted to result in 100.0% saturation.

Note 2: Specific gravity for initial sample characteristics calculation set equal to that of the final.

Phone: 204 477 5381 Fax: 204 284 2040


Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH23-01
Sample Depth:	4.57 - 5.18 m
Sample Number:	T8

Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	January 23, 2024

Flexible Wall Permeameter (ASTM D5084-10)

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Permeation Data								
Head Difference ((m):	2.8	Area of Sample (m ²)		4.075E-03			
Length of Sample	: (m):	5.686E-02	Gradient, i		4.944E+01			
Hydraulic Conduc	tivity, "k" (m/s):	8.453E-11	Hydraulic Conductiv	ity, "k ₂₀ " (m/s):	8.12293E-11			
Elapsed Time (Minutes)	Average Volume Change (mL)	Average Temperature (°C)	k _t (m/s)	R _T	k ₂₀ (m/s)			
450	0.61	21.2	9.847E-11	0.972	9.571E-11			
1350	1.79	21.1	1.066E-10	0.974	1.038E-10			
1800	2.23	22.1	9.915E-11	0.952	9.439E-11			
2850	3.25	21.5	9.159E-11	0.965	8.838E-11			
4380	4.64	21.2	8.551E-11	0.973	8.320E-11			
5670	5.75	22.5	8.211E-11	0.943	7.743E-11			
7170	6.97	21.6	7.890E-11	0.962	7.590E-11			
8730	8.24	24.4	7.677E-11	0.903	6.933E-11			
-	-	-	-	-	-			
-	-	-	-	-	-			
-	-	-	-	-	-			
-	-	-	-	-	-			
-	-	-	-	-	-			

Phone: 204 477 5381 Fax: 204 284 2040

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-15
Sample Depth:	6.10 - 6.71 m
Sample Number:	T8

Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	January 23, 2024

Flexible Wall Permeameter (ASTM D5084-10)

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

Material and Test Description Material Description: CLAY - silty, grey, moist, firm, high plasticity Test Type: Constant Head Remoulding Details Mould Size: Flexible Wall Max Dry Density (kg/m³): N/A Sample Source: Shelby Tube Sample Proctor ID: N/A Fluid Used: Deaired Water Percent Max (%): N/A Fluid Reservoir: Burrettes N/A Target Dry Density (kg/m³):

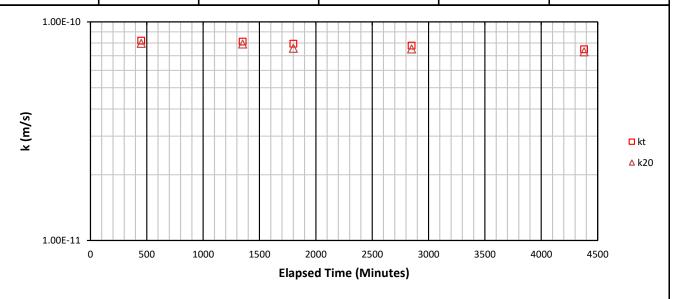
Initial Sample Characteristics									
Water Cor	ntent			9	Sample Size	е			
Wet + Tare (g):	779.2	Trial		1	2	3	4	Average	
Dry + Tare (g):	502.3	Diameter (mm)):	71.36	71.6	72.05	72.05	71.8	
Tare (g):	8.6	Length (mm):		49.8	50.6	50.38	50.02	50.2	
Water Content (%):	56.1%	Weight (g)		330.5					
Area (cm²):		40.4	Sp	Specific Gravity (Note 2):			2.11		
Volume (cm ³):		203.1		Void Ratio:			1.02		
Wet Density (kg/m ³):		1,627.6		Saturation:			115.6%		
Dry Density (kg/m ³):		1,042.8		Porosity:			50.6%		

Final Sample Characteristics												
Water Co	Water Content			Sample Size								
Wet + Tare (g):	3	342.8		Trial			1	2	3		4	Average
Dry + Tare (g):	2	255.8		Diameter (mm):			71.9	72.1	71.	9	72	72.0
Tare (g):		8.2		Length (mm):			50.3	50.1	50.	2	50.2	50.2
Water Content (%):	3	5.1%		Weight (g)			334.4					
Area (cm ²):			4	0.7		Spe	Specific Gravity (Note 1):			2.11		
Volume (cm ³):		204.2			Void Ratio:			0.74				
Wet Density (kg/m ³):		1,637.2			Saturation:				100.0%			
Dry Density (kg/m ³):			1,2	211.5		Porosity:				42.6%		

Note 1: Specific gravity for final sample characteristics calculation adjusted to result in 100.0% saturation.

Note 2: Specific gravity for initial sample characteristics calculation set equal to that of the final.

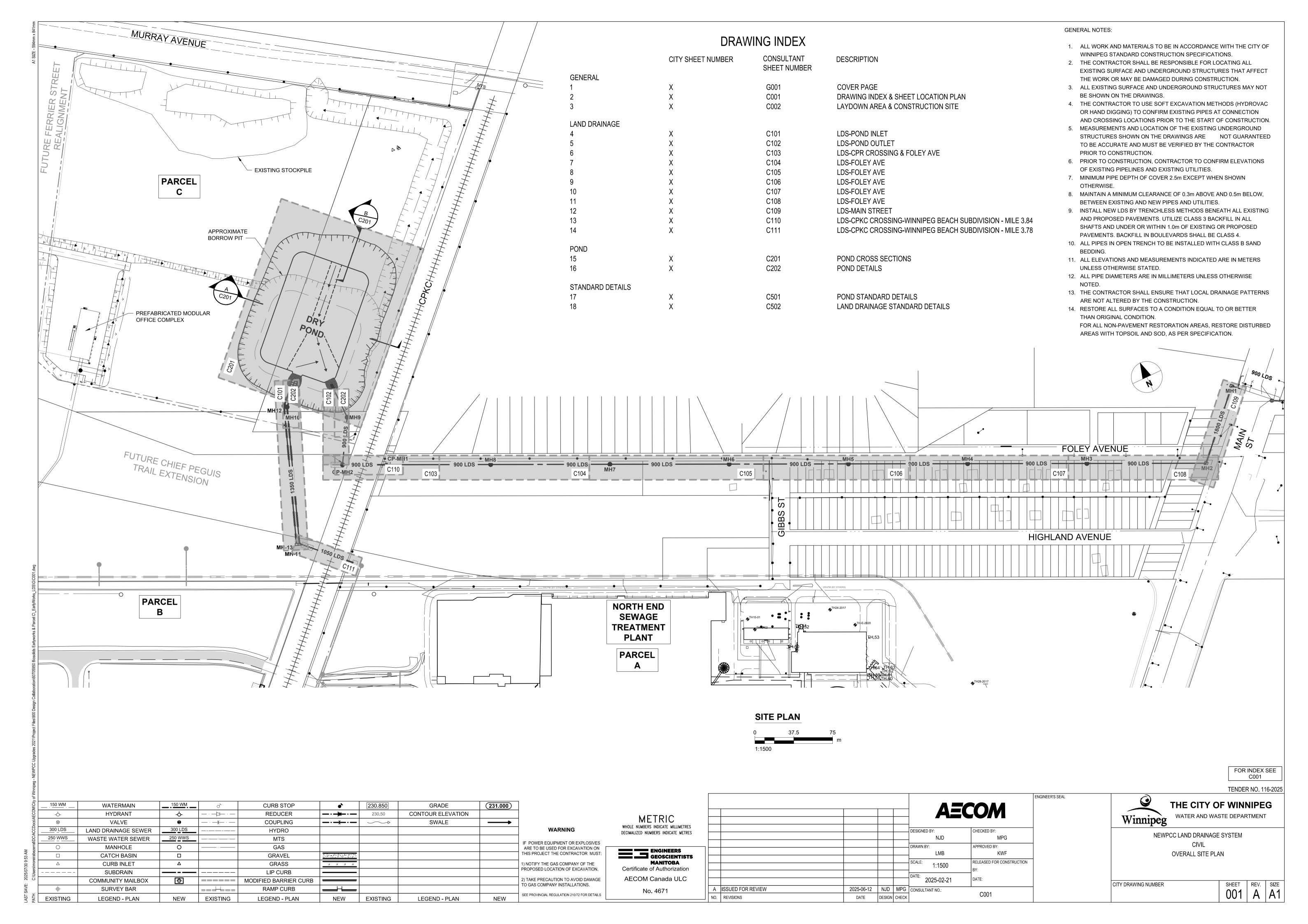
Phone: 204 477 5381 Fax: 204 284 2040

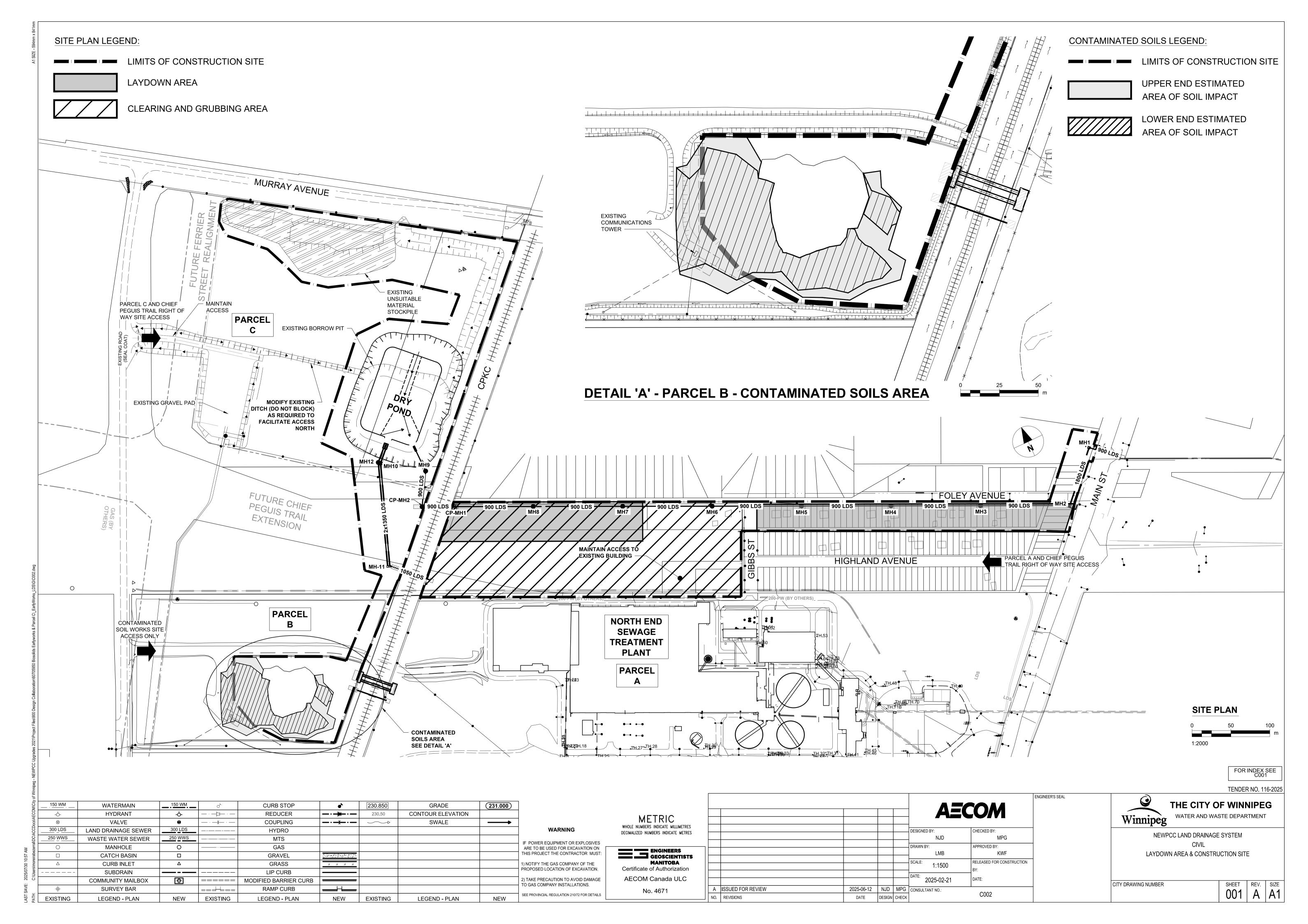

Project Name:	NEWPCC Biosolids Early Works
Project Number:	60705950
Client:	WSTP
Sample Location:	TH24-15
Sample Depth:	6.10 - 6.71 m
Sample Number:	T8

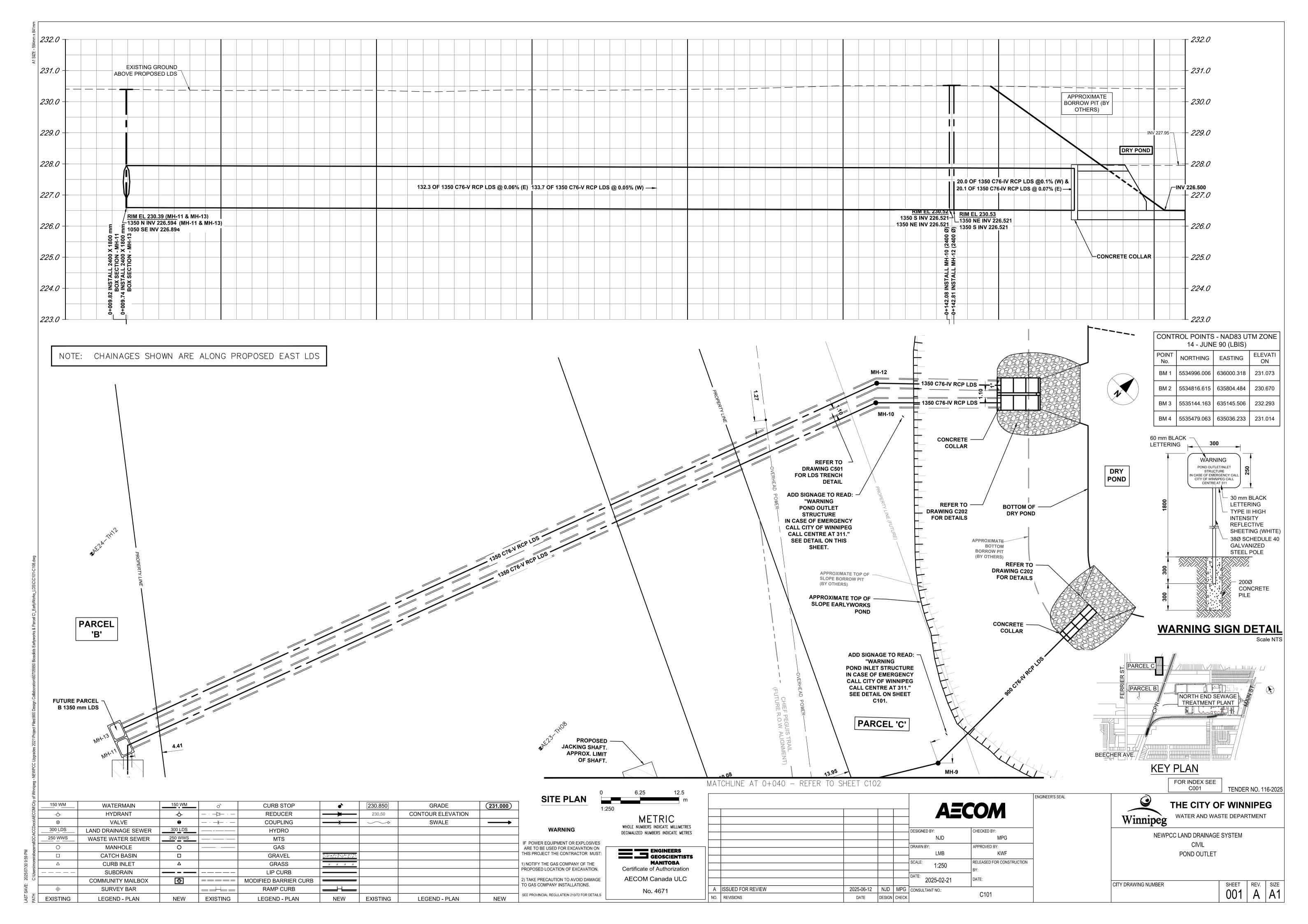
Supplier:	AECOM
Specification:	N/A
Field Technician:	ABonifacio
Sample Date:	January 12, 2024
Lab Technician:	LBoughton
Date Tested:	January 23, 2024

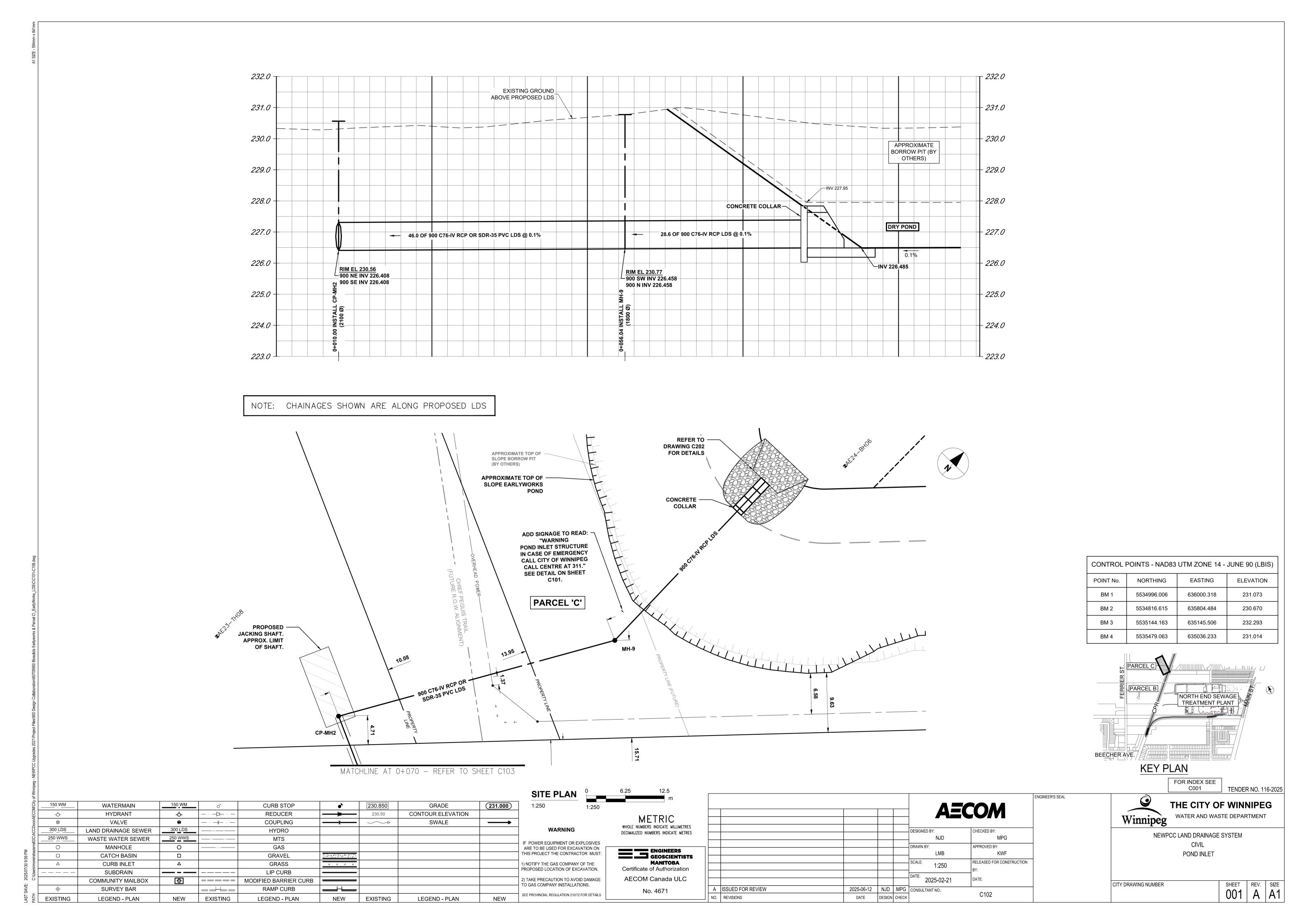
Flexible Wall Permeameter (ASTM D5084-10)

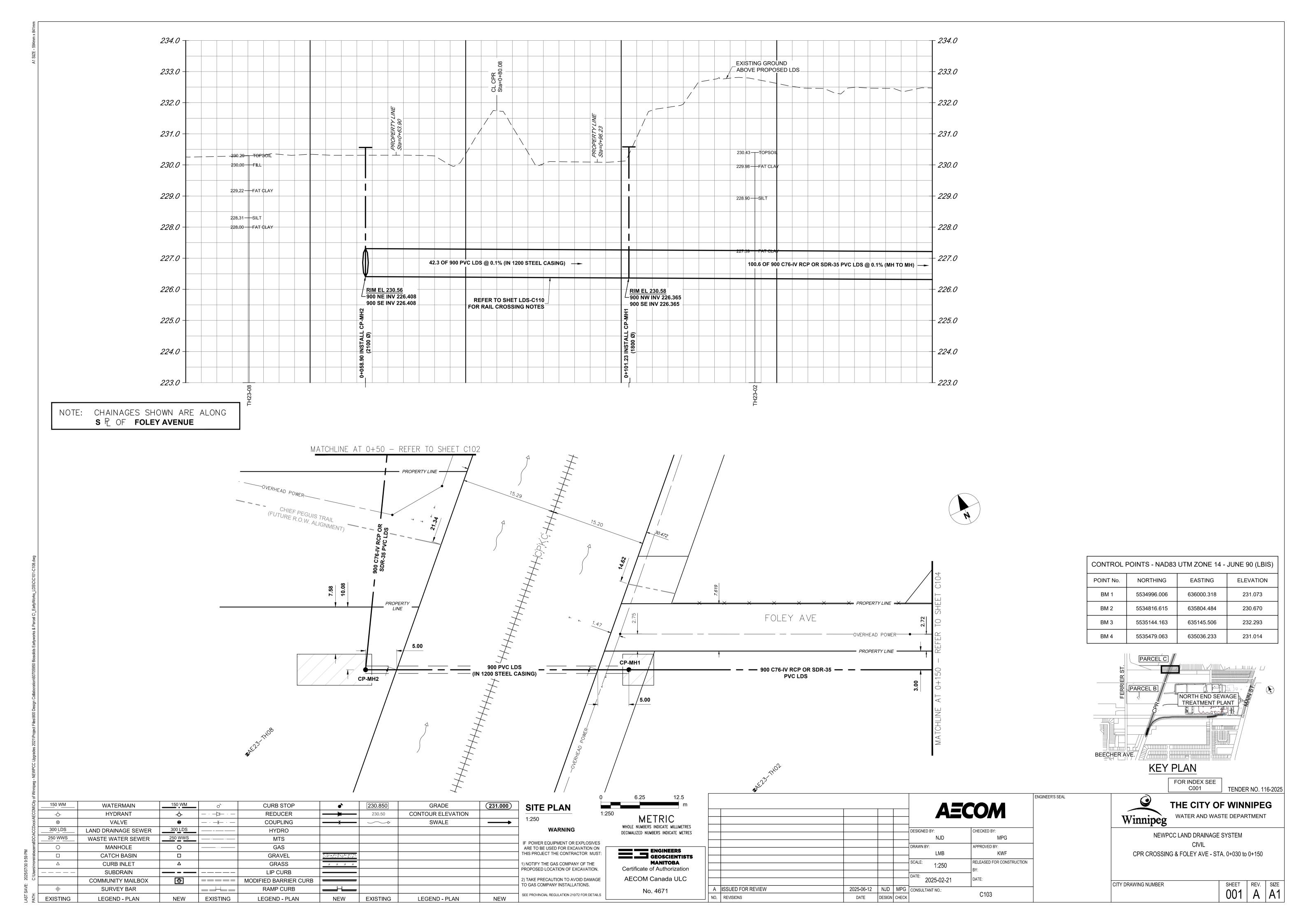
Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

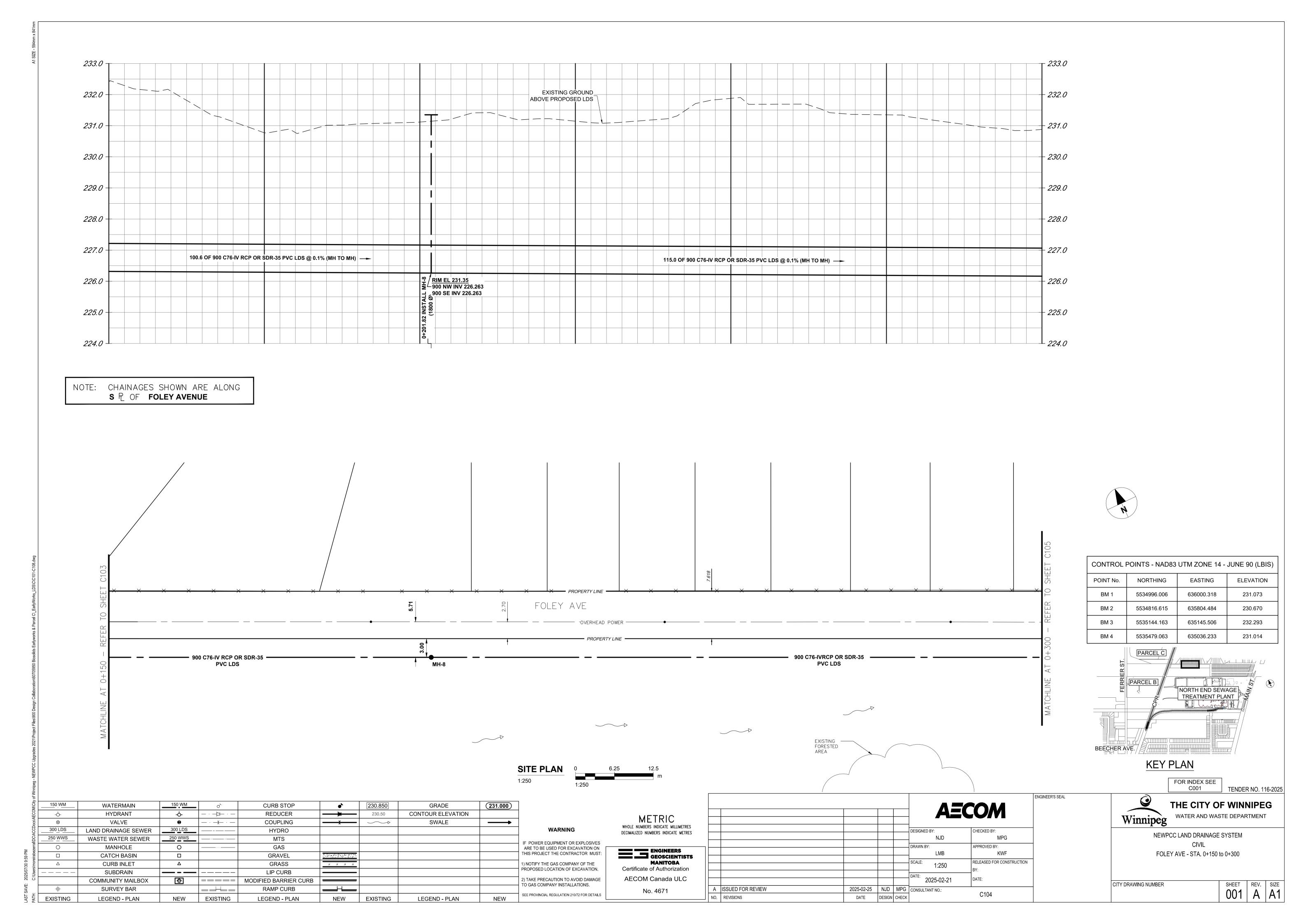

Permeation Data										
Head Difference ((m):	2.8	Area of Sample (m ²)		4.057E-03					
Length of Sample	: (m):	5.020E-02	Gradient, i		5.600E+01					
Hydraulic Conduc	draulic Conductivity, "k" (m/s): 7.413E-1		Hydraulic Conductiv	ity, "k ₂₀ " (m/s):	7.12429E-11					
Elapsed Time (Minutes)	Average Volume Change (mL)	Average Temperature (°C)	k _t (m/s)	R _T	k ₂₀ (m/s)					
450	0.62	21.2	8.209E-11	0.972	7.979E-11					
1350	1.61	21.1	8.129E-11 0.974		7.918E-11					
1800	2.07	22.1	7.947E-11 0.952		7.566E-11					
2850	3.15	21.5	7.786E-11 0.965		7.513E-11					
4380	4.61	21.2	7.495E-11	0.973	7.293E-11					
5670	5.80	22.5	7.322E-11	0.943	6.905E-11					
7170	7.04	21.6	7.050E-11	0.962	6.782E-11					
8730	8.38	24.4	6.913E-11	0.903	6.242E-11					
-	-	-	-	-	-					
-	-	-			-					
-	-	-			-					
-	-	-	-	-	-					
-	-	-	-	-	-					




AECOM


Appendix D


Drawings



A ISSUED FOR REVIEW

NO. REVISIONS

No. 4671

SEE PROVINCIAL REGULATION 210/72 FOR DETAILS

NEW

2025-06-12 NJD KWF CONSULTANT NO.:

DESIGN CHECK

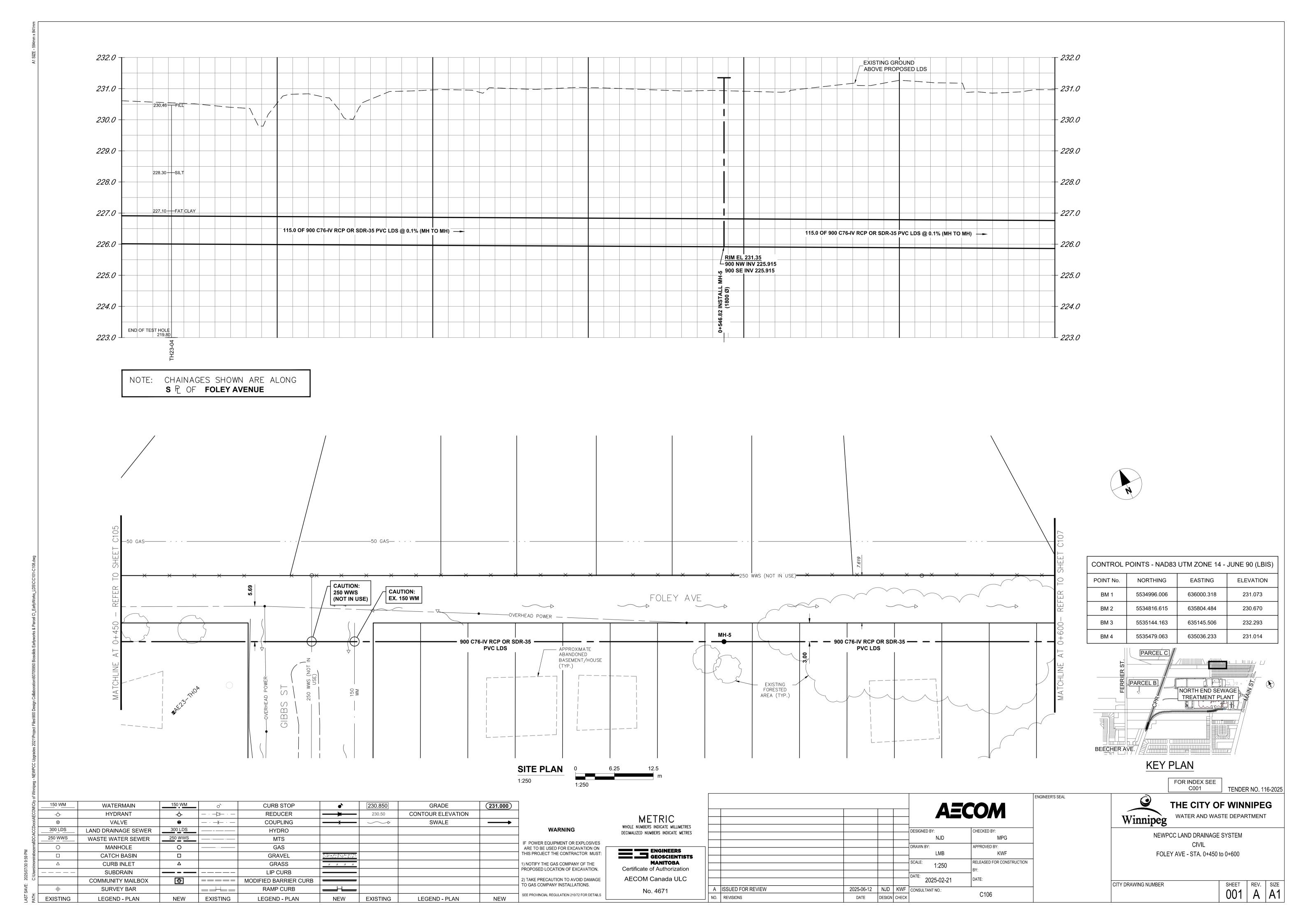
DATE

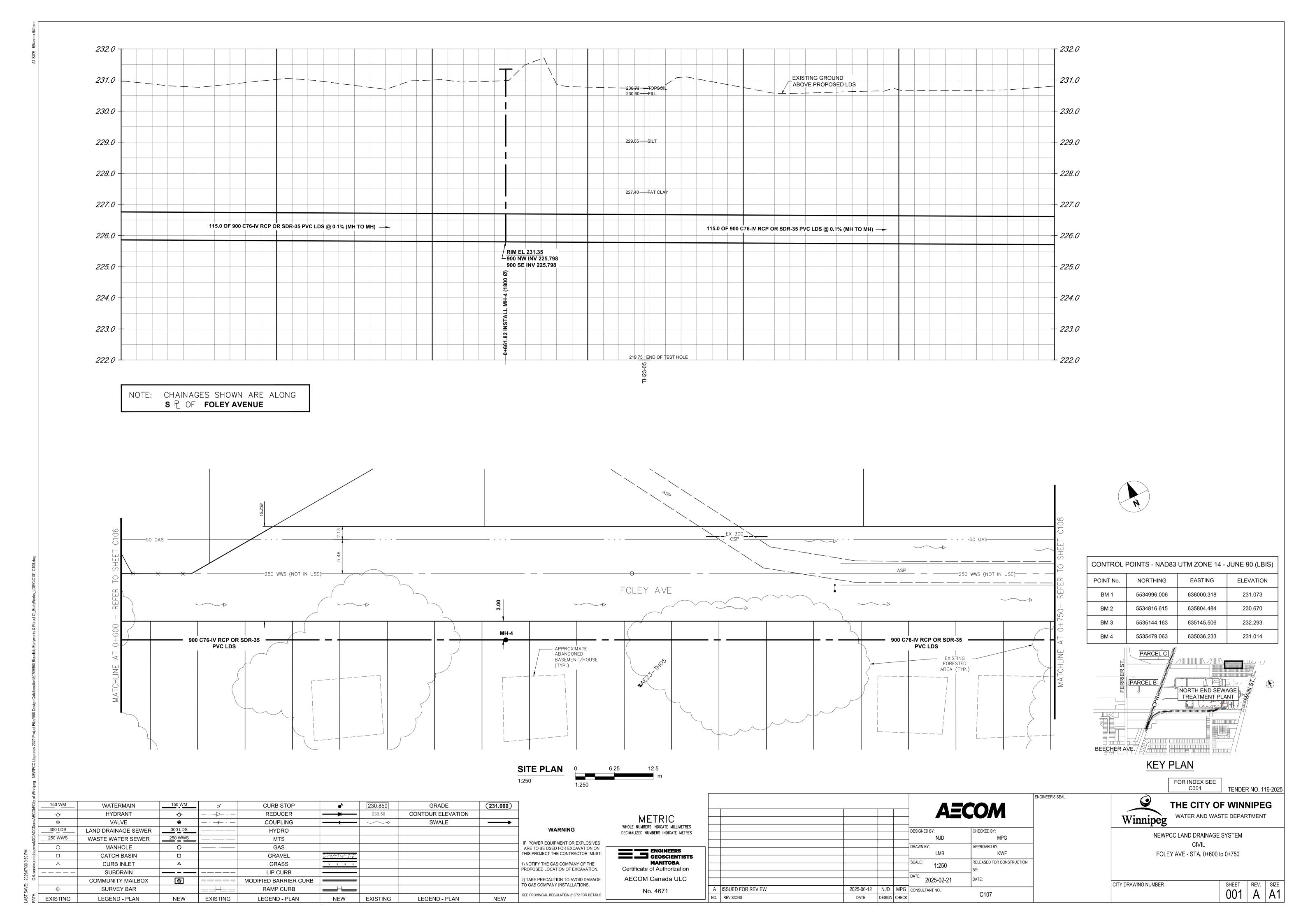
C105

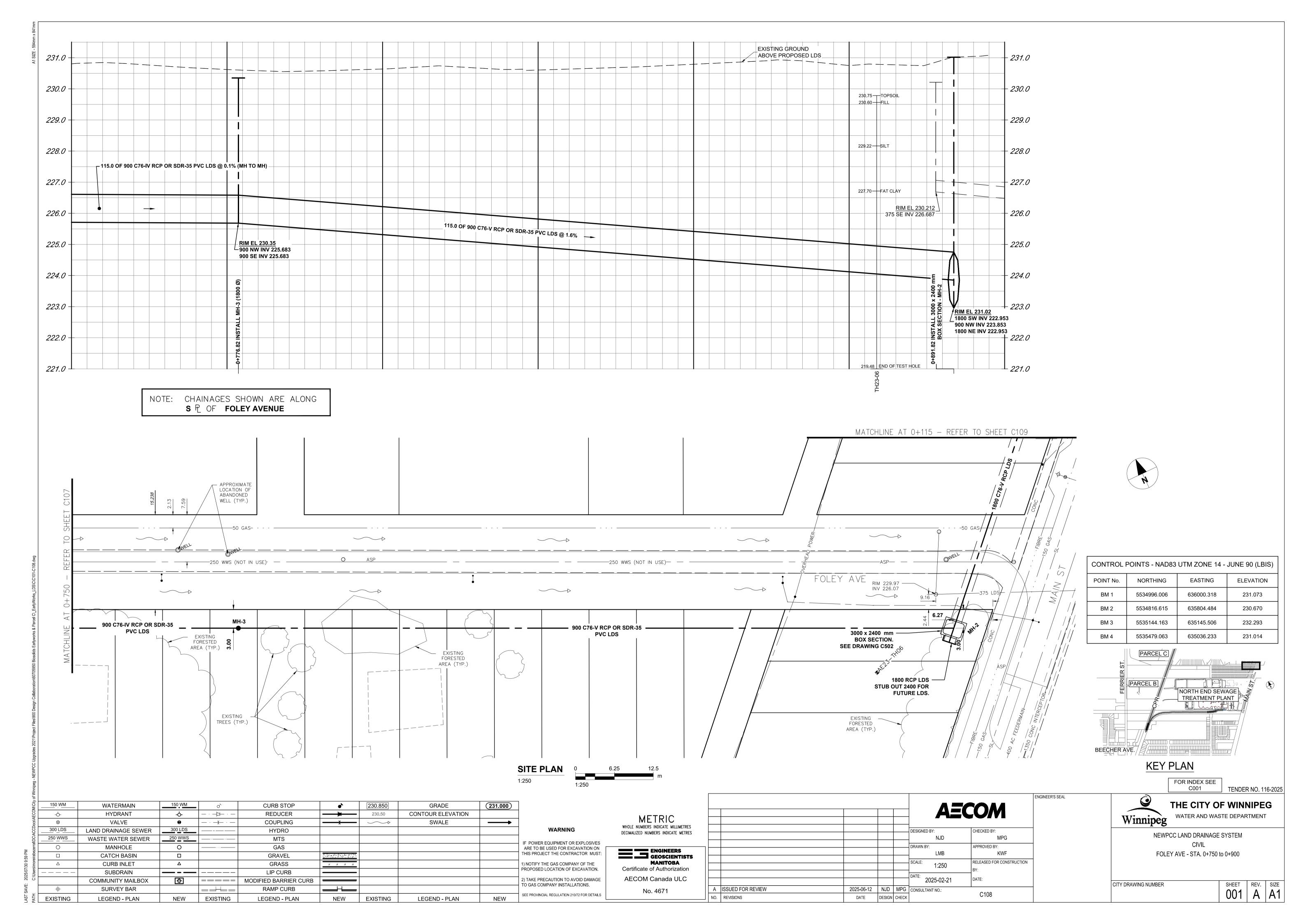
SURVEY BAR

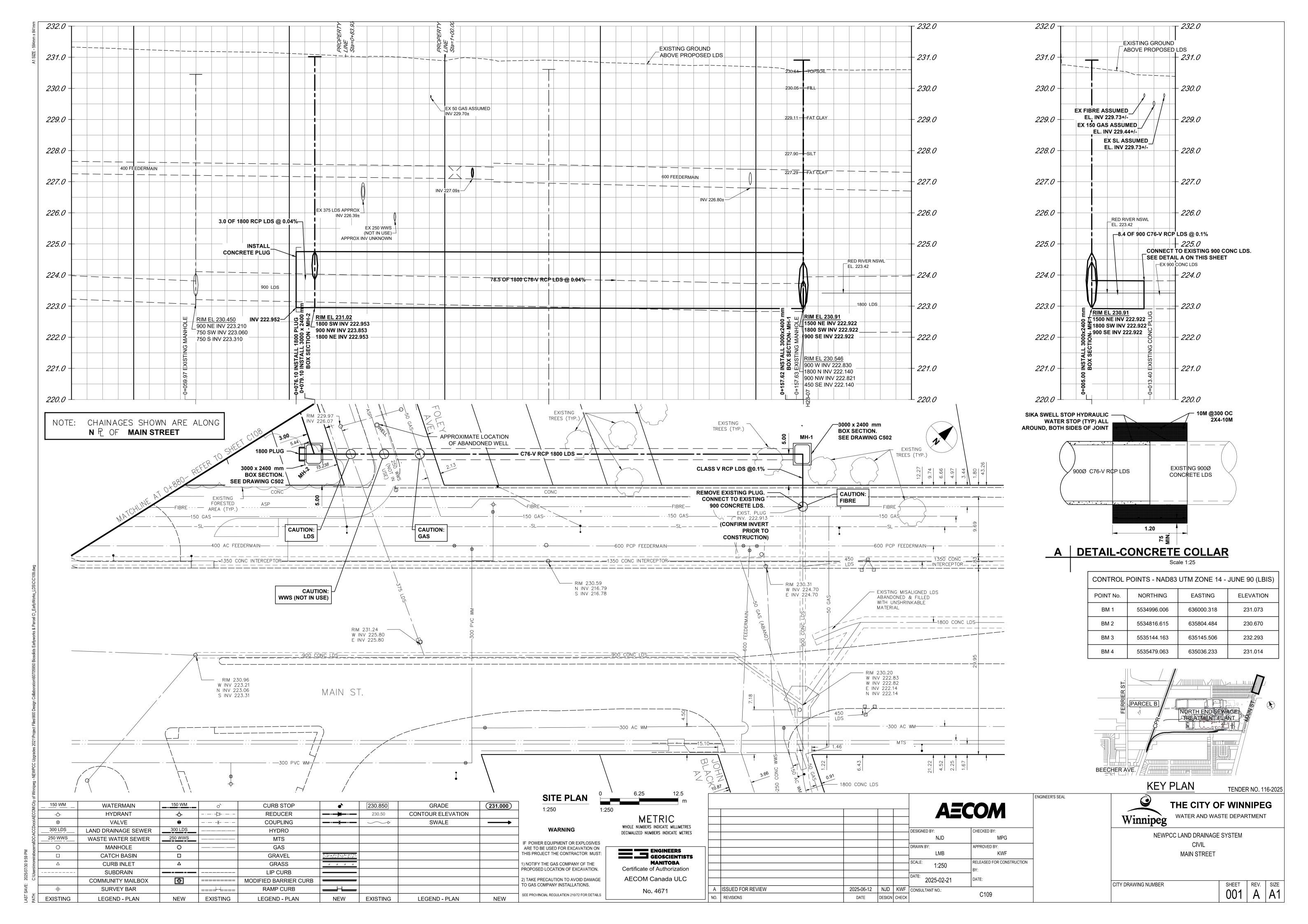
LEGEND - PLAN

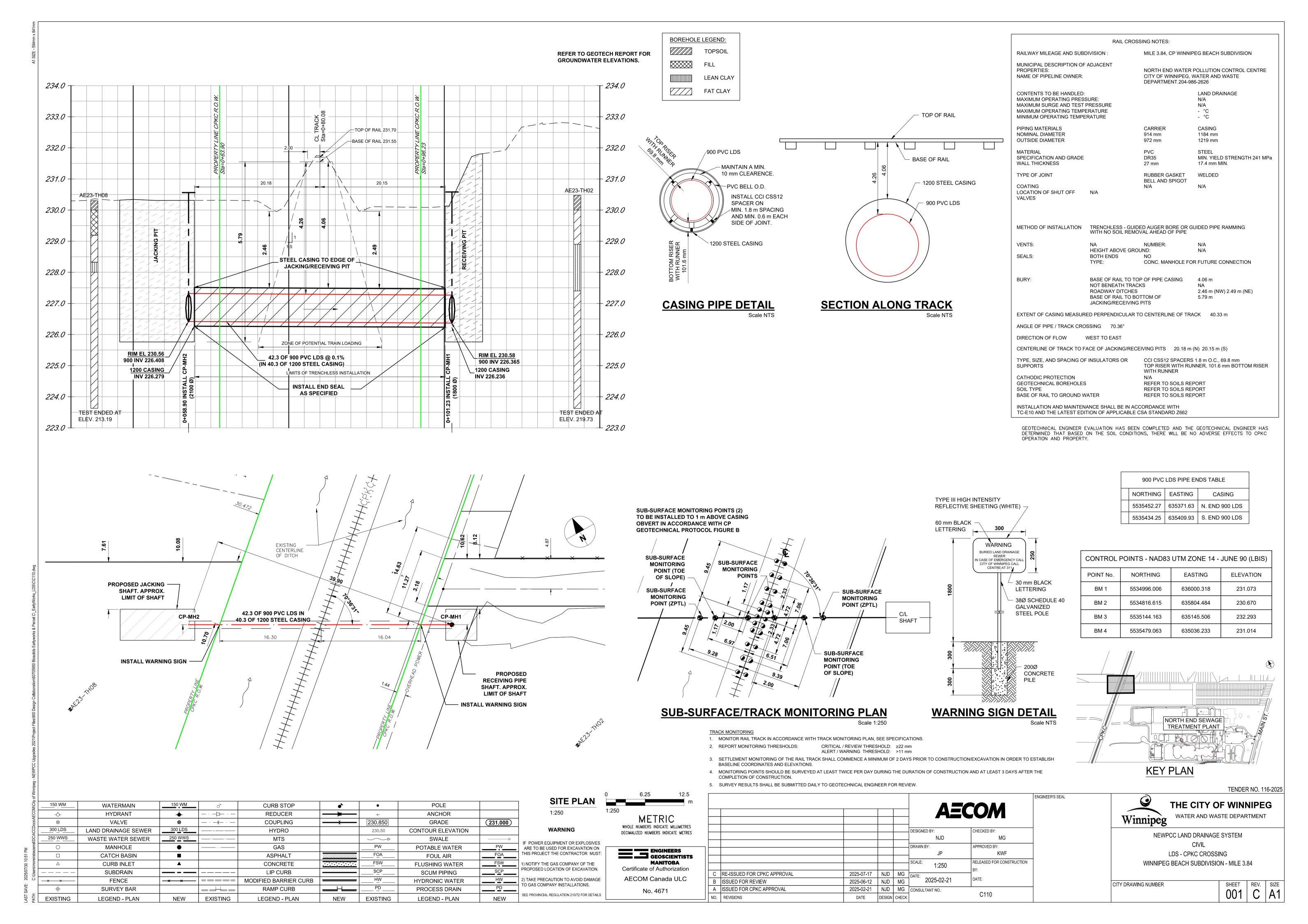
EXISTING

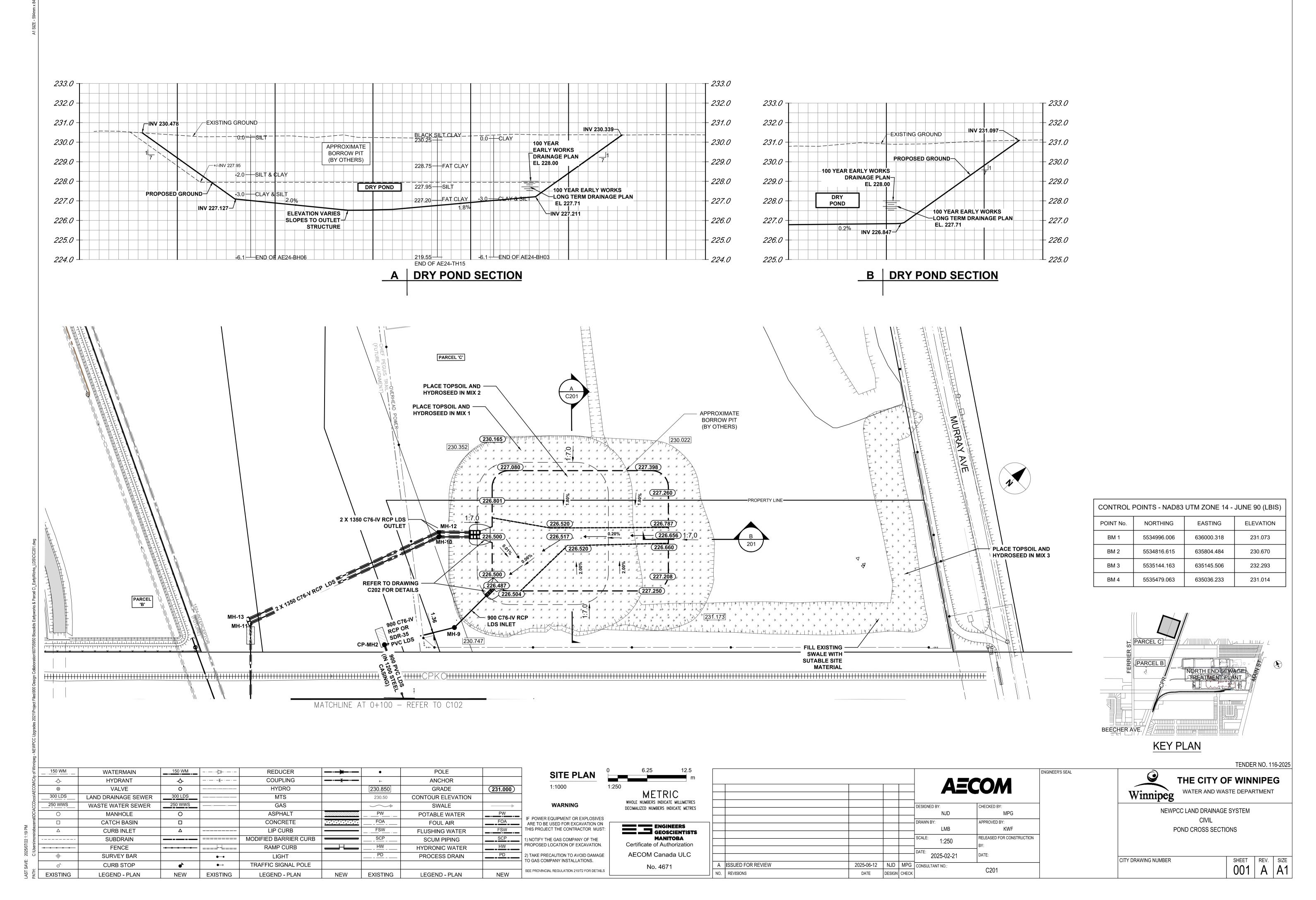

RAMP CURB

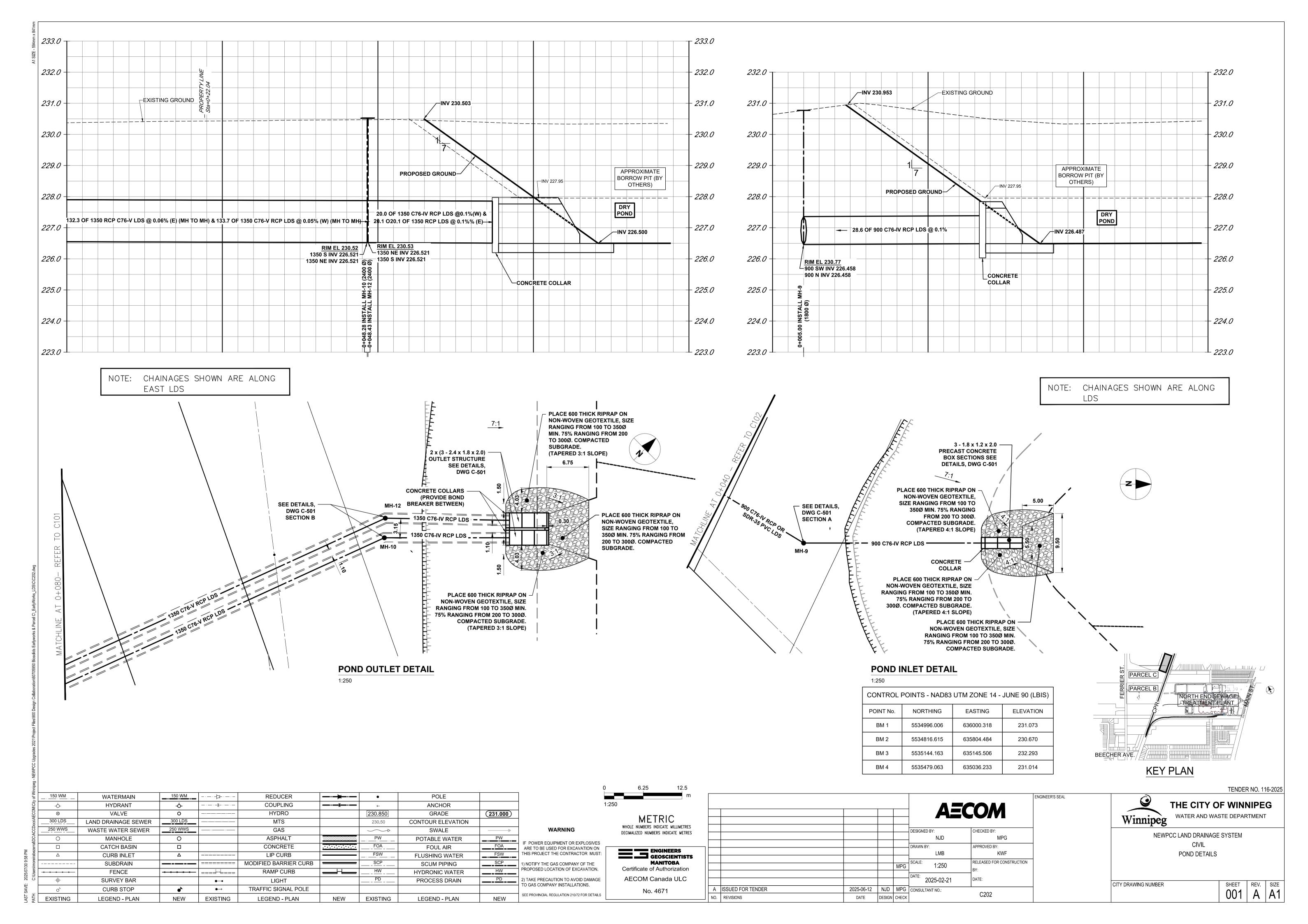

LEGEND - PLAN


EXISTING


LEGEND - PLAN


EXISTING





AECOM

Appendix **E**

Slope Stability Analysis

(Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
		Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
		Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
		Silt (ML)	Mohr-Coulomb	18	0	24	0	1

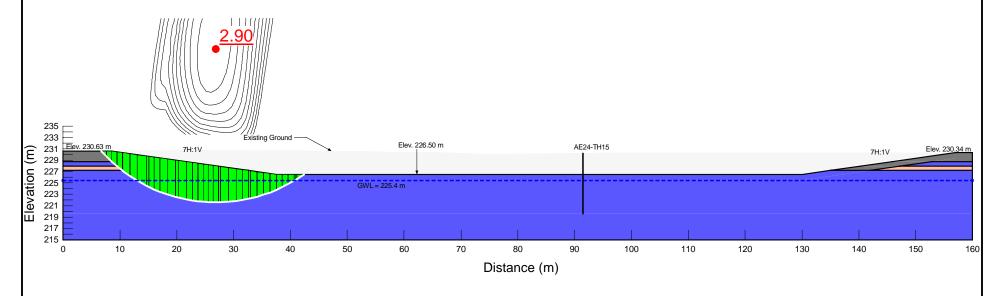


Figure 1: Empty Stormwater Pond

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

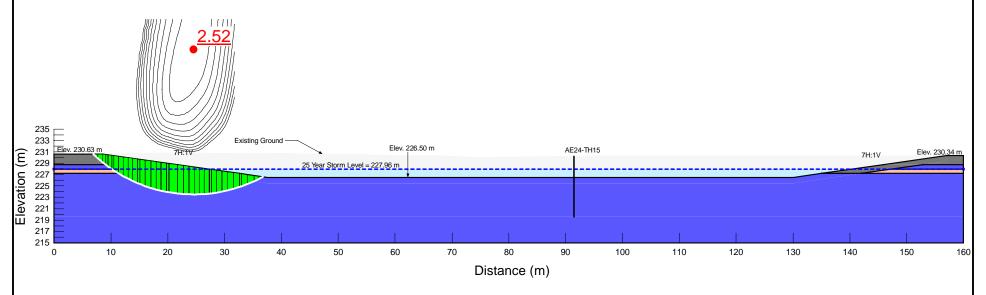


Figure 2: Stormwater Pond Operating at 25-Year Storm Level

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

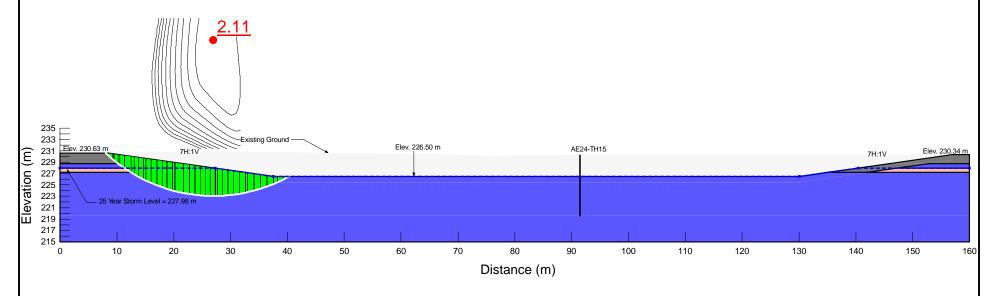


Figure 3: RDD from 25-Year Storm Level to Pond Base

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

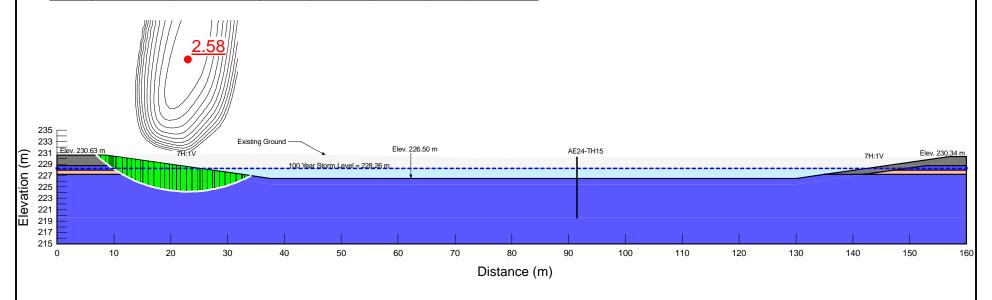


Figure 4: Stormwater Pond Operating at 100-Year Storm Level

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

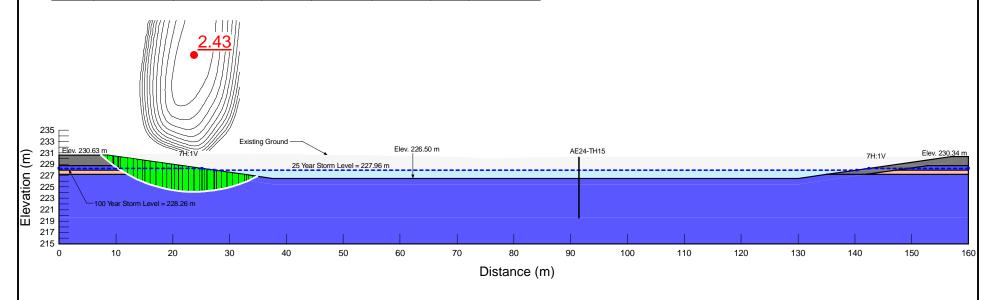


Figure 5: RDD from 100-Year to 25-Year Storm Level

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

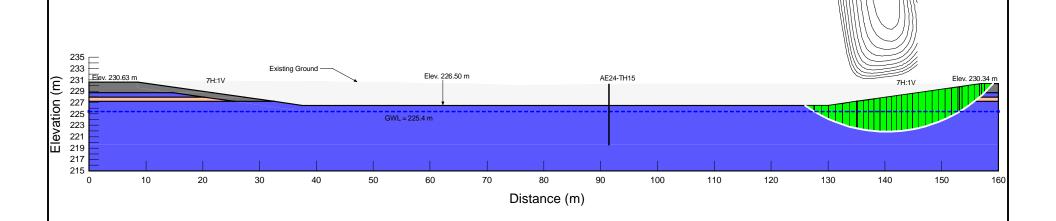


Figure 6: Empty Stormwater Pond

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

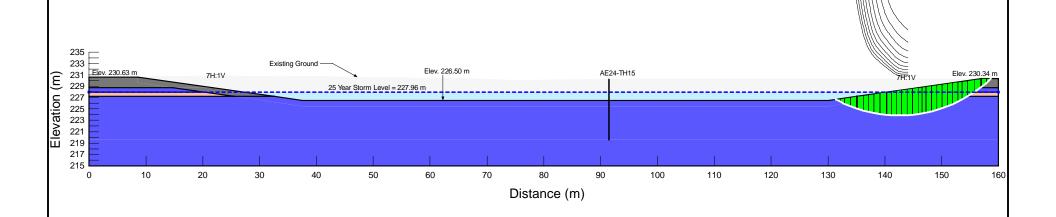


Figure 7: Stormwater Pond Operating at 25-Year Storm Level

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

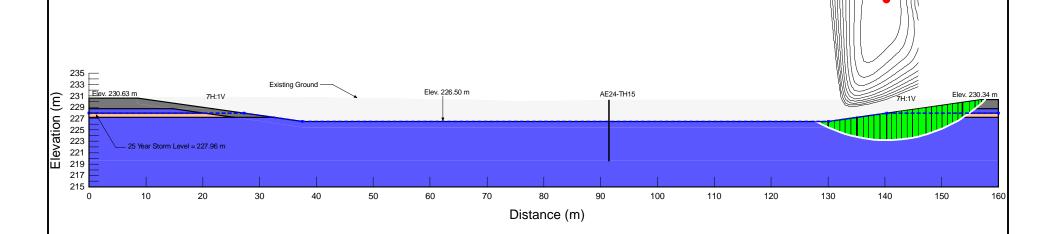


Figure 8: RDD from 25-Year Storm Level to Pond Base

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

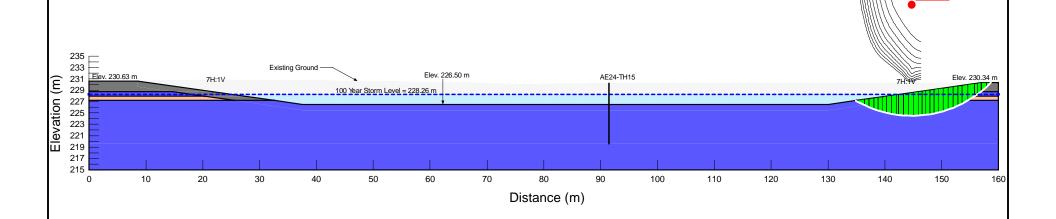


Figure 9: Stormwater Pond Operating at 100-Year Storm Level

Color	Name	Slope Stability Material Model	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Friction Angle (°)	Phi-B (°)	Piezometric Surface
	Fat Clay (CH)	Mohr-Coulomb	18	3	20	0	1
	Fill (Clay)	Mohr-Coulomb	18	3	17	0	1
	Silt (ML)	Mohr-Coulomb	18	0	24	0	1

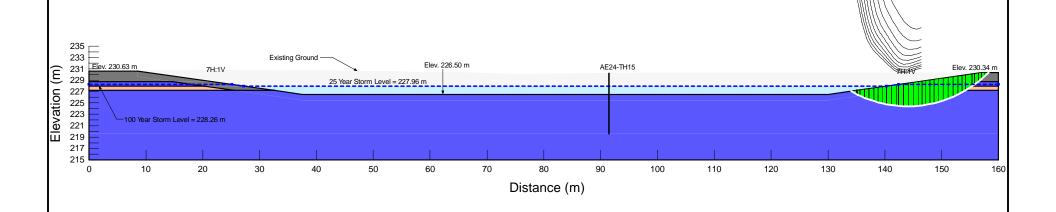


Figure 10: RDD from 100-Year to 25-Year Storm Level

AECOM

Appendix **F**

Seismic Hazard Values

<u>Canada.ca</u> > <u>Natural Resources Canada</u> > <u>Earthquakes Canada</u>

2020 National Building Code of Canada Seismic Hazard Tool

This application provides seismic values for the design of buildings in Canada under Part 4 of the National Building Code of Canada (NBC) 2020 as prescribed in Article 1.1.3.1. of Division B of the NBC 2020.

Seismic Hazard Values

User requested values

Code edition	NBC 2020
Site designation X _S	X _E
Latitude (°)	49.952
Longitude (°)	-97.107

Please select one of the tabs below.

NBC 2020 Additional Values Plots API

Background Information

The 5%-damped <u>spectral acceleration</u> ($S_a(T,X)$, where T is the period, in s, and X is the site designation) and <u>peak ground acceleration</u> (PGA(X)) values are given in units of acceleration due to gravity (g, 9.81 m/s²). Peak ground velocity (PGV(X)) values are given in m/s. Probability is expressed in terms of percent exceedance in 50 years. Further information on the calculation of seismic hazard is provided under the *Background Information* tab.

The 2%-in-50-year seismic hazard values are provided in accordance with Article 4.1.8.4. of the NBC 2020. The 5%- and 10%-in-50-year values are provided for additional performance checks in accordance with Article 4.1.8.23. of the NBC 2020.

See the *Additional Values* tab for additional seismic hazard values, including values for other site designations, periods, and probabilities not defined in the NBC 2020.

NBC 2020 - 2%/50 years (0.000404 per annum) probability

$S_a(0.2, X_E)$	$S_a(0.5, X_E)$	$S_a(1.0, X_E)$	$S_a(2.0, X_E)$	$S_a(5.0, X_E)$	$S_a(10.0, X_E)$	PGA(X _E)	PGV(X _E)
0.113	0.107	0.055	0.0216	0.00434	0.00126	0.0679	0.0544

The log-log interpolated 2%/50 year $S_a(4.0, X_E)$ value is : **0.0064**

▼ Tables for 5% and 10% in 50 year values

NBC 2020 - 5%/50 years (0.001 per annum) probability S_a(0.2, S_a(0.5, $S_a(1.0,$ $S_a(2.0,$ $S_a(5.0,$ $S_a(10.0,$ $PGA(X_E)$ $PGV(X_E)$ X_{E}) X_E) X_E) X_E) X_E) X_{E} 0.0591 0.0565 0.028 0.0104 0.00193 0.000552 0.0339 0.027

The log-log interpolated 5%/50 year $S_a(4.0, X_E)$ value is : **0.0029**

NBC 2020 - 10%/50 years (0.0021 per annum) probability

S _a (0.2,	S _a (0.5,	S _a (1.0,	S _a (2.0,	S _a (5.0,	S _a (10.0,	PGA(X _E)	PGV(X _E)
X _E)							

S _a (0.2, X _E)	S _a (0.5, X _E)	S _a (1.0, X _E)	S _a (2.0, X _E)	S _a (5.0, X _E)	S _a (10.0, X _E)	PGA(X _E)	PGV(X _E)
0.0334	0.0317	0.0149	0.00517	0.000881	0.000242	0.0184	0.0142

The log-log interpolated 10%/50 year $S_a(4.0, X_E)$ value is : **0.0014**

Download CSV

← Go back to the <u>seismic hazard calculator form</u>

Date modified: 2021-04-06

Gene Acurin, E.I.T., B.Eng. Geotechnical M: 204-471-0136 E: gene.acurin@aecom.com

German Leal, M.Eng., P.Eng. Discipline Lead, Geotechnical T: 204-477-5381 M: 431-335-9734 E: german.leal@aecom.com

AECOM Canada ULC 99 Commerce Drive Winnipeg, MB R3P 0Y7 Canada

T: 204.477.5381 F: 431.800.1210 www.aecom.com

